
||||||III
USOO5481,724A

United States Patent (19) 11 Patent Number: 5,481,724
Heimsoth et al. (45) Date of Patent: Jan. 2, 1996

54) PEER TO PEER COMPUTER-INTERRUPT 5,282,272 1/1994 Guy et al. 395/325
HANDLING 5,317,747 5/1994 Mochida et al. 395/725

(75. Inventors: Arthur J. Heimsoth, Coral Springs; OTHER PUBLICATIONS
Ernest N. Mandese, Boynton Beach; IBM Personal System/2 Hardware Interface Technical Ref
Joseph P. McGovern, Boca Raton, erence Manual, Move Mode Subsection of Subsystem Con
Richard N. Mendelson, Highland trol Block Architecture Section, pp. 1-16-1-17, 1-29-1-32,
Beach, all of Fla. 2-5-2-8 Jan. 1991.

73) Assignee: International Business Machines Primary Examiner-jack B. Harvey
Corp., Armonk, N.Y. Assistant Examiner-Ayaz R. Sheikh

Attorney, Agent, or Firm-George E. Grosser; Homer L.
21 Appl. No.: 43,331 Knear
22 Filed: Apr. 6, 1993 57 ABSTRACT

(51) Int. Cl. .. G06F 3/00 A coded logical interrupt signal is sent between system or
52 U.S. Cl. 395/200.01; 364/DIG. 1; subsystem units in a data processing system. The logical

364/229; 364/230.1; 364/232.7; 364/240; interrupt is sent by a sending unit, that requests the interrupt,
364/241.2: 364/242.2: 395/741; 395/293 and is sent to a receiving unit that the sending unit wishes to

58 Field of Search 395/325,725, interrupt. These coded logical interrupts are accumulated in
395/200, 275 the receiving unit. When the receiving unit is actually

physically interrupted by control of the processor in the unit,
56 References Cited all logical interrupts that have been accumulated are pro

cessed. The logical interrupt may be coded to indicate
U.S. PATENT DOCUMENTS sending unit, that is the source of the interrupt, and the action

4,354.229 10/1982 Davis et al. 395/325 being requested by the sending unit. If the interrupt includes
4,420,806 12/1983 Johnson, Jr. et al. 395/725 only source information, the action information is sent
4,604,500 8/1986 Brown et al. 379/269 separately by the sending unit to memory in the receiving
4,698,746 10/1987 Goldstein ...
4,805,096 2/1989 Crohn
4,930,070 5/1990 Yonekera et

- 395/200 unit. If the interrupt includes both source identification and
a a 3957725 action information, the receiving unit can interpret source

395.25 and action directly from the interrupt. 5,185.864 2/1993 Boneventoet al... 395/275
5,247,616 9/1993 Berggren 395/200
5,265,255 11/1993 Bonevento et al. 395/725 11 Claims, 6 Drawing Sheets

UNIX (SYSTEM UNITN - - - - - - - - - - - - -a -
UNY UNZ

s

MEMSLAVE 24
20

ARBTRATIONN am as

Isé CTR 32
SUBSYSTEM ExtERNAL 28 SUBSYSTEM 30
PROCESSOR 30 INTERFACE PROCESSOR

arm or r am axi as aws or - a w w we ... as as - - - aw - was .w. 74-----, -----

UNITY (ADAPTER) 7--- (DASD UNITZ (ADAPEER)

5,481,724 Sheet 2 of 6 Jan. 2, 1996 U.S. Patent

Z LINT)·A LINT O L

~???????????????????????????????????–,
SSE HOJCIV/ +

O?º | 2. Qº!

(???ZI?II: > gºl

** —— —— H^***#!*º-|––––––––––––––1––1––||–||–|---|______T?vy?
r – – – – –-? I

IHETTIOHINOOI I ---- _ _VWQ_ _ _| |

BETTIOHINOO LdfnbHHE LN||

l

s

EI, ET WI! [WT [III] [T [G][O] [?IT Z LINT Å LINT)#72 HT_LO92 BLNI OL|

U.S. Patent Jan. 2, 1996 Sheet 3 of 6 5,481,724

FIG. 3

40 UNITY SENDS ACTION BIT TO
SIGNALLING CONTROLAREAN

UNITZ MEMORY

42
UNITY SENDS PIP BIT TO PIP

REGISTER IN UNITZ

UNITY OFTIONALLY WRITES
ACTION BIT TO SIGNALLING
CONTROLAREAN UNITZ

UNITY WRITES INTERRUPT CODE
TO ATTENTION PORT TO UPDATE

SiR IN UNITZ

U.S. Patent Jan. 2, 1996 Sheet 4 of 6 5,481,724

GENTER) FIG. 4

UNITZ READS
PPPORT

6

DETERMINE WHICH BIT

4

ANY BITS
ON?

N 62 TO SERVICE BASED ON
PRIORITY SCHEME

UNITZ READ
ATTN PORT 50

64 <s N

RESET BIT IN PIP
Y 66

ESET DO OFF READ SIGNALNG
CONTROLAREA

68 ASSOCATED WITH BIT

SEARCH ALL
SIGNALNG CONTROLAREAS S

NOTASSO, PIP A.E."
70

PROCESS NON PIP Y 58
SIGNALLING CONTROLAREAS RESET BITS IN SIGNALLING

CONTROLAREA
60

GExit) SERVICE BITS FROM
SIGNALLING CONTROLAREA

U.S. Patent Jan. 2, 1996 Sheet 6 of 6 5,481,724

GENTE) FIG. 7

80

ANY
SR
BITS?

DETERMINE WHICH
N SR BIT TO SERVICE BASED

ON PRIORITY SCHEME

SR BT
ON?

INTERPRET & SERVICE
INTERRUPT CODE
ASSOCATED WITH

BET IN SR

IF REQUIRED, CHECK
SIGNALLING CONTROLAREA

IF ANY BITS ON, RESET
BITS AND THEN SERVICE THEM

94

RESET AND SERVICE
ATTENTION PORT

5,481,724
1.

PEER TO PEER COMPUTER-INTERRUPT
HANDLING

BACKGROUND OF THE INVENTION

1. Field of the Invention
This invention is directed to handling interrupts in a data

processing system where communications may flow
between system and subsystem or subsystem and subsystem
as peer-to-peer communications. More particularly, the
invention relates to handling interrupts in a peer-to-peer
system more efficiently to reduce total system latency.

2. Description of Prior Art
Interrupt handling in a data processing system on a

peer-to-peer basis is performed in the IBM PS/2 computers
and is described in the IBM Personal System/2 Hardware
Interface Technical Referencemanual in the Move Mode
subsection of the Subsystem Control Block Architecture
section, at pages 1-16 to 1-17, 1-29 to 1-32 and 2-5 to 2-8
(January, 1991). The PS/2 interrupt handling system
advanced the art by providing the ability for subsystems to
interrupt each other and communicate with each other
without intervention by the system unit. In effect, the com
munication responsibility between subsystem units was
moved from the main system unit to the subsystem units.

Each subsystem unit was given a bus master processor
that arbitrated for control of the system bus with the main
system unit and bus masters on all the other subsystem units
or adapter cards. When a bus master was granted access to
the bus, it sent an interrupt and a communication signal to
the unit (system or subsystem) it wished to communicate
with. The receiving unit would detect the interrupt and then
search its memory for receipt of a signal message from the
sending unit. Only one interrupt can be processed at a time
in a given receiving unit. Also, the receiving unit must
search its memory to determine which sending unit is
requesting communication with it. Accordingly, there is
some system latency in handling one interrupt at a time and
searching memory to identify the source of the interrupt.

SUMMARY OF THE INVENTION

It is an object of this invention to reduce the system
latency in peer to peerinterrupt handling in a data processing
system.

It is a further object of this invention to identify the
sources of the interrupts from the interrupt itself rather than
from additional communicated signals.

In accordance with this invention, the above objects are
accomplished by sending a coded logical interrupt signal
between system or subsystem units in the system. The
logical interrupt is sent by a sending unit that requests the
interrupt, and is sent to a receiving unit that the sending unit
wishes to interrupt. These coded logical interrupts are stored
in interrupt storage register in the receiving unit. When the
receiving unit is actually physically interrupted by control of
the processor in the unit, all logical interrupts that have been
accumulated are processed.
The logical interrupt signals contain more information

than merely that they are an interrupt. The logical interrupt
may be coded to indicate the source of the interrupt, and may
be coded to include action information associated with the
interrupt. In one embodiment, an interrupt bit from a sending
unit is stored in a storage location in the interrupt storage
register in the receiving unit, and that storage location is
associated with the sending unit that is the source of the

10

15

25

30

35

40

45

50

55

60

65

2
interrupt. The action information is sent separately by the
sending unit to action storage memory in the receiving unit.
The action information is associated with the interrupt from
the same sending unit.

In another embodiment of the invention, the interrupt
signal is an interrupt/action code that includes both source
identification and action information. This interrupt/action
code receiving unit can interpret source and action directly
from the interrupt/action code. The code is translated to a set
location in a source identification register. That location is
then associated not only with the source of the interrupt but
also the action being requested by that source.
The great advantage of the invention is that the system

efficiency in peer-to-peer interrupt handling is greatly
enhanced. Now, when a unit of the system is interrupted, the
unit can perform the actions required by all pending inter
rupts for that unit. Further, the unit rapidly identifies the
action required for each interrupt because it does not have to
search its memory to identify the interrupt source and the
action message. Other objects, advantages and features of
the invention will be understood by those of ordinary skill in
the art after referring to the complete written description of
the preferred embodiments in conjunction with the follow
ing drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows one preferred embodiment of the invention
where the bit position in a PIIP (Peer Interrupt Identification
Port) word identifies the source of the interrupt.

FIG. 2 is an alternative embodiment for the system unit of
FIG. 1 where a PIP port has been added to the system unit.

FIG. 3 is a flow diagram for the operation/process flow of
an interrupt sending unit in the embodiment of FIG. 1.

FIG. 4 is a flow diagram for the operation/process flow of
an interrupt receiving unit in the embodiment of FIG. 1.

FIG. 5 shows another preferred embodiment of the inven
tion where the interrupt is a multi-bit code that identifies
both the source and the action requested by the source, and
where the bit position in a SIR (Source Identification Reg
ister) identifies the interrupt code.

FIG. 6 is a flow diagram for the operation/process flow of
an interrupt sending unit in the embodiment of FIG. 6.

FIG. 7 is a flow diagram for the operation/process flow of
an interrupt receiving unit in the embodiment of FIG. 6.

DESCRIPTION OF THE PREFERRED
EMBODIMENTS

The preferred embodiment of the invention shown in FIG.
1 uses a Peer Interrupt Identification Port (PIP) port 10 on
a PIIP board 12 in each subsystem unit. The computer in
FIG. 1 is shown with a system unit (Unit X) and two
subsystem units (Unit Y and Unit Z). In this preferred
embodiment, there may be up to 15 subsystem units.

Identical components in the units are given the same
reference numeral. In this description, when components are
referred to globally, their common reference numeral will be
used. When a component in a given unit is described, the
component will be identified by the reference numeral with
a suffix for the unit. Thus, PIP port 10Y in this description
identifies PIP port 10 in Unit Y in FIG. 1.
The system unit X and subsystem units Y and Z commu

nicate over bus 14. Bus 14 includes arbitration, interrupt,
address and data buses. In FIG. 1, the data bus and data lines
are shown in solid line; the control buses and control lines
are shown as dot or dash lines. Data transfers between the
units are controlled by the system master 16 in system unit

5,481,724
3

X, and by bus masters 18 in each of the subsystem units.
Only one master has control of bus 14 at any one time. Each
master is assigned a priority. Control of the bus is arbitrated
between the masters over arbitration bus 14A based on the
priority of the masters requesting control. When a master is
given control over the bus, it controls data transfers between
its unit as the source and its own unit or another unit as the
target. The master addresses over address bus 14C the
memory slave logic 20 and/or input/output (I/O) slave logic
22 in the target unit. In other words, the system master 16 or
bus master 18 that wins the arbitration, controls all memory
slaves 20 and I/O slaves 22 on the units.

Data transfers between units are preferably handled in a
dual pipeline manner, as described in co-pending, com
monly-assigned U.S. patent applications Ser. No. 7/411,145,
filed Sep. 22, 1989, entitled "Apparatus and Method For
Asynchronously Delivering Control Elements With a Pipe
Interface' and Ser. No. 07/968,758, filed Oct. 30, 1992,
entitled "Bus Master State Machine With Control Structures
For Subsystem Control Blocks." In these data transfers, the
sending unit must send an action message to the memory 24
of the receiving unit, identify itself as the source of the
action message and set an interrupt request for the processor
at the receiving unit. The action messages are Dequeue (D),
Manage (M) or Enqueue (E). Each memory 24 has an
assigned storage location called the signalling control area
for the action messages from the other units. For example,
as shown in FIG. 1, memory 24Y has signalling control
areas for Unit X and Unit Z.

To illustrate the operation of this preferred embodiment,
assume that UnitY wishes to request Dequeue action at Unit
Z. When bus master 1BY gets control of the bus, it addresses
the Unit Y signalling control area in memory 24Z over
address bus 14C. Bus master 18Y then sends a byte con
taining the D (Dequeue) message over the data bus 14D to
memory 24Z through memory slave logic 20Z. This D
message is stored in the Unit Y signalling control area of
memory 24Z.

Next, bus master 18Y addresses the PIP port 10Z through
the I/O slave logic 22Z, and sends the PIP bit for unitY via
a byte over the data bus 14D. The I/O slave logic 22Z
receives the byte. The PIP bit in the byte is loaded into PIIP
port 10Z in manner as to not overwrite the other bits in port
10Z. This might be done by masking the other bits in the
byte from UnitY, or if all the other bit positions are "0,” the
byte could be OR'd with the contents of port 10Z. In either
case, the PIP bit from UnitY loaded into port 10Z indicates
an interrupt request from Unit Y to the PIP port 10Z.

Each bit in the PIP port 10Z identifies, by its location in
the port, the source or sending unit that has requested an
interrupt of the target unit. Logic on the PIP board 12Z
detects the presence of a bit in the PIP port 10Z and sends
an interrupt request signal to the interrupt controller 32Z.
Processor 30Z, when it wishes to handle interrupts, will read
the contents of the ATTN (Attention) port 26Z and the PIP
port 10Z over bus 28Z. Processor 30Z identifies the units
requesting action based on the location of bits in the PIP
word. Since processor 30Z knows from the UnitYbit in the
PIP word that Unit Y requested an interrupt, the processor
reads the Unit Y signalling control area in memory 24Z to
determine the action requested. After the action request is
read from a signalling control area, the action request in the
control area is reset to Zero.

Whenever the ATTN port 26Z is written with a hexadeci
mal D0, an interrupt request signal is passed by the interrupt
controller 32Z to processor 30Z. The hexadecimal D0 is
used by all units to request an interrupt of a specific
subsystem unit processor 30. The ATTN port is used to
handle interrupt requests other than PIP bits and to accom

10

15

20

25

30

35

40

45

50

55

60

65

4
modate units who are not capable of sending PIP bits.

After processor 30Z has processed all PIP bits in the PIP
word, it will then process any interrupt that was generated as
a result of hexadecimal D0 written to the ATTN port 26Z.
Processor 30Z receives the interrupt from ATTN port 26Z
via the interrupt controller 32Z. The D0 interrupt has no
information as to source of the interrupt. Therefore, the
processor must scan all the signalling control areas in
memory 24Z to determine if there is a pending action
request.

In the preferred embodiment of FIG. 1, the system UnitX
does not have an ATTN port or a PIP port. Interrupts to the
system unit are sent from the bus masters 18 in the sub
system units to the interrupt controller 34. The interrupt
controller passes the interrupt to processor 36. When the
interrupt request is granted by processor 36, it scans the Unit
Y and Unit Z signalling control areas in memory 24X to
determine which subsystems requested action from the
system unit and what action, D., M or E, was requested.

In another preferred embodiment of the invention in FIG.
2, the system unit does have an ATTN port and a PIP port.
In this embodiment, the system unit processes interrupts
from the subsystem unit in the same manner as just
described in FIG. 1 for communication between two sub
systems. In other words, the bus master from the subsystem
unit writes D, M or E bit into the subsystem's signalling
control area in memory 24X. The bus master for the sub
system unit also writes the PIP bit for the subsystem into
PIP port 10X. Logic on the PIP module 12X sends an
interrupt signal to the interrupt controller 34X. The interrupt
controller passes the interrupt request to processor 36. When
the processor services the interrupt request, it reads the PIP
bits from the PIP word in port 10X. The processor identifies
the requesting subsystems from the PIP bits and reads their
signalling control areas to determine the actions being
requested by the subsystem.
The operation or logic flow for the process of peer-to-peer

interrupt handling between units in FIGS. 1 or 2 is shown in
FIGS. 3 and 4. FIG.3 shows the simple routine used by the
bus master 18Y in a subsystem Unit Y for signalling an
interrupt. FIG. 4 shows the routine used by the subsystem
processors 30Z to interpret the interrupts.

In FIG. 3, operation 40 addresses Unit Y signalling
control area in memory 24Z over memory slave 20Z, and
sends an action bit in a byte over data bus 14D. As described
for FIG. 1, memory slave logic 20Z writes the action bit into
Unit Y area of memory 24Z. Operation 42 by bus master
18Y addresses the PHP port 10Z through the I/O slave logic
22Z. As described in FIG. 1, the PIP bit is loaded by logic
22Z into its preassigned location in PIP port 10Z. The
preassigned location identifies Unit Y as the source of the
interrupt request.
The interpretation of interrupts by processor 30Z begins

with operation 44 in FIG. 4. Operation 44 reads the PIP
word from PIP port 10Z. Decision 46 tests whether any PIP
bits in the port are set on. If the answer is yes, the process
branches to operation 48. In operation 48, processor 30Z
services the PIP bits according to a predetermined priority.
Any priority algorithm may be used. The priority might
simply be based on processing the PIP word from most
significant digit to least-significant digit.

In whatever manner a bit of the PIP word is selected,
decision 50 checks to see if the bit is a "1.' If the bit is a '0'
the process loops back to operation 44. If the bit is a 1,
operation 52 resets the bit position in port 10Z to 0. Next,
operation 54 reads the signalling control area in memory
24Z associated with the bit that was a 1. For example, if the

5,481,724
S

PHP bit was associated with UnitY, operation 54 would read
the Unit Y signalling control area in memory 24Z.

Decision 56 in FIG. 4 tests whether any action bits in the
signalling control area read by operation 54 were “ON” or
set to 1. If no action bits were on, the process again loops
back to operation 44 to read the PIP port. If one or more
action bits were ON, the process branches to operation 58.
Operation 56 resets bits in the signalling control area to 0,
and operation 60 services the bits that were ON or 1. For
example, if the E (Enqueue) action bit had been on, Unit Z
would begin an enqueue operation, as described in the
above-identified applications on dual pipeline data transfers
between units. After the action bits are serviced by operation
60, the process loops back to operation 44.
When all PIP bits in the PIP word have been processed,

decision 46 will detect that all the PIP bits are OFF or 0.
Process will branch to operation 62 where processor 30Z
reads the ATTN port 26Z. If a non-PIIP subsystem has set an
interrupt code "D0” in ATTN port 26Z, decision 64 will
branch Yes to operation 66. If there is no interrupt in ATTN
port, decision 64 branches No, and the interrupt interpreta
tion routine is completed.

After operation 66 resets the ATTN port, operation 68
searches for signalling control areas in memory 24Z that are
not associated with PIP bits. In other words, the subsystem
processor has no information about the source of the D0
interrupt except that it did not come from a subsystem
equipped to use PIP. When the processor finds a non-PIP
signalling control area with an action bit ON, operation 70
processes the signalling control area in the same manner as
operations 58 and 60 previously described. After all non
PIP signalling control areas have been searched and pro
cessed by operations 68 and 70, the interpret interrupts
routine is completed until it is called again to start at
operation 44.
An alternative preferred embodiment of the invention is

shown in FIG. 5 where the PIP port 10 has been replaced
by an SIR (Source Identification Register) 70. Only the
differences in structure and operation of FIG.5 from FIG. 1
will be described. There is no PIP port in FIG. 5. Interrupt
signal codes from other units are received at the ATTN port
26. The interrupt signal codes preferably include source
identification information and action information. The inter
rupt signal codes in the ATTN port 26 are decoded by SIR
logic 72. SIR logic 72 decodes each interrupt signal code
into an SIR bit at a predefined location in the SIR register 70.
The location of bits in the SIR register 70 indicates the
interrupt signal code received at the ATTN port. Processor
30 reads the SIR bits from SIR register 70 and, from the
location of ON or “1” bits in register 70, interprets the
interrupt signal code received. Interrupt controller 32
receives interrupt signals either by detecting a D0 interrupt
code in ATTN port 26, or by detecting any bit in SIR 70.
One operative difference between the embodiment of

FIG. 1 and the embodiment of FIG. 5 is that the interrupt
signal codes are more than a single bit. In FIG. 5, the
interrupt signal codes are hexadecimal codes, such as D1,
D2, D3, etc. In contrast, the PIP port 10 in FIG. 1 had one
bit for each unit that might send a PIP interrupt bit and the
location of that bit in the PIP port identified the sending
unit.

In SIR 70, the location of a bit only identifies an interrupt
signal code. Processor 30 uses the identity of the interrupt
signal code from the bit location in SIR 70 to interpret the
interrupt signal code. For example, processor 30 would
know that bit location four in the SIR corresponds to
hexadecimal interrupt signal code D3. Processor 30 then

10

5

20

25

30

35

45

50

55

60

65

6
uses a table look-up routine to interpret code D3.
The interrupt signal code content includes the source

identification of the sending unit, and preferably the action
requested by the interrupting source. For example, D1 signal
code indicates Unit Y requesting dequeue action, D2 signal
code indicates Unit Y requesting enqueue action, etc. The
advantage of encoding the action request into the interrupt
signal code is two fold. First, the action bit does not have to
be written to the signalling control area in the receiving unit.
Second, the processor in the receiving unit does not have to
read a signalling control area to get the action request
information.

The size of the SIR may be extended to store any number
of SIR bits. The size of SIR 70 and the associated decode
logic 72 are fixed at design time for each unit. Preferably,
SIR 70 and logic 72 are designed to accommodate the
maximum possible number of units in the system, and thus
they may easily accommodate subsystem units as they are
added to the system. Also, the interrupt signal codes used in
the system are changed by software. The system Unit X
processor 36 defines the interrupt signal codes to be sent by
each unit; this is done by sending a control message to
processor 30 in each unit. Further, system processor 36 can
set the interrupt interpretation table used by each processor
30 to interpret received codes. For example, if SIR 70 and
logic 72 are designed to accommodate 128 bits and thus 128
interrupt signal codes, UnitX processor 36 would define the
interrupt signal codes from D1 to D128 and notify the
subsystem unit interpretation tables of the bit position for
each SIR bit and its meaning.

FIGS. 6 and 7 show the operation/logic flow of UnitY as
a sending or interrupt requesting unit, and Unit Z as a
receiving or interrupt interpreting unit for the SIR embodi
ment of the invention in FIG. 5. In FIG. 6, the subsystem
processor 30Y runs the program. In operation 74, bus master
18Y may write an action bit to the UnitY signalling control
area in memory 24Z. The operation is optional in that this
operation could be replaced by encoding the action request
into the interrupt signal code as described above. In opera
tion 76 of FIG. 6, bus master 18Y writes the interrupt signal
code to ATTN port 26Z. This interrupt signal code passes
through the ATTN port 26Z but is not stored there. The
attention port does include a register, but the only interrupt
signal stored there is D0, as will be explained hereinafter in
the description of FIG. 7.

In FIG. 7, when processor 30Z is ready to interpret
interrupt signal codes, operation 78 is called. Operation 78
reads the contents of SIR register 70Z into the processor
30Z. Decision 80 tests for the presence of any SIR bits from
SIR 70Z. If the answer is Yes, the process branches to
operation 82. In operation 82, the SIR bits are processed in
accordance with a priority algorithm. Based on priority, an
SIR bit location in the SIR register is selected. Decision 84
tests whether that SIR bit is ON. If the SIR bit is not set, the
process loops back through operation 78 and decision 80.
Operation 82 then selects the SIR bit with next highest
priority.
When decision 84 detects that the selected SIR bit is

present, the process branches to operation 86. Operation 86
resets the SIR bit OFF. In operation 88, processor 30Z
identifies the interrupt signal code from the location of the
SIR bit in SIR 70Z, and interprets the interrupt signal code
by looking up in the interrupt interpretation table the source
of and action requested by the interrupt. If the interrupt
signal code includes the action request, operation 88 also
processes the action request. If the interrupt signal code is

5,481,724
7

simply interrupt source identification, operation 90 pro
cesses the associated signalling control area for the action
requested by the interrupt source. Operation 90 would be the
same as that previously described for operations 54, 56, 58
and 60 in FIG. 4. After operation 90, the process loops back
to operations 78, 80 and 82 to look for more SIR bits.
When all the SIR bits in SIR 70Z have been serviced by

processor 30Z, decision 80 branches to decision 92. Deci
sion 92 is testing for a D0 interrupt flag in the ATTN port
26Z. If there is a D0 interrupt flag in the ATTN port,
operation 94 resets the port and services the interrupt stored
at the ATTN port 26Z. Decision 92 and operation 94 are
provided to handle interrupt requests from units not
equipped to send interrupt signal codes other than hexadeci
mal D0. Operation 94 would service the D0 interrupt signal
code in the same manner as previously described for opera
tions 62, 64, 66, 68 and 70 in FIG. 4.

While a number of preferred embodiments of the inven
tion have been shown and described, it will be appreciated
by one skilled in the art, that a number of further variations
or modifications may be made without departing from the
spirit and scope of our invention.
What is claimed is:
1. In a data processing system having multiple processing

units, apparatus for handling logical and other interrupts
from a first processing unit as a sending unit to a second
processing unit as a receiving unit, wherein any one of said
multiple processing units may function as a sending unit,
and wherein any one of said multiple processing units may
function as a receiving unit, said apparatus comprising:
means in the sending unit for sending a coded logical

interrupt to the receiving unit for processing at the
receiving unit, said coded logical interrupt being coded
to indicate an interrupt request and including source
identification information identifying the sending unit
that requests an interrupt of the receiving unit;

means in the receiving unit for receiving said coded
logical interrupts and other interrupts;

interrupt storage means in the receiving unit for storing a
plurality of coded logical interrupts received by said
receiving means from a plurality of sending units;

means for providing an interrupt request when at least one
coded logical interrupt is stored in said interrupt storage
means or when an other interrupt is received by said
receiving means;

processing means in the receiving unit in response to the
interrupt request for reading all of the coded logical
interrupts in said interrupt storage means during said
processing means's next interrupt processing operation
and for processing each such read coded logical inter
rupt to identify the sending unit for each such read
logical interrupt:

said interrupt storage means having a unique storage
location assigned to each sending unit whereby said
storage means stores each coded logical interrupt that is
received in a storage location that is uniquely indicative
of the identity of the sending unit sending the received
coded logical interrupt; and

Said processing means including means identifying the
sending unit for each coded logical interrupt from the
unique storage location of the coded logical interrupt in
said interrupt storage means.

2. The apparatus of claim 1 and in addition:
means in the sending unit for sending an action informa

tion assigned to the coded logical interrupt sent by the
Sending unit, said action information indicating the

10

15

20

25

30

35

40

45

50

55

60

65

8
action being requested of the receiving unit;

action storage means in the receiving unit for storing the
action information from the sending units; and

said processing means responsive to the identification of
the sending unit for each such read coded logical
interrupt for reading the action information from said
action storage means and servicing the action request
from that sending unit.

3. The apparatus of claim 1 and in addition:
means in the sending unit for sending action information

assigned to the coded logical interrupt sent by the
sending unit, said action information indicating the
action being requested of the receiving unit;

action storage means in the receiving unit for storing the
action information from the sending units; and

said processing means responsive to the identification of
the sending unit for each such read coded logical
interrupt for reading the action information from said
action storage means and servicing the action request
from that sending unit.

4. The apparatus of claim 1 and in addition:
said coded logical interrupt is a combined interrupt/action

code identifying both the sending unit and the action
request by the sending unit; and

said processing means responsive to the interrupt/action
code for identifying the sending unit sending the coded
logical interrupt and the action requested by the send
ing unit.

5. The apparatus of claim 4 wherein said interrupt storage
means comprises:
means for translating interrupt/action codes from each

sending unit and setting a storage location to indicate
the sending unit and the action requested by the sending
unit.

6. The apparatus of claim 5 wherein said processing
means comprises:
means responsive to the storage locations set by said

translating means for identifying each sending unit and
the action requested by the sending unit.

7. In a data processing system having a system unit and
a plurality of subsystem units communicating over a bus, a
method for handling attention interrupt signals and logical
interrupt signals that are communicated between the system
unit and the subsystem units, or that are communicated
between the subsystem units, both types of communication
being handled as peer-to-peer communications between a
sending unit and a receiving unit, said method comprising
the steps of:

sending a coded logical interrupt signal from a sending
unit to a receiving unit, said coded logical interrupt
signal indicating an interrupt request and identifying
the sending unit sending the coded logical interrupt
signal;

receiving in the receiving unit the attention interrupt
signals and the coded logical interrupt signals;

storing in the receiving unit one or more coded logical
interrupt signals received from a plurality of sending
units,

generating an interrupt request in the receiving unit if an
attention interrupt signal has been received by the
receiving unit as a result of said receiving step, or if at
least one coded logical interrupt signal has been stored
in the receiving unit as a result of said storing step;

if an interrupt request is generated as a result of said
generating step, then during next occurring interrupt
processing cycle at the receiving unit, processing all of

5,481,724

the stored coded logical interrupt signals to identify all
of the sending units that sent coded logical interrupt
signals to the receiving unit,

Said storing step storing the coded logical interrupt signal
from each sending unit in a unique storage location that
is assigned to each sending unit, and

said processing step identifying the sending unit for each
Stored coded logical interrupt signal from the unique
Storage location that is assigned to each sending unit.

8. The method of claim 7 and in addition:
sending action information assigned to said coded logical

interrupt signal, said action information indicating the
action requested by the sending unit;

storing in the receiving unit action information assigned
to each coded logical interrupt signal from the plurality
of sending units;

reading the stored action information at the receiving unit
for each sending unit that is identified by said process
ing Step; and

servicing the read action information from the identified
sending units.

10

15

10
9. The method of claim 7 and in addition:
said coded logical interrupt signal is a combined interrupt/

action code identifying both the source sending unit of
the coded logical interrupt and the action requested by
the source sending unit; and

said processing step identifying from the interrupt/action
code the source sending unit and the action requested
by the source sending unit.

10. The method of claim 9 wherein said storing step
comprises the steps of:

translating interrupt/action codes from a source sending
unit, and

Setting a signal in a storage location, said storage location
being indicative of the source sending unit and the
action requested.

11. The method of claim 10 wherein said processing step
identifies the source sending unit and the action requested by
the Source sending unit from the storage location that is set

20 by said setting step.

