
United States Patent 19)
Bealkowski et al.

(54

75

73)

21)

22)

(51)
(52)

58)

56

|||||||||
USO0549.561 1A

11 Patent Number: 5,495,611
(45) Date of Patent: Feb. 27, 1996

METHOD AND APPARATUS FOR DYNAMIC
LOAD OF AN ABIOS DEVICE SUPPORT
LAYERN A COMPUTER SYSTEM

Inventors: Richard Bealkowski, Delray Beach;
John W. Blackledge, Jr., Boca Raton;
Douglas R. Geisler, Boca Raton;
Michael R. Turner, Boca Raton, all of
Fla.

Assignee: International Business Machines
Corporation, Armonk, N.Y.

Appl. No.: 902,311
Filed: Jun. 22, 1992

Int. Cl. G06F 9/00
U.S. Cl. 395/700; 364/DIG. 1;

364/280.2, 364/280
Field of Search 395/700, 650,

395/500

References Cited

U.S. PATENT DOCUMENTS

5,136,713 8/1992 Bealkowski et al. 395/700
5,175,831 12/1992 Kumar 395,425
5,187,792 2/1993 Dayan et al. 3951725
5,210,875 5/1993 Bealkowski et al. 395/700
5,220,667 6/1993 Ichieda 395/700

395/700
... 395/800

5,230,052 7/1993 Dayan et al. ..
5,230,058 7/1993 Kumar
5,247,659 9/1993 Curran et al... 395/575
5,257,342 10/1993 Sideserf et al. 395/700
5,269,022 12/1993 Shinjo et al. 395/700

Primary Examiner-Kevin A. Kriess
Attorney, Agent, or Firm-Robert S. Babayi

57 ABSTRACT

A personal computer system is disclosed which is compat
ible with application programs and operating system soft
ware. The personal computer system includes a micropro
cessor electrically coupled to a data bus, non-volatile
memory electrically coupled to the data bus, volatile
memory electrically responsive to the data bus, a memory
controller electrically coupled to the microprocessor, the
volatile memory and the non-volatile memory, and a direct
access storage device electrically responsive to the data bus.
The non-volatile memory stores a first portion of operating
system microcode and the volatile memory includes a vola
tile operating system portion intended for use by the first
portion of the operating system microcode. The memory
controller regulates communications between the volatile
memory, the non-volatile memory and the high speed micro
processor. The direct access storage device stores a second
portion of operating system microcode which is accessed by
the microprocessor as needed.

9 Claims, 16 Drawing Sheets

SOO

BEGINOPERATING
SYSTEMBOOTSRAP

PREMINARY O.S.
NAZATION

O.S. OAOSABOS
"PATCH MODULES

O.S. SSUES CBOS
CAS TO

INTIAZE ABOS

O.S. CONTINUED
NTALIZATION

U.S. Patent Feb. 27, 1996 Sheet 1 of 16 5,495,611

FIG. A

5,495,611 U.S. Patent

5,495,611 U.S. Patent

Z 'SDI

5,495,611

- • • • • • • • • ----• • • • • •=> • <!-- - - - - - - - - - - - ----

Sheet 4 of 16 Feb. 27, 1996 U.S. Patent

5,495,611 Sheet 5 of 16 Feb. 27, 1996 U.S. Patent

Sheet 6 of 16 Feb. 27, 1996 U.S. Patent

HETTOH1NOO / CHVOGÅEX

#7ff7209:2
LEHOd LHOd

BO LOENNOO T\/|HES

972 HELCHVCIV/ TETTIVHV:
282 HELCHWOW/| ||

ELLEXSIC]
HOLOENNOO ELLEXISIC] HOLOENNOO AVTdS|Cl]

---------------.

5,495,611 Sheet 7 of 16 Feb. 27, 1996 U.S. Patent

BEWAOd VNELSÅS HOLIWAS HLINA HOLOENNOO

V LVCI. WHOWE'W902
293

892

(EGIOOEG ‘SVO 'SWH) BETTIOHINOO Å HOWE'W

£VNZ TV/NOLLCHO

-

i

5,495,611

282

U.S. Patent

Sheet 9 of 16 Feb. 27, 1996

972 092

wyd sowo [:] /xoo o E-T-

20€

5,495,611 Sheet 10 of 16 Feb. 27, 1996

898SVO
HÆTHÆTË278 \/809

5,495,611 Sheet 11 of 16 Feb. 27, 1996 U.S. Patent

TENNW/HOOHOTW CÌNV HEAO SSOHO

848 TOH LNO O

#| 2SSE HOJCIV/
TOHLNOO

WELSÅSET'S

227 SSE HOGY “TWOOT

· TOHINOO| STIE

0

0SO
2

20
VA

TvOOT HOSSE OOHc] HOSSE OOH•HOO
* - - - - - - - - - - - - - - - - - -

5,495,611 Sheet 12 of 16 Feb. 27, 1996 U.S. Patent

XIHO / NE5)

A LIHVd| ||

-| |()|EIHOVO

92€ V ST.9 V LVCI

U.S. Patent Feb. 27, 1996 Sheet 13 of 16 5,495,611

FIG. 5A LOW MEMORY
502

VIDEOSPACE
504 AOOOOHEX

BOOOO HEX

FEATURE SPACE
506 COOOO HEX

DOOOOHEX

SYSTEMEMWARE EOOOOHEX
508

FOOOO HEX

1 MEGABYTE

HGH MEMORY
50

554 552 550

U.S. Patent Feb. 27, 1996 Sheet 14 of 16 5,495,611

FIG. 8
8OO

CBIOS CALL
FIG 6 INT 15HAH=04, AH=05

600

BEGINOPERATING
SYSTEM BOOTSTRAP

FAR INDIRECTION
THROUGH ABIOS HEADER

PRELIMINARY O.S.
NITIALIZATION

PERFORM NEAR CALLS
FOR SYSTEMABIOS

O.S. LOADSABIOS
"PATCH MODULES

PERFORM ROM SCAN
FOR ABIOS

O.S. SSUES CBIOS
CAL STO

INTIALIZE ABOS

PERFORM RAMSCAN
FOR ABIOS

O.S. CONTINUED
INITIALIZATION

ABIOS INITIALIZATION
CAL COMPLETE

U.S. Patent Feb. 27, 1996 Sheet 15 of 16 5,495,611

FIG. 7

552 550

ABIOS CBOS POST

U.S. Patent Feb. 27, 1996 Sheet 16 of 16 5,495,611

FIG. 9

Signature = AA55H (Word Value) --OOH

Length in 512-Byte Blocks --O2H

Model Byte --O3H

Submodel Byte --O4H

ROM Revision Level --O5H

Initialization Routine Offset -- 4H

Length

5,495,611
1.

METHOD AND APPARATUS FOR DYNAMIC
LOAD OF AN ABIOS DEVICE SUPPORT
LAYER IN A COMPUTER SYSTEM

RELATED APPLICATIONS

The following United States patent applications, which
are filed on even date herewith, are incorporated by refer
cC

Application Ser. No. 071902,330.Filed Jun. 22, 992
Entitled “A METHOD AND APPARATUS FOR PROVID
ING AMODULAR ABIOS DEVICE SUPPORT LAYER
IN A COMPUTER SYSTEM

Application Ser. No. 07/902,134, Filed Jun. 22, 1992
Entitled “A METHOD AND APPARATUS FOR CONFIG
URING AND INSTALLING A LOADABLE ABIOS
DEVICESUPPORTLAYERNACOMPUTER SYSTEM

Application Ser. No. 07/902,315, Filed Jun. 22, 1992
Entitled 'A METHOD AND APPARATUS FOR AN
AUTOMATED DYNAMIC LOAD OF AN ABIOS
DEVICE SUPPORTLAYERINACOMPUTER SYSTEM

1. Field of the Invention
This invention relates to personal computer systems and,

more particularly, to a method and apparatus for loading and
initializing firmware.

2. Background of the Invention
Personal computer systems in general, and IBM personal

computers in particular, have attained widespread use for
providing computer power to many segments of today's
society. A personal computer system can usually be defined
as a desk top, floor standing, or portable computer that
includes a system unit having a system processor, a display
monitor, a keyboard, one or more diskette drives, a fixed
disk storage, an optional pointing device such as a "mouse,'
and an optional printer. These systems are designed prima
rily to give independent computing power to a single user or
small group of users and are inexpensively priced for
purchase by individuals or businesses. Examples of such
personal computer systems are sold under the trademarks:
IBM's PERSONAL COMPUTER, PERSONAL COM
PUTER XT, PERSONAL COMPUTER AT and IBM's
PERSONAL SYSTEMI2 Models 25, 30, 50, 55,56, 57, 60,
65, 70, 80, 90 and 95 (hereinafter referred to as the IBM PC,
XT, AT, and PS/2, respectively).
These systems can be classified into two general families.

The first family, usually referred to as Family 1 Models, uses
abus architecture exemplified by the AT computer and other
“IBM compatible' machines. The second family, referred to
as Family 2 Models, uses IBM's MICRO CHANNEL bus
architecture exemplified by IBM's PS/2 Models 50 through
95. The bus architectures used in Family 1 and Family 2
models are well known in the art.

Beginning with the earliest personal computer system of
the Family 1 models, the IBM PC, and through the current
Family 2 models, the system processor of the personal
computer is from the Intel 86 Family of microprocessors.
The Intel 86 Family of processors includes the 8088, 8086,
80286, 80386, and 80486 processors commercially available
from Intel Corporation. The architecture of the Intel 86
Family of processors provides an upwardly compatible
instruction set which assists in preserving software invest
ments from previous processors in the 86 Family of proces
sors. This upward compatibility preserves the software
application base of the personal computers which use this

10

15

20

25

30

35

40

45

50

55

60

65

2
family of processors. A variety of commonly available and
well known software operating systems, such as a DOS or
an OS/2 operating system, operate on various members of
the Intel 86 Family of processors.
The PC and XT computers use the Intel 8088 processor.

The AT computers use the Intel 80286 processor. The PS/2
line spans several of the Intel processors. More specifically,
a PS/2 Model 30, which is similar to the IBM PC and XT,
uses an Intel 8086 processor. The PS/2 Models 50 and 60
both use the Intel 80286 processors. The Intel 80386 pro
cessor is used in the IBM PS/2 Model 80 and certain
versions of the IBM PS/2 Model 70. Other versions of the
IBM PS/2 Model 70, as well as the PS/2 Models 90 XP 486
and 95 XP 486, use the Intel 80486 processor.
The processors in the Intel 86 Family support a variety of

operating modes. Real mode, which supports a one mega
byte system address space, is the only operating mode of the
8088 and 8086 processors. The 80286 supports both a real
and a protected operating mode. Protected mode provides a
mode of operation which prevents an application from
interfering with the operation of other applications or the
operating system. The 80286 provides extended addressing
capabilities, allowing up to sixteen megabytes of memory to
be addressed directly. To maintain downward compatibility,
the 80286 can be operated in real mode to emulate the real
mode of the 8088 or 8086. The 80386 and 80486 can address
up to four gigabytes of physical memory. The 80386 and
80486 also support a virtual 86 mode of operation. The
virtual 86 mode supports the operational characteristics of
the real mode within the overall confines of the protected
mode environment.

With personal computers, software and hardware com
patibility is of great importance. To provide software and
hardware compatibility, an insulation layer of system resi
dent code, also referred to as microcode, was established
between the hardware and the software. This code provided
an operational interface between a user's application pro
gram or operating system and the hardware device to relieve
the user of the concern about the characteristics of hardware
devices. Eventually, the code developed into a basic input/
output system (BIOS), for allowing new hardware devices to
be added to the system, while insulating the application
program/operating system from the peculiarities of the hard
ware devices. The importance of BIOS was immediately
evident because it freed a device driver from depending on
specific hardware device characteristics while providing the
device driver with an intermediate interface to the hardware
device. Because BIOS was an integral part of the computer
system and controlled the movement of data in and out of the
system processor, it was resident on a system planar board
of the system unit and was shipped to the user in either a
read-only memory (ROM) or an erasable programmable
read-only memory (EPROM). BIOS in the original IBM PC
occupied 8K bytes (a kilobyte or “K byte" refers to a
quantity of 1024 bytes) of ROM resident on the planar
board. The ROM also contained a power-on self test (POST)
program which was used to test and initialize the computer
system. The accumulation of code resident in the computer
system ROM became known as the "system firmware," or
simply "firmware.' Thus, the firmware included a POST
portion and a BIOS portion. Sometimes, BIOS was defined
to include the POST program.
As new models of the personal computer family were

introduced, the firmware was updated and expanded to
Support new hardware devices such as new input/output
(I/O) devices. As could be expected, the firmware started to
increase in memory size. For example, with the introduction

5,495,611
3

of the IBM AT, the firmware required 32K bytes of ROM.
With the introduction of the PS/2 line, a significantly new
BIOS, known as Advanced BIOS, or ABIOS, was devel
oped. However, to maintain software compatibility, BIOS
from the Family 1 models had to be included in the Family
2 models. The Family 1 BIOS became known as Compat
ibility BIOS or CBIOS. Thus, BIOS evolved to include more
than one type of BIOS. Present architectural definitions for
personal computer systems allow for up to 128K bytes of
system firmware address space.

Personal computer systems may be linked to form a
network of computers (e.g., a Local Area Network (LAN))
so that users can exchange information, share I/O devices,
and utilize a particular direct access storage device (DASD)
such as a particular hardfile or diskette. Typically, the LAN
includes a client and a server. A server is a computer system
which includes a DASD for supplying the storage for one or
more clients of the local area network. A client or server may
require modifications, updates, extensions or maintenances
of the system firmware.

Arrangements for storing, loading and initializing firm
ware are known. See, for example, commonly owned: U.S.
patent application Ser. No. 07/521,050 entitled "Method and
Apparatus for Selectively Reclaiming a Portion of RAM in
a Personal Computer System," U.S. patent application Ser.
No. 07/398,865, entitled "Initial BIOS Load for a Personal
Computer System,” U.S. patent application Ser. No. 07/777,
844, entitled "Programmable Firmware Store for a Personal
Computer System.” U.S. patent application Ser. No. 07/799,
486, entitled "Automated Programmable Firmware Store for
a Personal Computer System,” and U.S. patent application
Ser. No. 07/590,749, entitled "Apparatus and Method for
Loading BIOS into a Computer System from a Remote
Storage Location,' which are all incorporated herein by
reference.

SUMMARY OF THE INVENTION

It has been discovered that by linking a first portion of
microcode, e.g., a CBIOS portion, to a second portion of
microcode, e.g., an ABIOS portion, it is possible to remove
the ABIOS portion of microcode from the address space
which is reserved for microcode.

Aprincipal object of the present invention is removing the
ABIOS program from the "ROM" address spaces of a
personal computer system.

Another object of the present invention is to provide more
"free” space in the system and feature ROM address space.

Yet another object of the present invention is loading an
ABIOS device support software layer in an "on demand”
mode.

Yet a further object of the present invention is to continue
to provide ABIOS support in a compatible fashion on both
disk-based and medialess computer systems.

BRIEF DESCRIPTION OF THE DRAWING

Further and still other objects of the present invention will
become more readily apparent in light of the following
description when taken in conjunction with the accompa
nying drawing, in which:

FIG. 1A is a perspective view of a typical personal
computer system;

FIG. 1B is a diagram of a typical local area network;
FIG. 2 is a block schematic diagram of a unified planar

board for the computer system of FIG. 1A;

10

15

20

25

30

35

40

45

50

55

60

65

4
FIG. 3 is a block schematic diagram of an alternative

planar board for the computer system of FIG. 1A;
FIG. 4 is a block schematic diagram of a processor card

for use with the alternative planar board of FIG. 3;
FIG. 5A is a diagram of the system address space for the

computer system of FIG. 1A;
FIG. 5B is a diagram of a typical firmware memory map;
FIG. 6 is a flow diagram of a system initialization

sequence as it pertains to ABIOS;
FIG. 7 is a diagram of an enhanced delivery mechanism

for ABIOS;
FIG. 8 is a flow diagram of the internals of ABIOS

initialization and
FIG. 9 is an ABIOS program module header.

DETAILED DESCRIPTION OF A PREFERRED
EMBODIMENT

Referring to FIG. 1A, there is shown a personal computer
system 100 which employs the present invention. The per
sonal computer system 100 includes a system unit 102
having a suitable enclosure or casing 103, output device or
monitor 104 (such as a conventional video display), input
devices such as a keyboard 110, an optional mouse 112, and
an optional output device such as a printer 114. Finally, the
system unit 102 may include one or more mass storage
devices such as a diskette drive 108 (operable with a
diskette-not shown) and a hard disk drive (hardfile) 106.

Referring to FIG. 1B, the system unit 102 may be con
nected electronically in a well-known manner with other
system units 102B to form a local area network (LAN). In
the LAN, system unit 102 functions as the server and system
units 102B function as the clients. System units 102B are
identical to the unit 102, except that units 102B include no
drives 106, 108 and are thus referred to as medialess clients.
Other conventional I/O devices may be connected to the
system units 102, 102B for interaction therewith.

Referring to FIG. 2, there is shown a block diagram of a
unified planar 200 of the system unit 102. The planar 200
includes a printed circuit board (PCB) 201 upon which are
mounted or connected a number of input/output bus con
nectors 232 having I/O slots, a processor 202 which is
connected by a high speed CPU local bus 210 under control
of a bus control unit 214 to a memory control unit 256. The
unit 256 is further connected to a main memory such as
volatile random access memory (RAM) 264. Any appropri
ate processor 202 can be used such as an Intel 80386, Intel
80486 or the like. A system power connector 205 is mounted
on the PCB 201 for connection to a power unit (not shown)
that supplies the necessary power for the system 100.
The CPU local bus 210 (comprising address, data and

control components) provides for the interconnection of the
processor 202, an optional math coprocessor 204, an
optional cache controller 206, and an optional cache
memory 208. Also coupled onto the CPU local bus 210 is a
system buffer 212. The system buffer 212 is itself connected
to a system bus 216 which comprises address, data and
control components. The system bus 216 extends between
the system buffer 212 and an I/O buffer 228. The system bus
216 is further connected to the bus control unit 214 and to
a direct memory access (DMA) control unit 220. The DMA
control unit 220 includes a central arbiter 224 and a DMA
controller 222. The I/O buffer 228 provides an interface
between the system bus 216 and an I/O bus 230. An
oscillator 207 is connected as shown for providing suitable

5,495,611
S

clock signals to the computer system 100. Those skilled in
the art will recognize that while the preferred embodimentis
implemented on the MICRO CHANNEL bus of an IBM
PS/2 computer system, which is well known in the art,
alternative bus architectures could also be used to employ
the invention.

Connected to the I/O bus 230 is a plurality of I/O bus
connectors having slots 232 for receiving adapter cards (not
shown) which may be further connected to I/O devices or
memory (e.g., hardfile 106). Two I/O connectors 232 are
shown for convenience, but additional I/O connectors may
easily be added to suit the needs of a particular system. An
arbitration bus 226 couples the DMA controller 222 and the
central arbiter 224 to the I/O connectors 232 and a diskette
adapter 246. Also connected to the system bus 216 is the
memory control unit 256 which includes a memory control
ler 258, an address multiplexer 260, and a data buffer 262.
The memory control unit 256 is further connected to the
main memory such as the random access memory as repre
sented by the RAM module 264. The memory control unit
256 includes logic for mapping addresses to and from the
processor 202 to and from particular areas of the RAM 264.
While the system 100 is shown with a basic one megabyte
RAM module 264, it is understood that additional memory
can be interconnected as represented in FIG. 2 by optional
memory modules 266, 268, 270.
A buffer 218 is coupled between the system bus 216 and

a planar I/O bus 234. The planar I/O bus 234 includes
address, data, and control components. Coupled along the
planar I/O bus 234 are a variety of I/O adapters and other
peripheral components such as a display adapter 236 (which
is used to drive the optional display 104), a clock/CMOS
RAM 250, a nonvolatile RAM 248 (hereinafter referred to
as NVRAM), a serial adapter 240 (other common terms used
for "serial' are "asynchronous” and "RS232"), a parallel
adapter 238, a plurality of timers 252, the diskette adapter
246, a keyboard/mouse controller 244, an interrupt control
ler 254, and a firmware subsystem 242. The firmware
subsystem typically includes a nonvolatile program store
(e.g., ROM) which contains the POST and BIOS programs.
The clock/CMOS RAM 250 is used for time of day

calculations. The NVRAM 248 is used to store system
configuration data. That is, the NVRAM 248 will contain
values which describe the present configuration of the
system 100. The NVRAM 248 contains information which
describes, for example, adapter card initialization data,
capacity of a fixed disk or a diskette, the amount of main
memory, etc. Furthermore, these data are stored in NVRAM
248 whenever a configuration program is executed. This
configuration program can be a conventional Set Configu
ration program provided on a system Reference Diskette
included with IBM PS/2 computer systems. The Reference
Diskette is sometimes referred to as a diagnostic, mainte
nance or service diskette. The purpose of the configuration
program is to store values characterizing the configuration of
this system 100 to NVRAM 248 which are saved when
power is removed from the system. The NVRAM can be a
low power CMOS memory with a battery backup.

Connected to the keyboard/mouse controller 244 are a
port A 278 and a port B 280. These ports A,B are used to
connect the keyboard 110 and the mouse 112 to the personal
computer system 100. Coupled to the serial adapter 240 is a
serial connector 276. An optional device such as a modem
(not shown) can be coupled to the system through this
connector 276. Coupled to the parallel adapter 238 is a
parallel connector 274 to which a device such as the printer
114 can be connected. Connected to the diskette adapter 246

O

5

20

25

30

35

40

45

50

55

60

65

6
is a diskette connector 282 used to attach one or more
diskette drives 108.

Referring to FIGS. 3 and 4, system unit 102 may also use
a planar board 300 and a processor card 400 (FIGS. 3 and
4). The processor card 400 is removably mounted on and is
electrically connected to the planar board 300. Identical
element numbers of FIG. 2 correspond to identical elements
in FIGS. 3 and 4.

Referring now to FIG. 3, the planar board 300 comprises
a printed circuit board (PCB) 301 upon which are mounted
(e.g., Surface mounted) various components that are inter
connected by wiring or circuits in the PCB. Such compo
nents include a suitable commercially available electrical
connector 302 into which an edge 416 of the processor card
400 is plugged for removably mounting and electrically
connecting the processor card 400 to the planar board 300.
A plurality of single in-line memory module (SIMM) con
nectors 306 is also mounted on the PCB 301 for connecting
to memory banks 308A, 308B forming the system main
memory or RAM. One or more I/O bus or expansion
connectors 232 are also mounted on the PCB 301 for
connection to different expansion adapters and options that
may be added or incorporated into the personal computer
system 100. For example, the fixed disk drive 106 may be
connected to an adapter card (not shown) having a disk
controller which is connected to a connector 232. Preferably,
each connector 232 is a commercially available connector of
the type conforming to the above-mentioned MICRO
CHANNEL architecture.

Also mounted on the planar board 300 are an interrupt
controller 254 and a keyboard/mouse controller 244 which
are connected to keyboard and mouse connectors 278, 280,
a diskette controller or adapter 246 connected to a diskette
connector 282, and serial and parallel adapters 240, 238
connected to serial and parallel connectors 276, 274 which
allow the various I/O devices to be connected into the
system. A system power connector 205 is mounted on the
PCB 301 for connection to a power unit (not shown) that
supplies the necessary power for the system. A nonvolatile
memory (NVRAM) 248 and a time-of-day clock/CMOS
RAM 250 are also mounted on the PCB 301. The PCB 30
also has mounted thereon various oscillators (not shown) to
provide timing signals, and buffers 342, 344 (not all shown)
to isolate Sections of the circuitry in a manner well known.
The wiring of PCB 301 interconnects the various com

ponents as shown in the drawing and is grouped into three
groupings, a memory bus 310 (including lines 324-338), a
channel bus 312 (including an address bus 322, a data bus
320 and a control bus 318), and miscellaneous signal lines
including interruptlines 314,316, all of which are connected
to counterpart wiring on the PCB 401 through the connec
tors 302, 416. Tapped off the bus 312 is a planar function bus
319.

Referring to FIG.4, there is shown the processor card 400
for removably mounting on the planar board 300. The
processor card 400 comprises a printed circuit board (PCB)
401 having mounted (e.g., surface mounted) thereon a
plurality of commercially available components including a
processor 202, an optional math coprocessor 204, an
optional cache controller 206, an optional cache memory
208, a direct memory access (DMA) control unit 220, a bus
control unit 214, a memory control unit 256, a firmware
subsystem 242, and parity checking units 402, 404. The
processor 202 preferably is a high performance type, such as
an Intel 80486, having thirty-two bit data paths and provid
ing thirty-two bit addressing capability. Of course, Intel

5,495,611
7

80386 and the like processors can be used. The remaining
components are selected in conventional fashion for their
compatibility with such processor. A plurality of buffers 406,
408, 410, 412, 414 is connected as shown. The buffers
provide selective isolation or connection between the cir
cuits allowing different portions to be used concurrently, for
example, to move data between the processor 202 and the
cache memory 208 while other data is being transferred
between an I/O unit and the main memory 308A, 308B. All
of the above components are electrically connected to each
other as appropriate by printed wiring circuits in PCB 401
which terminate at the edge connector 416. The edge con
nector 416 is pluggable into the edge connector 302 on the
planar board 300 shown in FIG. 3 so that the planar board
300 and the processor card 400 are electrically and mechani
cally interconnectable.
The wiring circuits of the PCB 401 include a local bus 418

including data, address and control lines 420, 422, 424,
respectively, which interconnect the processor 202 with an
optional math coprocessor 204, an optional cache controller
206 and an optional cache memory 208, as shown in FIG. 4.
The remaining circuit lines generally include interrupt lines
316, channel bus lines 312 and memory bus lines 310. The
channel bus lines 312 include control, data and address bus
lines 318, 320, 322, respectively. Memory bus lines 310
include multiplexed memory address lines 324, 332, row
address strobe (RAS) lines 328, 336 for memory banks
308A, 308B, column address strobe (CAS) line 338, data
bus A and B lines 326 and 334, and a line 330 for use in error
checking via parity check or ECC checking. An oscillator
207 is connected as shown for providing suitable clock
signals to the computer system 100. For simplicity, certain
miscellaneous lines, such as reset, grounds, power-on, etc.
have been omitted from FIGS. 2, 3 and 4.

During operation of a personal computer system 100
having a board 300 and a card 400, the card 400 is electri
cally and mechanically connected to the board 300 and
typically lies in a plane perpendicular to the board 400.

ABIOS Load and Access

System firmware includes the Power-On Self Test pro
gram (POST) and the Basic Input Output System program
(BIOS). BIOS further includes the compatibility BIOS or
CBIOS and the advanced BIOS or ABIOS. POST is the set
of instructions which execute when the system is first
powered-on to initialize the personal computer system 100.
BIOS is the set of instructions which facilitates the transfer
of data and control instructions between the processor 202
and I/O devices.

In the medialess environment, a medialess system unit
(e.g., 102B) includes a suitable network adapter or card (not
shown) for providing a Remote Initial Program Load (RIPL)
facility within the unit 102B. The card is connected, for
example, to one of the connectors 232. The RIPL program
permits booting an operating system from a network server
102 rather than from a local storage device such as the fixed
disk 106 or the diskette 108. RIPL is also referred to as
simply Remote Program Load or RPL, and the terms are
used interchangeably. RPL is well understood in the art.
POST contains a bootstrap program which attempts to

locate a boot device and load a boot record. Typically, the
boot device is hardfile 106 or diskette drive 108. Diskette
drive 108 requires a boot or operating system diskette to
operate. If POST successfully loads a boot record from a
boot device, then POST transfers control to the boot record,

O

15

20

25

30

35

40

45

50

55

60

65

8
completing the operation of the POST bootstrap program. If
a boot record was unable to be loaded and a RPL adapter is
present, then POST transfers control to an RPL program. If
no RPL program is present, then POST prompts the user
indicating that a boot source is required. CBIOS is essential
to the bootstrap operation of the computer. CBIOS provides
a number of services including access to the hardfile 106 and
diskette drive 108. ABIOS is demand initialized and nor
mally not a required part of the POST bootstrap process.

Referring now to FIG. 5A, there is shown a memory map
of the system address space 500 for a client 102B or server
102 (FIG. 1B). The system address space 500 includes a
plurality of memory address regions 502,504,506, 508, 510
which are addressable by the processor 202. The low
memory region 502 is the traditional compatibility space in
which real mode programs operate. For example, both DOS
and CBIOS are real mode programs. The video region 504
occupies a 128K byte address space beginning at a physical
location A0000 hex up through a physical location BFFFF
hex or the A000 hex and B000 hex segments. (A segment is
a real mode term used to describe a 64K byte region which
is aligned on a 16 byte boundary, i.e., a paragraph boundary.)
The video region 504 provides video regeneration buffers;
data which are stored in these buffers define what a user sees
on the computer display 104. The feature region 506 occu
pies a 128K byte address space beginning at a physical
location C0000 hex up through a physical location DFFFF
hex or the C000 hex and D000 hex segments. The feature
region 506 is used to store adapter firmware; this region may
also provide buffer space. For example, a small computer
system interface (SCSI) disk controller adapter includes an
adapter firmware ROM containing POST, CBIOS and
ABIOS programs which during operation is stored in feature
region 506. The system firmware region 508 occupies a
128K byte address space beginning at a physical location
E0000 hex up through a physical location FFFFF hex or the
E000 hex and F000 hex segments. The system firmware
region 508 stores the system firmware including POST and
BIOS. The region above a one megabyte boundary is a high
or extended memory region 510. High memory 510 is
utilized by operating systems such as the OS/2 operating
system.

Extended memory refers to memory above the one mega
byte address location. Expanded memory refers to memory
which is bank switched into an area below the one megabyte
address location. Expanded memory bank switching pro
vides real mode applications with the ability to address more
physical memory than the real mode address space directly
allows. Expanded memory operation requires an available
address space or window to be present in the real mode
address space. Expanded memory operation also requires an
expanded memory program to manage the bank switching.
A common location for the expanded memory window is in
the feature space 506 as well as the system firmware space
508. Maximizing the amount of available space for
expanded memory windows is a competitive requirement for
personal computer systems.

Referring to FIG. 5B, a firmware image includes an
ABIOS portion 554, a CBIOS portion 552, and a POST
portion 550. For an adapter card firmware such as the IBM
SCSI adapter card, the size of the ABIOS portion is approxi
mately 11K bytes. For the system firmware such as the IBM
PS/2 Model 95 XP 486, the size of the ABIOS portion is
approximately 32K bytes. With both the adapter card firm
ware and the system firmware, ABIOS uses substantial
portion of the overall address space. In the system firmware
case, an ABIOS size of approximately 32K bytes occupies

5,495,611
9

25% of the system firmware space 508. For a computer
system with eight feature slots, an equal distribution of
feature firmware space results in 16K bytes of feature space
506 per slot or adapter. An ABIOS size of 11K bytes uses
approximately 70% of the 16K byte range. Additionally,
some adapters exceed the 16K byte range.

Referring now to FIG. 6, a flow diagram of an operating
system bootstrap and initialization process is shown. After
the computer system is powered on and the POST com
pletes, the operating system begins to bootstrap, step 600.
The operating system then begins some of its preliminary
initialization, step 602. The type and scope of operating
system preliminary initialization is well known. The oper
ating system then loads the ABIOS patch modules or files,
step 604. These patch files, normally resident on the oper
ating system boot device, provide functional corrections and
enhancements to existing resident ABIOS program code.
The ABIOS program modules can be listed in a control file
Such as an ABIOS.SYS. This ABIOS.SYS list can be a text
file containing the names of the ABIOS modules such as
MODULE1.BIO, MODULE2.BIO, etc. The naming con
vention chosen is a matter of design choice. After the
operating system has loaded the ABIOS patch module or
modules, step 604, the operating system can then initialize
ABIOS, step 606. ABIOS is initialized by issuing CBIOS
function calls. Once ABIOS is initialized, step 606, the
operating system can continue further initialization, step
608.
CBIOS provides two function calls to support the initial

ization of ABIOS. These calls are accessed through a CBIOS
system services interface defined as software interrupt 15
hex (INT 15H). The first function call is a build system
parameter table function which is indicated by the value of
04 being placed in the AH register (a shorthand notation for
this function call is AH=04). The entry requirements of the
AH=04 call are a pointerto a memory buffer where the caller
wants the system parameters table to be built (this pointer is
indicated by the notation ES:DI) and a segment with an
assumed offset of zero which indicates the ABIOS extension
area (this segment is indicated by the notation DS and the
corresponding pointer would be DS:O). The second function
call is a build initialization table function which is indicated
by the value of 05 being placed in the AH register (AH=05).
The entry requirements for the AH=05 call are a pointer to
a memory buffer where the caller wants the initialization
table to be built (ES:DI) and a segment with an assumed
offset of Zero which indicates the ABIOS extension area
(DS). ABIOS initialization is more clearly defined in the
IBM Personal System/2 and Personal Computer BIOS Inter
face Technical Reference Manual.

Referring to FIG. 7, in an enhanced delivery mechanism
for ABIOS, the ABIOS 554 is physically separated from the
remaining firmware, and packaged as a file on diskette 700
or other media. By being physically separated from the
remaining firmware, the space occupied by ABIOS in firm
ware address space 506, 508 is freed. Moving ABIOS 554
applies to both the system firmware ABIOS as well as
feature space ABIOS. Accordingly, the space normally occu
pied by ABIOS in system firmware space 506 is freed and
the space normally occupied by ABIOS in feature space 508
is freed.

Referring to FIG. 8, a flow diagram of ABIOS initializa
tion is shown. The NT 15H ABIOS initialization calls
AH=04 and AH-05 are to be done sequentially, AH=04 then
AH-05. An operating system, or other software program,
accesses ABIOS initialization through the CBIOS system
services calls AH=04 and AH-05, step 800. The AH=04 and

10

5

20

25

30

35

40

45

50

55

60

65

10
AH=05 calls have similar control sequences. Step 802 is the
redirection of control of the present invention. The CBIOS
system services call must redirect control to the ABIOS
initialization program now present in the RAM extension
area. Once CBIOS system services to begin ABIOS initial
ization has been invoked, step 800, the CBIOS system
services code resident in the system firmware first must
locate and transfer control to the now RAM resident ABIOS
initialization program. This is done through the previously
described "DS" register which specifies the segment address
as to where the RAM ABIOS area begins. The CBIOS
system services program, present in the system firmware,
obtains the system services call from step 800 and must
redirect this call to the ABIOS initialization code now in
RAM. This redirection is performed through an indirect call
through an entry in the ABIOS header which begins at offset
zero of the segment specified by the "DS" register. This
ABIOS header is described in more detail in conjunction
with FIG. 9. A far call is performed to the address specified
by DS: ABIOSINIT), step 802, thus transferring the ABIOS
initialization operation to the ABIOS program now in sys
tem RAM. ABIOSINIT is discussed in greater detail in
conjunction with FIG. 9. A far jump can be used in place of
the far call and the selection of call or jump is a matter of
well known design choice. ABIOS initialization then per
forms a set of near call operations designed to initialize
ABIOS, step 804. ABIOS initialization then performs a
ROM scan operation designed to locate and initialize
ABIOS present in the adapter firmware address space, step
806. A ROM scan is performed by searching for a specific
header pattern in the feature space or adapter firmware space
(see FIG. 5A). ABIOS initialization then performs a RAM
scan designed to locate and initialize ABIOS present as a
RAM loaded extension or patch, step 808. The current
ABIOS module, the one containing the ABIOS initialization
program, need not be searched for in RAM scan thus RAM
scan begins after the current module. Once RAM scan has
completed, step 808, the system services call to initialize
ABIOS is complete, step 810 and control returns to the
caller.

Referring now to FIG. 9, an ABIOS module header is
shown. The field at offset +14H (an offset of 14 hex bytes or
20 decimal bytes), which prior to the present invention was
a reserved field, stores an offset of the ABIOS initialization
programs. The table entry at +14H can be termed ABIO
SINIT. These ABIOS initialization programs are accessed
through the CBIOS system services functions AH=04 and
AH=05. Of course, other means to extend a header and
provide an entry point field are possible and matters of well
known design choice. Other table entries are set forth in the
ABIOS section of the IBM Personal System/2 and Personal
Computer BIOS Interface Technical Reference Manual.

Providing an ABIOS which is loadable and separate
provides a computer system with a plurality of advantages.
Aloadable ABIOS increases the amount of available address
space in both the system firmware space 508 and the feature
space 506. Increasing the amount of available space in the
system firmware space 508 and the feature space 506 allows
and enhances the operation of expanded memory manger
programs. Also, increasing the amount of available space in
the system firmware space 508 and feature space 506 allows
for larger POST and CBIOS programs to be resident in the
respective spaces. Additionally, development, test, distribu
tion and maintenance of ABIOS becomes simplified since
ABIOS is a single entity rather than part of a POST CBIOS
ABIOS bundle.

While a preferred embodiment of the present invention
was described above, it will be understood by those skilled

5,495,611
11

in the art that various changes in detail may be made without
departing from the spirit, scope, and teaching of the inven
tion. For example, while the preferred embodiment uses
Intel processors and an IBM PS/2 MICRO CHANNEL bus
for illustrative purposes, this invention can be implemented
on other processors and/or bus types. Likewise, those skilled
in the art will recognize that many elements of the invention
can be implemented either in hardware or software. Accord
ingly, the invention should be limited only as specified by
the appended claims.
What is claimed is:
1. A personal computer system for making efficient use of

a logical memory address space containing plural bounded
regions, each region containing multiple address locations;
said regions comprising at least a low region having discrete
upper and lower boundaries, a high region having a discrete
lower boundary, and an intermediate region situated
between the upper boundary of said low region and the
lower boundary of said high region; said intermediate region
traditionally being reserved for storing firmware information
required for controlling said computer system, said firmware
information including microcode consisting of discretely
separate first and second portions, said first microcode
portion being required by said system for completing a
preliminary initialization enabling said system to handle
application programs incapable of addressing said high
region; said second microcode portion being useful by said
system only after completion of said preliminary initializa
tion and enabling said system to handle applications requir
ing access to any of said regions; said personal computer
system comprising:

a data bus,
a microprocessor electrically coupled to said data bus;

said microprocessor operating in first and second
modes characterized in that said first mode restricts said
microprocessor to address only said low and interme
diate regions while said second mode permits said
microprocessor to address any of said regions;

non-volatile memory electrically coupled to said data bus,
said non-volatile memory being accessible to said
microprocessor via said data bus, and storing said first
portion of microcode for use by said microprocessor,
said non-volatile memory containing physical address
locations mapped into said intermediate region of said
address space,

volatile memory electrically coupled to the data bus and
being accessible to said microprocessor via said data
bus, said volatile memory containing physical storage
address locations being mappable into said low, high
and intermediate regions of said memory address
space; said volatile memory address locations mapped
into said high region being used to store a linking code
for use by said microprocessor in initializing said
second portion of microcode, when said second portion
is required by said microprocessor for operating said
system;

a memory controller electrically coupled to said micro
processor, said volatile memory and said non-volatile
memory, said memory controller regulating communi
cations between said volatile memory, said non-volatile
memory and said microprocessor, said memory con
troller operating to translate logical addresses defined
by programs used in said system into physical
addresses associated with physical storage locations in
said volatile and non-volatile memories; and,

a direct access storage device electrically coupled to the
data bus, said direct access storage device storing said

10

15

20

25

30

35

40

45

50

55

60

65

12
second portion of operating system microcode; said
second portion of microcode being conditionally
loaded from said direct access storage device to said
volatile memory only when first needed by said system
after completion of said preliminary initialization to be
processed to an initial state and thereafter accessed by
said microprocessor.

2. The computer system of claim 1 wherein
said first portion of microcode includes compatibility

operating system microcode used by said microproces
sor during said preliminary initialization, and only
when said microprocessor is operating in said first
mode; and

said second portion of operating system microcode
includes advanced operating system microcode used by
said microprocessor only after completion of said pre
liminary initialization.

3. The computer system of claim 1 wherein
said direct access storage device is remote from said

microprocessor, and is accessed via a network.
4. An apparatus for loading an operational interface used

in the operation of a personal computer system containing a
system processor, a non-volatile memory, a volatile memory,
and a direct access storage device; said operational interface
comprising discretely separate first and second interface
portions having different memory addressing capabilities;
said first interface portion being required for completing a
preliminary initialization of said system, and both said first
and second interface portions being useful for enabling said
system to perform applications defined by application pro
grams; said non-volatile memory storing said first interface
portion of said operational interface and a request indicator
for indicating whether said second interface portion of the
operational interface is required after completion of said
preliminary initialization of said system; said direct access
storage device storing said second interface portion of the
operational interface; said apparatus comprising:

means formed by said system processor and said first
interface portion of said operational interface, during
performance of said preliminary initialization of said
system, for storing an image of said first interface
portion of the operational interface in a predetermined
part of said volatile memory;

means formed by said system processor and said first
interface portion, at completion of said preliminary
initialization, for determining whether said computer
system requires the second interface portion of the
operational interface for continued operation of said
system;

determination means for determining whether said second
interface portion of the operational interface is
required; means responsive to said determination
means for loading said second portion of the opera
tional interface from said direct access storage device
into said volatile memory if said second interface
portion is required and for permitting continued opera
tion of said system without loading said second portion
if said second interface portion is not required.

5. The computer system of claim 4 wherein said system
processor is operable in different first and second modes,
said modes characterized in that said system processor has
a first memory addressing range when operating in said first
mode, and a second memory addressing range greater than
said first range when operating in said second mode, and
wherein

the first interface portion of the operational interface
includes compatibility operating system microcode

5,495,611
13

required by said system processor when operating in
said first mode, and

the second interface portion of the operational interface
includes advanced operating system microcode that can
be used by said system processor when it is operating
in either of said first and second modes.

6. The computer system of claim 4 wherein
said direct access storage device is remote from said

system processor and is accessed via a network.
7. A personal computer system compatible with applica

tion programs and operating system software, the personal
computer system comprising:

a microprocessor electrically coupled to a data bus; said
microprocessor operating in different first and second
modes; said microprocessor having access to first and
second logical memory address spaces when operating
respectively in said first and second modes; wherein
said second logical address space contains and is larger
than said first logical address space, said microproces
sor operating initially in said first mode when it is
powered up;

non-volatile memory electrically coupled to the data bus,
said non-volatile memory storing a first portion of
operating system microcode used by said microproces
sor only when it is operating in said first mode;

a direct access storage device electrically coupled to the
data bus for storing a second portion of operating
system microcode; said second microcode enabling
said system to handle applications requiring access to
any of said regions;

volatile memory electrically coupled to the data bus, said
volatile memory storing a linking microcode for use by
said microprocessor in effecting an initial transition
from said first mode to said second mode;

a memory controller electrically coupled to said micro
processor, said volatile memory and said non-volatile
memory, said memory controller regulating communi

10

15

25

30

35

14
cations between said volatile memory, said non-volatile
memory and said microprocessor, said memory con
troller translating logical addresses associated with said
logical address spaces into physical addresses associ
ated with physical storage locations in said volatile and
non-volatile memories; and

linking means for linking said microprocessor to said
second portion of operating system microcode during
the initial transition of said microprocessor between
said first and second modes, said linking means pro
viding a logical address pointer indicating a starting
location in said second logical address space, said
pointer being used by said memory controller for
locating said second portion of the operating system
microcode in physical address locations of said volatile
and non-volatile memories; said linking means
enabling said microprocessor to access said second
portion of the operating system microcode when first
needed by said microprocessor to effect a transition
from said first mode to said second mode.

8. The computer system of claim 7 wherein
said first portion of operating system microcode includes

compatibility operating system microcode, used by said
microprocessor only when said microprocessor is oper
ating in said first mode, for maintaining compatibility
between said microprocessor and application programs
written to be executed only by a microprocessor oper
ating in said first mode, and

said second portion of operating system microcode
includes advanced operating system microcode used by
said microprocessor when operating in said second
mode.

9. The computer system of claim 7 wherein
said direct access storage device is remote from said

microprocessor and is accessed by said microprocessor
via a network.

