
|||||||III 
US0054993.78A 

United States Patent (19) 11 Patent Number: 5,499,378 
McNeill, Jr. et al. (45) Date of Patent: Mar. 12, 1996 

54 SMALL COMPUTER SYSTEM EMULATOR 5,170,466 12/1992 Rogan et al. ........................... 395/145 
FOR NON-LOCAL SCS DEVICES 5,175,822 12/1992 Dixon et al. ............................ 395/275 

5,185,864 2/1993 Bonevento et al. .................... 395/275 
(75 Inventors: Andrew B. McNeill, Jr., Deerfield 5,204,951 4/1993 Keener et al. .......................... 395/325 

Beach; Edward I. Wachtel, Boca 5,214.695 5/1993 Arnold et al. .............................. 380/4 

Raton, both of Fla. FOREIGN PATENT DOCUMENTS 

(73) Assignee: Internatinal Business Machines 0395.416 4/1990 European Pat. Off.. 
Corporation, Armonk, N.Y. 2220509 11/1989 United Kingdom ............ G06F 13/12 

OTHER PUBLICATIONS 
21 Appl. No.: 263,168 

IBM TDB Vol. 30, No. 9 Feb. 1988. 
(22 Filed: Jun. 21, 1994 

Primary Examiner Alyssa H. Bowler 
Related U.S. Application Data Assistant Examiner-D. Nguyen 

Attorney, Agent, or Firm-Bernard D. Bogdon 
63 Continuation of Ser. No. 812,197, Dec. 20, 1991, aban 

doned. (57) ABSTRACT 

(51) Int. C.6 - - - - - - - - - - - - - - - a G06F 15/16 A SCSI computer system is provided whereby a host com 

(52) U.S. Cl. .......................... 395/500; 395/800; 364/228; puter gains access to a targeted but non-local peripheral 
364/280; 3641280.9; 364/284.2: 364/DIG. 1 device, which device or devices are individually responsive 

58) Field of Search ..................................... 395/800, 500; to either SCSI or non-SCSI commands, by sending SCSI 
364/DIG. 1, 228, 280, 280.9, 284.2, DIG. 1 commands via a SCSI bus to a connected SCSI target 

d computer which emulates the targeted peripheral device 
(56) References Cited local to the SCSI target computer, whether the targeted 

U.S. PATENT DOCUMENTS peripheral device is responsive to only SCSI or only non 
SCSI commands, to cause the targeted peripheral device to 

4,888,680 12/1989 Sander et al. ........................... 395/500 carry out the initial SCSI commands. 
5,073,854 12/1991 Martin et al. ... ... 364/425 
5,093,776 3/1992 Morss et al..... 395/500 
5,129,036 7/1992 Dean et al. ................................. 395/2 1 Claim, 9 Drawing Sheets 

U 

s NITIATOR 

12 

TARGET 

18 20 

A B C D E 
Initiator Target 

Initiator SCSI SCS Bus SCS Target 
System 10 Adoptor 18 Phases 12 Adaptor 20 System 14 

Application 
Sends Redd 
Commands to 

DOS 

DOC calls 
BIOS which 
issues SCB 
to adapter 

Adopter 
builds 

SCSI read 
command 

Receive Doto 
and Status 

and interrupt 
host 

Data is 
Gvailable 
to the 

opplication 

Receive SCS 
Cmd and 

interrupi host 

Send Data 
and Status 

D0 BIOS col 
to local 

Magnetic disk 

  

  

  

  

  



U.S. Patent Mar 12, 1996 Sheet 1 of 9 5,499,378 

too popcorpoo?acca 
CP o ooo-oood to obotics 
SP otodo to Ooooo total 
St St Dooooood S 
CPI . . . . . . . . . no assla 

FIG. 6 

  



5,499,378 Sheet 2 of 9 Mar 12, 1996 U.S. Patent 

8 ?H 

07 

    

    

    

  

  





U.S. Patent Mar. 12, 1996 Sheet 4 of 9 5,499,378 

Store local 57 
drive number 
Cnd active 
indicator(s) 

s Do not 
Generic install 

SCS BOS resident 
installed ? driver 

s 
C SCS BIOS 

adopter 
installed ? 

ls 
there a 

free logical 
device 2 

Set up 
interrupt 

Vectors and 
enable 

(Figure 6). 

Exit 
initializCition 

FIG. 5 

    

    

  

  

  

  

  

  

  

  

  

  

    

  

    

  

  

  

  

  

    

  

  

  



U.S. Patent Mar 12, 1996 Sheet 5 of 9 

Save SCSI 62 
adapter 

Microchannel 
interrupt 
vector. 

63 Replace 
interrupt 

vector with 
device driver 

handler. 

64 Enable target 
mode on the 
SCSI adapter. 

Sqve SCS BIOS 65 
interrupt 

Vector and 
replace with 
local handler. 

Keep 66 
interrupt 
handlers 
resident. 

Return 
to Caller 

FIG. 6 

5,499,378 

    

    

    

  

    

  

    

  

  

  

    

    

    

  

  

    

  

  



U.S. Patent Mar 12, 1996 Sheet 6 of 9 5,499,378 

BIOS fixed 
disk 

interrupt 

Reset 
Shore Hardfile 

CO BIOS 
routine vic Reset 
Interrupt Shore Hardfile 

13H vector 

71 
SCS 

interrupt 
(SCSI Int 

Set)? 

Reset SCS Int 
(SCS 

Controller 
interrupt will 
be handeled). 

74 
Process the Return 

SCS to caller 
Controller 

FIG. 7 

  

  

    

  

    

  

  

  

  



U.S. Patent Mar 12, 1996 Sheet 7 of 9 5,499,378 

75 
ls the 

interrupt 
for the SCS 
gdopter 

Chain to next 76 
interrupt 
handler. 

ls it 
for the 
emulated 
device 

Give system 
Ond SCSI EO. 

Log SCS is local 
hdrdfile BIOS g 

Octive SCSI Int). 

Process the 
SCS 

Controller 
interrupt 

(Figure 9). 

Exit Interrupt 
Handler 

FIG. 8 

  

  

  

  

  

  

    

  

  

  

  

  

  

    

    

    

    

  

  

  

  



U.S. Patent Mar 12, 1996 Sheet 8 of 9 5,499.378 

82 Did Send a SCSI 
check 83 

n Condition 
Correctly? status to y: initiator. 

Has Process 
d SCSI SCSI 

command been Command 
received? (Figure 10) 

Return good 
Was redd status and 
data sent? final 

message. 

HOS 
SCS sense 
data been 

sent? 

Clear local 
SeSe 

information, 

Hardware 
failure. 

Disable target 
to cause SCSI 
select timeOut. 

Return 
to Caller 

FIG. 9 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  
    

  

  

  

  

    

  

  

  



U.S. Patent Mar 12, 1996 Sheet 9 of 9 5,499,378 

Translate to Start SCS dotd ls C. 
SCSI O BIOS redd transfer with L-93 

d d format and data from Redd 
es execute BIOS BIOS nt 13H 

pending: Command. call. 

Start SCS is a Build SCS 
SCS inquiry data transfer 

O ith inquiry inquiry command format w s pending? n gon information 
block. 

ls O Stort SCS 
SCSI sense data transfer 
contang with sense 
pending information. 

is O Translate to Execute ( 
SCSI capacity SCSI capacity 
command G format and 
pending? Call. Start SCS data 

transfer. 

ls C. 
SCSI test 
unit ready 
pending? 

Send good 
SCSI status 
Ond find 

message in. 

Send back a 
SCSI check 
Condition 
status. 

Store illegal 
Command in 
Sense data. 

FIG 10 

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

    

  

  

    

  

  

  

  

    

  

  

  

  

      

  



5,499,378 
1 

SMALL COMPUTER SYSTEM EMULATOR 
FOR NON-LOCAL SCSI DEVICES 

This is a continuation of patent application Ser. No. 
07/812,197 filed on Dec. 20, 1991, now abandoned. 

FIELD AND BACKGROUND OF DISCLOSURE 

The American National Standard Institute has a standard 
for defining an input/output bus for interconnecting small 
computers and peripheral devices. The standard is referred 
to as the Small Computer System Interface (SCSI) Standard. 
It provides standardization of the defined command sets. 
SCSI is a local I/O bus that can be operated over a wide 

range of data rates. The primary objective of the SCSI 
interface is to provide host computers with device indepen 
dence within a class of devices. Thus, different disk drives, 
tape drives, printers, optical media drives, and other devices 
can be added to the host computers without requiring 
modifications to generic system hardware or software. Pro 
vision is made for the addition of special features and 
functions through the use of vendor unique fields and codes. 
Reserved fields and codes are provided for future standard 
ization. 

The SCSI interface uses logical rather than physical 
addressing for all data blocks. For direct-access devices, 
each logical unit may be interrogated to determine how 
many blocks it contains. A logical unit may coincide with all 
or part of a peripheral device. 
The interface protocol includes provision for the connec 

tion of multiple initiators (SCSI devices capable of initiating 
an operation) and multiple targets (SCSI devices capable of 
responding to a request to perform an operation). Distributed 
arbitration (i.e., bus-contention logic) is built into the archi 
tecture of SCSI. A priority system awards interface control 
to the highest priority SCSI device that is contending for use 
of the bus. The time to complete arbitration is independent 
of the number of devices that are contending and can be 
completed in less than ten microseconds. 

Regarding the logical characteristics of the interface, 
arbitration is defined to permit multiple initiators and to 
permit concurrent I/O operations. All SCSI devices are 
required to be capable of operating with the defined asyn 
chronous transfer protocol. 
SCSI commands are classified as mandatory, optional, or 

vendor unique. SCSI devices are required to implement all 
mandatory commands defined for the appropriate device 
type and may implement other commands as well. SCSI 
devices support commands that facilitate the writing of 
self-configuring software drivers that can "discover' all 
necessary attributes without prior knowledge of specific 
peripheral characteristics (such as storage capacity). Many 
commands also implement a very large logical blockaddress 
space (2' blocks), although some commands implement a 
somewhat smaller logical block address space (2' blocks). 
Some commands have a consistent meaning for all device 
types. 
Commands for direct-access devices (e.g. magnetic disk), 

sequential-access devices (e.g., magnetic tape), printer 
devices, processor devices, write-once devices (e.g., optical 
WORM disk), CD-ROM devices, scanner devices, optical 
memory devices, medium changer devices, and communi 
cations devices are included. The commands are unique to 
the device type, or they have interpretations, fields, or 
features that are specific for the device type. Thus, for 
example, although the WRITE command is used for several 

5 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

2 
device types, it has a somewhat differentform for each type, 
with different parameters and meanings. Therefore, it is set 
forth separately for each device type. 

Communication on the SCSIbus per the SCSI Standard is 
allowed between only two SCSI devices at any given time. 
There is a maximum of eight SCSI devices allowed per SCSI 
bus. Each SCSI device has a unique ID number assigned 
from 0 to 7. When two SCSI devices communicate on the 
SCSI bus, one acts as an initiator and the other acts as a 
target. The initiator originates an operation and the target 
performs the operation. A SCSI device usually has a fixed 
role as an initiator or target, but some devices may be able 
to assume either role. 

An initiator may address up to eight peripheral devices 
(i.e. Logical Units, LUNs) that are connected to a target. The 
target may be physically housed within a peripheral device. 
Up to eight SCSI devices can be supported on the SCSI bus. 
They can be any combination of initiators and targets 
provided there is at least one of each. 

Certain SCSI bus functions are assigned to the initiator 
and certain SCSI bus functions are assigned to the target. 
The initiator may arbitrate for the SCSI bus and select a 
particular target. The target may request the transfer of 
COMMAND, DATA, STATUS, or other information on the 
DATABUS, and in some cases it may arbitrate for the SCSI 
bus and reselect an initiator for the purpose of continuing an 
operation. 
The SCSI architecture includes eight distinct phases: BUS 

FREE phase, ARBITRATION phase, SELECTION phase, 
RESELECTION phase, COMMAND phase, DATA phase, 
STATUS phase and MESSAGE phase. The Command, Data, 
Status and Message phases are collectively termed the 
information transfer phases. The SCSI bus can never be in 
more that one phase at any given time. 

Although the SCSI Standard provides for communication 
between many types of devices within a given local bus of 
eight devices, it does not provide for communication 
between non-local SCSI buses or to non-SCSI devices. A 
SCSI device identifies itself to a computer by responding to 
an inquiry command with the device type field setto indicate 
what kind of device is attached (e.g., a printer, a magnetic 
disk, etc.) and with otherfields setto indicate the appropriate 
standards it supports. Each device type has a set of SCSI 
commands which it supports (e.g., for a SCSI magnetic disk 
device there is supported a Read command, Write command, 
Format command and so forth). 
There are many device types which can be connected to 

a SCSI bus such as printers, scanners, optical devices and 
processor devices. In the future, there likely will be many 
more. As previously stated, because of the SCSI architec 
ture, there can be only eight typical devices connected to a 
SCSI bus. These devices or initiators separately send com 
mands to the other devices, targets. As an example an 
initiator, which might be a SCSI adapter card in a computer, 
sends a Read command to a SCSI disk, i.e., the target, or 
sends a Print command to a printer, i.e., yet another target. 
The commands the initiator uses are usually the SCSI 
Standard commands for the given device. A computer can 
have several separate SCSIbuses with eight local devices on 
each. A computer can also have devices which are not based 
on the SCSI Standard such as an Enhanced Small Device 
Interface (ESDI) disk or A printer connected to a parallel 
port. 
One alternative method of accessing a device in another 

computer is to use a Local Area Network (LAN) system. 
This solution has a number of difficulties for the user. ALAN 



5,499,378 
3 

approach requires significant hardware and software invest 
ment and necessitates extensive system overhead. A network 
requires one network adapterper computer. An abundance of 
software is needed to implement the communication proto 
col and handle device sharing. Local Area Networks require 
the user to learn a new menu of commands. This is extra 
work for the end user and often adds significant delay in 
accessing the peripherals. 

Accordingly a method is needed to conveniently expand 
beyond the SCSI standard imposed limit of communication 
with eight target devices and to provide access to SCSI 
devices on non-local buses and to non-SCSI devices 
attached to computers which share a common SCSI bus. 

SUMMARY OF INVENTION 

This invention comprises a SCSI emulation device and 
system for providing access to non-SCSI devices or SCSI 
devices on a non-local SCSI bus via a common SCSI bus 
thereby providing a practical and economic system for 
achieving access to a multiplicity of peripherals in a SCSI 
environment. The target system receives standard SCSI 
commands and emulates the device being accessed. The 
initiator sends standard SCSI I/O device driver commands. 
The target system uses its own Basic Input/Output System 
(BIOS) and device drivers to access the non-local device and 
perform the initiator command. Thus, the initiator uses 
standard I/O device drivers for the given device and the 
target uses emulation code with redirection and/or transla 
tion routines to look like a standard SCSI device. 

Application programs running in the initiator system, 
work without revision as long as they use standard device 
drivers. They access the non-SCSI or non-local device on 
another computer as if it were local to their own computer. 
The user has the benefit of not needing to learn and remem 
ber additional commands to access devices on the other 
computers. In fact, the standard device drivers are used as if 
the peripheral units were integral with the basic system. 
Code size is reduced significantly since there is no software 
overhead for the initiator, and a device driver for the 
emulating target requires no screen graphics or user inter 
face. When SCSI is standard on a computer, no additional 
hardware is necessary to support remote device access 
within another computer except a cable to connect them, and 
the appropriate software to support the SCSI target and 
device emulation functions. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is an exemplary computer system embodying the 
invention; 

FIG. 2 is a schematic illustration of a SCSI initiator and 
target computer system with a targeted peripheral; 

FIG. 3 is a power on sequence and communication flow 
chart for implementing the invention; 

FIG. 4 is an accessation sequence and communication 
flow chart for implementing the invention. 

FIG. 5 is a resident device driver emulation code flow 
chart for initialization in accordance with the present inven 
tion; 

FIG. 6 is an emulation code flow chart for set up of the 
hardware and software interrupt vectors and enabling the 
target adapter in accordance with the present invention. 

FIG. 7 is a BIOS fixed disk software interrupt intercept 
and synchronization code flow chart in accordance with the 
present invention. 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

4 
FIG. 8 is a Micro ChannelTM SCSI adaptor hardware 

interrupt handler in accordance with the present invention. 
FIG. 9 is an emulation code flow chart for processing of 

the SCSI adapter hardware target mode interrupt in accor 
dance with the invention. 

FIG. 10 is an emulation code flow chart for processing a 
SCSI command in accordance with the present invention. 

DESCRIPTION OF THE INVENTION 

The described invention is operable in conjunction with 
the IBM PS/2 computer series and all compatibles, as 
exemplary presented in FIG. 1. The terminology and 
selected function calls are normal and are in accordance with 
standard references for the personal computer PS/2 such as 
OS/2 Programmer's Guide written by Ed Iacobucci and 
published by Osborne McGraw-Hill. The inventive interface 
is for inclusion in a system which generally comprises a 
display 2 and a processing system 4, which are controlled 
and inputted externally by a keyboard 6 and mouse 8. 
The exemplary system of FIG. 1 is equally suitable for an 

initiator and a target system operable with individual periph 
erals and appropriate device drivers in an environment 
incorporating SCSI architecture. The IBM PS/2 SCSI 
Adapter with cache is an example of a SCSI adapter which 
supports both initiator and target functions and would be 
suitable for implementation of this invention in the target 
system. 
For SCSI architecture a command is comprised of two or 

more of the following phases: Selection, Reselection, Mes 
sage Out, Command, Data In, Data Out, Status and Message 
In. The present inventive contribution is concerned with 
SCSI commands with a command phase. Those commands 
without a command phase can be handled with or without 
system intervention. Those commands with a command 
phase are comprised of the following sequence of phases: 
Selection, Message out (optional), Command, Data 
(optional), Status and Message In. A target may release 
(disconnect) the SCSI bus at any time by sending a discon 
nect Message. In to the initiator to tell the initiator it is 
disconnecting. This can be done with or without system 
intervention. 

In FIG. 2, an exemplary illustration of an inventive 
configuration for implementing the present invention is 
disclosed and included as a part of the exemplary processing 
system 4 of FIG.1. An initiator system 10 is connected by 
an SCSI bus 12 to a target system 14. The initiator system 
10 will access a hardfile 16 local to the target system 14 
which is not on the initiator system SCSI bus 12. The SCSI 
subsystems 18 and 20 of initiator system 10 and target 
system 14, respectively, are schematically shown as SCSI 
adapter cards which plug into the system I/O bus 12. 
The initiator system 10 requires no special microcode as 

long as it is powered up after the target system 14 has set up 
its target device emulation code. If the initiator system 10 is 
powered up before the target system 14 is ready, the situation 
is the same as powering up the system 10 before an external 
SCSI device is turned on. The Power On Self Test (POST) 
code will not know the device exists and will indicate a 
configuration error. If it is the case that the initiator system 
10 is powered on before the target system 14, the initiator 
user can power on the target system 14 and re-boot the 
initiator system 10. For this example, the assumption will be 
that the initiator system 10 will power on after the target 
system 14 has power and the device emulation code has been 
initialized. 



5,499,378 
S 

The initiator system 10 Power On sequence and commu 
nication flow is shown in FIG.3. Illustrated in FIG.3, are the 
following five columns: Column A-Initiator System, Col 
umn B-Initiator SCSI Adapter, Column C-SCSI Bus 
Phases (completed), Column D-Target SCSI Adapter, and 
Column E-Target System. On the SCSI bus connection 12 
illustrated in FIG. 2, the following phases will occur to 
complete one SCSI command where the following phases 
and their abbreviations are set forth: Selection (Sel), Mes 
sage Out (Msgo), Command (Cmdo), Data In (Data), Status 
In (Status), Message. In (Msgin). The target system 14 
powers on and enables the target SCSI subsystem 20 to 
receive commands, as identified by FIG. 3 in sequence box 
22. The initiator system 10 powers on and the BIOS POST 
issues Inquiry commands to see what devices are connected 
to the SCSI bus 12, as identified by sequence box. 24. The 
initiator SCSI adapter 18 of Column B builds a SCSI inquiry 
command as identified by sequence box 26 and selects the 
target system 14, as illustrated by the command on line 28 
from sequence box 26. The target system SCSI 20 accepts 
the Message Out and Command on line 28. The target 
adapter 20 transfers the command to the memory of target 
system 14 and interrupts the target system, as identified by 
sequence box 30. The target system 14 device emulation 
code recognizes the command as an inquiry command and 
builds the inquiry data, as identified by sequence box 32. 
The target system 14 device emulation code commands the 
target SCSI adapter 20 to send the inquiry data as set forth 
in sequence box 34. Inquiry data is received by the initiator 
adapter 18 on line 36 as identified by sequence box 38. The 
initiator system's standard POST code recognizes the device 
as being present, as identified by sequence box 40. 
The device 16 is now available to the initiator system and 

can be accessed by any routine which accesses local periph 
eral devices. An example of such an interaction is given in 
FIG. 4 utilizing the identified columns A-E of FIG. 3. An 
application program requests a Read command from the 
target system magnetic disk 16. The program assumes the 
magnetic disk 16 is local to the initiator system 10 of FIG. 
2. The DOS operating system calls the initiator system's 
BIOS identified by sequence box 42, which builds the Read 
Subsystem Control Block (SCB) as identified by sequence 
box 44. The initiator SCSI adapter 18 builds the SCSI Read 
command, as identified by sequence box 46, and selects the 
target system 14 as if the target system 14 were the magnetic 
disk 16, as identified by line 47. The target adapter 20 
receives the Read command and interrupts the target system 
14 as identified by sequence box 48. The target system 14 
recognizes the command on line 47 as a Read command to 
the hardfile 16. The target system 14 calls the local BIOS to 
do a Read on the local hardfile 16, as identified by sequence 
box 50. The target system 14 loads the data in a local buffer, 
of a type well known in the art, and tells the target adapter 
card 20 to send the data to the initiator, as identified by 
sequence box 52. The initiator adapter 18 receives the data 
online 53 as identified by sequence box54 and interrupts the 
initiator system 10 with the data available, as further iden 
tified by sequence box 56. 
The emulation code required by the target system 14 of 

FIG. 2 can be implemented as a resident device driver. This 
device driver will allow the two systems to share a read only 
database. It exemplifies the processes of device sharing, 
BIOS synchronization and redirection/translation of data 
and commands. 
The device driver initialization code within block 57 of 

FIG. 5 determines the local fixed disk which will be emu 
lated and the initiator to which the SCSI adapter will 

10 

15 

20 

25 

30 

35 

40 

45 

50 

55 

60 

65 

6 
respond. The initialization code checks for generic BIOS 
installed in the system as depicted by step 58, for a SCSI 
adapter 20 installed in the system 14 as illustrated within 
step 59 and for a free logical device number on the SCSI 
adapter 20 as in block 60. If any of these are not installed or 
available the resident driver is not installed as set forth by 
block 61. 

If the necessary environment is available, the step from 
block 60 is to block 55 depicting then the initialization code 
which saves the SCSI adapter Micro ChannelTM interrupt 
vector as set forth in block 62 of FIG. 6 for interrupt . 
chaining. This interrupt vector is replaced by the device 
driver SCSI adapter interrupt handler as in step 63. The free 
logical device number on the SCSI adapter is initialized as 
a target for the said initiator in the following step 64. The 
SCSI BIOS interrupt vector is saved for interrupt chaining 
and this interrupt vector is replaced by the device driver 
BIOS fixed disk interrupt handler as illustrated in block 65. 
The interrupt handlers are kept as resident routines as shown 
in block 66. Initialization is now complete. 
BIOS call synchronization is accomplished by intercept 

ing all fixed disk BIOS software interrupts as shown in block 
67 of FIG. 7. A flag is set called Share Hardfile in step 68 
before calling the real fixed disk BIOS routine as set forth in 
block 69. Upon return from this routine, Share Hardfile is 
reset as in block 70. 
The SCSI adapterhardware interruptis also intercepted as 

illustrated by 75 of FIG. 8. If Share Hardfile is active, as 
determined at step 79, then a call to the fixed disk BIOS is 
not made and a flag is set, shown by SCSI Int at block 80, 
to log the occurrence of a hardware SCSI interrupt for the 
emulated device. 

For the BIOS software interrupt see FIG. 7 where SCSI 
Int is checked at step 71 following the reset of Share 
Hardfile as before mentioned in block 70, thus insuring all 
hardware SCSI adapter interrupts will be serviced. If SCSI 
Int is not set then the BIOS interrupt is complete as illus 
trated by step 74. Otherwise SCSI Intis reset at step 72 and 
the hardware interrupt is processed at step 73. This prevents 
a higher priority hardware interrupt from interrupting a 
BIOS interrupt. This ensures that the fixed disk BIOS 
routine is not called recursively which is not allowed by 
BIOS for the DOS operating system. 
For a SCSI adapter hardware interrupt, as illustrated in 

FIG. 8, the handler determines if the emulated SCSI adapter 
is the source, as before mentioned regarding step 75. If not, 
it chains to the next interrupt handler at block 76. If the 
interrupt is for the emulated device as determined at step 77, 
an end of interrupt command (EOI) is given to the adapter 
20 and the system 14 at step 78. If the local hardfile BIOS 
interrupt is not active as determined at step 79, the hardware 
interrupt for the emulated device is processed as illustrated 
at block 81. 

FIG. 9 describes the processing of the SCSI adapter 
hardware interrupt. If the given command did not complete 
successfully at step 82, the sense code in the local sense area 
is updated with the error, and a check condition status byte 
is sent back to the initiator at block 83 and a command 
complete message is also sent. The device driver in the 
initiator will handle this error as it would any other standard 
SCSI error. If a new SCSI command has been received from 
the initiator as determined at step 84, the command is 
processed, as illustrated by block 85. If read data was sent 
successfully as set forth in block 86, good status and a 
command complete message is returned as set forth in block 
87. If sense data has been sent successfully as illustrated at 



5.499.378 
7 

step 88, the local sense area is cleared at step 89 and good 
status/message is returned to block 87. If none of these 
conditions occurred, there is a hardware failure and the 
emulated device is disabled as depicted at block 90, causing 
a selection timeout to the initiator. A selection timeout will 
be interpreted by the standard SCSI device driver on the 
initiator as a hard error. 

FIG. 10 describes the processing of a SCSI command. If 
the command from the initiator is a read command illus 
trated at block91, the command is translated to a BIOS fixed 
disk read function call at step 92. When complete, the data 
received is returned to the initiator through the emulated 
target at block 93. If a SCSI inquiry command is received 
from the initiator at block 94, an inquiry data block is built 
at block 95 and the data is sent back to the initiator at step 
96. If a SCSI request sense command is received at step 97, 
the current sense information for the emulated device is 
returned at step 98. If a read device capacity command is 
received at block 99, a BIOS return drive parameter call is 
sent to the local fixed disk BIOS at block 100. The infor 
mation is translated to the SCSI read device capacity data 
format and returned to the initiator as illustrated at block 
101. If a SCSI test unit ready is received at 102, good status 
and message is returned through block 103 since the emu 
lated target is ready for information transfer. Otherwise an 
illegal command was received. The local sense data is 
updated with illegal request as the sense key at step 104 
which will be returned in response to the next request sense 
command at step 97. Check condition status is then sent 
back to the initiator as illustrated at block 105. 

Target emulation is typically accomplished by a memory 
resident device driver. This example DOS device driver 
intercepts the hardware and software interrupts. BIOS call 
(software interrupt) and hardware interrupt synchronization 
is accomplished by sharing control flags. Redirection of 
interrupts and translation of SCSI/BIOS information is done 
within the interrupt handlers. Target emulation routines 

5 

O 

15 

20 

25 

30 

35 

8 
(device drivers) could be written to support various types of 
devices and functions using similar structures under DOS or 
other operating system environments. Consideration must be 
given to device sharing support based on the number of 
possible initiators and particular emulated device character 
istics. 

While the invention has been shown and described with 
reference to particular embodiments thereof, it will be 
understood by those skilled in the art that the foregoing and 
other changes and details may be made therein without 
departing from the spirit and scope of the invention. 
What is claimed is: 
1. A computer network system of two computers having 

BIOS software dependency wherein the first computer 
accesses a remote peripheral device of the second computer, 
comprising: 

a first computer including a first Small Computer System 
Interface (SCSI) adapter; 

a second computer including a second SCSI adapter with 
at least one remote peripheral device; 

a SCSI bus communications link between the first and 
second SCSI adapters; and 

memory resident emulation means in the second computer 
emulating a SCSI remote peripheral device for direct 
access of the SCSI remote peripheral device by the first 
computer and emulating a non-SCSI remote peripheral 
device for direct access of the non-SCSI remote periph 
eral device by the first computer upon command by the 
first computer and providing for proper sharing of any 
BIOS software interrupt which supports remote periph 
eral device access by both the first and second com 
puters upon command by the first computer such that 
proper hardware and software priority operation is 
maintained and providing synchronization procedures 
to preclude BIOS software interrupt recursion. 

ck k k k : 


