
|||||||||||
United States Patent (19)
Deacon et al.

54

(75)

73)

(21)

22)

63)

(51)
52)
58)

(56)

US005515474A

11) Patent Number: 5,515,474
(45) Date of Patent: May 7, 1996

AUDIO /O INSTRUCTION
INTERPRETATION FOR AUDIO CARD

Inventors: John Deacon, Austin; Ron Lisle, Cedar
Park; Bridget Ritthaler, Austin, all of
Tex.

Assignee: International Business Machines
Corporation, Armonk, N.Y.

Appl. No.: 479,246
Fied: Jun. 7, 1995

Related U.S. Application Data

Continuation of Ser. No. 975,754, Nov. 13, 1992, aban
doned.

Int. Cl. G10L 3/02; G1 OL 9/00
U.S. Cl. 395/2.1; 395/279; 395/154
Field of Search 395/2.1, 2.86,

395/2.7, 11, 12, 2.87, 2.79, 154; 381/42

References Cited

U.S. PATENT DOCUMENTS

4,402,243 9/1983 Deforeit 84/604
4,422,362. 12/1983 Chibana 84/19
4,680,796 7/1987 Blackmer et al. 381/23
4,777,857 10/1988 Stewart 84/645
4.942,551 7/1990 Klappert et al. 395/800
4,974,151 11/1990 Advani et al. .. 395/700
5,074,183 12/1991 Chihana 84/65
5,119,711 6/1992 Bell et al. 84/622
5,121,667 6/1992 Emery et al. 84/603
5,129,036 7/1992 Dean et al. 395/2
5,208,745 5/1993 Quentin et al. 364/188

9- 99
SB I/O HANDLING ROUTINE 100

CMS MUSIC WOCE unsupported

unknown/Unsupported
unknown unsupported

DSPRESET 104

unknown unsupported

FMSYNTHESIS tos

READDATA 108

Unknown unsupported
XXC WRITEDATACMD

110

Unknown/Unsupported

xxE DSPDAAAVAILABLE
STATUS 12

Unknown unsupported

FOREIGN PATENT DOCUMENTS

0484043A2 6/1992 European Pat. Off..

OTHER PUBLICATIONS

IBM Technical Disclosure Bulletin, vol. 33, No. 10B, Mar.
1991, Provision For Alternate Midi Instrument-To-Midi
Channel Assignments.

Primary Examiner-Allen R. MacDonald
Assistant Examiner-Richemond Dorvil
Attorney, Agent, or Firm-Jeffrey S. LaBaw

(57) ABSTRACT

A system and method for handling audio input/output data
translates audio message in a first format from an audio
application resident in a virtual machine to an audio voice in
a second format which may have no exact match for the
original audio message. The invention is used for audio
applications which directly write to a particular hardware
register of a particular audio card to communicate with an
audio card which operates according to completely different
principles. The translating program intercepts the audio
message written in the first format including a first plurality
of audio parameters, compares the audio parameters to those
corresponding to a table of audio voices and selects the
audio voice which corresponds to a match of the audio
parameters in the audio message. If there is no exact match
in the table, a variety of techniques are provided to calculate
the closest or at least an acceptable audio voice for the
original audio message. In one preferred embodiment, the
audio parameters are a plurality of FM synthesis parameters
and the audio voices are a set of generalized MIDI voices.

24 Claims, 20 Drawing Sheets

MPUWOHANONGROUTiNE 120

AA 122

CMDISTATUS 124

U.S. Patent May 7, 1996 Sheet 1 of 20 5,515,474

MEMORY MICRO
MANAGEMENT PROCESSOR

25 22

FLOPPY KEYBOARD MOUSE VIDEO AUDIO
DISK CONTROLLER CONTROLLER CONTROLLER CONTROLLER
27 28 29 30 31

KEYBOARD GRAPHIC SPEAKERS
12 DISPLAY 15

14
FIG. 2

U.S. Patent May 7, 1996 Sheet 2 of 20 5,515,474

AUDIO APPLICATION 50

DRIVERS 52

I/O INTERCEPT
ROUTINES 60

READ SIMULATED SB

INTERRUPT

STATE
MACHINE

62

AUDIO API CALLBACK WDD
CALLS 64 ROUTINE 66

54
CALLBACKS

AUDIO DD 56

INTERRUPT
FIG. 3

AUDO DEVICE 58

U.S. Patent May 7, 1996 Sheet 3 of 20 5,515,474

SB I/O HANDLING ROUTINE 100

C/MS MUSIC VOICE unsupported
102

unknown/unsupported
unknown/unsupported

DSPRESET 104
(FIGURE 4)

unknown/unsupported

FMSYNTHESIS 106
(FIGURE5)

READ DATA 108
(FIGURE 6)

unknown/unsupported

WRITE DATACMD
(FIGURE 7) 110

unknown/unsupported

DSP DAAAVAILABLE
STATUS 112

(FIGURE 8) --

unknown/unsupported

FIG. 4A

U.S. Patent May 7, 1996 Sheet 4 of 20 5,515,474

I/O

MPUFO HANDLING ROUTINE 120

DATA 122

FIG. 4B
CMDISTATUS 124

SETVELOCITY 256

GET TOTAL LEVEL
OF CARRIER

INVERT WALUE 291

DOUBEWALUE 292

FIG. 6H
RETURNVELOCITY 293

290

U.S. Patent May 7, 1996 Sheet 5 of 20 5,515,474

DSPRESET Y
AL-DATA

132

130

Saved E=FFh
Saved A-AAh

Stop Processing Data
Return BufferS 148 OEs D-r"

FIG. 5

U.S. Patent May 7, 1996 Sheet 6 of 20 5,515,474

FMSYNTHESIS
170

160 162 166 Increment
YES I/O YES NO

Port XX8? Port 8 in <> READ <3> Count
NO NO YES

164 168 172

AL€- N9
Saved 8

76

I/O Read YES

NO

ReSet Port 8 Depth/ AL=BD 178 p in COUnt 178 Rhythm 188

Save DATA SS AL-BO >B8
80

in FM table 180 F-number 189

AL=01h No Action Now
AL-02h 182

AL-03h 183
Set Timer 1

Set Timer 2

Timer Control

NO Action NOW

AL-04h 184

AL=08h

AL-20 - Y A8

AL-C0->F5

FIG. 6A
No Action NoW

No Action Now

U.S. Patent May 7, 1996 Sheet 7 of 20 5,515,474

192 193

Determine new
value before
either expires

FIG. 6B

194 19 5

Determine new
value before Update tempo
either expires

FIG. 6C

82 190

Update the
tempo on audio

device

Set flag for
Timer 1 to
expire

Set flag for
Timer 2 to
expire

Clear Flag for
Timer 1 to
expire

Waiting
for Timer 1 or

Timer 2

Clear Flag for
Timer 2 to
expire

222

Start timers
FIG. 6D

U.S. Patent May 7, 1996 Sheet 8 of 20

188

226

DETERMINE
WHICH
TYPE

GET
PARAMETERS
FOR DRUM

IS
ITSTANDARD

FIND
CLOSEST

DRUMUSING
ALL

PARAMETERS

234

GET
CHANNEL 10
NOTE FOR
THIS DRUM

236

YES

RETURN CH10 VOICE

FIG. 6E

5,515,474

U.S. Patent May 7, 1996 Sheet 9 of 20 5,515,474

189 Keyon/Block/F-number
240 FIG. 6F

Device
initialized for
MIDI yet

?

initialize
Device to play

MIDI

244 248

VALUES
CHANGED

?

Key
turned On

p

YES

264 Voice returned ls
Note On
NOW

254
HaS YES O tout 266 the velocity ProAing

Set changed to device
Velocity=0

256 YES

Cal SET
VELOCITY

258

Cat GETKEY
260

Send MD
message to
audio device

U.S. Patent May 7, 1996 Sheet 10 of 20 5,515,474

SEVOICE 248
268

GET WOICE PARAMETERS
FOR THS CHANNEL FIG. 6G

270

NO (USESAME VOICE)

272
IS

VOICEN
TABLE

NO 274

REPEAT FOR WOICE IN
TABLE

276

YES (USE TABLE VOICE)

DO
CONNECT
FACTORS
MATCH

278
DOES

WAVESELECT
(CARRIER)
MATCH

SET WX-MAX

YES

COMPUTE
DIFFERENCES

284

YES ANY
MORE

STANDARD
VOICE

NO 286

CHOOSE VOICE WITH
LEAST DIFFERENCE

288

U.S. Patent May 7, 1996 Sheet 11 of 20 5,515,474

GETKEY 258

294

GET FNUMBAND BLOCKN
FORTHS CHANNEL

295

NO 296

COMPUTE
FREQUENCY

(FNUMB'3125) SHR (16-BLOCKN)

297

USE KEYCLOSEST IN
FREQUENCY

298

RETURN KEY

FIG. 6

U.S. Patent May 7, 1996 Sheet 12 of 20 5,515,474

READ DATA 300
AL-DATA

303

302
I/O NO

READ

304

<> AL €- SAVEDA
YES

308

SAVEDA NYES
=0

NO

310 FIG. 7

306

SAVEDA-0
AL{- SAVEDA

312

U.S. Patent May 7, 1996 Sheet 13 of 20 5,515,474

328 322 yes' NO 326

is 5-a-For-GD
NO 330 YES -

AL{-SAVEDC
SAVEDC (-7Fh

334 336
332

DEC.# YES SAVE DATA FOR oAs CURRENT WA,
COMMAND RCP =>

NO - 340 FOR
SAVE BYTE OF

DATA FOR
COMMAND

CMD-UX : O illegal/unknown-341
CMD-1X 8 BTDAC & 2 BT

ADPCM DAC
342

CMD-2X ADC INPU
343

CMD-3X READING/WRITING
344 349

CMD-4X SET TIME CMD-FX

CMD- illegal/unknown --> 348
CMD-OX : illedal/unknown -->

CMD-7X 347
8X ADPCM DAC CMD-DX

o: illegal/unknown-> CONTRO
C E. illegal/unknown --> 346

illegal/unknown --> CMD-8X
illegal/unknown

FIG. 8A

U.S. Patent May 7, 1996 Sheet 14 of 20 5,515,474

8 BT DAC

CMD-10h,
16h, 17h

341

unsupported--

351

SETDSPSTATUS
TO BUSY

SAVEDC-FFh
354 356 358

IS CLEAR
STOP DATA DMA

DMA-HALTED PROCESSING HALTED
FLAG

NO

360
DEVICE

NITAZED FOR
PCM?

NEW
SAMPLERATE

YES

368

CLEAR FLAG

TEMPO CHANGE

NTIALIZE
DEVICE FOR

PCM

SEND DMA
DATATO

AUDIO DEVICE

5 374

372

FIG. 8B

U.S. Patent May 7, 1996 Sheet 15 of 20 5,515,474

ADC INPUT 342

READ BYTE OF 1 38
DATA

FIG. 8C

DEVICE
NITED FOR
RECORD

NEW
SAMPLE RATE

YES

YES

INTIALIZED
AUDIO DEVICE
FOR RECORD

READ BUFFER DMA
SPECIFIED OF

BYTES

344 SET TIME
CONSTANT

400 3.
404 YES

SET DSPSTATUSTO
BUSYSAVEDC-FFh

406

5 392
402

408

SAME
ASLAST TIME
CONSTANT

SAMPERATE

1,000,000
256-TIME CONSTANT

FIG. 8D
SET FLAG TO

INDICATE NEWSRATE
AVAILABLE

U.S. Patent May 7, 1996 Sheet 16 of 20 5,515,474

4 BTADPCM
26 BTADPCMD AC 345

420

FIG. 8E

DMAGOTTEN BEERGRS-D
THEBUFFER WHEN RECEIVED INFO

SEND
"VIRTUAL" DMA

1XO

346

431

WAT FORALDATA
TO BE PROCESSED

432

SEND "VIRTUAL"
DMA INTERRUPT
TO APPLICATION

FIG. 8F

U.S. Patent May 7, 1996 Sheet 17 of 20 5,515,474

347 SPEAKER
CONTROL

436

SET FLAG TO HALT EER
THE DMA PROCESSENG

SEND COMMAND
TO TURN SPEAKER

OFF

SEND COMMAND
TO TURN SPEAKER

ON

RESUME
PROCESSING OF

DATA

FIG. 8G

U.S. Patent May 7, 1996 Sheet 18 of 20 5,515,474

O CMDEx D-348
460 461 462

NO YES SAVED EFFh
SAVEDA-INVERS
OF DATA BYTES

YES

SAVEDE-FFh
SAVEDALSB
DATA BYTE

SAVEDE-FFh
469 SAVEDA-02h

SET FLAG TO
STALL

APPLICATION
47

470
DATA WRITE 07hTO

BYTE-94h ADDR SPECIFIED
? TODMA

WRITED6hTO
ADDR SPECIFIED

TODMA

475

WRITEDDhTO
ADDR SPECIFIED

TODMA

477

WRITE3AhTO
ADDR SPECIFIED

ODMA

479 FIG. 8H
WRITE 08h TO
ADDR SPECIFIED

TODMA

480

U.S. Patent May 7, 1996 Sheet 19 of 20 5,515,474

485

SAVEDE-FFh
SAVEDA-00h 486

SEND "VIRTUAL"
INTERRUPT TO
APPLICATION

FIG. 8

490 DSP DATA
AVAILABLE STATUS

491

I/O READ

YES

493-N
Age SAVEDE

FIG. 9

5,515,474
1

AUDIO I/O INSTRUCTION
INTERPRETATION FOR AUDIO CARD

This is a continuation of application Ser. No. 07/975,754
filed Nov. 13, 1992, now abandoned.

BACKGROUND OF THE INVENTION

This invention relates generally to sound reproduction on
a personal computer. More particularly, it relates to a method
and system for decoding binary data written to specific
hardware registers to a generalized interface protocol such
as the Musical Instrument Digital Interface (MIDI).

In the personal computer industry, there exists a plurality
of special purpose adapter cards to perform various func
tions. For example, a variety of game cards, device adapter
cards to add computer peripherals, video cards and commu
nication cards exist. Generally, the personal computer has a
certain number of slots available to integrate these adapter
cards in the computer. Approximately three years ago,
Creative Labs Inc. introduced a new audio adapter card
called the SoundBlaster'TM, which has become the industry
standard for computer games. Today, virtually every soft
ware product which uses audio provides support for the
SoundBlasterTM.

Other audio cards must support the vast number of
existing audio applications to be commercially viable.
Unfortunately, most of these applications perform direct
read/write operations to the SoundBlasterTM hardware reg
isters. One solution for compatibility in the prior art is to
have a similar chip set with similar registers. However,
developing a clone card is very limiting and does little to
advance the audio technology.

It would be preferable to enable the great number of
existing audio applications to operate on any hardware
platform. FM synthesis on the SoundBlasterTM does not
operate according to the Musical Instrument Digital Inter
face (MIDI), an important industry standard for musical
application, but instead, on its own esoteric protocol. Fur
ther, as the technology of audio cards advances, the existing
applications must be supported or the lack of consumer
acceptance will greatly hinder progress.

SUMMARY OF THE INVENTION

It is therefore an object of the invention to create a
hardware independent platform for audio applications.

It is another object of the invention to interpret an
arbitrary set of data to the MIDI interface.

It is another object of the invention to improve music
synthesis.

It is another object of the invention to allow any audio
hardware to interface with audio applications which perform
direct read operations to registers.
These objects and others are accomplished by intercepting

and analyzing output from an audio application to attempt to
categorize it as to type of data and command. After the
analysis, a table lookup is performed which matches audio
data values to each of the 175 general MIDI instrument
sounds. If there is no exact match, an attempt is made to
determine which of the 175 general MIDI sounds is closest.
Further, the data can be used to alter one or more of the
MIDI control variables to vary the audio output from the
general MIDI instrument.

O

15

20

25

30

35

40

45

50

55

60

65

2
Preferably, the invention is carried out by the use of an

interface Virtual Device Driver (VDD) or a (TSR) Terminate
Stay Residence module depending on the operating system.
The interface module can intercept instructions while saving
status information on the audio application. This allows the
virtual device driver to interrogate and restore the inter
cepted instruction to a form compatible with an audio device
driver or directly with an audio card. As generalized speci
fications exist for the audio device driver, it can be written
for any particular audio card making the interface module
completely hardware independent. The operating system
creates a virtual machine in which the audio application will
run. After the trapped I/O instructions are passed analyzed,
they are onto the other modules of the interface module for
transformation. These transformation modules can take the
form of state machine. For example, a Pulse Code Modu
lation (PCM) state machine performs PCM record and
playback emulation. A frequency modulation (FM) synthe
sizer state machine performs the MIDI and FM synthesis
emulation.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other objects and features will become more
easily understood by reference with the attached drawings
and following description.

FIG. 1 is a representation of a multimedia personal
computer system including the system unit, keyboard,
mouse and multimedia display equipped with a speaker
system.

FIG. 2 is a block diagram of the multimedia computer
system components of a preferred embodiment of the inven
tion.

FIG. 3 is an architectural diagram of the code modules in
RAM coupled to the audio device and audio device driver
according to the present invention.

FIGS. 4A and 4B are diagrams of the generalized flows
for I/O request handlers which intercept I/O from audio
applications to the various ports of two different audio cards.

FIG. 5 is a flow diagram of the digital signal processor
(DSP reset function,

FIG. 6A-6 are flow diagrams of the FM synthesis
procedure.

FIG. 7 is a flow diagram of a data read procedure,
FIG. 8A-8 are flow diagrams of the data or command

write procedure.
FIG. 9 is a flow diagram of a DSP data available status

procedure.
FIG. 10 depicts an audio controller card which can be

used with the present invention,

DESCRIPTION OF THE PREFERRED
EMBODIMENT

The invention can be incorporated in a variety of com
puters, The processor unit could be for example, a personal
computer, a mini computer or a mainframe computer, run
ning the plurality of computer displays. The computer may
be a standalone system, part of a network, such as a local
area network or wide area network or a larger teleprocessing
system. Most preferably, however, the invention as
described below is implemented on a standalone multimedia
personal computer, such as IBM's PS/2 multimedia series,
although the specific choice of a computer is limited only by
the resource requirements, e.g., memory and disk storage of
multimedia programming. For additional information on

5,515,474
3

IBM's PS/2 series of computers, readers referred to Tech
nical Reference Manual Personal System/2 Model 50, 60
Systems and (IBM corporation, Part No. 68X2224, Order
No. S68X2224 and Technical Reference Manual, Personal
System/2 (Model 80) IBM Corporation, Part No. 68X22256,
Order No. S68X-2256. In FIG. 1, a personal computer 10,
comprising a system unit 11, a keyboard 12, a mouse 13 and
a display 14 are depicted. Also depicted are the speaker
systems 15a and 15b mounted to the left and right of the
monitor 14. The screen 16 of display device 14 is used to
present the visual components multimedia presentation. The
speaker system 15c and 15b provides good impulse and
phase response with good directionality for the single lis
tener without disturbing others nearby. Note that the very
thin shape of the speaker system requires a minimum of
additional desk space beyond that which would ordinarily be
required by the display 14 itself. The speaker systems 15a
and 15b are described in greater detail in Ser. No. 08/245,
519, entitled “Multimedia Personal Speaker System', to A.
D. Edgar filed Oct. 30, 1992 which is hereby incorporated by
reference.

FIG. 2 shows a block diagram of the components of the
multimedia personal computer shown in FIG.1. The system
unit 11 includes a system bus or busses 21 to which various
components are coupled and by which communication
between the various components is accomplished. A micro
processor 22 is connected to the system bus 21 and is
supported by read only memory (ROM) 23 and random
access memory (RAM) and (24) also connected to system
bus 21. A microprocessor in the IBM multimedia PS/2 series
of computers is one of the Intel family of microprocessors
including the 8088, 80286, 80386 or 80486 microproces
sors, however, other microprocessors including, but not
limited to Motorola's family of microprocessors such as the
68000, 68020 or the 68030 microprocessors and various
Reduced Instruction Set Computer (RISC) microprocessors
manufactured by IBM, Hewlett Packard, Sun, Intel,
Motorola and others may be used in the specific computer,
The ROM 23 contains among other code the Basic

Input/Output System (BIOS) which controls basic hardware
operations such as the interaction and the disk drives and the
keyboard. The RAM 24 is the main memory into which the
operating system and multimedia application programs are
loaded. The memory management chip 25 is connected to
the system bus 21 and controls direct memory access
operations including passing data between the RAM 24 and
hard disk drive 21 and floppy disk drive 27. A CD ROM 28
also coupled to the system bus 21 is used to store the large
amount of data present in a multimedia program or presen
tation.

Also connected to this system bus 21 are various I/O
controllers: The keyboard controller 28, the mouse control
ler 29, the video controller 30, and the audio controller 31.
As might be expected, the keyboard controller 28 provides
the hardware interface for the keyboard 12, the mouse
controller 29 provides the hardware interface for mouse 13,
the video controller 30 is the hardware interface for the
display 14, and the audio controller 31 is the hardware
interface for the speakers 15a and 15b. Lastly, also coupled
to the system bus is digital signal processor 33 which
controls the sound produced by the speaker system and is
preferably incorporated into the audio controller 31.
FIG.3 depicts an architectural block diagram of the code

modules in memory coupled to an audio device according to
one preferred embodiment of the present invention. The
application 50 is maintained in a virtual machine by the
operating system. The I/O instructions from an audio appli

10

15

20

25

30

35

40

45

50

55

60

65

4
cation 50 or its audio device drivers 52 are trapped by the
virtual device driver (VDD) 54. In practice, almost all
existing audio applications communicate without the use of
the device drivers, intending to write directly to the hard
ware registers. The WDD 54 communicates with the audio
device driver (ADD) 56. Similarly, it translates messages
from the ADD 56 into a form usable to the application 50.
The ADD 56 is coupled directly to the audio device 58 and
shields the other code modules from needing any knowledge
of the hardware in the audio device. In an alternative
embodiment, the VDD 54 reads and writes directly to the
audio card. However, in this embodiment the VDD is not
hardware independent. The audio card is described in detail
in connection with FIG. 10. Within the WDD there are code
modules for the I/O interrupt routines 60, a state machine 62,
audio API calls 64 and a callback routine 66.
When the VDD 54 is installed or a virtual machine session

is created, the VDD tells the operating system that it is
interested in knowing when accesses to a list of I/O
addresses occur. After this, every time one of the I/O ports
is accessed, control is transferred to the VDD I/O intercept
routine 60. These routines set up calls to the device specific
portion. This routine 60 will look at the port that was
accessed, whether the I/O instruction was a request for a
read or write access, and what the data was that was being
written (if a write access) to the port. The intercept routine
60 takes all this information and does any of the necessary
processing to translate this information into the audio API
calls/information 64. The audio API calls 64 are a set of
routines that make calls to the physical audio device driver
56 that controls the audio device to which the translated
audio information is sent. One preferred API is covered in
the Audio Device Drivers for IBM Personal Computers
specification which is available from the IBM Corporation
and hereby incorporated by reference. The audio device may
send interrupts when certain events have occurred, such as
the completion of processing the data. The ADD56 will then
inform the VDD 54 of the event by calling the callback
routine 66. The callback routine 66 is used mainly for
identifying when a buffer of PCM data which the application
requested to be DMAed to the audio device has completed
playing. When the VDD 54 receives the callback, it will then
send a "virtual” IRQ to the application to let the application
50 know that the "DMA" has completed processing.
When the VDD is installed, it tells the operating system

what DMA channels it is interested in, similar to hooking the
I/O ports. For SoundBlaster, DMA channel 1 is used. From
now on, the VDD will get control whenever MASK or
MASK OFF event on the DMA is done. If it is the WDD
doing the MASKing, then it is important to determine the
data buffer being DMAed so it can be sent to the audio
device driver. The VDD can be identified by checking the id
of the process that is doing the access to the DMA (which is
supplied by the operating system) with the id of the process
that has been doing accesses to the audio I/O ports.
The physical address of the data buffer to be DMAed and

the size of the buffer can be read from the DMA registers.
However, in OS/2 this presents a problem. OS/2 has a virtual
device driver for the DMA. Because of this, every time the
DMA is programmed by a process, the DMA virtual device
driver intercepts the information. The actual programming
of the DMA is done only after control has been passed to our
virtual device driver. So at the time that the DMA Handler
gets control, the data address and size is not available in the
DMA registers. To get around this, a timer is set in the DMA
Handler to go off as soon as possible (1 msec) at which time
a DMA Timer routine is given control. By the time the timer

5,515,474
5

expires, the DMA Handler has returned to the OS/2 virtual
DMA device driver and it has programmed the DMA with
the data address and size. The DMA Timer routine can then
go and read the information it needs from the DMA regis
terS.

The data buffer is then sent to the audio device driver (56).
When the audio device driver is finished processing the data,
it will give a callback (66) to the virtual device driver. At this
time, the virtual device driver will generate an interrupt on
the same interrupt level that the DMA would have. The
application sees this interrupt and continues with the next
buffer of data to be processed.

For DOS and Windows, the size and address of the data
is available at the time the DMA Handler is given control.
Therefore, none of the extra processing in FIG.3 is required.
An interesting feature of the Intel 80386 and above

microprocessors is its virtual 8086 or V86 mode of opera
tion. In this mode, a virtual 8086 machine is created. Audio
applications may be run on this V86 virtual machine under
the control of operating system code. Privileged instructions
intended for a hardware register can be trapped by the
operating system which also stores status information on the
application to allow the operating system to interrogate and
restore the instruction. A virtual device driver may be used
to intercept codes from the audio application in the virtual 86
machine. Whenever the audio application attempts a read or
write to one of the known audio register I/O locations, the
virtual device driver intercepts the instruction and emulates
it using the functions available with the substituted audio
hardware.

The 80386 processor can run in real (normal under DOS),
protected, or virtual-8086 (or V86) modes. The V86 mode is
designed to run real-mode programs in a protect-mode
environment. For example, as in running DOS programs in
the OS2 “DOS-box” When in V86 mode, the processor
compares the port address of each IN/OUT instruction
against a bitmap which defines which ports the current
program is privileged to access. If the corresponding bitmap
bit is a '1', the access is not allowed and a protect fault will
OCCUT.

The interface module may also be implemented as a
terminate stay residence (TSR) module that enters protect
mode and then exits back to V86 mode with the bitmap set
for the desired I/O ports. As part of entering protect mode,
a Global Descriptor Table (GDT), a Local Descriptor
Table(LDT), an Interrupt Descriptor Table(IDT), and a
TASK State Segment (TSS) must all be initialized. After the
TSR returns to DOS, all subsequent programs will run in
V86 mode. Protect faults due to accesses of selected I/O
ports will be handled by the TSR. The I/O instructions can
then be conveniently mapped to other I/O ports and/or
program functions as required. All software interrupts will
also cause a protect fault. The TSR must recognize the
software interrupts and pass them on to the correct software
interrupt handler via the interrupt vector table.

In OS/2 2.0 and Windows. 3.1, a virtual device driver can
be used to trap I/O interrupts to a physical device driver, e.g.,
an audio device driver, or directly to a hardware registers.
Many existing applications were written to use the entire
resources of the computer system and thus can not operate
in a multiapplication environment without assistance from
the operating system. The virtual device driver allows appli
cations to share a hardware resource Such as an audio card.
Typically, the VDD is used simply to trap the I/O data and
send it to the appropriate port with little transformation of
the data into another form. This is true as the application is

O

5

20

25

30

35

45

50

55

60

65

6
writing to the same hardware or device driver as it was in the
single application environment. In the present invention, the
VDD is different as it causes the application to interact with
completely different hardware than that for which it was
originally written.
The virtual device driver is comprised of: a basic hyper

viser, and state machines that provide FM synthesizer and
other audio functions. The basic hyperviser performs the
trapping of I/O instructions and passes the trapped instruc
tions to the state machines. In addition, the VDD emulates
the operation of the Direct Memory Access DMA controller.
Variable sample rates between 4 thousand and twenty-three
thousand samples per second are supported by Sound
BlasterTM audio hardware. As the substitute audio hardware
may not be able to support the arbitrary sample rate selected
by the application, the physical device driver will map the
requested sample rate to the nearest available rate.
The FM synthesizer state machine performs a MIDI and

FM synthesis emulation. The FM synthesizer registers data
written to the FM registers is analyzed and converted to
MIDI data conforming to the general MIDI recommended
practice. General MIDI is NOT a standard-just a recom
mended practice. The frequency data in Table 1 is used to
determine the MIDI note to use. The data in Table 1 is used
to determine which general MIDI instrument sound is to be
generated. This may result in the generation of a MIDI
program change if there is a change an any parameter in
Table 1. Also, a slight difference in the total level of the
carrier is used to determine the MIDI Note-on value.
The following parameters are used with the Sound

BlasterTM to determine the note to be played:

Parameter Size in bits

F-Number 10
Block 4
KeyON 1 (1 = ON, O = OFF)

FIG. 4a depicts typical I/O requests which are made by
the audio application. An I/O request is sent along input line
99 and intercepted by a code module 100 which determines
to which port the application was writing. The ports in the
diagram are listed as XXI through xxF which represent a
sequence of 16 adjacent ports which the personal computer
recognizes as ports allocated to the audio card. For example,
the ports may be 220 through 22F or 380 through 38F
Depending on the nature of the I/O request, the audio
application will attempt to send the I/O request to a specific
I/O port. In the SoundBlasterTM audio card, I/O ports xx0,
xx1, xx2 and XX3 are used for C/MS-404 quality synthesizer
another type of synthesis other than FM synth) which is not
widely popular type of music processing. I/O port xx6 is
used for resetting the DSP I/O ports xx8 and xx9 are used
for FM music control processing. I/O port XXA is used for
DSP voice I/O and MIDI read data. I/O port XXC is used for
DSP/command processing. I/O port XXE is used for the DSP
data available status.

The I/O Handling Routine 100 traps the instructions
which are intended for a specific hardware port and sends
them to the appropriate procedure. I/O commands or data to
the xx0 through xx3 ports are sent to the C/MS music voice
routine 102. The CM/S music voice routine is a specialized
synthesis routine which very few applications use. Thus, the
VDD need not support this routine, although it could be
performed similarly to the FM synthesis routine in FIGS.
6A-61. I/O commands to the xx6 port are sent to the DSP
reset procedure 104 which is depicted in greater detail in

5,515,474
7

FIG. 5. I/O commands for FM synthesis are normally sent to
ports xx8 and xx9. After interception, they are sent to the FM
synthesis procedure 106 shown in greater detail in FIGS.
6A-61. I/O to the XXA port is sent to the Read Data
Procedure 108 depicted in FIG.7. I/O to the xxC port is sent
to the write Data/CMD procedure 110 depicted in FIGS.
8A-8I. The DSP Data Available/Status procedure described
in conjunction with FIG.9 receives the I/O data intended for
the XXE port. I/O instructions to the other ports in the figure
are treated as NOPs.
The I/O handling routine can be much simpler depending

on the audio card to which the application is intended to
write. For example, in FIG. 4B, the I/O handling routine for
an MPUTM card manufactured by the Roland Corporation is
illustrated, The I/O instructions from the application are
intercepted by the MPU I/O handling routine block 120
which determines whether the I/O instruction is data or
command/status information bound for port xx0 or XX1. If it
is data information, normally received at the first port, it is
sent to the data block 122. If it is command or status
information, normally sent to the xx.1 port, the I/O instruc
tion is handled by the command / status block 124. In one
preferred embodiment of the invention, a plurality of I/O
handlers are provided to handle audio input/output data
written for a plurality of different hardware platforms. Thus,
a first application written for the SoundBlasterTM card could
operate concurrently with a second application written for an
MPU card, where the actual audio I/O operations are per
formed by a third audio card for which neither the first and
second application were written.
FIGS. 5-9 accompany a more detailed description of the

processes in the modules in FIG. 4A. In these flow diagrams,
specific values for various parameters are given which are
based on the expectations of an audio appreciation written to
directly read or write to the SoundBlasterTM card. One
skilled in the art would recognize that similar procedures
could be written for the I/O handler depicted in FIG. 4B, and
other I/O handlers for other hardware, but that the specific
parameters may differ from those below. Although the
processes are not depicted as traditional state machines, they
respond with a particular function to the I/O instruction and
state of the audio applications.

FIG. 5 depicts the process to reset a digital signal pro
cessor. When the XX6 port is written, a DSP reset command
is being performed on the card. The process begins in step
130 with a DSP reset command. Next, a test is performed,
step 132, to determine whether the input is an I/O read. If it
is an I/O read, the output variable is set to FFh in step 134
and returned to the audio application. The xx6 port is a write
only port. If a write only port is read the hardware which is
emulated by the embodiment of the invention returns FFh.
In steps 136, 140 and 142 tests are performed to determine
whether the I/O input from the application equals certain
values. If so, the I/O value is saved in step 138 for future use
by the VDD. If not, a test is performed to determine whether
an input value of O1h had previously been saved, step 144.
If so, in step 146, the savedE variable is set to FFh indicate
that data is available from the DSP and the savedA variable
is set to AAh. Throughout the diagrams whenever savedE is
set to FFh, it means that there is data available in the XXA
port to read. The VDD contains a table which stores the last
input to and last output from a particular "port'. For
example, a savedA input value is the value to be sent back
to application on next read access of XXA port. A savedA
output value is the last value written to XXA port by
application. In step 148, all processing on the audio card is
stopped as the application has asked that the DSP be reset

O

5

20

25

30

35

40

45

50

55

60

65

8
and the buffers are returned to the operating system. When
port XXE and port XXA are read the next time, the correct
values will be waiting to be sent to the application. The
process ends in step 150.

FIGS. 6A through 6I depict the process for emulating FM
synthesis with the general MIDI instrument interface. The
process begins in step 160 when port xx8 or xx9 are written
to by the audio application. Step 160 determines whether a
command was written to port xx8 or not. If it was written to
port XXS, a test is performed to determine whether the
instruction calls for an I/O read operation, step 162. If not,
step 164 causes saved8 output to be equal to AL, and the
process ends, step 165. If the I/O instruction does call for an
I/O read, a test is performed to determine whether timers are
used by the audio application in step 166. If the application
does use timers, in step 168, AL is set to saved8 input and
the process exits in step 165. If the application does not use
any timers, in step 170, a counter for the consecutive times
port xx8 is accessed is incremented in count. Next, in step
172, the counter is tested to determine whether to see if five
or more reads to the xx8 port have been done in a row. If so,
the VDD interface will evaluate the code that the application
is processing and if it determines that the application is
wasting time, then it will NOP out the instructions in the
application code which is performing excessive reads to the
port. This speeds up processing considerably and improves
performance, step 174. The process continues through steps
168 and 165.

If this was an I/O access to the xx9 port, first, a test is
performed in step 176 to determine whether the application
has made an I/O read request. If so, the process exits, step
165. If the application has made an I/O write request, the
counter for port Xx8 accesses is reset in step 178. Next, the
I/O instruction is saved in the FM table, step 180. For some
values written to the I/O port, no action is taken. If the I/O
instruction is 02h, an 80 MSEC timer is set in step 182. If
the I/O instruction is 03h, a 320 MSEC timer is set in step
183. If the I/O instruction is 04h, the timer control procedure
is called in step 184. If the I/O instruction equals BDh, the
depth/rhythm routine is called in step 188. If the I/O
instruction is BOh to B8h the key-on/block routine is called
in step 189. The process ends in step 190.

FIG. 6B describes the set timer 1 routine in greater detail.
Processing begins in step 182 where an I/O instruction of
02h, is detected. Next, in step 192, the new value of a 80
millisecond timer is determined before either time expires.
In step 192, the least common denominator of Timer 1 and
Timer 2 is determined. The least common denominator
determines the rate at which VDD timer counters are set up
for both Timer 1 and Timer 2, for the number of times the
VDD timer needs to go off before Timer1/Timer2 has really
expired. In step 193, the tempo is updated on the audio card.
The process ends in step 190.

FIG. 6C describes the set timer 2 procedure which is
basically similar to set timer 1 procedure except that the
timer in this case is a 320 millisecond timer rather than a 80
millisecond timer in the set timer 1 procedure. The process
begins in step 183 when the I/O value of 08 is received.
Next, the new value of the timer is determined before either
expires in step 194 as described above in reference to step
192. Next, in step 195, the tempo on the audio device is
updated. The process ends in step 190.
The timer control procedure is described in greater detail

in FIG. 6D. The process begins in step 184 when an I/O
value of 04h is received. In step 200, a test is performed to
determine whether the timers should be reset. If so, in step

5,515,474

202, the saved8 input variable is set to 0. Next, in step 204,
the timer is restarted and the process ends in step 206. If
timers are not to be reset, in step 208, a test is performed to
determine whether timer 1 should be started. If so, a flag is
set in step 210 which indicates that the application is waiting
for timer 1 to expire. If not, in step 212, the flag is cleared
which indicates that the application is not waiting for timer
1 to expire. Next, in step 214, a test is performed to
determine whether timer 2 should be started. If so, a flag is
set in step 216 which indicates that the application is waiting
for timer 2 to expire. If not, the flag is cleared which
indicates that the application is not waiting for timer 2 to
expire. Next in step 220, a search is performed for the flags
indicating that the application is not waiting for timer 1 or
timer 2. If the application is waiting for either or both of the
timers, the timers, are started in step 222 and the process
exits, step 206. Restarting the timers basically assures that
the timer has expired already and the VDD wants to know
when the next timer expires. Starting the timer basically
means to start reporting expiration of that timer.
The depth and rhythm procedure is described in greater

detail in FIG. 6E. First, in step 188, the "Drum" procedure

O

15

20

10
whether the voice has changed, step 270. If not, the same
voice is used and the program exits. If the voice has
changed, a step is performed in step 272 to determine
whether the voice is in the table. If the voice is in the table,
the table voice is used. If not, in the step 274, a comparison
between the unknown voice and each voice in the table is
started. In step 276, a test is performed to determine whether
the connect factors match. If they do, a test is performed to
determine whether the wave select carrier matches. If either
of these steps fail, in step 280, VX is set to the maximum.
Thus, this voice will be too different to be deemed the closest
voice in the step 286 below. In step 282, the differences
between various parameters for the carrier and modulator
are for the various MIDI voices are determined. A test is
performed in step 284 to determine whether there are any
more standard voices to test. If not, in step 286, the voice
with the least difference from the voice parameters is cho
sen. The process ends in step 288. The actual equation to
determine the variance between the unknown voice and each
of the standard voices in the table is as follows:

Vx=ATTACK(CARRIER)/2+ATTACK(MODULATOR)/2+DECAY(CARRIER)/2+DE
CAY(MODULATOR)2+SUSTAIN(MODULATOR) *EGtype(MODULATOR)+MULTIP
LE(MODULATOR)/2+TOTALLEVEL(MODULATOR)
12+FEEDBACK(MODULATOR)/2

is retrieved in response to an I/O instruction equal to BDh.
In step 226, the type of rhythm is determined. In step 228,
the parameters for the rhythm are retrieved by using the bits
stored in the xx9 port output. Next, in step 230, a test is
performed to determine whether it is a standard rhythm. If
it is not a standard rhythm, step 232, finds the closest rhythm
using all the parameters. If it is a standard rhythm, step 232
is skipped. Next, in step 234, the channel 10 note for this
rhythm is retrieved, the MIDI channel for rhythm effects.
Finally, in step 236, the voice on channel 10 is returned to
the application.
The Key-on/block/Fnumber procedure is described in

FIGS. 6F through 6I. The process begins in step 189 when
an I/O instruction in the range of BOh through B8h is
received. A test is performed in step 240 to determine
whether the audio card is initialized for MIDI yet. If not, the
device is initialized to play MIDI, step 242. In step 244, a
test is performed to determine whether a key is turned on. If
so, another test is performed in step 246 to determine
whether any of the values for this channel have changed
since the last time. If they have changed, in step 248, the set
voice procedure is called. Next, in step 250, a test is
performed to determine whether a new voice is returned. If
so, the new programmed parameters for the new voice are
output to the audio card in step 252. If it is not a new voice,
step 252 is skipped. In step 254, a test is performed to
determine whether the velocity of the voice has changed. If
so, the set velocity procedure is called, step 256. Next, the
get key procedure is called in step 258. The MIDI message
is sent to the audio device in step 260 and the process ends
in step 262. If in step 244, the key was not turned on, a test
is performed in step 264 to determine whether the note is on
at a second time. If so, the velocity is set to 0 in step 266 and
the MIDI voice is sent to the audio device. If the note is not
on at the second test, the process exits at step 262.

FIG. 6G describes the set voice procedure in step 248 in
greater detail. First, the voice parameters for this channel are
received in step 268. A test is performed to determine

30

35

40

45

50

55

60

65

In standard English, the equation would translate to half the
absolute difference of the Attack(Carrier) of the unknown
voice and the Attack(Carrier) of the standard voice PLUS
half the absolute difference of the Attack(Modulator) of
the unknown voice and the Attack(Modulator) of the
standard voice PLUS half the absolute difference of the
Decay(Carrier) of the unknown voice and the Decay(Car
rier) of the standard voice PLUS half the absolute differ
ence of the Decay(Modulator) of the unknown voice and
the Decay(Modulator) of the standard voice PLUS the
absolute difference of the Sustain(Modulator) of the
unknown voice and the Sustain (Modulator) of the stan
dard voice multiplied by the absolute difference of the
EGtype(modulator) of the unknown voice and the
EGtype(modulator) of the standard voice Plus half of the
absolute difference of the Multiple(modulator) of the
unknown voice and the Multiple(modulator) of the stan
dard voice PLUS half of the absolute difference of the
TotalLevel (Modulator) of the unknown voice and the
Total level (Modulator) of the standard voice PLUS half
of the absolute difference of the Feedback(Modulator) of
the unknown voice and the Feedback(modulator) of the
standard voice.
FIG. 6H illustrates the set velocity procedure which

begins in step 256 if the velocity has changed. In step 290,
the total level of carrier parameter is retrieved from FM table
which was written previously. The carrier value is inverted
in step 291 and then doubled in step 292. The resulting value
is returned in step 2.93.

FIG. 61 depicts the get key procedure which begins in
FIG. 6F in step 258. The key is the note or frequency that
will be played by the hardware. Next, in step 294, the
Fnumber and blockM values for this channel are retrieved.
The Fnumber determines the frequency of the output signal
and the blockM value determines the octave in the Sound
BlasterTM hardware. Next, a test is performed in step 295
whether the key is in the table. If so, the key is returned in
step 298. If not, the frequency is computed in step 296 using
the equation (Fnum:3125) SHR (16-BLOCKN). Next, the

5,515,474
11

key which is closest to the computed frequency is found in
step 297 and that key returned in step 298.

FIG. 7 is a flow diagram for the read data process. First,
in step 300 the initial I/O input from the application is read.
In step 302, a test is performed to determine whether the I/O
data indicates a read access. If not, the program exits, step
303. If it is an I/O read, a test is performed in step 304 to
determine whether the last command written to the DSP was
Elh. If not, the I/O data value AL step to the savedA in step
305. The savedE variable is set to FFh in step 306. If the last
command to the DSP was Eh, the audio application expects
two more bytes of information to follow. In step 308, a test
is performed to determine whether savedA equals 0. If so,
steps 305,306 are performed. If not, the savedA is set to 0
and the procedure returns with a previously saved value for
the next read of the XXA port in step 310. The process ends
in step 312.

FIG. 8A depicts a flow diagram for the write data/
command procedure for the present invention. In-step 320,
an I/O command from the application is intercepted which
indicates that a write data or write command operation to the
card is sought by the audio application. In step 322, a test is
performed to determined whether it is an I/O read command.
If so, a second test is performed whether the interface or
audio controller card need to wait in step 324. If not, the AL
value is set to FFh, step 326, which indicates that the DSP
is ready to receive the next command and the program exits
328. If the program interface needs to stall, AL is set to the
latest value in savedC and the new value in savedC is set to
7Fh. This indicates that the DSP is not ready to receive any
more commands at the present time. The process proceeds to
exit, step 328.

If the I/O instruction is not an I/O read operation, a test is
performed whether the interface is waiting for more than 1
byte of data for this command. step 332. If so, in step 334,
the I/O data is saved for the current command. In step 336,
the number of bytes the state machine is waiting for is
determined. The process proceeds to the exit, step 328.

If the interface is waiting for more than 1 byte, the byte
of I/O data is saved for the command in step 340. Once all
the DATA bytes for the command have been received, the
VDD continues down past step 340, to process the command
which may be for either MIDI, PCM or ADPCM. For
example, if the command is Ox, 5x, 6x, 9x, Ax, Bx, Cx the
process will proceed to exit, step 328. If the command is
equal to 2X, an 8 byte digital to analog converter (DAC) and
a two-byte analog digital PMC DAC procedure, step 341, is
performed. If the command equals 2x, an analog to digital
converter input procedure step 342, is performed. If the
command equals 3x, a read or write to a MIDI port in step
343 is performed. In step 344, the set time constant proce
dure is performed if the command is equal to 4x. A4 bit and
2.6 bit ADPMC DAC is set in step 345 if the command is
equal to 7X. If the command is equal to 8x, the command 8x
procedure in step 346 is performed. The speaker control
procedure in step 347 is performed if the command is equal
to DX. The command EX or the command FX procedures are
performed if the command equals Ex or Fx in steps 348 and
349 respectively.

FIG. 8B depicts a flow diagram for the DMA write mode
to a 8-bit DAC, one of the several DSP write commands
supported by the SoundBlaster protocol. The other write
commands are a direct write to an 8-bit DAC, a DMA write
mode to a 2-bit Adaptive Delta Pulse Code Modulation
(ADPCM) DAC, a second DMA write mode to a 2-bit
ADPCM DAC with a reference byte and a direct write mode
DAC. The ADPCM is a compression algorithm used by the

10

15

20

25

30

35

40

45

50

55

60

65

12
DSP on the SoundBlaster. For sake of simplicity, only the
first write mode associated with this command is depicted.
Also, depending on the audio hardware, not all of these write
modes can be supported unless they are provided by the
WDD.

After the Ix command in step 341, a test is performed for
the 14h I/O instruction which indicates that the DMA write
mode for-the 8-bit DAC is called by the application. Next,
in step 352, the DSP is set to busy and savedC is set to FFh.
A test in step 354 determines whether the DMA write has
halted. If so, in step 356, data processing is halted and in step
358 the DMA halted flag is cleared. If the DMA write is
proceeding, step 360 tests for a new sample rate. If the
sample rate stays stable, in step 362, a test is performed
whether the audio card is initialized for PCM. If not, the
process continues with step 364 which is a test for changes
which need to be executed. If there are outstanding changes,
a test for tempo changes is performed in step 366. If there
are tempo changes, the flag for changing tempos is cleared
in step 368. The process proceeds to step 370 where the
audio hardware is initialized for the PCM operation. In step
372, the DMA data to be written to the device is sent. The
process ends, step 374.

FIG. 8C depicts the process for Analog to Digital con
verter input to the audio card which might come from a
microphone or other audio source. If 20h is the I/O instruc
tion, the information is read directly from the audio card,
step 380. If 24h is the I/O instruction, the information is read
via a DMA mode, step 383. After the ADC input command,
2x, is received from the application, step 342, two tests are
performed in steps 380 and 383 whether the expected types
of ADC input modes have been specified. If the direct mode
is specified, a command for the data to be read by the card
in step 381 is sent. If neither command is detected, the
procedure ends, step 382.

If the DMA mode is called, in step 384, a test for whether
a new sample rate is requested is performed. If the same
sample rate is requested, a test whether the audio card is
properly initialized for recording is done in step 386. The
process continues to step 388 if a new sample rate or proper
initialization of the audio device is required. Next, in step
390, a buffer is read for the specified number of bytes in the
DMA read operation. The process ends, step 392.

FIG. 8D depicts the set time constant procedure which is
used to set the sampling rate for the DAC and ADC in DMA
modes. The only I/O instruction recognized is 40h. If the test
in step 400, is negative, the process ends, step 402. If the
application desires to change the sampling rate, in step 404,
the DSP is set to busy and the savedC variable is set to FFh.
Next, a test is performed in step 406 to determine whether
the time constant is the same as last time, e.g., the sampling
rate is constant. If not, the new sample rate is calculated
using the formula:

Sample Rate =1,000,000/7(256-time constant) in step 408.

The flag is set to indicate that a new sample rate is available
in step 410. The process ends in step 412.
FIG. 8E is the flow diagram for the 4-bit ADPCM and 2.6

bit ADPCM DAC modes which are similar to those dis
cussed in conjunction with FIG. 8B. If the I/O instruction
does not fall between 74h and 77h, after the tests in step 420
or 421, the process will end. If the I/O instruction does fall
within this range, the audio application intended to use one
of several write modes supported by the SoundBlaster card.
However, in this embodiment, none of the modes are sup
ported by the audio hardware for which the VDD is built and
the designer of the VDD did not choose to emulate support

5,515,474
13

with the VDD. Therefore, the data which was sent by the
application is simply thrown away. While this may not seem
like a very good emulation, if the write mode is not
supported by either hardware or software ignoring the
request is less disruptive rather than halting the application.
In step 422, a test is performed to determine whether the
DMA data has been entered into the buffer. If not, a flag is
set so the buffer is ignored when it is received. If so, a
interrupt on the IRQ level that the application thinks it is
audio devices is running on is sent to the application. The
process ends in step 426.
The "CMD 8x” write mode is depicted in FIG. 8F. It was

found that emulating general undocumented operations was
necessary to "fool” certain audio applications that they were
interacting with the SoundBlasterTM Several of these modes
appear to be testing modes, but it was also found that
acceptable performance was possible by simply emulating
the expected response, even if there was no actual knowl
edge of what the hardware was actually doing. Thus, reverse
assembly or access to source code is not necessary. Although
the CMD 8X mode is not documented, several audio appli
cations use this mode to test the SoundBlasterTM card to
determine which interrupts the card is using and whether
these interrupts are working. If data is being played on the
audio hardware associated with the VDD, this routine waits
for the play to finish. At this point, the VDD returns an
interrupt at the level which the application would expect to
receive one. After the command 8x is received by the
application in step 346, a test is performed to determine
whether the I/O instruction is 80h in step 430. If not, the
process ends. If so, the process continues to step 431 where
the VDD waits until all the audio data has been processed by
the card. Next in step 432, a “virtual” DMA interrupt is sent
to the application. The process ends, step 433.

FIG. 8G shows the speaker control process. After the
process is started in step 345, a test is performed for the DOh
I/O instruction which indicates that the DMA operation be
halted. If the DOh instruction is sent, step 436 sets the flag
to halt the DMA operation and step 438 stops the data
currently processing. If the Dlh I/O instruction is detected in
step 440, it means that the speaker should be turned on. In
step 442, the command to turn the speaker on is sent to the
audio card. If the D3h command is detected in step 444, it
means that the speaker should be turned off. Consequently,
in step 446, the command to turn the speaker off is sent to
the audio card. The presence of the D4h command is tested
in step 448. If found, the halted DMA operation is resumed
in step 450. The process ends in step 452.
The CMD Ex operation is depicted in FIG.8H. These are

all commands done by the application to test to see if the
audio card is functioning correctly or not. After initializing
in step 348, a test for a E2h command from the audio
application is conducted. This command checks for bit
reversed. If the command is not detected, a test in step 461
for EOh is conducted. If successful, the savedE variable is
Set to FFh and the savedA variable is set to the inverse of the
databyte. The process exits in step 463. If the testin step 461
fails, a test for an I/O instruction of E4h is performed. This
test checks for bits not reversed, in step 464. If this test is
successful, in step 465, a test for the most significant byte
being set to E8h is conducted. If the step 465 test is
Successful, the savedE variable is set to FFh and the savedA
variable is set to the least significant byte of data in step 466.
If either of the tests in steps 464 and 465 are unsuccessful,
a test for an Elh I/O instruction is performed in step 467. If
Elh is found, the savedE variable is set to FFh and the
savedA variable is set to 02h. The process ends in step 463.

10

15

20

25

30

35

40

45

50

55

60

65

14
If the I/O instruction was E2h, a flag is set in step 469 to

stall the application. E2 command is followed by another
byte of info for the command. This command checks the
DMA operation. In step 470, if the data byte is 94h, O7h is
written to the address specified for the DMA operation in
step 471. In step 472, if the data byte is equal to BAh, D6h
is written to the address specified by the DMA operation in
step 473. Similarly, if the tests in steps 474, 476 or 478
successfully detect an I/O instruction of A5h, 06h or 6Bh
respectively, DDh, 3At or O8h is written to the address
specified by the DMA operation in steps 475, 477 or 479
respectively. The process ends, step 480.

In FIG. 8I, the CMD Fx operation is depicted. This is
another undocumented operation with which some applica
tions interact with the SoundBlasterTM. After starting in step
349, a testin step 484 is performed to determine whether the
I/O instruction intercepted from the application is FSh. If so,
the savedE variable is set to FFh meaning data is available
to be read from DSP in the XXA port and the savedA variable
is set to 00h. A second test is performed in step 487 to
determine whether the I/O instruction from the audio appli
cation is F2h. If so, step 488 sends a interrupt to the
application on the IRQ level that the emulated device would
have been using. This is done by applications initially to
determine what IRQ the hardware is setup to use. The
process ends in step 486.

FIG. 9 illustrates the DSP Data Available Status process
which is used to tell the audio application that there is data
available in the DSP for it to read. The process begins in step
490. A test is performed in step 491 whether the application
has requested an I/O read process. If not, the process ends,
step 492. If so, the output AL is set to the value stored in the
savedE variable.
The following tables list the audio parameters used with

the SoundBlasterTM set to the interface module and the MIDI
voices which the interface module sends to the audio device
driver or the audio hardware.
The parameters in TABLE 1 are used with the Sound

Blaster Card to produce a sound:

TABLE 1

ACOUSTIC
GRAND

parameter Size in bits PIANO GUNSHOT

Amplitude Modulation 1. O O
(carrier)
Apply Vibrato O O
(modulator)
Apply Vibrato (carrier) 1. O O
Envelope Type 1. O O
(nodulator)
Envelope Type (carrier) O O
Key Scaling Rate 1 O O
(nodulator)
Key Scaling Rate 12
(carrier)
Modulator Frequency 4. l 4
Multiple (modulator)
Modulator Frequency 4 1. O
Multiple (carrier)
Scaling Level 2 1 O
(modulator)
Scaling Level (carrier) 2 O O
Total level (modulator) 6 15 O
Total level (carrier) 6 O O
Attach Rate (modulator) 4 50 60
Attach Rate (carrier) 4. 60 60
Decay (modulator) 4. 4. O
Decay (carrier) 4. 8 24

5,515,474
15 16

TABLE 1-continued TABLE 3-continued

ACOUSTIC General MIDI Instrument Sounds Listing
GRAND --------M-Dromm

5 Prog # Instrument name
parameter Size in bits PIANO GUNSHOT

33. Acoustic Bass
Sustain Level 4. 20 60 34. Elec. Bass (finger)
(modulator) 35. Elec. Bass (pick)
Sustain Level (carrier) 4. 16 56 36. Fretless Bass
Release Rate 4. 4 O 10 37. Slap Bass 1
(modulator) 38. Slap Bass 2
Release Rate (carrier) 4 2 24 39. Synth Bass 1
Wave Select 2 0 2 40. Synth Bass 2
(modulator) 41. Violin
Wave Select (carrier) 2 O O 42. Wiola
Feedback Factor 3 3 7 15 43. Cello
Connectivity type 1 0 O 44. Contrabass

45. Tremolo Strings
46. Pizzicato Strings

Table 2 presents 47. Orchestral harp
General MIDI voices which are selected using MIDI pro- 48. Timpani 49. String Ensemble 1
gram change messages. 20 50. String Ensemble 2

51. SynthStrings 1
TABLE 2 60. Muted Trumpet

6. French Horn
General MIDI sound grouping (all channels) except 10 62. Brass Section

63. SynthBrass 1
PROG if INSTRUMENT GROUP 25 64. SynthBrass 2

65. Soprano Sax
1-8 Piano 66. Alto Sax
9-16 Chromatic Percussion 67. Tenor Sax
17-24 Organ 68. Baritone Sax
25-32 Guitar 69. Oboe
33-40 Bass 30 70. English Horn
41-48 Strings 71. Bassoon
49-56 Ensemble 72. Clarinet
57-64 Brass 73. Piccolo
65-72 Reed 74. Flute
73-80 Pipe 75. Recorder
81-88 Synth Lead 35 76. Pan Flute
89-96 Synth Pad 77. Blown Bottle
97-104 Synth Effects 78. Shakuhachi
105-112 Ethnic 79. Whistle
13-20 Percussive 80. Ocarina
121-128 Sound Effects 81. Lead 1 (square)

82. Lead 2 (sawtooth)
40 83. Lead 3 (calliope)

Table 3 lists 128 general MIDI instrument sounds. 92. Pad 4 (choir)
93. Pad 5 (bowed)

TABLE 3 94. Pad 6 (Metallic)
95. Pad 7 (halo)

General MIDI Instrument Sounds Listing 96. Pad 8 (sweep) ----------- 45 97. FX 1 (rain)

Prog # Instrument name 98. FX2 (soundtrack)
99. FX 3 (crystal)

1. Acoustic Grand Piano 100. FX 4 (atmosphere)
2. Bright Acoustic Piano 101. FX 5 (brightness)
3. Electric Grand Piano 102. FX 6 (goblins)
4. Honky-tonk Piano 50 103. FX 7 (echoes)
5. Electric Piano. 1 104. FX 8 (Sci-fi)
6. Electric Piano 2 105. Sitar
7. Harpsichord 106. Banjo
8. Clavi 107. Shamisen
9. Celesta 108. Koto

10, Glockspspiel 55 109. Kalimba
11. Music Box 110. Bagpipe
12. Vibraphone 111. Fiddle
13. Marimba 112. Shanai
14. Xylophone 113. Tinkle Bell
15. Tubular Bells 114. Agogo
16. Dulciner 115. Steel Drums
17. Drawbar Organ 60 124. Bird Tweet
18. Percussive Organ 125. Telephone Ring
9. Rock Organ 126. Helicopter
28. Electric Guitar (clean) 127. Applause
29. Electric Guitar (muted) 128. Gunshot
30. Overdrive Guitar
31. Distortion Guitar 65
3 2. Guitar harmonics

5,515,474
17

FIG. 10 depicts the audio controller card which includes
a digital signal processor (DSP) 33 for the correction of the
speaker response. One possible audio controller is the
M-Audio Capture and Playback Adapter announced and
shipped on Sep. 18, 1990 by the IBM Corporation. Referring
to FIG. 10, the I/O bus is a microchannel or PC I/O bus 500
which allows the Personal computer to pass information via
the I/O bus 500 to the audio controller. A command register
502, a status register 504 and address high byte counter 506
and address low byte counter 507, a high data high byte
bidirectional latch 508, and a data low bidirectional latch
510 are also included on the audio controller card. The
registers are used by the personal computer to issue com
mands and monitor the status of the audio controller card.
The address and data latches are used by the personal
computer to access the shared memory 512, which is an 8K
by 16 bit static RAM on the audio controller card. The
shared memory 512 also provides a means of communica
tion between the personal computer and the digital signal
processor 33.
A memory arbiter, part of the control logic 514, prevents

the personal computer and the DSP 33 from accessing the
shared memory 512 at the same time. The shared memory
512 can be divided so that part of the stored information is
logic used to control the digital signal processor 33. The
digital signal processor has its own control registers 416 and
status registers 518 for issuing commands and monitoring
the status of other parts of the audio controller card.
The audio controller card contains another block of RAM

called the sample memory 520. The sample memory 520 is
a 2K by 16 bit static RAM which the DSP 33 uses to store
outgoing audio signals to be played on the speaker systems
or store incoming signals of digitized audio. The digital
analog converter (DAC)522 and the analog digital converter
(ADC) 524, convert the audio signal between the digital
environment of the computer and the analog sound produced
or received by the speakers. The DAC 522 receives digital
samples from the sample memory 520, converts the samples
to analog signals and sends these signals to the analog output
section 526. The analog output section 526 conditions and
sends the digital signals provided by the personal computer
to the output connectors for transmission via the speaker
system. As the DAC 522 is multiplexed, continuous stereo
operation can be given to both right and left speaker com
ponents.
The ADC 524 is the counterpart of the DAC 522. The

ADC 524 receives analog signals from the analog input
section 528 which receives the signals from a microphone or
another audio input device such as a tape player. The ADC
524 converts the analog signals to digital, samples and stores
them in the sample memory 520. The control logic 514
issues interrupts to the personal computer after the DSP 33
has issued an interrupt request. Arbitration logic, shown here
as two blocks 530 and 532, prevents the DSP from accessing
the Sample Memory 520 at the same time as the DAC 522
or ADC 524. This is a standard practice within the industry.

Providing a stereo audio signal to the speaker system
works in the following way. The personal computer informs
the DSP 33 that the audio card should play a particular
sample of digitized sound data. In the subject invention, the
personal computer gets the digital audio samples from its
memory or disk storage and transfers them to the shared
memory 512 through the I/O bus 500. The DSP33 takes the
samples and converts them to scaled values and places them
in the sample memory 520. The DSP 33 then activates the
DAC 522 which converts the digitized samples into audio
signals, the audio output section 526 conditions the audio
signals and places them on the output connectors.

5

10

15

20

25

30

35

40

45

50

55

60

65

18
The DSP code implements an 8 channel sound generator.

A data area associated with each sound generator is written
to by the Audio Device Driver just prior to sounding a note.
The Audio Device Driver maintains a table of 175 sets of
these data, one per sound or program change.
Upon receipt of a MIDI program change, the Audio

Device Driver simply saves away the new program change
number for use when subsequent Note-Ohs occur on that
MIDI channel. Upon receipt of a Note-On event, the Audio
Device Driver recalls the program change number for the
Note-On's MIDI channel number. It then selects an unused
DSP sound generator. If none are available it forces the
oldest sounding note to the off state. It then copies the
voicing information for the program number into the
selected sound generator, and sets a bit telling the sound
generator to begin making sound.
Any MIDI Control Changes received result in the asso

ciated data, for example, pitch for pitch bend, volume for
volume change, etc., being updated or modified for each
currently sounding note assigned to the MIDI channel
specified in the Control Change. Control Changes can occur
prior to a Note-On event and will still be reflected in the
note. The invention has been described with reference to
particular embodiments above, it would be understood by
those skilled in the art that modifications may be made
without departing from the spirit and scope of the present
invention. These embodiments are purposes of example and
illustration only and are not to be taken to limit the scope of
the invention narrower than the scope of the appended
claims.
We claim:
1. A method for using I/O instructions from an audio

application resident in a memory of a computer system
intended for registers of a first type of audio card to interact
with a second type of audio card, comprising the steps of:

intercepting a first I/O instruction from the audio appli
cation;

determining by table lookup an audio voice which corre
sponds to data in the first I/O instruction; and

transmitting audio data corresponding to the audio voice
to the second type of audio card coupled to the com
puter system and a second I/O instruction to the audio
application expected in response to the first I/O instruc
tion.

2. The method as recited in claim 1 which further com
prises the steps of:

responsive to an absence of a corresponding audio voice,
calculating a weighted average of the data in the first
I/O instruction and selecting an audio voice as a closest
match having a value closest to the weighted average;
and,

transmitting audio data corresponding to the audio voice
which is the closest match to the second type of audio
card coupled to the computer system and an expected
I/O instruction to the audio application.

3. The method as recited in claim 2 which further com
prises the steps of:

determining whether a value of a first audio parameter
corresponding to each audio voice matches a value of
the first audio parameter in the first I/O instruction
where there is a single value for the first audio param
eter for each audio voice; and,

discarding any audio voice as a contender for the closest
match whose first audio parameter value does not
match the first audio parameter value of the first I/O
instruction where there is a single value for the first
audio parameter for each audio voice.

5,515,474
19

4. The method as recited in claim 2 wherein the data in the
first I/O instruction is a plurality of values for a set of
parameters and each audio voice corresponds to a plurality
of values for the set of parameters, and the method further
comprises the steps of:

determining a difference between a first audio parameter
in the first I/O instruction and the value for the first
audio parameter corresponding to the audio voice
which is the closest match; and,

altering the audio data according to the difference.
5. The method as recited in claim2 wherein the data in the

first I/O instruction is a plurality of values for a set of
parameters and each audio voice corresponds to a plurality
of values for the set of parameters and the method further
comprises the step of:

if a weighted average of the values of the set of param
eters for the closest match exceeds a predetermined
difference from the weighted average of

the first I/O instruction, selecting the audio voice whose
value for a first audio parameter matches the value of
the first parameter in the first I/O instruction.

6. The method as recited in claim 1 which further com
prises the steps of:

determining which register of the first type of audio card
the I/O instruction was intended; and

sending the I/O instruction to a transformation module
which corresponds to the register.

7. The method as recited in claim 1 which further com
prises the steps of:

finding a requested sample rate in the first I/O instruction;
and

in the absence of the requested sample rate in the second
type of audio card, sending the closest available rate in
the audio data.

8. The method as recited in claim 1 which further con
prises the steps of:

maintaining the audio application in a virtual machine in
an operating system; and,

wherein intercepting the I/O instruction from the audio
application is accomplished with a virtual device
driver.

9. The method as recited in claim 1 wherein the data in the
first I/O instruction comprise a plurality of FM synthesis
parameters.

10. The method as recited in claim 1 wherein I/O instruc
tions from a second audio application resident in the
memory of the computer system intended for a third type of
audio card are used to interact with the second type of audio
card concurrently with I/O instructions from the first audio
application.

11. A system for using I/O instructions from an audio
application to a second format intended for registers of a first
type of audio card to interact with a second type of audio
card, comprising:

a memory for storing sets of instructions for performing
computer functions, the sets of instructions including
the audio application and a translating program;

a processor coupled to the memory for carrying out the
sets of instructions;

an audio card coupled to the processor for performing
audio functions according to an I/O instruction from the
audio application,

the translating program comprising:
means for intercepting a first I/O instruction written in the

first format including a first plurality of audio param
eters from the audio application;

10

5

20

25

30

35

40

45

50

55

60

65

20
means for determining an audio voice which corresponds

to data in the first I/O instruction;
means for transmitting audio data corresponding to the

audio voice to the second type of audio card coupled to
the computer system and a second I/O instruction to the
audio application expected in response to the first I/O
instruction the means being activated when the trans
lating program is resident in memory and activated by
the processor.

12. The system as recited in claim 11 further comprising:
means responsive to an absence of a corresponding audio

voice for calculating a weighted average of the data in
the first I/O instruction and selecting an audio voice as
a closest match having a value closest to the weighted
average; and,

means for transmitting audio data corresponding to the
audio voice which is the closest match to the second
type of audio card coupled to the computer system and
an expected I/O instruction to the audio application.

13. The system as recited in claim 12 further comprising:
means for determining whether a value of a first audio

parameter in each selected set corresponding to each
audio voice matches a value of the first audio parameter
in the first I/O instruction where there is a single value
for the first audio parameter for each audio voice; and,

means for discarding any audio voice as a contender for
the closest match whose first audio parameter value
does not match the first audio parameter value of the
first plurality of audio parameters I/O instruction.

14. The system as recited in claim 12 wherein the data in
the first I/O instruction is a plurality of values for a set of
parameters and each audio voice corresponds to a plurality
of values for the set of parameters, and the method wherein
the translating program further comprises:

means for determining a difference between a first audio
parameter in the first plurality I/O instruction and the
value for the first audio parameter in the closest set
corresponding to the audio voice which is the closest
match; and,

means for altering the audio data according to the differ
eCe,

15. The system as recited in claim 12 wherein the data in
the first I/O instruction is a plurality of values for a set of
parameters and each audio voice corresponds to a plurality
of values for the set of parameters and the method wherein
the translating program further comprises:

means responsive to a weighted average of the values of
the set of parameters exceeding a predetermined dif
ference from the weighted average of the first I/O
instruction for the closest match for selecting the audio
voice whose value for a first audio parameter matches
the value of the first parameter in the first plurality.

16. The system as recited in claim 11 which further
comprises:

a virtual machine in an operating system in which to
maintain the audio application; and,

the translating program is a virtual device drive.
17. The system as recited in claim 11 wherein the audio

parameters are data in the first I/O instruction comprise a
plurality of FM synthesis parameters and the audio voices
are a set of generalized MIDI voices.

18. A system for using I/O instructions from an audio
application intended for registers of a first type of audio card
to interact with a second type of audio card, for use in a data
processing system having a memory and a processor com
prising:

5,515,474
21

an audio card of the second type for performing audio
functions according to an I/O instruction from the audio
application;

a translating program on a storage device comprising:
means for intercepting a first I/O instruction from the

audio application;
means for determining an audio voice which corresponds

to data in the first I/O instruction; and,
means for transmitting audio data corresponding to the 10

audio voice to the second type of audio card coupled to
the computer system and a second I/O instruction to the
audio application expected in response to the first I/O
instruction, the means being activated when the storage
device is connected to and accessed by the data pro
cessing System.

19. A storage device for using I/O instructions from an
audio application intended for registers of a first type of
audio card to interact with a second type of audio card, for
use in a data processing system having a memory and a
processor comprising:

means for intercepting a first I/O instruction from the
audio application;

means for determining by table lookup an audio voice
which corresponds to data in the first I/O instruction;
and,

means for transmitting audio data corresponding to the
audio voice to the second type of audio card, coupled
to the computer system and a second I/O instruction to
the audio application expected in response to the first
I/O instruction, the means being activated when the
Storage device is connected to and accessed by the data
processing system.

20. The device as recited in claim 19 which further
comprises:
means responsive to an absence of a corresponding audio

voice of calculating a first output value of a function
using the data in the first I/O instruction as inputs and
selecting an audio voice as a closest match having a
value closest to the first output value; and,

means for transmitting audio data corresponding to the
audio voice which is the closest match to the second
type of audio card coupled to the computer system and
an expected I/O instruction to the audio application.

15

20

25

30

40

22
21. The device as recited in claim 20 which further

comprises:
means for determining whether a value of a first audio

parameter corresponding to each audio voice matches a
value of the first audio parameter in the first I/O
instruction where there is a single value for the first
audio parameter for each audio voice; and,

means for discarding any audio voice as a contender for
the closest match whose first audio parameter value
does not match the first audio parameter value of the
first I/O instruction.

22. The device as recited in claim 20 wherein the data in
the first I/O instruction is a plurality of values for a set of
parameters and each audio voice corresponds to a plurality
of values for the set of parameters, and the method further
comprises:
means for determining a difference between the value for

a first audio parameter in the first I/O instruction and
the value for the first audio parameter corresponding to
the audio voice which is the closest match; and,

means for altering the audio data according to the differ
CCC.

23. The device as recited in claim 20 wherein the data in
the first I/O instruction is a plurality of values for a set of
parameters and each audio voice corresponds to a plurality
of values for the set of parameters and the method further
comprises:
means responsive to the determination that a weighted

average of the values of the set of parameters exceeds
a predetermined difference from the first I/O instruction
for the closest match for selecting the audio voice
whose value for a first audio parameter matches the
value of the first parameter in the first I/O instruction.

24. The device as recited in claim 19 wherein the data in
the first I/O instruction comprise a plurality of FM synthesis
parameters and the audio voices are a set of generalized
MDI voices.

UNITED STATES PATENT ANDTRADEMARK OFFICE

CERTIFICATE OF CORRECTION
5 55 . A 74 wer m a

PATENT NO.

DATED
INVENTOR(S) : John Deacon, Roi. i.isle and 3ridget 3ittalier

May 1996

it is certified that error appears in the above-indentified patent and that said Letters Patent is hereby
corrected as shown below:

A. i d Se l S S D S P i. S S. 8 rt -- (DSP) -- :

iine 46, deiete "FIG. " insert -- FIGs--.
iiie 51 delete ", insert - - - - - :
line 57 delete ' ' first cocurrence, insert - - - - - :

Co. 5 line 5S deiete registers. " insert --register. --;
Colis. 9 and C inse 2 of the equaticn in the hiddle of the

age delete "CAY MODUF.ATOR! 2" insert
--CAY \OULATOR)/2 --

Cic. 2. Sie & dise sets x insert --1X--
- - a - a - - - - - 4 in the egulation dielete '/A" insert / 5

Col. 18 line & deists 'Note-Ohs insert --Ncte-Ons -- :
Cc. 23, line 58 delete "drive. " insert " -diiriier. - ; and
Co. 2 ire 37 delete 'voice of insert --voice for--.

Signed and Sealed this
Twentieth Day of August, 1996

Attest: 6. team
BRUCELEHMAN

Attesting Officer Commissioner of Patents and Trademarks

