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SYSTEM HAVING A BUS INTERFACE UNIT 
FOR OVERRIDING ANORMAL 

ARBTRATION SCHEME AFTER A SYSTEM 
RESOURCE DEVICE HAS ALREADY 

GAINED CONTROL OF ABUS 

This application is a continuation of application Ser. No. 
07/815,992, filed Jan. 2, 1992, now abandoned. 

RELATED APPLICATIONS 

The following United States patent applications are incor 
porated herein by reference as if they had been fully set out: 

Application Ser. No. 07/816,116 Filed Jan. 2, 1992 
Entitled “ARBITRATION MECHANISM', now U.S. 
Pat. No. 5,265,211. 

Application Ser. No. 07/816,184 Filed Jan. 2, 1992 
Entitled “PARITY ERROR DETECTION AND 
RECOVERY', now U.S. Pat. No. 5,313,627. 

Application Ser. No. 07/816,204 Filed Jan. 2, 1992 
Entitled “CACHESNOOPING AND DATA INVALI 
DATION TECHNIQUE", now abandoned in favor of 
continuation application Ser. No. 08/327,136. 

Application Ser. No. 07/816,203 Filed Jan. 2, 1992 
Entitled “BUS INTERFACE LOGIC FOR COM 
PUTER SYSTEM HAVING DUAL BUS ARCHITEC 
TURE", now U.S. Pat. No. 5,255,374. 

Application Ser. No. 07,816,691 Filed Jan. 2, 1992 
Entitled “BIDIRECTIONAL DATA STORAGE 
FACILITY FOR BUSINTERFACE UNIT, now aban 
doned in favor of continuation application Ser. No. 
08/282,159. 

Application Ser. No. 07/816,693 Filed Jan. 2, 1992 
Entitled “BUS INTERFACE FOR CONTROLLING 
SPEED OF BUS OPERATION', now abandoned in 
favor of continuation application Ser. No. 08/293,411. 

Application Serial No. 07/816,698 Filed Jan. 2, 1992 
Entitled, now abandoned in favor of continuation appli 
cation Ser. No. 08/298,538. 

BACKGROUND OF THE INVENTION 

The present invention relates to bus to bus interfaces in 
dual bus architecture computer systems, and more particu 
larly to a bus to bus interface device and method for 
arbitrating between a central processing unit and an input/ 
output device each of which is vying for access to System 
memory. 

Generally in computer systems and especially in personal 
computer systems, data is transferred between various sys 
tem devices such as a central processing unit (CPU), 
memory devices, and direct memory access (DMA) control 
lers. In addition, data is transferred between expansion 
elements or "system resources devices” such as input/output 
(I/O) devices, and between these I/O devices and the various 
system devices. The I/O devices and the system devices 
communicate with and amongst each other over computer 
buses, which comprise a series of conductors along which 
information is transmitted from any of several sources to any 
of several destinations. Many of the system devices and the 
I/O devices are capable of serving as bus controllers (i.e., 
devices which can control the computer system) and bus 
slaves (i.e., elements which are controlled by bus control 
hers). 
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2 
Personal computer systems having more than one bus are 

known. Typically, a local bus is provided over which the 
CPU communicates with cache memory or a memory con 
troller, and a system I/O bus is provided over which system 
bus devices such as the DMA controller, or the I/O devices, 
communicate with the system memory via the memory 
controller. The system I/O bus comprises a system bus and 
an I/O bus connected by a bus interface unit. The I/O devices 
communicate with one another over the I/O bus. The I/O 
devices are also typically required to communicate with 
system bus devices such as system memory. Such commu 
nications must travel over both the I/O bus and the system 
bus through the bus interface unit. 
The local bus devices such as the CPU and the system I/O 

bus devices in dual bus architecture computer Systems 
compete for access to system memory via the memory 
controller. The system bus devices and the I/O devices 
access the memory controller via the system bus. The CPU 
accesses the memory controller through the local bus. Prior 
to accessing system memory via the memory bus, then, these 
competing devices must first gain control of the memory 
controller. Often, in high speed data transfers, a system I/O 
bus device and a local bus device may simultaneously desire 
control of the memory bus controller. High speed I/O 
devices and microprocessors place high demand on system 
memory, creating contention between each other and 
thereby reducing system performance. Thus, the computer 
system must provide a scheme of arbitration to determine 
whether the local bus device or the system I/O bus device 
should have access to system memory. 
A typical arbitration scheme includes an arbiter which 

grants control of the system bus on a first come, first served 
basis. Thus, if both a I/O bus device and a local bus device 
desire access to system memory, the first device to transmit 
the control request is granted control of the memory con 
troller. After the particular device which is acting as memory 
bus controller is finished either reading or writing a data 
sequence to system memory over the memory bus, the 
waiting device is then granted control of the memory 
controller. This process continues indefinitely as long as a 
local bus devices, such as the CPU, and a system I/O device 
have pending requests for control of the memory controller. 

Various I/O device bus controllers manage reads and 
writes to system memory at different speeds. Some high 
speed I/O devices are capable of transmitting data over the 
I/O bus to the bus interface unit as fast as the bus interface 
unit can retransmit that data over the system bus. Often these 
high speed devices transmit the data in a series of data 
sequences, or packets, which have contiguous addresses in 
system memory. Under the typical arbitration scheme 
described above, if a local bus device has a pending request 
for control of the system bus during one of these multiple 
packet transmissions, the arbiter will grant control of the 
memory bus to the local device as soon as the first packet has 
been transmitted by the I/O device. After the local bus 
device has finished its operation, control of the memory bus 
is once again granted to the I/O device. 

This type of system operation is inefficient because, 
typically, a local bus device such as a CPU and an I/O device 
work in different areas of system memory. Thus, in granting 
control of the memory bus back and forth between the CPU 
and the I/O device, typically, with each successive operation, 
the memory addresses are to different pages of memory, 
requiring a longer memory access time. If, as explained 
above, the I/O device is reading or writing to system 
memory a large block of data having contiguous addresses 
in that memory, it is beneficial to allow the I/O device to 
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complete its multiple packet transfer of data before releasing 
control of the memory bus to the CPU. 

In this manner, the memory controller is able to read or 
write multiple packet transfers to system memory at con 
tiguous locations (i.e., on the same "page' of information) 
before access to memory is granted to the CPU. The time 
required for the second and subsequent data transfers 
between system memory and the I/O device is minimized 
because memory accesses are optimized when addressed to 
the same page of system memory. Upon completion of the 
last data transfer between system memory and the I/O 
device, the CPU may then be granted control of the memory 
bus in order to complete its read or write operation. Overall, 
Such system operation results in a data transfer time saving. 

It is an object of the present invention, then, to provide a 
bus interface unit in a dual bus architecture computer system 
which provides the arbitration logic required to optimize 
control of the memory bus between an I/O device residing 
on the I/O bus and a local device residing on the local bus. 

SUMMARY OF THE INVENTION 

Briefly according to the invention, an information han 
dling system capable of transferring data among various 
system resource devices such as I/O devices and a memory 
is provided which includes a firstbus, a second bus and abus 
interface unit coupled between the first bus and the second 
bus. The first bus is coupled to the system memory for 
transferring data with the system resource devices. At least 
one of the system resource devices is coupled to and is 
capable of controlling the second bus after arbitrating there 
for. The bus interface unit includes a buffer for temporary 
storage of the data being transferred between the first bus 
and the second bus and it also includes control logic for 
dynamically generating a control signal to gain control of 
the first bus to prevent other of the system resource devices 
coupled to the first bus from accessing the first bus. The 
control logic is dynamically responsive to signals indicative 
of data transfer conditions between the first bus and the 
Second bus to generate the control signal. 
The conditions under which I/O device is granted priority 

access to system memory are as follows: (1) a read request 
by an I/O device controlling the I/O bus is not aligned with 
a predefined 16-byte address boundary in system memory, 
(2) an I/O device controlling the I/O bus immediately 
follows a write cycle with a read cycle, (3) an I/O device 
controlling the I/O bus completes a data transfer cycle, (4) 
an I/O device controlling the I/O bus is reading or writing 
data in streaming mode, or (5) more than half of the buffer 
space in the bus interface unit is already filled with data to 
be written to system memory or less than half of the buffer 
space is yet to be filled with prefetched data to be read from 
system memory. Streaming refers to data transfers of a 
stream of data having contiguous addresses wherein only the 
first address needs to be decoded and the subsequent 
addresses are considered to be contiguous. 

In the preferred embodiment of the present invention, the 
bus to bus control logic operates under three pacing modes 
by which the data transfer speeds of I/O devices are opti 
mally matched to the data transfer capability of the system 
memory. The first of these pacing modes is the default 
pacing mode, which determines the pacing for the first three 
conditions listed above. The second of these pacing modes 
(option 1) determines the pacing for the fourth listed con 
dition, and the third of these pacing modes (option 2) 
determines the pacing for the fifth listed condition. A user of 
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4 
the system may choose either pacing mode (option 1 or 
option 2) in addition to the default pacing mode which the 
system automatically provides. The choice is made by 
programming the contents of a programmable register in the 
bus interface unit. 

Under the first of the default conditions, an I/O device 
requests a read of system memory which is not aligned with 
a particular 16-byte packet boundary. To compensate for this 
misalignment, access by the I/O device to system memory is 
locked until enough data is automatically prefetched to 
arrive at a 16-byte boundary. This read data of less than 
16-bytes is then synchronized to the timing of the I/O bus, 
and the I/O device controller begins to read the data. The bus 
interface unit then prefetches the next contiguous 16-byte 
packet. Because this 16-byte packet begins at a predefined 
boundary, a 16-byte burst transfer is possible. 
Under the second condition, residual buffered write data 

may existin the bus interface unit buffer space when the I/O 
device changes from a write transfer to a read request. Once 
the I/O device bus controller changes from a write to a read, 
bus control logic determines that an end of cycle has 
occurred, that there is no more write data to be stored in the 
buffer space, and that read data is now being requested from 
system memory. Because it is known that no more contigu 
ous write data is immediately forthcoming, the buffered data 
is written to system memory and the read data is prefetched 
from system memory in one atomic operation. 

Under the third condition, residual buffered data may also 
exist in the bus interface unit buffer space when the I/O 
controller device relinquishes control of the I/O bus after a 
data transfer cycle. In this instance, such residual data is 
automatically written to system memory. If more than half 
of the buffer space includes such residual data, as soon as the 
I/O device controller relinquishes control of the I/O bus, the 
bus control logic will generate a signal to the memory 
controller to indicate that data in the buffer exceeding one 
transfer in length (i.e., greater than 16 bytes) needs to be 
written to system memory. Accordingly, the buffered data 
will be provided access to system memory via the system 
bus. 

The bus control logic for implementing option 1 (relating 
to the fourth condition described above) comprises a clocked 
set-reset (S-R) latch which provides a control signal Lock to 
the memory controller. The LOCK signal provides an I/O 
device in control of the I/O bus continued access to system 
memory when the I/O device is reading or writing data to 
system memory in streaming mode. Upon detection of a 
streaming data write operation, when one of the bus inter 
face unit buffers is full of buffered write data, a locked burst 
write sequence is initiated to system memory over the 
system bus and will remain active until the I/O device 
terminates the streaming sequence or until there is no data 
remaining in the buffer space. Similarly, upon detection of a 
streaming data read operation, a locked burst read sequence 
is initiated to system memory and will remain active as long 
as there is room in the buffer space or until the I/O device 
terminates the streaming sequence. 
The bus control logic for implementing option 2 (relating 

to the fifth condition described above) comprises separate 
logic circuits each associated with a latch for outputting the 
LOCK signal to the memory controller. The LOCK signal 
provides an I/O device in control of the I/O bus continued 
access to system memory when more than half of the bus 
interface unit buffer space is already filled with data to be 
written to system memory or less than half of the buffer 
space is yet to be filled with prefetched data to be read from 
system memory. 
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BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is a schematic block diagram of a computer system 
incorporating a bus interface unit constructed according to 
the principles of the present invention; 

FIG. 2 is a schematic block diagram of the bus interface 
unit of the computer system of FIG. 1; 

FIG. 3 is a schematic block diagram of the FIFO buffer of 
the bus interface unit of FIG. 2; 

FIG. 4 is circuit diagram of the control logic used to 
implement one of the embodiments of the bus to bus pacing 
logic of FIG. 3; and 

FIG. 5 is a circuit diagram of the control logic used to 
implement another embodiment of the bus to bus pacing 
logic of FIG. 3. 

DETALED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

Referring first to FIG. 1, a computer system shown 
generally at 10 comprises system board 12 and processor 
complex 14. Processor complex includes processor portion 
16 and base portion 18 connected via local bus connector 22. 
Processorportion 16 operates at 50 MHz and base portion 18 
operates at 40 MHz. 

System board 12 includes interleaved system memories 
24 and 26 and input/output (I/O) devices 28. Communica 
tions between memories 24 and 26 and processor complex 
14 are handled by memory bus 30, and communications 
between I/O devices 28 and processor complex 14 are 
carried by I/O bus 32. Communications between I/O devices 
and memories 24 and 26 are handled by I/O bus 32, system 
bus 76 and memory bus 30. I/O bus 32 may conform to 
MICRO CHANNEL(R) (trademark of International Business 
Machines (IBM), Armonk, N.Y.) computer architecture. 
Memory bus 30 and I/O bus 32 are connected to processor 
complex base portion 18 via processor complex connector 
34. I/O devices such as memory expansion devices may be 
connected to the computer system 10 via I/O bus 32. System 
board 12 may also include conventional video circuitry, 
timing circuitry, keyboard control circuitry and interrupt 
circuitry (none of which are shown) which may be used by 
computer system 10 during normal operation. 

Processor portion 16 of processor complex 14 includes 
central processing unit (CPU) 38 which, in the preferred 
embodiment, is a 32-bit microprocessor available from Intel 
Corp., Santa Clara, Calif., under the trade designation i486. 
Processor portion 16 also includes static random access 
memory (SRAM) 40, cache control module 42, frequency 
control module 44, address buffer 46 and data buffer 48. 
Local bus 20 comprises data information path 50, address 
information path 52 and control information path 54. Data 
information path 50 is provided between CPU 38, SRAM 40 
and data buffer 48. Address information path 52 is provided 
between CPU 38, cache control module 42 and address 
buffer 46. Control information path 54 is provided between 
CPU 38, cache control module 42 and frequency control 
module 44. Additionally, address and control information 
path are provided between cache control module 42 and 
SRAM 40. 

SRAM 40 provides a cache function by storing in short 
term memory information from either system memories 24 
or 26 or from expansion memory which is located on an I/O 
device 28. Cache control module 42 incorporates random 
access memory (RAM) 56 which stores address locations of 
memories 24 and 26. CPU 38 may access information 
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6 
cached in SRAM 40 directly over the local bus 20. Fre 
quency control module 44 synchronizes operation of the 50 
Mhz processor portion 16 with the 40 Mhz. base portion 18 
and also controls the operation of buffers 46 and 48. Accord 
ingly, frequency control module 44 determines the times at 
which information is captured by buffers 46 and 48 or the 
times at which information that is stored in these buffers is 
overwritten. Buffers 46 and 48 are configured to allow two 
writes from memories 24 and 26 to be stored simultaneously 
therein. Buffers 46 and 48 are bi-directional, i.e., they are 
capable of latching information which is provided by the 
CPU 38 and information which is provided to the CPU. 
Because buffers 46 and 48 are bi-directional, processor 
portion 16 of the processor complex 14 may be replaced or 
upgraded while maintaining a standard base portion 18. 

Base portion 18 includes memory controller 58, direct 
memory access (DMA) controller 60, central arbitration 
control point (CACP) circuit 62, bus interface unit 64 and 
buffer/error correction code (ECC) circuit 66. Base portion 
18 also includes driver circuit 68, read only memory (ROM) 
70, self test circuit 72 and buffer 74. System bus 76 
comprises a data information path 78, an address informa 
tion path 80 and a control information path 82. The data 
information path connects buffer 74 with bus interface unit 
64; bus interface unit 64 with DMA controller 60 and 
buffer/ECC circuit 66; and buffer/ECC circuit 66 with sys 
tem memories 24 and 26. The address information path and 
the control information path each connect memory control 
ler 58 with DMA controller 60 and bus interface unit 64; and 
bus interface unit 64 with buffer 74. 
Memory controller 58 is coupled to both CPU local bus 20 

and system bus 76, and provides the CPU 38, the DMA 
controller 60 or bus interface unit 64 (on behalf of an I/O 
device 28) with access to system memories 24 and 26 via 
memory bus 30. The memory controller 58 initiates system 
memory cycles to system memories 24 and 26 over the 
memory bus 30. During a system memory cycle, either the 
CPU 38, the DMA controller 60 or bus interface unit 64 (on 
behalf of an I/O device 28) has access to system memories 
24 and 26 via memory controller 58. The CPU 38 commu 
nicates to system memory via local bus 20, memory con 
troller 58 and memory bus 30, while the DMA controller 60 
or bus interface unit 64 (on behalf of an I/O device 28) 
access system memory via system bus 76, memory control 
ler 58 and memory bus 30. 

For read or write cycles between CPU 38 and I/O bus 32, 
address information is checked against system memory 
address boundaries. If the address information corresponds 
to an I/O expansion memory address or I/O port address, 
then memory controller 58 initiates an I/O memory cycle or 
I/O port cycle with an I/O device 28 (via bus interface unit 
64) over the I/O bus 32. During an I/O memory cycle or I/O 
port cycle between CPU 38 and I/O bus 32 the address 
which is provided to memory controller 58 is transmitted 
from system bus 76 to I/O bus 32 via bus interface unit 64 
which resides intermediate these two buses. The I/O device 
28 which includes the expansion memory to which the 
address corresponds receives the memory address from I/O 
bus 32. DMA controller 60 and the bus interface unit 64 
control the interchange of information between system 
memories 24 and 26 and the expansion memory which is 
incorporated into an I/O device 28. DMA controller 60 also 
provides three functions on behalf of processor complex 14. 
First, the DMA controller 60 utilizes a small computer 
subsystem control block (SCB) architecture to configure 
DMA channels, thus avoiding the necessity of using pro 
grammed I/O to configure the DMA channels. Second, DMA 
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controller provides a buffering function to optimize transfers 
between slow memory expansion devices and the typically 
faster system memory. Third, DMA controller 60 provides 
an eight channel, 32-bit, direct system memory access 
function. When providing the direct system memory access 
function, DMA controller 60 may function in either of two 
modes. In a first mode, DMA controller 60 functions in a 
programmed I/O mode in which the DMA controller is 
functionally a slave to the CPU 38. In a second mode, DMA 
controller 60 itself functions as a system bus master, in 
which DMA controller 60 arbitrates for and controls I/O bus 
32. During this second mode, DMA controller 60 uses a first 
in, first out (FIFO) register circuit. 
CACP circuit 62 functions as the arbiter for the DMA 

controller, I/O device bus controllers and the CPU (if 
accessing I/O devices). CACP circuit 62 receives arbitration 
control signals from DMA controller 60, memory controller 
58 as well as from I/O devices, and determines which 
devices may control the I/O bus 32 and the length of time 
during which the particular device will retain control of the 
I/O bus. 

Driver circuit 68 provides control information and address 
information from memory controller 58 to system memories 
24 and 26. Driver circuit 68 drives this information based 
upon the number of single in-line memory modules 
(SIMMs) which are used to construct system memories 24 
and 26. Thus, driver circuit 68 varies the signal intensity of 
the control and address information which is provided to 
system memories 24 and 26 based upon the size of these 
memories. 

Buffer circuit 74 provides amplification and isolation 
between processor complex base portion 18 and system 
board 12. Buffer circuit 74 utilizes buffers which permit the 
capture of boundary information between I/O bus 32 and bus 
interface unit 64 in real time. Accordingly, if computer 
system 10 experiences a failure condition, buffer circuit 74 
may be accessed by a computer repair person to determine 
the information which was present at connector 34 upon 
failure of the system. 
ROM 70 configures the system 10 upon power-up by 

initially placing in system memory data from expansion 
memory. Self test circuit 72, which is connected to a 
plurality of locations within base portion 18, provides a 
plurality of self test features. Self test circuit 72 tests the 
major components of base portion 18 upon power-up of the 
system 10 to determine whether the system is ready for 
operation. 

Referring to FIG. 2, a schematic block diagram of the bus 
interface unit 64 of the system of FIG. 1 is shown. Bus 
interface unit 64 provides the basis for implementation of 
the present invention by providing a bi-directional high 
speed interface between system bus 76 and I/O bus 32. 

Bus interface unit 64 includes system bus driver/receiver 
circuit 102, I/O bus driver/receiver circuit 104 and control 
logic circuits electrically connected therebetween. Driver/ 
receiver circuit 102 includes steering logic which directs 
signals received from the system bus 76 to the appropriate 
bus interface unit control logic circuits and receives signals 
from the bus interface unit control logic circuits and directs 
the signals to the system bus 76. I/O bus driver/receiver 
circuit 104 includes steering logic which directs signals 
received from the I/O bus 32 to the appropriate bus interface 
unit control logic circuits and receives signals from the bus 
interface unit control logic circuits and directs the signals to 
the I/O bus 32. 
The bus interface unit control logic circuits include sys 

tem bus to I/O bus translation logic 106, I/O bus to system 
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8 
bus translation logic 108, memory address compare logic 
110, error recovery support logic 112, and cache Snooping 
logic 114. Programmed I/O circuit 116 is also electrically 
coupled to system driver/receiver circuit 102. 
The system bus to I/O bus translation logic 106 provides 

the means required for the DMA controller 60 or the 
memory controller 58 (on behalf of CPU 38) to act as a 
system bus controller to access the I/O bus 32 and thereby 
communicate with I/O devices 28 acting as slave devices on 
the I/O bus. Translation logic 106 translates the control, 
address and data lines of the system bus 76 into similar lines 
on the I/O bus 32. Most control signals and all address 
signals flow from the system bus 76 to the I/O bus 32 while 
data information flow is bi-directional. The translation logic 
106 which acts as system bus slave monitors the system bus 
76 and detects cycles which are intended for the I/O bus 32. 
Upon detection of such a cycle, the system bus slave 
translates the timing of signals on the system bus to I/O bus 
timing, initiates the cycle on the I/O bus 32, waits for the 
cycle to be completed, and terminates the cycle on the 
system bus 76. 
The I/O bus to system bus translation logic 108 comprises 

system bus address generation circuit 118, I/O bus expected 
address generation circuit 120, system bus controller inter 
face 122, FIFO buffer 124, I/O bus slave interface 126 and 
bus to bus pacing control logic 128. System bus controller 
interface 122 supports a high performance 32 bit (4 byte) 
i486 burst protocol operating at 40 MHZ. Data transfers of 
four, eight and sixteen bytes in burst mode and one to four 
bytes in no-burst mode are provided. I/O bus slave interface 
126 monitors the I/O bus 32 for operations destined for slave 
devices on the system bus 76 and ignores those operations 
destined for the I/O bus 32. All cycles picked up by the I/O 
bus slave interface 126 are passed on to the FIFO buffer 124 
and the system bus controller interface 122. 
The I/O bus to system bus translation logic 108 provides 

the means required for an I/O device 28 to act as an I/O bus 
controller to access system bus 76 and thereby read or write 
to system memories 24 and 26. In either of these operations, 
an I/O device controls the I/O bus. The asynchronous I/O 
bus interface 126, operating at the speed of the I/O device, 
permits the bus interface unit 64 to act as a slave to the I/O 
device controller on the I/O bus 32 to decode the memory 
address and determine that the read or write cycle is destined 
for system memories 24 or 26. Simultaneously, the system 
bus controller interface 122 permits the bus interface unit 64 
to act as a controller on the system bus 76. The memory 
controller 58 (FIG. 1) acts as a slave to the bus interface unit 
64, and either provides the bus interface unit 64 with data 
read from system memory or writes data to system memory. 
The reads and writes to system memory are accomplished 
through the FIFO buffer 124, a block diagram of which is 
illustrated in FIG. 3. 
As shown in FIG. 3, FIFO buffer 124 is a dual ported, 

asynchronous, bi-directional storage unit which provides 
temporary storage of data information between the system 
and I/O buses 76, 32. FIFO buffer 124 comprises four 
sixteen-byte buffers 125A-125D and FIFO control circuit 
123. The four buffers 125A-125D buffer data to and from 
I/O bus controllers and system bus slaves, thereby allowing 
simultaneous operation of the I/O bus 32 and the system bus 
76. The FIFO buffer 124 is physically organized as two 
thirty-two byte buffers (125A/125B and 125C/125D). The 
system bus controller interface 122 and the I/O bus slave 
interface 126 each control one thirty-two byte buffer while 
the other thirty-two byte buffer operates transparently. Both 
of the thirty-two byte buffers are utilized for read and write 
operations. 
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Each FIFO 124A, 125B, 125C, 125D has an address 
register section either physically associated with the respec 
tive FIFO, or logically associated therewith. As data is 
transferred from the I/O bus 32 to FIFO 125A, the data will 
be accumulated until the 16 byte buffer is filled with 16 bytes 
of data, provided that the addresses are contiguous. If a 
non-contiguous address is detected, the FIFO 125A will 
transfer the stored data to FIFO 125C, and at the same time 
FIFO 125B will start to receive data from the new non 
contiguous address. FIFO 125B will continue just as FIFO 
125A did until it is filled with 16 bytes of data, or another 
non-contiguous address is detected. FIFO 125B will then 
transfer the stored data to FIFO 125D, and FIFO 125A again 
starts to store data; thus, it is possible to store up to four 16 
byte blocks of noncontiguous address data. 

Further, by having two 32 byte buffers in parallel the 
reading and writing of data can be toggled between them 
thus giving an essentially continuous read or write function. 

Moreover, by splitting the 32 byte buffers into two 16 
bytes buffer sections which are coupled to either I/O bus 32 
or system bus 26, the number of storage buffers can be 
increased with minimal impact on the performance of the 
FIFO as related to the capacitive loading on signals clocking 
data in or out of the storage registers. This is accomplished 
because for every two buffers added (in parallel) only half 
the capacitive loading is added to the loading of clock 
signals on each bus. 

Additionally, by having two 16 byte buffers in series, once 
one of the 16 byte buffers is filled with data, such as in a read 
operation, the data can be transferred to the other 16 byte 
buffers in series therewith, while the other two parallel 
buffers accumulate data. Hence, there is no time lost in either 
accumulating data, or transferring the data from one bus to 
the other. 

The logic for controlling the operation of the FIFO 124 is 
supplied by FIFO Control Circuit 123. 
A particular I/O device 28 may write to system memories 

24 or 26 via I/O bus in bandwidths of either 1, 2 or 4 bytes 
(i.e., 8, 16 or 32 bits). During writes to system memory by 
an I/O device 28, the first transfer of write data is initially 
Stored in the FIFO buffer 125A or 125B. The I/O bus 
expected address generation circuit 120 calculates the next 
expected, or contiguous, address. The next contiguous 
address is checked against the subsequent I/O address to 
verify if the subsequent transfers are contiguous or not. If 
contiguous, the second byte or bytes of write data is sent to 
the same FIFO buffer 125A or 25B. The FIFO receives data 
at asynchronous speeds of up to 40 megabytes per second 
from the I/O bus 32. 

This process continues until either buffer 125A or 125B is 
full with a 16-byte packet of information or a non-contigu 
ous address is detected. On the next clock cycle, assuming 
that buffer 125A is full, the data in buffer 125A is transferred 
to buffer 125C. Similarly, when buffer 125B is full, all of its 
contents are transferred to buffer 12.5D in a single clock 
cycle. The data stored in the buffers 125C and 125D is then 
written to system memory via an i486 burst transfer at the 
system bus operational speed. The operation of FIFO buffer 
124 during a write to system memory by an I/O device is 
thus continuous, alternating between buffers 125A and 
125B, with each emptying into adjacent buffer 125C or 
125D, respectively, while the other is receiving data to be 
written to system memory. The FIFO buffer 124, then, 
optimizes the speed of data writes to system memory by (i) 
anticipating the address of the next likely byte of data to be 
written into memory and (ii) accommodating the maximum 
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10 
speed of write data from the FIFO buffer to system memory 
via the system bus 76. 

During reads of data from system memory to an I/O 
device 28, FIFO buffer 124 operates differently. The system 
bus address generation circuit 118 uses the initial read 
address to generate subsequent read addresses of read data 
and accumulate data in buffer 125C or 125D. Because the 
system bus supports transfers in bandwidths of 16 bytes 
wide, the system bus controller interface 122 may prefetch 
16-byte packets of contiguous data and store it in buffers 
125C or 125D without the I/O bus 32 actually providing 
subsequent addresses, thus reducing latency between trans 
fers. When buffer 125C is full of prefetched data, it transfers 
its contents to buffer 125A in one clock cycle. Buffer 125D 
similarly empties into buffer 125B when full. The data in 
buffers 125A and 125B may then be read by a particular I/O 
device controller in bandwidths of 1, 2 or 4 bytes. In this 
way, system bus address generation circuit 118 functions as 
an increment counter until instructed by the I/O controller 
device to stop prefetching data. 
Bus to bus pacing control logic 128 creates a faster access 

to system memory for high speed I/O devices. The bus to bus 
pacing control logic 128 overrides the normal memory 
controller arbitration scheme of system 10 by allowing an 
I/O device in control of the I/O bus 32 uninterrupted access 
to system memory during transfers of data by faster devices 
which require multiple cycles, rather than alternating access 
to the memory controller 58 between the I/O device and the 
CPU. Thus, even if a local device such as the CPU has a 
pending request for control of the memory bus during a 
multiple cycle transmission by an I/O device, the bus to bus 
pacing control logic 128 will grant the-I/O device continued 
control of the memory bus. 
The programmed I/O circuit 116 is the portion of the bus 

interface unit 64 which contains all of the registers which are 
programmable within the bus interface unit 64. The registers 
have bits associated therewith to determine whether a par 
ticular register is active or inactive. These registers define, 
inter alia, the system memory and expansion memory 
address ranges to which the bus interface unit 64 will 
respond, the expansion memory addresses which are either 
cacheable or noncacheable, the system memory or cache 
address ranges, and whether or not parity or error checking 
is supported by the bus interface unit. Accordingly, pro 
grammed I/O circuit 116 identifies for the bus interface unit 
64 the environment in which it resides, and the options to 
which it is configured. The registers in programmed I/O 
circuit 116 cannot be programmed directly over the I/O bus 
32. Hence, in order to program the system 10, the user must 
have access to an I/O device which may communicate over 
the system bus to the programmed I/O circuit 116 at the CPU 
level. 
Memory address compare logic 110 determines if a 

memory address corresponds to system memory or corre 
sponds to expansion memory which is located on I/O device 
28 coupled to the I/O bus 32. Because the system memory 
as well as the expansion memory may be in non-contiguous 
blocks of addresses, memory address compare logic 110 
includes a plurality of comparators which are loaded with 
boundary information from registers in the programmed I/O 
circuit 116 to indicate which boundaries correspond to 
which memory. After a particular memory address is com 
pared with the boundary information by the memory address 
compare logic, the bus interface unit is prepared to react 
accordingly. For example, if an I/O device controlling the 
I/O bus 32 is reading or writing to expansion memory, the 
bus interface circuit need not pass that address to the 
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memory controller 58, thereby saving time and memory 
bandwidth. 

Error recovery support logic 112 permits the system 10 to 
continue operations even if a data parity erroris detected. On 
any read or write access by an I/O device 28 to system 
memories 24 or 26, parity of the data is checked. Support 
logic 112 interacts with a register in the programmed I/O 
circuit 116 for capturing the address and the time of the 
detected parity error. The contents of this register may then 
be acted upon by appropriate system software. For example, 
the CPU 38 may be programmed for a high level interrupt 
to pull the address out of the register at any time a parity 
error is detected. The CPU may then decide, based on the 
system software instructions, whether to continue system 
operations or merely terminate operation of the identified 
source of the parity error. 
Cache snooping logic 114 permits the bus interface unit 

64 to monitor the I/O bus 32 for any writes to expansion 
memory by an I/O device taking place over the I/O bus 32. 
The snooping logic first determines if the write to expansion 
memory occurred in expansion memory which is cacheable 
in SRAM 40. If it is not cacheable expansion memory, there 
is no danger of corrupt data being cached. If, however, a 
comparison indicates that the write occurred in cacheable 
expansion memory (a "positive comparison'), a cache 
invalidation cycle is initiated over the system bus 76. The 
CPU is thus instructed to invalidate the corresponding 
address in SRAM 40. Cache snooping logic 114 provides 
means to store the address of a positive comparison so that 
snooping of the I/O bus may continue immediately after 
detection of the first positive comparison, thereby permitting 
continuous monitoring of the I/O bus 32. 
The present invention relates generally to the bus inter 

face unit 64 described above and more particularly to the bus 
to bus pacing control logic 128 of the bus interface unit. The 
pacing control logic 128 is used to improve the ability of the 
I/O bus 32 to move data in and out of system memories 24 
and 26 by dynamically controlling access of an I/O device 
to system memory. System performance is improved by 
locking the access of an I/O device 28 in control of the I/O 
bus 32 to system memory under certain predetermined 
conditions. 
The bus to bus pacing control logic 128, in conjunction 

with FIFO buffer 124, is used to optimally match the data 
transfer speed of I/O bus controllers to the data transfer 
capability of the system memory. If, for example, a high 
speed I/O controller can write to system memory faster than 
the system memory can accept the write data, the buffered 
write data will fill the FIFO buffers 125A-125B completely 
before the data can be written to system memory. If the same 
high speed I/O controller can also read data from system 
memory faster than system memory can provide the read 
data, prefetched data will not be available in the FIFO 
buffers 125C and 125D. In either case, the result is increased 
latency, and hence decreased performance, in data transfer 
as seen by the I/O bus 32. 

Typically, an I/O device controller will initiate a read or 
write operation and provide a memory address over the I/O 
bus 32 to the bus interface unit 64. Circuit 110 of the bus 
interface unit compares this address to a range of addresses 
programmed in circuit 116 to determine if the operation is 
destined for expansion memory or system memory. If it is 
determined that the operation is destined for expansion 
memory, bus to bus pacing control logic 128 does nothing, 
as there is no need to prioritize access to system memory 
under this condition. If, however, it is determined that the 
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12 
read or write operation is destined for system memories 24 
or 26, and the predetermined conditions are met, the pacing 
control logic 128 initiates a signal which grants an I/O 
device 28 in control of the I/O bus 32 continued priority 
access to system memory. This signal acts as an override to 
the arbitration grant signal output by the memory controller 
58 during normal arbitration procedures. 
The predetermined conditions under which an I/O device 

is granted priority access to system memory are as follows: 
(1) a read request (prefetch) by an I/O device controlling the 
I/O bus 32 is not aligned with a predefined 16-byte address 
boundary in system memory, (2) an I/O device controlling 
the I/O bus 32 immediately follows a write cycle with a read 
cycle, (3) an I/O device controlling the I/O bus 32 completes 
a data transfer cycle, (4) an I/O device controlling the I/O 
bus 32 is reading or writing data in streaming mode (40 
megabytes per second), or (5) more than two of the four 
16-byte buffers in FIFO buffer 124 are already filled with 
data to be written to system memory or less than two of the 
four 16-byte buffers are yet to be filled with prefetched data 
to be read from system memory. 

In the preferred embodiment of the present invention, the 
bus to bus pacing control logic 128 operates under three 
pacing modes. The first of these modes is the default mode, 
which determines pacing of bus control for the first three 
conditions listed above. The second of these modes (option 
1) determines pacing for the fourth listed condition, and the 
third of these modes (option 2) determines pacing for the 
fifth listed condition. A user of the system may choose either 
pacing mode (option 1 or option 2) in addition to the default 
pacing mode which the system automatically provides. The 
choice is made by programming the contents of a 3-bit 
register 130 (not shown) in programmed I/O circuit 116. The 
default pacing mode is defined by a 0-0-0 register content; 
option 1 is defined by a 0-0-1 register content, and option 2 
is defined by a 1-0-0 register content. 
As explained above, the default pacing mode handles 

pacing for the first three pacing conditions. Under the first 
condition, an I/O device 28 requests a read of system 
memories 24 or 26 which is not aligned with a particular 
16-byte packet boundary, meaning that the read request is 
for data addresses which begin somewhere within the 
boundaries of a 16-byte packet. If the read data were aligned 
with the boundaries of a particular 16-byte packet, the 
system bus address generation circuit 118 would simply do 
a standard 16-byte burst transfer of the data into either buffer 
125C or 125D. However, if the read data is not packet 
aligned, the data must be prefetched using multiple 1, 2, 3 
or 4 byte cycles. To insure that this data is prefetched in the 
most efficient manner, access by the I/O device 28 to system 
memory is locked while enough data is automatically 
prefetched to arrive at a 16-byte boundary. This read data of 
less than 16-bytes is then synchronized to the timing of the 
I/O bus 32, and the I/O device controller begins to read the 
data. In parallel with the I/O device controller reading data, 
the system bus address generation circuit 118 will prefetch 
the next contiguous 16-byte packet before releasing the lock 
signal to system memory. Because this 16-byte packet 
begins at a predefined boundary, a burst transfer is possible. 
Thus, two transfers of data are performed without interrup 
tion. Use of the lock signal 140 in this condition insures the 
least amount of latency between when a device on I/O bus 
32 requests data and when bus interface unit 64 provides 
data, and the most efficient use of page mode system 
memory. 

Under the second condition, residual buffered write data 
may exist in FIFO buffers 125A-125D when the I/O device 
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28 changes from a write transfer to a read request. Once the 
I/O device bus controller changes from a write to a read, 
pacing control logic 128 determines that an end of cycle has 
occurred, that there is no more write data to be stored in the 
FIFO buffer 124, and that read data is now being requested 
from system memories 24 or 26. Because it is known that no 
more contiguous write data is immediately forthcoming, the 
buffered data in buffers 125A-125D is written to system 
memory and the read request is prefetched from system 
memory in one atomic operation. 

Under the third condition, residual buffered data may also 
exist in FIFO buffers 125A-125D when the I/O controller 
device relinquishes control of the I/O bus 32. In this 
instance, such residual data must be written to system 
memory before releasing the system bus 76. If more than 
one of the FIFO buffers 125A-125D include Such residual 
data, as soon as the I/O device controller relinquishes control 
of the I/O bus 32, the pacing logic 128 will generate a signal 
to the memory controller to indicate that data in FIFO buffer 
124 exceeds one transfer in length (i.e., greater than 16 
bytes) and needs to be written to system memories 24 or 26. 
Use of the lock signal 140 in this condition insures the least 
amount of latency between the I/O controller releasing 
control of the I/O bus 32 and the bus interface unit 64 
releasing control of system bus 76. 
The default logic used under the first three conditions is 

implemented by algorithms which are built into the hard 
ware of the bus interface unit 64 as default pacing mode 
logic 129. Typically, state machines may be used to imple 
ment the required logic, as is known in the art. The pacing 
logic which responds to the fourth and fifth listed conditions 
is also realized by algorithms which are built into the bus 
interface unit hardware. FIGS. 4 and 5 illustrate circuit 
diagrams used to implement particular embodiments of the 
bus to bus pacing control logic 128 for option 1 and option 
2, respectively. 

Referring to FIG.4, the bus to bus pacing control logic for 
implementing option 1 (relating to the fourth condition 
described above) comprises a clocked S-R latch 132, AND 
gates 134 and 136, and OR gate 138. At any time the latch 
132 is set (S-input active), the latch outputs a LOCK signal 
140. The LOCK signal 140 provides an I/O device 28 in 
control of the I/O bus 32 continued access to system memory 
when the I/O device 28 is reading or writing data to system 
memories 24 and 26 in streaming mode. Streaming refers to 
data transfers of a stream of data having contiguous 
addresses wherein only the first address needs to be decoded 
and the Subsequent addresses are considered to be contigu 
OS. 

Upon detection of a streaming data write operation by the 
logic of FIG. 4 with either of FIFO buffers 125C or 125D 
being full with a 16-byte packet of buffered write data, the 
lock signal is activated and a burst write sequence is initiated 
to system memory over the system bus 76 and will remain 
active until the I/O device 28 terminates the streaming 
sequence or until there is no data remaining in the FIFO 
buffers. Similarly, upon detection of a streaming data read 
operation, the lock signal is activated and a burst read 
sequence is initiated to system memory and will remain 
active as long as FIFO capacity permits or until the I/O 
device 28 terminates the streaming sequence. Bus control 
logic 128 is responsive to streaming reads or writes as 
defined by programming a 0-0-1 register content in the 3-bit 
register 130 (not shown in the drawings). Hence, if the 3-bit 
register is programmed to 0-0-1, AND gate 134 will decode 
the content of the register and provide a HIGH option 1 
enable line 142. Line 144 will also be HIGH as long as the 
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14 
bus interface unit 64 detects that the particular I/O device 28 
in control of the I/O bus 32 is writing or reading data in 
streaming mode. Because lines 142 and 144 are HIGH 
during this time, AND gate 136 will set the latch 132 to 
output LOCK signal 140 any time output 146 of OR gate 
138 is HIGH. 

Output 146 of OR gate 138 is HIGH when either (i) the 
I/O device 28 in control of the I/O bus 32 issues a streaming 
data read request (read operations) or (ii) either of 16-byte 
buffers 125C or 125D in FIFO 124 is full (write operations). 
In either of these instances, and with lines 142 and 144 
HIGH as explained above, the latch 132 will override the 
arbitration scheme of memory controller 58 by providing the 
memory controller with a LOCK signal 140. Whenever the 
I/O device 28 indicates that it is no longer transmitting read 
or write data in streaming mode, line 148 goes HIGH, 
thereby resetting the latch 132 and effectively disabling the 
logic of FIG. 4. 

Referring to FIG. 5, the bus to bus pacing control logic for 
implementing option 2 (relating to the fifth condition 
described above) comprises clocked S-R latches 150 and 
152, each of which is controlled independently by for read 
and write cycles. At any time either of these clocked atches 
150, 152 are set, LOCK signal 140 is enabled and output to 
the memory controller 58. The latches are reset by activating 
the R-input, thereby disabling the latches from outputting 
the LOCK signal. 

Under the fifth condition listed above, either (i) data is 
being written by an I/O controller 28 over I/O bus 32 to bus 
interface unit 64 faster than it can be written over system bus 
76 to system memory, or (ii) data is being read from the bus 
interface unit 64 by the I/O controller 28 faster than bus 
interface unit can prefetch data from system memory. If data 
is being written too fast by an I/O controller, residual data 
begins building up in FIFO buffers 125A-125D. If more 
than half of the FIFO buffer space contains such residual 
data, a LOCK signal 140 is initiated by latch 152 to permit 
atomic transfers to system memory. If data is being read too 
quickly from bus interface unit 64 by I/O controller 28 over 
I/O bus 32, FIFO buffers 125A or 125B will empty, meaning 
that buffers 125C and 125D are depleted of available 
prefetched contiguous data. A LOCK signal 140 is thus 
output by latch 150 so that the bus interface unit may 
prefetch data into buffers 125C and 125D. Accordingly, at 
least half of the FIFO buffer 124 is maintained filled with 
prefetched data. 

Bus control logic is responsive to the fifth condition as 
defined by programming a 1-0-0 register content in the 3-bit 
register 130 (not shown). Hence, if the 3-bit register is 
programmed to 1-0-0, NOR gate 154 will decode the content 
of the register and provide a HIGH option 2 enable line 156. 
The option 2 enable line 156 is used to enable the control 
logic for both data read operations (the upper half of logic 
of FIG. 5) and data write operations (the lower half of logic 
of FIG. 5). 

During write operations, the output 158 of OR gate 160 
will also be HIGH as long as at least two of the buffers 
125A-125D are full. Typically, this means that either buffer 
125A or 125B has been filled and has transferred data to 
buffer 125C or 125D, respectively, and the other of buffers 
125A or 125B is now being filled. In this case, data is in 
either buffer 125C or 125D, or both, and can immediately be 
written to system memory. With lines 156 and 158 HIGH, 
AND gate 162 will set latch 152 which will then output the 
LOCK signal 140 to the memory controller 58. The LOCK 
signal 140 will remain active until the R-input of latch 152 
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is driven HIGH by the output of AND gate 164. The output 
of AND gate 164 goes HIGH if both buffers 125C and 125D 
are empty, thereby indicating that there is no need to 
immediately write data to system memory from these buff 

S. 

During read operations, latch 150 will output the LOCK 
signal to memory controller 58 when the latch 150 is set by 
a HIGH output of AND gate 166. The output of AND gate 
166 is driven high when (i) line 156 is HIGH due to option 
2 being active, (ii) line 168 is HIGH due to the bus interface 
unit 64 detecting a read from system memory, and (iii) line 
170 is driven LOW by NOR gate 172 when one of the 
buffers 125A or 125B is empty. A LOCK signal is initiated 
in this case because, with either buffer 125A or 125B empty, 
the contents of buffers 125C or 125D may be emptied 
therein, leaving room in either buffer 125C or 125D for 
prefetched contiguous data from system memory. 
The LOCK signal in read operations remains active until 

the R-input of latch 150 is activated by OR gate 174. The 
output of OR gate 174 is driven HIGH at any time (i) the bus 
interface unit 64 detects that there is no read from system 
memory or (ii) either of buffers 125C and 12.5D is full and 
neither of buffers 125A and 125B is empty (via AND gate 
178, OR gate 176 and NOR gate 172). In either of these two 
cases, the LOCK signal is not necessary, and, accordingly, 
the latch 150 is reset. Access to system memories 24 and 26 
is then controlled under the normal arbitration scheme 
implemented by the memory controller 58. 

Accordingly, the preferred embodiment of a bus control 
logic system for computers having a dual bus architecture 
has been described. With the foregoing description in mind, 
however, it is understood that this description is made only 
by way of example, that the invention is not limited to the 
particular embodiments described herein, and that various 
rearrangements, modifications, and substitutions may be 
implemented without departing from the true spirit of the 
invention as hereinafter claimed. 
We claim: 
1. An information handling system, comprising: 
a system memory; 
a plurality of system resource devices; 
a first bus coupled to the system memory and the system 

resource devices for transferring data among the system 
resource devices and the system memory; 

a second bus coupled to the system resource devices, said 
system resource devices coupled to the second bus 
being capable of controlling the second bus by arbi 
trating for control with other of said system resource 
devices; and 

a bus interface unit coupled between the first bus and the 
second bus for providing data transfer capability ther 
ebetween, said bus interface unit including a buffer for 
temporarily storing data to be transferred between the 
first bus and the second bus, and control logic for 
generating a control signal after one of the system 
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resource devices has gained control of the second bus 
in order to gain control of the first bus, thereby pre 
venting other of said system resource devices from 
accessing the firstbus, said control logic being dynami 
cally responsive to signals indicative of data transfer 
conditions between the first bus and the second bus to 
generate said control signal. 

2. The system of claim 1, wherein said bus interface unit 
further includes a programmable circuit in which those data 
transfer conditions that cause the control logic to dynami 
cally generate said control signal are programmable. 

3. The system of claim 1, wherein said control logic 
includes default pacing mode logic for determining whether 
a read request by said one of said system resource devices 
to said system memory does not align with a predefined 
sixteen byte address boundary of the system memory and for 
dynamically generating said control signal in response 
thereto. 

4. The system of claim 1, wherein said control logic 
includes default pacing mode logic for determining whether 
said one of said system resource devices follows a write 
operation to said system memory with a read operation to 
said system memory and for dynamically generating said 
control signal in response thereto. 

5. The system of claim 1, wherein said control logic 
includes default pacing mode logic for determining whether 
said one of said system resource devices has completed a 
data transfer operation and for dynamically generating said 
control signal in response thereto. 

6. The system of claim 1, wherein said control logic 
includes pacing control logic for determining whether said 
one of the system resource devices is reading or writing to 
said system memory in a streaming mode and for dynami 
cally generating said control signal in response thereto. 

7. The system of claim 1, wherein said control logic 
includes pacing control logic for detecting a capacity of the 
buffer and for dynamically generating the control signal 
according to the detected capacity. 

8. The system of claim 1, wherein said second bus 
comprises an input/output (I/O) bus and the system resource 
devices coupled to the second bus comprise I/O devices. 

9. The system of claim 8, wherein said first bus supports 
burst transfers of read or write data between said bus 
interface unit and said system memory in bandwidths of up 
to sixteen bytes, and wherein said input/output bus supports 
transfers of read or write data between said input/output 
device and said bus interface unit in bandwidths of one, two 
and four bytes. 

10. The system of claim 1, wherein said buffer comprises 
a dual ported, asynchronous, bi-directional storage unit. 

11. The system of claim 10, wherein said storage unit 
includes at least two pairs of sixteen byte buffers, said at 
least two pairs of buffers being used for both read and write 
operations. 


