
IIIHIII|I||
United States Patent 19)

US005544346A

Patent Number: 11 5,544,346
Amini et al. 45) Date of Patent: Aug. 6, 1996

54 SYSTEM HAVING A BUS INTERFACE UNIT 4,788,640 11/1988 Hansen 395/478
FOR OVERRIDING ANORMAL 4,947,368 8/1990 Donaldson et al. 395/297
ARBTRATION SCHEME AFTER A SYSTEM 4,967,344 10/1990 Scavezze et al. 395/182O2

4,980,854 12/1990 Donaldson et al. 395/297
ESSESRESS AEEADY 4,982,321 1/1991 Pantry et al. 395/287

5,003,463 3/1991 Coyle et al. 395/877
75) Inventors: Nader Amini; Bechara F. Boury; 5,239,631 8/1993 Boury et al. 395/297

Sherwood Brannon, all of Boca Raton; FOREIGN PATENT DOCUMENTS
Richard L. Horne, Boynton Beach;

0.141302 5/1985 European Pat. Off. .
Frence J. Lohman, Boca Raton, all of 0288649 11/1988 European Pat. Off..

a. 0311704 4/1989 European Pat. Off..

(73) Assignee: International Business Machines Primary Examiner-Glenn Gossage
Corporation, Armonk, N.Y. Attorney, Agent, or Firm-Daniel E. McConnell

57 ABSTRACT (21) Appl. No.: 353,165 57)
l, 1. An information handling systems capable of transferring

22 Filed: Dec. 9, 1994 data among various system resource devices such as input/
output (I/O) devices and a system memory includes a first

Related U.S. Application Data bus coupled to the system memory, a second bus coupled to
the system resource devices, and a bus interface unit (BIU)

63 Continuation of Ser. No. 815,992, Jan. 2, 1992, abandoned. coupled between the first bus and the second bus. Each of the
(51 Int. Cl." G06F 13/00; G06F 13/36; system resource devices is capable of controlling the second

G06F 13/40 bus after arbitrating therefor. The BIU includes a buffer for
52 U.S. Cl. 395/481: 395/288; 395/296; temporary storage of data being transferred between the first

395/303; 395/485; 395/728; 395/848; 395/860; bus and the second bus, and control logic for generating a
364/242.8; 364/242.92; 364/935.41; 364/937.01; lock control signal, after one of the system resource devices

364/DIG. 1 has gained control of the second bus by arbitration, to gain
58 Field of Search 395/425, 325, control of the first bus to prevent other system resource

395/725,481, 484, 485, 492, 494, 495, devices from accessing the first bus. The control signal is
496, 728, 729, 730, 731, 732, 842, 848, dynamically generated by the BIU based on programmable
856, 860, 287, 288, 296, 303, 726, 297 conditions relating to the data transfer, thus optimizing data

transfers between the first bus and the second bus. The
56 References Cited control signal may act as an override to the normal memory

controller arbitration scheme to prioritize access of the
U.S. PATENT DOCUMENTS system resource devices to the system memory.

4,442,502 4/1984 Friend et al. 395/31
4,785,394 11/1988 Fischer 395/294

ER BUFFER

11 Claims, 7 Drawing Sheets

O
1

4. 16
46

DATA

BUFF BUFFER
14

CONNECTOR

versapur-pawnpous ado-m-4-aroon-hwan ---4-----al-man

U.S. Patent Aug. 6, 1996 Sheet 1 of 7 5,544,346

FIG.
1A

F.G. 1. F.G. B.

FG. A

42 56 54 40 38 39

CACHE 7 Soft sRAM 20 cPU

46 48

FREGUENCY ADDR DATA
CONTROL BUFFER E3UFFER

14 18
1

CONNECTOR 1

20
CONT ADDR ATA

5,544,346 Sheet 5 of 7 Aug. 6, 1996 U.S. Patent

||TKO HIO

5,544,346 Sheet 6 of 7 Aug. 6, 1996 U.S. Patent

5,544,346 Sheet 7 of 7 Aug. 6, 1996 U.S. Patent

09:4.

XATO

2 || ||

{{
89 $

((

AHOWEW WELLSÅS WOH ? (Tº B}=| Å HOWEW WELSÅS WOH-, QVEH ON

5,544,346
1.

SYSTEM HAVING A BUS INTERFACE UNIT
FOR OVERRIDING ANORMAL

ARBTRATION SCHEME AFTER A SYSTEM
RESOURCE DEVICE HAS ALREADY

GAINED CONTROL OF ABUS

This application is a continuation of application Ser. No.
07/815,992, filed Jan. 2, 1992, now abandoned.

RELATED APPLICATIONS

The following United States patent applications are incor
porated herein by reference as if they had been fully set out:

Application Ser. No. 07/816,116 Filed Jan. 2, 1992
Entitled “ARBITRATION MECHANISM', now U.S.
Pat. No. 5,265,211.

Application Ser. No. 07/816,184 Filed Jan. 2, 1992
Entitled “PARITY ERROR DETECTION AND
RECOVERY', now U.S. Pat. No. 5,313,627.

Application Ser. No. 07/816,204 Filed Jan. 2, 1992
Entitled “CACHESNOOPING AND DATA INVALI
DATION TECHNIQUE", now abandoned in favor of
continuation application Ser. No. 08/327,136.

Application Ser. No. 07/816,203 Filed Jan. 2, 1992
Entitled “BUS INTERFACE LOGIC FOR COM
PUTER SYSTEM HAVING DUAL BUS ARCHITEC
TURE", now U.S. Pat. No. 5,255,374.

Application Ser. No. 07,816,691 Filed Jan. 2, 1992
Entitled “BIDIRECTIONAL DATA STORAGE
FACILITY FOR BUSINTERFACE UNIT, now aban
doned in favor of continuation application Ser. No.
08/282,159.

Application Ser. No. 07/816,693 Filed Jan. 2, 1992
Entitled “BUS INTERFACE FOR CONTROLLING
SPEED OF BUS OPERATION', now abandoned in
favor of continuation application Ser. No. 08/293,411.

Application Serial No. 07/816,698 Filed Jan. 2, 1992
Entitled, now abandoned in favor of continuation appli
cation Ser. No. 08/298,538.

BACKGROUND OF THE INVENTION

The present invention relates to bus to bus interfaces in
dual bus architecture computer systems, and more particu
larly to a bus to bus interface device and method for
arbitrating between a central processing unit and an input/
output device each of which is vying for access to System
memory.

Generally in computer systems and especially in personal
computer systems, data is transferred between various sys
tem devices such as a central processing unit (CPU),
memory devices, and direct memory access (DMA) control
lers. In addition, data is transferred between expansion
elements or "system resources devices” such as input/output
(I/O) devices, and between these I/O devices and the various
system devices. The I/O devices and the system devices
communicate with and amongst each other over computer
buses, which comprise a series of conductors along which
information is transmitted from any of several sources to any
of several destinations. Many of the system devices and the
I/O devices are capable of serving as bus controllers (i.e.,
devices which can control the computer system) and bus
slaves (i.e., elements which are controlled by bus control
hers).

10

15

20

25

30

35

40

45

50

55

60

65

2
Personal computer systems having more than one bus are

known. Typically, a local bus is provided over which the
CPU communicates with cache memory or a memory con
troller, and a system I/O bus is provided over which system
bus devices such as the DMA controller, or the I/O devices,
communicate with the system memory via the memory
controller. The system I/O bus comprises a system bus and
an I/O bus connected by a bus interface unit. The I/O devices
communicate with one another over the I/O bus. The I/O
devices are also typically required to communicate with
system bus devices such as system memory. Such commu
nications must travel over both the I/O bus and the system
bus through the bus interface unit.
The local bus devices such as the CPU and the system I/O

bus devices in dual bus architecture computer Systems
compete for access to system memory via the memory
controller. The system bus devices and the I/O devices
access the memory controller via the system bus. The CPU
accesses the memory controller through the local bus. Prior
to accessing system memory via the memory bus, then, these
competing devices must first gain control of the memory
controller. Often, in high speed data transfers, a system I/O
bus device and a local bus device may simultaneously desire
control of the memory bus controller. High speed I/O
devices and microprocessors place high demand on system
memory, creating contention between each other and
thereby reducing system performance. Thus, the computer
system must provide a scheme of arbitration to determine
whether the local bus device or the system I/O bus device
should have access to system memory.
A typical arbitration scheme includes an arbiter which

grants control of the system bus on a first come, first served
basis. Thus, if both a I/O bus device and a local bus device
desire access to system memory, the first device to transmit
the control request is granted control of the memory con
troller. After the particular device which is acting as memory
bus controller is finished either reading or writing a data
sequence to system memory over the memory bus, the
waiting device is then granted control of the memory
controller. This process continues indefinitely as long as a
local bus devices, such as the CPU, and a system I/O device
have pending requests for control of the memory controller.

Various I/O device bus controllers manage reads and
writes to system memory at different speeds. Some high
speed I/O devices are capable of transmitting data over the
I/O bus to the bus interface unit as fast as the bus interface
unit can retransmit that data over the system bus. Often these
high speed devices transmit the data in a series of data
sequences, or packets, which have contiguous addresses in
system memory. Under the typical arbitration scheme
described above, if a local bus device has a pending request
for control of the system bus during one of these multiple
packet transmissions, the arbiter will grant control of the
memory bus to the local device as soon as the first packet has
been transmitted by the I/O device. After the local bus
device has finished its operation, control of the memory bus
is once again granted to the I/O device.

This type of system operation is inefficient because,
typically, a local bus device such as a CPU and an I/O device
work in different areas of system memory. Thus, in granting
control of the memory bus back and forth between the CPU
and the I/O device, typically, with each successive operation,
the memory addresses are to different pages of memory,
requiring a longer memory access time. If, as explained
above, the I/O device is reading or writing to system
memory a large block of data having contiguous addresses
in that memory, it is beneficial to allow the I/O device to

5,544,346
3

complete its multiple packet transfer of data before releasing
control of the memory bus to the CPU.

In this manner, the memory controller is able to read or
write multiple packet transfers to system memory at con
tiguous locations (i.e., on the same "page' of information)
before access to memory is granted to the CPU. The time
required for the second and subsequent data transfers
between system memory and the I/O device is minimized
because memory accesses are optimized when addressed to
the same page of system memory. Upon completion of the
last data transfer between system memory and the I/O
device, the CPU may then be granted control of the memory
bus in order to complete its read or write operation. Overall,
Such system operation results in a data transfer time saving.

It is an object of the present invention, then, to provide a
bus interface unit in a dual bus architecture computer system
which provides the arbitration logic required to optimize
control of the memory bus between an I/O device residing
on the I/O bus and a local device residing on the local bus.

SUMMARY OF THE INVENTION

Briefly according to the invention, an information han
dling system capable of transferring data among various
system resource devices such as I/O devices and a memory
is provided which includes a firstbus, a second bus and abus
interface unit coupled between the first bus and the second
bus. The first bus is coupled to the system memory for
transferring data with the system resource devices. At least
one of the system resource devices is coupled to and is
capable of controlling the second bus after arbitrating there
for. The bus interface unit includes a buffer for temporary
storage of the data being transferred between the first bus
and the second bus and it also includes control logic for
dynamically generating a control signal to gain control of
the first bus to prevent other of the system resource devices
coupled to the first bus from accessing the first bus. The
control logic is dynamically responsive to signals indicative
of data transfer conditions between the first bus and the
Second bus to generate the control signal.
The conditions under which I/O device is granted priority

access to system memory are as follows: (1) a read request
by an I/O device controlling the I/O bus is not aligned with
a predefined 16-byte address boundary in system memory,
(2) an I/O device controlling the I/O bus immediately
follows a write cycle with a read cycle, (3) an I/O device
controlling the I/O bus completes a data transfer cycle, (4)
an I/O device controlling the I/O bus is reading or writing
data in streaming mode, or (5) more than half of the buffer
space in the bus interface unit is already filled with data to
be written to system memory or less than half of the buffer
space is yet to be filled with prefetched data to be read from
system memory. Streaming refers to data transfers of a
stream of data having contiguous addresses wherein only the
first address needs to be decoded and the subsequent
addresses are considered to be contiguous.

In the preferred embodiment of the present invention, the
bus to bus control logic operates under three pacing modes
by which the data transfer speeds of I/O devices are opti
mally matched to the data transfer capability of the system
memory. The first of these pacing modes is the default
pacing mode, which determines the pacing for the first three
conditions listed above. The second of these pacing modes
(option 1) determines the pacing for the fourth listed con
dition, and the third of these pacing modes (option 2)
determines the pacing for the fifth listed condition. A user of

O

15

20

25

30

35

40

45

50

55

60

65

4
the system may choose either pacing mode (option 1 or
option 2) in addition to the default pacing mode which the
system automatically provides. The choice is made by
programming the contents of a programmable register in the
bus interface unit.

Under the first of the default conditions, an I/O device
requests a read of system memory which is not aligned with
a particular 16-byte packet boundary. To compensate for this
misalignment, access by the I/O device to system memory is
locked until enough data is automatically prefetched to
arrive at a 16-byte boundary. This read data of less than
16-bytes is then synchronized to the timing of the I/O bus,
and the I/O device controller begins to read the data. The bus
interface unit then prefetches the next contiguous 16-byte
packet. Because this 16-byte packet begins at a predefined
boundary, a 16-byte burst transfer is possible.
Under the second condition, residual buffered write data

may existin the bus interface unit buffer space when the I/O
device changes from a write transfer to a read request. Once
the I/O device bus controller changes from a write to a read,
bus control logic determines that an end of cycle has
occurred, that there is no more write data to be stored in the
buffer space, and that read data is now being requested from
system memory. Because it is known that no more contigu
ous write data is immediately forthcoming, the buffered data
is written to system memory and the read data is prefetched
from system memory in one atomic operation.

Under the third condition, residual buffered data may also
exist in the bus interface unit buffer space when the I/O
controller device relinquishes control of the I/O bus after a
data transfer cycle. In this instance, such residual data is
automatically written to system memory. If more than half
of the buffer space includes such residual data, as soon as the
I/O device controller relinquishes control of the I/O bus, the
bus control logic will generate a signal to the memory
controller to indicate that data in the buffer exceeding one
transfer in length (i.e., greater than 16 bytes) needs to be
written to system memory. Accordingly, the buffered data
will be provided access to system memory via the system
bus.

The bus control logic for implementing option 1 (relating
to the fourth condition described above) comprises a clocked
set-reset (S-R) latch which provides a control signal Lock to
the memory controller. The LOCK signal provides an I/O
device in control of the I/O bus continued access to system
memory when the I/O device is reading or writing data to
system memory in streaming mode. Upon detection of a
streaming data write operation, when one of the bus inter
face unit buffers is full of buffered write data, a locked burst
write sequence is initiated to system memory over the
system bus and will remain active until the I/O device
terminates the streaming sequence or until there is no data
remaining in the buffer space. Similarly, upon detection of a
streaming data read operation, a locked burst read sequence
is initiated to system memory and will remain active as long
as there is room in the buffer space or until the I/O device
terminates the streaming sequence.
The bus control logic for implementing option 2 (relating

to the fifth condition described above) comprises separate
logic circuits each associated with a latch for outputting the
LOCK signal to the memory controller. The LOCK signal
provides an I/O device in control of the I/O bus continued
access to system memory when more than half of the bus
interface unit buffer space is already filled with data to be
written to system memory or less than half of the buffer
space is yet to be filled with prefetched data to be read from
system memory.

5,544,346
S

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of a computer system
incorporating a bus interface unit constructed according to
the principles of the present invention;

FIG. 2 is a schematic block diagram of the bus interface
unit of the computer system of FIG. 1;

FIG. 3 is a schematic block diagram of the FIFO buffer of
the bus interface unit of FIG. 2;

FIG. 4 is circuit diagram of the control logic used to
implement one of the embodiments of the bus to bus pacing
logic of FIG. 3; and

FIG. 5 is a circuit diagram of the control logic used to
implement another embodiment of the bus to bus pacing
logic of FIG. 3.

DETALED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring first to FIG. 1, a computer system shown
generally at 10 comprises system board 12 and processor
complex 14. Processor complex includes processor portion
16 and base portion 18 connected via local bus connector 22.
Processorportion 16 operates at 50 MHz and base portion 18
operates at 40 MHz.

System board 12 includes interleaved system memories
24 and 26 and input/output (I/O) devices 28. Communica
tions between memories 24 and 26 and processor complex
14 are handled by memory bus 30, and communications
between I/O devices 28 and processor complex 14 are
carried by I/O bus 32. Communications between I/O devices
and memories 24 and 26 are handled by I/O bus 32, system
bus 76 and memory bus 30. I/O bus 32 may conform to
MICRO CHANNEL(R) (trademark of International Business
Machines (IBM), Armonk, N.Y.) computer architecture.
Memory bus 30 and I/O bus 32 are connected to processor
complex base portion 18 via processor complex connector
34. I/O devices such as memory expansion devices may be
connected to the computer system 10 via I/O bus 32. System
board 12 may also include conventional video circuitry,
timing circuitry, keyboard control circuitry and interrupt
circuitry (none of which are shown) which may be used by
computer system 10 during normal operation.

Processor portion 16 of processor complex 14 includes
central processing unit (CPU) 38 which, in the preferred
embodiment, is a 32-bit microprocessor available from Intel
Corp., Santa Clara, Calif., under the trade designation i486.
Processor portion 16 also includes static random access
memory (SRAM) 40, cache control module 42, frequency
control module 44, address buffer 46 and data buffer 48.
Local bus 20 comprises data information path 50, address
information path 52 and control information path 54. Data
information path 50 is provided between CPU 38, SRAM 40
and data buffer 48. Address information path 52 is provided
between CPU 38, cache control module 42 and address
buffer 46. Control information path 54 is provided between
CPU 38, cache control module 42 and frequency control
module 44. Additionally, address and control information
path are provided between cache control module 42 and
SRAM 40.

SRAM 40 provides a cache function by storing in short
term memory information from either system memories 24
or 26 or from expansion memory which is located on an I/O
device 28. Cache control module 42 incorporates random
access memory (RAM) 56 which stores address locations of
memories 24 and 26. CPU 38 may access information

5

10

15

25

30

35

40

45

50

55

60

65.

6
cached in SRAM 40 directly over the local bus 20. Fre
quency control module 44 synchronizes operation of the 50
Mhz processor portion 16 with the 40 Mhz. base portion 18
and also controls the operation of buffers 46 and 48. Accord
ingly, frequency control module 44 determines the times at
which information is captured by buffers 46 and 48 or the
times at which information that is stored in these buffers is
overwritten. Buffers 46 and 48 are configured to allow two
writes from memories 24 and 26 to be stored simultaneously
therein. Buffers 46 and 48 are bi-directional, i.e., they are
capable of latching information which is provided by the
CPU 38 and information which is provided to the CPU.
Because buffers 46 and 48 are bi-directional, processor
portion 16 of the processor complex 14 may be replaced or
upgraded while maintaining a standard base portion 18.

Base portion 18 includes memory controller 58, direct
memory access (DMA) controller 60, central arbitration
control point (CACP) circuit 62, bus interface unit 64 and
buffer/error correction code (ECC) circuit 66. Base portion
18 also includes driver circuit 68, read only memory (ROM)
70, self test circuit 72 and buffer 74. System bus 76
comprises a data information path 78, an address informa
tion path 80 and a control information path 82. The data
information path connects buffer 74 with bus interface unit
64; bus interface unit 64 with DMA controller 60 and
buffer/ECC circuit 66; and buffer/ECC circuit 66 with sys
tem memories 24 and 26. The address information path and
the control information path each connect memory control
ler 58 with DMA controller 60 and bus interface unit 64; and
bus interface unit 64 with buffer 74.
Memory controller 58 is coupled to both CPU local bus 20

and system bus 76, and provides the CPU 38, the DMA
controller 60 or bus interface unit 64 (on behalf of an I/O
device 28) with access to system memories 24 and 26 via
memory bus 30. The memory controller 58 initiates system
memory cycles to system memories 24 and 26 over the
memory bus 30. During a system memory cycle, either the
CPU 38, the DMA controller 60 or bus interface unit 64 (on
behalf of an I/O device 28) has access to system memories
24 and 26 via memory controller 58. The CPU 38 commu
nicates to system memory via local bus 20, memory con
troller 58 and memory bus 30, while the DMA controller 60
or bus interface unit 64 (on behalf of an I/O device 28)
access system memory via system bus 76, memory control
ler 58 and memory bus 30.

For read or write cycles between CPU 38 and I/O bus 32,
address information is checked against system memory
address boundaries. If the address information corresponds
to an I/O expansion memory address or I/O port address,
then memory controller 58 initiates an I/O memory cycle or
I/O port cycle with an I/O device 28 (via bus interface unit
64) over the I/O bus 32. During an I/O memory cycle or I/O
port cycle between CPU 38 and I/O bus 32 the address
which is provided to memory controller 58 is transmitted
from system bus 76 to I/O bus 32 via bus interface unit 64
which resides intermediate these two buses. The I/O device
28 which includes the expansion memory to which the
address corresponds receives the memory address from I/O
bus 32. DMA controller 60 and the bus interface unit 64
control the interchange of information between system
memories 24 and 26 and the expansion memory which is
incorporated into an I/O device 28. DMA controller 60 also
provides three functions on behalf of processor complex 14.
First, the DMA controller 60 utilizes a small computer
subsystem control block (SCB) architecture to configure
DMA channels, thus avoiding the necessity of using pro
grammed I/O to configure the DMA channels. Second, DMA

5,544,346
7

controller provides a buffering function to optimize transfers
between slow memory expansion devices and the typically
faster system memory. Third, DMA controller 60 provides
an eight channel, 32-bit, direct system memory access
function. When providing the direct system memory access
function, DMA controller 60 may function in either of two
modes. In a first mode, DMA controller 60 functions in a
programmed I/O mode in which the DMA controller is
functionally a slave to the CPU 38. In a second mode, DMA
controller 60 itself functions as a system bus master, in
which DMA controller 60 arbitrates for and controls I/O bus
32. During this second mode, DMA controller 60 uses a first
in, first out (FIFO) register circuit.
CACP circuit 62 functions as the arbiter for the DMA

controller, I/O device bus controllers and the CPU (if
accessing I/O devices). CACP circuit 62 receives arbitration
control signals from DMA controller 60, memory controller
58 as well as from I/O devices, and determines which
devices may control the I/O bus 32 and the length of time
during which the particular device will retain control of the
I/O bus.

Driver circuit 68 provides control information and address
information from memory controller 58 to system memories
24 and 26. Driver circuit 68 drives this information based
upon the number of single in-line memory modules
(SIMMs) which are used to construct system memories 24
and 26. Thus, driver circuit 68 varies the signal intensity of
the control and address information which is provided to
system memories 24 and 26 based upon the size of these
memories.

Buffer circuit 74 provides amplification and isolation
between processor complex base portion 18 and system
board 12. Buffer circuit 74 utilizes buffers which permit the
capture of boundary information between I/O bus 32 and bus
interface unit 64 in real time. Accordingly, if computer
system 10 experiences a failure condition, buffer circuit 74
may be accessed by a computer repair person to determine
the information which was present at connector 34 upon
failure of the system.
ROM 70 configures the system 10 upon power-up by

initially placing in system memory data from expansion
memory. Self test circuit 72, which is connected to a
plurality of locations within base portion 18, provides a
plurality of self test features. Self test circuit 72 tests the
major components of base portion 18 upon power-up of the
system 10 to determine whether the system is ready for
operation.

Referring to FIG. 2, a schematic block diagram of the bus
interface unit 64 of the system of FIG. 1 is shown. Bus
interface unit 64 provides the basis for implementation of
the present invention by providing a bi-directional high
speed interface between system bus 76 and I/O bus 32.

Bus interface unit 64 includes system bus driver/receiver
circuit 102, I/O bus driver/receiver circuit 104 and control
logic circuits electrically connected therebetween. Driver/
receiver circuit 102 includes steering logic which directs
signals received from the system bus 76 to the appropriate
bus interface unit control logic circuits and receives signals
from the bus interface unit control logic circuits and directs
the signals to the system bus 76. I/O bus driver/receiver
circuit 104 includes steering logic which directs signals
received from the I/O bus 32 to the appropriate bus interface
unit control logic circuits and receives signals from the bus
interface unit control logic circuits and directs the signals to
the I/O bus 32.
The bus interface unit control logic circuits include sys

tem bus to I/O bus translation logic 106, I/O bus to system

10

15

20

25

30

35

40

45

50

55

60

65

8
bus translation logic 108, memory address compare logic
110, error recovery support logic 112, and cache Snooping
logic 114. Programmed I/O circuit 116 is also electrically
coupled to system driver/receiver circuit 102.
The system bus to I/O bus translation logic 106 provides

the means required for the DMA controller 60 or the
memory controller 58 (on behalf of CPU 38) to act as a
system bus controller to access the I/O bus 32 and thereby
communicate with I/O devices 28 acting as slave devices on
the I/O bus. Translation logic 106 translates the control,
address and data lines of the system bus 76 into similar lines
on the I/O bus 32. Most control signals and all address
signals flow from the system bus 76 to the I/O bus 32 while
data information flow is bi-directional. The translation logic
106 which acts as system bus slave monitors the system bus
76 and detects cycles which are intended for the I/O bus 32.
Upon detection of such a cycle, the system bus slave
translates the timing of signals on the system bus to I/O bus
timing, initiates the cycle on the I/O bus 32, waits for the
cycle to be completed, and terminates the cycle on the
system bus 76.
The I/O bus to system bus translation logic 108 comprises

system bus address generation circuit 118, I/O bus expected
address generation circuit 120, system bus controller inter
face 122, FIFO buffer 124, I/O bus slave interface 126 and
bus to bus pacing control logic 128. System bus controller
interface 122 supports a high performance 32 bit (4 byte)
i486 burst protocol operating at 40 MHZ. Data transfers of
four, eight and sixteen bytes in burst mode and one to four
bytes in no-burst mode are provided. I/O bus slave interface
126 monitors the I/O bus 32 for operations destined for slave
devices on the system bus 76 and ignores those operations
destined for the I/O bus 32. All cycles picked up by the I/O
bus slave interface 126 are passed on to the FIFO buffer 124
and the system bus controller interface 122.
The I/O bus to system bus translation logic 108 provides

the means required for an I/O device 28 to act as an I/O bus
controller to access system bus 76 and thereby read or write
to system memories 24 and 26. In either of these operations,
an I/O device controls the I/O bus. The asynchronous I/O
bus interface 126, operating at the speed of the I/O device,
permits the bus interface unit 64 to act as a slave to the I/O
device controller on the I/O bus 32 to decode the memory
address and determine that the read or write cycle is destined
for system memories 24 or 26. Simultaneously, the system
bus controller interface 122 permits the bus interface unit 64
to act as a controller on the system bus 76. The memory
controller 58 (FIG. 1) acts as a slave to the bus interface unit
64, and either provides the bus interface unit 64 with data
read from system memory or writes data to system memory.
The reads and writes to system memory are accomplished
through the FIFO buffer 124, a block diagram of which is
illustrated in FIG. 3.
As shown in FIG. 3, FIFO buffer 124 is a dual ported,

asynchronous, bi-directional storage unit which provides
temporary storage of data information between the system
and I/O buses 76, 32. FIFO buffer 124 comprises four
sixteen-byte buffers 125A-125D and FIFO control circuit
123. The four buffers 125A-125D buffer data to and from
I/O bus controllers and system bus slaves, thereby allowing
simultaneous operation of the I/O bus 32 and the system bus
76. The FIFO buffer 124 is physically organized as two
thirty-two byte buffers (125A/125B and 125C/125D). The
system bus controller interface 122 and the I/O bus slave
interface 126 each control one thirty-two byte buffer while
the other thirty-two byte buffer operates transparently. Both
of the thirty-two byte buffers are utilized for read and write
operations.

5,544,346
9

Each FIFO 124A, 125B, 125C, 125D has an address
register section either physically associated with the respec
tive FIFO, or logically associated therewith. As data is
transferred from the I/O bus 32 to FIFO 125A, the data will
be accumulated until the 16 byte buffer is filled with 16 bytes
of data, provided that the addresses are contiguous. If a
non-contiguous address is detected, the FIFO 125A will
transfer the stored data to FIFO 125C, and at the same time
FIFO 125B will start to receive data from the new non
contiguous address. FIFO 125B will continue just as FIFO
125A did until it is filled with 16 bytes of data, or another
non-contiguous address is detected. FIFO 125B will then
transfer the stored data to FIFO 125D, and FIFO 125A again
starts to store data; thus, it is possible to store up to four 16
byte blocks of noncontiguous address data.

Further, by having two 32 byte buffers in parallel the
reading and writing of data can be toggled between them
thus giving an essentially continuous read or write function.

Moreover, by splitting the 32 byte buffers into two 16
bytes buffer sections which are coupled to either I/O bus 32
or system bus 26, the number of storage buffers can be
increased with minimal impact on the performance of the
FIFO as related to the capacitive loading on signals clocking
data in or out of the storage registers. This is accomplished
because for every two buffers added (in parallel) only half
the capacitive loading is added to the loading of clock
signals on each bus.

Additionally, by having two 16 byte buffers in series, once
one of the 16 byte buffers is filled with data, such as in a read
operation, the data can be transferred to the other 16 byte
buffers in series therewith, while the other two parallel
buffers accumulate data. Hence, there is no time lost in either
accumulating data, or transferring the data from one bus to
the other.

The logic for controlling the operation of the FIFO 124 is
supplied by FIFO Control Circuit 123.
A particular I/O device 28 may write to system memories

24 or 26 via I/O bus in bandwidths of either 1, 2 or 4 bytes
(i.e., 8, 16 or 32 bits). During writes to system memory by
an I/O device 28, the first transfer of write data is initially
Stored in the FIFO buffer 125A or 125B. The I/O bus
expected address generation circuit 120 calculates the next
expected, or contiguous, address. The next contiguous
address is checked against the subsequent I/O address to
verify if the subsequent transfers are contiguous or not. If
contiguous, the second byte or bytes of write data is sent to
the same FIFO buffer 125A or 25B. The FIFO receives data
at asynchronous speeds of up to 40 megabytes per second
from the I/O bus 32.

This process continues until either buffer 125A or 125B is
full with a 16-byte packet of information or a non-contigu
ous address is detected. On the next clock cycle, assuming
that buffer 125A is full, the data in buffer 125A is transferred
to buffer 125C. Similarly, when buffer 125B is full, all of its
contents are transferred to buffer 12.5D in a single clock
cycle. The data stored in the buffers 125C and 125D is then
written to system memory via an i486 burst transfer at the
system bus operational speed. The operation of FIFO buffer
124 during a write to system memory by an I/O device is
thus continuous, alternating between buffers 125A and
125B, with each emptying into adjacent buffer 125C or
125D, respectively, while the other is receiving data to be
written to system memory. The FIFO buffer 124, then,
optimizes the speed of data writes to system memory by (i)
anticipating the address of the next likely byte of data to be
written into memory and (ii) accommodating the maximum

O

15

25

35

40

45

50

55

60

65

10
speed of write data from the FIFO buffer to system memory
via the system bus 76.

During reads of data from system memory to an I/O
device 28, FIFO buffer 124 operates differently. The system
bus address generation circuit 118 uses the initial read
address to generate subsequent read addresses of read data
and accumulate data in buffer 125C or 125D. Because the
system bus supports transfers in bandwidths of 16 bytes
wide, the system bus controller interface 122 may prefetch
16-byte packets of contiguous data and store it in buffers
125C or 125D without the I/O bus 32 actually providing
subsequent addresses, thus reducing latency between trans
fers. When buffer 125C is full of prefetched data, it transfers
its contents to buffer 125A in one clock cycle. Buffer 125D
similarly empties into buffer 125B when full. The data in
buffers 125A and 125B may then be read by a particular I/O
device controller in bandwidths of 1, 2 or 4 bytes. In this
way, system bus address generation circuit 118 functions as
an increment counter until instructed by the I/O controller
device to stop prefetching data.
Bus to bus pacing control logic 128 creates a faster access

to system memory for high speed I/O devices. The bus to bus
pacing control logic 128 overrides the normal memory
controller arbitration scheme of system 10 by allowing an
I/O device in control of the I/O bus 32 uninterrupted access
to system memory during transfers of data by faster devices
which require multiple cycles, rather than alternating access
to the memory controller 58 between the I/O device and the
CPU. Thus, even if a local device such as the CPU has a
pending request for control of the memory bus during a
multiple cycle transmission by an I/O device, the bus to bus
pacing control logic 128 will grant the-I/O device continued
control of the memory bus.
The programmed I/O circuit 116 is the portion of the bus

interface unit 64 which contains all of the registers which are
programmable within the bus interface unit 64. The registers
have bits associated therewith to determine whether a par
ticular register is active or inactive. These registers define,
inter alia, the system memory and expansion memory
address ranges to which the bus interface unit 64 will
respond, the expansion memory addresses which are either
cacheable or noncacheable, the system memory or cache
address ranges, and whether or not parity or error checking
is supported by the bus interface unit. Accordingly, pro
grammed I/O circuit 116 identifies for the bus interface unit
64 the environment in which it resides, and the options to
which it is configured. The registers in programmed I/O
circuit 116 cannot be programmed directly over the I/O bus
32. Hence, in order to program the system 10, the user must
have access to an I/O device which may communicate over
the system bus to the programmed I/O circuit 116 at the CPU
level.
Memory address compare logic 110 determines if a

memory address corresponds to system memory or corre
sponds to expansion memory which is located on I/O device
28 coupled to the I/O bus 32. Because the system memory
as well as the expansion memory may be in non-contiguous
blocks of addresses, memory address compare logic 110
includes a plurality of comparators which are loaded with
boundary information from registers in the programmed I/O
circuit 116 to indicate which boundaries correspond to
which memory. After a particular memory address is com
pared with the boundary information by the memory address
compare logic, the bus interface unit is prepared to react
accordingly. For example, if an I/O device controlling the
I/O bus 32 is reading or writing to expansion memory, the
bus interface circuit need not pass that address to the

5,544,346
11

memory controller 58, thereby saving time and memory
bandwidth.

Error recovery support logic 112 permits the system 10 to
continue operations even if a data parity erroris detected. On
any read or write access by an I/O device 28 to system
memories 24 or 26, parity of the data is checked. Support
logic 112 interacts with a register in the programmed I/O
circuit 116 for capturing the address and the time of the
detected parity error. The contents of this register may then
be acted upon by appropriate system software. For example,
the CPU 38 may be programmed for a high level interrupt
to pull the address out of the register at any time a parity
error is detected. The CPU may then decide, based on the
system software instructions, whether to continue system
operations or merely terminate operation of the identified
source of the parity error.
Cache snooping logic 114 permits the bus interface unit

64 to monitor the I/O bus 32 for any writes to expansion
memory by an I/O device taking place over the I/O bus 32.
The snooping logic first determines if the write to expansion
memory occurred in expansion memory which is cacheable
in SRAM 40. If it is not cacheable expansion memory, there
is no danger of corrupt data being cached. If, however, a
comparison indicates that the write occurred in cacheable
expansion memory (a "positive comparison'), a cache
invalidation cycle is initiated over the system bus 76. The
CPU is thus instructed to invalidate the corresponding
address in SRAM 40. Cache snooping logic 114 provides
means to store the address of a positive comparison so that
snooping of the I/O bus may continue immediately after
detection of the first positive comparison, thereby permitting
continuous monitoring of the I/O bus 32.
The present invention relates generally to the bus inter

face unit 64 described above and more particularly to the bus
to bus pacing control logic 128 of the bus interface unit. The
pacing control logic 128 is used to improve the ability of the
I/O bus 32 to move data in and out of system memories 24
and 26 by dynamically controlling access of an I/O device
to system memory. System performance is improved by
locking the access of an I/O device 28 in control of the I/O
bus 32 to system memory under certain predetermined
conditions.
The bus to bus pacing control logic 128, in conjunction

with FIFO buffer 124, is used to optimally match the data
transfer speed of I/O bus controllers to the data transfer
capability of the system memory. If, for example, a high
speed I/O controller can write to system memory faster than
the system memory can accept the write data, the buffered
write data will fill the FIFO buffers 125A-125B completely
before the data can be written to system memory. If the same
high speed I/O controller can also read data from system
memory faster than system memory can provide the read
data, prefetched data will not be available in the FIFO
buffers 125C and 125D. In either case, the result is increased
latency, and hence decreased performance, in data transfer
as seen by the I/O bus 32.

Typically, an I/O device controller will initiate a read or
write operation and provide a memory address over the I/O
bus 32 to the bus interface unit 64. Circuit 110 of the bus
interface unit compares this address to a range of addresses
programmed in circuit 116 to determine if the operation is
destined for expansion memory or system memory. If it is
determined that the operation is destined for expansion
memory, bus to bus pacing control logic 128 does nothing,
as there is no need to prioritize access to system memory
under this condition. If, however, it is determined that the

10

5

20

25

30

35

40

45

50

55

60

65

12
read or write operation is destined for system memories 24
or 26, and the predetermined conditions are met, the pacing
control logic 128 initiates a signal which grants an I/O
device 28 in control of the I/O bus 32 continued priority
access to system memory. This signal acts as an override to
the arbitration grant signal output by the memory controller
58 during normal arbitration procedures.
The predetermined conditions under which an I/O device

is granted priority access to system memory are as follows:
(1) a read request (prefetch) by an I/O device controlling the
I/O bus 32 is not aligned with a predefined 16-byte address
boundary in system memory, (2) an I/O device controlling
the I/O bus 32 immediately follows a write cycle with a read
cycle, (3) an I/O device controlling the I/O bus 32 completes
a data transfer cycle, (4) an I/O device controlling the I/O
bus 32 is reading or writing data in streaming mode (40
megabytes per second), or (5) more than two of the four
16-byte buffers in FIFO buffer 124 are already filled with
data to be written to system memory or less than two of the
four 16-byte buffers are yet to be filled with prefetched data
to be read from system memory.

In the preferred embodiment of the present invention, the
bus to bus pacing control logic 128 operates under three
pacing modes. The first of these modes is the default mode,
which determines pacing of bus control for the first three
conditions listed above. The second of these modes (option
1) determines pacing for the fourth listed condition, and the
third of these modes (option 2) determines pacing for the
fifth listed condition. A user of the system may choose either
pacing mode (option 1 or option 2) in addition to the default
pacing mode which the system automatically provides. The
choice is made by programming the contents of a 3-bit
register 130 (not shown) in programmed I/O circuit 116. The
default pacing mode is defined by a 0-0-0 register content;
option 1 is defined by a 0-0-1 register content, and option 2
is defined by a 1-0-0 register content.
As explained above, the default pacing mode handles

pacing for the first three pacing conditions. Under the first
condition, an I/O device 28 requests a read of system
memories 24 or 26 which is not aligned with a particular
16-byte packet boundary, meaning that the read request is
for data addresses which begin somewhere within the
boundaries of a 16-byte packet. If the read data were aligned
with the boundaries of a particular 16-byte packet, the
system bus address generation circuit 118 would simply do
a standard 16-byte burst transfer of the data into either buffer
125C or 125D. However, if the read data is not packet
aligned, the data must be prefetched using multiple 1, 2, 3
or 4 byte cycles. To insure that this data is prefetched in the
most efficient manner, access by the I/O device 28 to system
memory is locked while enough data is automatically
prefetched to arrive at a 16-byte boundary. This read data of
less than 16-bytes is then synchronized to the timing of the
I/O bus 32, and the I/O device controller begins to read the
data. In parallel with the I/O device controller reading data,
the system bus address generation circuit 118 will prefetch
the next contiguous 16-byte packet before releasing the lock
signal to system memory. Because this 16-byte packet
begins at a predefined boundary, a burst transfer is possible.
Thus, two transfers of data are performed without interrup
tion. Use of the lock signal 140 in this condition insures the
least amount of latency between when a device on I/O bus
32 requests data and when bus interface unit 64 provides
data, and the most efficient use of page mode system
memory.

Under the second condition, residual buffered write data
may exist in FIFO buffers 125A-125D when the I/O device

5,544,346
13

28 changes from a write transfer to a read request. Once the
I/O device bus controller changes from a write to a read,
pacing control logic 128 determines that an end of cycle has
occurred, that there is no more write data to be stored in the
FIFO buffer 124, and that read data is now being requested
from system memories 24 or 26. Because it is known that no
more contiguous write data is immediately forthcoming, the
buffered data in buffers 125A-125D is written to system
memory and the read request is prefetched from system
memory in one atomic operation.

Under the third condition, residual buffered data may also
exist in FIFO buffers 125A-125D when the I/O controller
device relinquishes control of the I/O bus 32. In this
instance, such residual data must be written to system
memory before releasing the system bus 76. If more than
one of the FIFO buffers 125A-125D include Such residual
data, as soon as the I/O device controller relinquishes control
of the I/O bus 32, the pacing logic 128 will generate a signal
to the memory controller to indicate that data in FIFO buffer
124 exceeds one transfer in length (i.e., greater than 16
bytes) and needs to be written to system memories 24 or 26.
Use of the lock signal 140 in this condition insures the least
amount of latency between the I/O controller releasing
control of the I/O bus 32 and the bus interface unit 64
releasing control of system bus 76.
The default logic used under the first three conditions is

implemented by algorithms which are built into the hard
ware of the bus interface unit 64 as default pacing mode
logic 129. Typically, state machines may be used to imple
ment the required logic, as is known in the art. The pacing
logic which responds to the fourth and fifth listed conditions
is also realized by algorithms which are built into the bus
interface unit hardware. FIGS. 4 and 5 illustrate circuit
diagrams used to implement particular embodiments of the
bus to bus pacing control logic 128 for option 1 and option
2, respectively.

Referring to FIG.4, the bus to bus pacing control logic for
implementing option 1 (relating to the fourth condition
described above) comprises a clocked S-R latch 132, AND
gates 134 and 136, and OR gate 138. At any time the latch
132 is set (S-input active), the latch outputs a LOCK signal
140. The LOCK signal 140 provides an I/O device 28 in
control of the I/O bus 32 continued access to system memory
when the I/O device 28 is reading or writing data to system
memories 24 and 26 in streaming mode. Streaming refers to
data transfers of a stream of data having contiguous
addresses wherein only the first address needs to be decoded
and the Subsequent addresses are considered to be contigu
OS.

Upon detection of a streaming data write operation by the
logic of FIG. 4 with either of FIFO buffers 125C or 125D
being full with a 16-byte packet of buffered write data, the
lock signal is activated and a burst write sequence is initiated
to system memory over the system bus 76 and will remain
active until the I/O device 28 terminates the streaming
sequence or until there is no data remaining in the FIFO
buffers. Similarly, upon detection of a streaming data read
operation, the lock signal is activated and a burst read
sequence is initiated to system memory and will remain
active as long as FIFO capacity permits or until the I/O
device 28 terminates the streaming sequence. Bus control
logic 128 is responsive to streaming reads or writes as
defined by programming a 0-0-1 register content in the 3-bit
register 130 (not shown in the drawings). Hence, if the 3-bit
register is programmed to 0-0-1, AND gate 134 will decode
the content of the register and provide a HIGH option 1
enable line 142. Line 144 will also be HIGH as long as the

10

15

20

25

30

35

40

45

50

55

60

65

14
bus interface unit 64 detects that the particular I/O device 28
in control of the I/O bus 32 is writing or reading data in
streaming mode. Because lines 142 and 144 are HIGH
during this time, AND gate 136 will set the latch 132 to
output LOCK signal 140 any time output 146 of OR gate
138 is HIGH.

Output 146 of OR gate 138 is HIGH when either (i) the
I/O device 28 in control of the I/O bus 32 issues a streaming
data read request (read operations) or (ii) either of 16-byte
buffers 125C or 125D in FIFO 124 is full (write operations).
In either of these instances, and with lines 142 and 144
HIGH as explained above, the latch 132 will override the
arbitration scheme of memory controller 58 by providing the
memory controller with a LOCK signal 140. Whenever the
I/O device 28 indicates that it is no longer transmitting read
or write data in streaming mode, line 148 goes HIGH,
thereby resetting the latch 132 and effectively disabling the
logic of FIG. 4.

Referring to FIG. 5, the bus to bus pacing control logic for
implementing option 2 (relating to the fifth condition
described above) comprises clocked S-R latches 150 and
152, each of which is controlled independently by for read
and write cycles. At any time either of these clocked atches
150, 152 are set, LOCK signal 140 is enabled and output to
the memory controller 58. The latches are reset by activating
the R-input, thereby disabling the latches from outputting
the LOCK signal.

Under the fifth condition listed above, either (i) data is
being written by an I/O controller 28 over I/O bus 32 to bus
interface unit 64 faster than it can be written over system bus
76 to system memory, or (ii) data is being read from the bus
interface unit 64 by the I/O controller 28 faster than bus
interface unit can prefetch data from system memory. If data
is being written too fast by an I/O controller, residual data
begins building up in FIFO buffers 125A-125D. If more
than half of the FIFO buffer space contains such residual
data, a LOCK signal 140 is initiated by latch 152 to permit
atomic transfers to system memory. If data is being read too
quickly from bus interface unit 64 by I/O controller 28 over
I/O bus 32, FIFO buffers 125A or 125B will empty, meaning
that buffers 125C and 125D are depleted of available
prefetched contiguous data. A LOCK signal 140 is thus
output by latch 150 so that the bus interface unit may
prefetch data into buffers 125C and 125D. Accordingly, at
least half of the FIFO buffer 124 is maintained filled with
prefetched data.

Bus control logic is responsive to the fifth condition as
defined by programming a 1-0-0 register content in the 3-bit
register 130 (not shown). Hence, if the 3-bit register is
programmed to 1-0-0, NOR gate 154 will decode the content
of the register and provide a HIGH option 2 enable line 156.
The option 2 enable line 156 is used to enable the control
logic for both data read operations (the upper half of logic
of FIG. 5) and data write operations (the lower half of logic
of FIG. 5).

During write operations, the output 158 of OR gate 160
will also be HIGH as long as at least two of the buffers
125A-125D are full. Typically, this means that either buffer
125A or 125B has been filled and has transferred data to
buffer 125C or 125D, respectively, and the other of buffers
125A or 125B is now being filled. In this case, data is in
either buffer 125C or 125D, or both, and can immediately be
written to system memory. With lines 156 and 158 HIGH,
AND gate 162 will set latch 152 which will then output the
LOCK signal 140 to the memory controller 58. The LOCK
signal 140 will remain active until the R-input of latch 152

5,544,346
15

is driven HIGH by the output of AND gate 164. The output
of AND gate 164 goes HIGH if both buffers 125C and 125D
are empty, thereby indicating that there is no need to
immediately write data to system memory from these buff

S.

During read operations, latch 150 will output the LOCK
signal to memory controller 58 when the latch 150 is set by
a HIGH output of AND gate 166. The output of AND gate
166 is driven high when (i) line 156 is HIGH due to option
2 being active, (ii) line 168 is HIGH due to the bus interface
unit 64 detecting a read from system memory, and (iii) line
170 is driven LOW by NOR gate 172 when one of the
buffers 125A or 125B is empty. A LOCK signal is initiated
in this case because, with either buffer 125A or 125B empty,
the contents of buffers 125C or 125D may be emptied
therein, leaving room in either buffer 125C or 125D for
prefetched contiguous data from system memory.
The LOCK signal in read operations remains active until

the R-input of latch 150 is activated by OR gate 174. The
output of OR gate 174 is driven HIGH at any time (i) the bus
interface unit 64 detects that there is no read from system
memory or (ii) either of buffers 125C and 12.5D is full and
neither of buffers 125A and 125B is empty (via AND gate
178, OR gate 176 and NOR gate 172). In either of these two
cases, the LOCK signal is not necessary, and, accordingly,
the latch 150 is reset. Access to system memories 24 and 26
is then controlled under the normal arbitration scheme
implemented by the memory controller 58.

Accordingly, the preferred embodiment of a bus control
logic system for computers having a dual bus architecture
has been described. With the foregoing description in mind,
however, it is understood that this description is made only
by way of example, that the invention is not limited to the
particular embodiments described herein, and that various
rearrangements, modifications, and substitutions may be
implemented without departing from the true spirit of the
invention as hereinafter claimed.
We claim:
1. An information handling system, comprising:
a system memory;
a plurality of system resource devices;
a first bus coupled to the system memory and the system

resource devices for transferring data among the system
resource devices and the system memory;

a second bus coupled to the system resource devices, said
system resource devices coupled to the second bus
being capable of controlling the second bus by arbi
trating for control with other of said system resource
devices; and

a bus interface unit coupled between the first bus and the
second bus for providing data transfer capability ther
ebetween, said bus interface unit including a buffer for
temporarily storing data to be transferred between the
first bus and the second bus, and control logic for
generating a control signal after one of the system

O

5

20

25

30

35

40

45

50

55

16
resource devices has gained control of the second bus
in order to gain control of the first bus, thereby pre
venting other of said system resource devices from
accessing the firstbus, said control logic being dynami
cally responsive to signals indicative of data transfer
conditions between the first bus and the second bus to
generate said control signal.

2. The system of claim 1, wherein said bus interface unit
further includes a programmable circuit in which those data
transfer conditions that cause the control logic to dynami
cally generate said control signal are programmable.

3. The system of claim 1, wherein said control logic
includes default pacing mode logic for determining whether
a read request by said one of said system resource devices
to said system memory does not align with a predefined
sixteen byte address boundary of the system memory and for
dynamically generating said control signal in response
thereto.

4. The system of claim 1, wherein said control logic
includes default pacing mode logic for determining whether
said one of said system resource devices follows a write
operation to said system memory with a read operation to
said system memory and for dynamically generating said
control signal in response thereto.

5. The system of claim 1, wherein said control logic
includes default pacing mode logic for determining whether
said one of said system resource devices has completed a
data transfer operation and for dynamically generating said
control signal in response thereto.

6. The system of claim 1, wherein said control logic
includes pacing control logic for determining whether said
one of the system resource devices is reading or writing to
said system memory in a streaming mode and for dynami
cally generating said control signal in response thereto.

7. The system of claim 1, wherein said control logic
includes pacing control logic for detecting a capacity of the
buffer and for dynamically generating the control signal
according to the detected capacity.

8. The system of claim 1, wherein said second bus
comprises an input/output (I/O) bus and the system resource
devices coupled to the second bus comprise I/O devices.

9. The system of claim 8, wherein said first bus supports
burst transfers of read or write data between said bus
interface unit and said system memory in bandwidths of up
to sixteen bytes, and wherein said input/output bus supports
transfers of read or write data between said input/output
device and said bus interface unit in bandwidths of one, two
and four bytes.

10. The system of claim 1, wherein said buffer comprises
a dual ported, asynchronous, bi-directional storage unit.

11. The system of claim 10, wherein said storage unit
includes at least two pairs of sixteen byte buffers, said at
least two pairs of buffers being used for both read and write
operations.

