
|||||I||
US005586327A

United States Patent (19) 11 Patent Number: 5,586,327
Bealkowski et al. (45) Date of Patent: Dec. 17, 1996

54 EXTENDED INITIALIZATION FOR 5,230,052 7/1993 Dayan et al. 395/700
PERSONAL DATA PROCESSING SYSTEMS 5,410,699 4/1995 Bealkowski et al. 395/700

5,410,707 4/1995 Bell ... 395/700
75) inventors: Richard Bealkowski, Austin, Tex.; 5,418,918 5/1995 Vander Kamp et al. 395/375

(73)

21)

22)

51
(52)
58)

(56)

John W. Blackledge, Boca Raton, Fla.;
Michael R. Turner, Austin, Tex.

Assignee: International Business Machines
Corporation, Austin, Tex.

Appl. No.: 313,481
Filed: Sep. 27, 1994
Int. Cl. G06F 9/00
U.S. C. ... 395/652
Field of Search 395/700, 650

References Cited

U.S. PATENT DOCUMENTS

4,430,704 2/1984 Page et al. 364/200
4,491,914 1/1985 Sujaksu 364/200
4,590,557 5/1986 Lillie 364/200
4,633,466 12/1986 Laws et al. 371/16
4,663,707 5/1987 Dawson 364/200
4,720,812 1/1988 Kao et al. 364/900
4,787,034 11/1988 Szoke 364/300
4,803,623 2/1989 Klashka et al. 364/200
4,833,594 5/1989 Familetti et al. ... 364/200
4,858,114 8/1989 Heath et al. 364/200
4,979,106 12/1990 Schneider 364/200
5,008,814 4/1991 Mathur 364/200
5,210,875 5/1993 Bealkowski et al. 395/700

100

BOOTSYSTEMNYES
PARTITION?

PERFORM
NORMAL

110 PLSEQUENCE

Primary Examiner-Kevin A. Kriess
Attorney, Agent, or Firm-Geoffrey Mantooth; Michael
Buchenhorner

57 ABSTRACT

A method and apparatus for extending initialization of a
personal data processing system using multiple levels of
bootstrap code is provided. The first level of bootstrap code
is stored in a non-volatile memory device associated with a
processor of the data processing system. The second level of
code is stored on a system partition or othersection of a fixed
disk memory storage device. The second level of bootstrap
code is user configurable, and also provides access to a file
system. A first initialization procedure is performed by
executing the first level of bootstrap code, where the first
initialization procedure performs a memory check self-test
of the data processing system and conditions the data
processing system for a program load. The second level of
bootstrap code is then executed performing a second initial
ization procedure which performs specific initialization
steps according to the configuration of the second level of
bootstrap code. A file system containing any required test
and initialization code may be accessed by the second
initialization procedure. After initialization is complete, the
initial program load of an operating system is executed.

13 Claims, 4 Drawing Sheets

104 SYSTEM
PARTITION
BOOT

106 EXTENDED
INTIALIZATION

Should the
system reference
programs be
invoked?

NVOKE THE
SYSTEM

REFERENCE
PROGRAMS 112

5,586,327 Sheet 1 of 4 Dec. 17, 1996 U.S. Patent

5,586,327 Sheet 2 of 4 Dec. 17, 1996 U.S. Patent

5,586,327 Sheet 3 of 4 Dec. 17, 1996 U.S. Patent

0987S dS0

99 9?q80 CDOESN'T

W08d33
69

U.S. Patent Dec. 17, 1996 Sheet 4 of 4 5,586,327

100

104
BOOT SYSTEMY YES pils
PARTITION? BOOT

106 EXTENDED
NTIALIZATION

PERFORM Should the
NORMAL System reference

110 PL SEQUENCE programs be
invoked?

NVOKE THE
SYSTEM

REFERENCE
PROGRAMS 112

5,586,327
1.

EXTENDED INTIALIZATION FOR
PERSONAL DATA PROCESSING SYSTEMS

TECHNICAL FIELD OF THE INVENTION

The present invention relates to methods and apparatuses
for testing and initializing a personal data processing system
upon startup of the personal data processing system.

BACKGROUND OF THE INVENTION

Personal data processing systems in general and IBM
personal computers in particular have attained widespread
use for providing computer power to many segments of
today's modern society. Personal data processing systems
can usually be defined as a desktop, floor standing, or
portable microcomputer that consists of a system unit having
a system processor or processors and associated volatile and
non-volatile memory, a display monitor, a keyboard, one or
more diskette drives, a fixed disk storage, and an optional
printer. One of the distinguishing characteristics of these
systems is the use of a motherboard or system planar to
connect these components together. These systems are
designed primarily to give independent computing power to
a single user and are inexpensively priced for purchase by
individuals or small businesses. Examples of such personal
data processing systems are IBM's PERSONAL COM
PUTER AT and IBM's PERSONAL SYSTEM/2 Models 25,
30, L40SX, 50, 55, 65, 70, 80, 90 and 95. (PERSONAL
SYSTEM/2 and IBM are trademarks of International Busi
ness Machines Corporation.)

Personal data processing systems utilize memory in the
form of Random Access Memory (RAM) as a relatively
inexpensive and fast storage device for use in conjunction
with central processing unit operations. During the operation
of a data processing system, an operating system program is
loaded into the RAM. The operating system manages the
components or subsystems of the computer, processes com
mands, and controls programs. In addition to the operating
system, the RAM contains data and application programs
that have been loaded during the operation of the computer.
When electrical power to the computer is switched off, the
contents of the RAM vanishes.

Personal data processing systems typically include a
memory device such as Read Only Memory (ROM) on
which "bootstrap' information is stored. The bootstrap
information commonly includes data for conducting an
internal test of the data processing system and for initially
configuring the data processing system and its many sub
systems such as the RAM, hard and floppy disk drives, and
video adapters. The bootstrap information also includes
code for loading operating systems software, such as OS/2,
into the system from a device or subsystem (such as a hard
disk drive). (OS/2 is a trademark of International Business
Machines Corporation.) Furthermore, the bootstrap infor
mation may include code for configuring the subsystems.
This bootstrap information is stored in non-volatile memory
so that the data is retained in the memory device when power
is removed from the data processing system. When power is
applied to the data processing system, the bootstrap infor
mation is automatically loaded into the processing parts of
the data processing system.

In operation, upon startup, the data processing system
loads the bootstrap information. The bootstrap information
instructs the data processing system to perform a power-on
self test ("POST") to make sure that the various subsystems

5

10

5

20

25

30

35

40

45

50

55

65

2
are working properly. The bootstrap information also
instructs the data processing system to configure itself and
any peripheral units coupled to the data processing system,
thereby initializing the data processing system. Finally, the
bootstrap information instructs the data processing system to
load operating system software into the RAM in an Initial
Program Load (IPL) sequence. The loaded operating system
enables the data processing system to run other software
applications.

Typically, when ROM is used as a source of bootstrap
information, the bootstrap information is unalterably fixed
into the ROM during manufacture. One type of prior art data
processing system relies on the ROM as the exclusive source
of the bootstrap information. However, data processing
systems may have applications or peripheral devices that
require additional or modified bootstrap information. These
applications or peripheral devices have generally required
the data processing system to first bootstrap itself using the
unalterable bootstrap information in ROM. Then, the con
figuring data or other parameters are changed with software
routines available after the operating system has been loaded
into the data processing system. This is a cumbersome and
inflexible process.

Other prior art data processing systems have allowed a
minor amount of flexibility in the loading of bootstrap
information by providing a second nonvolatile memory
device upon which bootstrap information may be written
and erased. The second memory device, which is alterable,
works in combination with the unalterable memory device to
provide the bootstrap information necessary to initialize the
data processing system for use. The unalterable memory
device provides the initial bootstrap information, which
provides sufficient information to enable the data processing
system to read a second level of user configurable bootstrap
information from the second memory device. Typically the
unalterable memory device is a ROM device and the second
memory device is an Erasable Programmable Read Only
Memory (EPROM) device. However, the flexibility of using
dual ROM memory sources is limited because only a
relatively limited amount of user configurable code may be
written on the second memory device. In addition, an
EPROM device is alterable only with difficulty. The
EPROM device must first be exposed to ultraviolet light to
erase or clear the memory. Then, the new information is
loaded in.

Another prior art method (referred to as the INIT program
method) also allows some flexibility in manipulation of the
bootstrap information by driving a very small portion of a
disk storage device with the information from the unalter
able bootstrap memory device. A very small, perhaps one or
two sectors (512 bytes per sector) worth of information, are
stored on track zero of the fixed disk. This is the same track
that typically contains the boot record for the disk. The
bootstrap information contained in the ROM or the EPROM
directs the data processing system to read one or two disk
sectors of the disk storage device. The disk sectors contain
additional bootstrap information that may be configured by
a data processing system user. However, the bootstrap
information that is stored in these disk sectors cannot be
protected from being overwritten. Furthermore, no access is
provided to a file system because an operating system has
not been loaded.

One problem with the prior art initialization schemes is
that the amount of nonvolatile storage available for the
bootstrap information is limited. The test and initialization
processes required to bootstrap a data processing system are
ever increasing in size and complexity. It is becoming

5,586,327
3

prohibitive to include all the required test and initialization
code in the ROM memory devices typically used to store
bootstrap information, or in the limited disk space accessible
to the data processing system prior to IPL. For example, high
function adapters (such as video adapters) for interfacing
peripherals with the data processing system may contain
microprocessors having a large memory requiring a large,
loadable code base that must be loaded from the bootstrap
information in order to configure the adapter and the periph
eral. The test and initialization processes must be completed
before the IPL loads the operating system into the data
processing system because the operating system relies on the
subsystems having been tested and initialized prior to the
IPL.

Another problem with prior art initialization schemes is
that the software that performs the initialization on the
extended high function subsystems requires access to a file
subsystem on a storage device. Access to a file system is
required in order to retrieve the data and control files
necessary for the initialization. However, access to a file
system is not provided before an operating system has been
loaded onto the data processing system.

Therefore, what is desired is a dynamically extendible
initialization and POST mechanism which allows for flex
ible and independent activities to be performed before the
IPL phase, and which has access to a file system so as to be
able to retrieve data and control files necessary to com
pletely test and initialize the data processing system and its
subsystems.

SUMMARY OF THE INVENTION

It is an object of the present invention to provide a method
and apparatus for initializing a data processing system that
may be easily configured and that provides access to a file
system so that flexible and independent initialization activi
ties may be performed before the initial program load.
A first set of instructions is provided on a non-volatile

memory device, and a configurable second set of instruc
tions is provided on a partition of a memory storage device.
In order to initialize the data processing system, the first set
of instructions is loaded into the processor of the data
processing system from the non-volatile memory device.
The processor executes the first set of instructions. After
execution of the first initialization procedure, the second set
of instructions is addressed and executed to perform a
second initialization procedure. The second initialization
procedure further initializes the data processing system in
accordance with the configuration of the second set of
instructions. After addressing and executing the second set
of instructions, the processor completes execution of the first
set of instructions by performing an IPL (initial program
load), thereby preparing the data processing system for
further operations.
The second set of instructions may be configured by a user

of the data processing system to accomplish specific initial
ization steps. The second set of instructions provides access
to a file system, which provides ample storage for any
required test and initialization code and allows flexible and
independent activities to be performed before the IPL
phases.
The present invention allows the initialization procedure

to be extended in a flexible and convenient manner. The first
phase of the initialization (referred to as resident POST) is
executed by the conventional BIOS program located in
ROM or other non-volatile memory. The resident POST is

10

15

20

25

30

35

40

45

50

55

60

65

4
limited to 128K of memory, due to constraints on the size of
the ROM. However, this first inititialization phase can be
extended into a second initialization phase, the code for
which is located in a system partition on the fixed disk. After
the second phase (or extended) initialization has been com
pleted, normal system IPL can begin in order to load the
operating system.
The present invention provides additional space for ini

tialization, which space is limited only by the size and space
of the system partition on the fixed disk. The initialization
code in the system partition can access a file system, an
operating system, and BIOS calls so as to provide initial
ization of high function adapters. Thus, the extended ini
tialization is provided access to a suboperating system. Also,
the initialization code in the system partition can be easily
changed. The system partition can contain message files,
wherein support for various human languages can be pro
vided.

BRIEF DESCRIPTION OF THE DRAWINGS

Some of the objects of the invention having been stated,
other objects will appear as the description proceeds, when
taken in connection with the accompanying drawings, in
which:

FIG. 1 is a perspective view of a personal computer
embodying this invention;

FIG. 2 is an exploded perspective view of certain ele
ments of the personal computer of FIG. 1 including a
chassis, a cover, and a planar board and illustrating certain
relationships among those elements;

FIG. 3 is a block diagram of certain components of the
personal computer of FIGS. 1 and 2;

FIG. 4 is a flow chart showing the method of the present
invention in accordance with a preferred embodiment.

DESCRIPTION OF THE INVENTION

While the present invention will be described more fully
hereinafter with reference to the accompanying drawings, in
which a preferred embodiment of the present invention is
shown, it is to be understood at the outset of the description
which follows that persons of skill in the appropriate arts
may modify the invention here described while still achiev
ing the favorable results of this invention. Accordingly, the
description which follows is to be understood as being a
broad, teaching disclosure directed to persons of skill in the
appropriate arts, and not as limiting upon the present inven
tion.

Referring now more particularly to the accompanying
drawings, a microcomputer embodying the present inven
tion is there shown and generally indicated at 10 (FIG.1). As
mentioned hereinabove, the computer 10 may have an
associated monitor 11, keyboard 12 and printer or plotter 14.
As shown in FIG. 2, the computer 10 has a cover 15 which
cooperates with a chassis 19 in defining an enclosed,
shielded volume for receiving electrically powered data
processing and storage components or subsystems for pro
cessing and storing digital data. At least certain of these
components are mounted on a multilayer planar 20 or
motherboard which is mounted on the chassis 19 and
provides a means for electrically interconnecting the com
ponents of the computer 10 including those identified above
and such other associated elements such as floppy disk
drives, various forms of direct access storage devices, acces
sory cards or boards, and the like. Referring to FIG. 1, there

5,586,327
5

is shown a floppy disk drive 24 and a hard or fixed disk drive
26.

The chassis 19 has a base and arear panel (see FIG.2) and
defines at least one open bay for receiving a data storage
device such as a disk drive for magnetic or optical disks, a
tape backup drive, or the like. In the illustrated form, an
upperbay 22 is adapted to receive peripheral drives of a first
size (such as those known as 3.5 inch drives). A floppy disk
drive 24 (see FIG. 1), a removable media direct access
storage device which is capable of receiving a diskette
inserted thereinto and using the diskette to receive, store and
deliver data as is generally known, may be provided in the
upper bay 22 of FIG. 2.
A summary of the operation in general of the personal

computer system 10 may also merit review. Referring to
FIG. 3, there is shown a block diagram of a personal
computer system illustrating the various components of the
computer system such as the system 10 in accordance with
the present invention, including components mounted on the
planar and the connection of the planar to the Input/Output
(I/O) slots and other hardware of the personal computer
system. Connected to the planar is the Central Processing
Unit (CPU) 32. While any appropriate microprocessor can
be used as the CPU 32, one suitable microprocessor is the
80386 which is sold by INTEL. The CPU 32 is connected by
a high speed CPU local bus 34 to a Bus Interface Control
unit (BIC) 35, to volatile Dynamic Random Access Memory
(DRAM) 36 here shown as Single Inline Memory Modules
(SIMMs) and to BIOS ROM 38 in which is stored instruc
tions for Basic Input/Output System (BIOS) operations to
the CPU 32. The BIOS ROM 38 includes either ROM,
EPROM, or both, The BIOS ROM38 includes the BIOS that
is used to interface between the I/O devices and the oper
ating system of the CPU 32. In addition, the BIOS is used
to provide POST and initialization operations during the
bootstrapping of the data processing system. The BIOS is
also used to initiate the IPL, wherein an operating system is
loaded from a source (such as a fixed disk) into RAM.
Instructions stored in ROM 38 can be copied into RAM 36
to decrease the execution time of the BIOS. In addition,
there is provided non-volatile RAM (NVRAM) 60 which
contains information that is retained during power off peri
ods of the data processing system.

While the present invention is described hereinafter with
particular reference to the system block diagram of FIG. 3,
it is to be understood at the outset of the description which
follows that it is contemplated that the apparatus and meth
ods in accordance with the present invention may be used
with other hardware configurations. For example, the system
processor could be an INTEL80486 microprocessor,

Returning now to FIG. 3, the CPU local bus 34 (com
prising data, address and control components) also provides
for the connection of the CPU 32 with a numeric or math
coprocessor (MCPU) 39 and a Small Computer Systems
Interface (SCSI) controller 40. The SCSI controller 40 may,
as is known to persons skilled in the arts of computer design
and operation, be connected or connectable with ROM 41,
RAM 42, and suitable external devices of a variety of types
(such as a fixed disk) as facilitated by the I/O connection
indicated to the right of the Figure. The SCSI controller 40
functions as a storage controller in controlling storage
memory devices such as fixed or removable media electro
magnetic storage devices (also known as hard and floppy
disk drives), electro-optical, tape and other storage devices.
The bus interface controller (BIC) 35 couples the CPU

local bus 34 with an I/O bus 44 and functions as a protocol

10

5

20

25

30

35

40

45

50

55

60

65

6
translator, memory controller and DMA controller among
other functions. By means of the I/O bus 44, the BIC 35 is
coupled with an optional feature bus such as a MICRO
CHANNEL bus having a plurality of I/O slots for receiving
MICRO CHANNEL adapter cards 45 which may be further
connected to an I/O device or memory (not shown). The I/O
bus 44 includes address, data, and control components. The
I/O bus 44 may be configured to bus specifications other
than the MICRO CHANNEL specification.

Coupled along the I/O bus 44 are a variety of I/O
subsystems such as a Video Signal Processor (VSP) 46
which is associated with Video RAM (VRAM) for storing
character based information (indicated at 48) and for storing
image based information (indicated at 49). Video signals
exchanged with the processor 46 may be passed through a
Digital-to-Analog Converter (DAC) 50 to a monitor or other
display device. Provision is also made for connecting the
VSP46 directly with what is here referred to as a natural
image input/output, which may take the form of a video
recorder/player, camera, etc. The I/O bus 44 is also coupled
with a Digital Signal Processor (DSP) 51 which has asso
ciated instruction RAM 52 and data RAM 54 available to
store software instructions for the processing of signals by
the DSP 51 and data involved in such processing. The DSP
51 provides for processing of audio inputs and outputs by the
provision of an audio controller 55, and for handling of other
signals by provision of an analog interface controller 56.
Also, the I/O bus 44 is coupled with an input/output con
troller 58 with associated Electrically Erasable Program
mable Read Only Memory (EEPROM) 59 by which inputs
and outputs are exchanged with conventional peripherals
including floppy disk drives, a printer or plotter 14 (see FIG.
1), keyboard 12, a mouse or pointing device (not shown),
and a serial port.

Before turning in greater detail to a description of extend
ing initialization of a personal data processing system 10, it
is appropriate to first consider the provision by a personal
data processing system of a system partition. Disks used in
fixed memory devices (also known as hard disk drives) may
be partitioned into separate dedicated areas of disk space.
Each partitioned area of the disk may be formatted and
logically structured to meet whatever the needs are of the
processor accessing the partition. One type of partition is a
system partition, which is conventional. A system partition
is a dedicated area of fixed disk space used to store data and
code relating to system operations of the data processing
system. In this regard, the system partition stores an image
which corresponds to a system reference diskette program
(diagnostics). This image includes the initial BIOS load
program (from ROM). The system partition is based on a
simple DOS FAT (File Allocation Table) file system. The
system partition is stored at the very end of the fixed disk
(the opposite end from track Zero). A variety of hardware
and software mechanisms hide and protect the system par
tition from being inadvertently written to once the operating
system is loaded. Newer personal data processing systems
support the presence of a system partition.
The extended initialization method of the current inven

tion utilizes the system partition to perform further initial
ization procedures after a conventional power-on self test
and initialization (POST) procedure resident in the data
processing system tests and initializes the data processing
system, but before a conventional Initial Program Load
(IPL) operation is executed. The system partition enables the
extended initialization method to have access to a file
system, an operating system (or suboperating system), and
BIOS calls before the operating system activated by the IPL

5,586,327
7

is available. The access to a file system provided by the
extended initialization method greatly increases the amount
of initialization code that is available to be executed by the
data processing system, as well as increases the flexibility of
initialization procedures. The program code of the extended
initialization program may also be easily changed and
updated by altering the code on the system partition.

Thus, with the present invention, the system partition
contains information in addition to the image of the system
reference diskette program. This additional information
includes test and initialization code that is specific to what
ever subsystem is to be initialized with an extended initial
ization. For example, a video adapter subsystem may have
the following components, all of which are tested and
initialized by the extended initialization code: a VSP 46,
Image RAM 49, Graphic RAM 48, and an Analog-To
Digital Converter 56 (see FIG. 3). The system partition
contains additional information, such as files and code bases,
which may be required to boot higher function adapters.

Referring now to FIG. 4, the flow chart of the present
invention will be described. In the flow chart, the following
graphical conventions are used: a rectangle is used to
illustrate a process or a function and a diamond is used to
illustrate a decision. These conventions are well understood
by programmers skilled in the art of data processing systems
and the flow chart is sufficient to enable a programmer
skilled in the art to write code in any suitable computer
programming language such as assembly language.
The method shown in FIG. 4 is contained within the BIOS

ROM38 (see FIG.3) and on the system partition of the fixed
disk 26 (see FIG. 1) and is executed by the CPU. Initial
ization of the data processing system begins when the data
processing system is powered-on or manually reset. The
power-on or reset condition causes a signal to be sent to the
CPU 32. The CPU 32 responds to the signal by accessing a
predetermined location in the BIOS ROM 38. The BIOS
ROM 38 contains bootstrap code (or information) for
executing conventional POST and IPL operations, as well as
code for determining whether an extended initialization is
necessary and code for transferring program control to the
system partition if extended initialization is required. The
code from the BIOS ROM 38 is executed by the CPU 32.
As shown in FIG. 4, the CPU 32 executes the POST, step

100, from the bootstrap code loaded from BIOS ROM 38.
The POST causes the data processing system to go through
checks to make sure the subsystems are working properly.
For example, during one aspect of POST, the RAM is
checked. The POST code resident on the BIOS ROM 38 and
the operation of the data processing system during execution
of the resident POST are conventional and are well known
to those skilled in the art.

After executing the resident POST, the method deter
mines if the system partition should be booted, step 102. The
method may determine whether the system partition should
be booted based upon a value left in the non-volatile RAM
(NVRAM) 60 by a setup program. For example, a flag can
be set in NVRAM 60 upon installation of a first application
or subsystem requiring the use of extended initialization.
The flag can be reset upon the deinstallation of the last
application or subsystem that requires the use of extended
initialization. In addition, an error found during execution of
the resident POST will cause the CPU 32 to boot the system
partition so that an operator of the data processing system
may determine the cause of the error.

Typically, an application or a subsystem requires booting
of the system partition if extensive test and initialization

5

10

5

20

25

30

35

40

45

50

55

60

65

8
code is required to completely initialize the data processing
system and its attached peripheral devices, or if the initial
ization performed in accordance with the resident bootstrap
code is required to be modified to operate with the applica
tion or peripheral device. For example, extensive test and
initialization code may be required if the adapter cards 45
(FIG. 3) are high function adapters that contain micropro
cessors that require a large loadable code base.

Furthermore, the system partition may be booted if mes
sages are to be provided to the user during initialization of
the data processing system. Message files may be included
within the system partition. The message files may support
plural languages so that messages may be displayed in a
language preferred by the operator of the data processing
system.

If the result of step 102 is NO, the system partition is not
to be booted, then the CPU 32 performs the normal IPL
sequence, step 110. The system partition is not booted unless
necessary (in order to reduce the power-on time of the
booting sequence). To perform the IPL sequence, conven
tional IPL code located in the BIOS ROM is executed by the
CPU 32. The bootstrap code directs the CPU to load a boot
record from an input device, such as a fixed drive storage
unit, into the data processing system RAM. Control is
transferred from the BIOS ROM to the boot record. The boot
record then proceeds to locate the operating system, load it
into RAM, and transfer program control to the operating
system. After loading and executing the operating system
code, the data processing system may then load further
program code and perform normal operations.

If the result of step 102 is YES, the system partition is to
be booted, then the system partition is booted, step 104,
thereby executing a second or extended boot process. The
system partition is a dedicated area of disk space on a disk
used in a fixed memory device for storing data and code
relating to testing and initializing the data processing sys
tem. The system partition provides a subsystem level oper
ating system that enables the system partition to have access
to a file system contained in the system partition. Typically,
the subsystem level operating system will provide full
operating system services to the data processing system
without the interface services that are provided by the
operating system ultimately installed by the IPL sequence.
The system partition is based on a simple DOS file

allocation table (FAT) file system. The file system accessible
by the system partition includes user configurable files. The
user configurable files may be configured by the user to
provide data and code required to perform extended initial
ization procedures.

In order to boot the system partition, step 104, the BIOS
ROM locates, loads, and causes the execution of the
extended initialization code in the system partition. The
system partition is stored at a predetermined fixed location,
typically at the very end of the fixed disk. In another
embodiment, the location of the system partition is deter
mined from a partition table stored in the boot record on the
fixed disk device. The boot record is typically stored on the
first sector of the fixed disk device. The boot record contains,
in addition to the partition table, conventional code required
for booting the operating system. Once the location of the
system partition is determined, the BIOS ROM initiates the
loading of the system partition and the extended initializa
tion code contained therein.

After the extended initialization code in the system par
tition is booted, the method then performs the extended
initialization, step 106. The code to perform the extended

5,586,327
9

initialization can be invoked either through the device driver
mechanism (for example, by using CONFIG.SYS) or
through batch processing mechanisms (for example, by
using AUTOEXEC.BAT). At this step in the initialization,
the POST code has full access to the subsystem operating
system and the file system of the system partition. In
addition, BIOS calls may be made to the BIOS ROM of the
system or to the BIOS ROM of a device.
The extended initialization procedures performed in

accordance with the directions of the code are specific to the
device or application requiring the extended initialization.
For example, a high end adapter requiring loading of large
amounts of code into memory has different initialization
requirements than an application requiring specific initial
ization setting. The user may configure the code of the
system partition and the system partition files to correspond
to the extended initialization procedures required.
Once extended initialization has been completed, the

method then determines if the system reference programs
should be invoked, step 108. The system reference programs
are invoked if an error has occurred during the initialization
process. The system reference programs contain a POST
error processor which determines what the error is, and
displays a message to the user about the error. The system
reference programs are located on a storage memory device
such as a fixed or floppy disk. If the result of step 108 is
YES, the system reference programs should be invoked,
then the system reference programs are called, thereby
invoking the system reference programs, step 112. The user
may then correct the error and reinitiate POST procedures.

If the result of step 108 is NO, the system reference
programs need not be invoked, then the method performs the
normal IPL sequence, step 110. Performance of the normal
IPL sequence proceeds as disclosed above. Upon termina
tion of the normal IPL sequence, the data processing system
is prepared for interaction with the data processing system
user, and the initialization procedures are complete.
The foregoing disclosure and the showings made in the

drawings are merely illustrative of the principles of this
invention and are not to be interpreted in a limiting sense.
What we claimed is:
1. A method of extending an initialization of a data

processing system, comprising the steps of:
providing a first set of instructions in a non-volatile
memory device;

providing a configurable second set of instructions in a
protected partition of a memory storage device, said
partition providing a subsystem level operating system;

executing said first set of instructions to perform a first
initialization procedure for initializing said data pro
cessing system;

booting, said partition so as to boot said subsystem level
operating system;

addressing said second set of instructions and executing
said second set of instructions to perform a second
initialization procedure to further initialize said data
processing system by utilizing said subsystem level
operating system;

after addressing and executing said second set of instruc
tions, performing an initial program load of an operat
ing system.

2. The method of initializing a data processing system of
claim 1, further comprising the step of before addressing
said second set of instructions, determining if said second set
of instructions should be addressed and if so, then executing

10

15

20

25

30

35

40

45

50

55

60

65

10
said second set of instructions and if not, then performing
said initial program load of said operating system.

3. The method of initializing a data processing system of
claim 1, wherein said first initialization procedure comprises
the steps of:

performing a self-test to determine whether said data
processing system is operating correctly;

conditioning said data processing system for loading of
programs into said data processing system.

4. The method of initializing a data processing system of
claim 1, wherein said subsystem level operating system
provides access to a file system having configurable files
therein.

5. The method of initializing a data processing system of
claim 1, wherein said second set of instructions is loaded
from said memory storage device.

6. The method of initializing a data processing system of
claim 1, wherein the step of providing a configurable second
set of instructions in a partition of a memory storage device
further comprises the step of providing said second set of
instructions in a system partition on a fixed disk in a fixed
media electromagnetic storage device.

7. The method of initializing a data processing system of
claim 6, wherein the step of addressing said second set of
instructions further comprises the step of addressing a
starting address of said system partition in order to address
said second set of instructions.

8. The method of initializing a data processing system of
claim 6, wherein the step of addressing a second set of
instructions further comprises the steps of:

retrieving a starting address of said system partition from
a master boot record on said disk;

addressing said retrieved starting address of said system
partition in order to address said second set of instruc
tions.

9. An apparatus for extending an initialization of a data
processing system, comprising:
means for providing a first set of instructions in a non

volatile memory device;
means for providing a configurable second set of instruc

tions in a protected partition of a memory storage
device, said partition providing a subsystem level oper
ating system;

means for executing said first set of instructions to per
form a first initialization procedure for initializing said
data processing system;

means for booting said partition so as to boot said
subsystem level operating system;

means for addressing said second set of instructions and
executing said second set of instructions to perform a
second initialization procedure to further initialize said
data processing system by utilizing said subsystem
level operating system;

means for performing an initial program load of an
operating system, after addressing and executing said
second set of instructions.

10. The apparatus for initializing a data processing system
of claim 9, further comprising, means for determining if said
second set of instructions should be addressed before
addressing said second set of instructions and if so, then for
executing said second set of instructions and if not, then for
performing said initial program load of said operating sys
ten.

11. The apparatus for initializing a data processing system
of claim 9, wherein the means for providing a configurable

5,586,327
11

second set of instructions in a partition of a memory storage
device further comprises means for providing said second
set of instructions in a system partition on a fixed disk in a
fixed media electromagnetic storage device.

12. The method of claim 1 wherein:
said step of executing said first set of instructions further

comprises the step of executing a portion of said first
set of instructions;

said step of performing an initial program load of an
operating system further comprises the step of execut
ing a remainder of said first set of instructions.

10

12
13. The apparatus of claim 9 wherein:
said means for executing said first set of instructions

further comprises means for executing a portion of said
first set of instructions;

said means for performing an initial program load of an
operating system further comprises means for execut
ing a remainder of said first set of instructions.

ck k k . .k :

