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57 ABSTRACT 

In a computer system having a central processing unit (CPU) 
in circuit communication with a memory via a memory bus 
and having first and second peripheral bus controllers gen 
erating first and second dissimilar peripheral buses, a mul 
tibus arbiter is provided for arbitrating access of a memory 
bus between the two dissimilar buses. The multibus arbiter 
has an assignment register, a time slot pointer, and an 
arbitration circuit. The length of the assignment register and 
time slot pointer controls the granularity of control of 
accesses to the memory bus by the peripheral buses. The 
assignment register holds a multibit assignment value that 
determines which of the two peripheral buses will be given 
access to the memory bus for a given time slot during 
contention. The time slot pointer selects one of the bits of the 
assignment register and points to a different bit responsive to 
both peripheral buses requesting access to the memory bus 
at the same time and one of said peripheral bus arbiters 
indicating that the current access of the memory bus is 
complete. 

14 Claims, 12 Drawing Sheets 
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1. 

METHOD AND APPARATUS FOR BUS 
ARBTRATION IN A MULTIPLE BUS 

INFORMATION HANDLING SYSTEM USING 
TIME SLOT ASSIGNMENT VALUES 

FIELD OF THE INVENTION 

The present invention relates generally to computer sys 
tem architecture and, more specifically, to a multibus 
dynamic arbiter for arbitration between two buses. 

BACKGROUND OF THE INVENTION 

Personal computer systems arc well known in the art. 
Personal computer systems in general, and IBM Personal 
Computers in particular, have attained widespread use for 
providing computer power to many segments of today's 
modern society. Personal computers can typically be defined 
as a desktop, floor standing, or portable microcomputer that 
is comprised of a system unit having a single central 
processing unit (CPU) and associated volatile and non 
volatile memory, including all RAM and BIOS ROM, a 
system monitor, a keyboard, one or more flexible diskette 
drives, a fixed disk storage drive (also known as a "hard 
drive'), a so-called "mouse' pointing device, and an 
optional printer. One of the distinguishing characteristics of 
these systems is the use of a motherboard or system planar 
to electrically connect these components together. These 
systems are designed primarily to give independent com 
puting power to a single user and are inexpensively priced 
for purchase by individuals or small businesses. Examples 
of such personal computer systems are IBM's PERSONAL 
COMPUTER AT (IBM PC/AT), IBM's PERSONAL SYS 
TEM/1 (IBM PS/1), and IBM's PERSONAL SYSTEMI2 
(IBM PS/2). 

Personal computer systems are typically used to execute 
software to perform such diverse activities as word process 
ing, manipulation of data via spread-sheets, collection and 
relation of data in databases, display of graphics, design of 
electrical or mechanical systems using system-design soft 
Ware, etC. 

In such computer systems, the components communicate 
via electrical signals. These electrical signals are typically 
carried by electrical connections between the system com 
ponents. Typical types of electrical connections include 
metal traces on a printed circuit board (PCB), vias between 
different levels of multilayer PCBs, plated through holes, 
plugs, and individual wires connected from pin to pin of 
system components. Typically groups of electrical signals 
and groups of electrical connections which carry the elec 
trical signals are referred to as a "bus.' Thus, a reference to 
a "bus' can indicate a reference to a group of electrical 
signals, a group of electrical connections which carry the 
electrical signals, or a reference to both a group of electrical 
signals which form a protocol and a group of electrical 
connections which carry the electrical signals. Buses are 
made up of "bus lines.” A reference to an individual "bus 
line' may refer to an electrical connection of a bus or an 
electrical signal of a bus. 

Typical computer systems have several distinct buses: a 
host processor bus, a memory bus, and one or more periph 
eral buses. The host processor bus is unique to each pro 
cessor and dictated by the architecture of that processor. The 
memory bus is usually standardized to one of several 
memory buses to allow common, inexpensive memory units 
to be used. For example, many systems of widely different 
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2 
architectures are designed to use common single in-line 
memory modules (SIMMs). The peripheral bus(es) have 
evolved into a number of standards. The Industry Standard 
Architecture (ISA) bus, the "MICROCHANNEL'Architec 
ture (MCA) bus, and the Peripheral Component Interconnect 
(PCI) bus, are examples of very well known peripheral 
buses. 
The buses in a system typically must share resources 

across the various buses. For example, both the host pro 
cessor bus and the peripheral bus typically must have access 
to the memory bus. To avoid conflicts between buses 
attempting to access the same bus, arbiters are designed to 
arbitrate between the two or more buses requesting access to 
the same bus. 

The current trend in the computer industry is to design 
systems with more than one peripheral bus, e.g., a system 
with a PCI bus and an ISA bus. Such systems can become 
complicated because the arbiters must take into account both 
peripheral buses when arbitrating accesses to the memory 
bus. 
A particularly complicated system is a system having a 

PCI bus and an MCA bus. Both the PCI bus and the MCA 
bus allow bus masters to assume control of that particular 
bus. Therefore, both of these buses have arbiters for arbi 
trating control of their respective buses. Thus, a system with 
a PCI bus and an MCA bus must have four arbiters: (1) the 
memory bus arbiter, (2) the PCI bus arbiter, (3) the MCA bus 
arbiter, and (4) a multibus arbiter for arbitrating between the 
PCI bus arbiter and the MCA bus arbiter. Thus, the PCI bus 
arbiter and the MCA bus arbiter must be interfaced with the 
memory arbiter to determine which of the many bus masters 
may access the memory bus at any one time. 

This particular configuration is even more complicated 
because the PCI bus and the MCA bus use different criteria 
for determining how their respective bus masters are given 
control of their respective buses. The MCA bus masters are 
designed to stay on the bus as long as possible to optimize 
bus utilization. On the other hand, the PCI bus is a packet 
bus; PCI bus masters are designed to acquire the bus, 
perform a short high-speed transfer, and leave the bus. 

Prior art multibus arbiters use timers to allocate the 
memory bus between the various buses. This is rigid and can 
lead to an unequitable allocation of memory bus bandwidth 
between the various peripheral buses. 

Therefore, it is desirable to provide a multibus arbiter that 
allows a dynamic and more equitable allocation of memory 
bus bandwidth between the various buses. 

It is specifically desirable to provide a multibus arbiter 
that allows a dynamic and more equitable allocation of 
memory bus bandwidth between the PCI bus and the MCA 
bus. 

SUMMARY OF THE INVENTION 

According to the present invention, a multibus arbiter is 
provided for arbitrating between first and second peripheral 
bus arbiters for control of a memory bus arbiter. The 
multibus arbiter comprises: a writable assignment register, a 
time slot pointer, and an arbitration circuit. 
The writable assignment register is in circuit communi 

cation with the CPU and stores a multibit time slot assign 
ment value responsive to the CPU, thereby allowing the 
CPU to allocate accesses between the buses. The time slot 
pointer has one position for each bit of the writable assign 
ment register and is configured to select at least one of the 
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positions and to select a different position at least partially 
responsive to both of the peripheral bus arbiters requesting 
access to the memory bus. The time slot assignment bits can 
be used to dynamically divide the access to the memory bus 
between the two peripheral buses. 
The individual accesses of the peripheral buses are not 

directly governed by priority. Rather, the assignment value 
is determined by the relative priority of the activity of that 
particular bus at that particular time. Therefore, the access 
ratio (the ratio of the number of memory bus accesses by 
each peripheral bus) and, therefore, the access time ratio (the 
ratio of time each bus spends accessing the memory bus) is 
determined by the relative priority of the activity of that 
particular bus at that particular time. Once the assignment 
value is written to the assignment register, the bus to be 
granted access during contention is slavishly determined by 
the time slot pointer and the assignment value associated 
with each time slot. 

For example, if the assignment register and time slot 
pointer are each eight-bits long, with one bit per position, 
and if a logical ONE corresponds to the first peripheral bus 
and a logical ZERO corresponds to the second peripheral 
bus, then writing a 1 1 011 10, to the assignment register 
allows three accesses of the first peripheral bus for every one 
access by the Second peripheral bus. In one embodiment 
having a PCI bus and a MCA bus, using 11101110, as the 
assignment value causes the PCI bus masters to be granted 
75% of the accesses and the MCA bus masters to be granted 
25% of the accesses, which is a 3:1 access ratio in favor of 
the PCI bus. Essentially, during contention for the memory 
bus, the PCI bus is allowed three consecutive accesses 
before the MCA bus is allowed to access the memory bus. 

With an eight-bit time slot pointer and assignment regis 
ter, the lowest percentage of access would be 12.5% by 
writing, e.g., 10000000 or 0.1111111 to the assignment 
register. The CPU allocates accesses between the various 
buses. The granularity of access control can be increased by 
increasing the number of bits in the assignment register and 
the time slot pointer. A sixteen-bit assignment register and 
time slot pointer allow a granularity of 6.25% of the 
accesses. Moreover, preferably the assignment value in the 
assignment register can be changed dynamically by the 
CPU, thereby allowing different ratios of accesses depend 
ing on specific conditions within the system. In the alterna 
tive, the assignment value can be a fixed value incapable of 
being changed by the CPU. 
The multibus arbiter is particularly useful for arbitrating 

accesses between a PCI bus and an MCA bus. Assuming that 
a logical ONE in the assignment register indicates that a PCI 
bus master may access the memory bus and a logical ZERO 
indicates that an MCA bus master may access the memory 
bus, and further assuming that, on average, a PCI bus master 
retains control for an average of 1.5 us and an MCA bus 
master retains control of the memory bus an average of 5 us, 
then the actual time each bus spends on the bus is approxi 
mately equal. That is, the PCI bus masters are granted 
control of the memory bus for 9 us (6X1.5 us) and the MCA 
bus masters are granted control for 10 us (2x5 us), on 
average. Thus, in this example, the access time ratio is nearly 
1:1. 

Significantly, the assignment value can be altered dynami 
cally by the CPU thereby changing the ratio of accesses by 
each peripheral bus. This is useful for tailoring the accesses 
to the memory bus depending on one or more parameters of 
the peripheral buses. 

It is therefore an advantage of the present invention to 
provide a multibus arbiter that allows a dynamic and more 
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4 
equitable allocation of memory bus bandwidth between the 
various buses. 

It is a further advantage of this invention to provide a 
multibus arbiter that allows a dynamic and more equitable 
allocation of memory bus bandwidth between the PCI bus 
and the MCA bus. 
These and other advantages of the present invention will 

become more apparent from a detailed description of the 
invention. 

BRIEF DESCRIPTION OF THE DRAWINGS 

In the accompanying drawings, which are incorporated in 
and constitute a part of this specification, embodiments of 
the invention are illustrated, which, together with a general 
description of the invention given above, and the detailed 
description given below serve to example the principles of 
this invention. 

FIG. 1 is a block diagram showing an overall system view 
of a computer system using a multibus arbiter of the present 
invention; 

FIGS. 2A and 2B are block diagrams showing certain 
internal portions of the multibus arbiter of the present 
invention; 

FIGS. 3-5 are electrical schematic diagrams of the con 
ditioning circuitry used to convert the PCI bus and MCA bus 
signals into signals suitable for the other circuitry. 

FIG. 6 is a state machine diagram showing the state 
transitions used to generate the ARB STROBE signal; 

FIGS. 7 and 8 are electrical schematic diagrams of the 
circuitry of an embodiment of the multibus arbiter of the 
present invention; and 

FIGS. 9-11 are timing diagrams showing various timing 
and causal relationships between the various signals of the 
embodiment of the multibus arbiter of the present invention 
shown in FIGS. 7 and 8. 

DETAILED DESCRIPTION OF THE 
PREFERRED EMBODIMENT 

Referring now to the drawings, and specifically to FIG. 1, 
a computer system using the multibus arbiter of the present 
invention is shown. The computer system 10 includes a CPU 
50 having a host processor bus 52 associated therewith. The 
host processor bus 52 has a data bus, an address bus, and a 
control bus (all not shown) as known to those skilled in the 
art. Many possible processors can be used to implement the 
CPU 50. One suitable processor is the well known 
80486DX, which is manufactured by Intel Corp. and 
Advanced Micro Devices, Inc. In circuit communication 
with the CPU 50 via the hostbus 52 are a level 2 (L2) cache 
memory 54 and a memory controller 56. The L2 cache 54 is 
a relatively small bank of memory dedicated to the CPU 50, 
as should be known to those skilled in the art. 

Associated with the memory controller 56 is a memory 
bus 58. A system memory 60 is in circuit communication 
with the memory controller 56 via the memory bus 58, as 
should be known to those skilled in the art. A suitable 
memory for use in the system memory 60 include the 
common single in-line memory modules (SIMMs). The 
memory controller 56 has a memory arbiter 62 associated 
therewith. The memory arbiter 62 arbitrates use of the 
system memory 60 between the CPU 50 and the other 
devices, to be discussed below. The memory arbiter is a 
simple arbiter using a memory access request line REQ 
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MEMORY and a memory access grant line GRANT 
MEMORY, as known to those skilled in the art. 
The cmbodiment of FIG. 1 has two peripheral buses: a 

PCI bus 76 and an MCA bus 82. However, it is to be 
understood that this invention encompasses other combina 
tions of two or more dissimilar buses or two or more 
separate buses using the same protocol, such as two or more 
separate PCI buses, two or more separate MCA buses, etc. 

Additionally, the multibus dynamic arbiter of the present 
invention cncompasses other combinations of buses other 
than one or more peripheral buses contending for access to 
a memory bus. For example, in a system with three separate 
peripheral buses, e.g., three PCI buses, the multibus 
dynamic arbiter can be used to arbitrate accesses to one of 
the peripheral buses between the other two peripheral buses. 
Many combinations are possible, e.g., arbitration between 
synchronous and asynchronous buses, master and slave 
buses, memory buses and peripheral buses, host buses and 
peripheral buses, etc. 

Referring back to FIG. 1, the system 10 has a PCI bus 
controller 70 and an MCA bus controller 72, as are known 
in the art. The PCI bus controller 70 has associated with it 
a PCI arbiter 74 and the PCI bus 76. The PCI arbiter 74 
arbitrates control of the PCI bus 76 among various PCI bus 
masters 78a–78rt using dedicated REQ and GNT lines, as 
known to those skilled in the art. A description of a circuit 
including the CPU 50, L2 cache 54, memory controller 56, 
system memory 60, and PCI bus controller 70 can be found 
in various publications, e.g., 82420 PCIset Universal Moth 
erboard Design Guide, which is available from Intel Cor 
poration Literature, P.O Box 7641, Mt. Prospect, Ill. 60056 
7641. 
The MCA bus controller 72 has associated with it an MCA 

arbiters 80 and the MCA bus 82, which the MCA bus 
controller interfaces from the PCI bus 76. The MCA arbiter 
arbitrates control of the MCA bus 82 among various MCA 
bus masters 84a–84o using ARB/-GNT, -Preempt, -Burst, 
and the four-bit arbitration bus, as is known to those skilled 
in the art. The MCA bus is fully described in, e.g., IBM 
Personal System/2 Hardware Interface Technical Reference, 
which is available to the public from International Business 
Machines Corporation, the assignee of the present invention. 

Arbitrating between the PCI bus arbiter 74 and the MCA 
bus arbiter 80 is a multibus arbiter 90 of the present 
invention. The PCI bus arbiter 74 must be designed to 
provide two signals to the multibus arbiter 90: a PCI request 
(PCIreq) line 92 and a PCI access-complete (PCIacc-c) line 
94. The PCIreq line is used to indicate that the PCI bus 76 
requests access to the memory 60 via the memory bus 58. 
The PCIacc-cline is used to indicate that the current access 
of the memory 60 by the PCI bus 76 is complete. The PCI 
arbiter 74 is granted use of the memory bus 58 by a PCI 
grant (PCIgnt) line 96, which is generated by the multibus 
arbiter 90. Likewise, the MCA bus arbiter 80 must be 
designed to provide two signals to the multibus arbiter 90: 
the MCA request (MCAreq) line 98 and the MCA access 
complete (MCAacc-c) line 100. The MCA arbiter 80 is 
granted use of the memory bus 58 by the MCA grant 
(MCAgnt) line 102, which is generated by the multibus 
arbiter 90. An ACC-C line is used to indicate that either of 
the peripheral buses has completed an access to the memory 
60 via the memory bus 58 and is generated by the logical 
ORing of the PCIacc-c signal and the MCAacc-c signal. It 
is believed that the request and grant lines for both buses 
either exist for each peripheral bus arbiter or can easily be 
generated using the given signals by those skilled in the art. 
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6 
In the present embodiment, the memory arbiter 62, the 

PCI bus arbiter74, the MCA bus arbiter 80, and the multibus 
arbiter 90 are separate, thereby forming a distributed arbi 
tration system. In the alternative, as is apparent to those 
skilled in the art, one or more of the arbiters 62,74, 80, and 
90 can be integrated into a central arbiter, thereby forming 
a more centralized arbitration system. That is, one or more 
or the arbiters 62, 74, 80, and 90 can be integrated into a 
single system arbiter, while maintaining the structure and 
functionality described herein. 

Referring now to FIGS. 2A and 2B, a block diagram 
showing the internal components of the multibus arbiter 90 
of the present invention are shown. The arbiter 90 comprises 
an assignment register 110, an input conditioning circuit 
112, an arbitration strobe state machine 114, a time slot 
pointer 116, an arbitration circuit 118, and an output con 
ditioning circuit 120, all in circuit communication as shown 
in those figures. 
The assignment register 110 is in circuit communication 

with both the host bus 51 of the CPU 50 and the arbitration 
circuit 118. 
The input conditioning circuit 112 is in circuit commu 

nication with the PCI arbiter 74, the MCA arbiter 80, the 
time slot pointer 116, and the state machine 114 and con 
ditions the inputs for use with the time slot pointer 116 and 
the state machine 114. For example, the timeslot pointer 116 
and state machine 114 expect synchronous signals. In addi 
tion, the ACC-C signal is expected to be one clock cycle in 
length to function properly with the state machine 114. 
Therefore, the input conditioning circuit is responsible for 
making asynchronous signals synchronous and ensuring that 
the ACC-C pulses are one cycle in length. Thus, the specific 
circuitry 112 will depend on the specific buses being 
dynamically arbitrated. 
As will be more fully explained below, in one particular 

embodiment, the conditioning circuit 112 (1) accepts the 
synchronous PCIreq (PCI bus master request) signal from 
the PCI arbiter 74 and generates a synchronous REQ#1 
signal, (2) accepts the asynchronous MCAreq (MCA bus 
master request) signal from the MCA arbiter 80 and gener 
ates a synchronous REQ#2 signal, and (3) accepts both the 
synchronous PCIacc-c (PCI bus master access complete) 
signal and the asynchronous MCAacc-C (MCA bus master 
access complete) signals from the PCI arbiter 74 and the 
MCA arbiter 80, respectively, and generates a single ACC-C 
(access complete) signal, which is a signal synchronous with 
the clock and which is one clock cycle long. 
The state machine 114 accepts the REQ#1, REQ#2, and 

ACC-C signals from the input conditioning circuit 112 and 
generates ARB STROBE (arbitration strobe) signal, which 
is used by the arbitration circuit 118. 
The time slot pointer 116 is in circuit communication with 

the arbitration circuit 118 and the input conditioning cir 
cuitry 112. The time slot pointer 116 accepts the REQ#1, 
REQ#2, and ACC-C signals from the input conditioning 
circuit 112 and transmits an n-bit number to the arbitration 
circuit 118. 
The arbitration circuit 118 is in circuit communication 

with the assignment register 110, the state machine 114, the 
time slot pointer 116, the memory arbiter 62, and the output 
conditioning circuit 120. The arbitration circuit 118 accepts 
as inputs the n-bit value from the assignment register 110, 
the n-bit value from the time slot pointer 116, the ARB 
STROBE from the state machine 114, and the GRANT 
MEMORY (memory bus access granted) signal from the 
memory arbiter 62 and generates a REQ MEMORY 
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(request memory bus access) signal to the memory arbiter 62 
and GRANTH1 and GRANT#2 signals to the output condi 
tioning circuit 120. 
The output conditioning circuit 120 is in circuit commu 

nication with thc arbitration circuit 118, the PCI arbiter 74 
and the MCA arbiter 80. As with the input conditioning 
circuit 112, the output conditioning circuit conditions the 
synchronous signals from inside the multibus arbiter 90 to 
meet requirements of signals outside the arbiter 90. Specifi 
cally, the output conditioning circuit 120 generates PCIgnt 
(PCI bus granted control of the memory bus) signal and the 
MCAgnt (MCA bus granted control of the memory bus) 
signal from the GRANT#1 and GRANTH2 signals, respec 
tively. 

Referring now to FIGS. 3-5, the circuitry of one embodi 
ment of the input conditioning circuitry 112 is shown. As 
mentioned above, the specific circuitry needed will depend 
entirely on the nature of the two buses being arbitrated. In 
this particular embodiment, the two buses are the PCI bus 76 
and the MCA bus 82. The PCIreq signal is already synchro 
nous with the system clock, therefore, no input conditioning 
is necessary and the REQ#1 signal is the PCIreq signal. At 
most, the logical level of the PCIreq signal might need to be 
inverted to generate the REQ#1 signal. In the alternative, if 
the PCI bus clock is different from the CPU clock, then a 
circuit similar to the circuit described in the text accompa 
nying FIG. 3 might be needed to make the REQ#1 signal 
synchronous with the CPU clock. 
On the other hand, the MCAreq signal is asynchronous 

and must be conditioned by the input conditioning circuit 
112 to generate the synchronous REQ#2 signal. Circuitry to 
perform this conditioning is shown in FIG. 3. In that figure 
two clocked D flip-flops 130, 132 are in circuit communi 
cation as shown in that figure. When the system is powered 
on, and when the system power on reset (POR) signal is 
asserted, as is known to those skilled in the art, both D 
flip-flops 130, 132 are reset with their respective Q outputs 
set to a logical ZERO. When the asynchronous MCAreq 
signal transitions from a logical ZERO to a logical ONE, the 
first D flip-flop 130 is SET and its Q output becomes a 
logical ONE responsive to the next rising edge of the clock 
signal (CLK). At the next rising edge of the clock signal 
(CLK), the second D flip-flop 132 is SET by the first D 
flip-flop 130 and its Q output becomes a logical ONE 
synchronously with the clock signal (several delays later). 
The Q signal from the second D flip-flop 132 is the REQ#2 
signal. 
The two D flip-flops 130, 132 remain SET until the 

MCAreq signal transitions from a logical ONE to a logical 
ZERO. Thereafter, responsive to the next rising edge of the 
clock signal, the first D flip-flop. 130 is RESET to a logical 
ZERO. Responsive to the next rising edge of the clock 
signal, the second D flip-flop 132 is RESET to a logical 
ZERO by the first D flip-flop 130. Consequently, the REQ#2 
signal becomes a logical ZERO synchronously with the 
clock signal (several gate delays later). Thus, the asynchro 
nous MCAreq signal is conditioned to be the synchronous 
REQ#2 signal. Note that the REQ#2 signal remains a logical 
ONE continuously if the MCAreq signal remains a logical 
ONE. 

Referring now to FIG. 4, the circuitry used to condition 
the PCIacc-c signal is shown. The PCIacc-c signal is syn 
chronous with the clock signal but is longer than one clock 
cycle in length. The FIG. 4 circuit shortens the PCIacc-c 
signal into a single clock cycle in length. As shown in that 
figure, a D flip-flop 140 and an R-S latch 142 are in circuit 
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8 
communication with two two-input AND gates 144, 146 and 
two inverters 148, 150. When the system is powered up, and 
when the system POR signal is asserted, the D flip-flop 140 
and the R-S latch 142 are RESET; therefore, their respective 
Q outputs are logical ZERO. After the PCIacc-c signal 
becomes a logical ONE, the D flip-flop 140 is SET via the 
AND gate 144 responsive to the next rising edge of the 
inverted clock signal (the next falling edge of the clock 
signal) and its Q output becomes a logical ONE synchro 
nously with the clock signal (several delays later). The Q 
signal from the D flip-flop 140 is the PCI ACC-C signal. 
As the clock signal rises, the R-S latch 142 is SET by the 

second AND gate 146 and its Q output becomes a logical 
ONE synchronously with the clock signal (several delays 
later). The Q signal from the R-S latch 142 is fed back to the 
first AND gate 144. As such, on the next rising edge of the 
inverted clock signal (next falling edge of the clock signal), 
the D flip-flop is RESET and its Q output and the PCI 
ACC-C signal become a logical ZERO. After the PCIacc-c 
signal falls from a logical ONE back to a logical ZERO, the 
R-S latch 142 is reset and the cycle begins again. 

Therefore, the synchronous PCIacc-c signal of various 
lengths has been conditioned to be the synchronous PCI 
ACC-C signal, which is one clock cycle in length. As will be 
apparent to those skilled in the art, the state machine 114 can 
be made so as not to require the various signals to be one 
clock pulse in length. However, doing so facilitates and 
simplifies the design of the state machine 114. 

Referring now to FIG. 5, the circuitry used to condition 
asynchronous signals of various lengths to synchronous 
signals one clock cycle long is shown. Specifically, the 
circuit of FIG. 5 conditions the asynchronous MCAacc-c 
signal to a synchronous MCA ACC-C signal that is one 
clock cycle long. As shown in that figure, two D flip-flops 
160, 162 and an R-S latch 164 are in circuit communication 
with two two-input AND gates 170, 172 and two inverters 
178, 180. When the system is powered up, and when the 
system POR signal is asserted, the D flip-flops 160, 162 and 
the R-S latch 164 are RESET; therefore, their respective Q 
outputs are logical ZERO. After the MCAacc-c signal 
becomes a logical ONE, the first D flip-flop 160 is SET 
responsive to the next rising edge of the inverted clock 
signal (the next falling edge of the clock signal) and its Q 
output becomes a logical ONE synchronously with the clock 
signal (several delays later). On the next rising edge of the 
inverted clock signal (the next falling edge of the clock 
signal) the second D flip-flop 162 is SET via the AND gate 
170 responsive to that edge and its Q output becomes a 
logical ONE synchronously with the clock signal (several 
delays later). The Q signal from the second D flip-flop 162 
is the MCA ACC-C signal. 

Thereafter, as the clock signal rises, the R-S latch 164 is 
SET by the second AND gate 172 and its Q output becomes 
a logical ONE synchronously with the clock signal (several 
delays later). The Q signal from the R-S latch 142 is fed back 
to the first AND gate 144. As such, on the next rising edge 
of the inverted clock signal (next falling edge of the clock 
signal), the second D flip-flop 162 is RESET and its Q output 
and the MCA ACC-C signal become a logicalZERO. After 
the MCAacc-c signal falls from a logical ONE back to a 
logicalZERO, the R-S latch 142 is reset and the cycle begins 
again. 

Therefore, the asynchronous MCAacc-c signal of various 
lengths has been conditioned to be the synchronous MCA 
ACC-C signal, which is one clock cycle in length. The 
MCA ACC-C signal and the PCI ACC-C signal are ORed 
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by an OR gate (not shown) to form the ACC-C signal, which 
is used by various other circuitry in the multibus arbiter 90. 

Referring now to FIG. 6, the state machine 114 governing 
the generation of the ARB STROBE signal is shown. In 
that figure, three states-State0 190, State1192, and State2 
192—are controlled by the REQ#1, REQ#2, and ACC-C 
signals. The state machine is initialized into State0 190. 
State 192 is entered from either State0 90 or State2 94 
responsive to either REQ#1 or REQ#2 being asserted (logi 
cal ONE). State2.194 is entered from State1192 responsive 
to the ACC-C signal being asserted (logical ONE). The 
ARB STROBE signal is asserted (logical ONE) for one 
clock cycle responsive to changing from any one of the three 
states to any of the other two states. Those skilled in the art 
can produce a suitable circuit using the state diagram shown 
in FIG. 6, the specification, and the other figures using any 
of several methods, including using a Karnaugh map. 

Referring now to FIGS. 7 and 8, the circuitry for the 
assignment register 110, the state machine 114, the time slot 
pointer 116, and the arbitration circuit 118 are shown. 
The CPU 50 allocates accesses between the various buses. 

The assignment register 110 holds a multiposition time slot 
assignment value written by the CPU 50. Each position 
corresponds to a particular time slot and gives the identity of 
thc bus that has been allocated that particular time slot. 
Preferably each position is one bit in length and can, 
therefore, distinguish between the two peripheral buses. For 
example, if the assignment register 110 and time slot pointer 
116 are each eight-bits long, and if a logical ONE corre 
sponds to the first peripheral bus and a logical ZERO 
corresponds to the second peripheral bus, then writing a 
11101110 to the assignment register allows three successive 
accesses of the first peripheral bus for every one access by 
the second peripheral bus (when there is contention between 
the two buses for the memory bus 58). 

In the embodiment using the PCI bus 76 and the MCA bus 
82, assuming a ONE corresponds to the PCI bus being 
assigned to that time slot and a ZERO corresponding to the 
MCA bus being assigned to that time slot, PCI bus masters 
are granted 75% of the accesses and the MCA bus masters 
are granted 25% of the accesses. 

With eight bits, the lowest percentage of access would be 
12.5% by writing, e.g., 10000000 or 0.1111111 to the 
assignment register 10. The granularity of access control 
can be increased by increasing the number of bits in the 
assignment register 110 and the time slot pointer 116. A 
sixteen-bit assignment register 110 and time slot pointer 116 
allow a granularity of 6.25% of the accesses. Moreover, the 
assignment value in the assignment register 110 can be 
changed dynamically by the CPU 50, thereby allowing 
different ratios of accesses depending on specific conditions 
within the system. 
As shown in FIG. 7, the assignment register 110 can be an 

n-bit writable register 200, such as the standard TTL des 
ignated device 74273 or in its equivalent (if an 8-bit register 
is desired) in a programmable logic device (PLD), a field 
programmable logic array (FPLA), an application specific 
integrated circuit (ASIC), etc. In fact, the circuitry for the 
multibus arbiter 90 shown in the figures can be reproduced 
in a programmable logic device (PLD), a field program 
mable logic array (FPLA), an application specific integrated 
circuit (ASIC), etc. of a suitable size. The data lines 
202a-202n of the register 200 are connected to the data bus 
(not shown) of the CPU 50 and the write line 204 is 
generated by decoding one or more address and control lines 
(not shown) of the CPU 50 in such a manner that data may 
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10 
be written from the CPU 50 and latched into the assignment 
register 200, as is known by those skilled in the art. At 
power-up, the n bits in the register 200 are a logical ZERO. 
These values are changed by writing values with the CPU 
50. 

Preferably, the assignment register 110 holds an assign 
ment value responsive to writes by the CPU 50. In the 
alternative, the assignment register can be a device that 
holds a fixed predetermined assignment value. For example, 
the writable register 200 can be replaced by eight pull-up 
and pull-down resistors generating a predetermined fixed 
value, e.g., 11101110. Such a value would not allow 
dynamic control over the access ratios, but is a useful 
alternative in certain circumstances. 

As mentioned above, the timeslot pointer 116 is in circuit 
communication with the conditioning circuitry 112 and the 
arbitration circuit 118. An embodiment of the time slot 
pointer 116 is also shown in FIG. 7. As shown in that figure, 
the time slot pointer 116 is also in circuit communication 
with the power on reset (POR) signal and the system clock, 
both of which are known to those of ordinary skill in the art. 

In this particular embodiment, the time slot pointer 116 
comprises an R-S flip-flop 208 and in D flip-flops 
210a-210n, in circuit communication with an inverter 212, 
a three-input AND gate 214, and various two-input AND 
gates and two-input OR gates, as shown in FIG. 7. These 
devices are in circuit communication to form a self-starting 
ring counter with one logical ONE that passes the logical 
ONE from flip-flop to flip-flop responsive to the REQ#1, 
REQ#2, and ACC-C signals being active (logical ONE). As 
is apparent to those skilled in the art, the exact number of 
AND and OR gates will depend on the specific value of n. 
As stated above, the value of n depends on the particular 
granularity of accesses desired. As is apparent from the 
figure, adding another stage involves adding two two-input 
AND gates, a two-input OR gate, and a D flip-flopper stage. 
As will also be apparent to those skilled in the art, the time 

slot pointer circuitry can be modified to increment the 
pointer either at the beginning of an access cycle, at the end 
of a cycle (as in the present invention), or at various points 
during the access cycle. The critical condition for incre 
menting the time slot pointer 116 is contention at some point 
between the first and second peripheral buses. Thus, in the 
present invention, the time slot pointer value changes at least 
partially responsive to both peripheral buses requesting 
access to the memory bus. Particular embodiments may 
require that other conditions be met before incrementing the 
time slot pointer. For example, in the embodiment of FIG. 7, 
the time slot pointer increments only when both peripheral 
buses are requesting the memory bus and one of the periph 
eral buses just finished accessing the memory bus and a 
rising edge of the clock signal occurs. Other embodiments 
can be made that use other conditions, such as a falling edge 
of the clock signal or the start of a cycle under contention. 
The critical aspect is that the time slot pointer value changes 
at least partially responsive to both peripheral buses request 
ing access to the memory bus. 

Referring back to FIG. 7, at power up, the R-S flip-flop 
208 and then D flip-flops 210a-210n are RESET to a logical 
ZERO. Responsive to the POR signal, the first D flip-flop 
210a is SET to a logical ONE. After that point, the time slot 
pointer 116 sequentially passes the logical ONE from flip 
flop to flip-flop responsive to the REQ#1, REQ#2, and 
ACC-C signals being active (logical ONE) during a rising 
edge of the clock. Again, the critical aspect is that the time 
slot pointer value changes at least partially responsive to 
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both peripheral buses requesting access to the memory bus. 
In this cmbodiment, after initialization, at all times, a single 
logical ONE will be present. For example, in an eight-bit 
system, the time-slot pointer 116 will start out as 10000000, 
and, responsive to the REQ#1, REQ#2, and ACC-C signals 
being active (logical ONE), will sequentially change to 
01.000000 to 00100000 to 00010000 to 00001000 to 
00000100 to 00000010 to 00000001 and back to 
10000000. In the alternative, the values can progress as 
follows: 00000001 to 00000010, to 00000100 to 
00001000 to 00010000 to 00100000 to 01000000 to 
10000000, and back to 00000001. The specific increment 
ing and decrementing direction is not critical; what is critical 
is that the assignment values in the assignment register 
correspond to the associated stages of the time slot pointer. 

In this embodiment, the arbitration circuit 118 consists of 
the circuitry 220 of FIG. 7 and the circuitry of FIG.8. The 
circuit 220 comprises in AND gates 222a-222n and an 
n-input OR gate 224 and is configured as a one-of-n selector. 
The value of the BUS SEL signal is the value of bit of the 
assignment value in the assignment register 110 that corre 
sponds to the bit of the time slot pointer 116 with the logical 
ONE. For example, if the assignment register has the value 
11101110 stored therein and the time slot pointer is cur 
rently 00100000, then the value of the BUS SEL signal 
will be a logical ONE, indicating that during the next 
contended access cycle the first peripheral bus will be given 
access. In the embodiment using the PCI bus and the MCA 
bus, the PCI bus will be given access. 

Referring now to FIG. 8, the portion of the arbitration 
circuit 118 used to generate the GRANT#1 and GRANT#2 
signals is shown. This circuit has two D flip-flops 230,232 
in circuit communication with six two-input AND gates 234, 
235, 236, 237,238, and 239, two two-input OR gates 240, 
242, and an inverter as shown in that figure. This circuit 
functions as follows. Both D flip-flops 230, 232 are initial 
ized to a logical ZERO. When either (1) only the first 
peripheral bus (PCI bus) is requesting access to the memory 
bus 58 (the REQ#1 signal is asserted and the REQ#2 signal 
is not asserted) or (2) the first peripheral bus (PCI bus) is 
requesting access to the memory bus 58 (the REQ#1 signal 
is asserted) and the BUS SEL signal indicates that the first 
peripheral bus (PCI bus) should be given control of the 
memory bus 58 (whether REQ#2 is asserted or not), then a 
logical ONE is stored in the D flip-flop 230 responsive to a 
rising edge of the ARB STROBE signal. This latched ONE 
causes the GRANTH1 line to be asserted (logical ONE) 
responsive to the GRANT MEMORY signal indicating that 
the memory bus 58 can be accessed (logical ONE). 
On the other hand, when either (1) only the second 

peripheral bus (MCA bus) is requesting access to the 
memory bus 58 (the REQ#2 signal is asserted and the 
REQ#1 signal is not asserted) or (2) the second peripheral 
bus (MCA bus) is requesting access to the memory bus 58 
(the REQ#2 signal is asserted) and the BUS SEL signal 
indicates that the second peripheral bus (MCA bus) should 
be given control of the memory bus 58 (logical ZERO) 
(whether REQ#1 is asserted or not), then a logical ONE is 
stored in the other D flip-flop. 232 responsive to a rising edge 
of the ARB STROBE signal. This latched ONE causes the 
GRANTH2 line to be asserted (logical ONE) responsive to 
the GRANT MEMORY signal indicating that the memory 
bus 58 can be accessed (logical ONE). 
As generated by the arbitration circuit 118, the GRANTH1 

and GRANTi2 signals are held at a logical ONE continu 
ously while the corresponding bus has access to the memory 
bus 58. For some buses, this configuration might not be 
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compatible with the buses' arbiter. As such, the GRANT 
signals may need to be conditioned. For example, a bus 
might need a pulse or a signal that is asynchronous with the 
system clock. In that case the output conditioning circuit 120 
would be configured to condition either or both of the 
GRANT signals to meet the parameters of the buses. In the 
embodiment using the PCI bus and the MCA bus, the 
GRANT#1 and GRANT#2 signals can be used as generated 
by the arbitration circuit 118. No conditioning is needed; the 
output conditioning circuit merely passes the GRANT#1 
signal to the PCIgnt input of the PCI arbiter 74 and passes 
the GRANTH2 signal to the MCAgnt signal of the MCA 
arbiter 80. 

Using the multibus arbiter 90 of the present invention is 
relatively straightforward. An assignment value correspond 
ing to the desired access ratio and the desired access time 
ratio is written to the assignment register 110 by the CPU 50 
or any other device configured to do so. At that point 
accesses to the memory bus 58 are controlled by the memory 
controller 56, memory arbiter 62, and the multibus arbiter 
90. 

Referring now to FIG. 9, a timing diagram showing the 
functioning of the arbiter 90 without contention is shown. 
(The widths of the signals in FIG. 9 are grossly out of scale, 
with the ARB STROBE and ACC-C signals expanded to 
show causal relationships between the signals.) In that 
figure, only one of the buses requests access to the memory 
bus 58 at a time. As such, the time slot pointer 116 never 
shifts. 

In the region of time indicated by the symbol “ol’ the first 
peripheral bus (PCI bus) is requesting and is granted access 
to the memory bus 58. Responsive to the REQ#1 signal 
being active, the ARB STROBE signal pulses, which 
causes the GRANTH1 signal to become active. Once the first 
peripheral bus (PCI bus) is finished with the memory bus 58, 
the ACC-C signal pulses, which causes the ARB STROBE 
signal to pulse, thereby causing the GRANTH1 signal to 
become inactive. 

Similarly, in the region of time indicated by the symbol 
“B” the second peripheral bus (MCA bus) is requesting and 
is granted access to the memory bus 58. Responsive to the 
REQ#2 signal being active, the ARB STROBE signal 
pulses, which causes the GRANTH2 signal to become active. 
Once the second peripheral bus (MCA bus) is finished with 
the memory bus 58, the ACC-C signal pulses, which causes 
the ARB STROBE signal to pulse, thereby causing the 
GRANT#2 signal to become inactive. 

Lastly in FIG. 9, in the region of time indicated by the 
symbol "Y" the first peripheral bus (PCI bus) is continuously 
requesting and is granted continual access to the memory 
bus 58. Responsive to the REQ#1 signal being active, the 
ARB STROBE signal pulses, which causes the GRANTH1 
signal to become active. Each time the first peripheral bus 
(PCI bus) is finished with the memory bus 58, the ACC-C 
signal pulses, which causes the ARB STROBE signal to 
pulse. However, unlike the situation o. above, the GRANT#1 
is continuously regenerated by the ARB STROBE signal. 

Again, throughout the time period of the timing diagram 
of FIG.9, the time slot pointer remained pointing to time slot 

. 

Referring now to FIGS. 10A and 10B, a timing diagram 
showing contention for the memory bus 58 is shown. (Like 
the timing diagram of FIG.9, FIGS. 10A and 10B are out of 
scale, with the ARB STROBE and ACC-C signals expanded 
to show causal relationships between the signals.) The time 
slot pointer is shown pointing to slots n, n+1, n+2, etc. In this 
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particular examplc, slots n through n+6 correspond to an 
assignment value of . . . 1101110. . . . That is, slot n 
corresponds to an assignment value of ONE, slot n+1 to an 
assignment value of ONE, slot n+2 to ZERO, slot n+3 to 
ONE, slot n+4 to ONE, slot n+5 to ONE, and slot n+6 to 
ZERO. 

As shown in those figures, in the period of time indicated 
at 250, the PCI arbiter 74 requests the bus with the PCIreq 
signal, which is the REQ#1 signal. Since the MCA bus 
arbiter 80 is not requesting access to the memory bus 58, the 
PCI bus arbiter 74 is granted access to the memory bus 58 
in a manner identical to that of FIG. 9. 
Soon thereafter, the MCA arbiter 80 requests access to the 

memory bus with the MCAreq signal, which is conditioned 
by the input conditioning circuit 112 to be the REQ#2 signal, 
as explained above. During the time period indicated at 252, 
since there is now contention between the two bus arbiters 
74, 80 for the memory bus 58, the time slot pointer 116 will 
increment when the PCI arbiter 74 signals that it has finished 
accessing the memory bus 58 by asserting the PCIacc-c 
signal, which is conditioned by the input conditioning circuit 
112 to assert the ACC-C signal. 

Since there is contention between the two arbiters 74, 80, 
slot n+1 and the associated assignment value determine 
which peripheral bus arbiter will access the memory bus 58. 
As shown in the period of time indicated at 250, since the 
assignment value associated with slotn is a logical ONE, the 
PCI bus arbiter 74 is granted access to the memory bus 28 
again in the manner described in the text accompanying FIG. 
9, with the exception that the GRANTH1 signal merely 
remained at a logical ONE. 

Likewise, in the period of time indicated at 252, there is 
contention, so that when the PCI arbiter asserts the ACC-C 
signal, the time slot pointer increments to slot n+2, which 
has a ZERO assignment value associated with it. Thus, as 
shown in the period at 254, the memory bus 58 is accessed 
by the MCA bus. 

Similarly, in the periods of time indicated by 256, 258, 
260, and 262, there is contention; therefore, the time slot 
pointer increments to the next position. As shown, in time 
periods 256, 258, 260, and 262, the memory bus 58 is 
sequentially accessed by the PCI bus, the PCI bus, the PCI 
bus, and the MCA bus, respectively. 

Referring now to FIG. 11, a timing diagram showing the 
cvents of FIGS. 9, 10A, and 10B are shown more closely to 
scale. The period of time indicated at 264 shows the events 
of FIGS. 10A and 10B with the peripheral buses contending 
for access to the memory bus 58. The period of time 
indicated at 266 shows the events of FIG. 9 with the 
peripheral buses accessing the memory bus 58 without 
contention. 

Significantly, the assignment value can be altered dynami 
cally by the CPU 50 thereby dynamically changing the ratio 
of accesses by each peripheral bus. This is useful for 
tailoring the accesses to the memory bus 58 depending on 
one or more parameters of the peripheral buses 76, 82. For 
example, if the current assignment value is 11001100 (with 
an associated access ratio of 1:1 in favor of neither bus and 
with an access time ratio of 1.5us:5us in favor the MCA bus) 
and if a device 78a on the PCI bus 76 begins performing a 
real-time activity with critical timing that requires nearly 
constant accesses to the memory bus 58, then the assignment 
value can be altered accordingly. Changing the value from 
11001100 to 11111110 changes the access ratio from 1:1 to 
7:1 in favor of the PCI bus and changes the access time ratio 
to 7x1.5 us=10.5 us:5us or over 2:1 in favor of the PCI bus, 
in this example. 
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14 
In the particular embodiment described above, the mul 

tibus arbiter 90 waits for the device on the peripheral bus 
accessing the memory bus 58 to finish using the bus 58. In 
the alternative, the arbiter 90 can be configured to limit the 
length of time each device accesses the memory bus 58. 

While the present invention has been illustrated by the 
description of embodiments thereof, and while the embodi 
ments have been described in considerable detail, it is not 
the intention of the applicant to restrict or in any way limit 
the scope of the appended claims to such detail. Additional 
advantages and modifications will readily appear to those 
skilled in the art. For example, the circuitry can be modified 
to arbitrate between three or more dissimilar peripheral 
buses, with the assignment register 110 having enough bits 
(e.g., three bits) per time slot pointer position to adequately 
store the identity of the bus associated with each time slot. 
As another example, a multibus arbiter can be configured to 
arbitrate between two buses of the same type, e.g., two 
separate PCI buses or two separate MCA buses. As yet 
another example, the circuits shown are fairly conservative 
in that setup times are easily met with the penalty being that 
sometimes signals are delayed by several clock cycles. It 
should be apparent to those skilled in the art that more 
aggressive circuits can be designed to perform the same 
functions. Therefore, the invention in its broader aspects is 
not limited to the specific details, representative apparatus 
and method, and illustrative examples shown and described. 
Accordingly, departures may be made from such details 
without departing from the spirit or scope of the applicant's 
general inventive concept. 

I claim: 
1. A multibus computer system, comprising: 
(a) a central processing unit (CPU) having a host proces 

Sorbus associated therewith: 
(b) a plurality of bus controllers in circuit communication 

with said CPU for controlling information transfer over 
a plurality of peripheral buses; 

(c) a bus arbiter for arbitrating accesses between each of 
said peripheral buses, and 

(d) a dynamically alterable time slot assignment register 
in circuit communication with said CPU and said bus 
arbiter for dynamically storing a time slot assignment 
value responsive to said CPU, said time slot assignment 
value being dependent upon the average access time of 
each of said plurality of busses to said host processor 
bus and being used to directly divide accesses to one of 
said bus controllers, among the others of said plurality 
of bus controllers, with one access to said one bus 
controller being granted per time slot position during 
contention for accessing said one bus; 

whereby the bandwidth of said host processor bus is 
allocated between said peripheral buses. 

2. A multibus computer system according to claim 1, 
wherein the average access time of one of said plurality of 
busses to said host processor bus is about the same as the 
average access time of another of said plurality of busses to 
said host processor bus during contention between said one 
bus and said other bus for access to said host processor bus. 

3. A multibus computer system according to claim 1, 
wherein the average access time of one of said plurality of 
busses to said host processor bus is about 9 microseconds 
and the average access time of another of said plurality of 
busses to said host processor bus is about 10 microseconds 
during contention between said one bus and said other bus 
for access to said host processor bus. 
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4. A multibus computer system, comprising: 
(a) a central processing unit (CPU) having a host proces 

Sor bus associated therewith: 
(b) a memory controller in circuit communication with 

said CPU via the host processor bus and having a 
memory bus and a memory bus arbiter associated 
therewith, 

(c) a memory in circuit communication with said memory 
controller via the memory bus; 

(d) a first peripheral bus controller in circuit communi 
cation with said CPU and said memory controller, 
having a first peripheral bus and a first peripheral bus 
arbiter associated therewith, and configured to request 
access to said memory via said memory bus arbiter of 
said memory controller; 

(e) a second peripheral bus controller in circuit commu 
nication with said CPU and said memory controller, 
having a second peripheral bus and a second peripheral 
bus arbiter associated therewith, and configured to 
request access to said memory via said memory bus 
arbiter of said memory controller; and 

(f) a multibus arbiter in circuit communication with said 
CPU, said first and second peripheral bus arbiters, and 
said memory bus arbiter and including: 
(1) an assignment register for storing a fixed predeter 

mined multi-position time slot assignment value, 
each position of which has at least one data bit 
associated therewith, the time slot assignment value 
being dependent upon the average access time of 
said first peripheral bus to said memory bus and the 
average access time of said second peripheral bus to 
said memory bus and being used to predetermine the 
ratio of accesses to said memory bus by said first 
peripheral bus to accesses to said memory bus by 
said second peripheral bus during contention; 

(2) a time slot pointer having at least one position for 
each position of said time slot assignment register 
and configured to select at least one of the time slot 
pointer positions and further configured to select a 
different time slot pointer position at least partially 
responsive to both of said peripheral bus arbiters 
requesting access to the memory bus; and 

(3) an arbitration circuit in circuit communication with 
said memory bus arbiter, said time slot assignment 
register, and said time slot pointer and configured to 
determine which of said peripheral buses will be 
given access to the memory bus responsive to (i) the 
memory bus arbiter granting access to the memory 
bus, (ii) the selected time slot pointer position, and 
(iii) the value of the position of the time slot assign 
ment value associated with the selected time slot 
pointer position; 

wherein the bandwidth of the memory bus is allocated 
between said peripheral buses. 

5. A multibus computer system according to claim 4, 
wherein the average access time of said first peripheral bus 
to said memory bus is about the same as the average access 
time of said second peripheral bus to said memory bus 
during contention between said first and second peripheral 
busses for access to said host processor bus. 

6. A multibus computer system according to claim 4, 
wherein the average access time of said first peripheral bus 
to said memory bus is about 9 microseconds and the average 
access time of said second peripheral bus to said memory 
bus is about 10 microseconds during contention between 
said first and second peripheral busses for access to said host 
processor bus. 
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7. A multibus computer system, comprising: 
(a) a central processing unit (CPU) having a host proces 

sor bus associated therewith; 
(b) a memory controller in circuit communication with 

said CPU via the host processor bus and having a 
memory bus and a memory bus arbiter associated 
therewith: 

(c) a memory in circuit communication with said memory 
controller via the memory bus; 

(d) a first peripheral bus controller in circuit communi 
cation with said CPU and said memory controller, 
having a first peripheral bus and a first peripheral bus 
arbiter associated therewith, and configured to request 
access to said memory via said memory bus arbiter of 
said memory controller; 

(e) a second peripheral bus controller in circuit commu 
nication with said CPU and said memory controller, 
having a second peripheral bus and a second peripheral 
bus arbiter associated there with, and configured to 
request access to said memory via said memory bus 
arbiter of said memory controller; and 

(f) a multibus arbiter in circuit communication with said 
CPU, said first and second peripheral bus arbiters, and 
said memory bus arbiter and including: 
(1) a dynamically alterable assignment register for 

dynamically storing a predetermined multi position 
time slot assignment value which is dependent upon 
the average access time of the first and second 
peripheral busses, each position of which has at least 
one data bit associated therewith, the assignment 
value predetermining the ratio of access to said 
memory bus by said first peripheral bus to access to 
said memory bus by said second peripheral bus 
during contention; 

(2) a time slot pointer having at least one position for 
each position of said assignment register and con 
figured to select at least one of the time slot pointer 
positions and further configured to select a different 
time slot pointer position at least partially responsive 
to both of said peripheral bus arbiters requesting 
access to the memory bus; and 

(3) an arbitration circuit in circuit communication with 
said memory bus arbiter, said assignment register, 
and said time slot pointer and configured to deter 
mine which of said peripheral buses will be given 
access to the memory bus responsive to (i) the 
memory bus arbiter granting access to the memory 
bus, (ii) the selected time slot pointer position, and 
(iii) the value of the position of the time slot assign 
ment value associated with the selected time slot 
pointer position; 

wherein the bandwidth of the memory bus is allocated 
between said peripheral buses. 

8. A multibus computer system according to claim 7, 
wherein the parameter said time slot assignment value is 
dependent upon is related to the average access time of said 
first peripheral bus to said memory bus and the average 
access time of said second peripheral bus to said memory 
bus. 

9. A multibus computer system according to claim 8, 
wherein the average access time of said first peripheral bus 
to said memory bus is about the same as the average access 
time of said second peripheral bus to said memory bus 
during contention between said first and second peripheral 
busses for access to said host processor bus. 

10. A multibus computer system according to claim 8, 
wherein the average access time of said first peripheral bus 
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to said memory bus is about 9 microseconds and the average 
access time of said second peripheral bus to said memory 
bus is about 10 microseconds during contention between 
said first and second peripheral busses for access to said host 
processor bus. 

11. A method of arbitrating accesses to a memory between 
first and second peripheral buses, comprising the steps of: 

(a) providing a computer system having (i) a central 
processing unit (CPU) having a host processor bus 
associated therewith, (ii) a memory controller in circuit 
communication with the CPU via the host processor 
bus and having a memory bus and a memory bus arbiter 
associated therewith, (iii) a memory in circuit commu 
nication with the memory controller via the memory 
bus, (iv) a first peripheral bus controller in circuit 
communication with the CPU and the memory control 
ler, having a first peripheral bus and a first peripheral 
bus arbiter associated therewith, and configured to 
request access to the memory via the memory bus 
arbiter of the memory controller, (v) a second periph 
eral bus controller in circuit communication with the 
CPU and the memory controller, having a second 
peripheral bus and a second peripheral bus arbiter 
associated therewith, and configured to request access 
to the memory via the memory bus arbiter of the 
memory controller, and (vi) a multibus arbiter in circuit 
communication with the CPU, the first and second 
peripheral bus arbiters, and the memory bus arbiter and 
including: a dynamically alterable an assignment reg 
ister for dynamically storing a multi-position time slot 
assignment value, each position of which has at least 
one data bit associated therewith, a time slot pointer 
having at least one position for each position of the 
assignment register, and an arbitration circuit in circuit 
communication with the memory bus arbiter, the 
assignment register, and the time slot pointer; 

(b) dynamically storing a fixed predetermined multi 
position assignment value in the writable assignment 
register, each position of which value corresponds to 
either the first peripheral bus or the second peripheral 
bus, thereby predetermining the ratio of accesses to the 
memory bus by the first peripheral bus to accesses to 
the memory bus by the second peripheral bus during 
contention; 
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18 
(c) determining at least one parameter of the first and 

second peripheral buses; 
(d) dynamically altering the assignment value stored 

within the assignment register depending on the value 
of the average access time of the first and second 
peripheral buses, thereby changing, during contention, 
the ratio of accesses to the memory bus by the first 
peripheral bus to accesses to the memory bus by the 
second peripheral bus. 

(e) selecting a time slot pointer position; 
(f) changing the selected time slot pointer position at least 

partially responsive to the first and second peripheral 
buses requesting access to the memory bus; 

(g) granting access to the memory responsive to (i) the 
memory bus arbiter granting access to the memory bus, 
(ii) the selected time slot pointer position, and (iii) the 
value of the position of the time slot assignment value 
associated with the selected time slot pointer position; 

whereby the bandwidth of the memory bus is allocated 
between said peripheral buses. 

12. A method of arbitrating accesses to a memory between 
first and second peripheral buses according to claim 11, 
wherein the parameter is related to the average access time 
of the first peripheral bus to the memory bus and the average 
access time of the second peripheral bus to the memory bus. 

13. A method of arbitrating accesses to a memory between 
first and second peripheral buses according to claim 12, 
wherein the average access time of the first peripheral bus to 
the memory bus is about the same as the average access time 
of the second peripheral bus to the memory bus during 
contention between said first and second peripheral busses 
for access to said host processor bus. 

14. A method of arbitrating accesses to a memory between 
first and second peripheral buses according to claim 2, 
wherein the average access time of the first peripheral bus to 
the memory bus is about 9 microseconds and the average 
access time of the second peripheral bus to the memory bus 
is about 10 microseconds during contention between said 
first and second peripheral busses for access to said host 
processor bus. 


