
USOO5598.542A

United States Patent (19) 11 Patent Number: 5,598,542
Leung (45) Date of Patent: Jan. 28, 1997

54) METHOD AND APPARATUS FOR BUS 5, 195,185 3/1993 Marenin 395/303
ARBTRATION IN A MULTIPLE BUS 5,241,632 8/1993 O'Connell et al. 395/297
INFORMATION HANDLING SYSTEM USING 5,416,910 5/1995 Moyer et al. 395/293

5,440,699 8/1995 Sindhu et al. 395/200.08

(75)

73

(21)

22

51
52)
58)

(56)

TIME SLOT ASSIGNMENT VALUES

Inventor: Wan L. Leung, Coral Springs, Fla.

Assignee: International Business Machines
Corporation, Armonk, N.Y.

Appl. No. 287,213
Filed: Aug. 8, 1994
Int. Cl. G06F 13/372
U.S. Cl. 395/297; 395/729; 395/865
Field of Search 395/287-305,

395/728-732, 860, 861, 865

References Cited

U.S. PATENT DOCUMENTS

4,334,288 6/1982 Bocher 395/301
4,339,808 7/1982 North 3951732
4,473,880 971984 Budde et al. 395/292
4,511,959 10/1986 Nicolas et al. 395/300
4,620,278 10/1986 Ellsworth et al. ... 395/299
4,682,285 7/1987 Ozil et al., 395/860
4,719,567 l/1988 Whittington et al. 395/297
4,785,394 11/1988 Fischer 395/294
4,969,120 11/1990 Azevedo et al. 395.297
4,977.557 12/1990 Phung et al...... ... 370/85.6
5,168,568 12/1992 Thayer et al. 395/305

50

56
REQ-Memory Merror

Primary Examiner-Jack B. Harvey
Assistant Examiner-Paul R. Myers
Attorney, Agent, or Firm--George E. Grosser

57 ABSTRACT

In a computer system having a central processing unit (CPU)
in circuit communication with a memory via a memory bus
and having first and second peripheral bus controllers gen
erating first and second dissimilar peripheral buses, a mul
tibus arbiter is provided for arbitrating access of a memory
bus between the two dissimilar buses. The multibus arbiter
has an assignment register, a time slot pointer, and an
arbitration circuit. The length of the assignment register and
time slot pointer controls the granularity of control of
accesses to the memory bus by the peripheral buses. The
assignment register holds a multibit assignment value that
determines which of the two peripheral buses will be given
access to the memory bus for a given time slot during
contention. The time slot pointer selects one of the bits of the
assignment register and points to a different bit responsive to
both peripheral buses requesting access to the memory bus
at the same time and one of said peripheral bus arbiters
indicating that the current access of the memory bus is
complete.

14 Claims, 12 Drawing Sheets

54
52

y Memory Systern
Arbiter Controller {) emory

GRANM 98 emory MCA reo O2
Multi-Etis
Dynamic
Arbiter

92
PCI
req A6

U.S. Patent Jan. 28, 1997 Sheet 1 of 12 5,598,542

50 54
O 52 y

56 58 6O

REQ-Memory Memor Memor System E. Coffer CO Riy

GRANTMemor 98

Matti-Bus pyraic Arbiter

94 96 92 PCI
PC I PCI t
req OCC - C g 76

PCI MCA MCA a PCI Arbiter Bridge Bridge MCA Arbiter

GNTO

FIG 1

5,598,542 Sheet 2 of 12 Jan. 28, 1997 U.S. Patent

MATCH TO FIG 2B

Ja 1 s ? 6 ay
1 U 3 UU5 | ssy

0 | |

1 | nou ! 3 6u , uO ? ? ? puog 1 ndu I

| 2001
?|

b?JI OG
26

| | | | | | | | | | | |

J 3 4 ! quý WOW 08
J 3 4 ! quy I Jd

y/

U.S. Patent Jan. 28, 1997 Sheet 4 of 12 5,598,542

REQ if 2 MCA req (Synchronous) (Asynchronous)

C K

PCOCC-C
(long) PCI ACC-C

(pulse)

CK

CK

5,598,542 Sheet 5 of 12 Jan. 28, 1997 U.S. Patent

}} }]

(35 | ng snou o J?ouÁS) 0-00\/TWO|W

G - 9 I J
8/ I

(snou o J?ouÁsy) 3 - 230 YJ|W

U.S. Patent Jan. 28, 1997 Sheet 6 of 12 5,598,542

-REQ if I and
-REQ fift 2

-REQ if and
-REQ it 2

REO if I Or
REQ it 2

92 194 - ACC-C and
(REQ it or REQ it 2)

ACC - C

5,598,542 Sheet 8 of 12 Jan. 28, 1997 U.S. Patent

(1 ufi IJB) | # 1 NWÈ,9

W TIN VÀ#9
}} | 0

9 , 9 I J

983

<T3STS08 TESTS/18

5,598,542 Sheet 9 of 12 Jan. 28, 1997 U.S. Patent

6 , 9 I J
U J O } SU 1 0 || S

J 31 U \ 0 & 1 0 || S. Bu ? I | 0-007

5,598,542 Sheet 10 of 12 Jan. 28, 1997 U.S. Patent

ÁJouaw (an ? DA pau6 | ssy puo) J34 u ? og
1 0 | S au ? I

2 + U | O || S.

(1) U 1 0) s

10B 8 8th P v A

0-007

MATCH TO FIG.

70 ||

(9 I J

5,598,542 Sheet 12 of 12 Jan. 28, 1997 U.S. Patent

[[| 50 I J

No.TºTT?T??TT?T?HOEITHOEI, fiu? ss.322y
sng 0-03 y

5,598,542
1.

METHOD AND APPARATUS FOR BUS
ARBTRATION IN A MULTIPLE BUS

INFORMATION HANDLING SYSTEM USING
TIME SLOT ASSIGNMENT VALUES

FIELD OF THE INVENTION

The present invention relates generally to computer sys
tem architecture and, more specifically, to a multibus
dynamic arbiter for arbitration between two buses.

BACKGROUND OF THE INVENTION

Personal computer systems arc well known in the art.
Personal computer systems in general, and IBM Personal
Computers in particular, have attained widespread use for
providing computer power to many segments of today's
modern society. Personal computers can typically be defined
as a desktop, floor standing, or portable microcomputer that
is comprised of a system unit having a single central
processing unit (CPU) and associated volatile and non
volatile memory, including all RAM and BIOS ROM, a
system monitor, a keyboard, one or more flexible diskette
drives, a fixed disk storage drive (also known as a "hard
drive'), a so-called "mouse' pointing device, and an
optional printer. One of the distinguishing characteristics of
these systems is the use of a motherboard or system planar
to electrically connect these components together. These
systems are designed primarily to give independent com
puting power to a single user and are inexpensively priced
for purchase by individuals or small businesses. Examples
of such personal computer systems are IBM's PERSONAL
COMPUTER AT (IBM PC/AT), IBM's PERSONAL SYS
TEM/1 (IBM PS/1), and IBM's PERSONAL SYSTEMI2
(IBM PS/2).

Personal computer systems are typically used to execute
software to perform such diverse activities as word process
ing, manipulation of data via spread-sheets, collection and
relation of data in databases, display of graphics, design of
electrical or mechanical systems using system-design soft
Ware, etC.

In such computer systems, the components communicate
via electrical signals. These electrical signals are typically
carried by electrical connections between the system com
ponents. Typical types of electrical connections include
metal traces on a printed circuit board (PCB), vias between
different levels of multilayer PCBs, plated through holes,
plugs, and individual wires connected from pin to pin of
system components. Typically groups of electrical signals
and groups of electrical connections which carry the elec
trical signals are referred to as a "bus.' Thus, a reference to
a "bus' can indicate a reference to a group of electrical
signals, a group of electrical connections which carry the
electrical signals, or a reference to both a group of electrical
signals which form a protocol and a group of electrical
connections which carry the electrical signals. Buses are
made up of "bus lines.” A reference to an individual "bus
line' may refer to an electrical connection of a bus or an
electrical signal of a bus.

Typical computer systems have several distinct buses: a
host processor bus, a memory bus, and one or more periph
eral buses. The host processor bus is unique to each pro
cessor and dictated by the architecture of that processor. The
memory bus is usually standardized to one of several
memory buses to allow common, inexpensive memory units
to be used. For example, many systems of widely different

O

15

20

25

30

35

40

45

50

55

60

65

2
architectures are designed to use common single in-line
memory modules (SIMMs). The peripheral bus(es) have
evolved into a number of standards. The Industry Standard
Architecture (ISA) bus, the "MICROCHANNEL'Architec
ture (MCA) bus, and the Peripheral Component Interconnect
(PCI) bus, are examples of very well known peripheral
buses.
The buses in a system typically must share resources

across the various buses. For example, both the host pro
cessor bus and the peripheral bus typically must have access
to the memory bus. To avoid conflicts between buses
attempting to access the same bus, arbiters are designed to
arbitrate between the two or more buses requesting access to
the same bus.

The current trend in the computer industry is to design
systems with more than one peripheral bus, e.g., a system
with a PCI bus and an ISA bus. Such systems can become
complicated because the arbiters must take into account both
peripheral buses when arbitrating accesses to the memory
bus.
A particularly complicated system is a system having a

PCI bus and an MCA bus. Both the PCI bus and the MCA
bus allow bus masters to assume control of that particular
bus. Therefore, both of these buses have arbiters for arbi
trating control of their respective buses. Thus, a system with
a PCI bus and an MCA bus must have four arbiters: (1) the
memory bus arbiter, (2) the PCI bus arbiter, (3) the MCA bus
arbiter, and (4) a multibus arbiter for arbitrating between the
PCI bus arbiter and the MCA bus arbiter. Thus, the PCI bus
arbiter and the MCA bus arbiter must be interfaced with the
memory arbiter to determine which of the many bus masters
may access the memory bus at any one time.

This particular configuration is even more complicated
because the PCI bus and the MCA bus use different criteria
for determining how their respective bus masters are given
control of their respective buses. The MCA bus masters are
designed to stay on the bus as long as possible to optimize
bus utilization. On the other hand, the PCI bus is a packet
bus; PCI bus masters are designed to acquire the bus,
perform a short high-speed transfer, and leave the bus.

Prior art multibus arbiters use timers to allocate the
memory bus between the various buses. This is rigid and can
lead to an unequitable allocation of memory bus bandwidth
between the various peripheral buses.

Therefore, it is desirable to provide a multibus arbiter that
allows a dynamic and more equitable allocation of memory
bus bandwidth between the various buses.

It is specifically desirable to provide a multibus arbiter
that allows a dynamic and more equitable allocation of
memory bus bandwidth between the PCI bus and the MCA
bus.

SUMMARY OF THE INVENTION

According to the present invention, a multibus arbiter is
provided for arbitrating between first and second peripheral
bus arbiters for control of a memory bus arbiter. The
multibus arbiter comprises: a writable assignment register, a
time slot pointer, and an arbitration circuit.
The writable assignment register is in circuit communi

cation with the CPU and stores a multibit time slot assign
ment value responsive to the CPU, thereby allowing the
CPU to allocate accesses between the buses. The time slot
pointer has one position for each bit of the writable assign
ment register and is configured to select at least one of the

5,598,542
3

positions and to select a different position at least partially
responsive to both of the peripheral bus arbiters requesting
access to the memory bus. The time slot assignment bits can
be used to dynamically divide the access to the memory bus
between the two peripheral buses.
The individual accesses of the peripheral buses are not

directly governed by priority. Rather, the assignment value
is determined by the relative priority of the activity of that
particular bus at that particular time. Therefore, the access
ratio (the ratio of the number of memory bus accesses by
each peripheral bus) and, therefore, the access time ratio (the
ratio of time each bus spends accessing the memory bus) is
determined by the relative priority of the activity of that
particular bus at that particular time. Once the assignment
value is written to the assignment register, the bus to be
granted access during contention is slavishly determined by
the time slot pointer and the assignment value associated
with each time slot.

For example, if the assignment register and time slot
pointer are each eight-bits long, with one bit per position,
and if a logical ONE corresponds to the first peripheral bus
and a logical ZERO corresponds to the second peripheral
bus, then writing a 1 1 011 10, to the assignment register
allows three accesses of the first peripheral bus for every one
access by the Second peripheral bus. In one embodiment
having a PCI bus and a MCA bus, using 11101110, as the
assignment value causes the PCI bus masters to be granted
75% of the accesses and the MCA bus masters to be granted
25% of the accesses, which is a 3:1 access ratio in favor of
the PCI bus. Essentially, during contention for the memory
bus, the PCI bus is allowed three consecutive accesses
before the MCA bus is allowed to access the memory bus.

With an eight-bit time slot pointer and assignment regis
ter, the lowest percentage of access would be 12.5% by
writing, e.g., 10000000 or 0.1111111 to the assignment
register. The CPU allocates accesses between the various
buses. The granularity of access control can be increased by
increasing the number of bits in the assignment register and
the time slot pointer. A sixteen-bit assignment register and
time slot pointer allow a granularity of 6.25% of the
accesses. Moreover, preferably the assignment value in the
assignment register can be changed dynamically by the
CPU, thereby allowing different ratios of accesses depend
ing on specific conditions within the system. In the alterna
tive, the assignment value can be a fixed value incapable of
being changed by the CPU.
The multibus arbiter is particularly useful for arbitrating

accesses between a PCI bus and an MCA bus. Assuming that
a logical ONE in the assignment register indicates that a PCI
bus master may access the memory bus and a logical ZERO
indicates that an MCA bus master may access the memory
bus, and further assuming that, on average, a PCI bus master
retains control for an average of 1.5 us and an MCA bus
master retains control of the memory bus an average of 5 us,
then the actual time each bus spends on the bus is approxi
mately equal. That is, the PCI bus masters are granted
control of the memory bus for 9 us (6X1.5 us) and the MCA
bus masters are granted control for 10 us (2x5 us), on
average. Thus, in this example, the access time ratio is nearly
1:1.

Significantly, the assignment value can be altered dynami
cally by the CPU thereby changing the ratio of accesses by
each peripheral bus. This is useful for tailoring the accesses
to the memory bus depending on one or more parameters of
the peripheral buses.

It is therefore an advantage of the present invention to
provide a multibus arbiter that allows a dynamic and more

10

15

20

25

30

35

40

45

50

55

60

65

4
equitable allocation of memory bus bandwidth between the
various buses.

It is a further advantage of this invention to provide a
multibus arbiter that allows a dynamic and more equitable
allocation of memory bus bandwidth between the PCI bus
and the MCA bus.
These and other advantages of the present invention will

become more apparent from a detailed description of the
invention.

BRIEF DESCRIPTION OF THE DRAWINGS

In the accompanying drawings, which are incorporated in
and constitute a part of this specification, embodiments of
the invention are illustrated, which, together with a general
description of the invention given above, and the detailed
description given below serve to example the principles of
this invention.

FIG. 1 is a block diagram showing an overall system view
of a computer system using a multibus arbiter of the present
invention;

FIGS. 2A and 2B are block diagrams showing certain
internal portions of the multibus arbiter of the present
invention;

FIGS. 3-5 are electrical schematic diagrams of the con
ditioning circuitry used to convert the PCI bus and MCA bus
signals into signals suitable for the other circuitry.

FIG. 6 is a state machine diagram showing the state
transitions used to generate the ARB STROBE signal;

FIGS. 7 and 8 are electrical schematic diagrams of the
circuitry of an embodiment of the multibus arbiter of the
present invention; and

FIGS. 9-11 are timing diagrams showing various timing
and causal relationships between the various signals of the
embodiment of the multibus arbiter of the present invention
shown in FIGS. 7 and 8.

DETAILED DESCRIPTION OF THE
PREFERRED EMBODIMENT

Referring now to the drawings, and specifically to FIG. 1,
a computer system using the multibus arbiter of the present
invention is shown. The computer system 10 includes a CPU
50 having a host processor bus 52 associated therewith. The
host processor bus 52 has a data bus, an address bus, and a
control bus (all not shown) as known to those skilled in the
art. Many possible processors can be used to implement the
CPU 50. One suitable processor is the well known
80486DX, which is manufactured by Intel Corp. and
Advanced Micro Devices, Inc. In circuit communication
with the CPU 50 via the hostbus 52 are a level 2 (L2) cache
memory 54 and a memory controller 56. The L2 cache 54 is
a relatively small bank of memory dedicated to the CPU 50,
as should be known to those skilled in the art.

Associated with the memory controller 56 is a memory
bus 58. A system memory 60 is in circuit communication
with the memory controller 56 via the memory bus 58, as
should be known to those skilled in the art. A suitable
memory for use in the system memory 60 include the
common single in-line memory modules (SIMMs). The
memory controller 56 has a memory arbiter 62 associated
therewith. The memory arbiter 62 arbitrates use of the
system memory 60 between the CPU 50 and the other
devices, to be discussed below. The memory arbiter is a
simple arbiter using a memory access request line REQ

5,598,542
S

MEMORY and a memory access grant line GRANT
MEMORY, as known to those skilled in the art.
The cmbodiment of FIG. 1 has two peripheral buses: a

PCI bus 76 and an MCA bus 82. However, it is to be
understood that this invention encompasses other combina
tions of two or more dissimilar buses or two or more
separate buses using the same protocol, such as two or more
separate PCI buses, two or more separate MCA buses, etc.

Additionally, the multibus dynamic arbiter of the present
invention cncompasses other combinations of buses other
than one or more peripheral buses contending for access to
a memory bus. For example, in a system with three separate
peripheral buses, e.g., three PCI buses, the multibus
dynamic arbiter can be used to arbitrate accesses to one of
the peripheral buses between the other two peripheral buses.
Many combinations are possible, e.g., arbitration between
synchronous and asynchronous buses, master and slave
buses, memory buses and peripheral buses, host buses and
peripheral buses, etc.

Referring back to FIG. 1, the system 10 has a PCI bus
controller 70 and an MCA bus controller 72, as are known
in the art. The PCI bus controller 70 has associated with it
a PCI arbiter 74 and the PCI bus 76. The PCI arbiter 74
arbitrates control of the PCI bus 76 among various PCI bus
masters 78a–78rt using dedicated REQ and GNT lines, as
known to those skilled in the art. A description of a circuit
including the CPU 50, L2 cache 54, memory controller 56,
system memory 60, and PCI bus controller 70 can be found
in various publications, e.g., 82420 PCIset Universal Moth
erboard Design Guide, which is available from Intel Cor
poration Literature, P.O Box 7641, Mt. Prospect, Ill. 60056
7641.
The MCA bus controller 72 has associated with it an MCA

arbiters 80 and the MCA bus 82, which the MCA bus
controller interfaces from the PCI bus 76. The MCA arbiter
arbitrates control of the MCA bus 82 among various MCA
bus masters 84a–84o using ARB/-GNT, -Preempt, -Burst,
and the four-bit arbitration bus, as is known to those skilled
in the art. The MCA bus is fully described in, e.g., IBM
Personal System/2 Hardware Interface Technical Reference,
which is available to the public from International Business
Machines Corporation, the assignee of the present invention.

Arbitrating between the PCI bus arbiter 74 and the MCA
bus arbiter 80 is a multibus arbiter 90 of the present
invention. The PCI bus arbiter 74 must be designed to
provide two signals to the multibus arbiter 90: a PCI request
(PCIreq) line 92 and a PCI access-complete (PCIacc-c) line
94. The PCIreq line is used to indicate that the PCI bus 76
requests access to the memory 60 via the memory bus 58.
The PCIacc-cline is used to indicate that the current access
of the memory 60 by the PCI bus 76 is complete. The PCI
arbiter 74 is granted use of the memory bus 58 by a PCI
grant (PCIgnt) line 96, which is generated by the multibus
arbiter 90. Likewise, the MCA bus arbiter 80 must be
designed to provide two signals to the multibus arbiter 90:
the MCA request (MCAreq) line 98 and the MCA access
complete (MCAacc-c) line 100. The MCA arbiter 80 is
granted use of the memory bus 58 by the MCA grant
(MCAgnt) line 102, which is generated by the multibus
arbiter 90. An ACC-C line is used to indicate that either of
the peripheral buses has completed an access to the memory
60 via the memory bus 58 and is generated by the logical
ORing of the PCIacc-c signal and the MCAacc-c signal. It
is believed that the request and grant lines for both buses
either exist for each peripheral bus arbiter or can easily be
generated using the given signals by those skilled in the art.

10

15

25

30

35

40

45

50

55

60

65

6
In the present embodiment, the memory arbiter 62, the

PCI bus arbiter74, the MCA bus arbiter 80, and the multibus
arbiter 90 are separate, thereby forming a distributed arbi
tration system. In the alternative, as is apparent to those
skilled in the art, one or more of the arbiters 62,74, 80, and
90 can be integrated into a central arbiter, thereby forming
a more centralized arbitration system. That is, one or more
or the arbiters 62, 74, 80, and 90 can be integrated into a
single system arbiter, while maintaining the structure and
functionality described herein.

Referring now to FIGS. 2A and 2B, a block diagram
showing the internal components of the multibus arbiter 90
of the present invention are shown. The arbiter 90 comprises
an assignment register 110, an input conditioning circuit
112, an arbitration strobe state machine 114, a time slot
pointer 116, an arbitration circuit 118, and an output con
ditioning circuit 120, all in circuit communication as shown
in those figures.
The assignment register 110 is in circuit communication

with both the host bus 51 of the CPU 50 and the arbitration
circuit 118.
The input conditioning circuit 112 is in circuit commu

nication with the PCI arbiter 74, the MCA arbiter 80, the
time slot pointer 116, and the state machine 114 and con
ditions the inputs for use with the time slot pointer 116 and
the state machine 114. For example, the timeslot pointer 116
and state machine 114 expect synchronous signals. In addi
tion, the ACC-C signal is expected to be one clock cycle in
length to function properly with the state machine 114.
Therefore, the input conditioning circuit is responsible for
making asynchronous signals synchronous and ensuring that
the ACC-C pulses are one cycle in length. Thus, the specific
circuitry 112 will depend on the specific buses being
dynamically arbitrated.
As will be more fully explained below, in one particular

embodiment, the conditioning circuit 112 (1) accepts the
synchronous PCIreq (PCI bus master request) signal from
the PCI arbiter 74 and generates a synchronous REQ#1
signal, (2) accepts the asynchronous MCAreq (MCA bus
master request) signal from the MCA arbiter 80 and gener
ates a synchronous REQ#2 signal, and (3) accepts both the
synchronous PCIacc-c (PCI bus master access complete)
signal and the asynchronous MCAacc-C (MCA bus master
access complete) signals from the PCI arbiter 74 and the
MCA arbiter 80, respectively, and generates a single ACC-C
(access complete) signal, which is a signal synchronous with
the clock and which is one clock cycle long.
The state machine 114 accepts the REQ#1, REQ#2, and

ACC-C signals from the input conditioning circuit 112 and
generates ARB STROBE (arbitration strobe) signal, which
is used by the arbitration circuit 118.
The time slot pointer 116 is in circuit communication with

the arbitration circuit 118 and the input conditioning cir
cuitry 112. The time slot pointer 116 accepts the REQ#1,
REQ#2, and ACC-C signals from the input conditioning
circuit 112 and transmits an n-bit number to the arbitration
circuit 118.
The arbitration circuit 118 is in circuit communication

with the assignment register 110, the state machine 114, the
time slot pointer 116, the memory arbiter 62, and the output
conditioning circuit 120. The arbitration circuit 118 accepts
as inputs the n-bit value from the assignment register 110,
the n-bit value from the time slot pointer 116, the ARB
STROBE from the state machine 114, and the GRANT
MEMORY (memory bus access granted) signal from the
memory arbiter 62 and generates a REQ MEMORY

5,598,542
7

(request memory bus access) signal to the memory arbiter 62
and GRANTH1 and GRANT#2 signals to the output condi
tioning circuit 120.
The output conditioning circuit 120 is in circuit commu

nication with thc arbitration circuit 118, the PCI arbiter 74
and the MCA arbiter 80. As with the input conditioning
circuit 112, the output conditioning circuit conditions the
synchronous signals from inside the multibus arbiter 90 to
meet requirements of signals outside the arbiter 90. Specifi
cally, the output conditioning circuit 120 generates PCIgnt
(PCI bus granted control of the memory bus) signal and the
MCAgnt (MCA bus granted control of the memory bus)
signal from the GRANT#1 and GRANTH2 signals, respec
tively.

Referring now to FIGS. 3-5, the circuitry of one embodi
ment of the input conditioning circuitry 112 is shown. As
mentioned above, the specific circuitry needed will depend
entirely on the nature of the two buses being arbitrated. In
this particular embodiment, the two buses are the PCI bus 76
and the MCA bus 82. The PCIreq signal is already synchro
nous with the system clock, therefore, no input conditioning
is necessary and the REQ#1 signal is the PCIreq signal. At
most, the logical level of the PCIreq signal might need to be
inverted to generate the REQ#1 signal. In the alternative, if
the PCI bus clock is different from the CPU clock, then a
circuit similar to the circuit described in the text accompa
nying FIG. 3 might be needed to make the REQ#1 signal
synchronous with the CPU clock.
On the other hand, the MCAreq signal is asynchronous

and must be conditioned by the input conditioning circuit
112 to generate the synchronous REQ#2 signal. Circuitry to
perform this conditioning is shown in FIG. 3. In that figure
two clocked D flip-flops 130, 132 are in circuit communi
cation as shown in that figure. When the system is powered
on, and when the system power on reset (POR) signal is
asserted, as is known to those skilled in the art, both D
flip-flops 130, 132 are reset with their respective Q outputs
set to a logical ZERO. When the asynchronous MCAreq
signal transitions from a logical ZERO to a logical ONE, the
first D flip-flop 130 is SET and its Q output becomes a
logical ONE responsive to the next rising edge of the clock
signal (CLK). At the next rising edge of the clock signal
(CLK), the second D flip-flop 132 is SET by the first D
flip-flop 130 and its Q output becomes a logical ONE
synchronously with the clock signal (several delays later).
The Q signal from the second D flip-flop 132 is the REQ#2
signal.
The two D flip-flops 130, 132 remain SET until the

MCAreq signal transitions from a logical ONE to a logical
ZERO. Thereafter, responsive to the next rising edge of the
clock signal, the first D flip-flop. 130 is RESET to a logical
ZERO. Responsive to the next rising edge of the clock
signal, the second D flip-flop 132 is RESET to a logical
ZERO by the first D flip-flop 130. Consequently, the REQ#2
signal becomes a logical ZERO synchronously with the
clock signal (several gate delays later). Thus, the asynchro
nous MCAreq signal is conditioned to be the synchronous
REQ#2 signal. Note that the REQ#2 signal remains a logical
ONE continuously if the MCAreq signal remains a logical
ONE.

Referring now to FIG. 4, the circuitry used to condition
the PCIacc-c signal is shown. The PCIacc-c signal is syn
chronous with the clock signal but is longer than one clock
cycle in length. The FIG. 4 circuit shortens the PCIacc-c
signal into a single clock cycle in length. As shown in that
figure, a D flip-flop 140 and an R-S latch 142 are in circuit

10

15

20

25

30

35

40

45

50

55

60

65

8
communication with two two-input AND gates 144, 146 and
two inverters 148, 150. When the system is powered up, and
when the system POR signal is asserted, the D flip-flop 140
and the R-S latch 142 are RESET; therefore, their respective
Q outputs are logical ZERO. After the PCIacc-c signal
becomes a logical ONE, the D flip-flop 140 is SET via the
AND gate 144 responsive to the next rising edge of the
inverted clock signal (the next falling edge of the clock
signal) and its Q output becomes a logical ONE synchro
nously with the clock signal (several delays later). The Q
signal from the D flip-flop 140 is the PCI ACC-C signal.
As the clock signal rises, the R-S latch 142 is SET by the

second AND gate 146 and its Q output becomes a logical
ONE synchronously with the clock signal (several delays
later). The Q signal from the R-S latch 142 is fed back to the
first AND gate 144. As such, on the next rising edge of the
inverted clock signal (next falling edge of the clock signal),
the D flip-flop is RESET and its Q output and the PCI
ACC-C signal become a logical ZERO. After the PCIacc-c
signal falls from a logical ONE back to a logical ZERO, the
R-S latch 142 is reset and the cycle begins again.

Therefore, the synchronous PCIacc-c signal of various
lengths has been conditioned to be the synchronous PCI
ACC-C signal, which is one clock cycle in length. As will be
apparent to those skilled in the art, the state machine 114 can
be made so as not to require the various signals to be one
clock pulse in length. However, doing so facilitates and
simplifies the design of the state machine 114.

Referring now to FIG. 5, the circuitry used to condition
asynchronous signals of various lengths to synchronous
signals one clock cycle long is shown. Specifically, the
circuit of FIG. 5 conditions the asynchronous MCAacc-c
signal to a synchronous MCA ACC-C signal that is one
clock cycle long. As shown in that figure, two D flip-flops
160, 162 and an R-S latch 164 are in circuit communication
with two two-input AND gates 170, 172 and two inverters
178, 180. When the system is powered up, and when the
system POR signal is asserted, the D flip-flops 160, 162 and
the R-S latch 164 are RESET; therefore, their respective Q
outputs are logical ZERO. After the MCAacc-c signal
becomes a logical ONE, the first D flip-flop 160 is SET
responsive to the next rising edge of the inverted clock
signal (the next falling edge of the clock signal) and its Q
output becomes a logical ONE synchronously with the clock
signal (several delays later). On the next rising edge of the
inverted clock signal (the next falling edge of the clock
signal) the second D flip-flop 162 is SET via the AND gate
170 responsive to that edge and its Q output becomes a
logical ONE synchronously with the clock signal (several
delays later). The Q signal from the second D flip-flop 162
is the MCA ACC-C signal.

Thereafter, as the clock signal rises, the R-S latch 164 is
SET by the second AND gate 172 and its Q output becomes
a logical ONE synchronously with the clock signal (several
delays later). The Q signal from the R-S latch 142 is fed back
to the first AND gate 144. As such, on the next rising edge
of the inverted clock signal (next falling edge of the clock
signal), the second D flip-flop 162 is RESET and its Q output
and the MCA ACC-C signal become a logicalZERO. After
the MCAacc-c signal falls from a logical ONE back to a
logicalZERO, the R-S latch 142 is reset and the cycle begins
again.

Therefore, the asynchronous MCAacc-c signal of various
lengths has been conditioned to be the synchronous MCA
ACC-C signal, which is one clock cycle in length. The
MCA ACC-C signal and the PCI ACC-C signal are ORed

5,598,542

by an OR gate (not shown) to form the ACC-C signal, which
is used by various other circuitry in the multibus arbiter 90.

Referring now to FIG. 6, the state machine 114 governing
the generation of the ARB STROBE signal is shown. In
that figure, three states-State0 190, State1192, and State2
192—are controlled by the REQ#1, REQ#2, and ACC-C
signals. The state machine is initialized into State0 190.
State 192 is entered from either State0 90 or State2 94
responsive to either REQ#1 or REQ#2 being asserted (logi
cal ONE). State2.194 is entered from State1192 responsive
to the ACC-C signal being asserted (logical ONE). The
ARB STROBE signal is asserted (logical ONE) for one
clock cycle responsive to changing from any one of the three
states to any of the other two states. Those skilled in the art
can produce a suitable circuit using the state diagram shown
in FIG. 6, the specification, and the other figures using any
of several methods, including using a Karnaugh map.

Referring now to FIGS. 7 and 8, the circuitry for the
assignment register 110, the state machine 114, the time slot
pointer 116, and the arbitration circuit 118 are shown.
The CPU 50 allocates accesses between the various buses.

The assignment register 110 holds a multiposition time slot
assignment value written by the CPU 50. Each position
corresponds to a particular time slot and gives the identity of
thc bus that has been allocated that particular time slot.
Preferably each position is one bit in length and can,
therefore, distinguish between the two peripheral buses. For
example, if the assignment register 110 and time slot pointer
116 are each eight-bits long, and if a logical ONE corre
sponds to the first peripheral bus and a logical ZERO
corresponds to the second peripheral bus, then writing a
11101110 to the assignment register allows three successive
accesses of the first peripheral bus for every one access by
the second peripheral bus (when there is contention between
the two buses for the memory bus 58).

In the embodiment using the PCI bus 76 and the MCA bus
82, assuming a ONE corresponds to the PCI bus being
assigned to that time slot and a ZERO corresponding to the
MCA bus being assigned to that time slot, PCI bus masters
are granted 75% of the accesses and the MCA bus masters
are granted 25% of the accesses.

With eight bits, the lowest percentage of access would be
12.5% by writing, e.g., 10000000 or 0.1111111 to the
assignment register 10. The granularity of access control
can be increased by increasing the number of bits in the
assignment register 110 and the time slot pointer 116. A
sixteen-bit assignment register 110 and time slot pointer 116
allow a granularity of 6.25% of the accesses. Moreover, the
assignment value in the assignment register 110 can be
changed dynamically by the CPU 50, thereby allowing
different ratios of accesses depending on specific conditions
within the system.
As shown in FIG. 7, the assignment register 110 can be an

n-bit writable register 200, such as the standard TTL des
ignated device 74273 or in its equivalent (if an 8-bit register
is desired) in a programmable logic device (PLD), a field
programmable logic array (FPLA), an application specific
integrated circuit (ASIC), etc. In fact, the circuitry for the
multibus arbiter 90 shown in the figures can be reproduced
in a programmable logic device (PLD), a field program
mable logic array (FPLA), an application specific integrated
circuit (ASIC), etc. of a suitable size. The data lines
202a-202n of the register 200 are connected to the data bus
(not shown) of the CPU 50 and the write line 204 is
generated by decoding one or more address and control lines
(not shown) of the CPU 50 in such a manner that data may

10

15

20

25

30

35

40

45

50

55

60

65

10
be written from the CPU 50 and latched into the assignment
register 200, as is known by those skilled in the art. At
power-up, the n bits in the register 200 are a logical ZERO.
These values are changed by writing values with the CPU
50.

Preferably, the assignment register 110 holds an assign
ment value responsive to writes by the CPU 50. In the
alternative, the assignment register can be a device that
holds a fixed predetermined assignment value. For example,
the writable register 200 can be replaced by eight pull-up
and pull-down resistors generating a predetermined fixed
value, e.g., 11101110. Such a value would not allow
dynamic control over the access ratios, but is a useful
alternative in certain circumstances.

As mentioned above, the timeslot pointer 116 is in circuit
communication with the conditioning circuitry 112 and the
arbitration circuit 118. An embodiment of the time slot
pointer 116 is also shown in FIG. 7. As shown in that figure,
the time slot pointer 116 is also in circuit communication
with the power on reset (POR) signal and the system clock,
both of which are known to those of ordinary skill in the art.

In this particular embodiment, the time slot pointer 116
comprises an R-S flip-flop 208 and in D flip-flops
210a-210n, in circuit communication with an inverter 212,
a three-input AND gate 214, and various two-input AND
gates and two-input OR gates, as shown in FIG. 7. These
devices are in circuit communication to form a self-starting
ring counter with one logical ONE that passes the logical
ONE from flip-flop to flip-flop responsive to the REQ#1,
REQ#2, and ACC-C signals being active (logical ONE). As
is apparent to those skilled in the art, the exact number of
AND and OR gates will depend on the specific value of n.
As stated above, the value of n depends on the particular
granularity of accesses desired. As is apparent from the
figure, adding another stage involves adding two two-input
AND gates, a two-input OR gate, and a D flip-flopper stage.
As will also be apparent to those skilled in the art, the time

slot pointer circuitry can be modified to increment the
pointer either at the beginning of an access cycle, at the end
of a cycle (as in the present invention), or at various points
during the access cycle. The critical condition for incre
menting the time slot pointer 116 is contention at some point
between the first and second peripheral buses. Thus, in the
present invention, the time slot pointer value changes at least
partially responsive to both peripheral buses requesting
access to the memory bus. Particular embodiments may
require that other conditions be met before incrementing the
time slot pointer. For example, in the embodiment of FIG. 7,
the time slot pointer increments only when both peripheral
buses are requesting the memory bus and one of the periph
eral buses just finished accessing the memory bus and a
rising edge of the clock signal occurs. Other embodiments
can be made that use other conditions, such as a falling edge
of the clock signal or the start of a cycle under contention.
The critical aspect is that the time slot pointer value changes
at least partially responsive to both peripheral buses request
ing access to the memory bus.

Referring back to FIG. 7, at power up, the R-S flip-flop
208 and then D flip-flops 210a-210n are RESET to a logical
ZERO. Responsive to the POR signal, the first D flip-flop
210a is SET to a logical ONE. After that point, the time slot
pointer 116 sequentially passes the logical ONE from flip
flop to flip-flop responsive to the REQ#1, REQ#2, and
ACC-C signals being active (logical ONE) during a rising
edge of the clock. Again, the critical aspect is that the time
slot pointer value changes at least partially responsive to

5,598,542
11

both peripheral buses requesting access to the memory bus.
In this cmbodiment, after initialization, at all times, a single
logical ONE will be present. For example, in an eight-bit
system, the time-slot pointer 116 will start out as 10000000,
and, responsive to the REQ#1, REQ#2, and ACC-C signals
being active (logical ONE), will sequentially change to
01.000000 to 00100000 to 00010000 to 00001000 to
00000100 to 00000010 to 00000001 and back to
10000000. In the alternative, the values can progress as
follows: 00000001 to 00000010, to 00000100 to
00001000 to 00010000 to 00100000 to 01000000 to
10000000, and back to 00000001. The specific increment
ing and decrementing direction is not critical; what is critical
is that the assignment values in the assignment register
correspond to the associated stages of the time slot pointer.

In this embodiment, the arbitration circuit 118 consists of
the circuitry 220 of FIG. 7 and the circuitry of FIG.8. The
circuit 220 comprises in AND gates 222a-222n and an
n-input OR gate 224 and is configured as a one-of-n selector.
The value of the BUS SEL signal is the value of bit of the
assignment value in the assignment register 110 that corre
sponds to the bit of the time slot pointer 116 with the logical
ONE. For example, if the assignment register has the value
11101110 stored therein and the time slot pointer is cur
rently 00100000, then the value of the BUS SEL signal
will be a logical ONE, indicating that during the next
contended access cycle the first peripheral bus will be given
access. In the embodiment using the PCI bus and the MCA
bus, the PCI bus will be given access.

Referring now to FIG. 8, the portion of the arbitration
circuit 118 used to generate the GRANT#1 and GRANT#2
signals is shown. This circuit has two D flip-flops 230,232
in circuit communication with six two-input AND gates 234,
235, 236, 237,238, and 239, two two-input OR gates 240,
242, and an inverter as shown in that figure. This circuit
functions as follows. Both D flip-flops 230, 232 are initial
ized to a logical ZERO. When either (1) only the first
peripheral bus (PCI bus) is requesting access to the memory
bus 58 (the REQ#1 signal is asserted and the REQ#2 signal
is not asserted) or (2) the first peripheral bus (PCI bus) is
requesting access to the memory bus 58 (the REQ#1 signal
is asserted) and the BUS SEL signal indicates that the first
peripheral bus (PCI bus) should be given control of the
memory bus 58 (whether REQ#2 is asserted or not), then a
logical ONE is stored in the D flip-flop 230 responsive to a
rising edge of the ARB STROBE signal. This latched ONE
causes the GRANTH1 line to be asserted (logical ONE)
responsive to the GRANT MEMORY signal indicating that
the memory bus 58 can be accessed (logical ONE).
On the other hand, when either (1) only the second

peripheral bus (MCA bus) is requesting access to the
memory bus 58 (the REQ#2 signal is asserted and the
REQ#1 signal is not asserted) or (2) the second peripheral
bus (MCA bus) is requesting access to the memory bus 58
(the REQ#2 signal is asserted) and the BUS SEL signal
indicates that the second peripheral bus (MCA bus) should
be given control of the memory bus 58 (logical ZERO)
(whether REQ#1 is asserted or not), then a logical ONE is
stored in the other D flip-flop. 232 responsive to a rising edge
of the ARB STROBE signal. This latched ONE causes the
GRANTH2 line to be asserted (logical ONE) responsive to
the GRANT MEMORY signal indicating that the memory
bus 58 can be accessed (logical ONE).
As generated by the arbitration circuit 118, the GRANTH1

and GRANTi2 signals are held at a logical ONE continu
ously while the corresponding bus has access to the memory
bus 58. For some buses, this configuration might not be

10

15

20

25

30

35

40

45

50

55

60

65

12
compatible with the buses' arbiter. As such, the GRANT
signals may need to be conditioned. For example, a bus
might need a pulse or a signal that is asynchronous with the
system clock. In that case the output conditioning circuit 120
would be configured to condition either or both of the
GRANT signals to meet the parameters of the buses. In the
embodiment using the PCI bus and the MCA bus, the
GRANT#1 and GRANT#2 signals can be used as generated
by the arbitration circuit 118. No conditioning is needed; the
output conditioning circuit merely passes the GRANT#1
signal to the PCIgnt input of the PCI arbiter 74 and passes
the GRANTH2 signal to the MCAgnt signal of the MCA
arbiter 80.

Using the multibus arbiter 90 of the present invention is
relatively straightforward. An assignment value correspond
ing to the desired access ratio and the desired access time
ratio is written to the assignment register 110 by the CPU 50
or any other device configured to do so. At that point
accesses to the memory bus 58 are controlled by the memory
controller 56, memory arbiter 62, and the multibus arbiter
90.

Referring now to FIG. 9, a timing diagram showing the
functioning of the arbiter 90 without contention is shown.
(The widths of the signals in FIG. 9 are grossly out of scale,
with the ARB STROBE and ACC-C signals expanded to
show causal relationships between the signals.) In that
figure, only one of the buses requests access to the memory
bus 58 at a time. As such, the time slot pointer 116 never
shifts.

In the region of time indicated by the symbol “ol’ the first
peripheral bus (PCI bus) is requesting and is granted access
to the memory bus 58. Responsive to the REQ#1 signal
being active, the ARB STROBE signal pulses, which
causes the GRANTH1 signal to become active. Once the first
peripheral bus (PCI bus) is finished with the memory bus 58,
the ACC-C signal pulses, which causes the ARB STROBE
signal to pulse, thereby causing the GRANTH1 signal to
become inactive.

Similarly, in the region of time indicated by the symbol
“B” the second peripheral bus (MCA bus) is requesting and
is granted access to the memory bus 58. Responsive to the
REQ#2 signal being active, the ARB STROBE signal
pulses, which causes the GRANTH2 signal to become active.
Once the second peripheral bus (MCA bus) is finished with
the memory bus 58, the ACC-C signal pulses, which causes
the ARB STROBE signal to pulse, thereby causing the
GRANT#2 signal to become inactive.

Lastly in FIG. 9, in the region of time indicated by the
symbol "Y" the first peripheral bus (PCI bus) is continuously
requesting and is granted continual access to the memory
bus 58. Responsive to the REQ#1 signal being active, the
ARB STROBE signal pulses, which causes the GRANTH1
signal to become active. Each time the first peripheral bus
(PCI bus) is finished with the memory bus 58, the ACC-C
signal pulses, which causes the ARB STROBE signal to
pulse. However, unlike the situation o. above, the GRANT#1
is continuously regenerated by the ARB STROBE signal.

Again, throughout the time period of the timing diagram
of FIG.9, the time slot pointer remained pointing to time slot

.

Referring now to FIGS. 10A and 10B, a timing diagram
showing contention for the memory bus 58 is shown. (Like
the timing diagram of FIG.9, FIGS. 10A and 10B are out of
scale, with the ARB STROBE and ACC-C signals expanded
to show causal relationships between the signals.) The time
slot pointer is shown pointing to slots n, n+1, n+2, etc. In this

5,598,542
13

particular examplc, slots n through n+6 correspond to an
assignment value of . . . 1101110. . . . That is, slot n
corresponds to an assignment value of ONE, slot n+1 to an
assignment value of ONE, slot n+2 to ZERO, slot n+3 to
ONE, slot n+4 to ONE, slot n+5 to ONE, and slot n+6 to
ZERO.

As shown in those figures, in the period of time indicated
at 250, the PCI arbiter 74 requests the bus with the PCIreq
signal, which is the REQ#1 signal. Since the MCA bus
arbiter 80 is not requesting access to the memory bus 58, the
PCI bus arbiter 74 is granted access to the memory bus 58
in a manner identical to that of FIG. 9.
Soon thereafter, the MCA arbiter 80 requests access to the

memory bus with the MCAreq signal, which is conditioned
by the input conditioning circuit 112 to be the REQ#2 signal,
as explained above. During the time period indicated at 252,
since there is now contention between the two bus arbiters
74, 80 for the memory bus 58, the time slot pointer 116 will
increment when the PCI arbiter 74 signals that it has finished
accessing the memory bus 58 by asserting the PCIacc-c
signal, which is conditioned by the input conditioning circuit
112 to assert the ACC-C signal.

Since there is contention between the two arbiters 74, 80,
slot n+1 and the associated assignment value determine
which peripheral bus arbiter will access the memory bus 58.
As shown in the period of time indicated at 250, since the
assignment value associated with slotn is a logical ONE, the
PCI bus arbiter 74 is granted access to the memory bus 28
again in the manner described in the text accompanying FIG.
9, with the exception that the GRANTH1 signal merely
remained at a logical ONE.

Likewise, in the period of time indicated at 252, there is
contention, so that when the PCI arbiter asserts the ACC-C
signal, the time slot pointer increments to slot n+2, which
has a ZERO assignment value associated with it. Thus, as
shown in the period at 254, the memory bus 58 is accessed
by the MCA bus.

Similarly, in the periods of time indicated by 256, 258,
260, and 262, there is contention; therefore, the time slot
pointer increments to the next position. As shown, in time
periods 256, 258, 260, and 262, the memory bus 58 is
sequentially accessed by the PCI bus, the PCI bus, the PCI
bus, and the MCA bus, respectively.

Referring now to FIG. 11, a timing diagram showing the
cvents of FIGS. 9, 10A, and 10B are shown more closely to
scale. The period of time indicated at 264 shows the events
of FIGS. 10A and 10B with the peripheral buses contending
for access to the memory bus 58. The period of time
indicated at 266 shows the events of FIG. 9 with the
peripheral buses accessing the memory bus 58 without
contention.

Significantly, the assignment value can be altered dynami
cally by the CPU 50 thereby dynamically changing the ratio
of accesses by each peripheral bus. This is useful for
tailoring the accesses to the memory bus 58 depending on
one or more parameters of the peripheral buses 76, 82. For
example, if the current assignment value is 11001100 (with
an associated access ratio of 1:1 in favor of neither bus and
with an access time ratio of 1.5us:5us in favor the MCA bus)
and if a device 78a on the PCI bus 76 begins performing a
real-time activity with critical timing that requires nearly
constant accesses to the memory bus 58, then the assignment
value can be altered accordingly. Changing the value from
11001100 to 11111110 changes the access ratio from 1:1 to
7:1 in favor of the PCI bus and changes the access time ratio
to 7x1.5 us=10.5 us:5us or over 2:1 in favor of the PCI bus,
in this example.

10

5

20

25

30

35

40

45

50

55

60

65

14
In the particular embodiment described above, the mul

tibus arbiter 90 waits for the device on the peripheral bus
accessing the memory bus 58 to finish using the bus 58. In
the alternative, the arbiter 90 can be configured to limit the
length of time each device accesses the memory bus 58.

While the present invention has been illustrated by the
description of embodiments thereof, and while the embodi
ments have been described in considerable detail, it is not
the intention of the applicant to restrict or in any way limit
the scope of the appended claims to such detail. Additional
advantages and modifications will readily appear to those
skilled in the art. For example, the circuitry can be modified
to arbitrate between three or more dissimilar peripheral
buses, with the assignment register 110 having enough bits
(e.g., three bits) per time slot pointer position to adequately
store the identity of the bus associated with each time slot.
As another example, a multibus arbiter can be configured to
arbitrate between two buses of the same type, e.g., two
separate PCI buses or two separate MCA buses. As yet
another example, the circuits shown are fairly conservative
in that setup times are easily met with the penalty being that
sometimes signals are delayed by several clock cycles. It
should be apparent to those skilled in the art that more
aggressive circuits can be designed to perform the same
functions. Therefore, the invention in its broader aspects is
not limited to the specific details, representative apparatus
and method, and illustrative examples shown and described.
Accordingly, departures may be made from such details
without departing from the spirit or scope of the applicant's
general inventive concept.

I claim:
1. A multibus computer system, comprising:
(a) a central processing unit (CPU) having a host proces

Sorbus associated therewith:
(b) a plurality of bus controllers in circuit communication

with said CPU for controlling information transfer over
a plurality of peripheral buses;

(c) a bus arbiter for arbitrating accesses between each of
said peripheral buses, and

(d) a dynamically alterable time slot assignment register
in circuit communication with said CPU and said bus
arbiter for dynamically storing a time slot assignment
value responsive to said CPU, said time slot assignment
value being dependent upon the average access time of
each of said plurality of busses to said host processor
bus and being used to directly divide accesses to one of
said bus controllers, among the others of said plurality
of bus controllers, with one access to said one bus
controller being granted per time slot position during
contention for accessing said one bus;

whereby the bandwidth of said host processor bus is
allocated between said peripheral buses.

2. A multibus computer system according to claim 1,
wherein the average access time of one of said plurality of
busses to said host processor bus is about the same as the
average access time of another of said plurality of busses to
said host processor bus during contention between said one
bus and said other bus for access to said host processor bus.

3. A multibus computer system according to claim 1,
wherein the average access time of one of said plurality of
busses to said host processor bus is about 9 microseconds
and the average access time of another of said plurality of
busses to said host processor bus is about 10 microseconds
during contention between said one bus and said other bus
for access to said host processor bus.

5,598,542
15

4. A multibus computer system, comprising:
(a) a central processing unit (CPU) having a host proces

Sor bus associated therewith:
(b) a memory controller in circuit communication with

said CPU via the host processor bus and having a
memory bus and a memory bus arbiter associated
therewith,

(c) a memory in circuit communication with said memory
controller via the memory bus;

(d) a first peripheral bus controller in circuit communi
cation with said CPU and said memory controller,
having a first peripheral bus and a first peripheral bus
arbiter associated therewith, and configured to request
access to said memory via said memory bus arbiter of
said memory controller;

(e) a second peripheral bus controller in circuit commu
nication with said CPU and said memory controller,
having a second peripheral bus and a second peripheral
bus arbiter associated therewith, and configured to
request access to said memory via said memory bus
arbiter of said memory controller; and

(f) a multibus arbiter in circuit communication with said
CPU, said first and second peripheral bus arbiters, and
said memory bus arbiter and including:
(1) an assignment register for storing a fixed predeter

mined multi-position time slot assignment value,
each position of which has at least one data bit
associated therewith, the time slot assignment value
being dependent upon the average access time of
said first peripheral bus to said memory bus and the
average access time of said second peripheral bus to
said memory bus and being used to predetermine the
ratio of accesses to said memory bus by said first
peripheral bus to accesses to said memory bus by
said second peripheral bus during contention;

(2) a time slot pointer having at least one position for
each position of said time slot assignment register
and configured to select at least one of the time slot
pointer positions and further configured to select a
different time slot pointer position at least partially
responsive to both of said peripheral bus arbiters
requesting access to the memory bus; and

(3) an arbitration circuit in circuit communication with
said memory bus arbiter, said time slot assignment
register, and said time slot pointer and configured to
determine which of said peripheral buses will be
given access to the memory bus responsive to (i) the
memory bus arbiter granting access to the memory
bus, (ii) the selected time slot pointer position, and
(iii) the value of the position of the time slot assign
ment value associated with the selected time slot
pointer position;

wherein the bandwidth of the memory bus is allocated
between said peripheral buses.

5. A multibus computer system according to claim 4,
wherein the average access time of said first peripheral bus
to said memory bus is about the same as the average access
time of said second peripheral bus to said memory bus
during contention between said first and second peripheral
busses for access to said host processor bus.

6. A multibus computer system according to claim 4,
wherein the average access time of said first peripheral bus
to said memory bus is about 9 microseconds and the average
access time of said second peripheral bus to said memory
bus is about 10 microseconds during contention between
said first and second peripheral busses for access to said host
processor bus.

10

15

20

25

30

35

40

45

50

55

60

65

16
7. A multibus computer system, comprising:
(a) a central processing unit (CPU) having a host proces

sor bus associated therewith;
(b) a memory controller in circuit communication with

said CPU via the host processor bus and having a
memory bus and a memory bus arbiter associated
therewith:

(c) a memory in circuit communication with said memory
controller via the memory bus;

(d) a first peripheral bus controller in circuit communi
cation with said CPU and said memory controller,
having a first peripheral bus and a first peripheral bus
arbiter associated therewith, and configured to request
access to said memory via said memory bus arbiter of
said memory controller;

(e) a second peripheral bus controller in circuit commu
nication with said CPU and said memory controller,
having a second peripheral bus and a second peripheral
bus arbiter associated there with, and configured to
request access to said memory via said memory bus
arbiter of said memory controller; and

(f) a multibus arbiter in circuit communication with said
CPU, said first and second peripheral bus arbiters, and
said memory bus arbiter and including:
(1) a dynamically alterable assignment register for

dynamically storing a predetermined multi position
time slot assignment value which is dependent upon
the average access time of the first and second
peripheral busses, each position of which has at least
one data bit associated therewith, the assignment
value predetermining the ratio of access to said
memory bus by said first peripheral bus to access to
said memory bus by said second peripheral bus
during contention;

(2) a time slot pointer having at least one position for
each position of said assignment register and con
figured to select at least one of the time slot pointer
positions and further configured to select a different
time slot pointer position at least partially responsive
to both of said peripheral bus arbiters requesting
access to the memory bus; and

(3) an arbitration circuit in circuit communication with
said memory bus arbiter, said assignment register,
and said time slot pointer and configured to deter
mine which of said peripheral buses will be given
access to the memory bus responsive to (i) the
memory bus arbiter granting access to the memory
bus, (ii) the selected time slot pointer position, and
(iii) the value of the position of the time slot assign
ment value associated with the selected time slot
pointer position;

wherein the bandwidth of the memory bus is allocated
between said peripheral buses.

8. A multibus computer system according to claim 7,
wherein the parameter said time slot assignment value is
dependent upon is related to the average access time of said
first peripheral bus to said memory bus and the average
access time of said second peripheral bus to said memory
bus.

9. A multibus computer system according to claim 8,
wherein the average access time of said first peripheral bus
to said memory bus is about the same as the average access
time of said second peripheral bus to said memory bus
during contention between said first and second peripheral
busses for access to said host processor bus.

10. A multibus computer system according to claim 8,
wherein the average access time of said first peripheral bus

5,598,542
17

to said memory bus is about 9 microseconds and the average
access time of said second peripheral bus to said memory
bus is about 10 microseconds during contention between
said first and second peripheral busses for access to said host
processor bus.

11. A method of arbitrating accesses to a memory between
first and second peripheral buses, comprising the steps of:

(a) providing a computer system having (i) a central
processing unit (CPU) having a host processor bus
associated therewith, (ii) a memory controller in circuit
communication with the CPU via the host processor
bus and having a memory bus and a memory bus arbiter
associated therewith, (iii) a memory in circuit commu
nication with the memory controller via the memory
bus, (iv) a first peripheral bus controller in circuit
communication with the CPU and the memory control
ler, having a first peripheral bus and a first peripheral
bus arbiter associated therewith, and configured to
request access to the memory via the memory bus
arbiter of the memory controller, (v) a second periph
eral bus controller in circuit communication with the
CPU and the memory controller, having a second
peripheral bus and a second peripheral bus arbiter
associated therewith, and configured to request access
to the memory via the memory bus arbiter of the
memory controller, and (vi) a multibus arbiter in circuit
communication with the CPU, the first and second
peripheral bus arbiters, and the memory bus arbiter and
including: a dynamically alterable an assignment reg
ister for dynamically storing a multi-position time slot
assignment value, each position of which has at least
one data bit associated therewith, a time slot pointer
having at least one position for each position of the
assignment register, and an arbitration circuit in circuit
communication with the memory bus arbiter, the
assignment register, and the time slot pointer;

(b) dynamically storing a fixed predetermined multi
position assignment value in the writable assignment
register, each position of which value corresponds to
either the first peripheral bus or the second peripheral
bus, thereby predetermining the ratio of accesses to the
memory bus by the first peripheral bus to accesses to
the memory bus by the second peripheral bus during
contention;

10

15

20

25

30

35

40

18
(c) determining at least one parameter of the first and

second peripheral buses;
(d) dynamically altering the assignment value stored

within the assignment register depending on the value
of the average access time of the first and second
peripheral buses, thereby changing, during contention,
the ratio of accesses to the memory bus by the first
peripheral bus to accesses to the memory bus by the
second peripheral bus.

(e) selecting a time slot pointer position;
(f) changing the selected time slot pointer position at least

partially responsive to the first and second peripheral
buses requesting access to the memory bus;

(g) granting access to the memory responsive to (i) the
memory bus arbiter granting access to the memory bus,
(ii) the selected time slot pointer position, and (iii) the
value of the position of the time slot assignment value
associated with the selected time slot pointer position;

whereby the bandwidth of the memory bus is allocated
between said peripheral buses.

12. A method of arbitrating accesses to a memory between
first and second peripheral buses according to claim 11,
wherein the parameter is related to the average access time
of the first peripheral bus to the memory bus and the average
access time of the second peripheral bus to the memory bus.

13. A method of arbitrating accesses to a memory between
first and second peripheral buses according to claim 12,
wherein the average access time of the first peripheral bus to
the memory bus is about the same as the average access time
of the second peripheral bus to the memory bus during
contention between said first and second peripheral busses
for access to said host processor bus.

14. A method of arbitrating accesses to a memory between
first and second peripheral buses according to claim 2,
wherein the average access time of the first peripheral bus to
the memory bus is about 9 microseconds and the average
access time of the second peripheral bus to the memory bus
is about 10 microseconds during contention between said
first and second peripheral busses for access to said host
processor bus.

