
United States Patent (19)
Amini et al.

54

(75)

73

21
22

63
51
52

58

56)

3,469.241

METHOD AND APPARATUS FOR
DETERMINING ADDRESS LOCATION AND
TAKING ONE OF TWO ACTIONS
DEPENDING ON THE TYPE OF READ/
WRITE DATA TRANSFER REQUIRED

Inventors: Nader Amini, Boca Raton; Richard
Louis Horne, Boynton Beach, both of
Fla.

Assignee: International Business Machines
Corporation, Armonk, N.Y.

Appl. No.: 298,538
Fied: Aug. 30, 1994

Related U.S. Application Data

Continuation of Ser. No. 816,698, Jan. 2, 1992, abandoned.
Int, C. m. G06F 13/00
U.S. C. 395/412; 395/306; 395/280;

395/821; 395/824; 364/238.3: 364/240;
364/242.1; 364/927.93

Field of Search 395/182.1, 2002,
395/280, 306, 412,821, 824; 364/238.3,

240,242.1,927.93

References Cited

U.S. PATENT DOCUMENTS

9/1969 Barton et al. 395/425

US005659696A

11 Patent Number: 5,659,696
45 Date of Patent: Aug. 19, 1997

4,466,098 8/1984 Southard 395/182.
4,695,948 9/1987 Blevins et al. 364/200
4,700,292 10/1987 Campanini 395/2002
4,964,036 10/1990 De Azevedo, Jr. et al. 364/200
5,068,820 11/1991 Nojima et al. 395/275
5,077,656 12/1991 Waldron et al. 395/425

Primary Examiner-Thomas C. Lee
Assistant Examiner-Po C. Huang
Attorney, Agent, or Firm-Bernard D. Bogdon

57 ABSTRACT

Abus interface unit for passing data between an I/O bus and
a system busin a dual bus computer system is provided. The
bus interface unit has incorporated therein an address listing
and compare function to determine whether a requesting
device on the I/O bus is to read data from or write data to an
address on the system bus. If so, the bus interface unit allows
passing of the data therethrough. If not, the system bus is
relinquished and the requesting device writes to the address
on the I/O bus. Also, compare logic is incorporated in the
bus interface unit which decodes system bus addresses
originated from a system bus controller such as the DMA, to
determine whether the destination of the transfer is to system
memory or the I/O bus.

12 Claims, 7 Drawing Sheets

5,659,696 Sheet 1 of 7 Aug. 19, 1997 U.S. Patent

TlOH + NOO ÅONETTOEH-?
TOHINOO

5,659,696 Sheet 2 of 7 Aug. 19, 1997 U.S. Patent

/HE-J-Ing

HETTIOH1NOO ÅHOWE|W

g | '9||-| || ITSETT TOE?I 1 – † -------+---------IG

U.S. Patent Aug. 19, 1997

FIG. 4
140

RANGE 1. MEMORY I/O BUS
RANGE 2 ADDRESS ADDRESS
RANGE 3 COMPARITOR REQUEST

SYSTEM BUS OR /O BUS

RANGE 44

RANGE 1.46

RANGE 148

164

SYSTEM ADOR. se
BUS

ADDRESS NEXTP
ADOR.

166

158

ADDR. 62
FOBUS /

ADDRESS NEXTP
ADOR.

160

FOBUS
ADDRESS 156

Sheet 6 of 7 5,659,696

FIG. 5
142

NaN 1
MEGA

6 BYTES

4

1

O
MEMORY
ADDRESS
SPACE

MEM. ADDR
COMPARE

SYSTEM
BUS
ACCESS

152

MEM, ADDR. STEM
COMPARE : ACCESS

MEM, ADOR. STEM
COMPARE

ACCESS

U.S. Patent Aug. 19, 1997 Sheet 7 of 7 5,659,696

ADDRESS 188

RANGE 1 START

ADDRESS

RANGE END

184
ADDRESS A A2 B

RANGE2 START B)

ADDRESS A ASB

RANGE2END B

86
ADDRESS A A2 B

RANGE 3 START B)

ADDRESS A As B
RANGE 3END B

5,659,696
1.

METHOD AND APPARATUS FOR
DETERMINING ADDRESS LOCATION AND

TAKING ONE OF TWO ACTIONS
DEPENDING ON THE TYPE OF READ/
WRITE DATA TRANSFER REQUIRED

This is a continuation of application Ser. No. 07/816,698
filed on Jan. 2, 1992, now abandoned.

RELATED APPLICATIONS

The following U.S. patent applications are incorporated
herein by reference as if they had been fully set out:

application Ser. No. 07/815,992 Filed Jan. 2, 1992
Entitled "BUS CONTROL LOGIC FOR COMPUTER
SYSTEM HAVING DUAL BUS ARCHITECTURE", now
abandon.

application Ser. No. 07/816,116 Filed Jan. 2, 1992
Entitled "ARBITRATION MECHANISM", now U.S. Pat.
No. 5,265,211.

application Ser. No. 07/816,184 Filed Jan. 2, 1992
Entitled “PARITY ERROR DETECTION AND
RECOVERY”, now U.S. Pat. No. 5,313,627.

application Ser. No. 07/816,204 Filed Jan. 2, 1992
Entitled “CACHE SNOOPING AND DATA INVALIDA
TION TECHNIQUE", now abandon.

application Ser. No. 07/816,203 Filed Jan. 2, 1992
Entitled "BUS INTERFACE LOGIC FOR COMPUTER
SYSTEM HAVING DUAL BUS ARCHITECTURE", now
U.S. Pat. No. 5.255,374.

application Ser. No. 07/816,691 Filed Jan. 2, 1992
Entitled “BIDIRECTIONAL DATA STORAGEFACLITY
FOR BUS INTERFACE UNIT", now abandon.

application Ser. No. 07/816,693 Filed Jan. 2, 1992
Entitled "BUS INTERFACE FOR CONTROLLING
SPEED OF BUS OPERATION', now abandon.

FIELD OF THE INVENTION

The present invention relates to bus to bus interfaces in
dual bus architecture computer systems, and more particu
larly to a bus to bus interface unit and method for using the
bus to bus interface unit to determine whether a memory
location is in system memory coupled to a system bus or in
a device coupled to an I/O bus.

BACKGROUND OF THE INVENTION

Generally in computer systems and especially in personal
computer systems, data is transferred between various sys
tem devices such as a central processing unit (CPU),
memory devices, and direct memory access (DMA) control
lers. In addition, data is transferred between expansion
elements such as input/output (I/O) devices, and between
these I/O devices and the various system devices. The I/O
devices and the system devices communicate with and
amongst each other over computer buses, which comprise a
series of conductors along which information is transmitted
from any of several sources to any of several destinations.
Many of the system devices and the I/O devices are capable
of serving as bus controllers (i.e., devices which can control
the computer system) and bus slaves (i.e., elements which
are controlled by bus controllers).

Personal computer systems having more than one bus are
known. Typically, a local bus is provided over which the
CPU communicates with cache memory or a memory
controller, and a system I/O bus is provided over which

10

15

20

25

30

35

45

50

55

65

2
system bus devices such as the DMA controller, or the I/O
devices, communicate with the system memory via the
memory controller. The system I/O bus comprises a system
bus and an I/O bus connected by a businterface unit. The I/O
devices communicate with one another over the I/O bus. The
I/O devices are also typically required to communicate with
system bus devices such as system memory. Such commu
nications must travel over both the I/O bus and the system
bus through the bus interface unit.

In some instances a device coupled to the I/O bus needs
to either readfrom or write to an address location on another
device which is also coupled to the I/O bus; and, in some
instances a device coupled to the I/O bus needs to read from
an address located in the system memory, which system
memory is coupled to the local bus. In this type of system,
the listing of the memory addresses is contained in the
memory controller which is coupled to the system bus and
a local bus CPU complex.

Thus, when a device coupled to the I/O bus needs to read
from or write to a memory address, the signal would have to
pass through the bus interface unit to the memory controller.
Logic in the memory controller then determines whether the
address is in system memory or in a device coupled to the
I/O bus and then communicate this information to the device
coupled to the I/O bus before it can start transferring
information. However, this communication through the bus
control unit requires that the control unit arbitrate for the
system bus, then write the required address information to
the memory controller. When the memory controller deter
mines where the address is located, it must then have either
delayed giving up of the system bus or if given up, must
arbitrate to get the system bus back, and then write the
address location back to the bus interface unit.

All of this arbitration and "handshaking” is time consum
ing and is inefficient, especially when the read or write
involves a device coupled to the I/O bus address writing to
or reading from an address in a device which is also coupled
to the I/O bus. Indeed, in certain systems when a device
coupled to the I/O bus needs to read or write to memory, an
extra delay is programmed into the cycle to allow sufficient
time to compare the address and write the locations to the
required devices.

Accordingly, it is an object of this invention to provide an
efficient determination of an address location which a device
coupled to the I/O bus can write data to or read data from.

SUMMARY OF THE INVENTION

The present invention provides a bus interface unit cou
pling a system bus to an I/O bus that includes afunction that
performs a memory compare in the bus interface unit when
a read or write request is made from a device coupled to the
I/O bus. If the address is in a device coupled to the I/O bus
then the requesting device coupled to the I/O bus reads or
writes directly from or to the address on the I/O bus without
the intervention of the bus interface unit. On the other hand,
if the address is in the systemmemory, the bus control unit
passes the data or request through to the system bus. Thus,
there is no time wasted in going through the bus control
device to the memory controller to perform the memory
comparefunction and then return with the information to the
requesting device coupled to the I/O bus, this function being
performed entirely by the bus interface unit.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a schematic block diagram of a computer system
incorporating a bus interface unit constructed according to
the principles of the present invention;

5,659,696
3

FIGS. 1A and 1B comprise FIG. 1 according to the
principles of the present invention;

FIG. 2 is a schematic block diagram of the bus interface
unit of the computer system of FIG. 1;
FIGS. 2A and 2B comprise FIG. 2 according to the

principles of the present invention;
FIG. 3 is a schematic block diagram of the FIFO buffer of

the bus interface unit of FIG. 2;
FIG. 4 is a schematic block diagram of the arbitration of

the memory compare;
FIG. 5 is a schematic showing the address locations of

memory as either system memory or memory on devices
coupled to the I/O bus; and
FIGS. 6 and 7 are logic diagrams of the operation of the

memory compare function in the bus interface unit.
DETALED DESCRIPTION OF THE

PREFERRED EMBODIMENT

Referring first to FIG. 1, a computer system shown
generally at 10 comprises system board 12 and processor
complex 14. Processor complex includes processor portion
16 and base portion 18 connected at processor local bus 20
via local bus connector 22. Processorportion 16 operates at
50 MHz and base portion 18 operates at 40 MHz.

System board 12 includes interleaved system memories
24 and 26 and input/output (I/O) devices 28. Communica
tions between memories 24 and 26 and processor complex
14 are handled by memory bus 30, and communications
between I/O devices 28 and processor complex 14 are
carried by I/O bus 32. Communications between I/O devices
and memories 24 and 26 are handled by I/O bus 32, system
bus 76 and memory bus 30. I/O bus 32 may conform to
MICRO CHANNEL(8) computer architecture. Memory bus
30 and I/O bus 32 are connected to processor complex base
portion 18 via processor complex connector 34. I/O devices
such as memory expansion devices may be connected to the
computer system 10 via I/O bus 32. System board 12 may
also include conventional video circuitry, timing circuitry,
keyboard control circuitry and interrupt circuitry (none of
which are shown) which may be used by computer system
10 during normal operation.

Processor portion 16 of processor complex 14 includes
central processing unit (CPU) 38 which, in the preferred
embodiment, is a 32-bit microprocessor available from Intel,
Inc. under the trade designation i486. Processor portion 16
also includes static random access memory (SRAM) 40,
cache control module 42, frequency control module 44,
address buffer 46 and data buffer 48. Local bus 20 comprises
data information path 50, address information path 52 and
control information path 54. Data information paths 50 are
provided between CPU 38, SRAM 40 and data buffer 48.
Address information paths 52 are provided between CPU
38, cache control module 42 and address buffer 46. Control
information paths 54 are provided between CPU 38, cache
control module 42 and frequency control module 44.
Additionally, address and control information paths are
provided between cache control module 42 and SRAM 40.
SRAM 40 provides a cache function by storing in short

term memory information from either system memories 24
or 26 or from expansion memory which is located on an I/O
device 28. Cache control module 42 incorporates random
access memory (RAM) 56 which stores address locations of
memories 24 and 26. CPU 38 may access information
cached in SRAM 40 directly over the local bus 20. Fre
quency control module 44 synchronizes operation of the 50

10

15

20

25

30

35

45

50

55

60

65

4
Mhz processor portion 16 with the 40 Mhz. base portion 18
and also controls the operation of buffers 46 and 48.
Accordingly, frequency control module 44 determines the
times at which information is captured by buffers 46 and 48
or the times at which information that is stored in these
buffers is overwritten. Buffers 46 and 48 are configured to
allow two writes from memories 24 and 26 to be stored
simultaneously therein. Buffers 46 and 48 are bi-directional,
i.e., they are capable of latching information which is
provided by the CPU 38 and information which is provided
to the CPU. Because buffers 46 and 48 are bi-directional,
processor portion 16 of the processor complex 14 may be
replaced or upgraded while maintaining a standard base
portion 18.

Base portion 18 includes memory controller 58, direct
memory access (DMA) controller 60, central arbitration
control point (CACP) circuit 62, bus interface unit 64 and
buffer/error correction code (ECC) circuit 66. Base portion
18 also includes driver circuit 68, read only memory (ROM)
70, self test circuit 72 and buffer 74. System bus 76
comprises a data information path 78, and address informa
tion path 80 and a control information path 82. The data
information path connects buffer 74 with bus interface unit
64; bus interface unit 64 with DMA controller 60 and
buffer/ECC circuit 66; and buffer/ECC circuit 66 with sys
tem memories 24 and 26. The address information path and
the control information path each connect memory control
er 58 with DMA controller 60 and bus interface unit 64; and
bus interface unit 64 with buffer 74.
Memory controller 58 resides on both CPU local bus 20

and system bus 76, and provides the CPU 38, the DMA
controller 60 or bus interface unit 64 (on behalf of an I/O
device 28) with access to system memories 24 and 26 via
memory bus 30. The memory controller 58 initiates system
memory cycles to system memories 24 and 26 over the
memory bus 30. During a system memory cycle, either the
CPU 38, the DMA controller 60 or bus interface unit 64 (on
behalf of an I/O device 28) has access to system memories
24 and 26 via memory controller 58. The CPU 38 commu
nicates to system memory via local bus 20, memory con
troller 58 and memory bus 30, while the DMA controller 60
or bus interface unit 64 (on behalf of an I/O device 28)
access system memory via system bus 76, memory control
ler 58 and memory bus 30.

For CPU 38 to I/O bus 32 read or write cycles, address
information is checked against system memory address
boundaries. If the address information corresponds to an I/O
expansion memory address or I/O port address, then
memory controller 58 initiates an I/O memory cycle or I/O
port cycle with an I/O device 28 (via bus interface unit 64)
over the I/O bus 32. During a CPU to I/O memory cycle or
I/O port cycle, the address which is provided to memory
controller 58 is transmitted from system bus 76 to I/O bus 32
via bus interface unit 64 which resides intermediate these
two buses. The I/O device 28 which includes the expansion
memory to which the address corresponds receives the
memory address from I/O bus 32. DMA controller 60 and
the bus interface unit 64 control the interchange of infor
mation between system memories 24 and 26 and expansion
memory which is incorporated into an I/O device 28.
DMA controller 60 also provides three functions on

behalf of processor complex 14. First, the DMA controller
60 utilizes a small computer subsystem control block (SCB)
architecture to configure DMA channels, thus avoiding the
necessity of using programmed I/O to configure the DMA
channels. Second, DMA controller provides a buffering
function to optimize transfers between slow memory expan

5,659,696
5

sion devices and the typically faster system memory. Third,
DMA controller 60 provides an eight channel, 32-bit, direct
system memory accessfunction. When providing the direct
system memory access function, DMA controller 60 may
function in either of two modes. In a first mode, DMA
controller 60 functions in a programmed I/O mode in which
the DMA controller is functionally a slave to the CPU 38. In
a second mode, DMA controller 60 itself functions as a
system bus master, in which DMA controller 60 arbitrates
for and controls I/O bus 32. During this second mode, DMA
controller 60 uses a first in, first out (FIFO) register circuit.
CACP circuit 62 functions as the arbiter for the DMA

controller, I/O device bus controllers and the CPU (if
accessing I/O devices). CACP circuit 62 receives arbitration
control signals from DMA controller 60, memory controller
58 as well as from I/O devices, and determines which
devices may control the I/O bus 32 and the length of time
during which the particular device will retain control of the
I/O bus.

Driver circuit 68 provides control information and address
information from memory controller 58 to system memories
24 and 26. Driver circuit 68 drives this information based
upon the number of single in-line memory modules
(SIMMs) which are used to construct system memories 24
and 26. Thus, driver circuit 68 varies the signal intensity of
the control and address information which is provided to
system memories 24 and 26 based upon the size of these
memories.

Buffer circuit 74 provides amplification and isolation
between processor complex base portion 18 and system
board 12. Buffer circuit 74 utilizes buffers which permit the
capture of boundary information between I/O bus 32 and bus
interface unit 64 in real time. Accordingly, if computer
system 10 experiences a failure condition, buffer circuit 74
may be accessed by a computer repair person to determine
the information which was present at connector 34 upon
failure of the system.
ROM 70 configures the system 10 upon power-up by

initially placing in system memory data from expansion
memory. Self test circuit 72, which is connected to a
plurality of locations within base portion 18, provides a
plurality of self test features. Self test circuit 72 accesses
buffer circuit 74 to determine if failure conditions exist, and
also tests the other major components of base portion 18
upon power-up of the system 10 to determine whether the
system is ready for operation.

Referring to FIG. 2, a schematic block diagram of the bus
interface unit 64 of the system of FIG. 1 is shown. Bus
interface unit 64 provides the basis for implementation of
the present invention by providing a bi-directional high
speed interface between system bus 76 and I/O bus 32.
Bus interface unit 64 includes system bus driver/receiver

circuit 102, I/O bus driver/receiver circuit 104 and control
logic circuits electrically connected therebetween. Driver/
receiver circuit 102 includes steering logic which directs
signals received from the system bus 76 to the appropriate
bus interface unit control logic circuit and receives signals
from the bus interface unit control logic circuits and directs
the signals to the system bus 76. I/O bus driver/receiver
circuit 104 includes steering logic which directs signals
received from the I/O bus 32 to the appropriate bus interface
unit control logic circuit and receives signals from the bus
interface unit control logic circuits and directs the signals to
the I/O bus 32.
The bus interface unit control logic circuits include sys

tem bus to I/O bus translation logic 106, I/O bus to system

10

15

20

25

30

35

45

50

55

65

6
bus translation logic 108, memory address compare logic
110, error recovery support logic 112, and cache Snooping
logic 114. Programmed I/O circuit 116 is also electrically
coupled to system driver/receiver circuit 102.
The system bus to I/O bus translation logic 106 provides

the means required for the DMA controller 60 or the
memory controller 58 (on behalf of CPU 38) to act as a
system bus controller to access the I/O bus 32 and thereby
communicate with I/O devices 28 acting as slave devices on
the I/O bus. Translation logic 106 translates the control,
address and data lines of the system bus 76 into similar lines
on the I/O bus 32. Most control signals and all address
signals flow from the system bus 76 to the I/O bus 32 while
data information flow is bi-directional. The logic which acts
as system bus slave monitors the system bus 76 and detects
cycles which are intended for the I/O bus 32. Upon detection
of such a cycle, the system bus slave translates the timing of
signals on the system bus to I/O bus timing, initiates the
cycle on the I/O bus 32, waits for the cycle to be completed,
and terminates the cycle on the system bus 76.
The I/O bus to system bus translation logic 108 comprises

system bus address generation circuit 118, I/O bus expected
address generation circuit 120, system bus controller inter
face 122, FIFO buffer 124, I/O bus slave interface 126 and
bus to bus pacing control logic 128. System bus controller
interface 122 supports a high performance 32 bit (4 byte)
i486 burst protocol operating at 40 MHZ. Data transfers of
four, eight and sixteen bytes in burst mode and one to four
bytes in no-burst mode are provided. I/O bus slave interface
126 monitors the I/O bus 32 for operations destined for slave
devices on the system bus 76 and ignores those operations
destined for the I/O bus 32. All cycles picked up by the I/O
bus slave interface 126 are passed on to the FIFO buffer 124
and the system bus controller interface 122.
The I/O bus to system bus translation logic 108 provides

the means required for an I/O device 28 to act as an I/O bus
controller to access system bus 76 and thereby read or write
to system memories 24 and 26. In either of these operations,
an I/O device controls the I/O bus. The asynchronous I/O
bus interface 126, operating at the speed of the I/O device,
permits the bus interface unit 64 to act as a slave to the I/O
device controller on the I/O bus 32 to decode the memory
address and determine that the read or write cycle is destined
for system memories 24 or 26. Simultaneously, the system
bus controller interface 122 permits the bus interface unit 64
to act as a controller on the system bus 74. The memory
controllier 58 (FIG. 2) acts as a slave to the bus interface unit
64, and either provides the interface 64 with data read from
system memory or writes data to system memory. The reads
and writes to system memory are accomplished through the
FIFO buffer 124, a block diagram of which is illustrated in
FIG. 3.
As shown in FIG. 3, FIFO buffer 124 is a dual ported,

asynchronous, bi-directional storage unit which provides
temporary storage of data information between the system
and I/O buses 76, 32. FIFO buffer 124 comprises four
sixteen-byte buffers 125A-125D and FIFO control circuit
123. The four buffers 125A-125D buffer data to and from
I/O bus controllers and system bus slaves, thereby allowing
simultaneous operation of the I/O bus 32 and the system bus
76. The FIFO buffer 124 is physically organized as two
thirty-two byte buffers (125A/125B and 125C/125D). The
system bus controller interface 122 and the I/O bus slave
interface 126 each control one thirty-two byte buffer while
the other thirty-two byte buffer operates transparent to them.
Both of the thirty-two byte buffers are utilized for read and
write operations.

5,659,696
7

Each FIFO 124A, 125B, 125C, 125D has an address
register section either physically associated with the respec
tive FIFO, or logically associated therewith. As data is
transferred from the I/O bus 32 to FIFO 125A, the data will
be accumulated until the 16 byte buffer is filled with 16 bytes
of data, provided that the addresses are contiguous. If a
non-contiguous address is detected by the address action, the
FIFO 125A will transfer the stored data to FIFO 125C, and
at the same time FIFO 125B will start to receive this data
from the new non-contiguous address. FIFO 125B will
continue just as FIFO 125A did until it is filled with 16 bytes
of data, or another non-contiguous address is detected. FIFO
125B will then transfer the stored data to FIFO 125D, and
FIFO 125A again starts to store data; thus, it is possible to
store up to four 16 byte blocks of non-contiguous address
data

Further, by having two 32 byte buffers in parallel the
reading and writing of data can be toggled between them
thus giving an essentially continuous read or write function.

Moreover, by splitting the 32 byte buffers into two 16
bytes buffer sections which are coupled to other I/O bus 32
or system bus 26, the number of storage buffers can be
increased with minimal impact on the performance of the
FIFO as related to the capacitive loading on signals clocking
data in or out of the storage registers. This is accomplished
because for every two buffers added (in parallel) only half
the capacitive loading is added to the loading of clock
signals on each bus.

Additionally, by having two 16 byte buffers in series in
each leg, once one of the 16 byte buffers is filled with data,
such as in a read operation, the data can be transferred to the
other 16 byte buffers in series therewith, while the other
parallel legis accumulating data. Hence, there is no time lost
in either accumulating data, or transferring the data from one
bus to the other.

The logic for controlling the operation of the FIFO 124 is
supplied by FIFO Control Circuit 123.

Aparticular I/O device 28 may write to system memories
24 or 26 via I/O bus in bandwidths of either 1, 2 or 4 bytes
(i.e., 8, 16 or 32 bits). During writes to system memory by
an I/O device 28, the first transfer of write data is initially
stored in the FIFO buffer 125A or 125B. The I/O bus
expected address generation circuit 120 calculates the next
expected, or contiguous, address. The next contiguous
address is checked against the subsequent I/O address to
verify if the subsequent transfers are contiguous or not. If
contiguous, the second byte or bytes of write data is sent to
the same FIFO buffer 125A or 125B. The FIFO receives data
at asynchronous speeds of up to 40 megabytes per second
from the I/O bus 32.

This process continues until either buffer 125A or 125B is
full with a 16-byte packet of information or a non
contiguous address is detected. On the next clock cycle,
assuming that buffer 125A is full, the data in buffer 125A is
transferred to buffer 125C. Similarly, when buffer 125B is
full, all of its contents are transferred to buffer 125D in a
single clock cycle. The data stored in the buffers 125C and
125D is then written to system memory via an i486 burst
transfer at the system bus operational speed. The operation
of FIFO buffer 124 during a write to system memory by an
I/O device is thus continuous, alternating between buffers
125A and 125B, with each emptying into adjacent buffer
125C or 125D, respectively, while the other is receiving data
to be written to system memory. The FIFO buffer 124, then,
optimizes the speed of data writes to system memory by (i)
anticipating the address of the next likely byte of data to be

10

15

20

25

30

35

40

45

50

55

65

8
written into memory and (ii) accommodating the maximum
speed of write data from the FIFO buffer to system memory
via the system bus 76.

During reads of data from system memory to an I/O
device 28, FIFO buffer 124 operates differently. The system
bus address generation circuit 118 uses the initial read
address to generate subsequent read addresses of read data
and accumulate data in buffer 125C or 125D. Because the
system bus supports transfers in bandwidths of 16 bytes
wide, the system bus controller interface 122 may prefetch
16-byte packets of contiguous data and store it in buffers
125C or 125D without the I/O bus 32 actually providing
subsequent addresses, thus reducing latency between trans
fers. When buffer 125C is full of prefetched data, it transfers
its contents to buffer 125A in one clock cycle. Buffer 125D
similarly empties into buffer 125B when full. The data in
buffers 125A and 125B may then be read by a particular I/O
device controller in bandwidths of 1, 2 or 4 bytes. In this
way, system bus address generation circuit 118 functions as
an increment counter until instructed to by the I/O controller
device to stop prefetching data.

Bus to bus pacing control logic 128 creates a faster access
to systemmemory for high speed I/O devices. The bus to bus
pacing control logic 128 overrides the normal memory
controller arbitration scheme of system 10 by allowing an
I/O device in control of the I/O bus 32 uninterrupted access
to system memory during transfers of data by faster devices
which require multiple cycles, rather than alternating access
to the memory controller 58 between the I/O device and the
CPU. Thus, even if a local device such as the CPU has a
pending request for control of the memory bus during a
multiple cycle transmission by an I/O device, the bus to bus
pacing control logic 128 will grant the I/O device continued
control of the memory bus.
The programmed I/O circuit 116 is the portion of the bus

interface unit 64 which contains all of the registers which are
programmable within the bus interface unit 64. The registers
have bits associated therewith to determine whether a par
ticular register is active or inactive. These registers define,
inter alia, the system memory and expansion memory
address ranges to which the bus interface unit 64 will
respond, the expansion memory addresses which are either
cacheable or noncacheable, the system memory or cache
address ranges, and whether or not parity or error checking
is supported by the bus interface unit. Accordingly, pro
grammed I/O circuit 116 identifies for the bus interface unit
64 the environment in which it resides, and the options to
which it is configured. The registers in programmed I/O
circuit 116 cannot be programmed directly over the I/O bus
32. Hence, in order to program the system 10, the user must
have access to an I/O device which may communicate over
the system bus to the programmed I/O circuit 116 at the CPU
level.
Memory address compare logic 110 determines if a

memory address corresponds to system memory or corre
sponds to expansion memory which is located on I/O device
28 coupled to the I/O bus 32. Because the system memory
as well as the expansion memory may be in non-contiguous
blocks of addresses, memory address compare logic 110
includes a plurality of comparators which are loaded with
boundary information from registers in the programmed I/O
circuit 116 to indicate which boundaries correspond to
which memory. After a particular memory address is com
pared with the boundary information by the memory address
compare logic, the bus interface unit is prepared to react
accordingly. For example, if an I/O device controlling the
I/O bus 32 is reading or writing to expansion memory, the

5,659,696
9

bus interface circuit need not pass that address to the
memory controller 58, thereby saving time and memory
bandwidth.

Error recovery support logic 112 permits the system 10 to
continue operations even if a data parity erroris detected. On
any read or write access by an I/O device 28 to system
memories 24 or 26, parity of the data is checked. Support
logic 112 interacts with a register in the programmed I/O
circuit 116 for capturing the address and the time of the
detected parity error. The contents of this register may then
be acted upon by appropriate system software. For example,
the CPU 38 may be programmed for a high level interrupt
to pull the address out of the register at any time a parity
error is detected. The CPU may then decide, based on the
system software instructions, whether to continue system
operations or merely terminate operation of the identified
source of the parity error.
Cache Snooping logic 114 permits the bus interface unit

64 to monitor the I/O bus 32 for any writes to expansion
memory by an I/O device taking place over the I/O bus 32.
The snooping logic first determines if the write to expansion
memory occurred in expansion memory which is cacheable
in SRAM 40. If it is not cacheable expansion memory, there
is no danger of corrupt data being cached. If, however, a
positive compare indicates that the write occurred in cache
able expansion memory, a cache invalidation cycle is initi
ated over the system bus 76. The CPU is thus instructed to
invalidate the corresponding address in SRAM 40. Cache
snooping logic 114 provides means to store the address of a
positive compare so that snooping of the I/O bus may
continue immediately after detection of the first positive
compare, thereby permitting continuous monitoring of the
I/O bus 32.

In some instances, a device coupled to the I/O bus 32
needs to either read data from or write data to an address
location on another device coupled to the I/O bus 32, and in
some instances a device coupled to the I/O bus 32 needs to
either read data from or write data to an address on system
memory 24, 26, which is coupled to the local bus 20 and to
system bus 76.

In the present system, the location of all of the addresses
are contained in the memory controller 58. Thus, when the
CPU 38 or other device coupled to the local bus 20 needs to
write to or read from a given address, the memory controller
58 can read the address of the data to be read or written from
the local bus 20. The logic in the memory controller then
determines whether the address is in system memory 24, 26
or in memory on a device 28 coupled to the I/O bus 32, and
then provides access to the appropriate bus. However, if a
device coupled to the I/O bus 32 has to perform a read or
write function from or to a particular address, it would be
inefficient to require such a device coupled to the I/O bus 32
to interrogate the memory controller 58 since the address
location inquiry would have to be passed from the I/O bus
32 through the businterface unit 64 to the memory controller
58. The memory controller would have to determine the
address location and pass the address location back the same
way to the requesting unit. This passing through the bus
control unit takes time and is inefficient, especially when the
read or write involves an I/O bus address and indeed would
require an extra hold time to be programmed into the access
time at the bus interface unit 64 or require a separate hand
shaking operation.

Accordingly, a logic function 140 (FIG. 4) is provided in
the bus interface unit 64 which allows a memory address
compare function to take place at the bus interface unit 64

10

15

20

25

30

35

40

45

50

55

65

10
when a write to or read from request is made by a device
coupled to the I/O bus 32. If the address is in a device 28
coupled to the I/O bus 32 then the requesting device coupled
to the I/O bus 32 reads or writes directly from or to the
address on the I/O bus 32 without the intervention of the bus
interface unit 64. If the memory location is an address in the
system memory 24, 26, then the data is passed through the
bus interface unit 64 to the system bus 76. Thus, there is no
time wasted in going through the bus interface unit 64 to the
system bus 76 and then to the memory controller 58 to
perform the address compare function and then return the
information to the requesting device on the I/O bus 32.

FIG. 4 depicts this address compare function 140 as it is
contained within the bus interface unit 64. The bus interface
unit 64 includes a register of address spaces 142 and defines
those address spaces which are in systemmemory 24, 26 and
those which are in devices 28 coupled to the I/O bus 32. An
illustrative example of possible ranges of addresses avail
able in a system are shown diagrammatically in FIG. 5, as
number addresses from 0 to 16 megabytes. Certain of these
ranges, e.g. range 144 which represents 0 to 1 megabyte,
range 146 which represents 4 to 6 megabytes, and range 148
which represents 8 to 10megabytes are designated as system
memory ranges. The programmed I/O circuit 116 configures
these ranges in the system. These ranges are merely illus
trative and other ranges can be chosen.
The logic to perform the compare functions is incorpo

rated in the bus interface unit 64. When I/O device 28 gains
control of the I/O bus 32 and the system bus 76, an input
from a requesting device coupled to the I/O bus 32 for a read
or write operation from or to memory is supplied to the
address compare function 140 of the bus interface unit 64.
The compare function 140 of the bus interface unit 64
compares the address of the data to be read or written to the
location of addresses stored. If the requested address is on
the system bus, a signal is outputted to the system bus
indicating that the bus interface unit 64 will write data on or
read data from the system bus. However, if the address is in
memory on the I/O bus 32, the requesting device on the I/O
bus connects directly on the I/O bus with the I/O memory
location. In this instance, the bus interface unit 64 performs
no function after identifying the location of the address as
being on the I/O bus.

FIG. 6 shows a high level logic diagram of the memory
address compare function 140. Each of the range compari
sons 144, 146, and 148 inputs a signal to each of memory
address compare functions 150, 152 and 154. Each compare
function 150, 152, 154 determines if the inputted address is
within any of the address ranges of the system memory
ranges 144, 146 or 148. If the address is within any one of
the system bus ranges, then a HIGH signal is generated to
indicate the address is in systemmemory, accessible through
the system bus. If the address is not in any ranges on the
system bus, a LOW signal is generated indicating the
address is not on the system bus 76 and hence, on the I/O bus
32.
Memory compare function 152 acts similarly to compare

function 150 except that either the current address 158 or the
next contiguous address 160 on the I/O bus are supplied
through multiplexer 162 to memory address compare func
tion 152. If either the current address 158 or the next
contiguous address 160 is in system memory, depending
upon which input the multiplexer 162 is active, then a HIGH
signal is generated as an output from a memory address
compare function 152. This allows operation in a data
streaming manner; i.e. data from a contiguous series of
memory locations can be written or read without a compare

5,659,696
11

function being performed for each address before it is
accessed. To assure that this next address has not crossed the
boundary between system memory and I/O memory, the
compare function 152 compares this next address.
The input memory address compare function 154 on the

other hand is inputted from the system bus 76. This input is
used when data is being prefetched by the DMA in packets
from a system memory location 24, 26. System bus
addresses 164 supplied from the DMA controller 60 to a
multiplexer 168 indicating if the requested location is in
systemmemory. Signal 166 is from the bus interface unit 64
to the multiplexer 168 indicating if the next continuous
packet address is in System memory ranges. If it is, it is
prefetched and data streaming or contiguous burst reads
continues. This streaming mode of data reading is a mode
wherein data is read from the systemmemory in data packets
of 16 bytes into the bus interface unit from each contiguous
address location until the grant time has ceased or until a
boundary between system memory and I/O memory has
been crossed, or streaming mode is terminated by I/O device
28.

Thus, the compare functions 150 and 152 are responsive
to address being generated on the I/O bus 32, and the
memory address compare function 154 is responsive for
addresses being generated on the system bus 76. And indeed,
the logic 142 can operate from both the I/O bus 32 and
system bus 76 at the same time.
The logic of each of the compare function 150, 152, and

154 is depicted in FIG. 7. As shown therein, an address is
supplied to each of six comparators 170,172,174,176, 178,
180. This address is the address 156 supplied to compare
function 150 or the address from multiplexer 162 supplied to
compare function 152, or the address from multiplexer 168
supplied to compare function 154. Comparator 170 com
pares the inputted address with the start of range 144, and
comparator 172 compares the inputted address to the end of
range 144; comparator 174 compares the inputted address
with the start of range 146 and comparator 176 compares the
inputted address with the end of range 146; comparator 178
compares the inputted address with the start of range 148
and comparator 180 compares the inputted address with the
end of range 148. The address comparisons are outputted
from comparators 170, and 172 to AND gate 182; the output
of comparators 174 and 176 are outputted to AND gate 184,
and the outputs of comparators 178 and 180 are output to
AND gate 186. The AND gates 182, 184 and 186 are all
outputted to “OR” gate 188 to give a HIGH if the compared
address is in any of the ranges 144, 146, or 148. This HIGH
signal will indicate the memory location is on the system
bus.

Although several embodiments of this invention have
been shown and described, various adaptations and modi
fications can be made without departing from the scope of
the invention as defined in the appended claims.

Having thus described the preferred embodiment, the
invention is now claimed to be:

1. A computer system comprising:
processor and cache memory subsystems;
multiple buses, including an input/output (IO) bus, a

System bus, and a local bus;
said IO bus connected directly to input/output (IO)

devices, including IO memory devices; each said bus
carrying signals representing address data and control
information; said IO bus allowing an individual said IO
device to control said IO bus as a bus master for
transferring data directly between the respective indi
vidual IO device and another IO device via only said IO
bus;

10

15

20

25

30

35

40

45

50

55

65

12
said processor and cache memory subsystems connected

directly to said local bus;
at least one systemmemory device connected to said local

and system buses;
a memory controller controlling data transfers between

said at least one system memory device and said
processor and cache subsystems via said local bus; and

a bus interface unit connected between said IO devices
and said system bus;

said bus interface unit and memory controller coopera
tively controlling transfers of data, between said IO
devices and said at least one system memory device via
said IO and system buses;

said bus interface unit including
means for determining if an address presented on said
IO bus, by a said individual IO device controlling
said IO bus as a bus master, requires a system
read/write data transfer to be conducted between said
individual device and a storage location in said at
least one system memory device or if said address
presented on said IO bus requires a peer IO read/
write data transfer directly between the respective
individual IO device and another one of said at least
one IO devices via only said IO bus; and

means responsive to said determinations by said deter
mining means for taking a predetermined first action
if a determination is made that a said presented
address requires a said system read/write data
transfer, and for causing a predetermined second
action different from said first action when a deter
mination is made that a said presented address
requires a peer read/write data transfer wherein said
first action requires said bus interface unit to coop
erate with said memory controller to set up a said
system read/write data transfer via said IO and
system buses relative to said at least one system
memory device and said second action requires said
bus interface unit to allow said respective IO device
acting as a said bus master to carry out a said peer
read/write data transfer relative to said another IO
device without intervention from said bus interface
unit.

2. The computer system in accordance with claim 1,
wherein said cache subsystem supports cache storage of data
originating in both said at least one memory device and in
selected cacheable locations in said IO memory devices, and
wherein said determining means of said bus interface unit
includes means for performing a cache Snooping function to
determine if a said address presented on said IO bus, and
requiring a peer read/write data transfer relative to another
said IO device involves a peer write data transfer to write
data into a said cacheable location in a said IO memory
device that requires a transfer between said respective IO
device acting as master of said IO bus and a memory
location in another said IO device.

3. The computer system in accordance with claim 1
wherein said determining means of said bus interface unit
includes:

a global address map of all addresses accessible to said IO
devices which can act as bus masters on said O bus;
and

means for comparing each address presented on said IO
bus, by a said IO device acting as a said bus master of
said IO bus, with addresses in said global address map.

4. The computer system in accordance with claim 1
wherein read/write data transfers conducted by said bus

5,659,696
13

interface unit and said IO device masters on said IO bus are
conducted in streaming and single-transfer modes, said
single-transfer mode involving single transactions in which
only a single address is presented by a device controlling
said IO bus and data is transferred only relative to the
respective single address in a single cycle of operation of
said IO bus; said streaming mode involving plural transac
tions in which a series of addresses are presented sequen
tially on said IO bus and a series of read/write data transfers
are conducted relative to memory locations represented by
said series of addresses, each transaction of said series
requiring a discrete cycle of read/write data transfer on said
IO bus; and said address determining means of said bus
interface unit includes:
means effective during transfers in said streaming mode

for determining if a next address in a respective said
series of addresses has crossed a boundary between
system memory locations contained in said at least one
system memory device and IO memory locations con
tained in a said IO memory device; and

means responsive to a said determination that said next
address has crossed a said boundary to effectively
switch said action causing means of said bus interface
unit to reverse the action caused by said action causing
means from said first action to said second action, if a
boundary has been crossed from a system memory
location to an IO memory location, and from said
second action to said first action if a boundary has been
crossed from a said IO memory location to a said
system memory location.

5. The computer system in accordance with claim 4
wherein said at least one system memory device contains
system memory locations mapped into at least two non
contiguous address ranges, and said means for determining
crossing of a said boundary in said streaming mode includes:
means for determining when a said next address crosses

a boundary between two non-contiguous address
ranges in said system memory and when a said next
address crosses a boundary between memory locations
in said system memory device and memory locations in
said IO memory devices; and said means to effectively
Switch between said first and second actions is acti
vated only upon a determination that a said next
address has crossed a boundary between system and IO
memory locations and not upon a determination that a
said next address has crossed a boundary between
non-contiguous locations contained only in said system
memory.

6. A method of operating a computer system containing:
processor and cache memory subsystems; system memory
devices; IO devices including IO memory devices; a
memory controller controlling access to said system
memory devices; and multiple buses, including an input/
output (IO) bus connected to said IO devices, a system bus
connected to said memory controller and said system
memory devices, and a local bus connected to said system
memory devices, said memory controller and said processor
in cache Subsystems;
each said bus carrying address, data and control signals; said
IO bus supporting peer communication directly between
said IO devices, allowing an individual said IO device to
control said IO bus as a bus master for transferring data
directly between the respective individual IO device and
another IO device via said IO bus and not said system or
local buses; said method comprising conducting operations
between said IO bus and system bus for:

determining if an address presented on said IO bus, by a
said IO device controlling said IO bus as a bus master,

10

15

20

25

30

35

40

45

50

55

65

14
requires a system read/write data transfer to be con
ducted between said individual device and a storage
location in said at least one system memory device or
if said address presented on said IO bus requires a peer
IO read/write data transfer directly between the respec
tive individual IO device and another one of said at
least one IO devices via only said IO bus;

in response to said address determination, affecting one of
first and second predetermined and different actions;
said first action being effected upon determination that
a said presented address requires a said system read/
write data transfer between a said IO device acting as
an IO bus master and a said systemmemory device, and
said second action being effected upon determination
that a said presented address requires a peer read/write
data transfer between a said device acting as IO bus
master and another IO device connected to said IO bus
wherein said first action consists of setting up and
sustaining a read/write data transfer between said IO
and system bus, and said second action consists of a
null action relative to said IO bus which allows said
respective IO device acting as a said IO bus master to
carry out a said peer read/write data transferrelative to
said another IO device without apparent assistance or
intervention from any element of said computer system
otherwise connected to the IO bus.

7. The method of operating a computer system in accor
dance with claim 6 wherein said cache subsystem supports
cache storage of data originating in said system memory
devices and in selected cacheable locations in said IO
memory devices, and wherein said determining step and
second action affecting steps include:

performing a cache Snooping function relative to each
said address presented on said IO bus for determining
if a write data transfer associated with that address
requires data to be written to a memory location, and if
data is to be so written, for determining further if the
location to receive the data is in a said system memory
device or corresponds to a said cacheable memory
location in a said another IO device; and

upon determining in said cache Snooping step that data is
to be written to a said cacheable location in a said
another IO device, including notifying said cache sub
system via said system bus and said memory controller
that a cache location is currently addressed; and

upon determining in said determining and cache snooping
steps that a peer read/write data transfer is required
between devices on said IO bus, which transfer does
not require data to be written to a said cacheable
location in a said IO memory device, effecting as said
second action only a null action which does not involve
signal communication by said computer system on any
of said buses.

8. The method of operating a computer system in accor
dance with claim 6 wherein said determining step includes:

maintaining in said computer system, at an interface
between said IO bus and said system bus, a global
address map of all addresses accessible to said IO
devices which can act as bus masters on said IO bus;
and

comparing each said address presented on said IO bus, by
a said IO device acting as a said bus master of said IO
bus, with addresses in said global address map for
determining if each said address designates a memory
location, and upon each determination that an address
represents a said memory location, for distinguishing if

5,659,696
15

the respective location is contained in a said system
memory device or in a said IO memory device.

9. The method of operating a computer system in accor
dance with claim 8, wherein read/write data transfers con
ducted relative to said IO devices acting as said IO bus
masters are conducted in data transfers conducted by said
bus interface unit and said IO device masters on said IO bus
are conducted in streaming and single-transfer modes; said
single-transfer mode involving single transactions in which
only a single address is presented by an IO device control
ling said IO bus as a bus master, and data is transferred only
relative to the respective single address in a single cycle of
operation of said IO bus; said streaming mode involving a
series of plural transactions in which a series of addresses
are presented sequentially on said IO bus and a series of
read/write data transfers are conducted relative to memory
locations represented by said series of addresses, each
transaction of said series requiring a discrete cycle of
read/write data transfer on said IO bus; and said determining
and action effecting steps including:
upon determining that a read/write data transfer is being

conducted in streaming mode, determining for each
successive address in the respective said series of
addresses if the respective successive address tran
scends a boundary between system memory locations,
contained in said memory devices, and IO memory
locations contained in said IO memory devices; and

upon determination that a said boundary has been
transcended, effectively switching between effecting
said first and second actions, So that if the last com
pleted data transfer has been effected by means of a said
first or second action, the next data transfer associated
with said successive address will be effected respec
tively by means of a said second or first action.

10. A computer system comprising:
processor and cache memory subsystems;
multiple buses, including an input/output (IO) bus, a

system bus, and a local bus; said IO bus connected
directly to input/output (IO) devices, including IO
memory devices; each said bus carrying signals repre
senting address, data and control information; said IO
bus allowing an individual IO device to control said IO
bus as a bus master for transferring data directly
between the respective individual IO device and
another IO device via only said IO bus;

said processor and cache memory subsystems connected
directly to said local bus and being physically isolated
from said system and IO buses;

at least one systemmemory device connected to said local
and system buses;

a memory controller controlling data transfers between
said at least one system memory device and said
processor and cache subsystems via said local bus; and

a bus interface unit connected between said IO devices
and said system bus;

said bus interface unit and memory controller coopera
tively controlling transfers of data, between said IO
devices and said at least one system memory device via
said IO and system buses

said bus interface unit including:
means for determining if an address presented on said
IO bus, by a said individual IO device controlling
said IO bus as a bus master, requires a system data
transfer to be conducted between said individual
device and a storage location in said at least one

10

15

20

25

30

35

40

45

50

55

65

16
system memory device or if said address presented
on said IO bus requires a peer IO data transfer
directly between the respective individual IO device
and another one of said at least one IO devices via
only said IO bus;

means responsive to said determinations by said deter
mining means for taking a predetermined first action
if a determination is made that a said presented
address requires a said system data transfer and for
causing a predetermined second action if a determi
nation is made that a said presented address requires
a peer data transfer, where in said first action requires
said bus interface unit cooperates with said memory
controller to set up a said system data transfer via
said IO and system buses relative to said at least one
system memory device; and

in said second action said bus interface unit to allow said
respective IO device acting as a said bus master to carry out
a said peer data transfer relative to said another IO device
without any apparent assistance or intervention from said
bus interface unit; and wherein:

said cache subsystem supports cache storage of data
originating in both said at least one memory device
and in selected cacheable locations in said IO
memory devices, and wherein:

said determining means of said bus interface unit
includes means for performing a cache Snooping
function to determine if a said address presented on
said IO bus, and requiring a peer data transfer
relative to another said IO device involves a peer
data transfer to Write data into a said cacheable
location in a said IO memory device that requires a
transfer between said respective IO device acting as
master of said IO bus and a memory location in
another said IO device; and wherein:

if said snooping function determines that data is being
Written into a said cacheable location in a said IO
memory device a cache invalidation action transpires
including a communication from the bus interface
unit to said memory controller via said system bus
requiring the memory controller to relay a commu
nication to said memory controller to effect invali
dation of a cache location in the cache subsystem
corresponding to said cacheable location in said IO
memory device.

11. A method of operating a computer system containing:
processor and cache memory subsystems; system memory
devices; IO devices including IO memory devices; a
memory controller controlling access to said system
memory devices; and multiple buses, including an input/
output (10) bus connected to said IO devices, a system bus
connected to said memory controller and said system
memory devices, and a local bus connected to said system
memory devices, said memory controller and said processor
and cache Subsystems; each said bus carrying address, data
and control signals; said IO bus supporting peer communi
cation directly between said IO devices, allowing an indi
vidual said IO device to control said IO bus as a bus master
for transferring data directly between the respective indi
vidual IO device and another IO device via only said IO bus;
said method comprising conducting operations between said
IO bus and system bus for:

determining if an address presented on said IO bus, by a
said IO device controlling said IO bus as a bus master,
requires a system data transfer to be conducted between
said individual device and a storage location in said at
least one system memory device or if said address

5,659,696
17

presented on said IO bus requires a peer IO data
transfer directly between the respective individual IO
device and another one of said at least one IO devices;

effecting, in response to said address determination, one
of first and second predetermined actions; said first
action being effected upon determination that a said
presented address requires a said system data transfer
between a said IO device acting as an IO bus master
and a said system memory device and consists of
setting up and sustaining a data transfer between said
IO and system buses; and said second action being
effected upon determination that a said presented
address requires a peer data transfer between a said
device acting as IO bus master and another IO device

10

connected to said IO bus and consists of a null action 15
relative to said IO bus providing no apparent assistance
or interference from said computer system for said
respective IO device acting as a said IO bus master to
carry out a said peer data transfer relative to said
another IO device and wherein said cache subsystem
supports cache storage of data originating in said
system memory devices and in selected cacheable
locations in said IO memory devices, and wherein said
determining step and second action effecting steps
include:
performing a cache Snooping function relative to each

said address presented on said IO bus for determin
ing if a data transfer associated with that address
requires data to be written to a memory location, and
if data is to be so written, for determining further if
the location to receive the data is in a said system
memory device or corresponds to a said cacheable
memory location in a said another IO device; and

20

25

18
upon determining in said cache Snooping step that data

is to be written to a said cacheable location in a said
another IO device, including, as part of said effected
second action, notifying said cache subsystem via
said system bus and said memory controller that a
cache location is currently addressed; and

upon determining in said determining and cache Snoop
ing steps that a peer data transfer is required between
devices on said IO bus, which transfer does not
require data to be written to a said cacheable location
in a said IO memory device, effecting as second
action only a null action which does not involve
signal communication by said computer system on
any of said buses.

12. The computer system in accordance with claim 2,
wherein when said cache snooping function determines that
data is being written into a said cacheable location in a said
IO memory device, a cache invalidation action including a
communication from the bus interface unit to said memory
controller via said system bus requires the memory control
ler to relay a communication to said memory controller to
effect invalidation of a cache location in the cache subsystem
corresponding to said cacheable location in said IO memory
device; and

said second action occurs when said Snooping function
determines that a said peer write data transfer does not
involve writing data to a said cacheable location in a
said IO memory device is a null action in which said
bus interface unit does not interact with either said
system bus or said local bus.

