
United States Patent (19)
Beaman et al.

USOO5898857A

11 Patent Number: 5,898,857
(45) Date of Patent: *Apr. 27, 1999

54

(75)

73)

METHOD AND SYSTEM FOR INTERFACING
AN UPGRADE PROCESSOR TO A DATA
PROCESSING SYSTEM

Inventors: Daniel Paul Beaman, Austin; Gary
Dale Carpenter, Pflugerville; Mark
Edward Dean, Austin; Wendel Glenn
Voigt, Pflugerville, all of Tex.

Assignee: International Business Machines
Corporation, Armonk, N.Y.

Notice: This patent issued on a continued pros
ecution application filed under 37 CFR
1.53(d), and is subject to the twenty year
patent term provisions of 35 U.S.C.
154(a)(2).

Appl. No.: 08/354,701
Filed: Dec. 13, 1994

Int. Cl." G06F 13/00; G06F 15/177
U.S. Cl. .. 395/500
Field of Search 395/309,500

References Cited

U.S. PATENT DOCUMENTS

4,214,302 7/1980 Schmidt 395/500
4,716,527 12/1987 Graciotti 395/500
4,987,529 1/1991 Craft et al..
4,999,769 3/1991 Costes et al. 364/200
5,113,369 5/1992 Kinoshita 395/325
5,162.979 11/1992 Anzelone et al. 361/415
5,253,358 10/1993 Thoma, III et al. 395/500
5,255,376 10/1993 Frank 395/325
5,257,391 10/1993 DuLac et al. 395/800
5,265,211 11/1993 Amini et al. 395/325
5,291,614 3/1994 Baker et al. 395/800
5,313.231 5/1994 Yin et al. 345/199
5,313,595 5/1994 Lewis et al. 395/325
5,313,648 5/1994 Ehlig et al. 395/800
5,448,704 9/1995 Spaniol et al........................... 395/310

<STRL Cs

8 by tes

5,649,162 7/1997 Klein et al. 395/500
FOREIGN PATENT DOCUMENTS

0 026 083 A1 4/1981 European Pat. Off..
O 440 452 A2 1/1991 European Pat. Off. GO6F 13/40
O 470 570 A2 8/1991 European Pat. Off. G06F 9/355
O 483 959 A2 8/1991 European Pat. Off..
0 480 417 A2 4/1992 European Pat. Off..
0 480 417 A3 4/1992 European Pat. Off..
WO 93/12486 6/1993 European Pat. Off..
Primary Examiner Kevin J. Teska
Assistant Examiner Ayni Mohamed
Attorney, Agent, or Firm Volel Emile; Brian F. Russell;
Andrew J. Dillon

57 ABSTRACT

A data processing System is disclosed which includes a first
processor having an m-byte data width, an n-byte data bus,
where n is less than m, and a Second processor electrically
coupled to the bus which performs buS transactions utilizing
n-byte packets of data. An adaptor is electrically coupled
between the first processor and the bus which converts
n-byte packets of data input from the bus to m-byte packets
of data, and converts m-byte packets of data input from the
first processor to n-byte packets of data, thereby enabling the
first processor to transmit data to and receive data from the
buS utilizing m-byte packets of data. In a Second aspect of
the present invention, a method and System are provided for
arbitrating between two bus masters having disparate bus
acquisition protocols. In response to a Second bus master
asserting a bus request when a first bus master controls the
bus, control of the bus is removed from the first bus master.
Thereafter, in response to a signal transmitted from an
arbitration control unit to the first bus master instructing the
first bus master to terminate its buS transactions, control of
the bus is granted to the Second bus master. In response to
the Second bus master terminating its bus request, control of
the bus is granted to the first bus master and a signal is
transmitted from the arbitration control unit to the first bus
master acknowledging the grant of control.

11 Claims, 4 Drawing Sheets

ROM Fash Memory

SCS Controller

40

36 26

38

U.S. Patent Apr. 27, 1999 Sheet 1 of 4 5,898,857

MMY WMMW ER WWWWWWWWWWWW-M ESR MMRPMMMMPMMPMRPM VWMA SR ZV-VVVV-SSZ-S AREAMEMR AAAAYAAYAA

MNMN

5,898,857
1

METHOD AND SYSTEM FOR INTERFACING
AN UPGRADE PROCESSOR TO A DATA

PROCESSING SYSTEM

BACKGROUND OF THE INVENTION

1. Technical Field

The present invention relates in general to a method and
System for data processing and in particular to a method and
System for interfacing an upgrade processor to a data pro
cessing System having a disparate data path width. Still more
particularly, the present invention relates to a method and
System for interfacing a upgrade processor which processes
transactions in m-byte packets of data to a data processing
System which performs transactions utilizing n-byte packets
of data.

2. Description of the Related Art
Since the advent of personal computers, designers and

manufacturers have Sought to enhance the performance and
prolong the useful life of their machines. One familiar
technique which enhances both the performance and lon
gevity of a personal computer is to upgrade the personal
computer by installing an upgrade processor. Thus, if a user
is Satisfied with the performance of the other components
within the personal computer System, the user may enjoy the
enhanced performance of a new processor without the
expense of replacing the remainder of the personal computer
System. For example, as is well-known in the art, a user may
upgrade a 486 personal computer operating at 33 MHZ to a
66 MHz machine by replacing the standard 486 processor
with a 486DX2 processor.

Although it is advantageous for a user to be able to
upgrade a personal computer in the above described manner,
the requirement that the upgrade processor be compatible
with the personal computer System can Stifle innovation in
processor architectures. In order to remain compatible with
existing hardware and Software, manufacturers often retain
instruction Sets and Signaling protocols which may not
provide optimal performance. For example, recent techno
logical advances have made reduced instruction set (RISC)
processors more advantageous than traditional complex
instruction set (CISC) processors in many applications.
When CPUs were much faster than memory, it was advan
tageous for processors to perform multiple operations per
instruction Since processors would otherwise waste cycle
time waiting for the memory to deliver instructions. Now
that CPU speed and memory access time have become more
balanced, RISC architecture has become more feasible,
assuming that the memory hierarchy is able to deliver one
instruction plus data each cycle. Other recent advances in
State-of-the-art processor architecture include the incorpo
ration of on-chip interconnection and memory utilizing
VLSI fabrication techniques and the increase of the data
path width of processors from 32 to 64 bits. Although
processors incorporating these advances in CPU technology
provide greatly enhanced performance, they are not readily
available for use as upgrade processors Since they are often
incompatible with existing computer Systems.

It is known in the art to upgrade a personal computer
system having a 32-bit processor and a 32-bit data bus with
an 64-bit processor or a 32-bit processor with a 64-bit data
path. In one technique, the 64-bit processor is directly
connected to the 32-bit data bus and reads data in Serial
32-bit packets. In a Second upgrade System, the 64-bit
processor is interfaced to two parallel 32-bit buses. As with
the first technique, in the Second, data is still input to the
64-bit processor in two 4-byte packets, rather than a true

15

25

35

40

45

50

55

60

65

2
8-byte format. With either interface technique, the computer
system does not receive the full benefit of the enhanced
performance of the 64-bit upgrade processor bus Since
processor cycle time is consumed by either additional bus
cycles or internal data formatting. Consequently, it would be
desirable to provide a method and system for efficiently
interfacing a processor which performs transactions utilizing
m-byte packets of data with a personal computer System
which performs transactions utilizing n-byte packets of data
where n-m.

A Second issue that must be addressed when interfacing a
upgrade processor to a personal computer System is the
Scheme employed to arbitrate between the upgrade proces
Sor and bus master devices within the personal computer
System for Ownership of the System bus. Determining an
efficient arbitration Scheme is complicated by the fact that
the upgrade processor may have a different arbitration
protocol from that of the personal computer System if their
architectures are dissimilar. For example, Some processor
architectures, Such as the x86 architecture, can utilize a
uni-directional (asynchronous) bus acquisition protocol, in
which the requesting bus master expects to receive control
of the System bus after asserting a request Signal. In other
architectures, bus masters utilize a bi-directional handshake
bus acquisition protocol in which both a request Signal by a
Second bus master and an acknowledge Signal from the
arbiter are required before the Second bus master assumes
control of the bus from the first bus master. Prior art systems
do not Support interfacing upgrade processors in personal
computer Systems which have incompatible arbitration pro
tocols. Consequently, it would be desirable to provide a
method and System for interfacing an upgrade processor to
a personal computer system which utilizes a dissimilar
arbitration protocol.

SUMMARY OF THE INVENTION

It is therefore one object of the present invention to
provide a method and System for improved data processing.

It is another object of the present invention to provide a
method and System for interfacing an upgrade processor and
a data processing System which have disparate data paths.

It is yet another object of the present invention to provide
a method and System for interfacing an upgrade processor
which processes data in m-byte data packets to a data
processing System which performs transactions utilizing
n-byte packets of data.

It is still another object of the present invention to provide
a method and System for interfacing an upgrade processor to
a data processing System which utilizes a dissimilar bus
arbitration protocol.
The foregoing objects are achieved as is now described.

A data processing System is disclosed which includes a first
processor having an m-byte data width, an n-byte data bus,
where n is less than m, and a Second processor electrically
coupled to the bus which performs buS transactions utilizing
n-byte packets of data. An adaptor is electrically coupled
between the first processor and the bus which converts
n-byte packets of data input from the bus to m-byte packets
of data, and converts m-byte packets of data input from the
first processor to n-byte packets of data, thereby enabling the
first processor to transmit data to and receive data from the
buS utilizing m-byte packets of data.

In a Second aspect of the present invention, a method and
System are provided for arbitrating between two bus masters
having disparate bus acquisition protocols. In response to a
Second bus master asserting a bus request when a first bus

5,898,857
3

master controls the bus, control of the bus is removed from
the first bus master. Thereafter, in response to a signal
transmitted from an arbitration control unit to the first bus
master instructing the first bus master to terminate its bus
transactions, control of the bus is granted to the Second bus
master. In response to the Second bus master terminating its
bus request, control of the bus is granted to the first bus
master and a Signal is transmitted from the arbitration
control unit to the first bus master acknowledging the grant
of control.

The above as well as additional objectives, features, and
advantages of the present invention will become apparent in
the following detailed written description.

BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, further objec
tives and advantages thereof, will best be understood by
reference to the following detailed description of an illus
trative embodiment when read in conjunction with the
accompanying drawings, wherein:

FIG. 1 illustrates a data processing System utilizing the
method and System of the present invention;

FIG. 2 depicts a block diagram of the processing unit of
the data processing System of FIG. 1;

FIG. 3 illustrates a block diagram of a preferred embodi
ment of an upgrade card utilized to interface an upgrade
processor to a data processing System according to the
present invention; and

FIG. 4 depicts a state diagram of the method of arbitration
employed by the present invention.

DETAILED DESCRIPTION OF PREFERRED
EMBODIMENT

With reference now to the figures, and in particular with
reference to FIG. 1, there is illustrated a data processing
System which utilizes the method and System of the present
invention. Data processing System 10 comprises processing
unit 12, display device 14, keyboard 16, and mouse 18. As
is well-known in the art, a user may input data to data
processing system 10 utilizing keyboard 16 or mouse 18.
Data processing System 10 outputs data to a user Via display
device 14. In a preferred embodiment of the present
invention, processing unit 12 comprises a personal computer
designed to utilize a 32-bit 80x86 CISC processor, such as
an IBM Personal System 2 (PS/2) Model 77. According to
the present invention, the performance of data processing
system 10 is enhanced by replacing the CPU within pro
cessing unit 12 with an upgrade processor.

Referring now to FIG. 2, there is depicted a block diagram
of processing unit 12. AS illustrated, processing unit 12
comprises processor 20, adaptor 22, x86 compatible devices
24, additional devices 26 and hybrid bus 28.

According to a preferred embodiment of the present
invention, the performance of processing unit 12, a System
designed to utilize a 32-bit 80x 86 bus compatible CISC
processor, is enhanced by replacing the Standard 32-bit
80x86 bus compatible CISC processor with processor 20,
which in a preferred embodiment is a PowerPCTM RISC
processor with a 60x bus interface, such as PowerPC 601,
PowerPC 603, PowerPC 604, etc. The present invention
includes two aspects. First, the present invention provides a
method and System for interfacing an upgrade processor to
a computer System having a disparate data path width.

15

25

35

40

45

50

55

60

65

4
Second, the present invention provides a method and System
for arbitrating for control of the system bus between mul
tiple bus masters with disparate bus acquisition protocols.
To simplify the interface between processor 20 and x86

compatible devices 24, the bus of processor 20 and the x86
compatible System bus of processing unit 12 are connected
as a single bus, referenced as hybrid bus 28. As illustrated
hybrid bus 28 Supports both x86 compatible devices 24 and
additional devices 26, which include SCSI controller 36 and
ROM 40. In a preferred embodiment of the present
invention, SCSI controller 36 is implemented utilizing an
NCR 53C720; however, those skilled in the art will recog
nize that other Suitable SCSI controllers could be utilized. To
support both types of devices, hybrid bus 28 remains elec
trically compatible with x86 devices, but includes some
signals which have been redefined from their original x86
usage. For example, according to the x86 Signal definition,
asserting control Signal A20M instructs an x86 processor to
emulate the address wrap around at 1 Mbyte that occurs on
the 8086 processor. In the preferred embodiment of the
present invention illustrated in FIG. 3, the state of A20M
indicates whether processor 20 is utilizing a big endian
(most significant byte first) or little endian (least significant
byte first) data convention. In addition, hybrid bus 28 also
differs from a standard x86 compatible bus in that it provides
Sideband control Signals 34, utilized to control additional
devices 26. Among Sideband control Signals 34 are the
arbitration signals utilized to arbitrate between processor 20
and SCSI controller 36, as will be described with reference
to FIG. 4.

As illustrated in FIG. 2, processor 20 is interfaced to
hybrid bus 28 via adaptor 22. As will be described in
conjunction with FIG. 3, adaptor 22 converts transactions
performed upon data bus 32 to 8-byte packets of data, which
are transmitted to processor 20 via data lines 30. In addition,
adaptor 22 converts 8-byte packets of data input from
processor 20 into 4-byte packets of data, which may be
transmitted on data bus 32. Thus, unlike prior art Systems
which interface an 8-byte processor to a 4-byte computer
System utilizing either a Single or two parallel 4-byte buses,
the present invention provides a method and System for
interfacing a processor having an 8-byte data path to a 4-byte
data bus which enable the processor to perform transactions
on the data bus utilizing 8-byte packets of data.

According to the Second aspect of the present invention,
the system depicted in FIG. 2 also supports arbitration for
control of the Single System bus between multiple bus
masters having disparate bus acquisition protocols. AS will
be described in greater detail with reference to FIG. 4, the
present invention provides a method and System for arbi
trating between processor 20 and SCSI controller 36, both of
which have bi-directional bus acquisition protocols, and
DMA controller 38, which has a uni-directional bus acqui
Sition protocol.
With reference now to FIG. 3, there is illustrated a block

diagram of a preferred embodiment of an upgrade card
utilized to interface an upgrade processor to data processing
system 10 of FIG.1. As illustrated, upgrade card 21 includes
processor 20, adaptor 22, SCSI controller 36, and ROM 40.
Adaptor 22 comprises interface controller 50, address mux
52, and data latches 54 and 56. Upgrade card 21 is mechani
cally connected to hybrid bus 28 of processing unit 12 via
upgrade socket 58.

Interface controller 50, which in a preferred embodiment
of the present invention is an electrically-erasable program
mable logic array (EEPLA), such as the AMD MACH230

5,898,857
S

15JC, provides the logic means necessary to control the
operation of address mux 52 and data latches 54 and 56. By
utilizing an EEPLA, the control logic of the interface of the
present invention is realized within a single device, thus
minimizing the number of required components. However,
those skilled in the art will appreciate that in other embodi
ments of the present invention the control logic could be
realized utilizing a combination of Suitable logic devices or
an ASIC.

Address mux 52 and data latches 54 and 56 comprise
32-bit devices which function as transceivers, multiplexers,
and latches. Data may be input to or output from either data
lines A0-A3 or B0-B3 of address mux 52 and data latches
54 and 56. In addition, a selected input data byte may be
“Steered” to any output data line in response to control
signals from interface controller 50. Address mux 52 and
data latches 54 and 56 also function as latches since input
data are Stored within the devices and may be Selectively
output in response to control Signals from interface control
ler 50. In the preferred embodiment illustrated in FIG. 3,
address mux 52 and data latches 54 and 56 are implemented
utilizing National Semiconductor 74ACTO-3283T;
however, those skilled in the art will appreciate that the
functions of address mux 52 and data latches 52 and 54
could be realized utilizing a combination of other Suitable
components.

Data transfer between processor 20 and the devices con
nected to hybrid bus 28 may be accomplished in either a
single beat mode or a burst mode. When data is transferred
in Single beat mode in data processing Systems in which the
processor has the same data width as the System bus, the
processor reads or writes a single packet of data in a single
bus transaction comprised of an address and a data tenure.
When operating in burst mode, a processor reads or writes
multiple packets of data in Successive bus cycles for a single
transaction on the bus comprised of one address tenure and
multiple data tenures. Since in the present invention proces
Sor 20 has a greater data width than hybrid bus 28, additional
beats on hybrid bus 28 are required to complete data
transfers to and from processor 20. However, the transfers
Still require only a Single beat of processor 20 to read each
packet of data. To illustrate both modes of data transfer,
examples of Single beat and burst mode reads from System
memory will now be described.
When processor 20 requires a Single 8-byte packet of data

from System memory, referenced as memory 42 in FIG. 2,
processor 20 initiates the load operation by transmitting a
transaction start (TS) signal to interface controller 50 via
processor control buS 60 along with a valid transaction code
identifying the transaction as a load from System memory.
Interface controller 50 then performs two single beat 4-byte
loads from the address within memory 42 driven by pro
cessor 20 on address lines 62. Each beat begins with
interface controller 50 asserting the address Status Signal
(ADS) to indicate that a valid address and bus cycle defi
nition are present. Memory 42 then reads the address trans
mitted by interface controller 50 on address bus 64 and
responds by presenting valid data from the Specified address
on its data pins. Memory 42 then signals interface controller
50 that the data is valid to read by transmitting a ready
(RDY) signal. Next, interface controller 50 instructs one of
data latches 54 or 56 to latch the data by transmitting control
Signals via data latch control bus 66. The process is then
repeated for a second beat on hybrid bus 28 so that data
latches 54 and 56 hold a full 8-byte doubleword. During the
Second beat, interface controller 50 toggles the least signifi
cant address bit (A2 of address bus 64) to access the 4-byte

15

25

35

40

45

50

55

60

65

6
data packet Subsequent to the target address driven on
address lines 62 by processor 20.
AS mentioned above, interface controller 50 determines

which of data latches 54 and 56 latches the data. In embodi
ments of the present invention in which processor 20 utilizes
a little endian data convention (as is utilized by x86 com
patible devices 24 within processor unit 12), data latch 56
will latch the least significant 4 bytes during the first bus
cycle and data latch 54 will latch the most significant 4 bytes
during the second bus cycle. Thus, input lane B0 of data
latch 54 will latch the most significant byte and input lane
B3 of data latch 56 will latch the least significant byte of the
8-byte data packet. In other embodiments of the present
invention in which processor 20 utilizes a different data
convention than the remainder of processing unit 12, inter
face controller 50 contains logic to convert between big and
little endian data conventions by reordering the data bytes.
As described above, data latches 54 and 56 are capable of
Selective byte Steering in response to control Signals from
interface controller 50.

When 8 bytes of data have been latched by data latches 54
and 56, interface controller 50 signals processor 20 that 8
bytes of data are valid to read on data lines 30. Thereafter,
processor 20 reads all 8 bytes of data as a single packet from
data latches 54 and 56 via data lines 30.

Single beat Writes to memory 42 are accomplished by
performing essentially the same Steps as the above-described
read operation, except in reverse. Thus, processor 20 ini
tiates the transaction by transmitting a transaction start (TS)
signal to interface controller 50 in conjunction with a valid
transaction code and address. Data latches 54 and 56 gate the
8 bytes of data driven on data lines 30 onto data bus 32 under
the control of interface controller 50. After performing any
necessary conversion to correct for disparate data conven
tions (e.g., big to little endian conversion), interface con
troller 50 runs two successive single cycle writes on hybrid
bus 28.

The present invention also Supports data transfers of
fewer bytes than the data width of the system bus. In the
preferred embodiment depicted in FIG. 3, in which the data
width of hybrid bus 28 is 4 bytes, transactions of four bytes
or less may be completed in a single beat of hybrid bus 28.
For example, reads of less than 4 bytes are performed much
like 8-byte transactions. Processor 20 initiates a load opera
tion by transmitting a transaction start (TS) signal to
interface controller 50 via processor control bus 60 along
with a valid transaction code. Next, interface controller 50
asserts the address status signal (ADS) to indicate that a
valid address and bus cycle definition are present. Memory
42 then responds by presenting valid data from the Specified
address on its data pins and transmitting a ready (RDY)
Signal. Utilizing the transaction code transmitted by proces
Sor 20, interface controller enables only the byte lanes within
hybrid bus 28 that correspond to valid data. The data is then
latched by data latches 54 or 56 and read by processor 20.

In addition to Supporting Single beat transfers, the present
invention Supports burst mode transferS by processor 20. In
the preferred embodiment of the present invention in which
processor 20 comprises a PowerPCTM RISC processor, pro
cessor 20 requests 32 bytes in four 8-byte packets when
reading data in burst mode. In order to minimize the
interface controller logic required to implement the upgrade
processor interface, a preferred embodiment of the present
invention does not Support x86 burst mode data transferS on
hybrid bus 28. Consequently, in this preferred embodiment,
the x86 burst mode control line (BLAST) is tied low and

5,898,857
7

eight 4-byte Single beat read transactions, as hereinbefore
described, are performed on hybrid bus 28 to satisfy the
burst mode data requirements of processor 20.

In the preferred embodiment in which x86 burst transfers
are not Supported, processor 20 initiates a burst mode read
from memory 42 by transmitting a transaction start (TS)
signal to interface controller 50 along with a transfer burst
(TBST) signal and a valid address within memory 42.
Interface controller 50 then drives address bus 64 with the
address asserted on address lines 62 by processor 20. In
response to the data request, memory 42 drives the requested
data on its output pins. Adaptor 22 then latches the data
output by memory 42 and forms 8 byte packets in the
manner which has been described. In Subsequent beats of the
burst, interface controller 50 supplies the correct addresses
to memory 42 by incrementing the target address driven on
address buS 64 for each of the Successive buS transactions.
This process results in the transfer of the 32 bytes requested
by processor 20 in burst mode in the linear Sequence desired
by a PowerPCTM RISC processor. It is important to note that
in following this process, the described embodiment of the
present invention does not follow the non-intuitive byte
ordering typical of x86 burst mode read operations. Instead,
adaptor 22 Supplies the linear burst sequence (e.g., addresses
0, 4, 8, C) expected by the PowerPCTM 60x RISC processor.

Those skilled in the art will appreciate that x86 burst
mode Support can be achieved. A preferred embodiment of
the present invention which utilizes a PowerPC 601 and
supports x86 burst mode transfers will now be described. In
this embodiment, interface controller 50 executes two
16-byte x86 burst mode reads from memory 42 to satisfy the
32 bytes required by processor 20 in burst mode. Again,
processor 20 initiates a burst mode read from memory 42 by
transmitting a transaction start (TS) signal to interface
controller 50 along with a transfer burst (TBST) signal and
a valid address within memory 42. Interface controller 50
then indicates that the bus transaction will be a burst read by
a transmitting valid transaction type to memory 42 and by
driving BLAST high during the second clock cycle of the
transaction. Interface controller 50 also drives address bus
64 with the address asserted on address lines 62 by processor
20 in conjunction with an address status Signal (ADS)
indicating that the address is valid. In response to the data
request, memory 42 drives the requested data on its output
pins and transmits a burst ready (BRDY) signal to interface
controller 50 to indicate that the data is valid. In response to
the BRDY signal, adaptor 22 then latches the data output by
memory 42 and forms 8-byte packets in the manner which
has been described. Interface controller 50 issues a transac
tion acknowledge (TA) signal to processor 20 on every other
beat of hybrid bus 28 to indicate that processor 20 may read
an 8-byte packet of data from data latches 54 and 56.

Interface controller 50 counts the number of 4-byte data
packets received from memory 42 by incrementing an
address counter comprised of address bits A4, A3 and A2. At
the end of the first 16-byte burst on hybrid bus 28, interface
controller 50 drives BLAST low during the fourth beat on
hybrid bus 28 in response to receiving the third BRDY from
memory 42. When address bit A4 changes state, interface
controller 50 indicates the beginning of the second 16-byte
burst on hybrid bus 28 by again driving BLAST high and
asserting ADS in conjunction with a valid target address. At
the completion of the second burst on hybrid bus 28 (i.e., at
the end of the 32-byte burst mode transfer), interface con
troller 50 indicates the completion of the transfer by issuing
an address acknowledge (AACK) signal to processor 20 on
the fourth beat of hybrid bus 28.

15

25

35

40

45

50

55

60

65

8
Typically, x86 burst mode transfers utilize a nonlinear

address Sequence, as illustrated in Table 1. However, in the
preferred embodiment of the present invention in which
processor 20 comprises a PowerPCTM 601 RISC processor,
no additional processing is required to reorder the data bytes
loaded from memory 42 since the x86 nonlinear burst order
correlates to the linear burst Sequence of processor 20 at
quadword boundaries. That is, since a PowerPCTM 601 RISC
processor only issues burst mode transferS at 16-byte bound
aries (addresses XXXOh), the x86 burst mode addressing
Sequence corresponds to the linear addressing order
expected by a PowerPCTM RISC processor.

TABLE 1.

1st Address 2nd Address 3rd Address 4th Address

O 4 8 C
4 O C 8
8 C O 4
C 8 4 O

Although burst mode transfers have been described with
reference to an embodiment in which processor 20 com
prises a PowerPCTM 601 RISC processor, those skilled in the
art will appreciate that the burst mode requirements of
processor 20 are architecture dependant. Accordingly, the
number of transfers on hybrid bus 28 required to supply the
requested data will vary with the upgrade processor utilized
within processing unit 12. Further details of the data transfer
modes and Signalling protocols utilized by the described
embodiment of processor 20 and x86 compatible memory 42
may be found, for example, in PowerPCTM 601 RISC
Microprocessor User's Manual available from IBM Inc. and
Intel486 Microprocessor Data Book, Order no. 240440-005,
available from Intel Corporation.

Referring now to FIG. 4, there is illustrated a state
diagram of the method utilized by the present invention to
arbitrate between multiple bus masters having disparate bus
acquisition protocols. AS depicted in FIG. 2, processing unit
12 includes three bus masters: processor 20, SCSI controller
36, and DMA controller 38. The method of the present
invention enables arbitration between processor 20 and
SCSI controller 36, both of which have a bi-directional
handshaking bus acquisition protocol, and DMA controller
38, which utilizes the uni-directional bus acquisition proto
col provided by the x86 processor interface bus. Those
skilled in the art will recognize that the State machine
depicted in FIG. 4 may be implemented by suitable logic
within interface controller 50.
The following list describes the arbitration signals refer

enced in FIG. 4:
BR(bus request)-Assertion indicates that processor 20 is

requesting mastership of the bus.
BG(bus grant)-Assertion indicates that processor 20
may assume mastership of the bus.

ABB(address bus busy)-Assertion indicates that proces
Sor 20 is the bus master.

M2HOLD(M2 hold)-Assertion indicates that SCSI con
troller 36 is requesting mastership of the bus.

M2HLDA(M2 hold acknowledge)-Assertion indicates
that SCSI controller 36 may assume mastership of the
bus.

M2MSTR(M2 master)—Assertion indicates that SCSI
controller 36 is the bus master.

BOFF(back off) Assertion indicates that DMA control
ler 38 is the bus master.

5,898,857
9

An underlined signal name indicates that the Signal is active
low.
A backslash (/) indicates that the signal is logic low.
While the process is in state 1, control of the system bus

is “parked” on processor 20. In this state, the arbitration
logic within interface controller 50 behaves as though pro
cessor 20 is always asserting a bus request (BR), even
though interface controller 50 arbitrates between processor
20 and other bus master devices independent of the state of
BR. Typically, bus parking is provided to the device which
most often holds bus mastership Since arbitration overhead
is thereby decreased. Those skilled in the art will recognize
that the method of the present invention could be imple
mented without the bus parked on processor 20. Since
processor 20 has been granted bus mastership by interface
controller 50 in state 1, processor 20 may initiate a trans
action on the bus by asserting transaction start (TS) and
address bus busy (ABB) to interface controller 50. Unless
interface controller 50 receives a bus request from an x86
device such as DMA controller 38 or another mastering
device Such as SCSI controller 36, the state machine will
remain in State 1.
When interface controller 50 receives a bus request

(BOFF) from DMA controller 38, the process proceeds to
state 2. At state 2, interface controller 50 terminates the bus
grant to processor 20 by inactivating the bus grant Signal
(BG) and initiates the termination of any cycle in process by
activating address acknowledge (AACK). The process then
proceeds to state 3, in which interface controller 50 com
pletes the termination by deactivating AACK and activating
the address retry (ARTRY) signal for one cycle to instruct
processor 20 to retry the current transaction (if one is
pending) when processor 20 regains control of the bus. In
addition, interface controller 50 turns off the address, data,
and control drivers during the transition from State 2 to State
3.

The process then proceeds to state 4, in which DMA
controller 38 assumes control of the bus. DMA controller 38
will remain bus master as long as it asserts a bus request
(BOFF). When DMA controller 38 terminates its bus
request, the state machine will return to state 2 if SCSI
controller 36 requests the bus; otherwise, the State machine
will return to state 1. Thus, in the depicted embodiment,
SCSI controller 36 is awarded a higher arbitration priority
than processor 20. Those skilled in the art will appreciate
that in other embodiments of the present invention, a bus
request by processor 20 may be granted higher arbitration
priority than a bus request from SCSI controller 36.

Returning to state 1, if SCSI controller 36 transmits a bus
request (M2HOLD) to interface controller 50 while proces
Sor 20 is the bus master, the proceSS proceeds from State 1
to state 5, in which interface controller terminates its bus
grant to processor 20 (BG=1). The process will remain in
state 5 until: (1) interface controller 50 receives a bus request
from DMA controller 38; (2) SCSI controller 36 receives a
bus grant from interface controller 50; or (3) SCSI controller
36 terminates its bus request. If SCSI controller 36 termi
nates its bus request at State 5, and no bus request is received
from DMA controller 38, the process returns to state 1. If,
however, a bus request from DMA controller 38 is received,
the proceSS proceeds to State 2 which has been described.

If SCSI controller 36 continues to assert a bus request
(M2HOLD), the process proceeds to state 6 if the bus is not
busy as indicated by an inactive address bus busy Signal
(ABB), and no transactions are starting as indicated by an
inactive transaction start signal (TS). At State 6 interface
controller 50 grants control of the bus to SCSI controller 36
(M2HLDA). If SCSI controller 36 transmits a master signal
(M2MSTR) to interface controller 50 and terminates its bus
request, the proceSS proceeds from State 6 to State 7, unless
DMA controller 38 transmits a bus request. If DMA con

15

25

35

40

45

50

55

60

65

10
troller 38 transmits a bus request while the process is at state
6, the process then proceeds to state 8. If, however, SCSI
controller 36 does not transmit a master Signal to interface
controller 50 and terminates its bus request, the process
returns to State 1.

In state 7 SCSI controller 36 assumes bus mastership and
may perform transactions on the bus as long as it asserts its
master signal (M2MSTR) and DMA controller 38 does not
transmit a bus request (BOFF). Since processor 20 is
assumed to always request the bus, if SCSI controller 36
terminates its master Signal, and no bus request is transmit
ted by DMA controller 38, the process returns to state 1. If,
however, DMA controller 38 transmits a bus request while
SCSI controller 36 masters the bus, the process proceeds to
state 8.

State 8 represents the termination of bus ownership by
SCSI controller 36 due to a bus request from DMA control
ler 38. At state 8, interface controller 50 instructs SCSI
controller 36 to abort current bus transactions (M2TEA) and
to turn off its address drivers (M2RDY). The state machine
remains in state 8 as long as SCSI controller 36 asserts its
master signal. When SCSI controller 36 terminates its mas
ter Signal indicating its release of bus mastership, the process
proceeds from state 8 to state 3, which has been described.
Since SCSI controller 36 has received an abort/error signal
(M2TEA), it will retry the aborted transaction once it regains
bus master Status.
To Simplify the interface of processor 20 to data process

ing system 10, the above-described method of bus arbitra
tion implicitly assumes that the bus mastering device which
controls the address bus also controls the data bus. However,
Some processors, such as PowerPCTM RISC processors,
Support bus pipelining to maximize bus utilization. In data
processing Systems which Support bus pipelining, address
and data tenures are independent and bus mastering devices
must arbitrate for control of the address and data busses
Separately. Those skilled in the art will appreciate that the
method of arbitration of the present invention may also be
implemented in Systems which employ bus pipelining.

In embodiments of the present invention which utilize
processors having internal L1 caches, Such as the Pow
erPCTM 60x RISC processor, L1 cache coherency must be
maintained while bus masters other than the processor hold
bus mastership. In the preferred embodiment of the present
invention depicted in FIG. 3, interface controller 50 trans
mits a signal (GBL) to processor 20 during bus transactions
for which processor 20 is not the bus master. When GBL and
appropriate transaction type signals are asserted, processor
20 Snoops all transactions as either reads or writes with
flush, thereby maintaining cache coherency without the
additional overhead generated by Supporting shared or
modified lines.
The present invention provides an efficient method and

System for interfacing a processor which performs transac
tions utilizing m-byte packets of data to the System bus of a
data processing System which performs transactions utiliz
ing n-byte packets of data, where nism. In addition, the
present invention provides an Scheme for arbitrating
between multiple bus masters which have disparate bus
acquisition protocols. Although the present invention has
been described with reference to a preferred embodiment in
which a x86 personal computer system having a PowerPCTM
60X upgrade processor, those skilled in the art will recognize
that both the data interface and bus arbitration Scheme of the
present invention may be implemented in a variety of data
processing Systems. Furthermore, those skilled in the art will
appreciate that the description of the preferred embodiment
in which an upgrade processor having an 8-byte data width
is interfaced to a 4-byte data bus is illustrative, and that the
description does not restrict the Scope of the present inven
tion to data processing Systems having components of those

5,898,857
11

data widths. Finally, those skilled in the art will recognize
that the arbitration Scheme of the present invention is
applicable to a variety of bus master devices that have
differing bus acquisition protocols, and is not limited to
arbitration between a processor and a DMA controller.
While the invention has been particularly shown and

described with reference to a preferred embodiment, it will
be understood by those skilled in the art that various changes
in form and detail may be made therein without departing
from the Spirit and Scope of the invention.
We claim:
1. A data processing System, comprising:
a processor having an m-byte data width, wherein Said

processor performs transactions utilizing m-byte pack
ets of data, Said m-byte packets of data having a first
data convention;

an n-byte data bus, wherein n is less than m, Said n-byte
data bus conveying n-byte packets of data having a
Second data convention; and

an adaptor having an m-byte parallel interface electrically
coupled to Said processor and an n-byte parallel inter
face electrically coupled to Said n-byte data bus,
wherein Said adaptor converts n-byte packets of data
input from Said n-byte data bus to m-byte packets of
data, and wherein Said adaptor converts m-byte packets
of data input from Said processor to n-byte packets of
data, Such that Said processor can transmit in parallel all
m bytes of an m-byte packet of data to Said n-byte data
buS via Said adaptor and can receive in parallel, via Said
adaptor, m bytes of data input from Said n-byte data
bus,

Said adaptor further including a data convention converter
that converts input data having said first data conven
tion into output data having Said Second data conven
tion and input data having Said Second data convention
into output data having Said first data convention,
wherein if Said first data convention is big endian Said
Second data convention is little endian and if Said first
data convention is little endian then Said Second data
convention is big endian.

2. The data processing System of claim 1, wherein Said
adaptor comprises:

a plurality of data latches electrically coupled to Said
n-byte data bus, wherein Said plurality of data latches
latch, in parallel, n-byte packets of data transmitted to
Said processor within Said n-byte data bus, and wherein
Said plurality of data latches outputS Said data to Said
processor utilizing m-byte packets output in parallel;
and

a controller electrically coupled to Said plurality of data
latches that controls Said plurality of data latches.

3. A data processing System, comprising:
a first processor having an m-byte data width, wherein

Said processor performs transactions utilizing m-byte
packets of data, Said m-byte packets of data having a
first data convention;

an n-byte data bus, wherein n is less than m;
a Second processor electrically coupled to Said n-byte data

bus, wherein Said Second processor performs transac
tions on Said n-byte data bus utilizing n-byte packets of
data, Said n-byte packets of data having a Second data
convention; and

an adaptor having an m-byte parallel interface electrically
coupled to Said first processor and an n-byte parallel
interface electrically coupled to Said n-byte data bus,
wherein Said adaptor converts n-byte packets of data

15

25

35

40

45

50

55

60

65

12
input from Said n-byte data bus to m-byte packets of
data, and wherein Said adaptor converts m-byte packets
of data input from Said first processor to n-byte packets
of data, Such that Said first processor can transmit in
parallel all m bytes of an m-byte packet of data to Said
n-byte data bus via Said adaptor and can receive in
parallel, Via Said adaptor, m bytes of data input from
Said n-byte data bus,

Said adaptor further including a data convention converter
that converts input data having Said first data conven
tion into output data having Said Second data conven
tion and input data having Said Second data convention
into output data having Said first data convention,
wherein if Said first data convention is big endian Said
Second data convention is little endian and if Said first
data convention is little endian then Said Second data
convention is big endian.

4. The data processing System of claim 3, wherein Said
adaptor comprises:

a plurality of data latches electrically coupled to Said
n-byte data bus, wherein Said plurality of data latches
latch, in parallel, n-byte packets of data transmitted to
Said first processor within Said n-byte data bus, and
wherein Said plurality of data latches outputs Said data
to Said first processor utilizing m-byte packets output in
parallel; and

a controller electrically coupled to Said plurality of data
latches that controls Said plurality of data latches.

5. The data processing System of claim 3, wherein Said
Second processor comprises a direct memory access (DMA)
controller.

6. The data processing System of claim 3, and further
comprising:

an arbiter that arbitrates between Said first processor and
Said Second processor for control of Said n-byte data
bus.

7. A method of transferring data within a data processing
System including a processor having an m-byte data width,
an n-byte data bus, wherein n is less than m, a plurality of
data latches coupled between Said processor and Said n-byte
data bus, and a device coupled to Said n-byte data bus, Said
method comprising:

in response to Said processor initiating a read operation,
transmitting data via Said n-byte data bus from Said

device to Said plurality of data latches in n-byte
packets, Said n-byte packets of data having one of a
big endian data convention or a little endian data
convention;

converting data transmitted to Said plurality of data
latches by Said device between Said big endian and
little endian data conventions,

latching Said data transmitted by Said device until m
bytes of data have been latched; and

following Said transmitting, converting, and latching
Steps, reading Said data from all of Said plurality of
data latches in parallel as an m-byte packet, wherein
Said processor can receive m bytes of data in parallel
from Said n-byte data bus via Said plurality of data
latches.

8. The method of transferring data within a data process
ing System of claim 7, and further comprising:

in response to Said processor initiating a write operation,
transmitting m bytes of data in parallel as an m-byte

packet from Said processor to Said plurality of data
latches,

latching Said m-byte packet of data; and

5,898,857
13

thereafter, transmitting Said data via Said n-byte data
bus to Said device in n-byte packets, wherein Said
processor can transmit data to Said n-byte data bus
utilizing m-byte packets of data.

9. The method of transferring data within a data process
ing System of claim 7, wherein Said data processing System
further comprises a Second processor, Said method further
comprising the Step of:

arbitrating between Said first processor and Said Second
processor for control of Said n-byte data bus.

10. The method of transferring data within a data pro
cessing System of claim 7, wherein Said Step of transferring
data in n-byte packets comprises transferring data between

14
Said plurality of data latches and Said device in n-byte
packets utilizing a burst transfer mode in which a plurality
of n-byte data packets are transferred in response to Said
processor Specifying a single address.

11. The method of transferring data within a data pro
cessing System of claim 8, and further comprising:

converting data transmitted to Said plurality of data
latches by Said processor from one of big endian and
little endian to the other of big endian and little endian
prior to transmitting Said data via Said n-byte data bus.

