

First Edition (October 1990)

The following paragraph does not apply to the United Kingdom or any country where
such provisions are inconsistent with local law: INTERNATIONAL BUSINESS
MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied
warranties in certain transactions, therefore, this statement may not apply to you.

This publication could include technical inaccuracies or typographical errors. Changes
are periodically made to the information herein; these changes will be incorporated in
new editions of the publication. IBM may make improvements and/or changes in the
product(s) and/or the program(s) described in this publication at any time.

It is possible that this publication may contain reference to, or information about, IBM
products (machines and programs), programming, or services that are not announced
in your country. Such references or information must not be construed to mean that
IBM intends to announce such IBM products, programming, or services in your country.

Requests for technical information about IBM products should be made to your IBM
Authorized Dealer or your IBM Marketing Representative.

IBM may have patents or pending patent applications covering subject mailer in this
document. The furnishing of this document does not give you any license to these
patents. You can send license inquiries, in writing, to the IBM Director of Commercial
Relations, IBM Corporation, Purchase, NY 10577.

© Copyright Inlernational Business Machines Corporation 1989, 1990.
All rights reserved.
Note to U.S. Government Users - Documentation related to restricted
rights - Use, duplication or disclosure is subject to restrictions set
forth in GSA ADP Schedule Contract with IBM Corp.

Special Notices

References in this publication to IBM products, programs, or services
do not imply that IBM intends to make these available in all countries
in which IBM operates. Any reference to an IBM product, program or
service is not intended to state or imply that only IBM's product,
program, or service may be used. Any functionally equivalent
product, program, or service that does not infringe any of IBM's
intellectual property rights or other legally protectible rights may be
used instead of the IBM product, program, or service. Evaluation and
verification of operation in conjunction with other products, programs,
or services, except those expressly designated by IBM, are the user's
responsibility.

IBM may have patents or pending patent applications covering
subject matter in this document. The furnishing of this document
does not give you any license to these patents. You can send license
inquiries, in writing, to the IBM Director of Commercial Relations,
IBM Corporation, Purchase, NY 10577.

The following terms, denoted by an asterisk (') in this publication, are
trademarks of the IBM Corporation in the United States and/or other
countries:

IBM
Micro Channel
Personal Computer AT
Personal System/2
PS/2

The following terms, denoted by a double asterisk n in this
publication, are trademarks of other companies as follows:

Hitachi
Intel
Motorola

Hitachi Corporation
Intel Corporation
Motorola, Incorporated

Iii

Iv

Preface

The Technical Reference library provides hardware and software
interface information for IBM Personal System/2 products. The
volumes in the library are:

IBM Personal System/2 Hardware Interface Technical Reference -
Architectures:
This volume describes the architectures used with Personal
System/2 products that are based on the Micro Channel
architecture.

IBM Personal System/2 Hardware Interface Technical Reference -
Common Interfaces:
This volume describes those devices and interfaces that are
common to PS/2 systems. It includes the technical
information describing devices, such as the serial port and
parallel port controllers, and general information, such as the
microprocessor instruction set and the characters associated
with each keystroke.

IBM Personal System/2 Hardware Interface Technical Reference -
System-Specific Information:
These technical references provides information concerning
hardware implementation and performance information for
specific models of PS/2 systems.

IBM Personal System/2 and Personal Computer BIOS Interface
Technical Reference:
This volume provides BIOS and Advanced BIOS interface
information.

Option and Adapter Technical References:
These technical references provide hardware and
programming information about individual PS/2 options and
adapters.

© Copyright IBM Corp. 1989. 1990 v

Suggested Reading:

• BASIC for the IBM Personal Computer
• IBM Disk Operating System (DOS)
• IBM Operating Systeml2
• Macro Assembler for the IBM Personal Computer

Warning: In this technical reference, the term "reserved" is used to
describe certain signals, bits, and registers. Use of reserved areas
can cause compatibility problems, loss of datq , or permanent damage
to the hardware.

When modifying a register, the state of the reserved bits must be
preserved. When possible, read the register first and change only the
bits required.

Note: The vertical bars in the left margin indicate technical changes.

vi

The technical changes consist of additions or corrections to
the previous information. Only the changes from the last
release of that specific technical reference are indicated.

Microprocessors and Instruction Sets

80286 Microprocessor 1
Real-Address Mode 1
Protected Virtual Address Mode 1

80287 Math Coprocessor 2
Programming Interface 2
Hardware Interface 3

80386 Microprocessor 4
Real Address Mode 5
Protected Virtual Address Mode 5
Virtual 8086 Mode 6
80386 Paging Mechanism 7

80387 Math Coprocessor 9
I 80387 To 80486 Math Coprocessor Compatibility 10

Programming Interface 10
Hardware Interface 11

I 80486 Microprocessor 13
I Cache Control 13
I Cache Paging Control 14
I Page Protection Feature 15
I New Alignment Check 16
I New Instructions 16

80286 Microprocessor Instruction Set 17
Data Transfer 17
Arithmetic 21
Logic 25
String Manipulation 27
Control Transfer 29
Processor Control 33
Protection Control 35

80287 Math Coprocessor Instruction Set 38
Data Transfer 38
Comparison 40
Constants 41
Arithmetic 42
Transcendental 43
Processor Control 44

Introduction to the 80386 Instruction Set 45
Code and Data Segment Descriptors 46
Prefixes 47
Instruction Format 48
Encoding 50
Address Mode 50

© Copyright IBM Corp. 1990

Operand Length (w) Field 53
Segment Register (sreg) Field 54
General Register (reg) Field 54
Operation Direction (d) Field 55
Sign-Extend (s) Field 55
Conditional Test (tttn) Field 55
Control, Debug, or Test Register (eee) Field 56

80386 Microprocessor Instruction Set 57
Data Transfer 57
Segment Control 60
Flag Control 61
Arithmetic 62
Logic 67
String Manipulation 71
Repeated String Manipulation 72
Bit Manipulation 74
Control Transfer 75
Conditional Jumps 76
Conditional Byte Set 81
Interrupt Instructions 83
Processor Control 84
Processor Extension 85
Prefix Bytes 85
Protection Control 86

Introduction to the 80387 Instruction Set 89
80387 Usage of the Scale-Index-Base Byte 89

Instruction and Data Pointers 89
New Instructions 92

80387 Math Coprocessor Instruction Set 93
Data Transfer 93
Comparison 94
Constants 95
Arithmetic 96
Transcendental 98
Processor Control 98

80486 Microprocessor Instruction Set 100

II Microprocessors and Instruction Sets - October 1990

Figures

1. 80287 Data Types 3
2. 80386 Addressing 6
3. Paging Mechanism 8
4. Data Type Classifications and Instructions 9
5. 80387 Data Types 11
6. Control Register 0 13
7. 80386 Compatible Operation 15
8. 80486 Protection Operation 15
9. 2-Bit Register Field 37

10. 3-Bit Register Field 37
11. 80287 Encoding Field Summary 38
12. 80386 Code and Data Segment Descriptor Format 46
13. Instruction Format 48
14. 80386 Instruction Set Encoding Field Summary 49
15. Effective Address (16-Bit and 32-Bit Address Modes) 50
16. Scale Factor (s-i-b Byte Present) 51
17. Index Registers (s-i-b Byte Present) 51
18. Base Registers (s-i-b Byte Present) 52
19. Effective Address (32-Bit Address Mode - s-i-b Byte

Present) 53
20. Operand Length Field Encoding 53
21. Segment Register Field Encoding 54
22. General Register Field Encoding 54
23. Operand Direction Field Encoding 55
24. Sign-Extend Field Encoding 55
25. Conditional Test Field Encoding 56
26. Control, Debug, and Test Register Field Encoding 56
27. 80387 Encoding Field Summary 89
28. Instruction and Pointer Image (16-Bit Real Address Mode) 90
29. Instruction and Pointer Image (16-Bit Protected Mode) 91
30. Instruction and Pointer Image (32-Bit Real Address Mode) 91
31. Instruction and Pointer Image (32-Bit Protected Mode) 91

© Copyright IBM Corp. 1990 ill

Notes:

Iv Microprocessors and Instruction Sets- October 1990

80286 Microprocessor

The 80286 microprocessor subsystem has the following:

• 24-bit address
• 16-bit data interface
• Extensive instruction set, including string I/O
• Hardware fixed-point multiply and divide
• Two operational modes:

- 8086-compatible Real Address
- Protected Virtual Address.

• 16MB (MB equals 1,048,576 or 220 bytes) of physical address
space

• 1GB (GB equals 1,073,741,824 or 230 bytes) of virtual address
space.

Real-Address Mode

In the real-address mode, the address space of the system
microprocessor is a contiguous array of up to 1 MB. The system
microprocessor generates 20-bit physical addresses to address
memory.

The segment portion of the pointer is interpreted as the upper 16 bits
of a 20-bit segment address; the lower 4 bits are always O. Therefore,
segment addresses begin on multiples of 16 bytes.

All segments in the real-address mode are 64KB (KB equals 1024
bytes) and can be read, written, or executed. An exception or
interrupt can occur if data operands or instructions attempt to wrap
around the end of a segment (for example, a word with its low-order
byte at offset hex FFFF and its high-order byte at hex 0000). If, in the
real-address mode, the information contained in the segment does
not use the full 64KB, the unused end of the segment can be overlaid
by another segment to reduce physical memory requirements.

Protected Virtual Address Mode

The protected virtual address mode (hereafter called protected mode)
offers extended physical and vi rtual memory address space, memory
protection mechanisms, and new operations to support operating
systems and virtual memory.

The protected mode provides a virtual address space of 1GB for each
task mapped into a 16MB physical address space. The virtual

Microprocessors and Instructions Sets - October 1990 1

address space may be larger than the physical address space,
because any use of an address that does not map to a physical
memory location will cause a restartable exception.

Like the real-address mode, the protected mode uses 32-bit pOinters,
consisting of 16-bit selector and offset components. The selector
specifies an index into Ii memory-resident table rather than the upper
16 bits of a real address. The 24-bit base address of the desired
segment is obtained from a table in memory. The 16-bit offset is
added to the segment base address to form the physical address.
The system microprocessor automatically refers to the tables
whenever a segment register is loaded with a selector. All
instructions that load a segment register refer to the table without
additional program support. Each entry in a table is 8-bytes wide.

80287 Math Coprocessor

The optional 80287 Math Coprocessor enables the system to perform
high-speed arithmetic, logarithmic, and trigonometric operations.
The coprocessor works in parallel with the microprocessor. The
parallel operation decreases operating time by allowing the
coprocessor to do mathematical calculations while the
microprocessor continues to do other functions.

The coprocessor works with seven numeric data types, which are
divided into the following three classes:

• Binary integers (three types)
• Decimal integers (one type)
• Real numbers (three types).

Programming Interface

The coprocessor offers extended data types, registers; and
instructions to the microprocessor. The coprocessor has eight 80-bit
registers, which provide the equivalent capacity of forty 16-bit
registers. This register space allows constants and temporary results
to be held in registers during calculations, thus reducing memory
access, improving speed, and increasing bus availability. The
register space can be used as a stack or as a fixed register set.
When used as a stack, only the top two stack elements are operated
on.

2 Microprocessors and Instruction Sets - October 1990

The following figure shows representations of large and small
numbers in each data type.

Significant
Digits

Data Type Bits (Decimal) Approximate Range (Decimal)

Word Integer 16 4 -32,768:S x:S +32,767

Short Integer 32 9 -2 x 109 :S x :S + 2 X 109

Long Integer 64 19 -9 x 10'8 :S x:S +9 X 10'8

Packed Decimal 80 18 -9 .. 99 :S x :S +9 .. 99 (18 digits)

Short Real * 32 6-7 8.43 x 10-37 :S x :S 3.37 X 1038

Long Real' 64 15 - 16 4.19 x 10-307 :S x :S 1.67 X

10308

Temporary Real ** 80 19 3.4 x 10-4932 :S x:S 1.2 X

104932

• The short-real and long-real data types correspond to the single-precision and
double-precision data types.

*. The temporary-real data type corresponds to the extended-precision data
Type.

Figure 1. 80287 Data Types

Hardware Interface

The coprocessor uses the same clock generator as the
microprocessor and operates in the asynchronous mode. The
coprocessor is wired so that it functions as an liD device through liD
port addresses hex OOF8, OOFA, and OOFC. The microprocessor sends
opcodes and operands through these I/O ports. It also receives and
stores results through the same 110 ports. The coprocessor 'busy'
signal informs the microprocessor that it is executing; the
microprocessor Wait instruction forces the microprocessor to wait
until the coprocessor is finished executing.

The coprocessor detects six different exception conditions that can
occur during instruction execution:

• Invalid operation
• Denormal operand
• Zero-divide
• Overflow
• Underflow
• Precision.

Microprocessors and Instruction Sets- October 1990 3

If the appropriate exception-mask bit within the coprocessor is not
set, the coprocessor activates the 'error' signal. The 'error' signal
generates a hardware interrupt (IRQ 13) causing the 'busy' signal to
be held in the busy state. The 'busy' signal may be cleared by an
8-bit I/O Write command to address hex OOFO, with 07 through DO
equal to O. This action also clears IRQ 13.

The power-on self-test code in the system ROM enables IRQ 13 and
sets up its vector to point to a routine in ROM. The ROM routine
clears the 'busy' signal latch and then transfers control to the address
pointed to by the nonmaskable interrupt (NMI) vector. This maintains
code compatibility across the IBM Personal Computer and Personal
System/2 product lines. The NMI handler reads the coprocessor
status to determine if the coprocessor generated the NMI. If it was
not generated by the coprocessor, control is passed to the original
NMI handler.

The coprocessor has two operating modes: real-address mode and
protected mode. They are similar to the two modes of the
microprocessor. The coprocessor is in the real-address mode if reset
by a power-on reset, system reset, or I/O write operation to port hex
00F1. This mode is compatible with the 8087 Math Coprocessor used
in IBM Personal Computers. The coprocessor is placed in the
protected mode by executing the SETPM ESC instruction. It is placed
back in the real-address mode by an I/O write operation to port hex
00F1, with D7 through DO equal to O.

Detailed information for the internal functions of the 80287 Math
Coprocessor is in the books listed in the Bibliography. Also see
"Compatibility" for more information.

80386 Microprocessor

The 80386 microprocessor subsystem has the following:

• 32-bit address
• 32-bit data interface
• Extensive instruction set, including string I/O
• Hardware fixed-point multiply and divide
• Three operational modes:

Real Address
Protected Virtual Address
Virtual 8086.

4 Microprocessors and Instruction Sets - October 1990

• 4GB of physical address space
• 8 general-purpose 32-bit registers
• 64TB (TB equals 1,099,511,627,776 or 240 bytes) of total

virtual-address space.

Real Address Mode

In the real-address mode, the address space of the system
microprocessor is a contiguous array of up to 1 MB. The system
microprocessor generates 20-bit physical addresses to address
memory.

The segment portion of the pointer is interpreted as the upper 16 bits
of a 20-bit segment address; the lower 4 bits are always O. Therefore,
segment addresses begin on multiples of 16 bytes.

All segments in the real-address mode are 64KB and can be read,
written, or executed. An exception or interrupt can occur if data
operands or instructions attempt to wrap around the end of a segment
(for example, a word with its low-order byte at offset hex FFFF and its
high-order byte at hex 0000). If, in the real-address mode, the
information contained in the segment does not use the full 64KB, the
unused end of the segment can be overlaid by another segment to
reduce physical memory requirements.

Protected Virtual Address Mode

The protected virtual-address mode offers extended physical and
virtual memory address space, memory protection mechanisms, and
new operations to support operating systems and virtual memory.

The protected mode provides up to 64TB of virtual address space for
each task mapped into a 4GB physical address space.

From a programmer's pOint of view, the main difference between the
real-address mode and protected mode is the increased address
space and the method of calculating the base address. The protected
mode uses 32- or 48-bit pointers, consisting of 16-bit selector and 16-
or 32-bit offset components. The selector specifies an index into one
of two memory-resident tables, the global descriptor table (GOT) or
the local descriptor table (LOT). These tables contain the 32-bit base
address of a given segment. The 32-bit effective offset is added to the
segment base address to form the physical address. The system
microprocessor automatically refers to the tables whenever a
segment register is loaded with a selector. All instructions that load

Microprocessors and Instruction Sets - October 1990 5

a segment register refer to the memory-resident tables without
additional program support. The memory-resident tables contain
8-byte values called descriptors.

The paging option provides an additional way of managing memory in
the very large segments of the 80386. Paging operates in the
protected mode only, beneath segmentation. The paging mechanism
translates the protected linear address (which comes from the
segmentation unit) into a physical address. When paging is not
enabled, the physical address is the same as the linear address. The
following figure shows the 80386 addressing mechanism.

32- or 48-Bit Pointer

I Selector I Offset I Physical Memory

(16 Bits) (16 or 32 Bits) 4G

L
Linear Physical

~ Address
80386 Address

Descriptor
Paging

Memory Operand '-- Mechanism
(Optional)

LOT or GOT

0

Figure 2. 80386 Addressing

Virtual 8086 Mode

The virtual-8086 mode ensures compatibility of programs written for
8086- and 8088-based systems by establishing a protected 8086
environment within the 80386 multitasking framework.

Since the address space of an 8086 is limited to 1MB, the logical
addresses generated by the virtual-8086 mode lie within the first 1MB
of the 80386 linear address space. To support multiple virtual-8086
tasks, paging can be used to give each virtual-8086 task a 1 MB
address space anywhere in the 80386 physical address space.

On a task-by-task basis, the value of the virtual-8086 flag (VM86 flag
in the Flags register) determines whether the 80386 behaves as an
80386 or as an 8086. Some instructions, such as Clear Interrupt Flag,

6 Microprocessors and Instruction Sets - October 1990

can disrupt all operations in a multitasking environment. The 80386
raises an exception when a virtual-8086 mode task attempts to
execute an 110 instruction, interrupt-related instruction, or other
sensitive instruction. Anytime an exception or interrupt occurs, the
80386 leaves the virtual 8086 mode, making the full resources of the
80386 available to an interrupt handler or exception handler. These
handlers can determine if the source of the exception was a
virtual-8086 mode task by inspecting the VM86 flag in the Flags image
on the stack. If the source is a virtual-8086 mode task, the handler
calls on a routine in the operating system to simulate an 8086
instruction and return to the virtual-8086 mode.1

80386 Paging Mechanism

The 80386 uses two levels of tables to translate the linear address
from the segmentation unit into a physical address. There are three
components to the paging mechanism:

• Page directory
• Page tables
• Page frame (the page itself).

The figure on the following page shows how the two-level paging
mechanism works.

1 The routine in the operating system, called a virtual machine monitor, simulates a
limited number of 8086 instructions.

Microprocessors and Instruction Sets- October 1990 7

80386
~---------------------------------------, I

i-__ --.,..r31---,22--,12--,O II

Directory
Linear

Address
I
I

r------ -------------~

I
31 0

CRO

CR1

I
I
I I 31 0

I CR2

I CR3

I
I

I Control Registers I L __________________ J

Page Directory

Figure 3. Paging Mechanism

~
1 4K

1-------1 1 4K

I---j

f--'-'-":=:...:c=--j! ~~YSiCal
Page

1----'---1-----1

Physical
Memory

CR2 is the Page-Fault Linear-Address register. It holds the 32-bit
linear address that caused the last detected page fault.

CR3 is the Page Directory Physical Base Address register. It
contains the physical starting address of the page directory.

The page directory is 4KB and allows up to 1024 page-directory
entries. Each page-directory entry contains the address of the next
level of tables, the page tables, and information about the page
tables. The upper 10 bits of the linear address (A22 through A31) are
used as an index to select the correct page-directory entry.

Each page table is 4KB and holds up to 1024 page-table entries.
Page-table entries contain the starting address of the page frame and
statistical information about the page. Address bits A12 through A21
are used as an index to select one of the 1024 page-table entries.
The upper 20 bits of the page-frame address (from the page-table
entry) are linked with the lower 12 bits of the linear address to form
the physical address. The page-frame address bits become the
most-significant bits; the linear-address bits become the
least-significant bits.

8 Microprocessors and Instruction Sets- October 1990

80387 Math Coprocessor

The optional 80387 Math Coprocessor enables the system to perform
high-speed arithmetic, logarithmic, and trigonometric operations.
The 80387 effectively extends the 80386 register and instruction set
for existing data types and also adds several new data types. The
following figure shows the four data type classifications and the
instructions associated with each.

Classlfieatlon Size

Integer 16, 32, 64 Bits

Packed BCD* 80 Bits

Real 32,64 Bits

Temporary Real 80 Bits

* BCD = Binary-coded decimal

Instructions

Load, Store, Compare, Add, Subtract,
Multiply, Divide

Load, Store

Load, Store, Compare, Add, Subtract,
Multiply, Divide

Add, Subtract, Multiply, Divide, Square
Root, Scale, Remainder, Integer Part,
Change Sign, Absolute Value, Extract
Exponent and Significand, Compare,
Examine, Test, Exchange Tangent,
Arctangent, 2x-l, Y*L092 (X + 1),
Y*L092 (X), Load Constant (0.0, rr, etc.),
Sine, Cosine, Unordered Compare

Figure 4. Data Type Classifications and Instructions

The 80386/80387 configuration fully conforms to the ANSI2 and IEEP
floating-point standard and are upward, object-code compatible from
80286/80287 - and 808618087 -based systems.

2 American National Standards Institute

3 Institute of Electrical and Electronics Engineers

Microprocessors and Instruction Sets- October 1990 9

180387 To 80486 Math Coprocessor Compatibility

I The 80387 floating-point coprocessor is integrated into the 80486
I microprocessor. All numeric 80387 instructions are fully compatible
I with the 80486 floating-point unit. The 80486 microprocessor supports
I the 80486 floating-point error reporting modes to ensure DOS
I compatibility with 80386/80387 systems.

I The coprocessor presence test will always show the presence of a
I coprocessor in the 80486.

I Programs for the 80386/80387 systems that explicitly reset the
I coprocessor by writing to hex 00F1 will no longer function because
I the coprocessor is an integral part of the microprocessor.
I Coprocessor reset or initialization must be accomplished through
I FINIT/FSAVE.

I For DOS compatibility, the numeric exception bit Control Register 0
I must be set to O.

Programming Interface

The 80387 is not sensitive to the processing mode 8t the 80386. The
80387 functions the same whether the 80386 is executing in
real-address mode, protected mode, or virtual-8086 mode. All
memory access is handled by the 80386; the 80387 merely operates
on instructions and values passed to it by the 80386.

All communication between the 80386 and 80387 is transparent to
application programs. The 80386 automatically controls the 80387
whenever a numeric instrlJction is executed. All physical and virtual
memory is available for storage of instructions and operands of
programs that use the 80387. All memory address modes, including
use of displacement, base register, index register, and scaling are
available for addressing numeric operands.

The coprocessor has eight 80-bit registers. The total capacity of
these eight registers is equivalent to twenty 32-bit registers. This
register space allows constants and temporary results to be held in
registers during calculations, thus reducing memory access,
improving speed, and increasing bus availability. The register space
can be used as a stack or as a fixed register set. When it is used as a
stack, only the top two stack elements are operated on.

The following figure shows the seven data types supported by the
80387 Math Coprocessor.

10 Microprocessors and Instruction Sets- October 1990

Data Type

Word Integer
Short Integer
Long Integer
Packed BCD
Single Precision
(Short Real)

Double Precision
(Long Real)

Extended Precision
(Temporary Real)

Range

104
109
1019
1018
10±38

1O±308

10±4932

Figure 5. 80387 Data Types

Hardware Interface

Precision

16 Bits
32 Bits
64 Bits
18 Digits (2 digits per byte)
24 Bits

53 Bits

64 Bits

The 80387 Math Coprocessor uses the same clock generator as the
80386 system microprocessor. The coprocessor is wired so that it
functions as an 1/0 device through 1/0 port addresses hex 00F8, OOFA,
and OOFC. The system microprocessor sends opcodes and operands
through these 1/0 ports. The coprocessor 'busy' signal informs the
system microprocessor that it is executing an instruction; the system
microprocessor Wait instruction forces the system microprocessor to
wait until the coprocessor is finished executing the instruction.

The coprocessor detects six different exception conditions that can
occur during instruction execution:

• Invalid operation
• Denormal operand
• Zero-divide
• Overflow
• Underflow
• Precision.

If the appropriate exception mask bit within the coprocessor is not
set, the coprocessor activates the 'error' signal. The 'error' signal
generates a hardware interrupt (IRQ 13) causing the 'busy' signal to
be held in the busy state. The 'busy' signal can be cleared by an 8-bit
1/0 Write command to address hex OOFO, with 07 through DO equal to
O. This action also clears IRQ 13.

The power-on self-test code in the system ROM enables IRQ 13 and
sets up its vector to point to a routine in ROM. The ROM routine
clears the 'busy' signal latch and then transfers control to the address
pointed to by the (NMI) vector. This maintains code compatibility
across the IBM Personal Computer and Personal System/2 product
lines. The NMI handler reads the status of the coprocessor to

Microprocessors and Instruction Sets- October 1990 11

determine if the coprocessor generated the NMI. If it was not
generated by the coprocessor, control is passed to the original NMI
handler.

Detailed information about the internal functions of the 80387 Math
Coprocessor is in the books listed in the Bibliography. Also see
"Compatibility" for more information.

12 Microprocessors and Instruction Sets- October 1990

180486 Microprocessor

The 80486 microprocessor subsystem has the following:

• 32-bit address
• 32-bit data interface
• Extensive instruction set, including string I/O
• Hardware fixed-point multiply and divide
• Three operational modes:

Real Address
- Protected Virtual Address
- Vi rtual 8086

• 4GB of physical address space
• 8 general-purpose 32-bit registers
• 64TB of total virtual-address space
• Internal 8KB, set-associative cache with controller
• Internal 80387 coprocessor.

I The 80486 microprocessor is compatible with the 80386 in the
I following areas:

• Real Address Mode
• Protected Virtual Address Mode
• Virtual 8086 Mode
• 80386 Paging Mechanism
• All published 80386 instructions
• All published 80387 instructions.

I The complete 80387 Math Coprocessor Instruction set and register set
I have been included in the 80486 as a floating-point unit. No I/O
I cycles are executed during floating-point instructions. The 80486
I microprocessor is 80386/80387 compatible except for resets to the
I floating-point unit. Software must use FINIT/FSAVE to reset the
I floating-point unit (math coprocessor). The instruction and data
I pointers are set to zero after FINIT/FSAVE.

I Cache Control

I The 80486 microprocessor contains an 8KB integrated cache for code
land data. The cache is managed in two ways, and the operation of
I the cache has no effect on the operation of any program.

I The cache is managed by bit 30 - Cache Disable (CD) and bit 29 -
I Not Write Through (NW) in Control Register 0 (CRO):

Microprocessors and Instruction Sets- October 1990 13

81t30
CD

o
o

81t29
NW Operating Mode

Cache fills disabled, write-through and Invalidate
disabled

o Cache fills disabled, write-through and Invalidate
enabled

1

o
Reserved

Cache fills enabled, write-through and invalidate
enabled (Normal operating mode)

I Figure 6. Control Register 0

I Cache Paging Control

I The page-write-through (PWT) bit and the page-cache-disabled (PCD)
I bit are two new bits defined in entries in both levels of the page table
I structure, the page-directory table and the page-table entry, and in
I Control Register 3.

I The PWT bit (bit 4) controls cache write policy. When this bit is set to
I 1, a write-through policy for the current 4KB page is defined. When
I this bit is set to 0, it allows the possibility of write-back policy. This
I bit is ignored internally because the 80486 microprocessor has a
I write-through-only cache. The PWT bit can be used to control the
I write policy of a second-level (external) cache. '

I The PCD bit (bit 3),in conjunction with the KEN# (cache enabled) input
I signal and the cache-enable and write-transparent bits in Control
I Register 0 (CRO), controls the ability of cache. When this bit is set to
I 1, caching is disabled for the 4KB page regardless of the KEN#,
I cache-enable bit, and write-through bit. These two bits are also
I driven external to the processor during memory access to manage a
I second-level cache, if one exists.

I The page-write-through and page-cache-disable bits for a bus cycle
I are obtained either from Control Register 3, the page-directory entry,
I or the page-table entry, depending on the type of cycle performed.

14 Microprocessors and Instruction 8ets- October 1990

Page Protection Feature

The 80486 microprocessor has a new protection feature. The
write-protect (WP) bit in CRO has been added to the 80486
microprocessor to protect read-only pages from supervisor write
accesses. The 80386 microprocessor allows a read-only page to be
written from protection level 0, 1, or 2. When the WP bit is set to 0,
the 80486 microprocessor is in the 80386-compatible mode. When the
WP bit is set to 0, the supervisor write access to a read-only page

I (Read/Write is set to 0) causes a page fault (exception 14).

I The write-protect bit has a new feature. This feature involves the use
I of three new bits in CRO:

• User/Supervisor - U/S
• Read/Write - R/W
• Write/Protect - WP.

I The compatible protection feature is described by the following table.

UtS RIW wp User Access Supervisor Access

0 0 0 None Read/Write/Execute

0 1 0 None Read/Write/Execute

0 0 Read/Execute Read/Write/Execute

0 Read/Write/Exec,ute Read/Write/Execute

I Figure 7. 80386 Compatible Operation

I The new protection feature is given by the following table.

UtS RtW

0 0

0 1

0

WP User Access

None

None

Read/Execute

Read/Write/Execute

Supervisor Access

Read/Execute

Read/Write/Execute

Read/Execute

Read/Write/Execute

I Figure 8. 80486 Protection Operation

Microprocessors and Instruction Sets - October 1990 15

I New Alignment Check

I The Flag register in the 80486 microprocessor contains a new bit not
I available in the 80386. The new bit, alignment check, is bit 18 of the
I Flag register and enables fault reporting on accesses to misaligned
I data (through interrupt 17 with an error code 0).

I When alignment check is set to 1, it enables fault reporting if memory
I reference is to a misaligned address. A misaligned address is a
I word access to an odd address, a doubleword access to an address
I not on a doubleword boundary, or an 8-byte reference to an address
I that is not on a 64-bit boundary.

I Alignment faults are generated only by a program running at
I privilege level 3. The alignment-check bit is ignored at privilege
I levels 0, 1, and 2.

I The alignment-check bit is conditioned by a new alignment mask bit,
I defined as bit 18 in Control Register O. The alignment-mask bit
I controls whether the alignment-check bit in the Flag register can
I allow an alignment fault. When the alignment-mask bit is set to 0, the
I alignment-check bit is disabled and compatible with the 80386
I microprocessor. When the alignment-mask bit is set to 1, the
I alignment-check bit is enabled.

I New Instructions

I In addition, the 80486 has six unique instructions that control cache
I operation:

• Byte Swap (BSWAP)
• Compare and Exchange (CMPXCHG)
• Exchange-and-Add (XADD)
• Invalidate Data Cache (INVD)
• Invalidate TlBN Entry (INVlPG).
• Write-Back and Invalidate Data Cache (WBINVD).

16 Microprocessors and Instruction Sets- October 1990

80286 Microprocessor Instruction Set

Data Transfer

MOV = Move

Register to Register/Memory

I 1 0 0 0 1 0 0 w I mod reg rIm

Register/Memory to Register

I 1 0 0 0 1 0 1 w I mod reg rIm

Immediate to Register/Memory

I 1 1 0 0 0 1 1 w I mod 0 0 0 rIm

Immediate to Register

I 1 0 1 1 wreg I data

Memory to Accumulator

I 1 01 0000 w I addr-Iow

Accumulator to Memory

I 1 0 1 0 0 0 1 w I addr-Iow

Register/Memory to Segment Register

I 1 0001 110 I mod 0 reg rIm

Segment Register to Register/Memory

I 1 0 0 0 1 1 0 0 I mod 0 reg rIm

data

data ifw = 1

addr-high

addr-high

data if w = 1

Microprocessors and Instruction Sets - October 1990 17

PUSH = Push

Memory

I 11111111 mod 11 0 r/w

Register

I 01010reg

Segment Register

I 000 reg 1 1 0

Immediate

I 011010s0 data data if s = 0

PUSHA = Push All

I 01100000

POP = Pop

Register/Memory

I 10001111 mod 000 rIm

Register

I 01011reg

Segment Register

I 000 reg 1 1 1 reg ¢ 0 1

18 Microprocessors and Instruction Sets- October 1990

POP A = Pop All

101100001

XCHG = Exchange

Register/Memory with Register

I 1 0 0 0 0 1 1 w I mod reg rIm

Register with Accumulator

I 1 001 0 reg I

IN = Input From

Fixed Port

I 1 1 1 0 0 1 0 w port

Variable Port

I 1110110w

OUT = Output To

Fixed Port

I 1 1 1 0 0 1 1 w port

Variable Port

I 1110111w

XLAT = Translate Byte to AL

11010111

Microprocessors and Instruction Sets - October 1990 19

LEA = Load EA to Register

1 1 0001 101 1 mod reg rIm

LDS = Load Pointer to DS

111000101 1 mod reg rIm mod ¢ 1 1

LES = Load Pointer to ES

1 1 1 0 0 0 1 0 0 1 mod reg rIm mod ¢ 1 1

LAHF = Load AH with Flags

110011111

SAHF = Store AH with Flags

110011110

PUSHF = Push Flags

110011100

POPF = Pop Flags

10011101

20 Microprocessors and Instruction Sets- October 1990

Arithmetic

ADD = Add

Register/Memory with Register to Either

I 0 0 0 0 0 0 dw I mod reg rIm

Immediate to Register/Memory

I 1 00000 sw I mod 000 rIm data data if sw = 0 1

Immediate to Accumulator

I 0 0 0 0 0 1 0 w I data data if w = 1

ADC = Add with Carry

Register/Memory with Register to Either

I 0 0 0 1 0 0 dw I mod reg rIm

Immediate to Register/Memory

I 1 0 0 0 0 0 sw I mod 0 1 0 rIm data data if sw = 0 1

Immediate to Accumulator

I 0001010w data data if w = 1

INC = Increment

Register/Memory

11111111W mod 000 rIm

Register

101000reg

Microprocessors and Instruction Sets - October 1990 21

SUB - Subtract

Register/Memory with Register to Either

I 00 1 0 1 0 dw I mod reg rIm

Immediate from Register/Memory

I 1 0 0 0 0 0 sw I mod 1 0 1 rIm data data if sw = 0 1

Immediate from Accumulator

I 00 1 0 1 1 0 w I data data ifw = 1

SBB = Subtract with Borrow

Register/Memory with Register to Either

I 00 0 1 1 0 dw I mod reg rIm

Immediate from Register/Memory

I 1 00 000 sw I mod 0 1 1 rIm data data if sw = 0 1

Immediate from Accumulator

10001110W I data data ifw = 1

DEC = Decrement

Register/Memory

11111111W mod 00 1 rIm

Regi$ter

I 01001 reg

22 Microprocessors and Instruction Sets- October 1990

~MP = Compare

,\egister/Memory with Register

o 0 1 1 1 0 1 w ! mod reg rIm

Register with Register/Memory

o 0 1 1 1 00 w ! mod reg rIm

Immediate with Register/Memory

I 1 0 0 0 0 0 sw ! mod 1 1 1 rIm data data if sw = 0 1

Immediate with Accumulator

! 0 0 1 1 1 lOw ! data data ifw = 1

NEG = Change Sign

!1111011W ! mod 0 11 rIm

AAA = ASCII Adjust for Add

! 00110111

DAA = Decimal Adjust for Add

! 00100111

AAS = ASCII Adjust for Subtract

! 00111111

DAS = Decimal Adjust for Subtract

00101111

Microprocessors and Instruction Sets- October 1990 23

MUL = Multiply (Unsigned)

11111011W I mod 1 00 rim

IMUL = Integer Multiply (Signed)

11111011W I mod 1 0 1 rim

IIMUL = Integer Immediate Multiply (Signed)

1011010Sl I mod reg rim

DIY = Divide (Unsigned)

I 1111011w I mod 11 0 rim

IDlY = Integer Divide (Signed)

11111011W I mod 111 rim

AAM = ASCII Adjust for Multiply

111010100 100001010

AAD = ASCII Adjust for Divide

I 11010101 I 00001010

CBW = Convert Byte to Word

1 1 0011000

data

CWO = Convert Word to Doubleword

10011001

24 Microprocessors and Instruction Sets - October 1990

data its = 0

Logic

Shift/Rotate Instructions

Register/Memory by 1

I 1 1 0 1 0 0 0 w I mod T T T rim

Register/Memory by CL

I 1 1 0 1 0 0 1 w I mod T T T rim

Register/Memory by Count

I 1 1 00000 w I mod T T T rim count

TTT Instruction

000 ROL
001 ROR
010 RCL
01 1 RCR
100 SHLISAL
101 SHR
1 1 1 SAR

AND = And

Register/Memory and Register to Either

I 0 0 1 00 0 dw I mod reg rim

Immediate to Register/Memory

I 1 000000 w I mod 100 rim data data if w = 1

Immediate to Accumulator

0010010w data data if w = 1

Microprocessors and Instruction Sets - October 1990 25

TEST = AND Function to Flags; No Result

Register/Memory and Register

1 1 0 0 0 0 1 0 w 1 mod reg rIm

Immediate Data and Register/Memory

1 1 1 1 1 0 1 1 w 1 mod 0 0 0 rIm data data if w = 1

Immediate Data and Accumulator

1 1 0 1 0 1 0 0 w data data if w = 1

Or = Or

Register/Memory and Register to Either

1 0 0 0 0 1 0 d w 1 mod reg rIm

Immediate to Register/Memory

1 1 0 0 0 0 0 0 w 1 mod 0 0 1 rIm data data if w = 1

Immediate to Accumulator

1 0 0 0 0 1 1 0 w I·· data dljta if w = 1

XOR = Exclusive OR

Register/Memory and Register to Either

too 1 1 00 d w 1 mod reg rIm

Immediate to Register/Memory

1 1 000000 w 1 mod 1 1 0 rIm . data data if w = 1

Immediate to Accumulator

001 10 1 Ow data data if w = 1

26 Microprocessors and Instruction Sets - October 1990

NOT = Invert Register/Memory

I 1111011w I mod 0 1 0 rIm

String Manipulation

MOVS = Move Byte Word

I 1010010w

CMPS B/W = Compare Byte/Word

!1010011W

SCAS = Scan Byte/Word

11010111W

LODS = Load Byte/Word to AL/AX

I 1010110w

STOS = Store BytelWord from AL/ AX

I 1010101w

INS = Input Byte/Word from DX Port

! 0110110w

OUTS = Output Byte/Word to DX Port

0110111w

Microprocessors and Instruction Sets - October 1990 27

REP/REPNE, REPZ/REPNZ = Repeat String

Repeat Move String

1 1111 0011 1010010w

Repeat Compare String (z/Not z)

11111001z 11010011W

Repeat Scan String (z/Not z)

11111001Z 110 1 01 1 1W

Repeat Load String

111110011 1010110w

Repeat Store String

111110011 1010101w

Repeat Input String

111110011 0110110w

Repeat Output String

111110011 10110111W

28 Microprocessors and Instruction Sets - October 1990

Control Transfer

CALL = Call

Direct within Segment

1 1 1 1 0 1 0 0 0 1 disp-Iow

Register/Memory Indirect within Segment

1 1 1 1 1 1 1 1 1 1 mod 0 1 0 rim

Direct Intersegment

10011010 Segment Offset

Indirect Intersegment

disp-high

Segment
Selector

1 11111111 1 mod011 r/m(mod:l=11)

JMP = Unconditional Jump

Short/Long

111101011 disp-Iow

Direct within Segment

1 1 1 1 0 1 0 0 1 disp-Iow

Register/Memory Indirect within Segment

1 1 1 1 1 1 1 1 1 1 mod 1 0 0 rim

Direct Intersegment

11101010 Segment Offset

disp-high

Segment
Selector

Microprocessors and Instruction Sets- October 1990 29

Indirect Intersegment

I 11 1 1 1 11 1 I mod 1 01 rIm (mod ¢ 11)

RET ... Return from Call

Within Segment

111000011

Within Segment Adding Immediate to SP

I 1 1 0 0 0 0 1 0 I data-low data-high

Intersegment

111001011

Intersegment Adding Immediate to SP

I 1 1 0 0 1 0 1 0 I data-low data-high

JE/JZ -== Jump on Equal/Zero

I 0 1 1 1 0 1 0 0 I disp

JL/JNGE ... Jump on Less/Not Greater, or Equal

I 0 1 1 1 1 1 0 0 I disp

JLE/JNG == Jump on Less, or Equal/Not Greater

I 0 11 1 1 1 1 0 I disp

JB/JNAE ... Jump on Below/Not Above, or Equal

01110010 d~p

30 Microprocessors and Instruction Sets- October 1990

JBE/JNA = Jump on Below, or Equal/Not Above

I 01 11 0 1 1 0 I disp

JP/JPE = Jump on Parlty/Parlty Even

I 0 1 1 1 1 0 1 0 I disp

JO = Jump on Overflow

I 0 1 1 1 0 0 0 0 I disp

JS = Jump on Sign

I 0 1 1 1 1 0 0 0 I disp

JNE/JNZ = Jump on Not Equal/Not Zero

I 0 1 1 1 0 1 0 1 I d isp

JNL/JGE = Jump on Not Less/Greater, or Equal

I 0 1 1 1 1 1 0 1 I disp

JNLE/JG = Jump on Not Less, or Equal/Greater

I 0 1 1 1 1 1 1 1 I d isp

JNB/JAE = Jump on Not Below/Above, or Equal

I 0 1 1 1 0 0 1 1 I d isp

JNBE/JA = Jump on Not Below, or Equal/Above

o 1 1 1 0 1 1 1 dlsp

Microprocessors and Instruction Sets - October 1990 31

JNP/JPO = Jump on Not Parity/Parity Odd

I 0 1 1 1 1 0 1 1 I disp

JNO = Jump on Not Overflow

I 0 1 1 1 0 0 0 1 I disp

JNS = Jump on Not Sign

I 0 1 1 1 1 0 0 1 I disp

LOOP = Loop CX Times

I 1 1 1 0 0 0 1 0 I disp

LOOPZ/LOOPE = Loop while Zero/Equal

I 1 1 1 0 0 0 0 1 I disp

LOOPNZ/LOOPNE = Loop while Not Zero/Not Equal

I 1 1 1 0 0 0 0 0 I disp

JCXZ = Jump on CX Zero

I 1 1 1 000 1 1 I disp

ENTER = Enter Procedure

1 1 1001000 I data-low data-high

LEAVE = Leave Procedure

11001001

32 Microprocessors and Instruction Sets- October 1990

INT = Interrupt

Type Specified

1 110 01101

Type 3

111001100

INTO = Interrupt on Overflow

111001110

IRET = Interrupt Return

111001111

BOUND = Detect Value Out of Range

1 01100010 1 mod reg rIm

Processor Control

CLC = Clear Carry

111111000

CMC = Complement Carry

1 1 1 11 0101

STC = Set Carry

11111001

Microprocessors and Instruction Sets - October 1990 33

CLD = Clear Direction

111111100

STD = Set Direction

111111101

CLI = Clear Interrupt

111111010

STI = Set Interrupt Enable Flag

111111011

HLT = Halt

111110100

WAIT = Wait

l1<i011011

LOCK = Bus Lock Prefix

111110000

CTS = Clear Task Switched Flag

100001111 1 00000110

ESC = Processor Extension Escape

11011TTT mod LLL rIm

34 Microprocessors and Instruction Sets - October 1990

Protection Control

LGDT == Load Global Descriptor Table Register

100001111 I 00000001 I mod 0 1 0 rIm

SGDT == Store Global Descriptor Table Register

100001111 I 00000001 I mod 0 00 rIm

LlDT == Load Interrupt Descriptor Table Register

100001111 I 00000001 I mod 0 11 rIm

SlOT == Store Interrupt Descriptor Table Register

100001111 I 00000001 I mod 00 1 rIm

LLDT == Load Local Descriptor Table Register from Register/Memory

100001111 I 00000000 I mod 0 1 0 rIm

SLDT == Store Local Descriptor Table Register from Register/Memory

10 00 01111 I 00000000 I mod 000 rIm

LTR == Load Task Register from Register/Memory

100001111 I 00000000 I mod 0 11 rIm

STR == Store Task Register to Register/Memory

100001111 I 00000000 I mod 00 1 rIm

LMSW == Load Machine Status Word from Register/Memory

00001111 00000001 mod 11 0 rIm

Microprocessors and Instruction Sets- October 1990 35

SMSW = Store Machine Status Word

100001111 I 00000001 I mod 1 00 rIm

LAR = Load Access Rights from Register/Memory

100001111 I 00000010 I mod reg rIm

LSL = Load Segment Limit from Register/Memory

100001111 I 00000011 I mod reg rIm

ARPL = Adjust Requested Privilege Level from Register/Memory

101100011 I mod reg rIm

VERR = Verify Read Access; Register/Memory

100001111 I 00000000 mod 1 00 rIm

VERW = Verify Write Access

100001111 I 00000000 mod 1 01 rIm

The effective address (EA) of the memory operand is computed
according to the mod and rim fields:

If mod = 11, then rim is treated as a reg field.
If mod = 00, then disp = 0, disp-Iow and disp-high are absent.
If mod = 01, then disp = disp-Iow sign-extended to 16 bits,
disp-high is absent.
If mod = 10, then disp = disp-high:disp-Iow.

If rim = 000, then EA = (BX) + (51) + 015P
If rim = 001, then EA = (BX) + (01) + 015P
If rim = 010, then EA = (BP) + (51) + 015P
If rim = 011, then EA = (BP) + (01) + 015P
If rim = 100, then EA = (51) + 015P
If rim = 101, then EA = (01) + 015P
If rim = 110, then EA = (BP) + 015P
If rim = 111, then EA = (BX) + 015P

36 Microprocessors and Instruction Sets - October 1990

The disp field follows the second byte of the instruction (before data if
required).

Note: An exception to the above statements occurs when mod = 00
and r/m=110, in which case EA = disp-high; disp-Iow.

Segment Override Prefix

1001reg110

The 2-bit and 3-bit reg fields are defined in the following figures.

Reg

00
01

Segment
Register

ES
CS

Figure 9. 2-8it Register Field

Figure 10. 3-8it Register Field

16-Blt (w = 1) 8-Blt (w '" 0)

000 AX 000 AL
001 CX 001 CL
010 ox 0100L
011 BX 011 BL
100SP 100AH
101 BP 101 CH
110 SI 1100H
11101 111 BH

Reg

10
11

Segment
Register

SS
OS

The physical addresses of all operands addressed by the BP register
are computed using the SS Segment register. The physical
addresses of the destination operands of the string primitive
operations (those addressed by the 01 register) are computed using
the ES segment, which may not be overridden.

Microprocessors and Instruction Sets- October 1990 37

80287 Math Coprocessor Instruction Set

The following is an instruction-set summary for the 80287 Math
Coprocessor.

The following figure shows abbreviations used in the summary.

Field

escape
MF

ST(O)
ST(i)

d

P

R

Description

80286 Extension Escape
Memory Format

Current Stack Top
ith Register Below the Stack
Top
Destination

Pop

Reverse"

" When d = 1, reverse the sense of R.

Figure 11. 80287 Encoding Field Summary

Data Transfer

FLD = Load

IntegerlReal Memory to ST(O)

I escape MF 1 I
Long Integer Memory to ST(O)

I escape 1 1 1 I mod 1 0 1 rIm

Temporary Real Memory to ST(O)

I escape 0 1 1 I mod 1 0 1 rIm

Bit Information

Bit Pattern = 11011
00 = 32-Bit Real
01 = 32-Bit Integer
10 = 64-Bit Real
11 = 16-Blt Integer

o = Destination is ST(O)
1 = Destination is ST(i)
0= No pop
1 = Pop ST(O)
o = Destination (op) source
1 = Source (op) destination

38 Microprocessors and Instruction Sets- October 1990

BCD Memory to ST(O)

I escape 1 1 1 I mod 100 rIm

STeil to ST(O)

I escape 0 01 1 1 000 STeil

FST = Store

ST(O) to Integer/Real Memory

I escape MF 1 I mod 0 1 0 rIm

ST(O) to STeil

I escape 101 1 1 01 OST(i)

FSTP = Store and Pop

ST(O) to Integer/Real Memory

I escape MF 1 I mod 0 1 1 rIm

ST(O) to Long Integer Memory

I escape 1 1 1 I mod 1 1 1 rIm

ST(O) to Temporary Real Memory

I escape 0 1 1 I mod 1 1 1 rIm

Microprocessors and Instruction Sets- October 1990 39

ST(O) to BCD Memory

I escape 1 1 1 I mod 1 1 0 rIm

ST(O) to ST(i)

I escape 1 01 1 1 0 1 1 ST(i)

FXCH = Exchange ST(I) and ST(O)

I escape 00 1 1 1001 ST(i)

Comparison

FCOM = Compare

Integer/Real Memory to ST(O)

I escape MF 0 I mod 0 1 0 rIm

ST(i) to ST(O)

I escape 0 00 1 1010 ST(i)

FCOMP = Compare and Pop

Integer/Real Memory to ST(O)

I escape MF 0 I mod 0 1 1 rIm

ST(i) to ST(O)

I escape 0 0 0 1 1 0 1 1 ST(i)

FCOMPP = Compare ST(1) to ST(O) and Pop Twice

escape 11 0 11011001

40 Microprocessors and Instruction Sets - October 1990

FTST = Test ST{O)

1 escape 0 0 1 1 1 1 1 0 0 1 0 0

FXAM = Examine ST{O)

1 escape 001 11100101

Constants

FLDZ = Load + 0.0 into ST{O)

1 escape 0 0 1 1 1 1 1 0 1 1 1 0

FLD1 = Load + 1.0 Into ST{O)

1 escape 0 01 111101000

FLDPI = Load n Into ST{O)

1 escape 0 01 111101011

FLDL2T = Load 109210 into ST{O)

1 escape 0 01 111101001

FLDL2E = Load log2 e Into ST{O)

1 escape 0 0 1 1 1 1 1 0 1 0 1 0

FLDLG2 = Load log10 2 into ST{O)

1 escape 001 111101100

FLDLN2 = Load loge 2 Into ST{O)

escape 001 11101101

Microprocessors and Instruction Sets- October 1990 41

Arithmetic

FADD = Addilion

IntegerlReal Memory with ST(O)

I escape MF 0 I mod 00 0 rim

STeil and ST(O)

I escape dPO 1 1 000 STeil

FSUB = Subtraction

IntegerlReal Memory with ST(O)

I escape MF 0 I mod lOR rim

STeil and ST(O)

I escape dP 0 1110R rim

FMUL = Multiplication

IntegerlReal Memory with ST(O)

I escape MF 0 I mod 0 0 1 rim

STeil and ST(O)

I escape dP 0 1 1 001 rim

FDIV = Division

IntegerlReal Memory with ST(O)

I escape MF 0 I mod 1 1 R rim

STeil and ST(O)

I escape dPO 1111 R rim

FSQRT = Square Root of ST(O)

I escape 00 1 I 1 1 1 1 10 1 0

FSCALE = Scale ST(O) by ST(1)

escape 001 11111101

42 Microprocessors and Instruction Sets- October 1990

FPREM = Partial Remainder of 8T(0) + 8T(1)

1 escape 0 0 1 1 1 1 1 1 1 0 0 0

FRNDINT = Round 8T(0) to Integer

1 escape 0 0 1 1111 1 1100

FXTRACT = Extract Components of 8T(0)

1 escape 0 0 1 1 1 1 1 1 0 1 0 0

FAB8 = Absolute Value of 8T(0)

1 escape 00 1 111100001

FCH8 = Change 81gn of 8T(0)

1 escape 001 111100000

Transcendental

FPTAN = Partial Tangent of 8T(0)

1 escape 0 0 1 1 1 1 1 1 0 0 1 0

FPATAN = Partial Arctangent of 8T(1) + 8T(0)

1 escape 001 11110011

F2XM1 = 2ST(O)_1

1 escape 001 11110000

FYL2X = 8T(1) x Log2 [8T(0)]

1 escape 00 1 111110001

FYL2XP1 = 8T(1) x Log2 [8T(0) + 1]

Microprocessors and Instruction Sets - October 1990 43

escape 00 1 11111001

Processor Control

FINIT = Initialize NPX

I escape 0 11 111100011

FSETPM = Enter Protected Mode

I escape 011 111100100

FSTSW AX = Store Control Word

I escape 1 1 1 111100000

FLDCW = Load Control Word

I escape 001 1 mod 1 01 rim

FSTCW = Store Control Word

I escape 001 1 mod 111 rim

FSTSW = Store Status Word

I escape 1 0 1 1 mod 111 rim

FCLEX = Clear Exceptions

I escape 0 11 111100010

FSTENV = Store Environment

escape 001 mod 11 0 rim

44 Microprocessors and Instruction Sets - October 1990

FLDENV = Load Environment

I escape 0 01 I mod 1 00 rim

FSAVE = Save State

I escape 1 01 1 mod 11 0 rim

FRSTOR = Restore State

1 escape 1 01 I mod 1 00 rim

FINCSTP = Increment Stack Pointer

1 escape 001 111110111

FDECSTP = Decrement Stack Pointer

I escape 001 111110110

FFREE = Free ST(i)

I escape 1 0 1 1 1 1 00 0 ST(i)

FNOP = No Operation

escape 001 11010000

Introduction to the 80386 Instruction Set

The 80386 instruction set is an extended version of the 8086 and
80286 instruction sets. The instruction sets have been extended in
two ways:

• The instructions have extensions that allow operations on 32-bit
operands, registers, and memory.

• A 32-bit addressing mode allows flexible selection of registers for
base and index as well as index scaling capabilities (x2, x4, x8)
for computing a 32-bit effective address. The 32-bit effective
address yields a 4GB address range.

Microprocessors and Instruction Sets - October 1990 45

Note: The effective address size must be less than 64KB in the
real-address or virtual-address modes to avoid an
exception.

Code and Data Segment Descriptors

Although the 80386 supports all 80286 Code and Data segment
descriptors, there are some differences in the format. The 80286
segment descriptors contain a 24-bit base address and a 16-bit limit
field, while the 80386 segment descriptors have a 32-bit base
address, a 20-bit limit field, a default bit, and a granularity bit.

16115 os I 07 001 o

Segment Base (SB) Bits 15-0

SB Bits 31-24 I GI oloJ ol sL 19-16

Segment Limit (SL) Bits 15-0

Access Rights Bytet SB Bits 23-16 ~ :
4 e

t

Figure 12. 80386 Code and Data Segment Descriptor Format

Nole: Bits 31 through 16 shown at offset 4 are set to 0 for all 80286
segment descriptors.

The default (D) bit of the code segment register is used to determine
whether the instruction is carried out as a 16-bit or 32-bit instruction.
Code segment descriptors are not used in either the real-address
mode or the virtual-8086 mode. When the system microprocessor is
operating in either of these modes, a D-bit value of 0 is assumed and
operations default to a 16-bit length compatible with 8086 and 80286
programs.

The granularity (G) bit is used to determine the granularity of the
segment length (1 = page granular, 0 = byte granular). If the value
of the 20 segment-limit bits is defined as N, a G-bit value of 1 defines
the segment size as follows:

Segment size = (N + 1) x 4KB

4KB represents the size of a page.

46 Microprocessors and Instruction Sets- October 1990

Prefixes

Two prefixes have been added to the instruction set. The Operand
Size prefix overrides the default selection of the operand size; the
Effective Address Size prefix overrides the effective address size.
The presence of either prefix toggles t!1e default setting to its
opposite condition. For example:

• If the operand size defaults to 32-bit data operations, the
presence of the Operand Size prefix sets it for 16-bit data
6perations.

• If the effective address size is 16-bits, the presence of the
Effective Address Size prefix toggles the instruction to use 32-bit
effective address computations.

The prefixes are available in all 80386 modes, including the
real-address mode and the virtual-8086 mode. Since the default of
these modes is always 16 bits, the prefixes are used to specify 32-bit
operations. If needed, either or both of the prefixes may precede any
opcode bytes and affect only the instruction they precede.

Microprocessors and Instruction Sets - October 1990 47

Instruction Format

The instructions are presented in this format:

Opcode Mode Specifier Address
Displacement

Immediate Data

Term

Opcode

Mode Specifier

Address Displacement

Immediate Data

Description

The opcode may be one or two bytes in length. Within
each byte, smaller encoding fields may be defined.

Consists of the "mod rIm" byte and the
"scale-index-base" (s-i-b) byte.

The mod rIm byte specifies the address mode to be
used. Format: mod T T TrIm

The "s-i-b" byte is optional and can be used only in
32-bit address modes. It follows the mod rIm byte to
fully specify the manner in which the effective
address is computed. Format: ss index base

Follows the "mod rIm" byte or "s-i-b" byte. It may be
8, 16, or 32 bits.

If specified, follows any displacement bytes and
becomes the last field of the instruction. It may be 8,
16, or 32 bits.

The term "8-bit data" indicates a fixed data length of 8
bits.

The term "8-, 16-, or 32-bit data" indicates a variable
data length. The length is determined by the w field
and the current operand size.

If w = 0, the data is always 8 bits.

If w = 1, the size is determined by the operand
size of the instruction.

Figure 13. Instruction Format

48 Microprocessors and Instruction Sets- October 1990

The instructions use a variety of fields to indicate register selection,
the addressing mode, and so on. The following figure is a summary
of the fields.

Field Name

w

d

s

reg

mod rIm

ss

index

base

sreg2

sreg3

tHn

Description

Specifies if data is byte or
full size. (Full size is either
16 or 32 bits.)

Specifies the direction of
data operation.

Specifies if an immediate
data field must be
sign-extended.

General address specifier.

Address mode specifier
(effective address can be a
general register).

Scale factor for scaled
index address mode.

General register to be used
as an index register.

General register to be used
as base register.

Segment register specifier
for es, SS, OS, and ES.

Segment register specifier
for es, SS, OS, ES, FS, and
GS.

For conditional instructions;
specifies a condition
asserted or a condition
negated.

Bltlnformallon

3

2 for mod; 3 for rIm

2

3

3

2

3

4

Figure 14. 80386 Instruction Set Encoding Field Summary

Microprocessors and Instruction Sets- October 1990 49

Encoding

This section defines the encoding of the fields used in the instruction
sets.

Address Mode

The first addressing byte is the "mod rim" byte. The effective
address (EA) of the memory operand is computed according to the
mod and rim fields. The mod rim byte can be interpreted as either a
16-bit or 32-bit addressing mode specifier. Interpretation of the byte
depends on the address components used to calculate the EA. The
following figure defines the encoding of 16-bit and 32-bit addressing
modes with the mod rim byte.

mod rIm 16-Bit Mode 32-Blt Mode (No s-i-b byte)

00000 05:[BX + 51] 05: [EAX]
00001 OS:[BX + 01] os: [ECX]
00010 SS:[BP + SI] OS:[EOX]
00 011 SS:[BP + 01] OS: [EBX]
00100 OS:[SI] s-i-b present (see Figure 19 on

page 53)
00101 OS:[OI] OS:d32
00110 d16 OS:[ESI]
00111 OS:[BX] OS:[EOI]

01000 OS:[BX + SI + d8] OS:[EAX + d8]
01001 OS:[BX + 01 + d8] OS: [ECX + d8]
01010 SS:[BP + SI + d8] 05:[EOX + d8]
01 011 55:[BP + 01 + d8] 05:[EBX + d8]
01100 05:[51 + d8] s-i-b present (see Figure 19 on

page 53)
01101 05:[01 + d8] 55:[EBP + d8]
01110 55:[BP +d8] 05:[E51 + d8]
01 111 05:[BX + d8] 05:[EOI + d8]

10000 OS:[BX + 51 + d16] 05:[EAX + d32]
10001 05:[BX + 01 + d16] 05:[ECX + d32]
10010 S5:[BP + SI + d16] S5:[EOX + d32]
10011 SS:[BP + 01 + d16] 05:[EBX + d32]
10100 OS:[SI + d16] s-i-b present (see Figure 19 on

page 53)
10101 05:[01 + d16] S5:[EBP + d32]
10110 SS:[BP + d16] OS: [ESI + d32]
10 111 05:[BX + d16] 05:[EOI + d32]

Figure 15. Effective Address (16-Bit and 32-Bit Address Modes)

The displacement follows the second byte of the instruction (before
data, if required).

50 Microprocessors and Instruction Sets - October 1990

The scale-index-base (s-i-b) byte can be specified as a second byte of
addressing information. The s-i-b byte is specified when using a
32-bit addressing mode and the mod rIm byte has the following
values:

• rIm = 100
• mod = 00,01, or 10.

When the s-i-b byte is present, the 32-bit effective address is a
function of the mod, S8, index, and base fields. The following figures
show the scale factor, Index register selected, and base register
selected when the s-i-b byte is present.

88 Seale Factor

00 1
01 2
10 4
11 8

Figure 16. Scale Factor (s-i-b Byte Present)

Index

000
001
010
011
100

101
110
111

Index Register

EAX
ECX
EDX
EBX
No Index Register

EBP
ESI
EDI

The ss field must equal 00 when the
index field is 100; if not, the effective
address is undefined.

Figure 17. Index Registers (s-i-b Byte Present)

Microprocessors and Instruction Sets- October 1990 51

base Base Register

000
001
010
011
100
101

EAX
ECX
EDX
ESX
ESP
ESP

110 ESI
111 EDI

If mod "" 00, then ESP is not used to
form the EA; immediate 32-bit address
displacement follows the mode specifier
byte.

Figure 18. Base Registers (s-i-b Byte Present)

The scaled-index information is determined by multiplying the
contents of the Index register by the scale factor. The following
example shows the use of the 32-bit addressing mode with scaling
where:

• EAX is the base of ARRAY _A
• ECX is the index of the desired element
• 2 is the scale factor.

; ARRAY_A is an array of words
Mav EAX, offset ARRAY_A
Mav ECX, element_number
MaV BX, [EAX][ECX*2]

52 Microprocessors and Instruction Sets - October 1990

The following figure defines the encoding of the 32-bit addressing
mode when the s-i-b byte is present.

Note: The mod field is from the mod rIm byte. The base field and
scaled-index information are from the s-i-b byte.

Mod Base

00000
00001
00010
00011
00100
00101
00110
00111

01000
01001
01010
01 011
01100
01101
01110
01 111

10000
10001
10010
10011
10100
10101
10110
10 111

32-BII Address Mode

DS:[EAX + (scaled index)]
DS:[ECX + (scaled index)]
DS:[EDX + (scaled index)]
DS:[EBX + (scaled index)]
SS:[ESP + (scaled index)]
DS:[d32 + (scaled index)]
DS:[ESI + (scaled index)]
DS:[EDI + (scaled index)]

DS:[EAX + (scaled index) + d8]
DS:[ECX + (scaled index) + d8]
DS:[EDX + (scaled index) + d8]
DS:[EBX + (scaled index) + d8]
SS:[ESP + (scaled index) + d8]
SS:[EBP + (scaled index) + d8]
DS:[ESI + (scaled index) + d8]
DS:[EDI + (scaled index) + d8]

DS:[EAX + (scaled index) + d32]
DS:[ECX + (scaled index) + d32]
DS:[EDX + (scaled index) + d32]
DS:[EBX + (scaled index) + d32]
SS:[ESP + (scaled index) + d32]
SS:[EBP + (scaled index) + d32]
DS:[ESI + (scaled index) + d32]
DS:[EDI + (scaled index) + d32]

Figure 19. Effective Address (32-Bit Address Mode - s-i-b Byte Present)

Operand Length (w) Field

For an instruction performing a data operation, the instruction is
executed as either a 32-bit or 16-bit operation. Within the constraints
of the operation size, the w field encodes the operand size as either
one byte or full operation.

w

o
1

16-BII Dala Operallon

8 Bits
16 Bits

32-BII Dala Operation

8 Bits
32 Bits

Figure 20. Operand Length Field Encoding

Microprocessors and Instruction Sets - October 1990 53

Segment Register (sreg) Field

The 2-bit segment register field (sreg2) allows one of the four 80286
segment registers to be specified. The a-bit segment register (sreg3)
allows the 80386 FS and GS segment registers to be specified.

sreg2 sreg3 Segment Register

00 000 ES
01 001 CS
10 010 55
11 011 OS

100 FS
101 GS
110 Reserved
111 Reserved

Figure 21. Segment Register Field Encoding

General Register (reg) Field

The general register is specified by the reg field, which may appear
in the primary opcode bytes as the reg field of the mod reg rim byte,
or as the rim field of the mod reg rim byte when mod = 11.

reg 16-Blt 16-Blt 16-Blt 32-BII 32-BII 32-Blt
w/ow w=o w=1 w/ow w-o w=1

000 AX AL AX EAX AL EAX
001 CX CL CX ECX CL ECX
010 OX DL OX EDX DL EOX
011 BX BL BX EBX BL EBX
100 SP AH SP ESP AH ESP
101 BP CH BP EBP CH EBP
110 51 DH 51 ESI DH ESI
111 01 BH 01 EDI BH EDI

Figure 22. General Register Field Encoding

The physical addresses of all operands addressed by the BP register
are computed using the SS Segment register. For string primitive
operations (those addressed by the 01 register), addresses of the
destination operands are computed using the ES segment, which may
not be overridden.

54 Microprocessors and Instruction Sets- October 1990

Operation Direction (d) Field

The operation direction (d) field is used in many two-operand
instructions to indicate which operand is the source and which is the
destination.

d Direction of Operation

o Register/Memory <-- Register
The "reg" field indicates the source operand; "mod r/m" or "mod ss
index base" indicates the destination operand.

Register<-- Register/Memory
The "reg" field indicates the destination operand; "mod r/m" or "mod ss
index base" indicates the source operand.

Figure 23. Operand Direction Field Encoding

Sign-Extend (s) Field

The sign-extend (s) field appears primarily in instructions having
immediate data fields. The s field affects only 8-bit immediate data
being placed in a 16-bit or 32-bit destination.

s

o
1

8-BII Immediate Data

No effect on data
Sign-extend 8-bit data to fill 16-bit or
32-bit destination

Figure 24. Sign-Extend Field Encoding

Conditional Test (tttn) Field

16/32-Blt Immediate Data

No effect on data
No effect on data

For conditional instructions (conditional jumps and set-on condition),
the conditional test (tttn) field is encoded, with n indicating whether to
use the condition (n = 0) or its negation (n = 1), and ttt defining the
condition to test.

Microprocessors and Instruction Sets- October 1990 55

Wn

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Condition

Overflow
No Overflow
Below/Not Above or Equal
Not Below/Above or Equal
Equal/Zero
Not Equal/Not Zero
Below or Equal/Not Above
Not Below or Equal/Above
Sign
Not Sign
Parity/Parity Even
Not Parity/Parity Odd
Less Than/Not Greater or Equal
Not Less Than/Greater or Equal
Less Than or Equal/Not Greater Than
Not Less or Equal/Greater Than

Figure 25. Conditional Test Field Encoding

Mnemonic

o
NO
B/NAE
NB/AE
E/Z
NE/NZ
BE/NA
NBE/A
S
NS
PIPE
NP/PO
LlNGE
NLIGE
LE/NG
NLE/G

Control, Debug, or Test Register (eee) Field

The following shows the encoding for loading and storing the Control,
Debug, and Test registers (eee).

eee Code Interpreted as Interpreted as Interpreted
Control Register Debug Register as

Test
Register

000 CRO ORO
001 OR1
010 CR2 OR2
011 CR3 OR3
100
101
110 OR6 TR6
111 DR? TR?

Figure 26. Control, Debug, and Test Register Field Encoding

56 Microprocessors and Instruction Sets - October 1990

80386 Microprocessor Instruction Set

Data Transfer

MOV = Move

Register to Register/Memory

I 1 00 0 1 00 w I mod reg rIm

Register/Memory to Register

I 1 00 0 1 0 1 w I mod reg rIm

Immediate to Register/Memory

I 1 1 0 0 0 1 1 w I mod 0 0 0 rIm 8-, 16-, or 32-bit data

Immediate to Register (Short Form)

I 1 0 1 1 w reg I 8-, 16-, or 32-bit data

Memory to Accumulator (Short Form)

I 1 0 1 0000 w I full 16- or 32-bit displacement

Accumulator to Memory (Short Form)

I 1 0 1 000 1 w I full 16- or 32-bit displacement

Register/Memory to Segment Register

I 1 0 0 0 1 1 1 0 I mod sreg3 rIm

Segment Register to Register/Memory

I 1 0 0 0 1 1 0 0 I mod sreg3 rIm

Microprocessors and Instruction Sets - October 1990 57

MOVSX = Move with SiSJn Extension

Register from Register/Memory

I 0 00 0 1 1 1 1 I 1 0 1 1 1 1 1 w mod reg rIm

MOVZX = Move with Zero Extension

Regiflter from Register/Memory

! 00001111 !1011011W

PUSH = Plish

Register/Memory

111111111

Register (ShOrt Form)

I 01010 reg I

mod 11 0 rim

mod reg rim

Segment Register (ES, es, SS, or OS) Short Form

rOO 0 sreg2 1 1 0 I
Segment Register (FS or GS)

I 00 0 0 1 1 1 1 I 1 0 sreg3 0 0 0

Immediate

I 011010s0 8-, 16-, or 32-bit data

PUSHA = Plish All

01100000

58 Microprocessors and Instruction Sets - October 1990

POP = Pop

Register/Memory

110001111

Register (Short Form)

I 0101 1 reg 1

mod 000 rIm

Segment Register (ES, SS, or OS) Short Form

1 0 0 0 sreg2 1 1 1 I
Segment Register (FS or GS)

1 0 0 0 0 1 1 1 1 I 1 0 sreg3 0 0 1

POPA = POp All

I 01100001

XCHG = Exchange

Register/Memory with Register

1 1 0 0 0 0 1 1 w I mod reg rIm

Register with Accumulator (Short Form)

110010 reg 1

IN = Input From:

Fixed Port

1 1110010w port number

Variable Port

1110110w

Microprocessors and Instruction Sets - October 1990 59

OUT = Output To:

Fixed Port

11110011W port number

Variable Port

11110111W

LEA = Load EA to Register

1 1 0001101 1 mod reg rim

Segment Control

LDS = Load Pointer to DS

1 11000101 1 mod reg rim

LES = Load Pointer to ES

1 11000100 1 mod reg rim

LFS = Load Pointer to FS

100001111 110110100 mod reg rim

LGS = Load Pointer to GS

100001111 1 1 0110101 mod reg rim

LSS = Load Pointer to SS

00001111 10110010 mod reg rIm

60 Microprocessors and Instruction Sets- October 1990

Flag Control

ClC = Clear Carry Flag

111111000

ClD = Clear Direction Flag

111 1 11 1 00

CLI = Clear Interrupt Enable Flag

111 1 11010

ClTS = Clear Task Switched Flag

100001111 100000110

CMC = Complement Carry Flag

1 1111 0101

lAHF = load AH Into Flag

1 10 011111

POPF = Pop Flags

110011101

PUSHF = Push Flags

10011100

Microprocessors and Instruction Sets- October 1990 61

SAHF = Store AH Into Flags

1 1 0011110

STC = Set Carry Flag

111111001

STD = Set Direction Flag

111111101

STI = Set Interrupt Enable Flag

111111011

Arithmetic

ADD = Add

Register to Register

1 0 0 0 0 0 0 d w mod reg rIm

Register to Memory

1 0 0 0 0 0 0 0 w mod reg rIm

Memory to Register

1 0 0 0 0 0 0 1 w mod reg rIm

Immediate to Register/Memory

1 1 0 0 0 0 0 s w 1 mod 00 0 rIm 8-, 16-, or 32-bit data

Immediate to Accumulator (Short Form)

1 00 0 0 0 1 0 w 1 8-, 16-, or 32-bit data

62 Microprocessors and Instruction Sets - October 1990

ADC = Add with Carry

Register to Register

I 000100dw mod reg rIm

Register to Memory

I 0001000w mod reg rIm

Memory to Register

I 0001001w mod reg rIm

Immediate to Register/Memory

I 1 0 0 0 0 0 s w I mod 0 1 0 rIm

Immediate to Accumulator (Short Form)

I 000 1 0 1 0 w I 8-, 16-, or 32-bit data

INC = Increment

Register/Memory

11111111W

Register (Short Form)

I 01000 reg I

mod 000 rIm

8-, 16-, or 32-bit data

Microprocessors and Instruction Sets - October 1990 63

SUB = Subtract

Register from Register

I 0 0 1 0 1 0 d w mod reg rIm

Register from Memory

I 0 0 1 0 1 0 0 w I mod reg rIm

Memory from Register

I 0 0 1 0 1 0 1 w I mod reg rIm

Immediate from RegisterlMemory

I 1 0 0 0 0 0 s w I mod 1 0 1 rIm 8-, 16-, or 32-bit data

Immediate from Accumulator (Short Form)

I 00 1 0 1 1 0 w I 8-, 16-, or 32-bit data

SBB = Subtract with Borrow

Register from Register

I 00 0 1 1 0 d w I mod reg rIm

Register from Memory

I 0 0 0 1 1 0 0 w I mod reg rIm

Memory from Register

I 0 0 0 1 1 0 1 w I mod reg rIm

Immediate from RegisterlMemory

I 1 0 0 0 0 0 s w I mod 0 1 1 rIm 8-, 16-, or 32-bit data

Immediate from Accumulator (Short Form)

I 000 1 1 1 0 w I 8-, 16-, or 32-bit data

64 Microprocessors and Instruction Sets- October 1990

DEC = Decrement

RegisterlMemory

11111111W

Register (Short Form)

101001 reg I

CMP = Compare

Register with Register

mod 001 rIm

I 00 1 1 1 0 d w I mod reg rIm

Memory with Register

I 00 1 1 1 00 w I mod reg rIm

Register with Memory

I 00 1 1 1 0 1 w I mod reg rIm

Immediate with RegisterlMemory

I 1 0 0 0 0 0 s w I mod 1 1 1 rIm

Immediate with Accumulator (Short Form)

I 00 1 1 1 1 0 w I 8-, 16-, or 32-bit data

NEG = Change Sign

11111011W I mod 0 11 rIm

AAA = ASCII Adjust for Add

00110111

8-, 16-, or 32-bit data

Microprocessors and Instruction Sets - October 1990 65

AAS = ASCII Adjust for Subtract

100111111

DAA = Decimal Adjust for Add

100100111

DAS = Decimal Adjust for Subtract

100101111

MUL = Multiply (Unsigned)

Accumulator with Register/Memory

I 1 1 1 1 0 1 1 w I mod 1 0 0 rIm

IMUL = Integer Multiply (Signed)

Accumulator with Register/Memory

I 1 1 1 1 0 1 1 w I mod 1 0 1 rIm

Register with Register/Memory

I 0 0 0 0 1 1 1 1 11 0 1 0 1 1 1 1 mod reg rIm

Register/Memory with Immediate to Register

1 0 1 1 0 1 0 s 1 1 tnod reg rIm 1 8-, 16-, or 32-bit data

DIV = Divide (Unsigned)

Accumulator by Register/Memory

1 1 1 1 1 0 1 1 w 1 mod 1 1 0 rIm

IDIV = Integer Divide (Signed)

Accumulator by Register/Memory

1 1 1 1 1 0 1 1 w 1 mod 1 1 1 rIm

66 Microprocessors and Instruction Sets- October 1990

AAD = ASCII Adjust for Divide

1 11010101 1 00001010

AAM = ASCII Adjust for Multiply

111010100 1 00001010

CBW = Convert Byte to Word

1 1 0011000

CWD = Convert Word to Doubleword

1 10011001

Logic

Shift/Rotate Instructions
Not Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR)

Register/Memory by 1

1 1 1 0 1 00 0 w 1 mod T T T rIm

Register/Memory by CL

1 1 101001 w 1 mod T T T rIm

Register/Memory by Immediate Count

1 1 1 00 000 w 1 mod T T T rIm 8-bit data

Microprocessors and Instruction Sets - October 1990 67

Shift/Rotate Instructions
Through Carry (RCL and RCR)

RegisterlMemory by 1

I 1 1 0 1 0 0 0 w 1 mod T T TrIm

Register/Memory by CL

I 1 1 0 1 00 1 w 1 mod T T T rIm

Register/Memory by Immediate Count

1 1 1 0 0 0 0 0 w 1 mod T T TrIm 8-bit data

T T T Instruction

000 ROL
001 ROR
010 RCL
011 RCR
100 SHLISAL
101 SHR
111 SAR

SHLD = Shift Left Double

Register/Memory by Immediate

100001111 110100100 mod reg rIm 8-bit data

Register/Memory by CL

100001111 1 1 0100101 mod reg rIm

68 Microprocessors and Instruction Sets- October 1990

SHRD = Shift Right Double

Register/Memory by Immediate

100001111 110101100 mod reg rIm 8-bit data

Register/Memory by CL

100001111 1 1 0101101 mod reg rIm

AND = And

Register to Register

1 001000dw mod reg rIm

Register to Memory

1 0010000w mod reg rIm

Memory to Register

1 0010001w mod reg rIm

Immediate to Register/Memory

1 1 0 0 0 0 0 s w 1 mod 1 0 0 rIm 8-, 16-, or 32-bit data

Immediate to Accumulator (Short Form)

1 00 1 00 1 0 w 1 8-, 16-, or 32-bit data

Microprocessors and Instruction Sets- October 1990 69

TEST == AND Function to Flagsj No Result

Register/Memory and Register

I 1 0 0 0 0 lOw I mod reg rIm

Immediate Data and Register/Memory

1 1 1 1 0 1 1 w mod 00 0 rIm 8-. 16-. or 32-bit data

Immediate Data and Accumulator (Short Form)

I 1 0 1 0 1 00 w I 8-. 16-. or 32-bit data

OR == Or

Register to Register

I 000010dw mod reg rIm

Register to Memory

I 0000100w mod reg rIm

Memory to Register

I 0000101w mod reg rIm

Immediate to Register/Memory

I 1 0 0 0 0 0 s w I mod 00 1 rIm 8-. 16-. or 32-bit data

Immediate to Accumulator (Short Form)

I 0000 1 lOw I 8-. 16-. or 32-bit data

70 Microprocessors and Instruction Sets - October 1990

XOR = Exclusive OR

Register to Register

I 0 0 1 1 00 d w mod reg rIm

Register to Memory

I 00 1 1 0 0 0 w mod reg rIm

Memory to Register

I 001 1 001 w mod reg rIm

Immediate to RegisterlMemory

I 1 000005 W I mod 1 1 0 rIm 8-, 16-, or 32-bit data

Immediate to Accumulator (Short Form)

I 0 0 1 1 0 lOw I 8-, 16-, or 32-bit data

NOT = Invert Register/Memory

I 1111011w I mod 0 1 0 rIm

String Manipulation

CMPS = Compare Byte Word

I 1010011w

INS = Input Byte/Word from OX Port

0110110w

Microprocessors and Instruction Sets- October 1990 71

LaDS == Load Byte/Word to AL/AX/EAX

11010110W

MOVS = Move Byte Word

1 1010010w

OUTS == Output Byte/Word to DX Port

10110111W

SCAS == Scan Byte Word

11010111W

STOS == Store Byte/Word from ALIAX/EX

1 1010101w

XLAT == Translate String

111010111

Repeated String Manipulation

Repeated by Count in CX or ECX

REPE CMPS == Compare String (Find Non-Match)

11110011 1010011w

72 Microprocessors and Instruction Sets - October 1990

REPNE CMPS = Compare String (Find Match)

111110010 11010011W

REP INS = Input String

111110010 10110110W

REP LODS = Load String

111110010 11010110W

REP MOVS = Move String

111110010 1 1010010w

REP OUTS = Output String

111110010 10110111W

REPE SCAS = Scan String (Find Non-AL/AX/EAX)

111110011 11010111W

REPNE SCAS = ,Scan String (Find AL/AX/EAX)

111110010 1 1 01011 1 W

REP STOS = Store String

11110010 1010101w

Microprocessors and Instruction Sets - October 1990 73

Bit Manipulation

BSF = Scan Bit Forward

100001111 110111100 mod reg rIm

BSR = Scan Bit Reverse

100001111 10111101 mod reg rIm

BT = Tesl BII

Register/Memory, Immediate

100001111 110111010 mod 1 00 rIm 8-bit data

Register/Memory, Register

100001111 110100011 mod reg rIm

BTC = Tesl BII and Complemenl

Register/Memory, Immediate

100001111 110111010 mod 111 rIm 8-bit data

Register/Memory, Register

100001111 110111011 mod reg rIm

BTR = Test Bit and Reset

Register/Memory, Immediate

100001111 110111010 mod 11 0 rIm 8-bit data

Register/Memory, Register

100001111 110110011 mod reg rIm

74 Microprocessors and Instruction Sets - October 1990

BTS = Test Bit and Set

Register/Memory, Immediate

100001111 110111010 mod 1 01 rIm 8-bit data

Register/Memory, Register

100001111 110101011 mod reg rIm

Control Transfer

CALL = Call

Direct within Segment

1 11 101000 full 16- or 32-bit displacement

Register/Memory Indirect within Segment

1 1 1 1 1 1 1 1 1 1 mod 0 1 0 rIm

Direct Intersegment

1 1 0 0 1 1 0 1 0 offset, selector

Indirect Intersegment

1 1 1 1 1 1 1 1 1 mod 0 1 1 rIm

JMP = Unconditional Jump

Short

1 1 1 1 0 1 0 1 1 8-bit disp.

Direct within Segment

1 1 1 1 0 1 0 0 1 1 full 16- or 32-bit displacement

Microprocessors and Instruction Sets- October 1990 75

Register/Memory Indirect within Segment

I 1 1 1 1 1 1 1 1 I mod 1 0 0 rIm

Direct Intersegment

I 1 1 1 0 1 0 1 0 offset, selector

Indirect Intersegment

I 1 1 1 1 1 1 1 1 I mod 1 0 1 rIm

RET = Return from Call

Within Segment

111000011

Within Segment Adding Immediate to SP

I 1 1 0000 1 0 I 16-bit displacement

Intersegment

111001011

Intersegment Adding Immediate to SP

I 1 1 00 1 0 1 0 I 16-bit displacement

Conditional Jumps

JO = Jump on Overflow

8-Bit Displacement

101110000 8-bit disp.

Full Displacement

100001111 10000000 full 16- or 32-bit displacement

76 Microprocessors and Instruction Sets- October 1990

JNO = Jump on Not Overflow

8-Bit Displacement

101110001 8-bit disp.

Full Displacement

100001111 10000001 full 16- or 32-bit displacement

JB/JNAE = Jump on Below/Not Above or Equal

8-Bit Displacement

101110010 8-bit disp.

Full Displacement

100001111 10000010 full 16- or 32-bit displacement

JNB/JAE = Jump on Not Below/Above or Equal

8-Bit Displacement

101110011 8-bit disp.

Full Displacement

100001111 10000011 full 16- or 32-bit displacement

JE/JZ = Jump on Equal/Zero

8-Bit Displacement

101110100 8-bit disp.

Full Displacement

100001111 10000100 full 16- or 32-bit displacement

Microprocessors and Instruction Sets - October 1990 77

JNE/JNZ = Jump on Not EquallNot Zero

8-Bit Displacement

101110101 8-bit di$p.

Full Displacement

100001111 10000101 full 16- or 32-bit displacement

JBE/JNA = Jump on Below or EquallNot Above

8-Bit Displacement

101110110 8-bit disp.

Full Displacement

100001111 10000110 full 16- or 32-bit displacement

JNBE/JA = Jump on Not Below or Equal/Above

8-Bit Displacement

101110111 8-bit disp.

Full Displacement

100001111 10000111 full 16- or 32-bit displacement

JS = Jump on Sign

8-Bit Displacement

101111000 8-bit disp.

Full Displacement

100001111 10001000 full 16- or 32-bit displacement

78 Microprocessors and Instruction Sets - October 1990

JNS = Jump on Not Sign

8-Bit Displacement

101111001 8-bit disp.

Full Displacement

100001111 10001001 full 16- or 32-bit displacement

JP/JPE = Jump on Parity/Parity Even

a-Bit Displacement

101111010 8-bit disp.

Full Displacement

100001111 10001010 full 16- or 32-bit displacement

JNP/JPO = Jump on Not Parity/Parity Odd

8-Bit Displacement

101111011 8-bit disp.

Full Displacement

100001111 10001011 full 16- or 32-bit displacement

JL/JNGE = Jump on Less/Not Greater or Equal

8-Bit Displacement

101111100 8-bit disp.

Full Displacement

100001111 10001100 full 16- or 32-bit displacement

Microprocessors and Instruction Sets - October 1990 79

JNL/JGE = Jump on Not Less/Greater or Equal

8-Bit Displacement

101111101 8-bit disp.

Full Displacement

100001111 10001101 full 16- or 32-bit displacement

JLE/JNG = Jump on Less or Equal/Not Greater

8-Bit Displacement

101111110 8-bit disp.

Full Displacement

100001111 10001110 full 16- or 32-bit displacement

JNLE/JG = Jump on Not Less or Equal/Greater

8-Bit Displacement

101111111 8-bit disp.

Full Displacement

100001111 10001111 full 16- or 32-bit displacement

JCXZ = Jump on CX Zero

11 11 00011 1 8-bit disp.

JECXZ = Jump on ECX Zero

111100011 1 8-bit disp.

Note: The operand size prefix differentiates JCXZ from JECXZ.

80 Microprocessors and Instruction Sets- October 1990

LOOP = Loop ex Times

111100010 1 a-bit disp.

LOOPZ/LOOPE = Loop with Zero/Equal

1 1 1 1 00001 1 8-bit disp.

LOOPNZ/LOOPNE = Loop while Not Zero

1 1 1 1 00000 1 8-bit disp.

Conditional Byte Set

SETO = Set Byte on Overflow

To Register/Memory

100001111 1 10010000 mod 00 0 rIm

SETNO = Set Byte on Not Overflow

To Register/Memory

100001111 110010001 1 mod 00 0 rIm

SETB/SETNAE = Set Byte on Below/Not Above or Equal

To Register/Memory

100001111 110010010 1 mod 00 0 rIm

SETNB = Set Byte on Not Below/Above or Equal

To Register/Memory

100001111 110010011 1 mod 00 0 rIm

SETE/SETZ = Set Byte on Equal/Zero

To Register/Memory

100001111 110010100 mod 000 rIm

Microprocessors and Instruction Sets - October 1990 81

SETNE/SETNZ = Set Byte on Not Equal/Not Zero

To Register/Memory

1 00001111 1 10010101 1 mod 000 rim

SETBE/SETNA = Set Byte on Below or Equal/Not Above

To Register/Memory

100001111 110010110 1 mod 000 rim

SETNBE/SETA = Set Byte on Not Below or Equal/Above

To Register/Memory

100001111 110010111 mod 000 rim

SETS = Set Byte on Sign

To Register/Memory

1 00001111 1 10011000 mod 000 rim

SETNS = Set Byte on Not Sign

To Register/Memory

100001111 110011001 mod 000 rim

SETP/SETPE = Set Byte on Parity/Parity Even

To Register/Memory

100001111 110011010 1 mod 000 rim

SETNP/SETPO = Set Byte on Not Parity/Parity Odd

To Register/Memory

100001111 110011011 1 mod 000 rim

SETL/SETNGE = Set Byte on Less/Not Greater or Equal

To Register/Memory

100001111 110011100 mod 000 rim

82 Microprocessors and Instruction Sets - October 1990

SETNLlSETGE .. Set Byte on Not Less/Greater or Equal

To Register/Memory

1 00001111 1 01111101 1 mod 000 rIm

SETLE/SETNG .. Set Byte on Less or Equal/Not Greater

To Register/Memory

100001111 110011110 1 mod 000 rIm

SETNLE/SETG = Set Byte on Not Less or Equal/Greater

To Register/Memory

100001111 110011111 mod 000 rIm

ENTER = Enter Procedure

1 11001000 1 16-bit displacement a-bit level

LEAVE = Leave Procedure

1 11001001

Interrupt Instructions

INT = Interrupt

Type Specified

111001101 type

Type 3

111001100

INTO = Interrupt 4 If Overflow Flag Set

11001110

Microprocessors and Instruction Sets- October 1990 83

BOUND = Interrupt 5 If Detect Value Out of Range

101100010 1 mod reg rIm

IRET = Interrupt Return

111001111

Processor Control

HLT = Halt

111110100

MOV = Move to and from Control/Debug/Test Registers

CRO/CR2/CR3 from Register

1 00001111 1 00100010 11 eee reg

Register from CRO-3

100001111 00100000 1 1 eee reg

OR0-3, ORS-7 from Register

100001111 100100011 11 eee reg

Register from ORO-3, OR6-7

100001111 100100001 11 eee reg

TRS-7 from Register

100001111 00100110 1 1 eee reg

Register from TR6-7

100001111 00100100 11 eee reg

NOP = No Operation

10010000

84 Microprocessors and Instruction Sets - October 1990

WAIT = Walt until BUSY Pin is Negated

110011011

Processor Extension

ESC = Processor Extension Escape

1 11011TTT 1 mod L L L rIm

Note: TTl and LLL bits are opcode information for the coprocessor.

Prefix Bytes

Address Size Prefix

101100111

Operand Size Prefix

101100110

LOCK = Bus Lock Prefix

111110000

Note: The use of LOCK is restricted to an exchange with memory, or
bit test and reset type of instruction.

Segment Override Prefix

cs:
100101110

os:
00111110

Microprocessors and Instruction Sets - October 1990 85

E5:

I 001001 1 0

F5:

101100100

G5:

101100101

55:

100110110

Protection Control

ARPL = Adjust Requested Privilege Level from Register/Memory

101100011 I mod reg rIm

LAR := Load Access Rights from Register/Memory

100001111 I 00000010 I mod reg rIm

LGDT := Load Global Descriptor Table Register

100001111 I 00000001 I mod 0 1 0 rIm

LlDT = Load Interrupt Descriptor Table Register

100001111 I 00000001 I mod 011 rIm

LLDT := Load Local Descriptor Table Register to Register/Memory

00001111 00000000 mod 0 1 0 rIm

86 Microprocessors and Instruction Sets - October 1990

.MSW = Load Machine Status Word from Register/Memory

o 0 0 0 1 1 1 1 I 0 0 0 0 0 0 0 1 I mod 1 1 0 rIm

LSL = Load Segment Limit from Register/Memory

00001111 I 00000011 I mod reg rIm

L TR = Load Task Register from Register/Memory

100001111 I 00000000 I mod 001 rIm

SGDT = Store Global Descriptor Table Register

100001111 I 00000001 I mod 000 rIm

SlOT = Store Interrupt Descriptor Table Register

I 0 0 0 0 1 1 1 1 I 0 0 0 0 0 0 0 1 I mod 00 1 rIm

SLOT = Store Local Descriptor Table Register to Register/Memory

I 000011 1 1 I 00000000 I mod 000 rIm

SMSW = Store Machine Status Word

100001111 I 00000001 I mod 1 00 rIm

STR = Store Task Register to Register/Memory

100001111 I 00000000 I mod 001 rIm

VERR = Verify Read Access; Register/Memory

00001111 00000000 mod 1 00 rIm

Microprocessors and Instruction Sets - October 1990 87

VERW = Verify Write Access

00001111 00000000 mod 1 0 1 rIm

88 Microprocessors and Instruction Sets - October 1990

Introduction to the 80387 Instruction Set

The 80387 instructions use many of the same fields defined earlier in
this section for the 80386 instructions. Additional fields used by the
80387 instructions are defined in the following figure.

Field Description Bit Information

escape 80386 Extension Escape Bit Pattern = 11011

MF Memory Format 00 = 32-bit Real
01 = 32-bit integer
10 = 64-bit Real
11 = 16-bit integer

ST(O) Current Stack Top
ST(i) ith register below the stack top

d Destination o = Destination is ST(O)
1 = Destination is ST(i)

P Pop 0= No pop
1 = Pop ST(O)

R Reverse' o = Destination (op) source
1 = Source (op) destination

, When d = 1. reverse the sense of R.

Figure 27. 80387 Encoding Field Summary

Within the 80387 Instruction Set:

• Temporary (Extended) Real is 80-bit Real.
• Long Integer is a 64-bit integer.

80387 Usage of the Scale-Index-Base Byte

The "mod r/m" byte of an 80387 instruction can be followed by a
scale-index-base (s-i-b) byte having the same address mode
definition as in the 80386 instruction. The mod field in the 80387
instruction is never equal to 11.

Instruction and Data Pointers

The parallel operation of the 80386 and 80387 may allow errors
detected by the 80387 to be reported after the 80386 has executed the
ESC instruction that caused the error. The 80386/80387 provides two
pointer registers to identify the failing numeric instruction. The
pointer registers supply the address of the failing numeric instruction
and the address of its numeric memory operand when applicable.

Microprocessors and Instruction Sets - October 1990 89

Although the pointer registers are located in the 80386, they appear to
be located in the 80387 because they are accessed by the ESC
instructions Fl.-DENV, FSTENV, FSAVE, and FRSTOR. Whenever the
80386 decodes a new ESC instruction, it saves the address of the
instruction along with any prefix bytes that may be present, the
address of the operand (if present), and the opcode.

The instruction and data pointers appear in one of four av@ilable
formats:

• 16~bit Real Mode/virtual 8086 Mode
• 32-bit Real Mode
• 16-bit Protected Mode
• 32-bit Protected Mode

The Real Mode formats are used whenever the 80386 is in the Real
Mode or Virtual 8086 Mode. The Protected Mode formats are used
when the 80386 is in the Protected Mode. The Operand Size Prefix
can also be used with the 80387 in~tructions. The operand size of the
80387 instruction determines whether the 16-bit or 32-bit format is
used.

Note: FSAVE and FRSTOR have an additional eight fields (10 bytes
per field) that contain the current contents of ST(O) through
ST(7). These fields follow the instruction and data pointer
image shown in the following figures.

The following figures show the instruction and data pointer image
format used in the various address modes. The ESC instructions
FLDENV, FSTENV, FSAVE, and FRSTOR are used to transfer these
values between the 80386/80387 registers and memory.

Bits

8 I 7

Control Word

Status Word

o I
o
2

o

Tag Word
e

4 t

Instruction Pointer (IP) Bits 15-0

IP Bits 19-16 I 0 I Opcode Bits 10-0

Operand Pointer (OP) Bits 15-0

OP Bits 19-16 I 0 I 0 0 0 0 0 0 0 0 0 0 0

6

8

A

C

Figure 28. Instruction and Pointer Image (16-8it Real Address Mode)

90 Microprocessors and Instruction Sets- October 1990

B
I
o
c
k

Bits

o I
Control Word

Status Word

Tag Word

Instruction Pointer Offset

CS Selector

Operand Offset

Operand Selector

Figure 29. Instruction and Pointer Image (16-Bit Protected Mode)

Bits

16115 8h o 1
Reserved Control Word

Reserved Status Word

Reserved Tag Word

Reserved IP Bits 15-0

00001 IP Bits 31-16 1 01 Opcode Bits 10-0

Reserved Operand Pointer Bits 15-0

o 0 0 0 I Operand Pointer Bits 31-16 1000000000000

o

o
2 s

e
4 t

6

8

A
B
I
o

C c
k

o
4

8

C

10

14

o

e

n

B
I
o

18 c
k

Figure 30. Instruction and Painter Image (32-Bit Real Address Mode)

Bits

16115 01

Reserved Control Word

Reserved Status Word

Reserved Tag Word

Instruction Pointer Offset

Reserved CS Selector

Data Operand Offset

Reserved Operand Selector

Figure 31. Instruction and Pointer Image (32-Bit Protected Mode)

o
4

8

C

10

14

o

s
e
t

n

B
I
o

18 c
k

Microprocessors and Instruction Sets - October 1990 91

New Instructions

Several new instructions are included in the 80387 instruction set that
are not available to the 80287 or 8087 Math Coprocessors. The new
instructions are:

FUCOM (Unordered Compare Real)
FUCOMP (Unordered Compare Real and Pop)
FUCOMPP (Unordered Compare Real and Pop Twice)
FPREM1 (IEEE Partial Remainder)
FSINE (Sine)
FCOS (Cosine)
FSINCOS (Sine and Cosine).

92 Microprocessors and Instruction Sets - October 1990

80387 Math Coprocessor Instruction Set

The following is an instruction set summary for the 80387
coprocessor. In the following, the bit pattern for escape is 11011.

Data Transfer

FLD = Load

Integer/Real Memory to ST(O)

I escape MF 1 I mod 000 rIm

Long Integer Memory to ST(O)

I escape 1 1 1 I mod 1 0 1 rIm

Temporary Real Memory to ST(O)

I escape 0 1 1 I mod 1 0 1 rIm

BCD Memory to ST(O)

I escape 1 1 1 I mod 1 00 rIm

ST(i) to ST(O)

I escape 001 11 000 ST(i)

FST = Store

ST(O) to Integer/Real Memory

I escape MF 1 I mod 0 1 0 rIm

ST(O) to ST(i)

I escape 1 01 1 101 0 ST(i)

FSTP = Store and Pop

ST(O) to Integer/Real Memory

I escape MF 1 I mod 0 1 1 rIm

ST(O) to Long Integer Memory

I escape 11 1 I mod 1 1 1 rIm

Microprocessors and Instruction Sets - October 1990 93

ST(O) to Temporary Real Memory

I escape 0 1 1 I mod 1 1 1 rIm

ST(O) to BCD Memory

I escape 1 1 1 I mod 1 1 0 rIm

ST(O) to ST(i)

I escape 1 0 1 1 1 0 1 1 ST(i)

FXCH = Exchange ST(I) and ST(O)

I escape 00 1 1 1 001 ST(i)

Comparison

FCOM = Compare

Integer/Real Memory to ST(O)

I escape MF 0 I mod 0 1 0 rIm

ST(i) to ST(O)

I escape 000 1 101 0 ST(i)

FCOMP = Compare and Pop

Integer/Real Memory to ST(O)

I escape MF 0 I mod 0 1 1 rIm

ST(i) to ST(O)

I escape 000 1 1011 ST(i)

FCOMPP = Compare ST(1) to ST(O) and Pop Twice

I escape 11 0 11011001

FUCOM = Unordered Compare Real

escape 1 0 1 1 11 00 ST(i)

94 Microprocessors and Instruction Sets - October 1990

FUCOMP = Unordered Compare Real and Pop

I escape 1 0 1 1 1 1 0 1 ST(i)

FUCOMPP = Unordered Compare Real and Pop Twice

I escape 010 11101001

FTST = Test ST(O)

I escape 001 11100100

FXAM = Examine ST(O)

I escape 001 11100101

Constants

FLOZ = Load +0.0 into ST(O)

I escape 001 11101110

FL01 = Load +1.0 Into ST(O)

I escape 0 01 11101000

FLOPI = Load n Into ST(O)

I escape 001 11101011

FLOL2T = Load log210 into ST(O)

I escape 001 11101001

FLOL2E = Load log2 e into ST(O)

escape 001 11101010

Microprocessors and Instruction Sets - October 1990 95

FLDLG2 = Load log10 2 into ST(O}

I escape 001 11101100

FLDLN2 = Load loge 2 Into ST(O}

I escape 001 11101101

Arithmetic

FADD = Addition

Integer/Real Memory with ST(O)

I escape MF 0 I mod 0 0 0 rIm

ST(i) and ST(O)

I escape d PO 1 1 000 ST(i)

FSUB = Subtraction

Integer/Real Memory with ST(O)

I escape MF 0 I mod lOR rIm

ST(i) and ST(O)

I escape d PO 1 1 lOR rIm

FMUL = Multiplication

Integer/Real Memory with ST(O)

I escape MF 0 I mod 0 0 1 rIm

ST(i) and ST(O)

I escape d PO 1 1 001 rIm

FDIV = Division

Integer/Real Memory with ST(O)

I escape MF 0 I mod 1 1 R rIm

96 Microprocessors and Instruction Sets - October 1990

ST(i) and 8T(0)

I escape d PO 1 1 1 1 R rIm

FSQRT = Square Root of ST(O)

I escape 00 1 11111010

FSCALE = Scale ST(O) by ST(1)

I escape 001 11111101

FPREM = Partial Remainder of ST(O) + ST(1)

I escape 001 11111000

FPREM1 = IEEE Partial Remainder

I escape 001 11110101

FRNDINT = Round ST(O) to Integer

I escape 00 1 11111100

FXTRACT = Extract Components of ST(O)

I escape 001 11110100

FABS = Absolute Value of ST(O)

I escape 001 11100001

FCHS = Change Sign of ST(O)

escape 001 11100000

Microprocessors and Instruction Sets - October 1990 97

Transcendental

FPTAN = Partial Tangent of ST(O)

I escape 001 11110010

FPATAN = Partial Arctangent of ST(1) + ST(O)

I escape 001 11110011

FSIN = Sine

I escape 001 11111110

FCOS = Cosine

I escape 001 11111111

FSINCOS = Sine and Cosine

I escape 001 11111011

F2XM1 = 2ST(O) ·1

I escape 001 11110000

FYL2X = ST(1) X Log2 [ST(O)]

I escape 0 0 1 11110001

FYL2XP1 = ST(1) X Log2 [ST(O) + 1]

I escape 001 11111001

Processor Control

FINIT = Initialize NPX

escape 011 11100011

98 Microprocessors and Instruction Sets - October 1990

FSTSW AX = Store Control Word

escape 1 11 11100000

FLDCW = Load Control Word

escape 0 0 1 mod 1 01 rIm

FSTCW = Store Control Word

escape 001 mod 111 rIm

FSTSW = Store Status Word

escape 1 0 1 mod 111 rIm

FCLEX = Clear Exceptions

escape 0 11 11100010

FSTENV = Store Environment

escape 001 mod 11 0 rIm

FLDENV = Load Environment

escape 001 mod 1 00 rIm

FSAVE = Save State

escape 1 0 1 mod 11 0 rIm

FRSTOR = Restore State

escape 1 01 mod 100 rIm

Microprocessors and Instruction Sets - October 1990 99

FINCSTP = Increment Stack Pointer

escape 001 11110111

FDECSTP = Decrement Stack Pointer

escape 001 11110110

FFREE = Free ST(i)

escape 101 1 1 000 STeil

FNOP = No Operation

escape 001 11010000

80486 Microprocessor Instruction Set

The 80486 microprocessor uses the same instruction set that the
80386 microprocessor and the 80387 Math Coprocessor. In addition,
the 80486 has six unique instructions that control cache operation:

• Byte Swap (BSWAP)
• Compare and. Exchange (CMPXCHG)
• Exchange-and-Add (XADD)
• Invalidate Data Cache (INVD)
• Invalidate TLBN Entry (INVLPG)
• Write-Back and Invalidate Data Cache (WBINVD).

BSWAP = Byte Swap

00001111 1 1001 reg

CMPXCHG = Compare and Exchange

Register 1, Register 2

I 00001111 I 1011000w 1 1 reg2 reg1

Memory, Register 2

I 00001111 1011000w mod reg2 mem

100 Microprocessors and Instruction Sets - October 1990

XADD = Exchange and Add

Register 1, Register 2

10 0 001111 1 1 100000W 1 1 reg2 reg1

Memory, Register 2

100001111 1100000w mod reg2 mem

INVD = Invalidate Data Cache

00001111 00001000

WBINVD = Write-Back and Invalidate Data Cache

00001111 00001001

INVLPG = Invalidate TLB Entry

00001111 00000001 mod 11 mem

Microprocessors and Instruction Sets - October 1990 101

Notes:

102 Microprocessors and Instruction Sets - October 1990

Direct Memory Access Controller (Type 1)

Description 1
DMA Controller Operations 2

Data Transfers between Memory and 1/0 Devices 2
Read Verifications 2

DMA 1/0 Address Map 3
Byte Pointer .. 4
DMA Registers 4

Memory Address Register 4
1/0 Address Register 5
Transfer Count Register 5
Temporary Holding Register 5
Mask Register 6
Mode Register 7
Extended Mode Register 7
Status Register 8
DMA Extended Function Register (Hex 0018) 8
Arbus Register 9

DMA Extended Operations 9
Extended Commands 10

© Copyright IBM Corp. 1990

II Direct Memory Access Controller (Type 1)- October 1990

Figures

1. DMA 1/0 Address Map 3
2. DMA Registers 4
3. Set/Clear Single Mask Bit Using 8237 Compatible Mode· . .. 6
4. DMA Mask Register Write Using 8237 Compatible Mode ... 6
5. 8237 Compatible Mode Register 7
6. Extended Mode Register 8
7. Status Register 8
8. DMA Extended Function Register (Hex 0018) 8
9. Arbus Register 9

10. DMA Extended Address Decode 9
11. DMA Extended Commands 10
12. DMA Channel 2 Programming Example, Extended

Commands 11

© Copyright IBM Corp. 1990 Iii

iv Direct Memory Access Controller (Type 1) - October 1990

Description

The Direct Memory Access (DMA) controller allows I/O devices to
transfer data directly to and from memory. This frees the system
microprocessor of 1/0 tasks, resulting in a higher throughput.

The DMA controller is software programmable. The system
microprocessor can address the DMA controller and read or modify
the internal registers to define the various DMA modes, transfer
addresses, transfer counts, channel masks, and page registers.

The functions of the DMA controller can be grouped into two
categories: program mode and DMA transfer mode.

In the program mode, the system microprocessor accesses the DMA
controller within the specific address range. These addresses are
identified in Figure 1 on page 3. In this mode, the DMA registers can
be read from or written to.

In the DMA mode, the DMA controller performs the data transfer. The
transfer is initiated when a DMA slave has won the arbitration bus
and the DMA controller has been programmed to service the winning
request in process. Data transfers can be a single-byte transfer, or
multiple-byte transfers (burst).

Deactivation of CD CHRDY by a device can extend accesses for slower
1/0 or memory devices.

The DMA controller supports the following:

• Register and program compatibility with the IBM Personal
Computer AT® DMA channels (8237 compatible mode)

• 16MB (MB equals 1,048,576 bytes) 24-bit address capability for
memory and 64KB (KB equals 1024 bytes) 16-bit address
capability for 1/0

• Eight independent DMA channels capable of transferring data
between memory and 1/0 devices

• DMA operation with a separate read and write cycle for each
transfer operation

• Channel programmable for byte or word transfer
• Extended operations:

Personal Computer AT is a registered trademark of the International Business
Machines Corporation.

Direct Memory Access Controller (Type 1) - October 1990 1

- Extended program control
- Extended Mode register

• 8- and 16-bit DMA slaves only
• Programmable arbitration levels for two channels.

DMA Controller Operations

The DMA controller does two types of operations:

• Data transfers between memory and 1/0 devices
• Read verifications.

Data Transfers between Memory and 1/0 Devices

The DMA controller performs serial transfers for all read and write
operations. These transfers can be between memory and I/O on any
channel. Data is read from a device and latched in the DMA
controller before it is written back to a second device. The memory
address needs to be specified only for a DMA data transfer. A
programmable 16-bit 1/0 address can be provided during the I/O
portion of the transfer as a programmable option. If the
programmable 16-bit 1/0 address is not selected, the 1/0 address is
forced to hex 0000 during the 1/0 transfer.

Read Verifications

The DMA controller can do a memory-read operation without a
transfer. The address and the count are updated, and the terminal
count is provided.

2 Direct Memory Access Controller (Type 1)- October 1990

DMA 1/0 Address Map

Address Bit Byte
(Hex) Description Description Pointer

I 0000 Channel 0, Memory Address Register 00-15 Used
0001 Channel 0, Transfer Count Register 00-15 Used
0002 Channel 1, Memory Address Register 00-15 Used
0003 Channel 1, Transfer Count Register 00-15 Used
0004 Channel 2, Memory Address Register 00-15 Used
0005 Channel 2, Transfer Count Register 00-15 Used
0006 Channel 3, Memory Address Register 00-15 Used
0007 Channel 3, Transfer Count Register 00-15 Used
0008 Channel 0-3, Status Register 00-07
OOOA Channel 0-3, Mask Register (Set/Reset) 00-02
OOOB Channel 0-3, Mode Register (Write) 00-07
OOOC Clear Byte Pointer (Write) N/A
0000 OMA Controller Reset (Write) N/A
OOOE Channel 0-3, Clear Mask Register (Write) N/A
OOOF Channel 0-3, Write Mask Register 00-03
0018 Extended Function Register (Write) 00-07
001A Extended Function Execute 00-07 Used·
0081 Channel 2, Page Table Address Register •• 00-07
0082 Channel 3, Page Table Address Register •• 00-07
0083 Channel 1, Page Table Address Register·· 00-07
0087 Channel 0, Page Table Address Register •• 00-07
0089 Channel 6, Page Table Address Register •• 00-07
008A Channel 7, Page Table Address Register •• 00-07
008B Channel 5, Page Table Address Register •• 00-07
008F Channel 4, Page Table Address Register •• 00-07
OOCO Channel 4, Memory Address Register 00-15 Used
00C2 Channel 4, Transfer Count Register 00-15 Used
00C4 Channel 5, Memory Address Register 00-15 Used
00C6 Channel 5, Transfer Count Register 00-15 Used
00C8 Channel 6, Memory Address Register 00-15 Used
OOCA Channel 6, Transfer Count Register 00-15 Used
OOCC Channel 7, Memory Address Register 00-15 Used
OOCE Channel 7, Transfer Count Register 00-15 Used
0000 Channel 4-7, Status Register 00-07
0004 Channel 4-7, Mask Register (Set/Reset) 00-02
0006 Channel 4-7, Mode Register (Write) 00-07
0008 Clear Byte POinter (Write) N/A
OOOA OMA Controller Reset (Write) N/A
OOOC Channel 4-7, Clear Mask Register (Write) N/A
OOOE Channel 4-7, Write Mask Register 00-03

Note: • Used only during extended functions, see "Extended Commands" on
page 10 .•• Upper byte of memory address register.

Figure 1. DMA I/O Address Map

Direct Memory Access Controller (Type 1) - October 1990 3

Byte Pointer

A byte pointer gives 8-bit ports access to consecutive bytes of
registers greater than 8 bits. For program 110, the registers that use
it are the Memory Address registers (3 bytes), the Transfer Count
registers (2 bytes), and the I/O Address registers (2 bytes). Interrupts
should be masked off while programming DMA controller operations.

DMA Registers

All system microprocessor access to the DMA controller must be 8-bit
I/O instructions. The following figure lists the names and sizes of the
DMA registers.

Register Size
(Bits)

Memory Address 24
110 Address 16
Transfer Count 16
Temporary Holding 16
Mask 4

Arbus 4

Mode 8
Status 8

Function 8
Refresh 9

Figure 2. DMA Registers

Memory Address Register

Quantity of
Registers

8
8
8
1
2

2

8
2

Allocation

1 per Channel
1 per Channel
1 per Channel
All Channels
1 for Channels 7 - 4
1 for Channels 3 - 0
1 for Channel 4
1 for Channel 0
1 per Channel
1 for Channels 7 - 4
1 for Channels 3 - 0
All Channels
Independent of DMA

Each channel has a 24-bit Memory Address register, which is loaded
by the system microprocessor. The Mode register determines
whether the address is incremented or decremented. The Mode
register can be read by the system microprocessor in successive I/O
byte operations. To read this register, the microprocessor must use
the extended DMA commands.

4 Direct Memory Access Controller (Type 1) - October 1990

1/0 Address Register

Each channel has a 16-bit 110 Address register, which is loaded by
the system microprocessor. The bits in this register do not change
during DMA transfers. This register can be read by the system
microprocessor in successive 110 byte operations. To read this
register, the microprocessor must use the extended DMA commands.

Typically, a DMA slave is selected for DMA transfers by a decode of
the arbitration level, status (-SO exclusively ORed with -51), and M/-IO.
In this case, the respective 110 address register must have a value of
O.

A DMA slave can be selected based on a decode of the address
rather than the arbitration level. In this case, the respective 110
address register must have the proper 110 address value.

Transfer Count Register

Each channel has a 16-bit Transfer Count register, which is loaded by
the system microprocessor. The transfer count determines how
many transfers the DMA channel will execute before reaching the
terminal count. The number of transfers is always 1 more than the
count specifies. If the count is 0, the DMA controller does one
transfer. This register can be read by the system microprocessor in
successive 110 byte operations. To read this register, the system
microprocessor can use only the extended DMA commands.

Temporary Holding Register

This 16-bit register holds the intermediate value for the serial DMA
transfer taking place. A DMA operation requires the data to be held
in the register before it is written back. This register is not accessible
by the system microprocessor.

Direct Memory Access Controller (Type 1)- October 1990 5

Mask Register

Bit Function

7 - 3 Reserved = 0
2 0 Clear Mask Bit

1 Set Mask Bit
1,0 00 Select Channel 0 or 4

01 Select Channel 1 or 5
10 Select Channel 2 or 6
11 Select Channel 3 or 7

Figure 3. Set/Clear Single Mask Bit Using 8237 Compatible Mode

Bit Function

7 - 4 Reserved = 0
3 0 Clear Channel 3 or 7 Mask Bit

1 Set Channel 3 or 7 Mask Bit
2 0 Clear Channel 2 or 6 Mask Bit

1 Set Channel 2 or 6 Mask Bit
o Clear Channel 1 or 5 Mask Bit
1 Set Channel 1 or 5 Mask Bit

o 0 Clear Channel 0 or 4 Mask Bit
1 Set Channel 0 or 4 Mask Bit

Figure 4. DMA Mask Register Write Using 8237 Compatible Mode

Each channel has a corresponding mask bit that, when set, disables
the DMA from servicing the requesting device. Each mask bit can be
set to 0 or 1 by the system microprocessor. A system reset or DMA
Controller Reset command sets all mask bits to 1. A Clear Mask
Register command sets mask bits 0 - 3 or mask bits 4 - 7 to O.

When a device requesting DMA cycles wins the arbitration cycle, and
the mask bit is set to 1 on the corresponding channel, the DMA
controller does not execute any cycles in its behalf and allows
external devices to provide the transfer. If no device responds, the
bus times out and causes a nonmaskable interrupt (NMI). This
register can be programmed using th~ 8237 compatible mode
commands (llsed by the IBM Personal Computer AT) or the extended
DMA commands.

6 Direct Memory Access Controller (Type 1)- October 1990

Mode Register

The Mode register for each channel identifies the type of operation
that takes place when that channel transfers data.

Bit Function

7,6 Reserved = 0
5,4 Reserved = 0
3, 2 00 Verify Operation

01 Write Operation
10 Read Operation
11 Reserved

1,0 Channel Accessed
00 Select Channel 0 or 4
01 Select Channell or 5
10 Select Channel 2 or 6
11 Select Channel 3 or 7

Figure 5. 8237 Compatible Mode Register

The Mode register is programmed by the system microprocessor, and
its contents are reformatted and stored internally in the DMA
controller. In the 8237 compatible mode, this register can only be
written.

Extended Mode Register

Besides the 8237 compatible mode, all channels support an 8-bit
Extended Mode register. The Extended Mode register can be
programmed and read by the system microprocessor.

The DMA controller supports an Extended Mode register for each
channel that can be programmed and read by the system
microprocessor. This register is used whenever a DMA channel
requests a DMA data transfer.

The DMA channel must be programmed to match the transfer size of
the DMA slave on the channel. Bit 6 of this register is used to
program the size of the DMA transfer.

Direct Memory Access Controller (Type 1) - October 1990 7

Bit

7
6

5
4
3

2

1
o

Function

Reserved = 0
o = 8-Bit Transfer
1 = 16-Bit Transfer
Reserved = 0
Reserved = 0
o = Read Memory Transfer
1 = Write Memory Transfer
o = Read Verifications Operation
1 = Data Transfer Operation
Reserved = 0
o = 110 Address equals OOOOH
1 = Use programmed 1/0 Address

Figure 6. Extended Mode Register

Status Register

The Status register, which can be read by the system microprocessor,
contains information about the status of the devices. This information
tells which channels have reached the terminal count and which
channels have requested the bus since the last time the register was
read.

Bit

7
6
5
4
3
2
1
o

Function

Channel 3 or 7 Request
Channel 2 or 6 Request
Channel 1 or 5 Request
Channel 0 or 4 Request
TC on Channel 3 or 7
TC on Channel 2 or 6
TC on Channel 1 or 5
TC on Channel 0 or 4

Figure 7. Status Register

Bits 3 through 0 in each Status register are set every time a terminal
count is reached by a corresponding channel. Bits 7 through 4 are
set when a corresponding arbitration level has controlled the bus. All
bits are cleared by a system reset or following a system
microprocessor Status Read command. This register can be read
using the 8237 commands or extended DMA commands.

DMA Extended Function Register (Hex 0018)

This 8-bit register minimizes I/O address requirements and provides
the extended program functions. The system microprocessor loads
this register using I/O write operations. See "Extended Commands"
on page 10 for more information.

8 Direct Memory Access Controller (Type 1)- October 1990

Bit Function

7 - 4 Program Command (OMA Extended Commands)
3 Reserved = 0
2 - 0 Channel Number (0 through 7)

Figure 8. DMA Extended Function Register (Hex 0018)

Arbus Register

This register is used for virtual OMA operations.

Bit Function

7 - 4 Reserved
3 - 0 Arbitration Level

Figure 9. Arbus Register

Virtual OMA channel operation permits programming of the
arbitration level assignment for channels 0 and 4 using the two 4-bit
Arbus registers. These registers enable the system microprocessor
to dynamically reassign the arbitration 10 value by which the OMA
controller responds to bus arbitration for OMA requests. This allows
channels 0 and 4 to service devices at any arbitration level. The
value of arbitration level hex F is reserved.

DMA Extended Operations

The function register supports an extended set of commands for the
OMA channels. The extended command hex 8 programs the Arbus
registers; the upper 4 bits of the Extended Function register are set to
a value of 8 to select the Arbus register, and the lower 4 bits are set
to the channel number (0 or 4). If channel 0 = 1 - 3 or 5 - 7 then
channel 0 is active; if channel 0 = 4 then channel 0 is inactive. The
system microprocessor uses the following addresses to gain control
of the internal OMA registers.

1/0 Address
(Hex)

0018
0019
001A
0016

Command

Write Extended Function Register
Reserved
Execute Extended Function Register
Reserved

Figure 10. DMA Extended Address Decode

Direct Memory Access Controller (Type 1) - October 1990 9

The system microprocessor uses the following steps to write to or
read from any of the DMA internal registers:

1. Write to the Extended Function register by executing an 1/0 Write
instruction to address hex 0018, with the proper data to indicate
the function and the channel number. The internal byte pointer is
always reset to 0 when an 1/0 write to address hex 0018 is
detected.

2. Execute the Extended Function command by doing an I/O Read or
I/O Write instruction to address hex 001A. The byte pointer
automatically increments and points to the next byte each time
port address hex 001A is used. This step is not required for
Direct commands because they are executed when the Out
command to address hex 0018 is detected.

Extended Commands

The following figure shows the available extended command set
contained in the Extended Function register.

ReglsterslBlts Accessed

I/O Address Register
Reserved
Memory Address Register Write
Memory Address Register Read
Transfer Count Register Write
Transfer Count Register Read
Status Register Read
Mode Register
Arbus Register
Mask Register Set Single Bit ••
Mask Register Reset Single Bit ••
Reserved
Reserved
Master Clear ••
Reserved
Reserved

Bits

00-15

00-23
00-23
00-15
00-15
00-07
00-07
00-07

Extended
Command
(Hex) Byte
(7-4 *) Pointer

o
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Used

Used
Used
Used
Used

Note: • Bits 7-4 of the Extended Function Register .•• Direct commands to the
Extended Function register

Figure 11. DMA Extended Commands

10 Direct Memory Access Controller (Type 1) - October 1990

fhe following is an example showing the programming of DMA
~hannel 2 using the 8237 compatible mode and the extended mode.
In this example, to perform each step, write the data indicated to the
~orresponding addresses.

Program Step

Set Channel Mask Bit
Clear Byte Pointer
Write Memory Address
Write Page Table Address
Clear Byte Pointer
Write Register Count
Write Register Count
Write Mode Register

Clear Channel 2 Mask Bit

Note: x's represent data.

8237 Compatible
Mode
Address/Data

(OOOAH) x6H
(OOOCH) xxH
(0004H) xxH
(0081H) xxH
(OOOCH) xxH
(0005H) xxH
(0005H) xxH
(OOOBH) xxH

(OOOAH) x2H

Extended Mode
Address/Data

(0018H) 92H
(0018H) 22H
(OOlAH) xxH
(OOlAH) xxH
(0018H) 42H
(OOlAH) xxH
(OOlAH) xxH
(0018H) 72H
(OOlAH) xxH
(0018H) A2H

Figure 12. DMA Channel 2 Programming Example, Extended Commands

Direct Memory Access Controller (Type 1)- October 1990 11

Interrupt Controller

Description 1
Interrupt Assignments 1
Interrupt Sharing 2
Interrupt Controller Registers 2
Interrupt Request Register and In-Service Register 3
Interrupt Mask Register 3
Initialization Command Registers and Operation Command

Registers 3
Modes of Operation .. 4

Fully-Nested Mode 4
Special Fully-Nested Mode 5
Automatic Rotation Mode 6
Specific Rotation Mode 6
Special Mask Mode 7
Poll Mode 8
Level-Sensitive Mode 8

Programming the Interrupt Controller 8
Initialization Command Byte 1 9
Initialization Command Byte 2 .. 9
Initialization Command Byte 3 10
Initialization Command Byte 4 10
Operation Command Byte 1 11
Operation Command Byte 2 11
Operation Command Byte 3 12

© Copyright IBM Corp. 1990

iI Interrupt Controller- October 1990

Figures

1. Interrupt Level Assignments by Priority 1
2. Automatic Rotation Mode 6
3. Specific Rotation Mode when IRQ5 Has the Lowest Priority . 7
4. Poll Mode Status Byte 8
5. Initialization Command Byte 1 9
6. Initialization Command Byte 2 10
7. Initialization Command Byte 3 10
8. Initialization Command Byte 4 10
9. Operation Command Byte 1 11

10. Operation Command Byte 2 11
11. Operation Command Byte 2 (Bits 7 - 5) 12
12. Operation Command Byte 2 (Bits 2 - 0) 12
13. Operation Command Byte 3 12
14. Operation Command Byte 3 (Bits 6 and 5) 12
15. Operation Command Byte 3 (Bits 1 and 0) 13

© Copyright IBM Corp. 1990 Iii

iv Interrupt Controller- October 1990

Description

The system provides 16 levels of hardware interrupts. Any interrupt
can be masked, including the nonmaskable interrupt (NMI). The
interrupt controller must be initialized to the level-sensitive mode; the
edge-triggered mode is not supported. Attempts to set the controller
to the edge-triggered mode will result in level-sensitive operation.
For more information on nonmaskable interrupt, see the
system-specific technical references.

Interrupt Assignments

The following figure shows the interrupt assignments, interrupt
levels, and their functions. The interrupt levels are listed by order of
priority, from highest (NMI) to lowest (IRQ 7). See system-specific
technical references for masking interrupts.

Level

NMI
IRQO
IRQ 1
IRQ 2

Master Function

Channel Check·
Timer
Keyboard
Cascade Interrupt Control-

IRQ 3 Serial Alternate
IRQ 4 Serial Primary
IRQ 5 Reserved
IRQ 6 Diskette
IRQ 7 Parallel Port
IRQ 8 through 15 are cascaded through IRQ 2

Level

IRQ8
IRQ9
IRQ 10
IRQ 11
IRQ 12
IRQ 13

IRQ 14
IRQ 15

Slave Function

Real Time Clock
Redirect Cascade
Reserved
Reserved
Auxiliary Device
Math Coprocessor
Exception
Fixed Disk
Reserved

Note: • For channel check and other system specific functions, refer to the
system-specific technical references.

Figure 1. Interrupt Level Assignments by Priority

Interrupt Controller (Type 1)- October 1990 1

Interrupt Sharing

Hardware interrupt IRQ9 is defined as the replacement interrupt level
for the cascade level IRQ2. Program interrupt sharing should be
implemented on IRQ2, interrupt hex OA. The following processing
occurs to maintain compatibility with the IRQ2 used by IBM Personal
Computer products:

1. A device drives the interrupt request active on IRQ2 of the
channel.

2. This interrupt request is mapped in hardware to IRQ9 input on the
slave interrupt controller.

3. When the interrupt occurs, the system microprocessor passes
control to the IRQ9 (interrupt hex 71) interrupt handler.

4. The interrupt handler performs an end-of-interrupt (EOI) to the
slave interrupt controller and passes control to the IRQ2
(interrupt hex OA) interrupt handler.

5. The IRQ2 interrupt handler, when handling the interrupt, causes
the device to reset the interrupt request prior to performing an
EOI to the master interrupt controller that finishes servicing the
IRQ2 request.

Note: Prior to the programming of the interrupt controllers,
interrupts should be disabled with a CLI instruction. This
includes the Mask register, EOls, initialization command
bytes, and operation command bytes.

Interrupt Controller Registers

The interrupt controller contains the following registers:

• Interrupt Request register
• In-Service register
• Interrupt Mask register
• Initialization Command registers
• Operation Command registers.

2 Interrupt Controller (Type 1) - October 1990

Interrupt Request Register and In-Service
Register

These registers handle incoming interrupt requests. The Interrupt
Request register stores all interrupt levels requesting service. The
In-Service register stores all interrupt levels currently being serviced.
A priority resolver prioritizes the bits in the Interrupt Request register
and strobes the bit with the highest priority into the corresponding bit
of the In-Service register.

Both registers can be read by issuing a Read Register command
through Operation Command Byte 3, and then reading port hex 0020
or OOAO. The controller keeps track of the last register selected;
therefore, subsequent reads of the same register do not require
another Operation Command Byte 3 to be written. See "Operation
Command Byte 3" on page 12 for more information.

Note: After initialization, the controller is set to read the Interrupt
Request register.

Interrupt Mask Register

The Interrupt Mask register contains bits that mask each of the
interrupt request lines of the Interrupt Request register. Lower
priority levels are not affected when a higher priority level is masked.

The contents of this register are placed on the output data bus when
-READ is active and port hex 0021 or OOA 1 is accessed.

Initialization Command Registers and Operation
Command Registers

These registers store commands from the system microprocessor
that define initialization parameters and operating modes. See
"Programming the Interrupt Controller" on page 8 for more
information.

Interrupt Controller (Type 1) - October 1990 3

Modes of Operation

The interrupt controller can be programmed to operate in a variety of
modes through the Initialization Command bytes and the Operation
Command bytes.

Fully-Nested Mode

In the fully-nested mode, interrupts are prioritized from 0 (highest
priority) to 7 (lowest priority). This mode is automatically entered
after initialization unless another mode has been defined.

Note: The priorities can be changed by rotating the priorities through
Operation Command Byte 2.

A typical interrupt request occurs in the following manner:

1. One or more 'interrupt request' lines are set active, causing the
corresponding bits in the Interrupt Request register to be set to 1.

2. The interrupt controller evaluates the requests and sends an
interrupt to the system microprocessor, if appropriate.

3. The system microprocessor responds with an 'interrupt
acknowledge' pulse to the interrupt controller.

4. The controller prioritizes the unmasked bits in the Interrupt
Request register and strobes the bit with the highest priority into
the corresponding bit of the In-Service register. No data is sent
to the system microprocessor.

Note: If an interrupt request is not present (for example, the
duration of the request was too short), the interrupt
controller issues an interrupt 7.

5. The system microprocessor sends a second 'interrupt
acknowledge' pulse to the interrupt controller.

6. The interrupt controller responds by releasing the interrupt vector
on the data bus, where it is read by the system microprocessor.

7. The highest priority in-service bit remains set to 1 until the proper
End of Interrupt command is issued by the interrupt subroutine. If
the source of the interrupt request is the slave interrupt
controller, the End of Interrupt command must be issued twice,
once for the master and once for the slave. When the in-service
bit is set to 1, all other interrupts with the same or lower priority
are inhibited; interrupts with a higher priority cause an interrupt,
but the interrupt is acknowledged only if the

4 Interrupt Controller (Type 1) - October 1990

system-microprocessor interrupt input has been re-enabled by
software.

The End of Interrupt command has two forms, specific and
nonspecific. The controller responds to a nonspecific End of Interrupt
command by resetting the highest in-service bit of those set. In a
mode that uses a fully-nested interrupt structure, the highest
in-service bit set is the level that was just acknowledged and
serviced. In a mode that can use other than the fully-nested interrupt
structure, a specific End of Interrupt command is required to define
which in-service bit to reset.

Note: An in-service bit masked by an Interrupt Mask register bit
cannot be reset by a nonspecific End of Interrupt command
when in the special mask mode. See "Special Mask Mode" on
page 7 for more information.

Special Fully-Nested Mode

The special fully-nested mode is used when the priority in the slave
interrupt controller must be preserved. This mode is similar to the
normal nested mode with the following exceptions:

• When the slave's interrupt request is in service, the slave can still
generate additional interrupt requests of a higher priority that are
recognized by the master, and initiate interrupts to the system
microprocessor.

• Upon completion of the interrupt service routine, software must
send a nonspecific End of Interrupt command to the slave and
read the slave's In-Service register to ensure that the interrupt
just serviced was the only one generated by the slave. If the
register is not empty, additional interrupts are pending, and an
End of Interrupt command must not be sent to the master. If the
register is empty, a nonspecific End of Interrupt command can be
sent to the master.

The special fully-nested mode is selected through Initialization
Command Byte 4. See "Initialization Command Byte 4" on page 10
for more information.

Interrupt Controller (Type 1) - October 1990 5

Automatic Rotation Mode

The automatic rotation mode accommodates multiple devices having
the same interrupt priority. After a device is serviced, it is assigned
the lowest priority and must wait until all other devices requesting an
interrupt are serviced once before the first device is serviced again.

The following example shows the status and priorities of the
In-Service register bits before and after bit 4 of the Interrupt-Request
register is serviced by a Rotation on Nonspecific End of Interrupt
command.

In-Service Status Priority Status Priority
Register Bits before before Rotate alter Service alter

Service Rotate

7 0 7 (Lowest) 0 2
6 1 (Pending) 6 1 (Pending) 1
5 0 5 0 0

(Highest)
4 1 (Pending) 4 o (Serviced) 7

(Lowest)
3 0 3 0 6
2 0 2 0 5
1 0 1 0 4
0 0 o (Highest) 0 3

Figure 2. Automatic Rotation Mode

The automatic rotation mode is selected by issuing a Rotation on
Nonspecific End of Interrupt command through Operation Command
Byte 2. See "Operation Command Byte 2" on page 11 for more
information.

Specific Rotation Mode

The specific rotation mode allows the application programs to change
the priority levels by assigning the lowest priority to a specific
interrupt level. Once the lowest-level priority is selected, all other
priority levels change. The following example compares the
normal-nested mode to the specific rotation mode with bit 5 of the
Interrupt Request register set to the lowest priority.

6 Interrupt Controller (Type 1) - October 1990

Interrupt
Request
Register Bits

7
6
5
4
3
2
1
o

Nested Mode
Priority Level

7 (Lowest)
6
5
4
3
2
1
o (Highest)

Specific Rotation Mode
Priority Level

1
o (Highest)
7 (Lowest)
6
5
4
3
2

Figure 3. Specific Rotation Mode when IRQ5 Has the Lowest Priority

The specific rotation mode is selected by issuing a Rotate on Specific
End of Interrupt command or a Set Priority command through
Operation Command Byte 2. See "Operation Command Byte 2" on
page 11 for more information.

Special Mask Mode

The special mask mode allows application programs to selectively
enable and disable any interrupt or combination of interrupts at any
time during its execution. The special mask mode is selected through
Operation Command Byte 3. Once the controller is in the special
mask mode, setting a bit in Operation Command Byte 1 sets a
corresponding bit in the Interrupt Mask register. Each bit set in the
Interrupt Mask register masks the corresponding interrupt channel.
Interrupt channels above and below a masked channel are not
affected. See "Operation Command Byte 1" on page 11 and
"Operation Command Byte 3" on page 12 for more information.

Interrupt Controller (Type 1) - October 1990 7

Poll Mode

Before the poll mode can be used, a CLI instruction must be issued to
disable the system-microprocessor interrupt input. Devices are
serviced by software issuing a Poll command through Operation
Command Byte 3. The first 'read' pulse following a Poll command is
interpreted by the controller as an 'interrupt acknowledge' pulse; the
controller sets the appropriate in-service bit and reads the priority
level. The byte placed on the data bus during a 'read' pulse is shown
in the following figure.

Bit Function

7 Interrupt Present
6-3 Undefined
2-0 Highest Priority Level

Figure 4. Poll Mode Status Byte

Bit 7 This bit is set to 1 if an interrupt is present.

Bits 6 - 3 These bits are not used and may be set to either 0 or 1.

Bits 2 - 0 These bits contain the binary code of the highest priority
level requesting service.

Level-Sensitive Mode

The interrupt controller cannot be placed in the edge-triggered mode.
In the level-sensitive mode, interrupt requests are recognized by a
high level on the interrupt-request input. Interrupt requests must be
removed before the End of Interrupt command is issued to prevent a
second interrupt from occurring.

Programming the Interrupt Controller

Before the system can be used, the interrupt controller must be
programmed with four sequential initialization commands. When a
command is issued to a master at port hex 0020 (or a slave at port
hex OOAO) with bit 4 set to 1, the command is recognized as
Initialization Command Byte 1. Initialization Command Byte 1 is the
first of four initialization commands required to program the interrupt
controller. The following events occur during the initialization
sequence:

8 Interrupt Controller (Type 1) - October 1990

1. The level sense circuit is set to the level-sensitive mode.
(Following the initialization procedure, interrupts are generated
by a high level on the interrupt-request input.)

2. The Interrupt Mask register is cleared.

3. IRQ7 is assigned priority 7.

4. The slave mode address is set to 7.

5. The special mask mode is cleared and the controller is set to
read the Interrupt Request register.

Once the interrupt controller is programmed by the initialization
command bytes, the controller can be programmed by the operation
command bytes to operate in other modes.

Note: The master interrupt controller must be initialized before the
slave interrupt controller. Failure to do so will cause
unexpected results.

Initialization Command Byte 1

This is the first byte of the 4-byte initialization command sequence.
This byte is issued to either the master (port hex 0020) or the slave
(port hex OOAO).

Bit Function

7 - 5 Reserved - Must be set to O.
4 Initialization Command Byte 1 Identifier - Must be set to 1.
3 Level-Sensitive Mode - Must be set to 1.
2 Call Address Interval of 8 - Must be set to O.
1 Cascade Mode - Must be set to O.
o 4-byte Initialization Command Sequence - Must be set to

1.

Figure 5. Initialization Command Byte 1

Initialization Command Byte 2

This byte defines the address of the interrupt vector. Bits 7 through 3
define the five high-order bits of the interrupt vector address. Bits 2
through 0 are initialized to 0 and replaced by the hardware interrupt
level when an interrupt occurs. This byte is issued to either the
master (port hex 0021) or the slave (port hex 00A1).

Interrupt Controller (Type 1) - October 1990 9

Bit Function

7 - 3 Bits 7 - 3 of the Interrupt Vector Address
2 - 0 Initialized to 0

Figure 6. Initialization Command Byte 2

Initialization Command Byte 3

This byte loads a value into an 8-bit slave register.

• In the master device mode, this byte has a value of hex 04 to
identify interrupt 02 as a slave providing the input request.

• In the slave device mode, this byte has a value of hex 02 to tell
the slave that it is using hardware interrupt 02 to communicate
with the master. The slave compares this value to the cascade
input; if they are equal, the slave releases the interrupt vector
address on the data bus.

This byte is issued to either the master (port hex 0021) or the slave
(port hex 00A1).

Bit Master
Function

7-3 0
2 1
1 0
0 0

I Figure 7. Initialization Command Byte 3

Initialization Command Byte 4

Slave
Function

o
o
1
o

This byte is issued to either the master (port hex 0021) or the slave
(port hex 00A1).

Bit Function

7 - 5 Reserved - Must be set to O.
4 Special Fully-Nested Mode
3. 2 Reserved - Must be set to O.
1 Normal End of Interrupt - Must be set to O.
o 80286/80386 Microprocessor Mode - Must be set to 1.

Figure 8. Initialization Command Byte 4

10 Interrupt Controller (Type 1) - October 1990

Operation Command Byte 1

This byte controls the individual bits in the Interrupt Mask register.

This byte is issued to either the master (port hex 0021) or the slave
(port hex 00A1).

Bit Function

7 - 0 Interrupt Mask Bits 7 - 0

Figure 9. Operation Command Byte 1

Bits 7 - 0 When set to 1, these bits inhibit their respective interrupt
request input signals.

Operation Command Byte 2

This byte controls the interrupt priority and End of Interrupt
command.

This byte is issued to either a master (port hex 0020) or a slave (port
hex OOAO).

Bit Function

7 Rotate Mode
6 Set Interrupt Level
5 End of Interrupt Mode
4. 3 Reserved - Must be set to 0
2 - 0 Interrupt Level (When bit 6 = 1)

Figure 10. Operation Command Byte 2

Bits 7 - 5 These bits define the rotate mode, end of interrupt mode,
or a combination of the two, as shown in Figure 11 on
page 12.

Interrupt Controller (Type 1) - October 1990 11

Bit 7 Bit 6 Bit 5 Function

0 0 0 Reserved
0 0 1 Nonspecific End of Interrupt Command
0 1 0 No Operation
0 1 1 Specific End of Interrupt Command'
1 0 0 Reserved
1 0 1 Rotate on Nonspecific End of Interrupt Command
1 1 0 Set Priority Command"
1 1 1 Rotate on Specific End of Interrupt Command"

Note: 'Bits 0, 1, and 2 are the binary level of the in-service bit to be reset. •• Bits
0, 1, and 2 are the binary level of the lowest-priority device.

Figure 11. Operation Command Byte 2 (Bits 7 - 5)

Bits 4,3

Bits 2·0

These bits are reserved and must be set to o.
These bits define the hardware interrupt level to be acted
upon when bit 6 is set to 1.

Bit 2 Bit 1 Bit 0 Function

o
o
o
o
1
1
1
1

o
o
1
1
o
o
1
1

o
1
o
1
o
1
o
1

Interrupt Level 0
Interrupt Levell
Interrupt Level 2
Interrupt Level 3
Interrupt Level 4
Interrupt Level 5
Interrupt Level 6
Interrupt Level 7

Figure 12. Operation Command Byte 2 (Bits 2 - 0)

Operation Command Byte 3

This byte is issued to either a master (port hex 0020) or a slave (port
hex OOAO).

Bit

7
6,5
4
3
2
1,0

Function

Reserved - Must be set to O.
Special Mask Mode Bits
Reserved - Must be set to O.
Reserved - Must be set to 1.
Poll Command
Read Register Command

Figure 13. Operation Command Byte 3

Bit 7 This bit is reserved and must be set to O.

Bits 6, 5 These bits enable the special mask mode, as shown in the
following figure.

12 Interrupt Controller (Type 1)- October 1990

BitS BitS Function

0 0 No Action
0 1 No Action
1 0 Normal Mask Mode
1 1 Special Mask Mode

Figure 14. Operation Command Byte 3 (Bits 6 and 5)

Bit 4 This bit is reserved and must be set to O.

Bit 3 This bit is reserved and must be set to 1.

Bit 2 When set to 1, this bit sets the Poll command.

Bits 1,0 These bits determine the register to be read on the next
'read' pulse, as shown in the following figure.

Bit 1 Bit 0 Function

0 0 No Action
0 1 No Action
1 0 Read Interrupt Request Register
1 1 Read In-Service Register

Figure 15. Operation Command Byte 3 (Bits 1 and 0)

Interrupt Controller (Type 1) - October 1990 13

Notes:

14 Interrupt Controller (Type 1)- October 1990

System Timers (Type 1)

Description 1
Channel 0 - System Timer 2
Channel 2 - Tone Generation for Speaker 2
Channel 3 - Watchdog Timer 4
Counters 0, 2, and 3 .. 5
Programming the System Timers 5
Counter Write Operations 5
Counter Read Operations 5

Registers 6
Count Register - Channel 0 (Hex 0040) 6
Count Register - Channel 2 (Hex 0042) 6
Control Byte Register - Channel 0 or 2 (Hex 0043) 7
Count Register - Channel 3 (Hex 0044) 9
Control Byte Register - Channel 3 (Hex 0047) 9

Counter Latch Command 10
System Timer Modes .. 11

Mode 0 - Interrupt on Terminal Count 11
Mode 1 - Hardware Retriggerable One-Shot 12
Mode 2 - Rate Generator 13
Mode 3 - Square Wave 13
Mode 4 - Software Retriggerable Strobe 15
Mode 5 - Hardware Retriggerable Strobe 16

Operations Common to All Modes 17

© Copyright IBM Corp. 1990

Ii System Timers (Type 1) - October 1990

Figures

1. Counters 1
2. Audio Subsystem Block Diagram 3
3. System Timer/Counter Registers 6
4. Select Counter Bits, Port Hex 0043 7
5. Read/Write Counter Bits, Port Hex 0043 7
6. Counter Mode Bits, Port Hex 0043 8
7. Select Counter, Port Hex 0047 9
8. Read/Write Counter, Port Hex 0047 9
9. Counter Latch Command 10

10. Minimum and Maximum Initial Counts, Counters 0, 2 17

© Copyright IBM Corp. 1990 iii

iv System Timers (Type 1)- October 1990

Description

The system has three programmable timers/counters: Channel 0 is
the System Timer, Channel 2 is the Tone Generator for the speaker,
and Channel 3 is the Watchdog Timer. Channel 0 and Channel 2 are
similar to Channel 0 and Channel 2 of the IBM Personal Computer,
IBM Personal Computer XTTM, and the IBM Personal Computer AT®.
Channel 3 does not have a counterpart in earlier IBM personal
computer systems. The following is a block diagram of the counters.

ClK -----------I~

GATE ---------~

Figure 1.

Control
Byte

Register

Count
Register

(CR)
MSB

Count
Register

(CR)
lSB

Counters

Control
logic

Counting
Element

(CE)

~-------'OUT

Output
latch
(Ol)
MSB

Output
latch
(Ol)
lSB

Personal Computer XT is a trademark of the International Business Machines
Corporation.

Personal Computer AT is a registered trademark of the International Business
Machines Corporation.

System Timers (Type 1) - October 1990 1

Channel 0 - System Timer

• GATE 0 is always enabled.

• ClK IN 0 is driven by a 1.193 MHz signal.

• ClK OUT 0 indirectly drives the 'interrupt request 0' signal (IRQ
0).

IRQ 0 is driven by a latch that is set by the rising edge of the
'clock out 0' signal (ClK OUT 0). The latch can be cleared by a
system reset, an interrupt acknowledgment cycle with a vector of
hex 08, or an 1/0 write to System Control Port B (hex 0061) setting
bit 7 to 1.

Signals derived from ClK OUT 0 are used to gate and clock
Channel 3.

Channel 2 - Tone Generation for Speaker

• GATE 2 is controlled by bit 0 of port hex 0061.

• ClK IN 2 is driven by a 1.193 MHz signal.

• ClK OUT 2 has two connections. One is to input port hex 0061,
bit 5. ClK OUT 2 is also logically ANDed with port hex 0061, bit 1
(speaker data enable). The output of the AND gate drives the
'audio sum node' signal.

2 System Timers (Type 1)- October 1990

The audio subsystem is a speaker driven by a linear amplifier. The
linear amplifier input node can be driven from the following sources:

• System-timer Channel 2 when enabled using bit 1 of 1/0 port hex
0061 set to 1. (For information about system timer Channel 2 see
"Description" on page 1.)

• The system channel using the 'audio sum node' signal.

The following block diagram shows the audio subsystem.

AUDIO -----,

AUDIOGND

Typical Driver

12000

Typical Receiver

Speaker

6000

Figure 2. Audio Subsystem Block Diagram

Each audio driver must have a 1200 ohm source impedance, and a
7.5 kilohm or greater impedance is required for each audio receiver.
Volume control is provided by the driver. Output level is a function of
the number of drivers and receivers that share the AUDIO line.

The logic ground is connected to AUDIO GND at the amplifier.

System Timers (Type 1) - October 1990 3

Channel 3 - Watchdog Timer

This channel operates only in Mode 0 and counts in 8-bit binary.

• GATE 3 is tied to IRQ O.

• ClK IN 3 is tied to ClK OUT 0 inverted.

• ClK OUT 3, when high, drives the NMI active.

The Watchdog Timer detects when IRQ 0 is active for more than one
period of ClK OUT O. If IRQ 0 is active when a rising edge of ClK
OUT 0 occurs, the count is decremented. When the count is
decremented to 0, an NMI is generated. Thus, the Watchdog Timer
can be used to detect when IRQ 0 is not being serviced. This is useful
for detecting error conditions.

BIOS interfaces are provided to enable and disable the Watchdog
Timer. When the Watchdog Timer times out, it causes an NMI and
sets System Control Port A (hex 0092), bit 4 to 1. This bit may be set
to 0 by using the BIOS interface to disable the Watchdog Timer.

Note: The NMI stops all arbitration on the bus until bit 6 of the
Arbitration register (110 address hex 0090) is set to O. This can
result in lost data or an overrun error on some 110 devices.

If the Watchdog Timer is used to detect "tight looping"
software tasks that inhibit interrupts, some 110 devices may be
overrun (not serviced in time). The operating system may be
required to restart these devices.

When the Watchdog Timer is enabled, the 'inhibit' signal (INHIBIT) is
active only when IRQ 0 is pending for longer than one period of ClK
OUT O. When INHIBIT is active, any data written to Channel 0 or
Channel 3 is ignored. INHIBIT is never active if the Watchdog Timer is
disabled.

The Watchdog Timer operation is defined only when Channel 0 is
programmed in Mode 2 or Mode 3. The operation of the Watchdog
Timer is undefined when Channel 0 is programmed in any other
mode.

4 System Timers (Type 1) - October 1990

Counters 0, 2, and 3

Each counter is independent. Counters 0 and 2 are 16-bit down
counters that can be preset. They can count in binary or binary
coded decimal (BCD). Counter 3 is an 8-bit down counter that can be
preset. It counts in binary only.

Programming the System Timers

The system treats the programmable interval timer as an
arrangement of five external I/O ports. Three ports are treated as
count registers and two are control registers for mode programming.
Counters are programmed by writing a control word and then an
initial count. All control words are written into the Control Word
registers, which are located at address hex 0043 for counters 0 and 2,
and address hex 0047 for counter 3. Initial counts are written into the
Count registers, not the Control Byte registers. The format of the
initial count is determined by the control word used.

After the initial count is written to the Count register, it is transferred
to the counting element, according to the mode definition. When the
count is read, the data is presented by the output latch.

Counter Write Operations

The control word must be written before the initial count, and the
count must follow the count format specified in the control word.

A new initial count may be written to the counters at any time without
affecting the counter's programmed mode. Counting is affected as
described in the mode definitions. The new count must follow the
programmed count format.

Counter Read Operations

The counters can be read using the Counter Latch command (see
"Counter Latch Command" on page 10).

If the counter is programmed for two-byte counts, two bytes must be
read. The two bytes need not be read consecutively; read, write, or
programming operations of other counters can be inserted between
them.

Note: If the counters are programmed to read or write two-byte
counts, the program must not transfer control between writing

System Timers (Type 1) - October 1990 5

the first and second byte to another routine that also reads or
writes into the same counter. This will cause an incorrect
count.

Registers

1/0 Address
(Hex)

0040
0042
0043
0044
0047

Register

Count Register - Channel 0 (Read/Write)
Count Register - Channel 2 (Read/Write)
Control Byte Register - Channel 0 or 3 (Write)
Count Register - Channel 3 (Read/Write)
Control Byte Register - Channel 3 (Write)

Figure 3. System Timer/Counter Registers

Count Register - Channel 0 (Hex 0040)

The control byte is written to port hex 0043, to indicate the format of
the count (least-significant byte only, most-significant byte only, or
least-significant byte followed by most-significant byte). This must be
done before writing the count to port hex 0040.

Count Register - Channel 2 (Hex 0042)

The control byte is written to port hex 0043, to indicate the format of
the count (least-significant byte only, most-significant byte only, or
least-significant byte followed by most-significant byte). This must be
done before writing the count to port hex 0042.

Control Byte Register - Channel 0 or 2 (Hex 0043)

This is a write-only register. The following gives the format for the
control byte (port hex 0043) for counters 0 and 2.

Bits 7, 6 These bits select counter 0 or 2.

Bits Function
76

o 0 Select Counter 0
01 Reserved
1 0 Select Counter 2
11 Reserved

Figure 4. Select Counter Bits, Port Hex 0043

6 System Timers (Type 1) - October 1990

Bits 5, 4 These bits distinguish a counter latch command from a
control byte. If a control byte is selected, these bits also
determine the method in which each byte is read or
written.

Bits
54 Function

00 Counter Latch Command
o 1 Read/Write Counter bits 0 - 7 only
1 0 Read/Write Counter bits 8 - 15 only
1 1 Read/Write Counter bits 0 - 7 first, then bits 8 - 15

Figure 5. Read/Write Counter Bits, Port Hex 0043

Bits 3 - 1 These bits select the mode.

Bits Function
321

000
001
X10
X 11
100
101

Mode 0 - Interrupt on Terminal Count
Mode 1 - Hardware Retriggerable One Shot
Mode 2 - Rate Generator
Mode 3 - Square Wave
Mode 4 - Software Retriggerable Strobe
Mode 5 - Hardware Retriggerable Strobe

Note: Don't care bits (X) should be set to O.

Figure 6. Counter Mode Bits, Port Hex 0043

Bit 0 When set to 1, this bit selects the binary coded decimal
method of counting. When set to 0, it selects the 16-bit
binary method.

System Timers (Type 1) - October 1990 7

Count Register - Channel 3 (Hex 0044)

The control byte is written to port hex 0047, to indicate the format of
the count (least-significant byte only). This must be done before
writing the count to port hex 0044.

Control Byte Regist,r - Channel 3 (Hex 0047)

This is a write-only register. The following gives the format for the
control byte (port hex 0047) for counter 3.

Blls 7, 6 These bits select counter 3.

Bits Function
76

o 0 Select Counter 3
01 Reserved
10 Reserved
11 Reserved

Figure 7. Select Counter, Port Hex 0047

Elits 5, 4 These bits distinguish a counter latch command from a
control byte.

BHs Function
54

o 0 Counter Latch Command Select Counter 0
o 1 fVW Counter Bits 0 " 7 Only
10 Reserved
1 1 Reserved

Figure 8. Read/Writ~ Counter, Port Hex 0047

Bits 3 - 0 These bits are reserved and must be written as O.

8 System Timers (Type 1)- October 1990

Counter Latch Command

The Counter Latch command is written to the Control Byte register.
Bits 7 and 6 select the counter, and bits 5 and 4 distinguish this
command from a control byte. The following figure shows the format
of the Counter Latch command.

Bit Function

7.6 Specifies the counter to be latched
5, 4 00 Specifies the Counter Latch command
3 - 0 Reserved = 0

Figure 9. Counter Latch Command

The count is latched into the selected counter's output latch when the
Counter Latch command is received. This count is held in the latch
until it is read by the system microprocessor (or until the counter is
reprogrammed). After the count is read by the system
microprocessor, it is automatically unlatched, and the output latch
returns to following the counting element. Counter Latch commands
do not affect the programmed mode of the counter in any way. All
subsequent latch commands issued to a given counter before the
count is read, are ignored. A read cycle to the counter latch returns
the value latched by the first Counter Latch command.

System Timers (Type 1) - October 1990 9

System Timer Modes

The following definitions are used when describing the timer modes.

ClK pulse A rising edge, then a falling edge on the counter
ClK input.

Trigger A rising edge on a counter's input GATE.

Counter load The transfer of a count from the Counter register to
the counting element.

Mode 0 - Interrupt on Terminal Count

Event counting can be done using Mode O. Counting is enabled when
GATE is equal to 1, and disabled when GATE is equal to O. If GATE is
equal to 1 when the control byte and initial count are written to the
counter, the sequence is as follows:

1. The control byte is written to the counter, and OUT goes low.

2. The initial count is written.

3. The initial count is loaded on the next ClK pulse. The count is
not decremented for this ClK pulse.

The count is decremented until the counter reaches O. For an
initial count of N, the counter reaches 0 after N + 1 ClK pulses.

4. OUT goes high.

OUT remains high until a new count or new Mode 0 control byte is
written into the counter.

If GATE equals 0 when an initial count is written to the counter, it is
loaded on the next ClK pulse even though counting is not enabled.
After GATE enables counting, OUT goes high N ClK pulses later.

10 System Timers (Type 1) - October 1990

If a new count is written to a counter while counting, it is loaded on
the next ClK pulse. Counting then continues from the new count. If a
2-byte count is written to the counter, the following occurs:

1. The first byte written to the counter disables the counting. OUT
goes low immediately, and there is no delay for the ClK pulse.

2. When the second byte is written to the counter, the new count is
loaded on the next ClK pulse. OUT goes high when the counter
reaches O.

Mode 1 - Hardware Retriggerable One-Shot

The sequence for Mode 1 is as follows:

1. OUT is high.

2. On the ClK pulse following a trigger, OUT goes low and begins
the one-shot pulse.

3. When the counter reaches 0, OUT goes high.

OUT remains high until the ClK pulse following the next trigger.

The counter is armed by writing the control byte and initial count to
the counter. When a trigger occurs, the counter is loaded. OUT goes
low on the next ClK pulse, starting the one-shot pulse. For an initial
count of N, a one-shot pulse is N ClK pulses long. The one-shot
pulse repeats the count of N for the next triggers. OUT remains low
for N ClK pulses following any trigger. GATE does not affect OUT.
The current one-shot pulse is not affected by a new count written to
the counter, unless the counter is retriggered. If the counter is
retriggered, the new count is loaded and the one-shot pulse
continues.

Note: Mode 1 is valid only for Counter 2.

System Timers (Type 1) - October 1990 11

Mode 2 - Rate Generator

This mode causes the counter to perform a divide-by-N function.
Counting is enabled when GATE equals 1, and disabled when GATE
equals O.

The sequence for Mode 2 is as follows:

1. OUT is high.

2. The initial count decrements to 1.

3. OUT goes low for one ClK pulse.

4. OUT goes high.

5. The counter reloads the initial count.

6. The process is repeated.

If GATE goes low during the OUT pulse, OUT goes high. On the next
ClK pulse a trigger reloads the counter with the initial count. OUT
goes low N ClK pulses after the trigger. This allows the GATE input
to be used to synchronize the counter.

The counter is loaded on the ClK pulse after a control byte and initial
count are written to the counter. OUT goes low N ClK pulses after
the initial count is written. This allows software to synchronize the
counter.

The current counting sequence is not affected by a new count being
written to the counter. If the counter receives a trigger after a new
count is written and before the end of the current count, the new
count is loaded on the next ClK pulse, and counting continues from
the new count. If the trigger is not received by the counter, the new
count is loaded following the current counting cycle.

Mode 3 - Square Wave

Mode 3 is similar to Mode 2 except for the duty cycle of OUT.
Counting is enabled when GATE is equal to 1, and disabled when
GATE is equal to o. AnThitialcoufit of N results in a square wave on
OUT. The period of the square wave is N ClK pulses. If OUT is low
and GATE goes low, OUT goes high. On the next ClK pulse, a trigger
reloads the counter with the initial count.

The counter is loaded on the ClK pulse following the writing of a
control byte and the initial count.

12 System Timers (Type 1) - October 1990

The current counting sequence is not affected by a new count being
written to the counter. If the counter receives a trigger after a new
countis written, and before the end of the current count's half-cycle of
the square wave, the new count is loaded on the next elK pulse, and
counting continues from the new count. If the trigger is not received
by the counter, the new count is loaded following the current
half-cycle.

The way Mode 3 is implemented depends on whether the count
written is odd or even. If the count is even, OUT begins high and the
following applies:

1. The initial count is loaded on the first elK pulse.

2. The count is decremented by 2 on succeeding elK pulses.

3. The count decrements to O.

4. OUT changes state.

5. The counter is reloaded with the initial count.

6. The process repeats indefinitely.

If the count is odd, the following applies:

1. OUT is high.

2. The initial count minus 1 is loaded on the first elK pulse.

3. The count is decremented by 2 on succeeding elK pulses.

4. The count decrements to O.

5. One elK pulse after the count reaches 0, OUT goes low.

6. The counter is reloaded with the initial count minus 1.

7. Succeeding elK pulses decrement the count by 2.

8. The coLint decrements to O.

9. OUT goes high.

10. The counter is reloaded with the initial count minus 1.

11. The process repeats indefinitely.

Mode 3, using an odd count, causes OUT to go high for a count of
(N + 1)/2 and low for a count of (N-1)/2.

System Timers (Type 1)- October 1990 13

Mode 3 can operate such that OUT is initially set low when the control
byte is written. For this condition, Mode 3 operates as follows:

1. OUT is low.

2. The count decrements to half of the initial count.

3. OUT goes high.

4. The count decrements to O.

5. OUT goes low.

6. The process repeats indefinitely.

This process results in a square wave with a period of N ClK pulses.

Note: If OUT needs to be high after the control byte is written, the
control byte must be written twice. This applies only to Mode
3.

Mode 4 - Software Retriggerable Strobe

Counting is enabled when GATE equals 1, and disabled when GATE
equals O. Counting begins when an initial count is written.

The sequence for Mode 4 is as follows:

1. OUT is high.

2. The control byte and initial count are written to the counter.

3. The initial count is loaded on the next ClK pulse. The count is
not decremented for this clock pulse.

4. The count is decremented to O. For an initial count of N, the
counter reaches 0 after N + 1 ClK pulses.

5. OUT goes low for one ClK pulse.

6. OUT goes high.

GATE should not go low one-half ClK pulse before or after OUT goes
low. If this occurs, OUT remains low until GATE goes high.

14 System Timers (Type 1)- October 1990

If a new count is written to a counter while counting, it is loaded on
the next CLK pulse. Counting then continues from the new count. If a
2-byte count is written, the following occurs:

1. Writing the first byte does not affect counting.

2. The new count is loaded on the CLK pulse following the writing of
the second byte.

The Mode 4 sequence can be retriggered by software. The period
from when the new count of N is written to when OUT strobes low is
(N + 1) pulses.

Mode 5 - Hardware Retriggerable Strobe

The sequence for Mode 5 is as follows:

1. OUT is high.

2. The control byte and initial count are written to the counter.

3. Counting is triggered by a rising edge of GATE.

4. The counter is loaded on the CLK pulse following the trigger.
This ClK pulse does not decrement the count.

5. The count decrements to O.

6. OUT goes low for one CLK pulse. This occurs (N + 1) CLK pulses
after the trigger.

7. OUT goes high.

The counting sequence can be retriggered. OUT strobes low (N+ 1)
pulses after the trigger. GATE does not affect OUT.

The current counting sequence is not affected by a new count being
written to the counter. If the counter receives a trigger after a new
count is written and before the end of the current count, the new
count is loaded on the next ClK pulse, and counting continues from
the new count.

Note: Mode 5 is valid only on counter 2.

System Timers (Type 1)- October 1990 15

Operations Common to All Modes

Control bytes written to a counter cause all control logic to reset.
OUT goes to a known state. This does not take a ClK pulse.

The falling edge of the ClK pulse occurs when new counts are loaded
and counters are decremented.

Counters do not stop when they reach O. In Modes 0, 1, 4, and 5, the
counter wraps to the highest count, and continues counting. Modes 2
and 3 are periodic; the counter reloads itself with the initial count and
continues from there.

The GATE is sampled on the rising edge of the ClK pulse.

The following shows the minimum and maximum initial counts for the
counters.

Mode

o
1
2
3
4
5

Minimum
Count

1
1
2
2
1
1

Maximum
Count

0= 2'6 (Binary Counting) or 104 (BCD Counting)
0= 2'6 (Binary Counting) or 104 (BCD Counting)
0= 2'6 (Binary Counting) or 104 (BCD Counting)
o = 2'6 (Binary Counting) or 104 (BCD counting)
o = 2'6 (Binary Counting) or 104 (BCD Counting)
o '= 2'6 (Binary Counting) or 104 (BCD Counting)

Figure 10. Minimum and Maximum Initial Counts, Counters 0, 2

Counter 3 can use only Mode 0, Interrupt on Terminal Count. The
minimum initial count is 1 and the maximum is hex FF.

16 System Timers (Type 1)- October 1990

Diskette Drive Controller

Description 1
FIFO Mode 3
Diskette Drive Controller Registers 3

Status Register A (Hex 03FO) 4
Status Register B (Hex 03F1) 4
Drive Control Register (Hex 03F2) 5
Drive Status Register (Hex 03F3 Read) 5
Diskette Drive Controller Status Register (Hex 03F4 Read) 7
Precompensation Select Register (Hex 03F4 Write) 8
Diskette Drive Controller Command/Data Register (Hex 03F5) . 9
Reserved Register (Hex 03F6) 9
Data Rate Status Register (Hex 03F7 - Read) 9
Data Rate Control Register (Hex 03F7 - Write) 10

Diskette Drive Controller Programming Considerations 10
Controller Commands 11

Configure Command 15
Dumpreg Command 16
Format Track Command 16
Lock Command 17
Perpendicular Mode Command 17
Read Data Command 18
Read Deleted Data Command 18
Read ID Command 19
Read Track Command 20
Recalibrate Command 20
Relative Seek Command 21
Scan Equal Command 21
Scan High or Equal Command 22
Scan Low or Equal Command 22
Seek Command .. 23
Sense Drive Status Command 23
Sense Interrupt Status Command 24
Specify Command 24
Verify Command 25
Version Command 25
Write Data Command 26
Write Deleted Data Command 26
Invalid Command Status 27

Command Status Regi$ters 28
Status Register 0 28
Status Register 1 29
Status Register 2 30

© Copyright IBM Corp. 1991

Status Register 3 31
Interface Signal Descriptions 32

Output Signals 32
Input Signals 34

Connector 35

Index .. 37

Ii Diskette Drive Controller-September 1991

Figures

1. Media Format Table 2
2. Status Register A (Hex 03FO) 4
3. Status Register B (Hex 03F1) 4
4. Drive Control Register (Hex 03F2) ,......... 5
5. Drive Status Register (Hex 03F3 Read) ,......... 5
6. Media Type ,......... 6
7. Drive Type ,......... 6
8. Start-Up Drive .. , ,.,.................. 6
9. Diskette Drive Controller Status Register (Hex 03F4) 7

10. Precompensation Select Register (Hex 03F4 Write) 8
11. Precompensation Values 8
12. Default Precompensation Values ,., ,..... 9
13. Data Rate Status Register (Hex 03F7 - Read) 9
14. Data Rate Control Register (Hex 03F7 - Write) .. ,...... 10
15. Data Rate Selection 10
16. Command Symbols ., "..... 11
17. HLT Parameter Definitions , ,.. 14
18. HUT Parameter Definitions .. , ,., ... ,', .. ,.. 14
19. SRT Parameter Definitions , , ... , ... , 15
20. Configure Command , , , ... , .. , 15
21. Dumpreg Command , ... , , 16
22. Dumpreg Result , , ,. 16
23. Format Track Command 16
24. Format Track Result 17
25. Lock Command , 17
26. Lock Result 17
27. Perpendicular Mode Command ... , ,..... 17
28. Read Data Command , ... , , 18
29. Read Data Result , ... , , .. ,........ 18
30. Read Deleted Data Command , .. , ,., , 18
31. Read Deleted Data Result , ,........ 19
32. Read 10 Command .. , ' ,..... 19
33. Read 10 Result ... ,., ... , .. " ,........ 19
34. Read Track Command , .. , , ,.. 20
35. Read Track Result , .. ,., .. , .. , , ... , .. , . , , . , , ., 20
36. Recalibrate Command ,............ 20
37. Relative Seek Command .,., ... , .. , .. "., ... ,., 21
38. Scan Equal Command ... , ,.............. 21
39. Scan Equal Result , ,', ... ,., .. ,."., .. , 21
40. Scan High or Equal Command , , 22
41. Scan High or Equal Result .,.,.,.".,.,.,.,.,.,. 22
42. Scan Low or Equal Command ,............ 22

© Copyright IBM Corp. 1991 iii

43. Scan Low or Equal Result .. 23
44. Seek Command 23
45. Sense Drive Status Command 23
46. Sense Drive Status Result 23
47. Sense Interrupt Status Command 24
48. Sense Interrupt Status Result 24
49. Specify Commanc' 24
50. Verify Command 25
51. Verify Result 25
52. Version Command 25
53. Version Result 25
54. Write Data Command .. 26
55. Write Data Result 26
56. Write Deleted Data Command 26
57. Write Deleted Data Result 27
58. Invalid Command Result 27
59. Status Register 0 28
60. Status Register 0 (Bits 7, 6) .. 28
61. Status Register 0 (Bits 1,0) 28
62. Status Register 1 29
63. Status Register 2 30
64. Status Register 3 31
65. Diskette Drive Connector Signal Assignments For the 40-pin

Card Edge Interface 35
66. Diskette Drive Connector Signal Assignments For the 34-pin

Header Interface 35
I 67; Diskette Drive Connector Signal Assignments For the
I Enhanced 34-Pin Header Interface .;............... 36

Iv Diskette Drive Controller - September 1991

I Description

I The diskette drive controller and interface connector reside on the
I system board. The controller can be a Type 1 or a Type 2. The
I controller type is dependent on the system model and can be

. I determined by issuing the Unlock command. The Type 1 returns a
I hex 80 in the Result byte; the Type 2 returns a hex 00.

The Type 1 controller supports:

• Two data transfer rates:

- 250,000 bits per second (bps)
- 500,000 bits per second.

• 125 nanoseconds of precompensation on all tracks

• The following IBM diskette drives:

3.5-inch 1.44MB
- 5.25-inch 360KB.

The Type 2 controller supports:

• Four data transfer rates:

250,000 bits per second
300,000 bits per second
500,000 bits per second
1,000,000 bits per second.

• Programmable precompensation

• 16 bytes of data buffering

• The following IBM diskette drives:

3.5-inch 1.44MB
3.5-inch 2.88MB
5.25-inch 360KB
5.25-inch 1.2MB.

Diskette Drive Controller - September 1991 1

The media formats supported by IBM drives are shown below.

Media Capacity Sectors/ No. of Data Rate
Size UnformaHed FormaHed Track Tracks (kbps)

3.5 in. 1.0MB 720KB 9 80 250
3.5 in. 2.0MB 1.44MB 18 80 500
3.5 in. 4.0MB 2.88MB 36 80 1000'
5.25 in. 0.5MB 360KB 9 40 300' 1250
5.25 in . 1.6MB 1.20MB" 15 80

• Type 2 controller only

Figure 1. Media Format Table

Warning: The controller does not check to see that the media
supports the selected capacity. Attempting to format media to an
unsupported capacity may cause loss of data.

• O.5MB (double sided, double density 5.25-inch) media can be
reliably formatted only to the 360KB capacity.

• 1.0MB media can be reliably formatted only to the 720KB
capacity.

500

• 1.6MB (high capacity 5.25-inch) media can be reliably formatted
only to the 1.2MB capacity.

• 2.0MB media can be reliably formatted only to the 1.44MB
capacity.

• 4.0MB media can be reliably formatted only to the 2.88MB
capacity.

When the Type 1 diskette drive controller is switched from one data
rate to another, the controller clock rate automatically changes to:

• 8 MHz for 2.0MB mode
• 4 MHz for 1.0MB mode.

The step rate time (SRT), head load time (HLT), and the head unload
I time (HUT) parameters must then be changed to maintain the desired
timings at the diskette interface.

For Type 2 controllers, the controller clock rate remains at 24 MHz,
but the SRT, HL T, and HUT parameters must still be updated using
the same values as the Type 1 controller.

Note: With Type 1 controllers, 32-bit operations to the video
subsystem can cause a Direct Memory Access (DMA) overrun.
If the BIOS returns an error code indicating that an overrun
has occurred, the operation should be repeated.

2 Diskette Drive Controller- September 1991

FIFO Mode

A 16-byte FIFO is provided on the Type 2 controller, which allows
direct-memory-access (DMA) data transfers to be delayed for longer
periods of time without causing DMA overrun errors. To maintain
compatibility, the FIFO defaults to a Type 1 compatibility mode after
system reset. All functions are then similar to the Type 1 controller.

The Configure command is used to enable FIFO operations. After the
FIFO operations are enabled, the controller temporarily enters a byte
mode during the command and result phases of the diskette
controller operation. While in this mode, operations to, or from, the
disk controller are FIFO compatible.

The FIFO is enabled only during the data transfer phase of operation.
All command and status information is transferred in Type 1
compatibility mode. When the Type 2 controller first enters the data
transfer phase, the FIFO is cleared of any residual data from previous
operations.

Compatibility problems may occur when the FIFO mode is used with
software that monitors the progress of a data transfer during the
execution phase. It is recommended that the FIFO mode be disabled
when software of this type is used.

I Diskette Drive Controller Registers

I The diskette drive controller can be a Type 1 and a Type 2 controller.
I Certain functions are provided by the Type 2 controller only.

I Note: Some registers contain bits that are labeled as reserved.
I These bits must be set to the value specified when writing to
I these registers.

Diskette Drive Controller - September 1991 3

Status Register A (Hex 03FO)

This read-only register shows the status of signals on the diskette
drive interface.

1r-_____ B_it ______ F_un_c_ti_on __________________________________ ~

7
6
5
4
3
2
1
o

Interrupt Pending
-2nd Drive Installed
Step

-Track 0
Head 1 Select

-Index
-Write Protect
Direction In

I Figure 2. Status Register A (Hex 03FO)

I Status Register B (Hex 03F1)

I This read-only register shows the status of signals on the diskette
I drive interface.

I The write-data and read-data bits change state for each positive
I transition of the '-write data' or '-read data' signals.

I Bit Function

I 7,6 Reserved
I 5 Drive Select 0
I 4 Write Data
I 3 Read Data

II

I 2~ Write Enable
Motor Enable 1
Motor Enable 0

I Figure 3. Status Register B (Hex 03F1)

4 Diskette Drive Controller - September 1991

Drive Control Register (Hex 03F2)

This read and write register controls drive motors, drive selection,
and feature enable. All bits are set to 0 by a reset.

Bit Function

7 Motor Enable 3-
6 Motor Enable 2-
5 Motor Enable 1
4 Motor Enable 0
3 Reserved = 1
2 -Controller Reset
1 Drive Select 1-
o Drive Select 0

- Type 2 Controller Only.

Figure 4. Drive Control Register (Hex 03F2)

Note: The controller reset bit must be set to 0 for a minimum of 3.5
microseconds to ensure the controller is properly reset.

Drive Status Register (Hex 03F3 Read)

This register contains information about the diskette drive type, and
start-up drive location. This register is for the Type 2 controller only.

Bit Function

7,6 Media Type 1,0
5,4 Drive Type 1,0
3,2 Start-Up Drive 1,0
1,0 Reserved

Figure 5. Drive Status Register (Hex 03F3 Read)

Diskette Drive Controller - September 1991 5

The following tables show the media type, drive type and start-up
drive indicated.

Bits
7 6 Media Type

o 0 Reserved
o 1 4MB
1 0 2MB
1 1 1MB

Note: These bits indicate the state of the 'media type' signals. These signals are
inputs from the drive.

Figure 6. Media Type

Bits
S 4 Drive Type

o 0 3.5-inch,1.44MB
o 1 3.5-inch, 2.88MB
1 0 5.25 inch, 1.2MB
1 1 Reserved

Figure 7. Drive Type

Bits
3 2 Start-Up Drive

o 0 First Drive
o 1 Second Drive
1 0 Third Drive
1 1 Reserved

Figure 8. Start-Up Drive

Note: The media-type and drive-type bits are valid only when the
drive is selected. The media-type bits are valid only for
3.5-inch media.

6 Diskette Drive Controller-September 1991

Diskette Drive Controller Status Register (Hex 03F4
Read)

This read-only register facilitates the transfer of data between the
system microprocessor and the controller.

BII Function

7 Request for Master
6 Data Input/Output
5 Non-DMA Mode
4 Diskette Controller Busy
3 Drive 3 Busy
2 Drive 2 Busy
1 Drive 1 Busy
o Drive 0 Busy

Figure 9. Diskette Drive Controller Status Register (Hex 03F4)

Bit 7 When this bit is 1, the Data register is ready to transfer
data with the system microprocessor.

Bit 6 This bit indicates the direction of data transfer between
the diskette drive controller and the system
microprocessor. When this bit is 1, the transfer is to the
system microprocessor; when the bit is 0, the transfer is to
the controller.

Bit 5 When this bit is 1, the controller is in the non-DMA mode.

Bit 4 When this bit is 1, command is being processed.

Bit 3 When this bit is 1, diskette drive 3 is in the seek mode.

Bit 2 When this bit is 1, diskette drive 2 is in the seek mode.

Bit 1 When this bit is 1, diskette drive 1 is in the seek mode.

Bit 0 When this bit is 1, diskette drive 0 is in the seek mode.

Diskette Drive Controller - September 1991 7

Precompensation Select Register (Hex 03F4 Write)

This write-only register is used to select the data rate and
precompensation value for each data rate. This register is supported
by the Type 2 controllers only.

Bit Function

7-5 Reserved = 0
4 Precomp 2
3 Precomp 1
2 Precomp 0
1 Data Rate Select 1
o Data Rate Select 0

Figure 10. Precompensation Select Register (Hex 03F4 Write)

The following table shows the precompensation values selected.

Bits
4 3 2 Precompensatlon Delay

000 Default
001 41.7ns
010 83.3 ns
01 1 125 ns
1 00 167 ns
1 0 1 208 ns
1 1 0 250 ns
1 1 1 0.0 ns

Figure 11. Precompensation Values

8 Diskette Drive Controller - September 1991

I The following table shows the transfer rate selected and the resulting
I default precompensation values.

Bits
1 0

00
01
10
1 1

Transfer Rate

500 kbps
300 kbps'
250 kbps
1000 kbps'

• Type 2 Controller Only

Defaun Precomp

125 ns
125 ns
125 ns
41.7 ns

Figure 12. Default Precompensation Values

Diskette Drive Controller Command/Data Register (Hex
03FS)

This read and write register passes data, commands and parameters
to the diskette drive controller and provides diskette-drive status
information.

Reserved Register (Hex 03F6)

This register is reserved.

Data Rate Status Register (Hex 03F7 - Read)

This read-only register identifies the data rate selected on the
interface, and senses the state of the 'diskette change' and '-high
density select' signals.

Bit Function

7 Diskette Change
6-3 Reserved
2 Data Rate Select 1
1 Data Rate Select 0
o -High Density Select

Figure 13. Data Rate Status Register (Hex 03F7 - Read)

Diskette Drive Controller - September 1991 9

Data Rate Control Register (Hex 03F7 - Write)

This write-only register sets the transfer rate.

Bit Function

7-2 Reserved
1 Data Rate Select 1
o Data Rate Select 0

Figure 14. Data Rate Control Register (Hex 03F7 - Write)

Bits 7 • 2 Reserved as O.

Bits 1, 0 These bits select the data rate, as shown in the following
figure.

Bits
1 0 Data Rate

o 0 500,000 bits per second
o 1 300,000 bits per second"
1 0 250,000 bits per second
1 1 1,000,000 bits per second'

" Type 2 Controller Only

Figure 15. Data Rate Selection

Diskette Drive Controller Programming
Considerations

Each command is initiated by a multibyte transfer from the system
microprocessor; the result can be a multi byte transfer back to the
system microprocessor. Most transfers consist of three phases:

• Command Phase: The system microprocessor writes a series of
command bytes to the controller directing it to perform a specific
operation.

• Execution Phase: The controller performs the specified
operation.

• Result Phase: After the operation is complete, status information
is available to the system microprocessor through a sequence of
read commands.

Note: The Seek, Relative Seek, and Recalibrate commands have no
result phase. After issuing these commands, the Sense
Interrupt Status command must be issued for proper

10 Diskette Drive Controller - September 1991

termination and verification of the head position (Present
Cylinder Number parameter or PCN).

Controller Commands

The following are supported commands for diskette drive controller:

• Configure#
• Dumpreg#
• Format Track
• Read Data
• Read Deleted Data
• Read 10
• Read Track
• Recalibrate
• Relative Seek#
• Scan Equal
• Scan High or Equal
• Scan Low or Equal
• Seek
• Sense Drive Status
• Sense Interrupt Status
• Specify
• Verify#
• Version#
• Write Data
• Write Deleted Data.

Notes:

1. Commands marked with a pound sign are not supported by the
Type 1 controller.

2. Diskette BIOS does not support all commands listed. To ensure
software compatibility across system models, the diskette
hardware should be accessed only through the diskette BIOS.

Diskette Drive Controller-September 1991 11

Symbol Name Description

00- Drive These bits represent the state of drive 0 through
03 Perpendicular drive 3. When the bit is 1, the associated drive is a

perpendicular drive. GAP and WGATE must not be
set to 1 for these bits to be valid.

DIR Direction When set to 0, this bit causes the head to move
Control away from the spindle during an implied seek.

When set to 1, the head moves toward the spindle.

EC Enable Count When this bit is set to 1, the data-length byte
indicates the number of sectors/track.

EFF Enable FIFO When set to 1, this bit enables the FIFO data buffer
in the Type 2 controller.

EIS Enable Implied When set to 1, this bit causes an implied seek to
Seek be performed before executing a command that

requires the cylinder parameter in the command
phase in the Type 2 controller.

GAP GAP 2 Size This parameter is used with WGATE to set the
length of the GAP 2 written during write or format
operations. GAP should be set to 0 for normal
operation.

GPL GAP 3 Length This parameter determines the length of GAP 3 (in
bytes) during a Format operation and determines
the VCO synchronization timing during Read
operations.

HD Head Select This bit selects the head used. When set to 0,
head 0 is selected; when set to 1, head 1 is
selected.

HLT Head Load Time This parameter specifies the head-load time (see
Figure 17 on page 14).

HUT Head Unload This parameter specifies the head-unload time
Time (see Figure 18 on page 14).

MFM FM or MFM When set to 0, this bit selects FM mode; when set
to 1, it selects MFM mode.

MT Multitrack When set to 1, this bit selects multitrack
operations. (Side 0 and Side 1 are automatically
read from, written to, or verified).

12 Diskette Drive Controller-September 1991

Symbol Name Description

NO Non-DMA Mode When set to 1, this bit causes diskette operations
to be performed in the non-DMA mode.

I OW Overwrite When set to 1, this bit allows the bits specified by
I 00-03 to be overwritten.

I Warning: To avoid the loss of data, this bit
I shou Id not be set to 1.

PO Polling Disable When set to 1, this bit disables polling; when set to
0, it enables polling.

PTN Precomp Track This parameter selects the track number where
Number write precompensation begins. It is

programmable from 0 to hex FF.

I RCN Relative This parameter specifies the relative cylinder to
I Cylinder Number go to from the present cylinder, as used by the
I Relative Seek command.

SK Skip Flag When this bit is set to 1, the sectors containing a
deleted-data address mark are automatically
skipped during a Read Data command. For a
Read Deleted Data command, only sectors with a
deleted-data address mark are accessed. When
this bit is set to 0, the sector is read or written the
same as the Read Data command.

I SRT Step Rate Time This parameter specifies the stepping-rate time
I (see Figure 19 on page 15).

THR Threshold This parameter is the FIFO threshold for Type 2
controllers, where 0 = 1 byte, F = 16 bytes.

US Unit Select This parameter indicates the drive number
selected. 00 selects drive 0, 01 selects drive 1, 10
selects drive 2 and 11 selects Drive 3.

WGATE Write Gate This parameter alters the timing of the 'write
enable' signal for the perpendicular-recording
mode. WGATE should be set 0 for normal
operation.

Figure 16 (Part 2 of 2). Command Symbols

Diskette Drive Controller-September 1991 13

I The following figure shows the head-load time selected as
I determined by the HLT parameter and the transfer rate. The transfer
I rates are shown in 1000 of bytes per second.

Head Load Time/Transfer Rate

HL T Parameter 1000 kbps 500kbps 300 kbps 250 kbps

00 128 256 426 512
01 1 2 3.3 4
02 2 4 6.7 8

7E 126 252 420 504
7F 127 254 423 508

Note: Delay time in milliseconds

Figure 17. HL T Parameter Definitions

The following figure shows the head-unload-time selected as
determined by the HUT parameter and the transfer rate.

Head Unload Time/Transfer Rate

HUT Parameter 1000 kbps 500 kbps 300 kbps 250 kbps

0 128 256 426 512
1 8 16 26.7 32
2 16 32 53.4 64
3 24 48 80.1 96
4 32 64 107 128
5 40 80 134 160
6 48 96 160 192
7 56 112 187 224
8 64 128 214 256
9 72 144 240 288
A 80 160 267 320
B 88 176 294 352
C 96 192 320 384
D 104 208 347 416
E 112 224 373 448
F 120 240 400 480

Note: Delay time in milliseconds

Figure 18. HUT Parameter Definitions

14 Diskette Drive Controller- September 1991

The following figure shows the stepping rate selected as determined
by the SRT parameter and the transfer rate.

Steeping Rate/Transfer Rate

SRT Parameter 1000 kbps 500 kbps 300 kbps 250 kbps

0 8.0 16.0 26.7 32.0
1 7.5 15.0 25.0 30.0
2 7.0 14.0 23.3 28.0
3 6.5 13.0 21.7 26.0
4 6.0 12.0 20.0 24.0
5 5.5 11.0 18.3 22.0
6 5.0 10.0 16.7 20.0
7 4.5 9.0 15.0 18.0
8 4.0 8.0 13.3 16.0
9 3.5 7.0 11.7 14.0
A 3.0 6.0 10.0 12.0
B 2.5 5.0 8.33 10.0
C 2.0 4.0 6.67 8.0
0 1.5 3.0 5.00 6.0
E 1.0 2.0 3.33 4.0
F 0.5 1.0 1.67 2.0

Note: Delay time in milliseconds

Figure 19. SRT Parameter Definitions

The following commands are issued to the controller by the system.

Configure Command

Command Phase

7 6 5 4 3 2 1 o

Byte 0 0 0 0 1 0 0 1
Byte 1 0 0 0 0 0 0 0 0
Byte 2 0 EIS EFF PO Threshold (THR)
Byte 3 Precompensation Track Number (PTN)

Figure 20. Configure Command

Result Phase: This command has no result phase.

Diskette Drive Controller - September 1991 15

Dumpreg Command

Command Phase

I·~.o 7 6 5 4 3

0 0 0 0

2

Figure 21. Dumpreg Command

Result Phase

7 6 5 4 3 2

Present Track Number - Drive 0
Present Track Number - Drive 1
Present Track Number - Drive 2
Present Track Number - Drive 3

1 o

o

1 o

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
ByteS
Byte 6
Byte 7
Byte 8
Byte 9

Stepping Rate Time Head Unload Time
Head Load Time NO

Number of Sectors per Track/End of Track
X 0 Reserved X GAP WGATE
o EIS EFF PO Threshold
Precompensation Track Number

Figure 22. Dumpreg Result

Format Track Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 0 MFM 0 0 1 1 0 1
Byte 1 0 0 0 0 0 HD US US
Byte 2 Number of Data Bytes in Sector
Byte 3 Sectors per Track
Byte 4 Gap Length
ByteS Fill Byte

Figure 23. Format Track Command

Result Phase

16 Diskette Drive Controller - September 1991

Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Reserved
Byte 4 Reserved
Byte 5 Reserved
Byte 6 Reserved

Figure 24. Format Track Result

I Lock Command

I Command Phase

: I B~eO 7 6 5 4 3 2 1 o

Lock 0 o o o o

I Figure 25. Lock Command

I Result Phase

II Byte 0 0 o o Lock 0 o o o

I Figure 26. Lock Result

I Perpendicular Mode Command

I Command Phase

7 6 5 4 3 2 o

Byte 0 0 0 1 000 1 0
Byte 1 OW 0 03 02 01 00 GAP WGATE

I Figure 27. Perpendicular Mode Command

Diskette Drive Controller - September 1991 17

Read Data Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 MT MFM SK 0 0 1 1 0
Byte 1 0 0 0 0 0 HD US US
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track
Byte? Gap Length
ByteS Data Length

Figure 28. Read Data Command

Result Phase

Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte 5 Sector Number
Byte 6 Number of Data Bytes in Sector

Figure 29. Read Data Result

Read Deleted Data Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 MT MFM SK 0 1 1 0 0
Byte 1 0 0 0 0 0 HD US US
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track
Byte? Gap Length
ByteS Data Length

Figure 30. Read Deleted Data Command

18 Diskette Drive Controller-September 1991

Result Phase

Status Register 0
Status Reg ister 1
Status Register 2
Track Number
Head Address
Sector Number

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
ByteS
Byte 6 Number of Data Bytes in Sector

Figure 31. Read Deleted Data Result

Read ID Command

Command Phase

7 6 5 4 3 2 o

Byte 0
Byte 1

o
o

MFM 0
o 0

o
o

1
o

010
HD US US

Figure 32. Read ID Command

Result Phase

Status Register 0
Status Register 1
Status Register 2
Track Number
Head Address
Sector Number

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
ByteS
Byte 6 Number of Data Bytes in Sector

Figure 33. Read ID Result

Diskette Drive Controller- September 1991 19

Read Track Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 0 MFM 0 0 0 0 1 0
Byte 1 0 0 0 0 0 HD US US
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track
Byte 7 Gap Length
ByteS Data Length

Figure 34. Read Track Command

Result Phase

Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte 5 Sector Number
Byte 6 Number of Data Bytes in Sector

Figure 35. Read Track Result

Recalibrate Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 1 1 1
Byte 1 0 0 0 0 0 0 US US

Figure 36. Recalibrate Command

Result Phase: This command has no result phase.

20 Diskette Drive Controller - September 1991

Relative Seek Command

Command Phase

7

1
o

6 5

DIR 0
o 0

4

o
o

3

1
o

Byte 0
Byte 1
Byte 2 Relative Cylinder Number

Figure 37. Relative Seek Command

2 1 o

1 1 1
HD US US

Result Phase: This command has no result phase.

Scan Equal Command

Command Phase

7 6 5 4 3 2

Byte 0 MT MFM SK 1 0 0
Byte 1 0 0 0 0 0 HD
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track
Byte 7 Gap Length
Byte 8 Scan Test

Figure 38. Scan Equal Command

Result Phase

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6

Status Register 0
Status Register 1
Status Register 2
Track Number
Head Address
Sector Number
Number of Data Bytes in Sector

Figure 39. Scan Equal Result

1 0

0 1
US US

Diskette Drive Controller - September 1991 21

Scan High or Equal Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 MT MFM SK 1 1 1 0 1
Byte 1 0 0 0 0 0 HD US US
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track
Byte 7 Gap Length
Byte 8 Scan Test

Figure 40. Scan High or Equal Command

Result Phase

Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte 5 Sector Number
Byte 6 Number of Data Bytes in Sector

Figure 41. Scan High or Equal Result

Scan Low or Equal Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 MT MFM SK 1 1 0 0 1
Byte 1 0 0 0 0 0 HD US US
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-of-Track
Byte 7 Gap Length
Byte 8 Scan Test

Figure 42. Scan Low or Equal Command

22 Diskette Drive Controller-September 1991

Result Phase

Status Register 0
Status Reg ister 1
Status Register 2
Track Number
Head Address
Sector Number

Byte 0
Byte 1
Byte 2
Byte 3
Byte 4
Byte 5
Byte 6 Number of Data Bytes in Sector

Figure 43. Scan Low or Equal Result

Seek Command

Command Phase

7

o
o

6

o
o

5

o
o

4

o
o

3

1
o

2

1
HD

Byte 0
Byte 1
Byte 2 New Track Number after Seek

Figure 44. Seek Command

1
US

o

1
US

Result Phase: This command has no result phase.

Sense Drive Status Command

Command Phase

Byte 0
Byte 1

7

o
o

6

o
o

5

o
o

4

o
o

3

o
o

2 1 o

100
HD US US

Figure 45. Sense Drive Status Command

Result Phase

I Byte 0 Status Register 3

Figure 46. Sense Drive Status Result

Diskette Drive Controller - September 1991 23

Sense Interrupt Status Command

Command Phase

I B~.O 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0

Figure 47. Sense Interrupt Status Command

Result Phase

Byte 0 Status Register 0
Byte 1 Present Track Number

Figure 48. Sense Interrupt Status Result

Specify Command

Command Phase

7 6 5 4 3 2 o

o o o o o 0 Byte 0
Byte 1
Byte 2

Stepping Rate Time
Head Load Time

Head Unload Time
ND

Figure 49. Specify Command

Result Phase: This command has no result phase.

24 Diskette Drive Controller-September 1991

Verify Command

Command Phase

7 6 5 4 3 2 0

Byte 0 MT MFM SK 1 0 1 1 0
Byte 1 EC 0 0 0 0 HD US US
Byte 2 Cylinder Address
Byte 3 Head Address
Byte 4 Sector Address
Byte 5 Sector size
Byte 6 End-of-Track
Byte 7 Gap Length
ByteS Byte Transfer Control

Figure 50. Verify Command

Result Phase

Byte 0 Status Register 0
Byte 1 Status Reg ister 1
Byte 2 Status Register 2
Byte 3 Cylinder Address
Byte 4 Head Address
Byte 5 Sector Address
Byte 6 Sector size

Figure 51. Verify Result

Version Command

Command Phase

I
7 6 5 4 3 2 1 0

Byte 0 0 0 0 0 0 0 0

Figure 52. Version Command

Result Phase

Byte 0 0 0 X 0 0 0 0

Note - x can be a 1 or a o.

Figure 53. Version Result

Diskette Drive Controller - September 1991 25

Write Data Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 MT MFM 0 0 0 1 0 1
Byte 1 0 0 0 0 0 HD US US
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-ot-Track
Byte 7 Gap Length
ByteS Data Length

Figure 54. Write Data Command

Result Phase

Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte 5 Sector Number
Byte 6 Number ot Data Bytes in Sector

Figure 55. Write Data Result

Write Deleted Data Command

Command Phase

7 6 5 4 3 2 1 0

Byte 0 MT MFM 0 0 1 0 0 1
Byte 1 0 0 0 0 0 HD US US
Byte 2 Track Number
Byte 3 Head Address
Byte 4 Sector Number
Byte 5 Number of Data Bytes in Sector
Byte 6 End-ot-Track
Byte 7 Gap Length
ByteS Data Length

Figure 56. Write Deleted Data Command

26 Diskette Drive Controller - September 1991

Result Phase

Byte 0 Status Register 0
Byte 1 Status Register 1
Byte 2 Status Register 2
Byte 3 Track Number
Byte 4 Head Address
Byte 5 Sector Number
Byte 6 Number of Data Bytes in Sector

Figure 57. Write Deleted Data Result

Invalid Command Status

Result Phase: The following status byte is returned to the system
microprocessor when an invalid command has been received.

I Byte 0 Status Register 0 = hex 80

Figure 58. Invalid Command Result

Note: Bits 6 and 7 in Status Register 0 are used to indicate command
status. When an invalid command is processed, this
information is returned to the system microprocessor in the
Invalid Command Status byte.

Diskette Drive Controller - September 1991 27

Command Status Registers

This section provides definitions for status registers 0 through 3.

Status Register 0

Bit Function

7, 6 Interrupt Code
5 Seek End
4 Equipment Check
3 Reserved
2 Head Address
1, 0 Drive Select

Figure 59. Status Register 0

Bits 7, 6 These bits indicate the command interrupt status.

Bits 76

00
01
10
1 1

Function

Normal Termination of Command
Abnormal Termination of Command
Invalid Command Issued
Reserved

Figure 60. Status Register 0 (Bits 7, 6)

Bit5

Blt4

Blt3

BIt2

Bit 1,0

This bit is set to 1 when the diskette drive completes the
Seek or Recalibrate command, or a read or write
operation with an implied Seek command.

This bit is set to 1 if the '-track 0' signal fails to occur after
the Recalibrate command is issued or Relative Seek
command to step outward beyond track O.

Reserved. This bit is always set to O.

This bit indicates the state of the '-head select' signal after
the command was performed. When set to 1, head 1 was
selected; when set to 0, head 0 was selected.

These bits indicate the drive that was selected upon
command completion.

28 Diskette Drive Controller - September 1991

Bits 1 0 Function

00 Drive 0
01 Drive 1
10 Drive 2
1 1 Drive 3

Figure 61. Status Register 0 (Bits 1, 0)

Status Register 1

Bit Function

7 End-of-Track
6 Reserved
5 Cyclic Redundancy Check (CRC) Error
4 Overrun/Underrun Error
3 Reserved
2 No Data
1 Not Writable
o Missing Address Mark

Figure 62. Status Register 1

Bit 7 This bit is set to 1 when the controller tries to gain access
to a sector beyond the final sector of a track.

Bit 6 Reserved. This bit is always set to O.

Bit 5 This bit is set to 1 when a CRC error is detected in the 10
or data field.

Bit 4 This bit is set to 1 if the system does not service the
diskette drive controller within an adequate period of time
during data transfers.

Bit 3 Reserved. This bit is always set to O.

Bit 2 This bit is set to 1 when:

• The controller cannot find the sector specified in the
10 register during the execution of a Read Data, Read
Deleted Data, or Read 10 or Read Track command.

• The controller cannot read the 10 field without an error
during the execution cif a Read 10 command

• The starting sector cannot be found during the
execution of a Read Track command.

Bit 1 This bit is set to 1 when the '-write-protect' signal is active
during a Write Data, Write Deleted Data, or Format Track
command.

Diskette Drive Controller-September 1991 29

Bit 0 This bit is set to 1 if the controller cannot detect an
address mark. When this occurs, bit 0 of Status Register 2
indicates whether the missing address mark is an
10-address mark or a data-address mark.

Status Register 2

Bit Function

7 Reserved
6 Control Mark
5 CRC Error in Data Field
4 Wrong Track
3 Scan Equal
2 Scan Not Satisfied
1 Bad Track
o Missing Address Mark in Data Field

Figure 63. Status Register 2

Bit 7 Reserved. This bit is always set to O.

Bit 6 This bit is set to 1 when the controller encounters a sector
that has a deleted data-address mark during a Read Data
or a Read Deleted Data encounters a data address mark.

Bit 5 This bit is set to 1 if the controller detects an error in the
data.

Bit 4 This bit is set to 1 when the track number on the media is
different from the track number issued by the command.
When this occurs, bit 2 of Status Register 1 is also set to 1.

Bit 3 This bit is set to 1 during the Scan command when the
conditions for "Equal" are satisfied.

Bit 2 This bit is set to 1 during the Scan Command when the
scan conditions are not satisfied.

Bit 1 This bit is set to 1 when the track number on the media is
hex FF and the track number value stored in the 10
register is not hex FF. When this occurs, bit 2 of Status
Register 1 is also set to 1.

Bit 0 This bit is set to 1 when the controller cannot find a
data-address mark. This bit is set to 0 when an
10-address mark cannot be found. Bit 0 in Status Register
o is also set if either address mark cannot be found.

30 Diskette Drive Controller-September 1991

Status Register 3

Bit Function

7 Reserved
6 Write Protect
5 Reserved
4 Track 0
3 Reserved
2 Head Address
1, 0 Drive Select

Figure 64. Status Register 3

Bit 7 Reserved. This bit is always set to O.

Bit 6 This bit indicates the status of the '-write-protect' signal
from the diskette drive. When this bit is set to 1, the
'-write-protect' signal is active.

Bit 5 Reserved. This bit is always set to 1.

Bit 4 This bit indicates the status of the '-track 0' signal from the
diskette drive. When this bit is set to 1, the '-track 0'
signal is active.

Bit 3 Reserved. This bit is always set to 1.

Bit 2 This bit indicates the status of the '-head 1 select' signal
from the diskette drive. When this bit is set to 1, the
'-head 1 select' signal is active.

Bits 1, 0 These bits indicate the current selected drive.

Diskette Drive Controller - September 1991 31

Interface Signal Descriptions

The following section describes the interface signals to the diskette
drive.

Output Signals

All output signals to the diskette drive operate between S V dc and
ground, with the following definitions:

• The inactive level is 2.0 V dc minimum.

• The active level is 0.8 V dc maximum.

-HIGH DENSITY SELECT: When this signal is active, the 2MB mode
is selected. Diskettes are formatted with 18 sectors per track and a
capacity of 1.44MB. When this signal is inactive, the 1MB mode is
selected. Diskettes are formatted with 9 sectors per track and a
capacity of 720KB.

DATA RATE SELECT 0 -1: These signals are driven by the system to
I select the data rate of devices on the diskette drive interface. These
I signals are controlled by the data-rate-select bits (see Figure 12 on
I page 9).

-DRIVE SELECT: The drive-select signal enables or disables all
drive interface signals except -MOTOR ENABLE. When the drive select
signal is active, the drive is enabled. When it is inactive, all
controlled inputs are ignored and all drive outputs are disabled.

-MOTOR ENABLE: When this signal is made active, the spindle
starts to turn. There must be a SOO-millisecond minimum delay after
-MOTOR ENABLE becomes active before a read, write, or seek
operation is initiated (7S0 milliseconds for S.2S-inch drive types).
When inactive, this signal causes the spindle motor to decelerate and
stop.

-DIRECTION IN: When this signal is active, -STEP moves the heads
toward the drive spindle. When this signal is inactive, -STEP moves
the heads away from the drive spindle. This signal is stable for at
least 1 microsecond before and after the trailing edge of the -STEP
pulse.

Note: After a direction change, a 1S-millisecond minimum delay is
required before the next '-step' pulse is issued.

32 Diskette Drive Controller - September 1991

-STEP: A 1-microsecond active pulse of this signal causes the
read/write heads to move one track. The state of -DIRECTION at the
trailing edge of -STEP determines the direction of motion.

Note: A 15-millisecond seek settle time must be provided after the
last step pulse occurs before a read, write, or seek operation
initiated.

-WRITE DATA: A 125-nanosecond minimum pulse of this signal
causes a flux reversal to occur on the media if -WRITE ENABLE is
active.

-WRITE ENABLE: When active, this signal enables the write current
circuits and -WRITE DATA controls the writing of information.
Motor-start and head-settle times must be observed before this signal
becomes active.

-HEAD 1 SELECT: When active, this signal selects the upper head;
when inactive, the lower head is selected.

Diskette Drive Controller - September 1991 33

Input Signals

All input signals from the drive can sink 4.0 milliamperes at the active
level.

• The inactive level is 3.7 V dc minimum.
• The active level is 0.4 V dc maximum.

DRIVE TYPE ID 0 -1: These signals provide encoded drive-type
information to the system when the drive is selected.

MEDIA TYPE ID 0 -1: These signals provide encoded media-type
information to the system when the drive is selected.

-INDEX: When the drive senses the index, it generates an active
pulse of at least 1 millisecond on this line.

-TRACK 0: This signal is active when the read/write head is on track
o. Track 0 is determined by a sensor, not a track counter.

The drive can seek to track 0, under control of the system even if no
diskette is installed. This allows system software to determine how
many drives there are attached to the system. Software selects each
drive and attempts to recalibrate that drive to track O. The track 0
indication determines whether or not each drive is installed in the
system.

-WRITE PROTECT: When this signal is active the drive cannot write
data to the diskette.

-READ DATA: Each flux reversal detected on the media provides a
125-nanosecond minimum active pulse on this line.

-DISKETTE CHANGE: This signal is active at power-on and latched
inactive when a diskette is present, the drive is selected and a step
pulse occurs. This signal goes active when the diskette is removed
from the drive. The presence of a diskette is determined by a sensor.

34 Diskette Drive Controller-September 1991

Connector

Signals and voltages are transferred between the system board and
the diskette drives by a cable or printed-circuit board. The
printed-circuit board provides a 2- by 20-pin card edge connector for
each diskette drive, with a locator key between pins 34 and 36. The
cable interface provides a 2 x 17 pin header connector to each
diskette drive, with a locator key below pin 17.

The following figures show the signals and DC voltages for each
diskette drive connector type:

Pin Signal Pin Signal

1 Ground 2 -High Density Select
3 Reserved 4 Reserved
5 Ground 6 Reserved
7 Ground 8 -Index
9 Ground 10 Reserved

11 Ground 12 -Drive Select
13 Ground 14 Reserved
15 Ground 16 -Motor Enable
17 Ground 18 -Direction In
19 Ground 20 -Step
21 Ground 22 -Write Data
23 Ground 24 -Write Enable
25 Ground 26 -Track 0
27 Ground 28 -Write Protect
29 Ground 30 -Read Data
31 Ground 32 -Head 1 Select
33 Ground 34 -Diskette Change
35 Ground 36 Ground
37 Ground 38 +5Vdc
39 Ground 40 +12V dc

Figure 65. Diskette Drive Connector Signal Assignments For the 40-pin
Card Edge Interface

Diskette Drive Controller - September 1991 35

Pin Signal Pin Signal

1 Signal Return 2 -High Density Select
3 +5Vdc 4 Drive Type 10 1
5 Signal Return 6 +12 V dc
7 Signal Return 8 -Index
9 Signal Return 10 Reserved

11 Signal Return 12 -Drive Select
13 Signal Return 14 Reserved
15 Signal Return 16 -Motor Enable
17 Signal Return 18 -Direction In
19 Signal Return 20 -Step
21 Signal Return 22 -Write Data
23 Signal Return 24 -Write Enable
25 Signal Return 26 -Track 0
27 Signal Return 28 -Write Protect
29 Signal Return 30 -Read Data
31 Signal Return 32 -Head 1 Select
33 Signal Return 34 -Diskette Change

Figure 66. Diskette Drive Connector Signal Assignments For the 34-pin
Header Interface

I Pin Signal Pin Signal

i
1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33

Signal Return
+5Vdc
Signal Return
Signal Return
Drive Type 10 0
Signal Return
Signal Return
Signal Return
Media Type 10 1
Signal Return
Signal Return
Signal Return
Signal Return
Media Type 10 0
Signal Return
Signal Return
Data Rate Select 0

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34

Data Rate Select 1
Drive Type 10 1
+ 12 V dc
-Index
Reserved

-Drive Select
Reserved

-Motor Enable
-Direction In
-Step
-Write Data
-Write Enable
-Track 0
-Write Protect
-Read Data
-Head 1 Select
-Diskette Change

I Figure 67.
I

Diskette Drive Connector Signal Assignments For the Enhanced
34-Pin Header Interface

36 Diskette Drive Controller- September 1991

Index

C
clock rate 2
command phase 10
command status registers 28
command summary 10,11
command symbols 11
commands 10

format track 16
invalid command status 27
lock 17
perpendicular mode 17
read data 18
read deleted data 18
read id 19
read track 20
recalibrate 20
scan equal 21
scan high or equal 22
scan low or equal 22
sense drive status 23
sense interrupt status 24
specify 24
write data 26
write deleted data 26

configure command 15
connector 35
connector voltages, diskette

drive 35
controller registers 3

D
data rate control register 10
data register 9
data width conversions 2
digital input register 9
digital output 5
digital output register 5
diskette command symbols 11
diskette drive connector 35
diskette drive controller 10

© Copyright IBM Corp. 1991

diskette drive controller status
register 7

drive status register 5
dumpreg command 16

E
execution phase 10

F
FIFO compatibility 3
format track command 16

I
input signals 34
interface signal descriptions 32
invalid command status 27

L
lock command 17

M
multi byte transfer 10

o
output signals 32
output, digital 5

p
perpendicular mode command 17
precompensation select register 8
programming considerations 10

R
read data command 18
read deleted data command 18

37

read id command 19
read track command 20
recalibrate command 20
registers

data 9
data rate control 10
digital input 9
digital output 5
diskette drive controller

status 7
status register A 4
status register B 4
status register 0 28
status register 1 29
status register 2 30
status register 3 31

registers, command status 28
registers, controller 3
relative seek command 21
reserved register 9
result phase 10

S
scan equal command 21
scan high or equal command 22
scan low or equal command 22
seek 23
seek command 23
sense drive status command 23
sense interrupt status

command 24
specify command 24
status register 7
status register A 4
status register B 4
status register 0 28
status register 1 29
status register 2 30
status register 3 31
switching density 2

V
verify command 25

38

W
write data command 25, 26
write deleted data command 26

Keyboard and Auxiliary Device Controller

Description 1
Keyboard Password 2

I Scan Code Translation 4
Controller Status Register 6

Input and Output Buffers 7
Input and Output Ports 8
Controller Commands 9

Keyboard and Auxiliary Device Programming Considerations .. 14
Auxiliary Device and System Timings 15

System Receiving Data 15
System Sending Data 16

Signals 18
Connector 18

© Copyright IBM Corp. 1991

Notes:

II

Figures

1. Keyboard Controller Translation 4
2. Controller Status Register, Read Port Hex 0064 6
3. Input Port Definitions 8
4. Output Port Definitions 9
5. Controller Command Byte 10
6. Auxiliary Device Interface Test 12
7. Bit Definitions of Auxiliary-Device Data Stream 15
8. Receiving Data Timings 16
9. Sending Data Timings 17

10. Keyboard and Auxiliary Device Signals 18
11. Keyboard and Auxiliary Device Connector Information ... 18

© Copyright IBM Corp. 1991 iii

Notes:

iv Keyboard/Auxiliary Device Controller-September 1991

Description

Input to the keyboard and auxiliary device controllers is through two
connectors at the rear of the system unit. One connector is dedicated
to the keyboard, the other is available for an auxiliary device. An
auxiliary device can be any type of serial input device compatible
with the controller interface. The device types include:

• Mouse
• Touchpad
• Trackball.

Both Type 1 and Type 2 controllers receive the serial data, check the
parity, and present the data to the system as a byte of data at data
port hex 0060. The Type 2 controller provides only 7 of the 32 internal
addresses available on the Type 1, and two commands are not
available on the Type 2. Also, the Type 1 controller can translate
keyboard scan codes, and the Type 2 cannot. (To determine which
controller is present, see the description for bit 6 of the Controller
Command byte on page 10.)

I Note: Because the Type 1 controller supports translation and the
I Type 2 does not, the keyboard must provide both scan-set 1
I and scan-set 2.

The controller interrupts the system when data is available or waits
for polling from the system microprocessor.

Address hex 0064 is the command/status port. When the system
reads port hex 0064, it receives status information from the controller.
When the system writes to the port, the controller interprets the byte
as a command.

Secondary circuit protection is provided on the system board for the
+5 V dc line to the keyboard and auxiliary device.

Keyboard/Auxiliary Device Controller-September 1991 1

Keyboard Password
Legal password characters are restricted to the 128 ASCII character
set. The password can be up to seven bytes long but must be
installed using the keyboard scan codes less than hex 80 (the
controller does not compare keyboard scan codes greater than hex
7F). Scan code set 1 is recommended for all password operations.

While the password is enabled, the controller compares the incoming
keyboard scan code against the installed password, and it discards
all data from the keyboard and auxiliary device that does not match
the password. After a match occurs, the controller is restored to
normal operation and data is again passed to the system
microprocessor.

The controller provides three commands for keyboard password
operation; it does not provide a command to verify the installed
password.

A4 Test Password Installed
AS Load Password
A6 Enable Password.

The Test Password Installed command determines if a keyboard
password is currently installed. The controlling program can use this
command to determine if a keyboard password is loaded before
enabling the password.

The Load Password command allows the system microprocessor to
set a keyboard password in the controller at any time. The existing
password is lost, and the new password becomes active. The
keyboard password can be changed at any time and must be installed
in scan-code format.

2 Keyboard/Auxiliary Device Controller-September 1991

The Enable Password command places the controller in the secure
mode. While in the secure mode, the controller intercepts the
keyboard data stream and continuously compares it to the installed
password pattern. The controller does not pass any information to
the system microprocessor or accept any commands while the
keyboard password is enabled. (To enable the 'address 20' signal
while the password is enabled, use System Control Port A at address
hex 0092.)

The controller provides four internal RAM locations to support the
keyboard password: addresses hex 13, ·14, 16, and 17. See
"Controller Commands" on page 9 for the commands on reading and
writing to these locations.

Hex Address Description

13 Security on: If this byte is nonzero when the password is
enabled, the controller loads this byte into the output
buffer and generates a system interrupt.

14 Security off: If this byte is nonzero when the password is
matched, the controller loads this byte into the output
buffer and generates a system interrupt.

16 and 17 Make 1 and 2: While the password is enabled, the
controller first compares the incoming scan code against
these two bytes. If the incoming scan code matches one
of these two bytes, the scan code is discarded before it is
compared to the password. This allows the controller to
ignore certain keystrokes such as that for the right and left
shift keys.

Keyboard/Auxiliary Device Controller-September 1991 3

I Scan Code Translation

I When the Type 1 controller is in the translate mode, it converts
I incoming codes and presents the new code at its output port. When
I the controller receives a hex FO, it translates the next code received
I and ANDs the translated value with hex 80. For example,

I Hex 47 ;s translated to hex 60
I Hex F0 47 is translated hex E0 (60 AND S0)

I
Hex 77 ;s translated to hex 45
Hex F0 77 is translated to hex C5 (45 AND S0).

I The following figure shows how the input codes are translated.

4 Keyboard/Auxiliary Device Controller-September 1991

I Input Output Input Output Input Output

00 FF 30 69- 60 55-
01 43 31 31 61 56-
02 41 32 30 62 77*
03 3F 33 23 63 78-
04 3D 34 22 64 79-
05 3B 35 15 65 7A-
06 3C 36 07 66 OE
07 58- 37 5E- 67 7B-
08 64- 38 6A- 68 7C-
09 44 39 72- 69 4F
OA 42 3A 32 6A m-
OB 40 3B 24 6B 4B
OC 3E 3C 16 6C 47
00 OF 3D 08 60 7E-
OE 29 3E 09 6E 7F-
OF 59- 3F 5F- 6F 6F-
10 65- 40 6B- 70 52
11 38 41 33 71 53
12 2A 42 25 72 50
13 70- 43 17 73 4C
14 10 44 18 74 40
15 10 45 OB 75 48
16 02 46 OA 76 01
17 5A- 47 60- 77 45
18 66- 48 6C- 78 -
19 71- 49 34 79 4E
1A 2C 4A 35 7A 51
1B 1F 4B 26 7B 4A
1C 1E 4C 27 7C 37
10 11 40 19 70 49
1E 03 4E OC 7E 46
1F 5B- 4F 61- 7F 54
20 67* 50 60- 80 -
21 2E 51 73- 81 -
22 20 52 28 82 -
23 20 53 74- 83 41
24 12 54 1A 84 54
25 05 55 00
26 04 56 62- FO --
27 5C- 57 6E-
28 68- 58 3A
29 39 59 36
2A 2F 5A 1C
2B 21 5B 1B
2C 14 5C 75-
20 13 50 2B
2E 06 5E 63-
2F 50- 5F 76-

- These scan codes are reserved.
-- FO is reserved for two-byte translations.

I Figure 1. Keyboard Control/er Translation

Keyboard/Auxiliary Device Controller- September 1991 5

Controller Status Register

The following table shows the Controller Status register.

Bit

7
6
5
4
3
2
1
o

Function

Parity Error
General Time-Out
Auxiliary Device Output Buffer Full
Inhibit Switch
Command/Data
System Flag
Input Buffer Full
Output Buffer Full

Figure 2. Controller Status Register, Read Port Hex 0064

Note: On the Type 1 controller, commands C1 and C2
place data in bits 7 through 4 of the Controller
Status register. See commands C1 and C2 on page
12 for more information.

Bit 7 When set to 0, this bit indicates that the iast byte of data
received from the keyboard had odd parity. When a parity
error occurs, this bit is set to 1 and hex FF is placed in the
output buffer (the keyboard and auxiliary device use odd
parity).

Bit 6 When set to 1, this bit indicates that a transmission was
started by the keyboard but did not finish within the
receive time-out delay, or that a transmission was started
by the controller but the byte transmitted was not clocked
out within the specified time limit.

When a receive time-out occurs, the controller places a
hex FF in the output buffer. When a transmit time-out
occurs, the controller places a hex FE in the output buffer.

The Type 1 controller also indicates a transmit time-out if
a transmission was started and:

• The byte was clocked out, but a response was not
received within the time limit (only this bit is set to 1).

• The byte was clocked out, but a response indicates a
parity error (this bit and bit 7 are both set to 1).

6 Keyboard/Auxiliary Device Controller- September 1991

Bit 5 This bit works in conjunction with bit O. When this bit and
bit 0 are set to 1, auxiliary device data is in the output
buffer. When this bit is set to 0 and bit 0 is set to 1,
keyboard or command controller response data is in the
output buffer.

Bit 4 When set to 0, this bit indicates the password state is
active and the keyboard is inhibited. When set to 1, this
bit indicates the password state is inactive and the
keyboard is not inhibited. See "Keyboard Password" on
page 2 for more information.

Bit 3 The keyboard controller input buffer can be addressed as
either address hex 0060 or 0064. Address hex 0060 is
defined as the data port, and address hex 0064 is defined
as the command/status port. Writing to address hex 0064
sets this bit to 1. The controller uses this bit to determine
if the byte in its input buffer should be interpreted as a
command byte or a data byte.

Bit 2 This bit is set to 0 or 1 by writing to the system flag bit (bit
2) in the Controller Command byte. This bit is set to 0
after a power-on reset.

Bit 1 When set to 1, this bit indicates that data has been written
into the buffer, but the controller has not read the data.
When the controller reads the input buffer, this bit returns
to 0, indicating that the input buffer is empty.

On the Type 2 controller, this bit is also set to 1 while
transmitting to the keyboard or auxiliary device. After the
last bit is sent, this bit is reset to O.

Bit 0 When set to 1, this bit indicates the controller has placed
data into its output buffer but the system microprocessor
has not yet read the data. When the system
microprocessor reads the output buffer (address hex
0060), this bit returns to O.

Input and Output Buffers

The output buffer is an 8-bit, read-only register at address hex 0060.
When the output buffer is read, the controller sends information to the
system microprocessor. The information can be keyboard scan
codes, auxiliary device data, or data bytes from a controller
command.

Note: Do not read the output port (address hex 0060) unless the
output-buffer-full bit in the Controller Status register is 1.

Keyboard/Auxiliary Device Controller - September 1991 7

The input buffer is an 8-bit, write-only register at address hex 0060 or
address hex 0064. When the input butter is written to, the
input-butter-full bit (bit 1) in the Controller Status Byte is set to 1.
Data written to the input butter through address hex 0064 is
interpreted as a controller command. Data written to address hex
0060 is sent to the keyboard, unless the controller expects a data byte
following a controller command. Bit 3 of the Controller Status
register indicates whether the contents of the input buffer is a
command or a data byte.

Note: Do not write to the input port (address hex 0060) unless the
input-butfer-full bit in the Controller Status register is O.

Input and Output Ports

The input port consists of two signals driven to the controller by the
keyboard and auxiliary device. The output port consists of eight
signals driven by the controller to the keyboard, auxiliary device, or
system interface. The following tables show the input port and the
output port bytes.

Bit Function

7 - 2 Reserved
1 Auxiliary Data In
o Keyboard Data In

Figure 3. Input Port Definitions

Bit 7 - 2 Reserved.

Bit 1 This bit reflects the state of the 'data' line driven by the
auxiliary device. For more information on the auxiliary
device 'data' line, see "Auxiliary Device and System
Timings" on page 15.

Bit 0 This bit retlects the state of the 'data' line driven by the
keyboard.

8 Keyboard/ Auxi liary Device Controller - September 1991

Bit

7
6
5
4
3
2
1
o

Function

Keyboard Data Out
Keyboard Clock Out
IR012
IR001
Auxiliary Clock Out
Auxiliary Data Out
Gate Address Line 20
Reset Microprocessor

Figure 4. Output Port Definitions

Bit 7 This bit reflects the state of the 'data' line driven by the
controller to the keyboard.

Bit 6 This bit reflects the state of the 'clock' line driven by the
controller to the keyboard.

Bit 5 When set to 1, this bit indicates an interrupt has been
generated by data from the auxiliary device in the output
buffer. When the system reads the data from address hex
0060, this bit will be set to O.

Bit 4 When set to 1, this bit indicates an interrupt has been
generated by data from the keyboard or a command in the
output buffer. When the system reads the data from
address hex 0060, this bit will be set to O.

Bit 3 This bit reflects the state of the 'clock' line driven by the
controller to the auxiliary device.

Bit 2 This bit reflects the state of the 'data' line driven by the
controller to the auxiliary device.

Bit 1 When this bit and bit 1 in port hex 0092 are set to 0, the
system address line A20 is disabled and set to O. This bit
is set to 1 at power-on. (See "System Control Port AU in
the system-specific technical reference.)

Bit 0 When set to 0, this bit resets the system microprocessor
and holds it reset until the bit is set to 1.

Controller Commands

A command is a data byte written to the controller through address
hex 0064. The commands are listed in order of their hex values;
commands not listed are reserved.

Keyboard/Auxiliary Device Controller-September 1991 9

20-3F

Bit

7
6
5
4
3
2
1
o

Read Controller RAM: This command causes the
controller to return the data contained in the internal
address specified by bits 5 through 0 of this command.
Internal address hex 00 is assigned as the Controller
Command byte. The Type 2 controller supports only the
internal addresses hex 00,13,14,16,17,10, and 1F.

Command hex 20 requests a read operation of the
Controller Command byte. The controller returns the data
to port hex 0060.

Function

Reserved
Keyboard Translate
Disable Auxiliary Device
Disable Keyboard
Reserved
System Flag
Enable Auxiliary Interrupt
Enable Keyboard Interrupt

Figure 5. Control/er Command Byte

Bit 7 This bit is reserved.

Bit 6 When this bit is set to 1, the Type 1 controller translates
the incoming keyboard scan codes to scan set 1. When
this bit is set to 0, the controller passes the incoming scan
codes without translation. Following power-on or a
keyboard reset, the keyboard transmits using scan code
set 2.

On the Type 2 controller, this bit cannot be set to 1;
therefore, it can be used to determine the type of
controller. Writing this bit as a 1 and reading it as a 0
indicates a Type 2 controller.

For keyboard operations that are compatible with IBM
Personal Computers, the Type 1 controller is placed in the
translate mode. To perform the same operations with the
Type 2 controller, the keyboard is set up to transmit in
scan code set 1 by using the Select Alternate Scan Codes
command (see the Keyboard section for more
information).

Note: For Type 1 controllers, this bit must be set to 0
while requesting the keyboard for its scan set. This
prevents the controller from translating the
keyboard response.

10 Keyboard/Auxiliary Device Controller-September 1991

Bit S

Bit4

Bit 3

Bit 2

Bit 1

Bit 0

60 -7F

Setting this bit to 1 disables the auxiliary device interface
by driving the 'clock' line low. Data is not received while
the interface is disabled.

Setting this bit to 1 disables the keyboard interface by
driving the 'clock' line low. Data is not received while the
interface is disabled.

This bit is reserved.

The value written to this bit is placed in the system flag bit
of the Controller Status register.

Setting this bit to 1 causes the controller to generate an
interrupt (IRQ 12) when it places auxiliary device data into
its output buffer.

Setting this bit to 1 causes the controller to generate an
interrupt (IRQ 1) when it places keyboard or command
controller response data into its output buffer.

Write to Controller RAM: Bits 5 through 0 of the command
specify the address. Internal address hex 00 is assigned
as the Controller Command byte. The Type 2 controller
supports only the internal addresses hex 00, 13, 14, 16, 17,
10, and 1F.

Warning: On the Type 2 controller, writing to unsupported
internal addresses can cause the data to be transmitted to
the keyboard.

Command hex 0060 writes the Controller Command byte.
The next byte of data written to address hex 0060 is placed
in the Controller Command byte.

A4 Test Password Installed: This command checks for a
password currently installed in the controller. The test
result is placed in the output buffer (address hex 0060 and
IRQ 01). Hex FA means the password is installed; hex F1
means it is not installed.

AS Load Password: This command initiates the Password
Load procedure. Following this command, the controller
takes input from the data port until a null (0) is detected.
The null terminates password entry. (See "Keyboard
Password" on page 2.)

A6 Enable Password: This command enables the controller
password feature. This command is valid only when a
password pattern is currently loaded in the controller.
(See "Keyboard Password" on page 2.)

Keyboard/Auxiliary Device Controller-September 1991 11

A7 Disable Auxiliary Device Interface: This command sets bit
5 of the Controller Command byte to 1. This disables the
auxiliary device interface by driving the 'clock' line low.
Data is not received while the interface is disabled.

AS Enable Auxiliary Device Interface: This command sets bit
5 of the Controller Command byte to 0, releasing the
auxiliary device interface.

I A9 Auxiliary Device Interface Test: This command causes the
I Type 1 controller to test the auxiliary device 'clock' and
I 'data' lines. The following are the test results returned in
I the output buffer. (This command is not supported in the
I Type 2 controller.)

I Test
I Result Description

I 00 No error detected
I 01 The 'clock' line is stuck low.

II

I 02 The 'clock' line is stuck high.
03 The 'data' line is stuck low.
04 The 'data' line is stuck high.

I Figure 6. Auxiliary Device Interface Test

AD Disable Keyboard Interface: This command sets bit 4 of
the Controller Command byte to 1. This disables the
keyboard interface by driving the 'clock' line low. Data is
not received while the interface is disabled.

AE Enable Keyboard Interface: This command clears bit 4 of
the Controller Command byte to 0, releasing the keyboard
interface.

CO Read Input Port: This command causes the controller to
read its input port and place the data in its output buffer.

I C1 Poll Input Port Low: This command is not supported by
I either the Type 1 orType 2 controllers. See command C3.

C2 Poll Input Port High: This command causes the Type 1
controller to read its input port bits 7 through 4 and place
them in bits 7 through 4 of the Controller Status register.
This command is not supported by the Type 2 controller.

I C3 Poll Input Port Low: This command causes the Type 1
I controller to read its input port bits 3 through ° and place
I them in bits 7 through 4 of the Controller Status register.
I This command is not supported by the Type 2 controller.

12 Keyboard/Auxiliary Oevice Controller-September 1991

DO Read Output Port: This command causes the controller to
read its output port and place the data in its output buffer.
This command should be used only if the output buffer is
empty.

D1 Write Output Port: The next byte of data written to address
hex 0060 is placed in the controller output port. For this
command, the Type 2 controller supports writing to only
bit 1 (gate A20).

Note: For Type 1 controllers, bit 0 of the output port is
connected to the 'reset' signal of the system
microprocessor. Pulsing this bit resets the system.

D2 Write Keyboard Output Buffer: The next byte written to
address hex 0060 input buffer is written to address hex
0060 output buffer as if initiated by the keyboard. An
interrupt occurs if the interrupt is enabled.

D3 Write Auxiliary Device Output Buffer: The next byte
written to address hex 0060 input buffer is written to
address hex 0060 output buffer as if initiated by an
auxiliary device. An interrupt occurs if the interrupt is
enabled.

D4 Write to Auxiliary Device: The next byte written to
address hex 0060 input buffer is transmitted to the
auxiliary device.

I EO Read Test Inputs: This command causes the Type 2
I controller to read its test inputs and place the results in

the output buffer. Test 0 (TO) is connected to the keyboard
'clock' line, and test 1 (T1) is connected to the auxiliary
device 'clock' line. Data bit 0 represents TO, and data bit 1
represents T1.

FO - FF

Note: For the Type 1 controller, these two bits are always
returned as O.

Pulse Output Port: This command pulses selected bits in
the controller output port for approximately 6
microseconds. Bits 3 through 0 select the respective bits
in the controller output port. For example, when bit 0 of
this command is set to 0, bit 0 of the output port is pulsed
and the system microprocessor is reset.

Note: The only command supported for the Type 2
controller is hex FE, pulse bit O.

Keyboard/Auxiliary Device Controller-September 1991 13

Keyboard and Auxiliary Device Programming
Considerations

The following are some programming considerations for the keyboard
and auxiliary device controller:

• The Controller Status register (hex 0064) can be read at any time.

• The output port (address hex 0060) should not be read unless the
output-buffer-full bit in the Controller Status register is 1.

• The auxiliary-device-output-buffer-full bit in the Controller Status
register indicates that the data in address hex 0060 came from
the auxiliary device.

• Address hex 0060 and hex 0064 should be written to only when
the input-buffer-full bit and output-buffer-full bit in the Controller
Status register are O.

• To ensure that the buffer data is valid, disable the keyboard and
auxiliary devices before initiating a command that causes the
controller to generate output at port 60 (such as commands D1
and 03).

• When polling the Type 1 controller for the output-buffer-full
condition, wait 7 microseconds from the buffer-full indication in
the Controller Status register before reading the output buffer.

14 Keyboard/Auxiliary Device Controller - September 1991

Auxiliary Device and System Timings

Data transmissions to and from the auxiliary device connector consist
of an 11-bit data stream sent serially over the 'data' line. The
following table shows the function of each bit.

Bit

11
10

9
8
7
6
5
4
3
2
1

Function

Stop bit (always 1)
Parity Bit (odd parity)
Data Bit 7 (most-significant)
Data Bit 6
Data Bit 5
Data Bit4
Data Bit 3
Data Bit 2
Data Bit 1
Data Bit 0 (least-significant)
Start Bit (always 0)

Figure 7. Bit Definitions of Auxiliary-Device Data Stream

The parity bit is either 1 or 0, and the 8 data bits, plus the parity bit,
always have an odd number of 1's.

System Receiving Data

The following describes the typical sequence of events when the
system is receiving data from the auxiliary device.

1. The auxiliary device checks the 'clock' line. If the line is inactive,
output from the device is not allowed.

2. The auxiliary device checks the 'data' line. If the line is inactive,
the controller receives data from the system.

3. The auxiliary device checks the 'clock' line during the
transmission at intervals not exceeding 100 microseconds. If the
device finds the system holding the 'clock' line inactive, the
transmission is terminated. The system can terminate
transmission anytime during the first 10 clock cycles.

4. A final check for terminated transmission is performed at least 5
microseconds after the 10th clock.

5. The system can hold the 'clock' signal inactive to inhibit the next
transmission.

6. The system can set the 'data' line inactive if it has a byte to
transmit to the device. The 'data' line is set inactive when the
start bit (always 0) is placed on the 'data' line.

Keyboard/Auxiliary Device Controller-September 1991 15

7. The system raises the 'clock' line to allow the next transmission.

I The following are the timings for data received from the auxiliary
I device.

(1) (3) (3) (3) (3) (4)
1st 11th "

elK l:e::I" T4"1 eLK ITl~,(
~ T~. __ no. T2~ ___ ,_, __ -\ \ ___ ~ _________ , \

DATA ~~~ ___ ~~!_~ ___ ;i ___ -) ~ ____ X~~:~ty_~~!/ Stop Bit "" __
(6)

Tl
T2
T3
T4
T5

Timing Parameter

Time from DATA transition to falling edge of elK
Time from rising edge of elK to DATA transition
Duration of elK inactive
Duration of elK active
Time to auxiliary device inhibit after clock 11 to
ensure the auxiliary device does riot start another
transmission

Figure 8. Receiving Data Timings

System Sending Data

MiniMax

5/25jJs
5/T4 - 5 jJS
30/50 jJS
30/50 jJS
>0/50jJs

The following describes the typical sequence of events when the
system is sending data to the auxiliary device.

1. The system checks for an auxiliary device transmission in
process. If a transmission is in process and beyond the 10th
clock, the system must receive the data.

2. The auxiliary device checks the 'clock' line. If the line is inactive,
an 110 operation is not allowed.

3. The auxiliary device checks the 'data' line. If the line is inactive,
the system has data to transmit. The 'data' line is set inactive
when the start bit (always 0) is placed on the 'data' line.

4. The auxiliary device sets the 'clock' line inactive. The system
then places the first bit on the 'data' line. Each time the auxiliary
device sets the 'clock' line inactive, the system places the next bii
on the 'data' line until all bits are transmitted.

5. The auxiliary device samples the 'data' line for each bit while the
'clock' line is active. Data must be stable within 1 microsecond
after the rising edge of the 'clock' line.

16 Keyboard/Auxiliary Device Controller-September 1991

6. The auxiliary device checks for a positive-level stop bit after the
10th clock. If the 'data' line is inactive, the auxiliary device
continues to clock until the 'data' line becomes active. Then it
clocks the line-control bit and, at the next opportunity, sends a
Resend command to the system.

7. The auxiliary device pulls the 'data' line inactive, producing the
line-control bit.

8. The system can pull the 'clock' line inactive, inhibiting the
auxiliary device.

I The following are the timings for data sent to the auxiliary device.

(1) 1/0 (2) (4)
1st 2nd

Inhibit
ClK ~

ClK l

T7
T8
T9

T7 T8

- i--T9

Timing Parameter

Duration of ClK inactive
Duration of ClK active
Time from inactive to active ClK transition, used to
time when the auxiliary device samples DATA

Figure 9. Sending Data Timings

MinIMax

30/50 jJs

30/50 jJs

5125 jJs

Keyboard/Auxiliary Device Controller-September 1991 17

Signals

The keyboard and auxiliary device signals are driven by
open-collector drivers pulled to 5 V dc through a pull-up resistor. The
following lists the characteristics of the signals.

Sink Current
High-Level Output Voltage
Low-Level Output Voltage
High-Level Input Voltage
Low-Level Input Voltage

20mA
5.0 V de minus pullup
0.5 V de
2.0V de
0.8 V de

Figure 10. Keyboard and Auxiliary Device Signals

Connector

Maximum
Minimum
Maximum
Minimum
Maximum

The keyboard and auxiliary device connectors use 6-pin miniature
DIN connectors. The signals and voltages are the same for both
connectors and are assigned as shown in the following table.

Pin 1/0 Signal Name

1 1/0 Data
2 NA Reserved
3 NA Ground
4 NA +5Vde
5 1/0 Clock
6 NA Reserved

Figure 11. Keyboard and Auxiliary Device Connector Information

18 Keyboard/Auxiliary Device Controller-September 1991

Serial Port Controller

Description 1
Communications Application 3
Programmable Baud-Rate Generator 4
Modem Status Interrupts 4
FIFO Modes of Operation 5

Interrupt Mode 5
Polled Mode 7

DMA Modes of Operation 7
Receive Mode 8
Transmit Mode 8

Received Data Status Register 8
Transmit Commands 9
Modem Paci ng 10
Character Orientated Pacing 10
Receive Character Count Register 10
Byte Pacing 11
Enhanced Interrupts 11

Serial Port Controller Programming Considerations 11
Registers .. 12

Compatible Registers 12
Arbitration Register (Hex 462x) 14
Transmitter Holding Register (Base c + 0) 14
Receiver Buffer Register (Base c + 0) 15
Divisor Latch Register (Base c+ 1) 15
Divisor Latch Register (Base c + 0) 16
Interrupt Enable Register (Base c+ 1) 19
FIFO Control Register (Base c + 2) 20
Interrupt Identification Register (Base c + 2) 21
Line Control Register (Base c + 3) 25
Modem Control Register (Base c+4) 26
Line Status Register (Base c+5) 28
Modem Status Register (Base c + 6) 30
Scratch Register (Base c + 7) 31

Enhanced Registers 31
Enhanced Command Register (Base e + 0) 32
Reserved Register (Base e + 1) 33
Enhanced Interrupt ID Register (Base e + 2) 33
Enhanced Function Register 1 (Base e + 3) 35
Enhanced Function Register 2 (Base e + 4) 36
Enhanced Function Register 3 (Base e + 5) 38
Character Compare Data Register (Base e + 6) 39
Receive Character Count Register (Base e + 7) 40

© Copyright IBM Corp. 1991

Signal Descriptions 41
Modem-Control Input Signals 41

-Clear to Send (-CTS) 41
-Data Set Ready (-DSR) 41
-Ring Indicator (-RI) 41
-Data Carrier Detect (-DC D) 41

Modem-Control Output Signals 41
-Data Terminal Ready (-DTR) 41
-Request to Send (-RTS) 42

Voltage Interchange Information 42
Extended Performance Requirements 42
Connectors 44

Index .. 47

ii Serial Port Controller - September 1991

Figures

1. Serial Port Controller Block Diagram 2
2. Serial Port Register - Base Addresses 3
3. Serial Port Data Format 4
4. Received Data Status Register 8
5. Serial Port Register - Base Addresses 12
6. Serial Port Compatible Register Address Offsets 13
7. Serial Port Enhanced Register Address Offsets 13
8. Arbitration Register (Hex 462x) 14
9. Transmitter Holding Register (Base c + 0) 14

10. Receiver Buffer Register (Base c + 0) 15
11. Divisor Latch Register, Low Byte (Base c + 1) 15
12. Divisor Latch Register, Low Byte (Base c+O) 16
13. Divisor Latch Register, High Byte (Base c + 1) 16
14. Baud Rates at 1.8432 MHz (Low Frequency Mode) 17
15. Baud Rates at 11.0592 MHz (High Frequency Mode) 17
16. Interrupt Enable Register (Base c+ 1) 19
17. FIFO Control Register (Base c+2) 20
18. Trigger Level 20
19. Interrupt Identification Register (Base c + 2) 21
20. Type controllers for Bits 7 and 6 22
21. Interrupt Control Functions 23
22. Line Control Register (Base c + 3) 25
23. Stop Bits and Word Length 26
24. Modem Control Register (Base c+4) 26
25. Line Status Register (Base c + 5) 28
26. Modem Status Register (Base c + 6) 30
27. Enhanced Command Register 32
28. Command Decode .. 32
29. Enhanced Interrupt ID Register 33
30. Enhanced Interrupt Control Functions 34
31. Enhanced Function Register 1 (Base e+3) 35
32. Enhanced Function Register 2 (Base e+4) 36
33. Enhanced Function Register 3 (Base e + 3) 38
34. Access to CCRs and CCFRs 39
35. Character Compare Register (Base e + 6) 40
36. RS-232 Voltage Levels 42
37. Serial Port Connector Signal and Pin Assignments (25-Pin) 44
38. Serial Port Connector Signal and Pin Assignments (9-Pin) . 44

© Copyright IBM Corp. 1991 Iii

Notes:

Iv Serial Port Controller-September 1991

Description

The serial port controller is programmable and supports
asynchronous communications. The controller automatically adds
and removes start, stop, and parity bits. A programmable baud-rate
generator allows operation from 50 baud to 345.6KB. The controller
supports 5-, 6-, 7-, and 8-bit characters with 1, 1.5, or 2 stop bits. A
prioritized interrupt system controls transmit, receive, error, line
status, and data-set interrupts.

The serial port controller provides the following functions:

• Full double buffering in the character mode, eliminating the need
for precise synchronization

• False-start bit detection
• Line-break generation and detection
• Modem control functions:

Clear to send (CTS)
Request to send (RTS)
Data set ready (DSR)
Data terminal ready (DTR)
Ring indicator (RI)
Data carrier detect (DCD).

I Four types of serial port controllers have been used on the system
boards.

• To programs, the Type 1 controller appears to be identical to the
serial port on the IBM Personal Computer AT IBM Personal
Computer Serial/Parallel Adapter.

• The Type 2 controller incorporates all functions of the Type 1 and
also provides support of thefirst-in-first-out (FIFO) mode.

• The Type 3 controller incorporates all functions of the Type 2
controller and provides the Direct Memory Access (DMA) mode.

• The Type 4 controller incorporates all the functions of the Type 3
controller and provides additional I/O addresses.

Note: Some systems using the Type 2 controller do not support the
FIFO mode. For information about individual systems refer to
the system-specific technical reference manuals.

Support for the Type 1 controller is restricted to the functions that are
identical to the NS16450. Using the Type 1 controller in the FIFO
mode can result in nondetectable data errors. See "Registers" on
page 12 for detailed FIFO information.

Serial Port Controller - September 1991 1

The following figure is a block diagram of the serial port controller.

Address Bus

Data Bus

Interrupt
Asynchronous
Communications
Controller

I
I

Oscillator I

lElA I -
Receivers I

I Connector l J EIA ~ I I I Drivers

Figure 1. Serial Port Controller Block Diagram

2 Serial Port Controller - September 1991

Communications Application

I For Type 1 and Type 2 controllers, the serial port can be addressed
I as either of two serial ports (Serial 1 or Serial 2). The Type 3
I controller can be addressed as anyone of eight serial ports (Serial 1
I through Serial 8). The Type 4 can be addressed as anyone of 16
I serial ports (Serial 1 through Serial 16). The following table
I illustrates the base addresses and their corresponding serial ports:

I Serial Port Compatible (Hex) Enhanced (Hex) Types Supported

Serial 1 03F8 83F8 1,2,3,4
Serial 2 02F8 82F8 1,2,3,4

Serial 3 3220 B220 3,4
Serial 4 3228 B228 3,4
Serial 5 4220 C220 3,4
Serial 6 4228 C228 3,4
Serial 7 5220 D220 3,4
Serial 8 5228 D228 3,4

Serial 9 3A20 BA20 4
Serial 10 3A28 BA28 4
Serial 11 3A30 BA30 4
Serial 12 3A38 BA38 4
Serial 13 3A80 BA80 4
Serial 14 3A88 BA88 4
Serial 15 3A90 BA90 4
Serial 16 3A98 BA98 4

I Figure 2. Serial Port Register - Base Addresses

The Type 1 and Type 2 controllers support only the compatible
registers. Type 3 and Type 4 controllers support both the compatible
and the enhanced registers. In this section, serial port register
addresses contain a base c or a base e to signify the compatible- or
enhanced-register base address, followed by an offset to be added to
the base address to get the effective address of the register. The
register assignments are controlled by Programmable Option Select
(POS) and are made during system board setup.

Two interrupt lines are provided to the system. For Type 1 and Type
2 controllers, interrupt level 4 (IRQ4) is for Serial 1 and interrupt level
3 (IRQ3) is for Serial 2. For Type 3 and Type 4, the interrupt level
assigned to the serial port is independent of the addresses. Either of
the interrupt levels (IRQ3 and IRQ4) can be assigned to any of the
eight serial ports. For the serial port controller to send interrupts to
the interrupt controller, bit 3 of the Modem Control register must be
set to 1.

Serial Port Controller - September 1991 3

The data format is shown in the following figure.

Figure 3. Serial Port Data Format

Data bit 0 (DO)is the first bit to be sent or received. The controller
automatically inserts the start bit, the correct parity bit (if
programmed to do so), and the stop bits (1, 1.5, or 2 depending on the
command in the Line Control register).

Programmable Baud-Rate Generator

The controller has a programmable baud-rate generator that can
divide the clock input (11.0592 MHz) by any divisor from 1 to 65,535.
In compatibility mode, a 1.8432 MHz clock is used. The output
frequency of the baud-rate generator is the baud rate multiplied by
16. Two 8-bit latches store the divisor in a 16-bit binary format. The
divisor latches are loaded during setup to ensure desired operation of
the baud-rate generator. When either of the divisor latches is loaded,
a 16-bit baud counter is immediately loaded. This prevents long
counts on the first load.

Modem Status Interrupts

The modem status interrupts occur as soon as the corresponding
input signals change state, whether the Received Data Status register
is enabled or not. The current modem status is immediately
available in the Modem Status register. However, the change in the
modem status is reflected in the received-data-status character that
follows the actual change.

Whenever the overrun error occurs, the interrupt is generated and the
corresponding bit in the Line Status register is set. In character
mode, when an overrun error occurs, the character in the Receiver
Buffer register is overwritten. In the FIFO or DMA mode, when an
overrun error occurs, the data in the FIFO mode is preserved, and the
character in the Receive Shift register is overwritten. When the
Received Data Status register is enabled, the overrun error is
indicated in the received-status-byte of the first character received
after the last error. The indicator stays on for only one character

4 Serial Port Controller - September 1991

regardless of the number of characters lost, unless another error
occurs.

The interrupts for parity error and frame error occur when the error
character is the next one to be read from the FIFO mode in DMA,
whether the Received Data Status register is enabled or not.
Although these interrupts are reset by reading the Line Status
register, the bits can cause an interrupt, but they do not identify which
character had the error in DMA mode. The Received Data Status
register must be enabled to determine which character had the error.

FIFO Modes of Operation

The serial port contains two register stacks of 16 bytes each. These
register stacks are called FIFOs. One is the Receive FIFO and the
other is the Transmit FIFO.

In the FIFO mode, the controller can operate in the interrupt mode or
the polled mode. To enable the FIFO mode, set bit 0 in the FIFO
Control register to 1.

Interrupt Mode

When the receiver interrupts are enabled in the Interrupt Enable
register, they occur as follows:

• A received-data-available interrupt is issued to the system when
the FIFO register has reached the programmed trigger level.

• The Interrupt Identification register's received-data-available
condition is set when the trigger level is reached and, like the
interrupt, is cleared when the register drops below the trigger
level.

• The receiver-line-status interrupt has a higher priority than the
received-data-avai I abl e interrupt.

• Bit 0 in the Line Status register is set to 1 to indicate that a
character is transferred from the Shift register to the FIFO
register. It is set to 0 when the Receiver FIFO register is empty.

When the Receiver FIFO register and receiver interrupts are enabled,
the following occurs:

• A FIFO time-out interrupt occurs if the following conditions exist:

- At least 1 character is in the Receiver FIFO iegister.

Serial Port Controller - September 1991 5

The last character was received more than four
continuous-character times ago (if 2 stop bits are
programmed, the second one is included in this time delay).

The most recent system microprocessor read off the Receiver
FIFO register was longer than four continuous-character
times ago.

This causes a maximum character-received to interrupt-issued
delay of 160 milliseconds at 300 baud, with a 12-bit character.

• Character times are calculated by using the 'receiver clock' input
for a clock signal (this makes the delay proportional to the baud
rate).

• When a time-out interrupt has occurred, it is cleared, and the
timer is reset when the system microprocessor reads one
character from the Receiver FIFO register.

• When a time-out interrupt has not occurred, the time-out timer is
reset after a new character is received, or after the system
microprocessor reads the Receiver FIFO register.

When the Transmitter FIFO register and transmitter interrupts are
enabled (FIFO Control register bit 0 and Interrupt Enable register bit 1
are set to 1), the following occurs:

• The transmitter-holding-register-empty interrupt (02) occurs when
the Transmitter FIFO register is empty. It is cleared when the
Transmitter Holding register is written to (1 to 16 characters can
be written to the Transmitter FIFO register while this interrupt is
being serviced), or the Interrupt Identification register is read.

• The transmitter-FIFO-register-empty indications are delayed one
character time minus the last stop-bit time whenever both of the
following occur:

Bit 5 (transmitter-holding-register-empty) of the Line Status
register is set to 1.

There have not been at least two bytes in the Transmitter
FIFO register at the same time since the last time bit 5 of the
Li ne Status register was set to 1.

The first transmitter interrupt after changing bit 0 in the FIFO
Control register is immediate, if enabled.

Character time-out and Receiver FIFO register trigger-level interrupts
have the same priority as the current received-data-available
interrupt. The transmitter-FIFO-register-empty interrupt has the same
priority as the current transmitter-holding-register-empty interrupt.

6 Serial Port Controller - September 1991

Polled Mode

To put the controller in the FIFO polled mode, disable the interrupts
through the Interrupt Enable register and enable the FIFO mode. The
Receiver and Transmitter FIFO registers are controlled separately.
Either or both registers can be in the polled mode of operation.

In the FIFO-polled mode of operation, the system reads the status of
the Receiver and Transmitter FIFO register through the Line Status
register.

• The data-ready bit indicates whether or not the Receiver FIFO
register contains data.

• The error bits indicate the type of error. Character error status is
handled the same way as when in the interrupt mode. The
Interrupt Identification register is not affected because bit 2 of the
Interrupt Enable register is set to O.

• Line Status register bit 5 indicates when the Transmitter FIFO
register is empty.

• Line Status register bit 6 indicates that both the Transmitter FIFO
register and Transmitter Shift register are empty.

• Line Status register bit 7 indicates any errors in the Receiver
FIFO register.

There is no trigger level reached or time-out condition indicated in
the FIFO polled mode; however, the Receiver and Transmitter FIFO
registers are still fully capable of holding characters.

DMA Modes of Operation

In addition to the character mode and the FIFO mode of the Type 2
controller, the Type 3 and Type 4 controllers support the use of OMA
for receiving and transmitting. These controllers also provide new
functions and new interrupts, many of which are available in the FIFO
mode.

I The presence of the Type 3 or Type 4 controller can be detected by
I enabling the OMA transmit mode (bit 6 in Enhanced Function register

1), reading bits 6 and 7 of the Interrupt 10 register, and then disabling
the OMA transmit mode. If bit 6 is a 1 and bit 7 is a 0, a Type 3 or
Type 4 controller is installed. If the FIFO mode is enabled, but not the
OMA transmit mode, then bits 6 and 7 in the Interrupt 10 register read
as 1. If the character mode is enabled, then bits 6 and 7 are O.

Serial Port Controller-September 1991 7

The DMA mode uses separate DMA channels for transmitting and
receiving. In addition, the transmit and receive modes may be set
independently. (Operating the receiver in DMA mode and the
transmitter in FIFO mode will conserve DMA channels). This allows a
high performance receiving function and requires only one interrupt
per 16 characters transmitted.

Receive Mode

I While in receive mode, the controller signals a request to transfer
data when the Receive FIFO register has reached the receiver trigger
level or when a timeout occurs. The data is then transferred from the
controller until the FIFO register is empty or the DMA Terminal Count
(TC) is reached. A timeout occurs if there is at least one character in
the FIFO register and a character has not been read in the last four
character times. An interrupt on the transmit terminal count and the
receive terminal count occur independently.

Transmit Mode

While in the transmit mode, data is transferred until the FIFO register
is full or the end of the data is reached.

Two separate terminal count interrupts are available: one for transmit
and the other for receive.

Received Data Status Register

When received, a status byte can be placed in the FIFO register with
each data byte. This option is available in the DMA receive mode
and in the FIFO mode. The status byte is defined as the Received
Data Status register and is stored after the corresponding data byte.
The bit definitions of Received Data Status register are as follows:

Bit Description

7 Data Carrier Detect
6 Clear to Send
5 Data Set Ready
4 Break
3 Framing
2 Parity Error
1 Overrun Error
o Error/Break

Figure 4. Received Data Status Register

8 Serial Port Controller - September 1991

Bit 7 This bit indicates the state of the '-data carrier detect' signal
(-DCD).

Bit 6 This bit indicates the state of the '-clear to send' signal
(-CTS).

Bit 5 This bit indicates the state of the '-data send ready' signal
(-DSR).

Bit 4 This bit determines Break (BI)

Bit 3 This bit determines Framing (FE)

Bit 2 This bit determines Parity Error (PE)

Bit 1 This bit determines Overrun Error (OE)

Bit 0 This bit determines the Error/Break. Bit 0 is set and reset.

Bit 0 is set to 1 when an error or break occurs and remains set for
subsequent characters until it is reset to 0 by a software command
(write hex 03 to the Enhanced Command register). This allows
scanning of the received data (in memory or as it exits from the FIFO
mode) to find the character that was received with an error. While
the error/break bit indicates that an error has occurred, it is not
possible to distinguish multiple errors from single errors without
checking the status of each character that has this bit set.

Bit 0 is set to 1 and reset to 0 before the Received Data status
register is placed in the FIFO mode. This means that up to eight
characters have bit 0 set after the Reset Error/Break Indicator
command is given and there are no additional errors.

When the Received Data Status register is enabled the Receive FIFO
register can hold eight data bytes and eight status bytes.

Transmit Commands

New transmit commands provide better software control of the
transmitter and allow the insertion of special control characters such
as XON and XOFF into the the transmitted data stream. The new
transmit commands are available in both the DMA transmit mode and
in the FIFO mode. The new transmit commands are:

• Start Sending - starts or continues transmit

• Stop Sending - stops transmit.

To insert a character in the transmitted data stream, stop the
transmitter by issuing the Stop Sending command, write a character

Serial Port Controller - September 1991 9

to the Transmitter Holding register, and then start the transmitter by
issuing the Start Sending command.

Modem Pacing

Modem pacing is handled by several new functions without software
involvement, which are available in the DMA mode and the FIFO
mode. These new functions also prevent the async port from
receiving invalid data.

The transmitter and receiver are controlled by the following signals:

• The '-clear-to-send' signal

- When this signal is equal to 0, the transmitter is turned off.

• The '-data-carrier-detect' signal

- When this signal is equal to 0, the transmitter is turned off.

• The '-data-set-ready' signal

When this signal is equal to 0, the transmitter and the
receiver are turned off.

Character Orientated Pacing

Three software-programmable registers are provided to handle
character oriented pacing. The contents of these registers are
compared to each received character. If there is a match, a
preprogrammed action takes place. The possible actions on a match
are interrupt, delete character, stop transmitter, and start transmitter.
If an error or break occurs in a received character, it is not compared.

Receive Character Count Register

This register enables the user to keep track of the number of
characters sent to the central processing unit or the DMA. The
Receive Character Count Interrupt is asserted when the counter is
decremented to 0, provided that bit ° of the Enhanced Function
register 1 is set.

10 Serial Port Controller-September 1991

Byte Pacing

While in the DMA mode, the Byte Pacing function is useful when the
controller is communicating with a slow processor. This function
allows the controller to transmit every byte at 16 times the Receive
Character Count value or 256 times the RCCR value. The result of

I this product is called RCLK time. (See "Receive Character Count
I Register (Base e + 7)" on page 40 for more information.)

Enhanced Interrupts

Several new interrupts are available to support the DMA mode, the
Receive Character Count register, and the Character Compare
registers. The new interrupts are:

• Interrupt on Transmitter FIFO and transmitter-shift-register-empty

• Interrupt on Terminal Count in the DMA transmit mode

• Interrupt on Terminal Count in the DMA receive mode

• Interrupt on Receiver Character Count equals 0

• Interrupt on Character Compare Register Match.

Serial Port Controller Programming
Considerations

I The serial port uses either of the four serial communications
controllers. The following should be considered when programming
the serial controller:

• The Type 1 serial controller does not support the FIFO mode.

• Some systems using the Type 2 controller do not support the
FIFO mode. For more information, refer to the system-specific
technical reference manuals.

• The system configuration utility is used to configure serial port on
the system board. The Type 1 and Type 2 controller can be
configured as either Serial 1 or Serial 2, the Type 3 can be
configured as Serial 1 through 8, and the Type 4 can be
configured as Serial 1 through Serial 16.

• Before changing the Line Control register, make sure the
Transmitter Holding register is empty.

Serial Port Controller - September 1991 11

Registers

The controller has several accessible registers. These control the
operations of the controller and transmit and receive data. The
system programmer can gain access to or control any of the
controller registers through the system microprocessor.

Compatible Registers

I The each of four types of serial port controller has certain registers
I that are common to them all. These registers will be referred to as
I Compatible registers. The Type 3 and Type 4 controllers have
I additional registers that Type 1 and Type 2 controllers do not have.
I These registers are referred to as the Enhanced registers.

I In addition to these serial port registers, the Type 4 controller has an
I additional register that is used to select the arbitration level. The
I address of this register depends on the address range selected.

Serial Port Compatible (Hex) Enhanced (Hex) Arbitration

Serial 1 03F8-03FF 83F8-83FF 4620
Serial 2 02FS-02FF 82FS-82FF 4621
Serial 3 3220-3227 B220-B227 4622
Serial 4 322S-322F B228-B22F 4623
Serial 5 4220-4227 C220-C227 4624
Serial 6 4228-422F C228-C22F 4625
Serial 7 5220-5227 0220-0227 4626
Serial 8 5228-522F 0228-022F 4627
Serial 9 3A20-3A27 BA20-BA27 462S
Serial 10 3A28-3A2F BA2S-BA2F 4629
Serial 11 3A30-3A37 BA30-BA37 462A
Serial 12 3A3S-3A3F BA38-BA3F 462B
Serial 13 3ASO-3AS7 BABO-BAS7 462C
Serial 14 3A88-3ASF BA88-BA8r 4620
Serial 15 3A90-3A97 BA90-BA97 462E
Serial 16 3A98-3A9F BA98-BA9F 462F

Figure 5. Serial Port Register - Base Addresses

The bit definitions of the Interrupt Enable register, Interrupt
Identification register, and Line Status register have been modified
from the Type 1 controller registers. A FIFO Control register has
been added to support the FIFO mode.

Note: Using the Type 1 controller in the FIFO mode can result in
nondetectable data errors.

12 Serial Port Controller- September 1991

Specific registers are selected according to the figure below and the
figure on the following page.

Address
Offsets R/W Register

+ 0 * W Transmitter Holding Register
+ 0 * R Receiver Buffer Register
+ 0 * R/W Divisor Latch, Low Byte
+ 1 * R/W Divisor Latch, High Byte
+ 1 * R/W Interrupt Enable Register
+ 2 R Interrupt Identification Register
+2 W FIFO Control Register
+3 R/W Line Control Register
+ 4 R/W Modem Control Register
+5 R Line Status Register
+6 R/W Modem Status Register
+ 7 R/W Scratch Register

Note: *The DLAB state is controlled by bit 7 of the Line Control register.

Figure 6. Serial Port Compatible Register Address Offsets

Port EFR3
Address Bits
Offset 210 R/W Register

0 xxx W Enhanced Command
1 xxx R Reserved
2 xxx R Enhanced Interrupt Identification
3 xxx R/W Enhanced Function 1
4 xxx R/W Enhanced Function 2
5 xxx R/W Enhanced Function 3
5* 000 R/W Char Compare Function 0
5* 001 R/W Char Compare 0
5* 010 R/W Char Compare Function 1
5* 01 1 R/W Char Compare 1
5* 100 R/W Char Compare Function 2
5* 1 01 R/W Char Compare 2
6* xxx R/W Char Compare Data
7 xxx R/W Receive Character Count

*The Char Compare Function Register (CCFR) and the Char
Compare Register (CCR) are selected by writing the address to the Enhanced
Function Register 3 and the data is read or written by reading or writing
to the Char Compare Data Register (CCDR).

Figure 7. Serial Port Enhanced Register Address Offsets

Serial Port Controller-September 1991 13

I Arbitration Register (Hex 462x)

I This a-bit read/write register selects the arbitration level used for the
I transmit and receive operations for the Type 4 controller. This
I register is available on the Type 4 controller only; its address
I corresponds to the address range assigned for the enhanced
I registers. The address is hex 4620 for Serial 1 and hex 462F for
I Serial 16.

I Bits Description

I 7 - 4 Transmit Arbitration Level
I 3-0 Receive Arbitration Level

I Figure 8. Arbitration Register (Hex 462x)

Transmitter Holding Register (Base c + 0)

The Transmitter Holding register contains the character to be sent
when the divisor latch access bit 1 (OLAB) is O. Bit 0 is the
least-significant bit and the first bit sent serially, as shown below.

Bit

7
6
5
4
3
2
1
o

Description

Data Bit 7
Data Bit 6
Data Bit 5
Data Bit 4
Data Bit 3
Data Bit 2
Data Bit 1
Data Bit 0

Figure 9. Transmitter Holding Register (Base c + 0)

14 Serial Port Controller- September 1991

Receiver Buffer Register (Base c + 0)

The Receiver Buffer register contains the received character and can
be accesses when the divisor-latch-access bit (DLAB) equals O. Bit 0
is the least-significant bit and the first bit received serially, as shown
in the following figure.

Bit Description

7 Data Bit 7
6 Data Bit 6
5 Data Bit 5
4 Data Bit 4
3 Data Bit 3
2 Data Bit 2
1 Data Bit 1
0 Data Bit 0

Figure 10. Receiver Buffer Register (Base c + 0)

Divisor Latch Register (Base c + 1)

The Divisor Latch register is used to program the baud-rate
generator. The value in this register forms the divisor of the clock
input (1.8432 MHz or 11 ,0592MHz), which establishes the desired
baud-rate (DLAB = 1).

Bit Description

7 Bit 7
6 Bit 6
5 Bit 5
4 Bit 4
3 Bit 3
2 Bit 2
1 Bit 1
0 Bit 0

Figure 11. Divisor Latch Register, Low Byte (Base c + 1)

Note: If bit 6 of the Enhanced Function register 2 is set to 0, then the
input clock of the baud-rate generator is 1.8432 MHz. Otherwise, the
input clock is 11.0592 MHz.

Serial Port Controller-September 1991 15

Divisor Latch Register (Base c + 0)

The Divisor Latch register is used to program the baud-rate
generator. The value in this register forms the divisor of the clock
input (1.8432 MHz or 11 ,0592MHz), which establishes the desired
baud-rate (DLAB = 0).

Bit Description

7 Bit 7
6 Bit 6
5 Bit 5
4 Bit 4
3 Bit 3
2 Bit 2
1 Bit 1
0 Bit 0

Figure 12. Divisor Latch Register, Low Byte (Base c+O)

Bit Description

7 Bit 15
6 Bit 14
5 Bit 13
4 Bit 12
3 Bit 11
2 Bit 10
1 Bit 9
OBit 8

Figure 13. Divisor Latch Register, High Byte (Base c+ 1)

16 Serial Port Controller-September 1991

The following shows how the baud rate is determined with an input
frequency of 1.8432 MHz.

Note: Data speed should not exceed 19,200 baud (For Type 1 and
Type 2).

Desired Divisor Used to Generate 16x Clock Percentage of Error
Baud Rate Difference between
Rate Decimal Hex Desired and Actual

50 2304 900 --
75 1536 600 --

110 1047 417 0.026
134.5 857 359 0.058
150 768 300 --
300 384 180 --
600 192 CO --

1200 96 60 --
1800 64 40 --
2000 58 3A 0.69
2400 48 30 --
3600 32 20 --
4800 24 18 --
7200 16 10 --
9600 12 C --

19200 6 6 --
Figure 14. Baud Rates at 1.8432 MHz (Low Frequency Mode)

The following shows how the baud rate is determined with an input
frequency of 11.0592 MHz.

Serial Port Controller - September 1991 17

Desired Divisor Used to Generate 16x Clock Percentage of Error
Baud Rate Difference between
Rate Decimal Hex Desired and Actual

50 13824 3600 --
75 9216 2400 --

110 6284 188C 0.006
134.5 5139 1413 0.001
150 4608 1200 --
300 2304 900 --
600 1152 480 --

1200 576 240 --
1800 384 180 --
2000 346 15A 0.116
2400 288 120 --
3600 192 CO --
4800 144 90 --
7200 96 60 --
9600 72 48 --

19200 36 24 --
31250 22 16 0.538
38400 18 12 --
57600 12 C --

115200 6 6 --
172800 4 4 --
345600 2 2 -

Nole: Divisor of 1 not supported. Data speed must not exceed 345.6 kbaud.

Figure 15. Baud Rates at 11.0592 MHz (High Frequency Mode)

18 Serial Port Controller - September 1991

Interrupt Enable Register (Base c + 1)

This 8-bit register allows the four types of controller interrupts to
separately activate the 'chip interrupt output' signal. The interrupt
system can be completely disabled by setting bits 0 through 3 of the
Interrupt Enable register to O. Similarly, by setting the appropriate
bits of this register to 1, selected interrupts can be enabled.
Disabling prevents the controller from generating the external
interrupt to the system. All other system functions operate normally,
including the setting of the Line Status and Modem Status registers
(DLAB=O).

Bit Description

7 - 4 Reserved = 0
3 Modem-Status Interrupt
2 Receiver-line-Status Interrupt
1 Transmitler-Holding-Register-Empty Interrupt
o Received-Data-Available Interrupt (Character and FIFO Mode)

and Time-Out Interrupts (FIFO Mode Only)

Figure 16. Interrupt Enable Register (Base c + 1)

Bits 7 -4 These bits are reserved and always set to O.

Bit 3 When set to 1, this bit enables the modem-status interrupt.

Bit 2 When set to 1, this bit enables the receiver-line-status
interrupt.

Bit 1 When set to 1, this bit enables the transmitter-holding
register-empty interrupt.

Bit 0 When set to 1, this bit enables the received-data-available
interrupt. In the FIFO mode, this bit also enables the
time-out interrupts.

Serial Port Controller-September 1991 19

FIFO Control Register (Base c + 2)

The FIFO Control register is a write-only register at the same location
as the read-only Interrupt Identification register. The FIFO Control
register enables the FIFO registers, clears the FIFO registers, and
sets the Receiver FIFO register trigger level.

Note: The Transmitter and Receiver FIFO registers are not
accessible serial controller registers.

The contents of the FIFO Control register are shown in the following
figure.

Bit Description

7. 6 Receiver FIFO Register Trigger
5-3 Reserved = 0
2 Transmitter FIFO Register Reset
1 Receiver FIFO Register Reset
o FIFO Mode Enable

Figure 17. FIFO Control Register (Base c + 2)

Bits 7, 6 These bits select the trigger level for the receiver-register
interrupt, as shown in the following figure.

Bits
7 6 Receiver Trigger Level

00 1 Byte
01 4 Bytes
10 8 Bytes
11 14 Bytes

Figure 18. Trigger Level

Bits 5 - 3 These bits are reserved and always set to O.

Bit 2 When this bit is set to 1, all bytes in the Transmitter FIFO
register are cleared and its counter logic is reset to O.
The Transmitter Shift register is not cleared. This bit is
self-clearing.

Bit 1 When this bit is set to 1, all bytes in the Receiver FIFO
register are cleared and its counter logic is reset to O.
The Transmitter Shift register is not cleared. This bit is
self-clearing.

20 Serial Port Controller - September 1991

Bit 0 When this bit is set to 1, the FIFO mode is enabled. When
this bit is changed, the transmit and receive (XMIT and
RCV) FIFOs are cleared. When writing to any other FIFO
Control register bits, this bit must be a 1.

Interrupt Identification Register (Base c + 2)

To minimize programming overhead during character mode
transfers, the controller prioritizes interrupts into four levels:

• Priority 1 - Receiver-line-status
• Priority 2 - Received-data-available
• Priority 2 - Time-out (FIFO mode)
• Priority 3 - Transmitter-holding-register-empty
• Priority 4 - Modem status.

Information about a pending interrupt is stored in the Interrupt
Identification register. When this register is addressed, the pending
interrupt with the highest priority is held, and no other interrupts are
acknowledged until the system microprocessor services that
interrupt.

Bit Description

7, 6 FIFO Registers Enabled
5, 4 Interrupt 10, Bit 4
3 Interrupt 10, Bit 2
2 Interrupt ID, Bit 1
1 Interrupt 10, Bit 0
o Interrupt Not Pending

Figure 19. Interrupt Identification Register (Base c + 2)

Serial Port Controller-September 1991 21

I Bits 7,6
I

Bits
76

00
10
01
1 1

Programs can determine which type of controller is
present by reading these two bits when bit 0 of the FIFO
Control register is set to 1. If bits 7 and 6 are set to 1, the
Type 2 controller is present and FIFO support is provided.
If bit 6 is set to 0, the controller is a Type 1 and the FIFO
mode should not be used.

Version

Type 1 Controller
N/A
Type 3 or Type 4 Controller
Type 2 Controller

Figure 20. Type controllers for Bits 7 and 6

22 Serial Port Controller - September 1991

Note: Some systems using the Type 2 controller do not
support the FIFO mode. For information about
individual systems refer to the system-specific
technical reference manuals.

Bits 5, 4 These bits are always set to O.

Bit 3 In the FIFO mode, this bit is set to 1, along with bit 2, to
indicate that a time-out interrupt is pending. In the
character mode, this bit is always set to o.

Bits 2,1 These two bits identify the pending interrupt with the
highest priority.

Bit 0 When this bit is set to 1, no interrupt is pending and
polling (if used) continues. When this bit is set to 0, an
interrupt is pending, and the contents of this register can
be used as a pointer to the appropriate interrupt service
routine. This bit can be used in hard-wired, prioritized, or
polled conditions to indicate if an interrupt is pending.

The following figure illustrates the Interrupt Control functions,
beginning with the highest priority and ending with the lowest
priority.

Serial Port Controlier- September 1991 23

Bits Interrupt Reset
543210 Type Cause Control

000110 Receiver Overrun, Parity, or Read the Line Status
Line Status Framing Error or Register

Break Interrupt

000100 Received Data in the Receiver Read the Receiver
Data Buffer or the Trigger Buffer Register or
Available Level Has Been FIFO Register Drops

Reached. Below the Trigger
Level.

001100' Character No Characters Have Read the Receiver
Time-Out Been Removed From Buffer Register
Indication or Put Into the

Receiver FIFO
Register During the
Last Four Character
Times, and at Least 1
Character is in it at
This Time.

000010 Transmitter Transmitter Holding Read the Interrupt
Holding Register is Empty Identification
Register Register or Write to
Empty Transmitter Holding

Register

000000 Modem Change in Signal Read the Modem
Status Status From Modem Status Register

• FIFO Mode Only

Figure 21. Interrupt Control Functions

24 Serial Port Controller - September 1991

Line Control Register (Base c + 3)

The format of asynchronous communications is programmed through
the Line Control register.

Bit Description

7 Divisor Latch Access Bit
6 Set Break
5 Stick Parity
4 Even Parity Select
3 Parity Enable
2 Number of Stop Bits
1 Word Length Select, Bit 1
o Word Length Select, Bit 0

Figure 22. Line Control Register (Base c + 3)

Bit 7 This bit is set to 1 to gain access to the divisor latches of
the baud-rate generator. It is set to ° to gain access to the
Receiver Buffer, Transmitter Holding, or Interrupt Enable
registers.

Bit 6 When this bit is set to 1, set break is enabled. The serial
output is forced to the spacing state and remains there
regardless of other transmitter activity. When this bit is
set to 0, set break is disabled.

Bit 5 When bits 5, 4, and 3 are set to 1, the parity bit is sent and
checked as a logical 0. When bits 5 and 3 are set to 1, and
bit 4 is set to 0, the parity bit is sent and checked as a
logical 1. If bit 5 is set to 0, stick parity is disabled.

Bit 4 When this bit and bit 3 are set to 1, an even number of
logical 1s are transmitted and checked in the data word
bits and parity bit. When this bit is set to 0, and bit 3 is set
to 1, an odd number of logical 1s are transmitted and
checked in the data word bits and parity bit.

Bit 3 When set to 1, a parity bit is generated (transmit data) or
checked (receive data) between the last data-word bit and
stop bit of the serial data. (The parity bit produces an
even or odd number of 1s when the data-word bits and the
parity bit are summed).

Serial Port Controller - September 1991 25

Bit 2 This bit, with bits 1 and 0, specifies the number of stop bits
in each serial character sent or received, as shown in the
following figure.

Bits Number of Word Length
210 Stop Bits

000 1 5 Bits
001 1 6 Bits
010 1 7 Bits
01 1 1 8 Bits
100 1.5 5 Bits
101 2 6 Bits
1 1 0 2 7 Bits
1 1 1 2 8 Bits

The word length is specified by bits 1 and 0 in this register.

Figure 23. Stop Bits and Word Length

Bits 1,0 These bits specify the number of bits in each serial
character that is sent or received.

Modem Control Register (Base c + 4)

This a-bit register controls the data exchange with the modem, data
set, or peripheral device emulating a modem.

Bit Description

7 - 5 Reserved = 0
4 Loop Mode
3 Out 2 (IRQ Output Control)
2 Out 1
1 Request-to-Send
o Data-Terminal-Ready

Figure 24. Modem Control Register (Base c+4)

Bits 7 - 5 These bits are reserved and always set to O.

26 Serial Port Controller - September 1991

Bit 4 This bit provides a loopback feature for diagnostic testing
of the serial port. When bit 4 is set to 1:

• Transmitter-serial-output is set to the marking state.

• Receiver-serial-input is disconnected.

• Output of the Transmitter Shift register is "looped
back" to the Receiver Shift register input.

Note: The Transmitter and Receiver Shift registers
are not accessible NS16550 registers.

• The modem control inputs (CTS, DSR, DCD, AND RI) are
disconnected.

• The modem control outputs (DTR, RTS, OUT 1, AND OUT
2) are internally connected to the four modem control
inputs.

• The modem control output pins are forced inactive.

When the serial port is in the diagnostic mode, transmitted
data is immediately received. This feature allows the
system microprocessor to verify the transmit-data and
receive-data paths of the serial port.

When the serial port is in the diagnostic mode, the
receiver and transmitter interrupts are fully operational.
The modem control interrupts are also operational, but
their sources are the lower four bits of the Modem Control
register instead of the four modem control input signals.
The interrupts are still controlled by the Interrupt Enable
register.

Bit 3 When this bit is set to 0, the IRQ signal is disabled, the IRQ
signal is always disabled.

Bit 2 This bit is not used in a normal mode. In loop mode, its
status is reported to bit 6 (RI) of the Modem Status
register.

Bit 1 This bit controls the '-request to send' signal (-RTS)
modem control output. When this bit is set to 1, -RTS is
active. When this bit is set to 0, -RTS is inactive.

Bit 0 This bit controls the '-data terminal ready' signal (-DTR)
modem control output. When this bit is set to 1, -DTR is
active. When this bit is set to 0, -DTR is inactive.

Serial Port Controller-September 1991 27

Line Status Register (Base c + 5)

This 8-bit read-only register provides the system microprocessor with
status information about the data transfer.

Note: Writing to this register can produce unpredictable results.

Bit Description

7 Error in Receiver FIFO Register
6 Transmitter Shift Register Empty
5 Transmitter Holding Register Empty
4 Break Interrupt
3 Framing Error
2 Parity Error
1 Overrun Error
o Data Ready

Figure 25. Line Status Register (Base c+5)

Bit 7 In FIFO mode, this bit indicates that a parity error, framing
error, or break occurred. This bit is cleared when the Line
Status register is read in the FIFO mode. It is set to 0 in
the Character mode.

Bit 6 This bit is set to 1 to indicate the Transmitter Holding
register and the Transmitter Shift register are both empty.
This bit is set to 0 when either register contains a data
character.

In the FIFO or DMA mode, this bit is set to 1 when the
Transmitter FIFO register and the Transmitter Shift
register are both empty.

Bit 5 This bit indicates that the controller is ready to accept the
next character for transmission. This bit is set to 1 to
indicate that a character was transferred from the
Transmitter Holding register to the Transmitter Shift
register. This bit is set to 0 when a character is written to
the Transmitter Holding register.

This bit also causes the controller to issue an interrupt if
the interrupt is enabled.

In the FIFO or DMA register, this bit is set to 1 when the
Transmitter FIFO register is empty. It is set to 0 when at
least one byte is written to the Transmitter FIFO register.

28 Serial Port Controller - September 1991

Bit 4 This bit is set to 1 to indicate the received data input is
held in the spacing state for longer than a full-word
transmission time (the total time of start bit + data
bits + parity + stop bits). This bit is reset to 0 when the
Line Status register is read.

When a break interrupt occurs, only one zero character is
loaded into the Receiver FIFO register. The next
character is loaded after the receiver serial input changes
to the marking state and receives the next valid start bit.

Note: Bits 1 through 4 are the error conditions that
produce a receiver-line-status interrupt whenever
any of the corresponding conditions are detected
and the interrupt is enabled.

Bit 3 This bit is set to 1 when the stop bit, following the last data
bit or parity bit, is at a spacing level. This indicates that
the received character did not have a valid stop bit
(framing error). This bit is reset to 0 when the Line Status
register is read.

Note: In the FIFO or DMA mode, the framing error (or
parity error for bit 2) is associated with the
particular character in the Receiver FIFO register
that it applies to. The error is indicated to the
system microprocessor when its associated
character is at the top of the Receiver FIFO
register.

Bit 2 This bit is set to 1 to indicate a parity error (the received
character does not have the correct even or odd parity, as
selected by the even-parity-select bit). This bit is reset to
o when the Line Status register is read.

Bit 1 When set to 1, this bit indicates that data in the Receiver
Buffer register was not read before the next character was
transferred into the Receiver Buffer register, destroying
the previous character. This bit is reset to 0 when the
Line Status register is read.

If the FIFO or DMA mode data continues to fill the
Receiver FIFO register beyond the trigger level, an
overrun error occurs. The overrun occurs only after the
Receiver FIFO register is full and the next character is
completely received in the Receiver Shift register. An
overrun error is indicated to the system microprocessor
when it happens. The character in the Receiver Shift
register is overwritten, but it is not transferred to the
Receiver FIFO register.

Serial Port Controller-September 1991 29

Bit 0 This bit is the receiver data-ready indicator. It is set to 1
when a complete incoming character has been received
and transferred into the Receiver Buffer register or the
Receiver FIFO register. This bit is reset to 0 by reading
the Receiver Buffer register or by reading all of the data in
the Receiver FIFO register.

Modem Status Register (Base c + 6)

This 8-bit register is used to monitor the current state of the control
lines from the modem (or external device). Also, bits 3 through 0
indicate change information.

Bit Description

7 Data-Carrier-Detect
6 Ring Indicator
5 Data-Set-Ready
4 Clear-to-Send
3 Delta-Data-Carrier-Detect
2 Trailing Edge Ring Indicator
1 Delta-Data-Set-Ready
o Delta-Clear-Io-Send

Figure 26. Modem Status Register (Base c+6)

Bit 7 This bit is the inverted '-data carrier detect' signal (-DCD)
modem control input. If bit 4 of the Modem Control
register is set to 1, this bit is equivalent to bit 3 in the
Modem Control register.

Bit 6 This bit is the inverted '-ring indicator' signal (-RI) modem
control input. If bit 4 of the Modem Control register is set
to 1, this bit is equivalent to bit 2 in the Modem Control
register.

Bit 5 This bit is the inverted '-data set ready' signal (-DSR)
modem control input. If bit 4 of the Modem Control
register is set to 1, this bit is equivalent to bit 0 in the
Modem Control register.

Bit 4 This bit is the inverted '-clear to send' signal (-CTS)
modem control input. If bit 4 of the Modem Control
register is set to 1, this bit is equivalent to bit 1 in the
Modem Control register.

30 Serial Port Controller - September 1991

Bit 3 When set to 1, this bit indicates that the '-data carrier
detect' signal (-DCD) modem control input has changed
state since the last time it was read by the system
microprocessor.

Note: Whenever bit 0, 1, 2, or 3 is set to 1, a modem
status interrupt is generated.

Bit 2 When set to 1, this bit indicates that the '-ring indicator'
signal (-RI) modem control input has changed from an
active condition to an inactive condition.

Bit 1 When set to 1, this bit indicates that the '-data set ready'
signal (-DSR) modem control input has changed state
since the last time it was read by the system
microprocessor.

Bit 0 When set to 1, this bit indicates that the '-clear to send'
signal (-CTS) modem control input has changed state since
the last time it was read by the system microprocessor.

Scratch Register (Base c + 7)

This register can be used by the system microprocessor as a
temporary buffer or work area.

Enhanced Registers

The registers in this section are only available with the Type 3 and
Type 4 controllers. These registers are:

• Enhanced Command Register

• Enhanced Interrupt 10 Register

• Enhanced Function Register 1

• Enhanced Function Register 2

• Enhanced Function Register 3

• Character Compare Data Register

• Receive Character Count Register.

Serial Port Controller - September 1991 31

Enhanced Command Register (Base e + 0)

This write-only register is used to issue the new commands: Stop
Sending, Start Sending, and Reset Error/Break Indicator. A write to
the register causes the command to be executed.

Bits Description

7 - 2 Reserved
1, 0 Command Bits

Figure 27. Enhanced Command Register

Bits 7 - 2 These bits are reserved and always written as 0 to allow
future expansion of the command bits.

Bits 1,0 These command bits (CB1-CBO) enable Stop Sending and
Start Sending.

CB1 CBO Command

0 0 Reserved
0 1 Start Sending
1 0 Stop Sending
1 1 Reset Error/Break Indicator

Figure 28. Command Decode

Start Sending-This command starts or continues transmitting in the
DMA or the FIFO mode. Characters in the FIFO mode are transmitted
first. This command is used in the FIFO mode to restart the
transmitter if it has been stopped by a Stop Sending command or by a
Stop on Match function. In DMA mode, the transmit DMA request (TX
DMA REQ) will not be active until the Start Sending Command is
issued.

Stop Sending-This command empties the Transmitter Shift register
and stops transmitting, regardless of the FIFO mode. After the
transmitter is stopped, a character is written to the Transmitter
Holding register. The character is then loaded into the Shift register
and transmitted. After the character is written to the
transmitter-holding-register-empty, the interrupt can be enabled.
When the interrupt occurs, it signals that the send-single-character
operation is complete. If multiple characters are written to the
Transmitter Holding register, with the transmitter-holding
register-empty interrupt enabled, multiple interrupts occur. To
ensure that all characters have been transmitted, wait for the

32 Serial Port Controller - September 1991

appropriate number of transmitter-holding register-empty interrupts
before issuing the next Start Sending command to resume
transmitting the FIFO register. There is no interrupt associated with
this command. The shift register operation is not affected by this
command.

Reset Error/Break-This command resets the Error/Break bit in the
received-data-status byte, which is optionally stored with received
data. The Reset command affects the next status byte, which is
stored in the FIFO register.

The logic for controlling the Error/Break bit is at the input of the
Receive FIFO. If there is an error for the current character being
received, the corresponding status byte will have the Error/Break bit
set. When the command to reset the Error/Break indicator is issued,
the indicator is 0 in the next received-data-status byte placed in the
FIFO register, unless that byte also has an error.

Check each byte that has the Error/Break bit set and issue a Reset
command every time an error is found. This procedure should
minimize the overhead associated with error detection.

Reserved Register (Base e + 1)

This is a reserved register.

Enhanced Interrupt ID Register (Base e + 2)

The pending interrupt is determined by decoding bits 1 through 5.
For interrupt reset purposes, reading this register is equivalent to
reading the Interrupt 10 register.

Bits Description

7 - 6 Reserved
5-1 Interrupt 10
o Interrupt Pending

Figure 29. Enhanced Interrupt ID Register

Bits 7 - 6 These bits are reserved and are always set to O.

Bits 5 -1 These bits are the encoded IDs of the pending interrupt.

Bit 0 This bit indicates if an interrupt is pending. When it is a 0,
an interrupt is pending, and bits 5 through 1 identify the
interrupt. When it is a 1, no interrupt is pending.

Serial Port Controller-September 1991 33

The new interrupts have higher priority than the existing Type 2
controller interrupts. After a new interrupt has been enabled,
interrupt priority exists. The following figure illustrates the Enhanced
Interrupt Control functions, beginning with the highest priority and
ending with the lowest priority.

Bits Interrupt Reset
543210 Type Source Control

100000 ReceiveTC TC on DMA Receive Read the Enhanced
Interrupt Register

100010 Transmit TC TC on DMA Transmit Read the Enhanced
Interrupt Register

110000 CCO Match Match on CCO Read the Enhanced
Interrupt 10 Register

110010 CC1 Match Match on CC1 Read the Enhanced
Interrupt 10 Register

110100 CC2 Match Match on CC2 Read the Enhanced
Interrupt 10 Register

100100 RCCR = 0 Receive Character Read the Enhanced
Count Interrupt 10 Register

100110 Transmitter THR and TSR Empty Read the Enhanced
Empty Interrupt 10 Register

000110 Receiver Overrun, Parity, or Read the Line Status
Line Status Framing Error or Register

Break Interrupt

000100' Received Data in the Receiver Read the Receiver
Data Buffer or the Trigger Buffer Register or
Available Level Has Been FIFO Register Drops

Reached. Below the Trigger
Level.

001100" Character No Characters Have Read the Receiver
Time-Out Been Removed From Buffer Register in
Indication or Put Into the FIFO Mode. In DMA

Receiver FIFO Mode Read EIIR to
Register During the Reset.
Last Four Character
Times

000010 Transmitter Transmitter Holding Read the Interrupt
Holding Register is Empty Identification
Register Register or Write to
Empty Transmitter Holding

Register

000000 Modem Change in Signal Read the Modem
Status Status from Modem Status Register

Note: 'No trigger level interrupt in DMA Mode .•• FIFO and DMA Mode

Figure 30. Enhanced Interrupt Control Functions

34 Serial Port Controller - September 1991

Enhanced Function Register 1 (Base e + 3)

This register is a read and write register that enables new interrupts
and DMA modes. A logical 1 enables the function and a logical 0
disables the function.

Bits Description

7 DMA Receive
6 DMA Transmit
5 Enable Receive Data Status
4 Terminal Count Receive
3 Terminal Count Transmit
2 Stop Transmitter Line Error
1 Transmitter Empty
o Receive Character Count Register

Figure 31. Enhanced Function Register 1 (Base e + 3)

Bit 7 This bit enables the DMA receive mode. The FIFO mode
must be enabled (bit 0 in the FIFO Control register) before
the DMA receive mode is enabled. The FIFO trigger level
can be programmed, as appropriate, by writing to bits 6 and
7 in the FIFO Control register.

Bit 6 This bit enables the DMA transmit mode. The FIFO mode
must be enabled (bit 0 in the FIFO Control Register) before
the DMA transmit mode is enabled. Initially, a Start Sending
command must be issued to start actual transmission. TX
REO cannot be generated until a Start Sending Command is
issued.

Bit 5 This bit enables alternate bytes of data followed by Received
Data status, to be stored in the Receive FIFO register. When
this bit is set to 1, the Receive FIFO register has a capacity
of eight data bytes plus eight status bytes. If a status byte is
at the bottom of the FIFO register, the Line Status register
indicates a good byte regardless of the status of the
associated data byte. The enhanced-received-data-status bit
should be set as part of the async port initialization.
Toggling this bit while receiving serial data produces
undefined results.

Note: No data is received during the time the FIFO register
is cleared and the received-data status bit is toggled.
Resetting this bit disables the storing of received data
status.

Serial Port Controller - September 1991 35

Bit 4 This bit enables an interrupt when the terminal count is
reached on a DMA receive operation. This signals that the
last character of the last DMA buffer has been filled and that
the FIFO register can fill and overrun if new DMA buffers are
not allocated.

Bit 3 This bit enables an interrupt when the terminal count is
reached on a DMA transmit operation. This signals that the
last character in the last DMA buffer has been read into the
FIFO register.

Bit 2 When set, this bit stops the transmitter after the Shift
register empties on any received line error (OE, PE, FE, 81).
The received line error is detected before the character is
placed in the FIFO or DMA mode. The receiver continues to
function normally. The transmitter can be restarted with the
Start Sending command. If an interrupt is desired, the
enable-line-status interrupt bit must be set in the Interrupt
Enable register.

Bit 1 This bit enables an interrupt when the Transmit Hold
register and Transmit Send register are empty in Character
mode, or when the FIFO register and Transmit Send register
are empty in the FIFO or DMA mode. The transmitter empty
bit in the Line Status register is changed from 0 to 1.

Bit 0 This bit enables an interrupt when the Receive Character
Count register is decremented to zero.

Enhanced Function Register 2 (Base e + 4)

This read and write register enables the transmitter controls, the
modem pacing, and the baud-rate functions. A logical 1 enables the
function and a logical 0 disables the function.

Bits Description

7 Byte Pacing
6 Set High Frequency Rate
5 Set Slow Transmit Rate
4 Set Slow Receiver Rate
3 Receive the Receiver via DSR
2 Control the Transmitter via DCD
1 Control the Transmitter via DSR
o Control the Transmitter via CTS

Figure 32. Enhanced Function Register 2 (Base e + 4)

36 Serial Port Controller - September 1991

I Bit 7
I

This bit affects byte pacing. The byte pacing function allows
the controller to support operations with a slow
microprocessor. When this bit is set to 1, every byte of data
is transmitted at a pacing rate of 256 times the receiver
clocks value in the Receive Character Count register. An
interrupt is generated when the Receive Character Count
register reaches 0 and the Enhanced Function Register 1
equals 1. When this bit is set to 0, the Receive Character
Count register is used for counting receiving characters if
the Receive Character Count register is loaded with a value
greater than O.

I
I

BIt6 This bit sets the high-frequency rate. When set to 1, this bit
selects a a 11.0592 frequency.

Note: Applications that select the 11.0592 MHz rate should
reset this bit to 0 when exiting.

This allows higher bit rates to be selected, up to a maximum
rate of 345,600 bits per second on transmit and receive.
When this bit is 1, the divisor latches must be set to 2 or
greater.

Bit 5 This bit sets the slow transmit rate to 1/16 of the rate
programmed in the baud-rate generator.

Bit 4 This bit sets the slow receiver rate. If this bit is set, the
receiver rate is set to 1/16 of the rate programmed in the
baud-rate generator.

Note: Bits 4, 5, and 6 should be set as part of the async port
initialization. Toggling these bits during transmit and
receive can produce undefined results.

Bit 3 This bit resets the receiver by issuing the '-data set ready'
signal (-DSR, bit 5 of the Modem Status register). If this
function is enabled, the receiver is turned off when -DSR
equals 0 (bit 5 of the Modem Status register equals 0) and is
turned on when -DSR equals 1 (bit 5 of the Modem Status
register equals 1). If -DSR becomes inactive, the character
currently being received is discarded.

Bit 2 This bit controls the transmitter by issuing the '-data carrier
detect' signal (-DCD, bit 3 of the Modem Status register). If
this function is enabled, the transmitter is turned off when
the -DCD equals 0 (bit 3 of the Modem Status register), and is
turned on if -DCD equals 1. However, the transmitter must
be initially turned on by a Start Sending command (After a
Start Sending command has been issued, the transmitter is

Serial Port Controller - September 1991 37

turned on and off based on the state of the '-data carrier
detect' signal).

Note: If the transmitter is stopped, the Transmitter Shift
register is emptied but no additional characters are
loaded from the Transmitter FIFO or Transmitter Hold
register.

Bit 1 This bit controls the transmitter via the '-data set ready'
signal (-DSR). If this function is enabled, the transmitter is
turned off when -DSR equals 0, and is turned on when -DSR
equals 1. However, the transmitter must be initially turned
on by a Start Sending command (After a Start Sending
command has been issued the transmitter is turned on and
off based on the state of the '-data set ready' signal).

Bit 0 This bit controls the transmitter via the '-clear-to-send'
signal. (-CTS, bit 4 of the Modem Status register). If this
function is enabled, the transmitter is turned off when -CTS
equals 0, and is turned on when -CTS equals 1. However,
the transmitter must be initially turned on by a Start Sending
command (After a Start Sending command has been issued
the transmitter is turned on and off based on the state of the
'clear-to-send' signal).

Enhanced Function Register 3 (Base e + 5)

This read and write register is used to control the Character Compare
registers. There are three 8-bit Character Compare registers and
three 4-bit Character Compare Function registers. The Character
Compare registers contain match characters and the Character
Compare Function registers contain match functions. A Character
Compare register and its Character Compare Function register can
be programmed independently of the other Character Compare
registers and character compare function registers.

To read from or write to the Character Compare registers, the
address for the register must be written to Enhanced Function
Register 3. Then the registers can be read from or written to, using
the Character Compare register.

Bits Description

7 - 3 Reserved
2 -1 Character Compare Address Lines
o Select Character Compare Register

Figure 33. Enhanced Function Register 3 (Base e+3)

38 Serial Port Controller - September 1991

Bits 7 - 3 These bits are reserved and are always set to O.

Bits 2 -1 These bits select the character compare address lines, the
address of the character compare register, or the address of
the Character Compare Function register.

Bit 0 This bit enables the Select Character Compare register. A
logical 1 specifies the address in bits 1 and 2 for a Character
Compare register. A logical 0 specifies the address for a
Character Compare Function register.

The following table shows access to the Character Compare registers
and the Character Compare Function registers for bits 2, 1 and O.

Bits
210

000
010
100
001
01 1
1 01

Function of
Character Compare
Data Register

Match Functions
Match Functions
Match Functions
Match Character
Match Character
Match Character

Register Accessed

Character Compare Function Register 0
Character Compare Function Register 1
Character Compare Function Register 2
Character Compare Register 0
Character Compare Register 1
Character Compare Register 2

Figure 34. Access to CCRs and CCFRs

Character Compare Data Register (Base e + 6)

This register is used to read and write the match character for a
Character Compare register, or the match function for a Character
Compare Function register. The register is specified by first writing
to Enhanced Function Register 3.

I The controller can be programmed to perform a specific operation
I when a character match occurs. It can start the transmitter, stop the

transmitter, delete the matched character from the incoming data
stream, or generate an interrupt. Multiple match functions per
Character Compare Function register are supported. If START and
STOP are both set, then STOP takes precedence because they are
mutually exclusive. Each character compare register is compared to
the received data character, and if there is a match, then the
programmed action takes place.

I If the controller is programmed to interrupt on a character match,
then the interrupt occurs as soon as the match is detected. To
disable a character compare register, clear the corresponding
Character Compare Function register. The format of the Character

Serial Port Controller-September 1991 39

Compare Data register for the Character Compare Function register
is shown on the following page.

Bits Description

3 Start Transmitter on Character Match
2 Stop Transmitter on Character Match
1 Delete Character on Character Match
o Interrupt on Character Match

Figure 35. Character Compare Register (Base e + 6)

Bit 3 A 1 starts the transmitter when a match occurs. The
transmitter does not start unless a Start Transmitter
command has been issued previously.

Bit 2 A 1 stops the transmitter when a match occurs.

Bit 1 A 1 causes the character to be deleted when a match occurs.

Bit 0 A 1 enables an interrupt when a match occurs. This interrupt
occurs as soon as there is a match with a received data
character.

The format of the Character Compare Data register for a character
compare register is an 8-bit match character. If the word length is
less than eight bits, the match character should be right justified and
any unused bits should be set to 0 when written to the Character
Compare Data Register.

Receive Character Count Register (Base e + 7)

This 8-bit register is used in byte pacing and receive character count
functions. The Receive Character Compare register is decremented
when a character is read from the Receive FIFO register during a
receive character count operation, or at every 256 receiver clocks
during Byte Pacing operation.

If the interrupt on Receiver Character Count is set (Enhanced
Function Register 1, Bit 0), then an interrupt is generated when the
Receive Character Count register is decremented to 0, regardless of
any operation.

Because this register is a countdown counter and does not wrap
around when reaching zero, the user must load a value to the
Receive Character Count register before using it. When read, this
register contains the current count (the count cannot be exact since

40 Serial Port Controller - September 1991

the receiver or 'receiver clocks' cannot be stopped to read this
register}.

Signal Descriptions

Modem-Control Input Signals

The following are input signals from the modem or external device to
the controller. Bits 7 through 4 in the Modem Status register indicate
the condition of these signals. Bits 3 through 0 monitor these signals
to indicate when the modem changes state.

-Clear to Send (-CTS)

When active, this signal indicates that the modem is ready for the
serial port to transmit data.

-Data Set Ready (-DSR)

When active, this signal indicates that the modem or data set is ready
to establish the communications link and transfer data with the
controller.

-Ring Indicator (-RI)

When active, this signal indicates that the modem or data set
detected a telephone ringing signal.

-Data Carrier Detect (-DCD)

When active, this signal indicates that the modem or data set
detected a data carrier.

Modem-Control Output Signals

The following are controller output signals. All are set inactive by a
master reset operation. These signals are controlled by bits 3
through 0 in the Modem Control register.

-Data Terminal Ready (-DTR)

When active, this signal informs the modem or data set that the
controller is ready to communicate.

Serial Port Controller - September 1991 41

-Request to Send (-RTS)

When active, this signal informs the modem or data set that the
controller is ready to send data.

Voltage Interchange Information

The signal is considered in the marking condition when the voltage
on the interchange circuit, measured at the interface point, is more
negative than -3 V dc, with respect to signal ground. The signal is
considered in the spacing condition when the voltage is more positive
than +3 V dc with respect to signal ground. The region between +3
V dc and -3 V dc is defined as the transition region and is considered
an invalid level. Voltages more negative than -15 V dc or more
positive than + 15 V dc are also considered as invalid levels.

Interchange
Voltage

Positive Voltage
Negative Voltage

Binary State

Binary 0
Binary 1

Figure 36. RS-232 Voltage Levels

Signal Condition

Spacing
Marking

Extended Performance Requirements

Interface Control
Function

On
Off

I Extended performance applies to Type 3 and Type 4 controllers only.
Although the serial port is compatible with EIA-232-D at speeds up to
20,000 bits per second, there are additional requirements for
operating the port at speeds up to 345,600 bits per second. These
requirements fall into two areas, the interconnection cable and the
attached equipment.

The cable should not be longer than 20 feet when operating at
extended performance speeds. Each signal wire has an individual
shield and should have capacitance between 100 and 450 picofarads
to the shield. All individual shields are connected to pin 7 at each
end. These requirements can be met by using one IBM Personal
Computer Communications Adapter Cable for 10 feet, or two
connected in series for 20 feet.

The attached equipment should meet the following requirements:

42 Serial Port Controller-September 1991

• The capacitance for an input or output signal should be less than
or equal to 120 picofarads.

• The timing oscillator accuracy is ±.01 %.

• The maximum generator skew equals 970 nanoseconds with the
cable attached and a capacitive load (including cable) between
100 and 690 picofarads.

• The maximum receiver skew equals 160 nanoseconds.

• The receiver deserializer should decode the data stream by
sampling a minimum of 16 times per unit interval such as is done
in the NS8250 and similar Universal Asynchronous Receive
Transmitters (UARTs).

To specify the maximum distortion in the signals, the concept of skew
is introduced. The receiver skew is defined as the worst case
difference in delay between the rising and falling edges from a 12V
peak-to-peak (P-P) square wave connected to the input of the receiver
to when it reaches the deserializer. For example, if the rising edge
delay is 200 nanoseconds and the falling edge delay is 120
nanoseconds then the skew is 200 nanoseconds minus 120
nanoseconds, which equals 80 nanoseconds. The 80 nanoseconds is
well within the 160-nanosecond requirement.

The generator skew is measured using the sending serializer to
generate a square wave and measuring the delays at the input of an
attached receiver with the cable and all capacitive loadings (690
picofarad maximum) included.

The generator waveforms graphic shown below illustrates where the
measurements are taken. The generator skew is A-B or C-D,
whichever is larger.

Generator Input J 1 --------'

~AI ~BICl rD
+ 3V ------ -------------------------------- ------------

Receiver Input -------- ____ J _________________ L_ ---------------------

Generator Waveforms

Serial Port Controller-September 1991 43

Connectors

The serial port provides a standard 25-pin male D-shell connector
with pin assignments defined for RS-232C and may provide a 9-pin
male D-shell connector.

Current loop is not supported.

The following is the 25-pin signal and pin assignment for the serial
port in a communications environment.

Pin

1
2
3
4
5
6
7
8
9
10
11
12
13

1 13

\0000000000000)
000000000000
14

Signal

Not Connected
Transmit Data
Receive Data
Request to Send
Clear to Send
Data Set Ready
Signal Ground
Data Carrier Detect
Not Connected
Not Connected
Not Connected
Not Connected
Not Connected

Pin

14
15
16
17
18
19
20
21
22
23
24
25

25

Signal

Not Connected
Not Connected
Not Connected
Not Connected
Not Connected
Not Connected
Data Terminal Ready
Not Connected
Ring Indicator
Not Connected
Not Connected
Not Connected

Figure 37. Serial Port Connector Signal and Pin AssIgnments (25-Pin)

The following is the 9-pin signal and pin assignments. This connector
supports the RS-232 interface.

1 5

\000000000)

6 9

44 Serial Port Controller-September 1991

Pin

1
2
3
4
5
6
7
8
9

Signal

Data Carrier Detect
Receive Data
Transmit Data
Data Terminal Read
Signal Ground
Data Set Ready
Request To Send
Clear To Send
Ring Indicator

Figure 38. Serial Port Connector Signal and Pin Assignments (9-Pin)

Serial Port Controller - September 1991 45

46 Serial Port Controller - September 1991

Index

A
applications 3
asynchronous communications

B
baud-rate generator 4, 17
block diagram 2
break interrupt 29
byte paci ng 11

C
character oriented pacing 10
communications applications 3
compatible registers 12
connector 44
considerations, programming 11

D
data format 4
data speed 17
descriptions, signal 41
divisor latch access bit (OLAB) 25
divisor latch registers 16
OLAB (divisor latch access bit) 13,

25
OMA modes 7

receive 8
transmit 8

E
enhanced registers 31

command register 32
compare data register 39
function register 1 35
function register 2 36
function register 3 38
interrupt 10 register 33
receive character count 40

© Copyright IBM Corp. 1991

F
FIFO control register 20
FIFO modes 5

interrupt mode 5
polled mode 7

framing error 29

I
interface 44
interrupt enable register 19
interrupt identification register 21
interrupts 19

L
line control register 25
line status register 28

M
marking condition, signal 42
modem control register 26
modem pacing 10
modem status interrupts 4
modem status register 30

o
output port 1 (Serial 1) 3
output port 2 (Serial 2) 3
overrun error 29

p
parity error 29
pin assignments 44
programming considerations 11

47

R
receiver buffer register 15
rs-232 considerations 42

S
scratch register 31
signal descriptions 41

input signals 41
output signals 41

spacing condition, signal 42
support 1

T
transition region, signal 42
transmit commands 9
transmitter holding register 14

V
voltage interchange information 42
voltages 44

48

Parallel Port Controller

Description 1
Programmable Option Select 2

Address Selection 2
Extended Mode .. 3
Arbitration Level (Type 2 and Type 3) 3

Parallel Port Controller Programming Considerations 3
DMA Mode (Type 2 and Type 3 Only) 4
Sending 5
Receiving 6
Interrupt Condition 6

Output Data Rate 7
Register Definitions 7

Parallel Data Register 7
Device Status Register 8
Device Control Register 9
Interface Control Register 11
Interface Status Register 13
Reserved Register Initialization 14

Parallel Port Timing 15
Signal Descriptions 16
Connector 19

Index .. 21

© Copyright IBM Corp. 1990

Ii Parallel Port Controller- October 1990

Figures

1. Parallel Port Controller 1
2. Address Assignments (Type 1) 2
3. Address Assignments (Type 2) 2
4. Address Assignments (Type 3) 2
5. Parallel Data Register 8
6. Device Status Register .. 8
7. Device Control Register (Type 1 and Type 2) 9
8. Device Control Register (Type 3) 10
9. Interface Control Register (Type 2 and Type 3) 11

I 10. Interface Control Register DMA Functions 12
I 11. Interface Status Register (Type 2 and Type 3) 13
I 12. Reserved Register (Type 2 and 3) 14

13. Parallel-Port Timing Sequence 15
14. Receiver A Specifications 16
15. Driver B Specifications 16
16. Driver C Specifications 16
17. Data Lines 17
18. -STROBE 17
19. -AUTOFDXT, -IN IT, -SLCTIN 18
20. -ACK, BUSY, PE, SLCT, -ERROR 18
21. Parallel Port Connector Signal and Pin Assignments 19

© Copyright IBM Corp. 1990 iii

Iv Parallel Port Controller- October 1990

Description

The parallel port allows the attachment of devices that transfer eight
bits of parallel data at standard transistor-transistor levels. It has a

I 25-pin, D-shell connector. The primary function of the parallel port is
I to attach a printer with a parallel interface to the system. The parallel
I port function consists of the controller and the connectors.

I There are three types of parallel port controllers: Type 1, Type 2, and
I Type 3. The type number indicates the function provided in the
I controller. The address of each controller can be configured and set
I to 1, 2, or 3 for Type 1 and Type 2 controllers. The address can be set
I to 1, 2,3, or 4 for Type 3 controller.

I The parallel port controller has an extended mode that supports
I bidirectional input and output. All three types support bidirectional
I input and output. In addition, Type 2 and Type 3 parallel port
I controllers support DMA transfers when in this mode. During
I power-on self-test the Type 2 and Type 3 controllers are put into
I extended mode so that DMA is available (See Programming
I Considerations on page 3). The parallel port controller supports
I level-sensitive interrupts and a readable interrupt-pending status
I indicator.

The following figure is a block diagram of the parallel port controller.

Interrupt

-Data Data ,. 1/0 Bus Buffer 25-pin i Direction
Connector

Control

Control Control Wrap -
L-. Output and

Buffer Signal Input

Figure 1. Parallel Port Controller

Parallel Port Controller - October 1990 1

Programmable Option Select

This section describes the address selection, the extended mode, and
DMA arbitration for the parallel port controllers.

Address Selection

The parallel port can be configured to the customary three addresses
used by IBM Personal Computer products. These addresses are
selected through programmable option select (POS) registers during
system board setup.

The address assignments for each configuration are shown in the
following tables. All addresses are in hexadecimal.

Parallel Device Device
Port Data Status Control Reserved
Number Register Register Register Register

Parallel 1 03BC 03BO 03BE 03BF
Parallel 2 0378 0379 037A 037B
Parallel 3 0278 0279 027A 027B

Figure 2. Address Assignments (Type 1)

Parallel Device Device Interface Interface
Port Data Status Control Control Status Reserved

IRQ

7
7
7

Number Register Register Register Register Register Register IRQ

Parallel l' 03BC 03BO 03BE 03BF 7
Parallel 2 0378 0379 037A 037B 037C 0370 7
Parallel 3 0278 0279 027A 027B 027C 0270 7

'Type 2 controllers do not support OMA on parallel port 1.

Figure 3. Address Assignments (Type 2)

2 Parallel Port Controller- October 1990

Parallel Device Device Interface Interface
Port Data Status Control Control Status Reserved
Number Register Register Register Register Register Register IRQ

Parallel 1* 03BC* 03BO* 03BE* 03BF* 7
Parallel 1 1278 1279 127A 127B 127C 1270 7
Parallel 2 0378 0379 037A 0378 037C 0370 7
Parallel 3 0278 0279 027A 0278 027C 0270 7
Parallel 4 1378 1379 137A 1378 137C 1370 7

*These addresses are for compatibility. To use full function, set the address range
to start at hex 1278.

Figure 4. Address Assignments (Type 3)

Extended Mode

The extended mode option is selected through the P~S function
during system board setup. The extended mode makes the parallel

I port an 8-bit parallel bidirectional interface and makes DMA available
I for Type 2 and Type 3 controllers. The parallel port provides half
I duplex transfers when in bidirectional operation mode. Direction is
I determined by bit 5 of the Device Control register and DMA is
I controlled through the Interface Control register.

Arbitration Level (Type 2 and Type 3)

The Type 2 controller is fixed at arbitration level 6 and cannot be set
I through POS. The Type 3 controller allows arbitration levels to be
I configured to any level through the P~S function.

Parallel Port Controller Programming
Considerations

The following are some considerations for programming the parallel
port controller.

The interface has three registers that respond to input and output
instructions. The three registers are:

• A read and write Parallel Data register

• A read only Device Status register

• A read and write Device Control register.

Parallel Port Controller - October 1990 3

I The Type 2 and Type 3 controllers have three additional registers:

• A read and write Interface Control register

• A read only Interface Status register

• A write only Reserved register.

These registers are available in extended mode only.

During POST the parallel port is configured as an output port. POST
status information is written to this port during the power-or.
initialization or the initialization caused by a reset from the keyboard
(Ctrl + Alt+ Del).

DMA Mode (Type 2 and Type 3 Only)

Single DMA transfers are supported both when sending and
receiving. The DMA enable bit in the Interface Control register is set
to 1 when DMA service is requested.

The parallel port has two idle states while it is in the DMA mode:

• Not ready (end-of-data bit = 1): Any request generates an
interrupt if the interrupt is enabled. This state is entered after
completing a DMA transfer or after setting the End of Data bit (bit
6) in the Interface Control register to 1.

• Ready (end-of-data bit = 0): While in this state, a pulse on the
'-acknowledge' signal starts a DMA transfer. This state is
entered after the Start DMA bit or the Reset End of Data bit (bit 6)
is set in the Interface Control register to 1.

In addition, there are two data transfer states:

• Send byte: This state is entered when bit 5 of the Device Control
register is set to 0 and a Start DMA or an '-acknowledge' signal is
set. A DMA fetch transfer is initiated, the data is placed on the
interface, and the 'strobe' signal line is pulsecl.

• Receive byte: This state is entered when the direction bit is set to
1 and an '-acknowledge' signal is set. A DMA store is initiated
and the 'strobe' signal is pulsed to acknowledge the completion
of the operation. The incoming data is latched at the trailing edge
of the '-acknowledge' signal.

4 Parallel Port Controller- October 1990

Sending

I Writing a 1 to the start-DMA bit in the Interface Control register
I initiates the DMA transfer to the attached device. (The enable DMA
I bit must have been set to 1 in a previous operation). The DMA

Controller channel and the direction of the transfer are set before
writing a 1 to the start-DMA bit. If the device is not busy, the parallel
port controller requests the system bus. After control of the bus is
gained, the following sequence of events occur:

1. Data is read from memory and written to the Parallel Data
register by the DMA controller.

2. Data is carried to the attached device using the 'strobe' signal on
the parallel interface.

3. The 'strobe' signal is activated automatically after the Parallel
Data register is written.

4. The device issues the '-acknowledge' signal when the data
transmission is completed.

Note: The '-acknowledge' signal is used to trigger the next DMA
transfer, if the end-of-data latch (bit 6 of the Interface Status register
equals 0) is reset and DMA is enabled. In addition, the attached
device must hold the 'busy' signal inactive for the parallel port to
issue a DMA request.

When a terminal count is reached during a DMA transfer, the
end-of-data latch is set and the next DMA transfer is prevented. It is
known that the DMA controller has transferred the last byte of data to
the parallel port controller. However, it is not known if the attached
device has received the last byte of data. The parallel port controller
is designed to interrupt at the '-acknowledge' signal after the
end-of-data latch is set. At the completion of a DMA transfer, the
parallel port controller will interrupt if the terminal-count
interrupt-enable bit is set.

I By setting the end-of-data (EOD) bit in the Interface Control register,
I the current DMA operation will be terminated. It should be noted that
I no interrupt will be generated by setting this bit.

I This causes an effect similar to terminal count. One additional byte
I of data may be sent depending on the timing of the setting of the bit.

Disabling the DMA while a DMA transfer is in progress stops the
generation of 'strobe' signals and causes an interrupt to end the DMA
transfer.

Parallel Port Controller- October 1990 5

Receiving

The DMA channel must be initialized prior to receiving data from the
I attached device. When the parallel port controller is ready to receive
I data from the attached device, the parallel port controller uses the
I '-acknowledge' signal. The '-acknowledge' signal initiates the DMA

transfer to the system memory, if the end-of-data latch is reset and
DMA is enabled. Data transmission allows the parallel port controller
to request the system bus. After control of the bus is gained, the
following sequence of events occur:

1. Data in the Parallel Data register of the parallel port controller is
read and then written to memory by the DMA controller.

2. The 'strobe' signal is activated after the read command pulse to
the Parallel Data register.

The parallel port controller cannot receive subsequent data until the
previous data has been read by the DMA controller and transferred to
the system memory. When the '-acknowledge' signal goes low, (data
is being placed on the bus) the parallel port controller asserts the
'-autofeed' signal (-AUTOFD) line high to inform the attached device of
a busy state. After the DMA controller reads the data from the
Parallel Data register, a 'strobe' signal is generated automatically as
an acknowledgement of data transmission. A positive edge of the
'strobe' signal resets the -AUTOFD line low to tell the attached device
that the controller is not busy. The 'busy' signal has no effect in
receive mode.

To determine the end of a DMA transfer, the parallel port controller
interrupts if the terminal-count interrupt-enable bit is on. When the
terminal count is reached during a DMA transfer, the end-of-data

I latch is set to prevent the next DMA cycle and an interrupt occurs.
I The DMA controller has transferred the last byte of data to the
I memory.

Interrupt Condition

I When enabled, the following event can cause an interrupt:

• Any transition of the '-error' signal

• Any transition of the 'paper end' signal

• Any transition of the 'select' signal

6 Parallel Port Controller- October 1990

• The positive edge ot the '-acknowledge' signal

When DMA is disabled

When DMA is enabled and end-ot-data is set

• Terminal count while DMA is enabled while receiving.

Output Data Rate

The approximate time between two data bytes in a DMA operation is
5 microseconds, assuming that the attached device returns the
'-acknowledge' signal to the 'strobe' signal immediately. In addition,
the '-acknowledge' signal is 1.0 microseconds wide (the
'-acknowledge' signal falls low and not later than approximately 1.0

I microseconds after the rising edge of the '-strobe' line). To calculate
I the data rate, the delay from the '-strobe' signal to the '-acknowledge'
I signal on the attached device side should be added for each

transmission. The transfer rate varies according to the DMA channel
usage of the system.

Register Definitions

The following definitions apply to all types of parallel port controllers,
unless specified otherwise. All reserved bits will be written as 0, and
read as a 1.

Parallel Data Register

The Parallel Data register is a read and write register. Its output
drivers are enabled by the direction bit in the Device Control register.
A read operation returns the output data, if the output drivers are
enabled or if data is read from the attached device when the drivers
are not enabled. Care must be taken not to enable the drivers when
the attached device is also driving the interface.

I CAUTION:
I Damage to the system can occur if the controller and the attached
I device are driving data onto the data lines at the same time.
I Therefore, do not enable the drivers when the attached device Is
I driving the interface.

The Parallel Data register is an 8-bit data register for both the
compatible and extended modes. In compatible mode, writing to this

Parallel Port Controller - October 1990 7

register immediately presents data to the connector. Reading this
register returns the last byte written.

In extended mode, writing to this register latches the data; however,
the data is presented to the connector only if the direction bit is 0
(write). Reading the register returns either:

• The last byte written, if the direction bit is 0

• The data on the connector from the attached device, if the
di recti on bit is 1.

Bit Description

7 - 0 Data

Figure 5. Parallel Data Register

Bits 7 - 0 These bits represent the data (07 - ~O) on the signal lines
of the connector.

Device Status Register

This read-only register contains the status of the attached device and
the status of the interrupt.

I Note: Reading this register resets an interrupt latch caused by the
'-acknowledge' signal. Because reading this register restores
bit 2 (-IRQ STATUS) to 1, there is a small window where the
riSing edge of the 'acknowledge' signal can arrive at the same
time that the register is being read. This prevents bit 2 from
being set to 0 as it would have been without the read
operation. This condition also prevents the associated
interrupt if it was enabled in the Device Control Register.

I
I
I
I
I
I
I

This register returns the interrupt-pending status of the interface, and
the real-time status of the connector pins, as shown in figure 6.

Bit Description

7 -BUSY
6 -ACKNOWLEDGE
5 PAPER END
4 SELECT
3 -ERROR
2 -IRQ STATUS
1,0 Reserved

Figure 6. Device Status Register

8 Parallel Port Controller- October 1990

Bit 7 This bit represents the state of the '-busy' signal. When
this bit is set to 0, the printer is busy and cannot accept
data. .

Bit 6 This bit represents the current state of the device
'-acknowledge'signal. When this bit is pulsed, the device
has received a character and is ready to accept another.

Bit 5 This bit represents the current state of the device 'paper
end' signal. When this bit is set to 1, the pri nter has
detected the end of the paper.

Bit 4 This bit represents the current state of the 'select' signal.
When this bit is set to 1, the printer has been selected.

Bit 3 This bit represents the current state of the device '-error'
signal. When this bit is set to 0, the printer has
encountered an error condition.

Bit 2 This bit is set to 0 when the device has acknowledged the
previous transfer using the '-acknowledge' signal. This bit
is set to 1 when the Device Status register or the Interface
Status register is read. An interrupt is pending when this
bit is set to O. This bit is used in non-DMA mode only.

Bits 1, 0 These bits are reserved.

Device Control Register

This is a read and write register that controls lines to the attached
device. Reading this register returns the last byte written to the
register, if the line is not driven by the attached device. The direction
bit can be updated at any time, but the effect of the bit is masked
when in non-extended mode (in compatible mode the direction is
always out, even if the bit reads as 1).

Bit Description

7,6 Reserved
5 Direction
4 IRQ EN
3 SLCTIN
2 -INIT
1 AUTO FOXT
0 STROBE

Figure 7. Device Control Register (Type 1 and Type 2)

Parallel Port Controller - October 1990 9

Bits 7,6 These bits are reserved and must be set to 0. This bit
always reads as 1.

Bit 5 This bit controls the direction of the data port. When this
bit is set to 0, the data drivers are enabled and the
parallel data is placed on the output data lines. A read
operation will return a 1 for Type 1 and the last value
written for Type 2.

Bit 4 This bit enables the parallel port interrupt. When this bit
is set to 1, an interrupt occurs when the '-acknowledge'
signal changes from active to inactive (non-DMA mode
only).

Bit 3 This bit controls the 'select in' signal. When this bit is set
to 1, the printer is selected.

Bit 2 This bit controls the 'initialize' signal. When this bit is set
to 0, the printer will be initialized.

Bit 1 This bit controls the 'automatic feed Xl' signal. When this
bit is set to 1, the printer automatically spaces the paper
up one line for every carriage return.

Bit 0 This bit controls the 'strobe' signal to the printer. When
this bit is set to 1, data is clocked into the printer.

I Bil Description

7 Autostrobe
6 Reserved
5 Direction
4 IRQ Enable
3 SLCTIN
2 -INIT
1 AUTO FDXT
o STROBE

I Figure 8. Device Control Register (Type 3)

I Bit7

I Bit6
I
I Bit5
I
I
I
I

10

This bit, when set to 1, enables the 'Autostrobe' signal.

This bit is reserved and must be set to 1. A read
operation will return a value of 1.

This bit controls the direction of the data register. When
this bit is set to 0, the data drivers are enabled and the
parallel data is placed on the output data lines. A read
operation will return a 1 in non-extended mode and the
last value written in extended mode.

Parallel Port Controller - October 1990

I Bit 4
I
I
I
I Bit 3
I
I Blt2
I
I Bit 1
I
I
I BltO
I

This bit enables the parallel port interrupt. When this bit
is set to 1, an interrupt occurs when the '-acknowledge'
signal changes from active to inactive (non-DMA mode
only).

This bit controls the 'select in' signal. When this bit is set
to 1, the printer is selected.

This bit controls the 'initialize' signal. When this bit is set
to 0, the printer will be initialized.

This bit controls the 'automatic feed XT' signal. When this
bit is set to 1, the printer automatically spaces the paper
up one line for every carriage return.

This bit controls the 'strobe' signal to the printer. When
this bit is set to 1, data is clocked to the printer.

I CAUTION:
I Do not enable the drivers for the data lines while the attached device
I Is driving them.

Interface Control Register

This register controls the various functions available in the interface.
All bits read as 1 in non-extended mode. Bits 1,6, and 7 always read
as 1.

Bit Description

7 Start DMA
6 Reset EOD
5 Enable TC/ACK Interrupt
4 SLCT IRQ Enable
3 -ERROR IRQ Enable
2 PE IRQ Enable
1 Set EOD
o Enable DMA

Figure 9. Interface Control Register (Type 2 and Type 3)

I Bit 7
I

Writing a 1 to this bit initiates a DMA transfer. The Enable
DMA (bit 0) must have been set to 1 in a previous write
operation, otherwise the results are indeterminate.
Reading this bit always returns as a 1.

I
I

Bit 6 Setting this bit to 1 resets the end-of-data latch, which
allows the port to honor DMA transfer requests by the
'-acknowledge' signal. Reading this bit always returns a
1.

Parallel Port Controller- October 1990 11

Bit 5

Bit4

Bit 3

Bit 2

Bit 1
I
I
I

I Bit 0
I
I
I
I

Setting the bit to 1 enables interrupts to occur whenever
the terminal count is achieved, or whenever an
'-acknowledge' signal occurs with the end-of-data latch
set. A 0 clears the terminal count '-acknowledge' signal in
the Interface Status register and removes any pending
interrupts caused by the terminal count. This bit is used
only in DMA mode.

This bit is valid in the extended mode and setting this bit
to 1 enables interrupts to occur oneither edge of SELECT.
Resetting this bit cle~rs the 'select interrupt request' .
signal (SLCT IRQ) in the Interface Status register.

This bit is valid in the extended mode and enables
interrupts to occur on either edge of an '-error' signal.
Resetting this bit clears the 'error interrupt request' signal
(-ERROR IRQ) in the Interface Status register,

This bit is valid in the extended mode and enables
interrupts to occur on either edge of a 'paper end' signal.
Resetting this bit clears the 'paper end interrupt request'
(PE IRQ) in the Interface Status register.

Setting this bit to 1 sets the end~of-data latch which will
stop DMA transfers before terminal count is reached.
Reading this bit always returns a 1. This output generates
a pulse and always reads as 1.

This bit enables the DMA function. Whenever this bit is
set from a reset condition, the end-of-data latch (bit 1)
must also be set to prevent unknown states. The extended
mode must be set in the POS register before this bit can
be set.

I Writing certain bit combinations of the Interface Control register may
I cause unexpected results. Those bit combinations listed as reserved
I in the following figure, must not be used.

12 Parallel Port Controller- October 1990

Bits
7 6 1 0 Function

00 00 Reserved
00 01 No Change to DMA Operation
00 10 Disable DMA
00 11 Halt DMA or Enable DMA
01 00 Reserved
01 01 Set Ready-to-Start DMA in Receive Mode
01 10 Reserved
01 11 Reserved
10 00 Reserved
10 01 Start DMA in Send Mode
10 10 Reserved
10 11 Reserved
11 00 Reserved
11 01 Reserved
11 10 Reserved
11 11 Reserved

Figure 10. Interface Control Register DMA Functions

Interface Status Register

This is a read-only register and is used to convey the status of the
parallel interface. Reading this register resets the interrupt pending
status, bits and resets the interrupt request. The interrupt handler
must save the status or process it completely before returning.
Disabling the interrupts with the Interface Control register also clears
the corresponding interrupt-request bit. All bits in this register read
as 1 in compatible mode.

I Note: Because reading the register resets the interrupt status (bits 2
I through 5), there is a small window where the interrupting
I condition, if it occurs at the end of the read operation, will not
I set the corresponding interrupt status bit (the interrupt is also
I prevented). A periodic check of the corresponding status bits
I in the Device Status register and the EOD bit in this register
I can be used to detect this condition.

Bit

7
6
5
4
3
2
1,0

Description

Reserved
EOD
TC/ACK Interrupt
SLCT Interrupt
Error Interrupt
PE Interrupt
Reserved

Figure 11. Interface Status Register (Type 2 and Type 3)

Parallel Port Controller - October 1990 13

I Bit7

I Bit 6
I
I
I
I

I Bit 5
I
I
I
I
I Bit4
I
I

I Bit 3
I
I
I Bit 2
I
I

I Bit 1,0

This bit is reserved.

When the EOD bit is 1, it indicates that the end-of-data
latch is set and the parallel port is not ready to perform a
DMA transfer. This occurs when the terminal count is
reached or when the latch is set through the
set-end-of-data-Iatch bit in the Interface Control register.

When the TC/ACK interrupt bit is set to 1, it indicates that
the pending interrupt is caused by the terminal count or by
an '-acknowledge' signal. If the EOD bit is 1, the interrupt
was caused by the terminal count, otherwise it is caused
by the 'acknowledge' signal.

When the SLCT interrupt bit is 1, it indicates that the
pending interrupt is caused by any transition of the 'select'
signal.

When the error interrupt bit is 1, it indicates that the
pending interrupt is caused by any transition of the 'error'
signal.

When the PE interrupt bit is set to 1, it indicates that the
pending interrupt is caused by any transition of the 'paper
end' signal.

These bits are reserved.

Reserved Register Initialization

I This register must be loaded with a value of Hex 16 before using the
I DMA mode.

Reading this register gives unpredictable values.

il·· ~--7 - 0 Must Be Hex 16

I Figure 12. Reserved Register (Type 2 and 3)

14 Parallel Port Controller- October 1990

Parallel Port Timing

I Timing for the parallel port depends on the devices connected to the
I port. The following figure shows the minimum requirements for the
I parallel-port signal timing and any device that may be attached to the
I parallel port.

BUSY

-ACK

DATA

-STROBE

MI4-~--+I-_L~
O.5Jls I O.5Jls O.5Jls I O.5Jls
Min Min Min Min

-----«~--==--I ~>>----

I
~

Figure 13. Parallel-Port Timing Sequence

I The DMA (Types 2 and 3) and Autostrobe (Type 3) functions will
I generate these timings automatically. In sending modes, -STROBE
I will be activated 1.0 ±0.25 microseconds after the data is placed on
I the output data lines. The -STROBE pulse width is 1.0 ±0.25
I microseconds. In DMA receive mode, a strobe pulse 1.0 ±0.25
I microseconds wide will be generated as soon as the data has been
I read from the data lines.

For specific signal timing parameters, refer to the specifications for
the equipment connected to the parallel port connector.

Parallel Port Controller- October 1990 15

Signal Descriptions

The following figures, schematics, and tables, are representative
circuits of the Parallel Port interface signals.

Parameter

High-Level Input Voltage
Low-Level Input Voltage
High-Level Input Current
Low-Level Input Current

Value

2V
0.8 V
40J1A
-0.8 mA

Figure 14. Receiver A Specifications

Parameter

Sink Current
Source Current
High-Level Output Voltage
Low-Level Output Voltage

Value

24mA
-2.6 mA
2.4 Vdc
0.5 Vdc

Figure 15. Driver B Specifications

Parameter

Sink Current
Source Current
High-Level Output Voltage
Low-Level Output Voltage

Value

20mA
Open Collector
Open Collector
0.5 Vdc

Figure 16. Driver C Specifications

16 Parallel Port Controller - October 1990

Limit

Minimum
Maximum
Maximum
Maximum

Limit

Maximum
Maximum
Minimum
Maximum

Limit

Maximum

Maximum

Symbol

R1
R2
C1

Figure 17. Data Lines

Symbol

R1
R2
C1

Figure 18. -STROBE

R1

Value

33 n
2 kilo ohms or Not Present
0.0022 pF or Not Present

R2

+5V

R2
R1

Value

33 n
2 kilo ohms to 4.7 kilo ohms
0.0022 pF or Not Present

Parallel Port Controller - October 1990 17

Symbol

R1
C1

Value

+5V

R1

2 kilo ohms to 4.7 kilo ohms
0.0022 JlF or Not Present

Figure 19. -AUTOFDXT, -IN IT, -SLCTIN

Symbol

R1
C1

+5V

R1

Value

1 kilo ohms to 10 kilo ohms or Not Present
0.00068 to .0022 JlF or Not Present

Figure 20. -ACK, BUSY, PE, SLCT, -ERROR

18 Parallel Port Controller- October 1990

Connector

The parallel port connector is a standard 25-pin female D-shell
connector.

The following figure shows the signal and pin assignments for the
parallel port connector.

Pin
No. 1/0

1 1/0
2 1/0
3 1/0
4 110
5 1/0
6 1/0
7 110
8 1/0
9 1/0

10 I
11 I
12 I
13 I

13 1

\0000000000000)
000000000000

25 14

Signal Pin Signal
Name No. 1/0 Name

-STROBE 14 0 -AUTO FDXT
Data 0 15 I -ERROR
Data 1 16 0 -INIT
Data 2 17 0 -SLCT IN
Data 3 18 NA Ground
Data 4 19 NA Ground
Data 5 20 NA Ground
Data 6 21 NA Ground
Data 7 22 NA Ground

-ACK 23 NA Ground
BUSY 24 NA Ground
PE 25 NA Ground
SLCT

Figure 21. Parallel Port Connector Signal and Pin Assignments

Parallel Port Controller - October 1990 19

20 Parallel Port Controller - October 1990

Index

A
address selection 2
arbitration level 3

B
block diagram

C
compatibility 1
connector 19

D
device control register 9
device status register 8
DMA mode 4

E
extended mode 3

interface control register 11
interface status register 13
interrupt conditions 6

o
output data rate 7

p
parallel data register 7
parallel port description
parallel port timing 15
programmable option select 2
programming considerations 3

© Copyright IBM Corp. 1990

R
receiving 6
register definitions 7

device control register 9
device status register 8
interface control register 11
interface status register 13
parallel data register 7

reserved register initialization 14

S
sending 5
signal descriptions 16

21

Notes:

22

Video Subsystem

Section 1. Introduction 1-1
Video Subsystem 1-2

Section 2. VGA Function 2-1
VGA Function Introduction 2-5
Major Components 2-7
Hardware Considerations 2-11
Modes of Operation .. 2-12
Video Memory Organization 2-24
Registers 2-41
VGA Programming Considerations 2-96
Video Digital-to-Analog Converter 2-103
VGA Video Extensions 2-106

Section 3. XGA Function 3-1
XGA Function Introduction 3-7
VGA compatibility 3-15
132-Column Text Mode 3-15
Extended Graphics Mode 3-16
XGA Display Controller Registers 3-30
Coprocessor Description 3-80
Coprocessor Registers 3-118
XGA System Interface 3-150
Virtual Memory Description 3-156
XGA Programming Considerations 3-170
VGA Primary Adapter Considerations 3-175

Section 4. Display Connector 4-1
Display Connector Introduction 4-2

Appendix A. XGA Sample Code A-1
XGA Sample Code Introduction A-2
Setting the XGA Subsystem into Extended Graphics Mode A-2
Setting the XGA Subsystem into 132-Column Text Mode A-21

Index .. X-1

© Copyright IBM Corp. 1989. 1991

Figures

iI

2-1.
2-2.
2-3.
2-4.
2-5.
2-6.
2-7.
2-8.
2-9.

2-10.
2-11.
2-12.
2-13.
2-14.
2-15.
2-16.
2-17.
2-18.
2-19.
2-20.
2-21.
2-22.
2-23.
2-24.
2-25.
2-26.
2-27.
2-28.
2-29.
2-30.
2-31.
2-32.
2-33.
2-34.
2-35.
2-36.
2-37.
2-38.
2-39.
2-40.
2-41.
2-42.

Diagram of the VGA Function 2-6
Graphics Controller 2-9
Attribute Controller .. 2-10
BIOS Video Modes 2-12
Double Scanning and Border Support 2-13
Direct-Drive Analog Displays 2-14
Character/Attribute Format 2-16
Attribute Byte Definitions 2-16
BIOS Color Set 2-17
Video Memory Format .. 2-18
PEL Format, Modes Hex 4 and 5 2-19
Color Selections, Modes Hex 4 and 5 2-19
PEL Format, Mode Hex 6 ,. 2-20
Bit Definitions C2,CO 2-21
Compatible Color Coding 2-23
256KB Video Memory Map 2-24
Data Flow for Write Operations 2-39
Color Compare Operations 2-40
Video Subsystem Register Overview 2-41
General Registers 2-42
Miscellaneous Output Register, Hex 03CC/03C2 2-42
Display Vertical Size 2-43
Clock Select Definitions .. 2-43
Input Status Register 0, Hex 03C2 2-44
Input Status Register 1, Hex 03DA/03BA 2-45
Feature Control Register, Hex 03DA/03BA and 03CA . 2-46
Video Subsystem Enable Register, Hex 03C3 2-46
Sequencer Registers 2-47
Sequencer Address Register 2-47
Reset Register, Index Hex 00 2-48
Clocking Mode Register, Index Hex 01 2-49
Map Mask Register, Index Hex 02 2-51
Character Map Select Register, Index Hex 03 2-52
Character Map Select A 2-53
Character Map Select B 2-53
Memory Mode Register, Index Hex 04 2-54
Map Selection, Chain 4 2-54
CRT Controller Registers 2-55
CRT Controller Address Register, Hex 03B4/03D4 ... 2-56
Horizontal Total Register, Index Hex 00 2-56
Horizontal Display Enable-End Register, Index Hex 01 2-57
Start Horizontal Blanking Register, Index Hex 02 2-57

© Copyright IBM Corp. 1989. 1991

2-43. End Horizontal Blanking Register, Index Hex 03 2-58
2-44. Display Enable Skew 2-58
2-45. Start Horizontal Retrace Pulse Register, Index Hex 04 2-59
2-46. End Horizontal Retrace Register, Index Hex 05 2-60
2-47. Vertical Total Register, Index Hex 06 2-61
2-48. CRT Overflow Register, Index Hex 07 2-62
2-49. Preset Row Scan Register, Index Hex 08 2-63
2-50. Maximum Scan Line Register, Index Hex 09 2-64
2-51. Cursor Start Register, Index Hex OA 2-65
2-52. Cursor End Register, Index Hex OB 2-66
2-53. Start Address High Register, Index Hex OC 2-67
2-54. Start Address Low Register, Index Hex 00 2-67
2-55. Cursor Location High Register, Index Hex OE 2-68
2-56. Cursor Location Low Register, Index Hex OF 2-68
2-57. Vertical Retrace Start Register, Index Hex 10 2-69
2-58. Vertical Retrace End Register, Index Hex 11 2-69
2-59. Vertical Display-Enable End Register, Index Hex 12 .. 2-71
2-60. Offset Register, Index Hex 13 2-71
2-61. Underline Location Register, Index Hex 14 2-72
2-62. Start Vertical Blanking Register, Index Hex 15 2-73
2-63. End Vertical Blanking Register, Index Hex 16 2-73
2-64. CRT Mode Control Register, Index Hex 17 2-74
2-65. CRT Memory Address Mapping 2-75
2-66. Line Compare Register, Index Hex 18 2-77
2-67. Graphics Controller Register Overview 2-78
2-68. Graphics Controller Address Register, Hex 03CE 2-78
2-69. Set/Reset Register, Index Hex 00 2-79
2-70. Enable Set/Reset Register, Index Hex 01 2-80
2-71. Color Compare Register, Index Hex 02 2-81
2-72. Data Rotate Register, Index Hex 03 2-82
2-73. Operation Select Bit Definitions 2-82
2-74. Read Map Select Register, Index Hex 04 2-83
2-75. Graphics Mode Register, Index Hex 05 2-84
2-76. Write Mode Definitions 2-85
2-77. Miscellaneous Register, Index Hex 06 2-86
2-78. Video Memory Assignments 2-86
2-79. Color Don't Care Register, Index Hex 07 2-87
2-80. Bit Mask Register, Index Hex 08 2-88
2-81. Attribute Controller Register Addresses 2-89
2-82. Address Register, Hex 03CO 2-89
2-83. Internal Palette Registers, Index Hex 00 - OF 2-90
2-84. Attribute Mode Control Register, Index Hex 10 2-91
2-85. Overscan Color Register, Index Hex 11 2-93
2-86. Color Plane Enable Register, Index Hex 12 2-93
2-87. Horizontal PEL Panning Register, Index Hex 13 2-94
2-88. Image Shifting 2-94

Video Subsystem - September 1991 iii

2-89. Color Select Register, Index Hex 14 2-95
2-90. Character Table Structure 2-100
2-91. Character Pattern Example 2-101
2-92. Split Screen Definition 2-101
2-93. Screen Mapping within the Display Buffer Address

Space 2-102
2-94. Video DAC Register 2-103
2-95. Auxiliary Video Connector Interface 2-107
2-96. Video Extension 2-108
2-97. Video Extension Signal Timing (DAC Signals) 2-110
3-1. XGA Video Subsystem 3-9
3-2. XGA Color Resolution 3-12
3-3. Intel Order of the XGA Memory Map 3-17
3-4. Motorola Order of the XGA Memory Map 3-18
3-5. CRT Controller Register Definitions 3-20
3-6. Display PEL Map Offset and Width Definitions 3-21
3-7. Sprite Appearance Defined by 2-bit PEL 3-22
3-8. Sprite Positioning 3-24
3-9. Direct Color Mode Data Word 3-27

3-10. XGA Direct Color Palette Load 3-28
3-11. Display Controller Register Addresses 3-30
3-12. Operating Mode Register, Address Hex 21xO 3-32
3-13. Display Mode Bit Assignments 3-32
3-14. Aperture Control Register, Address Hex 21x1 3-33
3-15. Aperture Size and Location Bit Assignments 3-33
3-16. Interrupt Enable Register, Address Hex 21x4 3-34
3-17. Interrupt Status Register, Address Hex 21x5 3-36
3-18. Aperture Index Register, Address Hex 21x8 3-38
3-19. Aperture Index Bit Assignments 3-38
3-20. Memory Access Mode Register, Address Hex 21x9 .. 3-39
3-21. PEL Size Bit Assignments 3-39
3-22. Index Register, Address Hex 21xA 3-40
3-23. XGA Index Register Assignments (Part I) 3-40
3-24. XGA Index Register Assignments (Part II) 3-40
3-25. Auto-Configuration Register, Index Hex 04 3-43
3-26. Horizontal Total Registers, Indexes Hex 10 and 11 ... 3-44
3-27. Horizontal Total Registers Value Assignments 3-44
3-28. Horizontal Display End Registers, Indexes Hex 12 and

13 3-45
3-29. Horizontal Display End Registers Value Assignments 3-45
3-30. Horizontal Blanking Start Registers, Indexes Hex 14

and 15 3-46
3-31. Horizontal Blanking Start Registers Value Assignments 3-46
3-32. Horizontal Blanking End Registers, Indexes Hex 16 and

17 3-47
3-33. Horizontal Blanking End Registers Value Assignments 3-47

Iv Video Subsystem - September 1991

3-34. Horizontal Sync Pulse Start Registers, Indexes Hex 18
and 19 3-48

3-35. Horizontal Sync Pulse Start Registers Value
Assignments 3-48

3-36. Horizontal Sync Pulse End Registers, Indexes Hex 1A
and 1B 3-49

3-37. Horizontal Sync Pulse End Registers Value
Assignments 3-49

3-38. Horizontal Sync Pulse Position Registers (Index 1C and
1E) 3-50

3-39. Horizontal Sync Pulse Delay Bit Assignments 3-50
3-40. Vertical Total Registers, Indexes Hex 20 and 21 3-51
3-41. Vertical Total Registers Value Assignments 3-51
3-42. Vertical Display End Registers, Indexes Hex 22 and 23 3-52
3-43. Vertical Display End Registers Value Assignments 3-52
3-44. Vertical Blanking Start Registers, Indexes Hex 24 and

25 3-53
3-45. Vertical Blanking Start Registers Value Assignments 3-53
3-46. Vertical Blanking End Registers, Indexes Hex 26 and 27 3-54
3-47. Vertical Blanking End Registers Value Assignments 3-54
3-48. Vertical Sync Pulse Start Registers, Indexes Hex 28

and 29 3-55
3-49. Vertical Sync Pulse Start Registers Value Assignments 3-55
3-50. Vertical Sync Pulse End Register, Index Hex 2A 3-56
3-51. Vertical Line Compare Registers, Indexes Hex 2C and

20 3-57
3-52. Vertical Line Compare Registers Value Assignments 3-57
3-53. Sprite Horizontal Start Registers, Indexes Hex 30 and

31 3-58
3-54. Sprite Horizontal Start Registers Value Assignments 3-58
3-55. Sprite Horizontal Preset, Index Hex 32 3-59
3-56. Sprite Horizontal Preset Value Assignments 3-59
3-57. Sprite Vertical Start Registers, Indexes Hex 33 and 34 3-60
3-58. Sprite Vertical Start Registers Value Assignments ... 3-60
3-59. Sprite Vertical Preset, Index Hex 35 3-61
3-60. Sprite Vertical Preset Value Assignments 3-61
3-61. Sprite Control Register, Index Hex 36 3-62
3-62. Sprite Color Registers, Indexes Hex 38-30 3-63
3-63. Display PEL Map Offset Registers, Indexes Hex 40-42 3-64
3-64. Display PEL Map Offset Registers Value Assignments 3-64
3-65. Display PEL Map Width Registers, Indexes Hex 43 and

44 3-65
3-66. Display PEL Map Width Registers Value Assignments 3-65
3-67. Display Control 1 Register, Index Hex 50 3-66
3-68. Sync Polarity Bit Assignments 3-66
3-69. Display Blanking Bit Assignments 3-67

Video Subsystem - September 1991 v

3-70.
3-71.
3-72.
3-73.
3-74.
3-75.
3-76.
3-77.
3-78.

3-79.
3-80.
3-81.
3-82.
3-83.

3-84.
3-85.
3-86.
3-87.
3-88.
3-89.
3-90.
3-91.
3-92.
3-93.
3-94.
3-95.
3-96.
3-97.
3-98.
3-99.

3-100.
3-101.
3-102.
3-103.
3-104.
3-105.
3-106.
3-107.
3-108.
3-109.
3-110.
3-111.
3-112.
3-113.

Display Control 2 Register, Index Hex 51 3-6E
Vertical Scale Factor Bit Assignments 3-6S
Horizontal Scale Factor Bit Assignments 3-6S
Display Control 2 Register PEL Size Bit Assignments . 3-69
Display ID and Comparator, Index Hex 52 3-70
Clock Frequency Selector Register, Index Hex 54 3-71
Border Color Register, Index Hex 55 3-71
Sprite/Palette Index Registers, Indexes Hex 60 and 61 3-72
Sprite/Palette Prefetch Index Registers, Indexes 62 and
63 3-73
Palette Mask Register, Index Hex 64 3-74
Palette Data Register, Index Hex 65 3-74
Palette Sequence Register, Index Hex 66 3-75
Palette Sequence Register Color Order Bit Assignment 3-75
Palette Sequence Register Palette Color Bit
Assignments 3-75
Palette Red Prefetch Register, Index Hex 67 3-76
Palette Green Prefetch Register, Index Hex 68 3-76
Palette Blue Prefetch Register, Index Hex 69 3-76
Sprite Data Register, Index Hex 6A 3-77
Sprite Prefetch Register, Index Hex 6B 3-77
Clock Frequency Select Registers 3-78
Clock Selected Bit Assignments 3-79
Video Clock Scale Factor Bit Assignments 3-79
Coprocessor Data Flow 3-82
XGA PEL Map Origin 3-86
Repeating Pattern (Tiling) 3-87
Destination Map Guardband 3-88
Mask Map Origin X and Y Offsets 3-89
Destination Boundary Scissor 3-91
Mask Map Boundary Scissor 3-92
Mask Map Enabled Scissor 3-94
Draw and Step Code 3-95
Draw and Step Example 3-96
Draw and Step Direction Codes 3-97
Programming Fewer Than Four Step Codes 3-98
Bresenham Line Draw Octant Encoding 3-99
Memory to Memory Line Draw Address Stepping 3-101
PxBlt Direction Codes 3-104
Inverting PxBlt 3-106
Pattern Filling 3-107
Foreground and Background Mixes 3-110 I
Carry Chain Mask for an 8-bit PEL 3-111
Color Compare Conditions 3-113
XGA Coprocessor Register Space, Intel Format 3-119
XGA Coprocessor Register Space, Motorola Format 3-120

vi Video Subsystem - September 1991

3-114.
3-115.
3-116.
3-117.
3-118.
3-119.
3-120.
3-121.
3-122.
3-123.
3-124.
3-125.
3-126.
3-127.
3-128.

3-129.
3-130.

3-131.
3-132.
3-133.
3-134.
3-135.
3-136.
3-137.
3-138.
3-139.
3-140.
3-141.
3-142.
3-143.
3-144.
3-145.
3-146.
3-147.

3-148.

3-149.

3-150.
3-151.

3-152.

Coprocessor Control Register, Offset Hex 11
PEL Map Index Register, Offset Hex 12
PEL Map Index
PEL Map n Base Pointer Register, Offset Hex 14 .. .
PEL Map n Width Register, Offset Hex 18
PEL Map n Height Register, Offset Hex 1A
PEL Map n Format Register, Offset Hex 1 C
PEL Size Value Assignments
Bresenham Error Term E Register, Offset Hex 20
Bresenham Constant K1 Register, Offset Hex 24 .. .
Bresenham Constant K2 Register, Offset Hex 28 .. .
Direction Steps Register, Offset Hex 2C
Foreground Mix Register, Offset Hex 48
Background Mix Register, Offset Hex 49
Destination Color Compare Condition Reg, Offset Hex
4A
Destination Color Compare Condition Bit Definition
Destination Color Compare Value Register, Offset Hex
4C
PEL Bit Mask (Plane Mask) Register, Offset Hex 50
Carry Chain Mask Field Register, Offset Hex 54
Foreground Color Register, Offset Hex 58
background Color Register, Offset Hex 5C
Operation Dimension 1 Register, Offset Hex 60
Operation Dimension 2 Register, Offset Hex 62
Mask Map Origin X Offset Register, Offset Hex 6C .,
Mask Map Origin Y Offset Register, Offset Hex 6E ..
Source X Address Register, Offset Hex 70
Source Y Address Register, Offset Hex 72
Pattern C Address Register, Offset Hex 74
Pattern Y Address Register, Offset Hex 76
Destination X Address Register, Offset Hex 78
Destination Y Address Register, Offset Hex 7 A
PEL Operations Register, Offset Hex 7C
PEL Operations Register, Byte 3
PEL Operations Register Background Source Value
Assignments
PEL Operations Register Foreground Source Value
Assignments
PEL Operations Register Step Function Value
Assignments
PEL Operations Register, Byte 2
PEL Operations Register Source PEL Map Value
Assignments
PEL Operations Register Destination PEL Map Value
Assignments

3-122
3-125
3-126
3-126
3-127
3-128
3-129
3-129
3-130
3-131
3-131
3-132
3-133
3-133

3-134
3-134

3-135
3-136
3-137
3-138
3-138
3-139
3-139
3-140
3-140
3-141
3-141
3-142
3-142
3-143
3-143
3-144
3-145

3-145

3-146

3-146
3-147

3-147

3-147

Video Subsystem - September 1991 vii

3-153.
3-154.

3-155.
3-156.

3-157.

3-158.
3-159.
3-160.
3-161.
3-162.
3-163.
3-164.
3-165.
3-166.
3-167.
3-168.
3-169.

3-170.
3-171.
3-172.
3-173.
3-174.
3-175.
3-176.
3-177.
3-178.
3-179.
3-180.
3-181.
3-182.
3-183.
3-184.
3-185.
3-186.
3-187.
3-188.
3-189.
3-190.
3-191.
3-192.
3-193.

4-1.

PEL Operations Register, Byte 1 3-148
PEL Operations Register Pattern PEL Map Value
Assignments 3-148
PEL Operations Register, Byte 0 3-149
PEL Operations Register Mask PEL Map Value
Assignments 3-149
PEL Operations Register Drawing Mode Value
Assignments 3-149
PEL Operations Register Direction Octant Values 3-149
POS Register 2, Base Address + 2 3-152
XGA ROM, Memory-Mapped Register Assignments . 3-152
1/0 Device Address Bit Assignment 3-153
POS Register 4, Base Address + 4 3-154
XGA Video Memory Base Address. 3-154
POS Register 5, Base Address + 5 3-155
1MB Aperture Base Address Value Assignments ... 3-155
Linear Address Fields 3-156
Linear to Physical Address Translation 3-157
Page Directory and Page Table Entry 3-158
Page Directory and Page Table Access Rights in User
Mode 3-159
Translate Look-Aside Buffer 3-160
Page Directory Base Address Register, Offset Hex 0 3-165
Current Virtual Address Register, Offset Hex 4 3-166
Virtual Memory Control Register 3-167
Virtual Memory Interrupt Status Register 3-169
XGA Video Memory Base Address 3-173
The XGA Video Memory Base Address Diagram ... 3-173
Availability of Extended Graphics Modes 3-180
Video Memory Size Determination 3-181
Extended Graphics Mode Register Settings 3-182
VGA Mode Write Sequence 3-184
132-Column Text Mode First Write Sequence 3-185
132-Column Text Mode Second Write Sequence 3-186
Coprocessor Register Write Values 3-201
Background and Foreground Mixes and Colors 3-202
Bit Layout PEL Operations Register 3-205
Operation Direction Diagram 3-208
Definition for PEL Operations Register (Example) .. 3-209
Palette Color Line Draw Steps 3-209
Background and Foreground Mixes and Colors 3-210
Line Draw Example in Octant 0 3-211
Bit Layout PEL Operations Register 3-214
Direction Octant (Example) 3-217
Definition for PEL Operations Register (Example) .. 3-218
Display Connector 4-2

viii Video Subsystem - September 1991

4-2. Display Connector Signals 4-2
4-3. Vertical Size of Display 4-3
4-4. Vertical Timing, 350 Lines 4-3
4-5. Vertical Timing, 400 Lines 4-4
4-6. Vertical Timing, 480 Lines 4-4
4-7. Vertical Timing, 768 Lines 4-5
4-8. Horizontal Timing, 80 Column with Border 4-5
4-9. Horizontal Timing, 40/80 Column, without Border 4-6

4-10. Horizontal Timing, 1024 PELs 4-6
A-1. Extended Graphics Mode Setting PseudoCode A-2
A-2. 132-column Text Mode Setting Pseudo Code A-21

Video Subsystem - September 1991 Ix

Notes:

x Video Subsystem-September 1991

Section 1. Introduction

Video Subsystem 1-2
Type 1 1-2
Type 2 1-2

© Copyright IBM Corp. 1989, 1991 1-1

Video Subsystem

The system video can be generated by a Type 1 or Type 2 video
subsystem:

• Type 1 video-Video Graphics Array (VGA)
• Type 2 video-Extended Graphics Array (XGA").

Type 1

The Type 1 video contains the VGA function. The capabilities and
operation of the VGA function are described in Section 2, "VGA
Function" on page 2-1.

Only one Type 1 video subsystem is allowed in a system.

Type 2

The Type 2 video contains the XGA function, which supports the VGA
mode, 132-column text mode, and extended graphics mode. The
capabilities and operation of the XGA function are described in
Section 3, "XGA Function" on page 3-1.

" XGA is a trademark of International Business Machines Corporation.

1-2 Video Subsystem - September 1991

Section 2. VGA Function

VGA Function Introduction 2-5
Major Components 2-7

ROM BIOS 2-7
Support Logic 2-7
VGA Components 2-7

CRT Controller 2-7
Sequencer 2-8
Graphics Controller 2-8
Attribute Controller 2-10

Hardware Considerations 2-11
Modes of Operation .. 2-12

Display Support 2-14
Programmable Option Select 2-14
Alphanumeric Modes .. 2-15
Graphics Modes 2-18

320 x 200 Four-Color Graphics (Modes Hex 4 and 5) 2-18
640 x 200 Two-Color Graphics (Mode Hex 6) 2-20
640 x 350 Graphics (Mode Hex F) 2-21
640 x 480 Two-Color Graphics (Mode Hex 11) 2-22
16-Color Graphics Modes (Modes Hex D, E, 10, and 12) .. 2-22
256-Color Graphics Mode (Mode Hex 13) 2-22

Video Memory Organization 2-24
Memory Modes .. 2-24

Modes Hex 0, 1 2-25
Modes Hex 2, 3 2-26
Modes Hex 4, 5 2-27
Mode Hex 6 2-28
Mode Hex 7 2-29
Mode Hex D 2-30
Mode Hex E 2-32
Mode Hex F 2-34
Mode Hex 10 2-35
Mode Hex 11 2-36
Mode Hex 12 2-37
Mode Hex 13 2-38

Memory Operations 2-39
Write Operations 2-39
Read Operations 2-40

Registers .. 2-41
General Registers 2-42

Miscellaneous Output Register 2-42
Input Status Register 0 2-44

© Copyright IBM Corp. 1989. 1991 2·1

Input Status Register 1 2-45
Feature Control Register 2-46
Video Subsystem Enable Register 2-46

Sequencer Registers 2-47
Sequencer Address Register 2-47
Reset Register 2-48
Clocking Mode Register 2-49
Map Mask Register 2-51
Character Map Select Register 2-52
Memory Mode Register 2-54

CRT Controller Registers 2-55
Address Register 2-56
Horizontal Total Register 2-56
Horizontal Display-Enable End Register 2-57
Start Horizontal Blanking Register 2-57
End Horizontal Blanking Register 2-58
Start Horizontal Retrace Pulse Register 2-59
End Horizontal Retrace Register 2-60
Vertical Total Register 2-61
Overflow Register 2-62
Preset Row Scan Register 2-63
Maximum Scan Line Register 2-64
Cursor Start Register 2-65
Cursor End Register 2-66
Start Address High Register 2-67
Start Address Low Register 2-67
Cursor Location High Register 2-68
Cursor Location Low Register 2-68
Vertical Retrace Start Register 2-69
Vertical Retrace End Register 2-69
Vertical Display-Enable End Register 2-71
Offset Register 2-71
Underline Location Register 2-72
Start Vertical Blanking Register 2-73
End Vertical Blanking Register 2-73
CRT Mode Control Register 2-74
Line Compare Register 2-77

Graphics Controller Registers 2-78
Address Register 2-78
Set/Reset Register 2-79
Enable Set/Reset Register 2-80
Color Compare Register 2-81
Data Rotate Register 2-82
Read Map Select Register 2-83
Graphics Mode Register 2-84
Miscellaneous Register 2-86

2-2 Video Subsystem - September 1991

Color Don't Care Register .. 2-87
Bit Mask Register 2-88

Attribute Controller Registers 2-89
Address Register 2-89
Internal Palette Registers 0 through F 2-90
Attribute Mode Control Register 2-91
Overscan Color Register 2-93
Color Plane Enable Register 2-93
Horizontal PEL Panning Register 2-94
Color Select Register 2-95

VGA Programming Considerations 2-96
Programming the Registers 2-99
RAM Loadable Character Generator 2-100
Creating a Split Screen 2-101

Video Digital-to-Analog Converter 2-103
Device Operation 2-103
Video DAC to System Interface 2-103
Programming Considerations 2-105

VGA Video Extensions 2-106
Auxiliary Video Extension .. 2-108
Base Video Extension 2-108
VideoExtension Signal Descriptions 2-109
Video Extension Signal Timing 2-110

Video Subsystem - September 1991 2-3

Notes:

2·4 VGA Function - September 1991

VGA Function Introduction

The basic system video is generated by the Type 1 or Type 2 video
subsystem. The circuitry that provides the VGA function includes a
video buffer, a video digital-to-analog converter (DAC), and test
circuitry. Video memory is mapped as four planes of 64Kb by 8 bits
(maps 0 through 3). The video DAC drives the analog output to the
display connector. The test circuitry determines the type of display
attached, color or monochrome.

The video subsystem controls the access to video memory from the
system and the cathode-ray tube (CRT) controller. It also controls the
system addresses assigned to video memory. Up to three starting
addresses can be programmed for compatibility with previous video
adapters.

In the graphics modes, the mode determines the way video
information is formatted into memory, and the way memory is
organized.

In alphanumeric modes, the system writes the ASCII character code
and attribute data to video memory maps 0 and 1, respectively.
Memory map 2 contains the character font loaded by BIOS during an
alphanumeric mode set. The font is used by the character generator
to create the character image on the display.

Three fonts are contained in read-only memory (ROM): an 8-by-8
font, an 8-by-14 font, and an 8-by-16 font. Up to eight 256-character
fonts can be loaded into the video memory map 2; two of these fonts
can be active at one time, allowing a 512-character font.

The video subsystem formats the information in video memory and
sends the output to the video DAC. For color displays, the video DAC
sends three analog color signals (red, green, and blue) to the display
connector. For monochrome displays, BIOS translates the color
information in the DAC, and the DAC drives the summed signal onto
the green output.

The auxiliary video connector allows video data to be passed
between the video subsystem and an adapter plugged into the
channel connector.

When it is disabled, the video subsystem will not respond to video
memory or I/O reads or writes; however, the video image continues
to be displayed.

VGA Function - September 1991 2-5

Note: Compatibility with other hardware is best achieved by using
the BIOS interface or operating system interface whenever
possible.

The following is a diagram of the VGA function.

,--
Addre ss

,-- MUX

Data CRT ~
Cntl -

'-r-

r--- 1

Graph
Cntl

-'-

SEa -:--+ r-

~

-~

Attrib
Ia---'

Cntl

Figure 2-1. Diagram of the VGA Function

2-6 VGA Function - September 1991

Four 8-bit
Memory
Maps

·r--;I"-
:1
~

1_

'-

.r-
J 2 f+-

...l
31-

-
~

f--

Video
DAC I---

I---

I

64k
Addresses
Each

Red

Green

Blue

Analog
Outputs

Data to Display

Major Components

The video subsystem contains all circuits necessary to generate the
timing for the video memory and generates the video information
going to the video DAC. The major components are: ROM BIOS, the
support logic, and the Video Graphics Array interface.

ROM BIOS

BIOS provides software support and contains the character fonts and
the system interface to run the video subsystem.

Support Logic

The support logic consists of the video memory, the clocks, and the
video DAC. The video memory consists of at least 256KB; its use and
mapping depend on the mode selected.

Two clock sources provide the dot rate. The clock source is selected
in the Miscellaneous Output register.

The video DAC contains the color palette that is used to convert the
video data into the video signal sent to the display. Three analog
signals (red, green, and blue) are output from the DAC.

The maximum number of colors displayed is 256 out of 256K, and the
maximum number of gray shades is 64 out of 64.

VGA Components

The VGA function has four major functional areas: the CRT
controller, the sequencer, the graphics controller, and the attribute
controller.

CRT Controller

The CRT controller generates horizontal and vertical synchronization
signal timings, addressing for the regenerative buffer, cursor and
underline timings, and refresh addressing for the video memory.

VGA Function - September 1991 2-7

Sequencer

The sequencer generates basic memory timings for the video
memory and the character clock for controlling regenerative buffer
fetches. It allows the system to access memory during active display
intervals by periodically inserting dedicated system microprocessor
memory cycles between the display memory cycles. Map mask
registers in the sequencer are available to protect entire memory
maps from being changed.

Graphics Controller

The graphics controller is the interface between the video memory
and the attribute controller during active display times, and between
video memory and the system microprocessor during memory
accesses.

During active display times, memory data is latched and sent to the
attribute controller. In graphics modes, the memory data is
converted from parallel to serial bit-plane data before being sent; in
alphanumeric modes, the parallel attribute data is sent.

During system accesses of video memory, the graphics controller can
perform logical operations on the memory data before it reaches
video memory or the system data bus. These logical operations are
composed of four logical write modes and two logical read modes.
The logical operators allow enhanced operations, such as a color
compare in the read mode, individual bit masking during write
modes, internal 32-bit writes in a single memory cycle, and writing to
the display buffer on nonbyte boundaries.

2·8 VGA Function - September 1991

Data ~r-t'
Write
Mode
Logic

Read
Latches '-- Mode

Logic

Figure 2-2. Graphics Control/er

Mem

Mem

ory Map 0 Data

ory Map 1 Data

ry Map 2 Data

ory Map 3 Data

Memo

Mem

---:

Is
MUX

Ie

Is

Parallel
to

Serial

Parallel
to

Serial

Parallel
to

Serial

Parallel
to

Serial

/-- Char Gen Data
8

/-- Attribute Data
8

CO

Cl

C2

C3

VGA Function - September 1991 2-9

AHribute Controller

The attribute controller takes in data from video memory through the
graphics controller and formats it for display. Attribute data in
alphanumeric mode and serialized bit-plane data in graphics mode
are converted to an 8-bit color value.

Each color value is selected from an internal color palette of 64
possible colors (except in 256-color mode). The color value is used
as a pointer into the video DAC where it is converted to the analog
signals that drive the display.

Blinking, underlining, cursor insertion, and PEL panning are also
controlled in the attribute controller.

AlN
Blink
Logic

Character Underline
Generator -/.- Logic ~8
Data 8

PEL

Cursor
Logic

~-+ Panning /;
Logic

;---
Color
Plane
Enable
Logic

APA
Blink
Logic

C
R
o

2

3

Internal
Palette
16 x 16

olor Select
egister
r-"-

I--

I--

I--

'--

Figure 2-3. Attribute Controller

Parallel
to
Serial

--tr 0
--tr 0

MUX

r-- 1
1 S

Attribute
Mode
Register
(Bit 7)

2-10 VGA Function - September 1991

APASerial
-/;
Data 4

1X

MUX

AlN Attr.
--I.;
(Backgnd) s

1_0
APA= 1----'

0
1
2
3

Overscan
Logic

r- 4

i-5
{P~~

256
Color To
Mode DAC
Logic

6

7

Hardware Considerations

The following are hardware characteristics of the Type 2 video
subsystem that must be considered to ensure program compatibility
with the Type 1 video subsystem.

Performance: Type 2 video generally runs faster than the Type 1
video subsystem; programs that depend on execution time of the
video subsystem will operate differently.

Video Buffer Compatibility: For each of the video modes, the Type 2
video subsystem maintains a memory mapping that is the same as
the Type 1. To maintain this compatibility, the internal addresses to
video memory are manipulated so that video memory looks the same.
When switching video modes, video data may not be at the same
address in video memory.

BIOS calls to set and change modes make allowances for changes in
addresses, and should be used for all mode switches.

Character Generator: Differences in the character generator for the
Type 2 video subsystem increase the time it takes to load a new font.
Because of the additional load time, there is a chance of briefly
observing spurious data on the display. BIOS compensates for this
during video mode sets.

Register Differences: The following bits for the Type 2 video
subsystem differ from the Type 1:

• Bits 2 and 4 in the Clocking Mode register
• Bits 5 and 6 in the End Horizontal Blanking register
• Bits 2 and 4 in the Preset Row Scan register
• Bit 5 in the Address register of the attribute controller.

VGA Function-September 1991 2·11

Modes of Operation

Certain modes on previous IBM display adapters distinguished
between monochrome and color displays. For example, mode 0 was
the same as mode 1 with the color burst turned off. Because color
burst is not supported by the PS/2 video, the mode pairs are exactly
the same. The support logic for the VGA function recognizes the type
of display, and adjusts the output accordingly. When a monochrome
display is attached, the colors for the color modes appear as shades
of gray.

Mode 3+ is the default mode with a color display attached and mode
7+ is the default mode with a monochrome display attached.

The following figure describes the alphanumeric (A/N) and all points
addressable (APA) graphics modes supported by BIOS. Each color is
selected from 256K possibilities, and gray shades from 64
possibilities. The variations within the basic BIOS modes are
selected through BIOS calls that set the number of scan lines. The
scan line count is set before the mode call is made.

Mode Alpha Buffer Box Max. Vert.
(hex) Type Colors Format Start Size Pgs. Freq. PELs

0,1 A/N 16 40x 25 88000 8 x 8 8 70 Hz 320 x 200
0*,1* A/N 16 40x25 88000 8 x 14 8 70 Hz 320 x 350
0+,1+ A/N 16 40x25 88000 9 x 16 8 70Hz 360 x 400
2,3 A/N 16 80x25 88000 8 x 8 8 70 Hz 640 x 200
2*,3* A/N 16 80x25 B8000 B x 14 B 70 Hz 640 x 350
2+,3+ A/N 16 80x25 88000 9 x 16 8 70 Hz 720 x 400
4,5 APA 4 40 x 25 B8000 B x 8 1 70Hz 320 x 200
6 APA 2 80x25 88000 8 x 8 1 70 Hz 640 x 200
7 AlN - 80x25 B8000 9 x 14 8 70Hz 720 x 350
7+ A/N - 80x 25 88000 9 x 16 8 70Hz 720 x 400
D APA 16 40x 25 AOOOO 8 x 8 8 70 Hz 320 x 200
E APA 16 80x 25 AOOOO B x8 4 70Hz 640 x 200
F APA - 80x 25 AOOOO 8 x 14 2 70 Hz 640 x 350
10 APA 16 BOx 25 AOOOO 8x 14 2 70 Hz 640 x 350
11 APA 2 80x 30 AOOOO 8 x 16 1 60 Hz 640 x 480
12 APA 16 80x30 AOOOO 8 x 16 1 60 Hz 640 x 480
13 APA 256 40x 25 AOOOO 8 x 8 1 70 Hz 320 x 200

Note: • or + Enhanced modes

Figure 2-4. BIOS Video Modes

In the 200-scan-line modes, the data for each scan line is scanned
twice. This double scanning allows the 200-scan-line image to be
displayed in 400 scan lines.

2-12 VGA Function - September 1991

Border support and double scanning depend on the mode selected.
The following shows which modes use double scanning and which
support a border.

Mode Double Border
(Hex) Scan Support

0, 1 Yes No
0*, 1* No No
0+,1+ No No
2,3 Yes Yes
2*,3* No Yes
2+,3+ No Yes
4,5 Yes No
6 Yes Yes
7 No Yes
7+ No Yes
D Yes No
E Yes Yes
F No Yes
10 No Yes
11 No Yes
12 No Yes
13 Yes Yes

Note: * or + Enhanced modes

Figure 2-5. Double Scanning and Border Support

VGA Function - September 1991 2-13

Display Support

The video subsystem supports direct-drive analog displays. The
displays must have a horizontal scan rate of 31.5 kHz, and a vertical
scan rate capability of 50 to 70 Hz. Displays that use a digital input,
such as the IBM Color Display, are not supported. The following
figure summarizes the minimum display characteristics required to
support VGA mode operation.

Parameter

Horizontal Scan Rate
Vertical Scan Rate
Video Bandwidth
Maximum Horizontal Resolution
Maximum Vertical Resolution

Color

31.5 kHz
50 to 70 Hz
28 MHz
720 PELs
480 Lines

Figure 2-6. Direct-Drive Analog Displays

Monochrome

31.5 kHz
50 to 70 Hz
28 MHz
720 PELs
480 Lines

Since color and monochrome displays run at the same scan rate, all
modes work on both displays. The vertical gain of the display is
controlled by the polarity of the vertical and horizontal
synchronization pulses. This is done so 350, 400, or 480 lines can be
displayed without adjusting the display. See "Signal Timing" on
page 4-3 for more information.

Programmable Option Select

The video subsystem supports programmable option select (POS).
The video subsystem is placed in the setup mode through the System
Board Setup/Enable register (hex 0094). (For more information, see
the system-specific sections.) For information on BIOS calls to
enable or disable the video, see the IBM Personal System/2 and
Personal Computer BIOS Interface Technical Reference.

2-14 VGA Function - September 1991

Alphanumeric Modes

The alphanumeric modes are modes hex 0 through 3 and 7. The
mode chart lists the variations of these modes (see Figure 2-4 on
page 2-12). The data format for alphanumeric modes is the same as
the data format on the IBM Color/Graphics Monitor Adapter, the IBM
Monochrome Display Adapter, and the IBM Enhanced Graphics
Adapter.

BIOS initializes the video subsystem according to the selected mode
and loads the color values into the video DAC. These color values
can be changed to give a different color set to select from. Bit 3 of
the attribute byte can be redefined by the Character Map Select
register to act as a switch between character sets, giving the
programmer access to 512 characters at one time.

When an alphanumeric mode is selected, the BIOS transfers
character font patterns from the ROM to map 2. The system stores
the character data in map 0, and the attribute data in map 1. In the
alphanumeric modes, the programmer views maps 0 and 1 as a
single buffer. The CRT controller generates sequential addresses
and fetches one character code byte and one attribute byte at a time.
The character code and row scan count are combined to make up the
address into map 2, which contains the character font. The
appropriate dot patterns are then sent to the attribute controller,
where color is assigned according to the attribute data.

VGA Function - September 1991 2-15

Every display-character position in the alphanumeric mode is defined
by two bytes in the display buffer. Both the color/graphics and the
monochrome emulation modes use the following 2-byte
character/attribute format.

Display Character Code Byte Attribute Byte

7 6 5 432 o 7 6 5 432 o
Even Address Odd Address

Figure 2-7. Character/Attribute Format

See "Characters and Keystrokes" for characters loaded during a
BIOS mode set.

The functions of the attribute bytes are defined in the following table.
Bit 7 can be redefined in the Attribute Mode Control register to give
16 possible background colors; its default is to control character
blinking. Bit 3 can be redefined in the Character Map Select register
to select between two character fonts; its default is to control
foreground color selection.

Bit

7
6
5
4
3
2
1
o

Color

B/I
R
G
B
IICS
R
G
B

Function

Blinking or Background Intensity
Background Color
Background Color
Background Color
Foreground Intensity or Character Font Select
Foreground Color
Foreground Color
Foreground Color

Figure 2-8. Attribute Byte Definitions

For more information about the attribute bytes, see "Character Map
Select Register" on page 2-52 and "Attribute Mode Control Register"
on page 2-91.

2-16 VGA Function-September 1991

The following are the color values loaded by BIOS for the 16-color
modes.

Intensity Red Green Blue Color

0 0 0 0 Black
0 0 0 1 Blue
0 0 1 0 Green
0 0 1 1 Cyan
0 1 0 0 Red
0 1 0 1 Magenta
0 1 1 0 Brown
0 1 1 1 White
1 0 0 0 Gray
1 0 0 1 Light Blue
1 0 1 0 Light Green
1 0 1 1 Light Cyan
1 1 0 0 Light Red
1 1 0 1 Light Magenta
1 1 1 0 Yellow
1 1 1 1 White (High Intensity)

Figure 2-9. BIOS C%r Set

Both 40-column and aO-column alphanumeric modes are supported.
The features of the 40-column alphanumeric modes (all variations of
modes hex 0 and 1) are:

• 25 rows of 40 characters
• 2000 bytes of video memory per page
• One character byte and one attribute byte per character.

The features of the aO-column alphanumeric modes (all variations of
modes hex 2, 3, and 7) are:

• 25 rows of ao characters
• 4000 bytes of video memory per page
• One character byte and one attribute byte per character.

VGA Function - September 1991 2·17

Graphics Modes

The graphics modes supported in BIOS are modes hex 4, 5, 6, F, and
11. The colors described in this section are generated when the BIOS
is used to set the mode. BIOS initializes the video subsystem and the
DAC palette to generate these colors. If the DAC palette is changed,
different colors are generated.

320 x 200 Four-Color Graphics (Modes Hex 4 and 5)

Addressing, mapping, and data format are the same as the 320 x 200
PEL mode of the IBM Color/Graphics Monitor Adapter. The display
buffer is configured at hex B8000. Bit image data is stored in memory
maps 0 and 1. The two bit planes (CO and C1) are each formed from
bits from both memory maps.

Features of this mode are:

• A maximum of 200 rows of 320 PELs
• Double scanned to display as 400 rows
• Memory-mapped graphics
• Four colors for each PEL
• Four PELs per byte
• 16,000 bytes of read/write memory.

The video memory is organized into two banks of 8,000 bytes each,
using the following format. Address hex B8000 contains the PEL
information for the upper-left corner of the display area.

Memory Address

B8000

B9F3F

BAOOO

BBF3F

BBFFF

Function

Even Scans
(0,2,4, , 198)

Reserved

Odd Scans
(1,3,5, , 199)

Reserved

Figure 2-10. Video Memory Format

2·18 VGA Function - September 1991

The following figure shows the format for each byte.

Bit

7
6
5
4
3
2
1
o

Function

C1 - First Display PEL
CO - First Display PEL
C1 - Second Display PEL
CO - Second Display PEL
C1 - Third Display PEL
CO - Third Display PEL
C1 - Fourth Display PEL
CO - Fourth Display PEL

Figure 2-11. PEL Format, Modes Hex 4 and 5

The color selected depends on the color set that is used. Color set 1
is the default. For information on changing the color set, see the IBM
Personal Systeml2 and Personal Computer BIOS Interface Technical
Reference.

Bits Color Selected

C1 CO Color Set 1 Color Set 0

0 0 Black Black
0 1 light Cyan Green
1 0 light Magenta Red
1 1 Intensified White Brown

Figure 2-12. Color Selections, Modes Hex 4 and 5

VGA Function - September 1991 2-19

640 x 200 Two-Color Graphics (Mode Hex 6)

Addressing, scan-line mapping, and data format are the same as the
640 x 200 PEL black and white mode of the IBM Color/Graphics
Monitor Adapter. The display buffer is configured at hex B8000. Bit
image data is stored in memory map 0 and comprises a single bit
plane (CO). Features of this mode are:

• A maximum of 200 rows of 640 PELs
• Double scanned to display as 400 rows
• Same addressing and scan-line mapping as 320 x 200 graphics
• Two colors for each PEL
• Eight PELs per byte
• 16,000 bytes of read/write memory.

The following shows the format for each byte.

Bit

7
6
5
4
3
2
1
o

Function

First Display PEL
Second Display PEL
Third Display PEL
Fourth Display PEL
Fifth Display PEL
Sixth Display PEL
Seventh Display PEL
Eighth Display PEL

Figure 2-13. PEL Format, Mode Hex 6

The bit definition for each PEL is 0 equals black and 1 equals
intensified white.

2·20 VGA Function - September 1991

640 x 350 Graphics (Mode Hex F)

This mode emulates the EGA graphics with the monochrome display
and the following attributes: black, video, blinking video, and
intensified video. A resolution of 640 x 350 uses 56,000 bytes of video
memory to support the four attributes. This mode uses maps 0 and 2;
map 0 is the video bit plane (CO), and map 2 is the intensity bit plane
(C2). Both planes reside at address hex AOOOO.

The two bits, one from each bit plane, define one PEL. The bit
definitions are given in the following table.

C2CO PEL Color

0 0 Black
0 1 White
1 0 Blinking White
1 1 Intensified White

Figure 2-14. Bit Definitions C2,CO

Memory is organized with successive bytes defining successive
PELs. The first eight PELs displayed are defined by the byte at hex
AOOOO, the second eight PELs by the byte at hex A0001, and so on.
The most-significant bit in each byte defines the first PEL for that
byte.

Since both bit planes reside at address hex AOOOO, the user must
select the plane to update through the Map Mask register of the
sequence controller (see "Video Memory Organization" on
page 2-24).

VGA Function - September 1991 2·21

640 x 480 Two-Color Graphics (Mode Hex 11)

This mode provides two-color graphics with the same data format as
mode 6. Addressing and mapping are shown under "Video Memory
Organization" on page 2-24.

The bit image data is stored in map 0 and comprises a single bit
plane (CO). The video buffer starts at hex AOOOO. The first byte
contains the first eight PELs; the second byte, at hex A0001, contains
the second eight PELs, and so on. The bit definition for each PEL is 0
equals black and 1 equals intensified white.

16-Color Graphics Modes (Modes Hex D, E, 10, and 12)

These modes support 16 colors. For all modes, the bit image data is
stored in all four memory maps. Each memory map contains the data
for one bit plane. The bit planes are CO through C3 and represent the
following colors:

CO = Blue
C1 = Green
C2 = Red
C3 = Intensified

The four bits define each PEL on the screen by acting as an address
(pointer) into the internal palette in the Extended Graphics mode.

The display buffer resides at address hex AOOOO. The Map Mask
register selects any or all of the maps to be updated when the system
writes to the display buffer.

256-Color Graphics Mode (Mode Hex 13)

This mode provides graphics with the capability of displaying 256
colors at one time.

The display buffer is sequential, starts at address hex AOOOO, and is
64,000 bytes long. The first byte contains the color information for the
upper-left PEL. The second byte contains the second PEL, and so on,
for 64,000 PELs (320 x 200). The bit image data is stored in all four
memory maps and comprises four bit planes. The four bit planes are
sampled twice to produce eight bit-plane values that address the
video DAC.

In this mode, the internal palette of the video subsystem is loaded by
BIOS and should not be changed. The first 16 locations in the
external palette, which is in the video DAC, contain the colors

2-22 VGA Function - September 1991

compatible with the alphanumeric modes. The second 16 locations
contain 16 evenly spaced gray shades. The next 216 locations
contain values based on a hue-saturation-intensity model tuned to
provide a usable, generic color set that covers a wide range of color
values.

The following figure shows the color information that is compatible
with the colors in other modes.

PEL Bits
76543210

00000000
00000001
00000010
00000011
00000100
00000101
00000110
00000111
00001000
00001001
00001010
00001011
00001100
00001101
00001110
00001111

Color Output

Black
Blue
Green
Cyan
Red
Magenta
Brown
White
Dark Gray
Light Blue
Light Green
Light Cyan
Light Red
Light Magenta
Yellow
Intensified White

Figure 2-15. Compatible Color Coding

Each color in the palette can be programmed to one of 256K different
colors.

The features of this mode are:

• A maximum of 200 rows with 320 PEls
• Double scanned to display as 400 rows
• Memory-mapped graphics
• 256 of 256K colors for each PEL
• One byte per PEL
• 64,000 bytes of video memory.

VGA Function - September 1991 2-23

Video Memory Organization

The display buffer consists of 256KB of dynamic read/write memory
configured as four 64KB memory maps.

Map
o

8 Bits

Map
1

8 Bits

Map
2

8 Bits

Figure 2-16. 256KB Video Memory Map

Map
3

8 Bits

64KB Locations
Per Map

The starting address and size of the display buffer can be changed to
maintain compatibility with other display adapters and application
software. There are three configurations used by other adapters:

Address hex AOOOO for a length of 64KB
Address hex BOOOO for a length of 32KB
Address hex B8000 for a length of 32KB.

Memory Modes

The following pages show the memory organization for each of the
BIOS modes.

2-24 VGA Function - September 1991

Modes Hex 0, 1
Address

B8000 (BAOOO)

B87CF (BA7CF)

B8800 (BA800)

B8FCF (BAFCF)

B9000 (BBOOO)

B97CF (BB7CF)

B9800 (BB800)

B9FCF (BBFCF)

B9FFF (BBFFF)

Address

B8000

B87CE
B8800

B8FCE
B9000

B97CE
B9800

B9FCE
BAOOO

BA7CE
BA800

BAFCE
BBOOO

BB7CE
BB800

BBFCE
BBFFE

Display Buffer

Page 1 (5)

Reserved

Page 2 (6)

Reserved

Page 3 (7)

Reserved

Page 4 (8)

Reserved

Map 0 (char)

I

2000
---L-

Reserved

R"serv .. d

ReServed

Reserved

Reserved

Reserved

Reserved

R"''''''rv'''d

~

Storage Scheme

Attribute Byte

.--L 2K

~
IBIR G BIIIR G BI

~L.S Foreground

I
2K
-L

Intensity!
Character Select
Background
Blink! Intensity

-16 colors per character

Character Byte
-Format is one character
per byte

Address

B8001

B87CF
B8801

B8FCF
B9001

B97CF
B9801

B9FCF
BA001

BA7CF
BA801

BAFCF
BB001

BB7CF
BB801

BBFCF
BBFFF

Map 1 (attr)

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

VGA Function - September 1991 2-25

Modes Hex 2, 3
Address

B8000

B8F9F

B9000

B9F9F

BAOOO

BAF9F

BBOOO

BBF9F

BBFFF

Address

B8000

B8F9E
B9000

B9F9E
BAOOO

BAF9E
BBOOO

BBF9E
BCOOO

BCF9E
BOOOO

BOF9E
BEOOO

BEF9E
BFOOO

BFF9E
BFFFE

(BCOOO)

(BCF9F)

(BOOOO)

(BOF9F)

(BEOOO)

(BEF9F)

(BFOOO)

(BFF9F)

(BFFFF)

Display Buffer

Page 1 (5)

Reserved

Page 2 (6)

Reserved

Page 3 (7)

Reserved

Page 4 (8)

Reserved

Map 0 (char)

I I 4000
--'-- 4K

Reserved .-.L

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

2-26 VGA Function - September 1991

Storage Scheme

Attribute Byte

Foreground
Intensityl
Character Select

L-. ___ Background
L-. ____ Blink/lntensity

-16 colors per character

Character Byte
-Format is one character
per byte

Address

B8001

B8F9F
B9001

B9F9F
BA001

BAF9F
BB001

BBF9F
BC001

BCF9F
B0001

BOF9F
BE001

BEF9F
BF001

BFF9F
BFFFF

Map 1 (attr)

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Modes Hex 4, 5
Address Display Buffer

B8000

B9F3F

BAOOO

BBF3F

BBFFF

Address

B8000

B9F3E

BAOOO

BBF3E

BBFFE

Even
Scans

Reserved

Odd
Scans

Reserved

MapO

Even
Scans

Reserved

Odd
Scans

Reserved

I
8000 8K

--L-~

Storage Scheme

PEL

2 3 4

[_I _I _I]
MSB

• 4 PELs per byte
• 4 colors per PEL
• Format is first PEL

in 2 most significant
bytes

Address

B8001

B9F3F

BA001

BBF3F

BBFFF

Map 1

Even
Scans

Reserved

Odd
Scans

Reserved

LSB

VGA Function - September 1991 2-27

Mode Hex 6
Address

B8000

B9F3F

BAOOO

BBF3F

BBFFF

Address

B8000

B9F3F

BAOOO

BBF3F

BBFFF

Display Buffer

Even
Scans

Reserved

Odd
Scans

Reserved

Map 0
Bit Plane (CO)

Even
Scans

Reserved

I I
8000 8K

-1-.l
Odd
Scans

Reserved

2·28 VGA Function-September 1991

Storage Scheme

PEL

2 3 4 5 6 7 8

MSB

• 8 PELs per byte
• 2 colors per PEL
• Format is first PEL

in most significant
byte

LSB

Mode Hex 7

Address Display Buffer Storage Scheme

BOOOO (B4OO0)
Page 1 (5)

BOF9F (B4F9F)
B1000 (B5000)

Reserved

Page 2 (6)
B1F9F (B5F9F)
B2000 (B6ooo) -

Reserved

B2F9F (B6F9F) -
B3000 (B7000) -

Page 3 (7)

Reserved

B3F9F (B7F9F) -
B3FFF (B7FFF) -

Page 4 (8)

Reserved

Address Map 0 (char)

B8000

BOF9E
B1000

B1F9E
B2000

B2F9E
B3000

B3F9E
B4OO0

B4F9E
B5000

B5F9E
B6000

B6F9E
B7000

B7F9E
B7FFE

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

Reserved

4000
~

i

4000
--'-- 4K

I
4K
~

---L.

Attribute Byte

Foreground
Intensity!
Character Select

~-- Background
'----- Blink/Intensity

-Four attributes per character

Character Byte
-Format is one character
per byte.

Address Map 1 (attr)

BOO01

BOF9F
B1001

Reserved

B1F9F
B2001

Reserved

B2F9F
B3001

Reserved

B3F9F
B4001 Reserved

B4F9F
B5001

Reserved

B5F9F
B6001

Reserved

B6F9F
B7001

Reserved

B7F9F
B7FFF

Reserved

VGA Function-September 1991 2·29

Mode Hex D
Address Display Buffer

AOOOO (ABOOO)

Page 1 (5)

A1F3F (A9F3F)

A2000 (AAOOO)
Reserved

Page 2 (6)

A3F3F (ABF3F) -

A4000 (ACOOO) -
Reserved

Page 3 (7)
A5F3F (ADF3F) -

ABOOO (AEOOO) -
Reserved

Page 4 (8)
A7F3F (AFF3F)

A7FFF (AFFFF)
Reserved

2·30 VGA Function - September 1991

Storage Scheme

PEL

I I 12345678

89°0 r L._._._._._._.] co

L._._._._._._.] C1

L ______]C2
. .

.....
MSB LSB

• 4 bits per PEL
• 16 colors per PEL
• 1 bit from each bit plane

(C3,C2,C1,CO) per PEL
• Format is first PEL

in most significant byte
of all 4 bit planes

Address

AOOOO

A1F3F

A2000

A3F3F

A4000

A5F3F

A6000

A7F3F

A7FFF

Address

AOOOO

A1F3F

A2000

A3F3F

A4000

A5F3F

A6000

A7F3F

A7FFF

Map 0
Blue Bit Plane (CO)

(A8000) - I I 8000
(A9F3F) -

(AAOOO) -

~8K

Reserved ---L

(ABF3F)

(ACOOO)
Reserved

(ADF3F)

(AEOOO)
Reserved

(AFF3F)

(AFFFF)
Reserved

Map2
Red Bit Plane (C2)

(A8000) I I 8000

(A9F3F)

(AAOOO)

~8K
Reserved ---L

(ABF3F)

(ACOOO)
Reserved

(ADF3F)

(AEOOO)
Reserved

(AFF3F)

(AFFFF)
Reserved

Address

AOOOO

A1F3F

A2000

A3F3F

A4000

A5F3F

A6000

A7F3F

A7FFF

Address

AOOOO

A1F3F

A2000

A3F3F

A4000

A5F3F

A6000

A7F3F

A7FFF

Map 1
Green Bit Plane (C1)

(A8000) -

(A9F3F) -

(AAOOO) -
Reserved

(ABF3F)

(ACOOO)
Reserved

(ADF3F)

(AEOOO)
Reserved

(AFF3F)

(AFFFF)
Reserved

Map 3
Intensity Bit Plane (C3)

(A8000) -

(A9F3F) -

(AAOOO) -
Reserved

(ABF3F)-

(ACOOO) -
Reserved

(ADF3F)-

(AEOOO)
Reserved

(AFF3F)

(AFFFF)
Reserved

VGA Function - September 1991 2-31

Mode Hex E

Address Display Buffer
AOOOO -

A3E7F -

A4000 -

A7E7F -

ASOOO

ABE7F -

ACOOO -

AFE7F _.

AFFFF -

Page 1

Reserved

Page 2

Reserved

Page 3

Reserved

Page 4

Reserved

16~OO I
--L16K

~

2·32 VGA Function - September 1991

Storage Scheme
PEL

2 345 6 7 8

L._._._._._._._.] C2

MSB

• 4 bits per PEL
• 16 colors per PEL
• 1 bitfrom each bit plane

(C3,C2,C1,CO) per PEL
• Format is first PEL in

most significant byte
of all 4 bit planes

LSB

MapO
Address Blue Bit Plane (CO)

ADOOO -

A3E7F

A4000

A7E7F

ABOOO

ABE7F

ACOOO

AFE7F

AFFFF

Reserved

Reserved

Reserved

Reserved

Map 2
Address Red Bit Plane (C2)

AOOOO -

A3E7F

A4000

A7E7F

A8000

ABE7F

ACOOO

AFE7F

AFFFF

Reserved

Reserved

Reserved

Reserved

I
16000 16K

-L~

I I
16000 16K

-L~

Address

AOOOO

A3E7F

A4000

A7E7F

A8000

ABE7F

ACOOO

AFE7F

AFFFF

Address

ADOOO

A3E7F

A4000

A7E7F

A8000

ABE7F

ACOOO

AFE7F

AFFFF

Map 1
Green Bit Plane (C1)

Reserved

Reserved

Reserved

Reserved

Map3
Intensity Bit Plane (C3)

Reserved

Reserved

Reserved

Reserved

VGA Function - September 1991 2·33

Mode Hex F
Address Display Buffer

AOOOO

A6D5F
ABOOO

AED5F
AFFFF

Address

AOOOO

A6D5F
A8000

AED5F
AFFFF

Page 1 28000 I
~_----I ~132K

Reserved

Page 2

Reserved

MapO
Video Bit Plane (CO)

I I
28000 32K

---~---R-e-se-r-v-e-d---4 ~ ~

Reserved

2·34 VGA Function - September 1991

Storage Scheme
PEL

12345678

L.-.-.-.-.-.-J CO

L ______ J C2

MSB LSB

• 2 bits per PEL
• 4 attributes per PEL
• 1 bit from each bit plane

(C2.CO)
• Format is first PEL

in most significant byte
of video and intensity
bit planes

Address

AOOOO

Map2
Intensity Bit Plane (C2)

A6D5F
ABOOO

AED5F
AFFFF

Reserved

Reserved

Mode Hex 10
Address

ADOOO -

A6D5F
A8000

AED5F
AFFFF

Address

AOOOO

A6D5F
A8000

AED5F
AFFFF

Address

AOOOO

A6D5F
A8000

AED5F
AFFFF

Display Buffer

Page 1

Reserved

Page 2

Reserved

MapO
Blue Bit Plane (CO)

Reserved

Reserved

Map 2
Red Bit Plane (C2)

Reserved

Reserved

I I 28000
~32K

~

I
28000 32K

~~

28000 3t

~~

Storage Scheme
PEL

12345678

L ______ J CO

L._._._._._._.J Cl

L ______ J C2

MSB LSB
• 4 bits per PEL
• 16 colors per PEL
• 1 bit from each bit plane

(C3,C2,Cl,CO) per PEL
• Format is first PEL

in most significant byte
of all 4 bit planes

Address

AOOOO

A6D5F
A8000

AED5F
AFFFF

Address

AOOOO

A6D5F
A8000

AED5F
AFFFF

Map 1
Green Bit Plane (Cl)

Reserved

Reserved

Map3
Intensity Bit Plane (C3)

Reserved

Reserved

VGA Function - September 1991 2·35

Mode Hex 11
Address Display Buffer

AOOOO -b:d I I
38400

I 64K

A95FF - ~1 _ _ Reserved
AFFFF

Address Bit Plane (CO)

AOOOO -

I MAPO 38400 .l 64K

A95FF
Reserved 1 AFFFF

2·36 VGA Function - September 1991

Storage Scheme

12345678

L ______ J CO

MSB LSB

• One bit per PEL
• Two attributes per PEL
• Format is first PEL in

most significant byte

Mode Hex 12

Address Display Buffer

AOOOO -b I I
38400

I 64K

A95FF - ~1
AFFFF _ Reserved

MapO
Address Blue Bit Plane (CO)

AOOOO -b 38~00 I
~64K

A95FF - 1 Reserved
AFFFF -

Map 2
Address Red Bit Plane (C2)

AOOOO -b:d I I
38400

I 64K

A95FF - ~1
Reserved

AFFFF -

Storage Scheme
PEL

1 234 5 678

L ______ J CO

MSB LSB

• 4 bits per PEL
• 16 colors per PEL
• 1 bit from each bit plane

(C3,C2,C1,CO) per PEL
• Format is first PEL

in most significant byte
of all 4 bit planes

Map 1
Address Green Bit Plane (C1)

AOOOO -II
A95FF -~
AFFFF -

Map 3
Address Intensity Plane (C3)

AOOOO -b:d
A95FF -

Reserved
AFFFF -

VGA Function - September 1991 2-37

Mode Hex 13
Address Display Buffer

AOOOO - ~-------. IT
II AF9FF -1-------1

AFFFF _ L---.:R.;,;e:.:s:,:.e;.,:rv.,;:e.:,.d_..J

Address

AOOOO -

AF9FC

A0001

AF9FD

A0002

AF9FE

A0003

AF9FF

AFFFF

Map 0

Reserved

Map 1

Reserved

Map2

Reserved

Map3

Reserved

IT
~1

2-38 VGA Function - September 1991

Storage Scheme

L ______ J
.......

MSB LSB

• 8 bits per PEL
• 256 colors per PEL
• 1 PEL per byte
• First PEL is

at address AOOOO

Memory Operations

Memory operations consist of write and read operations.

Write Operations

When the system is writing to the display buffer, the maps are
enabled by the logical decode of the memory address and the Map
Mask register. The addresses used for video memory depend on the
mode selected. The data flow for a system write operation is
illustrated in the following figure.

Data
Rotate Set/Reset
Register Register

;;;
Rotate

Plane
'n'

System Data

Enable Graphics Data
Set/Reset Mode Rotate
Register Register Register

4 3

Logie ~?
Function

MUX 132 32x

I L":hM ~/~ 3/1

Bit Mask Register

17161514131211101
~1-=-8 _____ .-JO S

1

MUX
Octal

2/1

AND

/8

AEN B

MUX
Quad
16/8

B

EN A

Is

Figure 2-17. Data Flow for Write Operations

VGA Function - September 1991 2-39

Read Operations

The two ways to read the video buffer are selected through the
Graphics Mode register in the graphics controller. The mode 0 read
operation returns the 8-bit value determined by the logical decode of
the memory address and, if applicable, the Read Map Select register.
The mode 1 read operation returns the 8-bit value resulting from the
color compare operation controlled by the Color Compare and Color
Don't Care registers. The data flow for the color compare operation
is shown in the following figure.

Color
Don'l
Care
Register
-
0
-
1
-
2
- S 3

- !s
~ IN 1 To 8

Compare - EN

7 0

Color Compare
Register

1312 11 01

1 I

r-

S is
4 IN 1 To 8

Compare
'-- EN

7 0

S
~s

4- IN
1 To 8

Compare
'-- EN

7 0

Figure 2-18. Color Compare Operations

2-40 VGA Function - September 1991

S
~s

4- IN 1 To 8
Compare --- EN

7 0

L,..- B~I
AND f--+

---to

r-- Bit
7

AND
-+

-

Registers

There are six groups of registers in the video subsystem. All video
registers are readable except the system data latches and the
attribute address flip-flop. The following figure lists the register
groups, their I/O addresses with the type of access (read or write),
and page reference numbers.

The question mark in the address can be a hex B or D depending on
the setting of the I/O address bit in the Miscellaneous Output register,
described in "General Registers" on page 2-42.

Note: All registers in the video subsystem are read/write. The value
of reserved bits in these registers must be preserved. Read
the register first and change only the bits required.

Port Page
Registers R/W Address Reference

General Registers 2-42
Sequencer Registers 2-47

Address Register R/W 03C4
Data Registers R/W 03C5

CRT Controller Registers 2-55
Address Register R/W 03?4
Data Registers R/W 03?5

Graphics Controller Registers 2-78
Address Register R/W 03eE
Data Registers R/W 03CF

Attribute Controller Registers 2-89
Address Register R/W 03CO
Data Registers W 03CO

R 03C1
Video DAC Palette Registers 2-103

Write Address R/W 03C8
Read Address W 03C7
Data R/W 03C9
PEL Mask R/W 03C6

Figure 2-19. Video Subsystem Register Overview

VGA Function - September 1991 2-41

General Registers

Register

Miscellaneous Output Register
Input Status Register 0
Input Status Register 1
Feature Control Register
Video Subsystem Enable Register

Figure 2-20. General Registers

Miscellaneous Output Register

Read Write
Address Address

03CC 03C2
03C2
03?A
03CA 03?A
03C3 03C3

The read address for this register is hex 03CC and its write address is
hex 03C2.

7 6 5 4 3 2 1

I Vspi Hspi - I - I CS I ERAMI lOS I

VSP
HSP

CS
ERAM

lOS

Set to e, Undefined on Read
Vertical Sync Polarity
Horizontal Sync Polarity
Clock Select
Enable RAM
I/O Address Select

Figure 2-21. Miscellaneous Output Register, Hex 03CC/03C2

2-42 VGA Function ~ September 1991

The register fields are defined as follows:

VSP When set to 0, the Vertical Sync Polarity field (bit 7)
selects a positive 'vertical retrace' signal. This bit works
with bit 6 to determine the vertical size.

HSP When set to 0, the Horizontal Sync Polarity field (bit 6)
selects a positive 'horizontal retrace' signal. Bits 7 and 6
select the vertical size as shown in the following figure.

Bits
7 6 Vertical Size

00 Reserved
01 400 lines
10 350 lines
1 1 480 lines

Figure 2-22. Display Vertical Size

CS The Clock Select field (bits 3, 2) selects the clock source
according to the following figure. The external clock is
driven through the auxiliary video extension. The input
clock should be kept between 14.3 MHz and 28.4 MHz.

CS Field
(binary)

00
01
10
1 1

Function

Selects 25.175 MHz clock for 640/320 Horizontal PELs
Selects 28.322 MHz clock for 720/360 Horizontal PELs
Selects External Clock
Reserved

Figure 2-23. Clock Select Definitions

ERAM

lOS

When set to 0, the Enable RAM field (bit 1) disables
address decode for the display buffer from the system.

The I/O Address Select field (bit 0) selects the CRT
controller addresses. When set to 0, this bit sets the CRT
controller addresses to hex 03Bx and the address for the
Input Status Register 1 to hex 03BA for compatibility with
the monochrome adapter. When set to 1, this bit sets CRT
controller addresses to hex 03Dx and the Input Status
Register 1 address to hex 03DA for compatibility with the
color/graphics adapter. The write addresses to the
Feature Control register are affected in the same manner.

VGA Function - September 1991 2·43

Input Status Register 0

The address for this read-only register is address hex 03C2. Do not
write to this register.

7 6 5 4 3 2 1 0

Cl -I -I SS -I -I -I -I

. Undefined on Read
Cl CRT Interrupt
SS : Switch Sense

Figure 2-24. Input Status Register 0, Hex 03C2

The register fields are defined as follows:

CI When the CRT Interrupt field (bit 7) is 1, a vertical retrace
interrupt is pending.

SS BIOS uses the Switch Sense field (bit 4) in determining the
type of display attached.

2·44 VGA Function - September 1991

Input Status Register 1

The address for this read-only register is address hex 03DA or 03SA.
Do not write to this register.

7 6 5 4 3 2 1 0

-I -I -I -I VR -I -I DE

. Undefined on Read
VR Vertical Retrace
DE Display Enable

Figure 2-25. Input Status Register 1, Hex 03DAI03BA

The register fields are defined as follows:

VR When the Vertical Retrace field (bit 3) is 1, it indicates a
vertical retrace interval. This bit can be programmed,
through the Vertical Retrace End register, to generate an
interrupt at the start of the vertical retrace.

DE When the Display Enable field (bit 0) is 1, it indicates a
horizontal or vertical retrace interval. This bit is the
real-time status of the inverted 'display enable' signal. In
the past, programs have used this status bit to restrict
screen updates to the inactive display intervals to reduce
screen flicker. The video subsystem is designed to
eliminate this software requirement; screen updates may
be made at any time without screen degradation.

VGA Function - September 1991 2-45

Feature Control Register

The write address of this register is hex 03DA or 03BA; its read
address is hex 03CA. All bits are reserved.

7 6 5 4 3 2 1 e

Feature Control

Figure 2-26. Feature Control Register, Hex 03DAI03BA and 03CA

Video Subsystem Enable Register

This register (hex 03C3) is reserved. To disable address decoding by
the video subsystem, use BIOS INT 10 call, AH = hex 12, BL = hex
32.

7 6 5 4 3 2 1 e

Video Subsystem Enable

Figure 2-27. Video Subsystem Enable Register, Hex 03C3

2-46 VGA Function-September 1991

Sequencer Registers

The Address register is at address hex 03C4 and the data registers
are at address hex 03C5. All registers within the sequencer are
read/write.

Reglater

Sequencer Address
Reset
Clocking Mode
Map Mask
Character Map Select
Memory Mode

Index
(Hex)

00
01
02
03
04

Figure 2-28. Sequencer Registers

Sequencer Address Register

The Address register is at address hex 03C4. This register is loaded
with an index value that points to the desired sequencer data
register.

7 6 5 4 3 2 1 e

-I -I -I -I -I SA

Set to e, Undefined on Read
SA Sequencer Address

Figure 2-29. Sequencer Address Register

The register field is defined as follows:

SA The Sequencer Address field (bits 2-0) contains the index
value that points to the data register to be accessed.

VGA Function - September 1991 2·47

Reset Register

This read/write register has an index of hex 00; its address is hex
03C5.

7 6 5 4 3 2 1 e

-I -I -I -I -I -I SR ASRI

. Set to e, Undefined on Read
SR Synchronous Reset

ASR Asynchronous Reset

Figure 2-30. Reset Register, Index Hex 00

The register fields are defined as follows:

SR When set to 0, the Synchronous Reset field (bit 1)
commands the sequencer to synchronously clear and halt.
Bits 1 and 0 must be 1 to allow the sequencer to operate.
To prevent the loss of data, bit 1 must be set to 0 during
the active display interval before changing the clock
selection. The clock is changed through the Clocking
Mode register or the Miscellaneous Output register.

ASR When set to 0, the Asynchronous Reset field (bit 0)
commands the sequencer to asynchronously clear and
halt. Resetting the sequencer with this bit can cause loss
of video data.

2-48 VGA Function-September 1991

Clocking Mode Register

This read/write register has an index of hex 01; its address is hex
03C5.

7 6 5 4 3 2 1 °
- I - I SO SH41 DC SL

1
SO

SH4
DC
SL

D89

Set to 0, Undefined on Read
Set to 1, Undefined on Read
Screen Off
Shift 4
Dot Clock
Shift Load
8/9 Dot Clocks

Figure 2-31. Clocking Mode Register, Index Hex 01

The register fields are defined as follows:

SO When set to 1, the Screen Off field (bit 5) turns off the
display and assigns maximum memory bandwidth to the
system. Although the display is blanked, the
synchronization pulses are maintained. This bit can be
used for rapid full-screen updates.

SH4 When the Shift 4 field (bit 4) and Shift Load field (bit 2) are
set to 0, the video serializers are loaded every character
clock. When the Shift 4 field is set to 1, the video
serializers are loaded every fourth character clock, which
is useful when 32 bits are fetched per cycle and chained
together in the shift registers.

Extended Graphics mode behaves as if this bit is set to 0;
therefore, programs should set it to O.

DC When set to 0, the Dot Clock field (bit 3) selects the normal
dot clocks derived from the sequencer master clock input.
When set to 1, the master clock is divided by 2 to generate
the dot clock. A" other timings are affected because they
are derived from the dot clock. The dot clock divided by 2
is used for 320 and 360 horizontal PEL modes.

VGA Function - September 1991 2-49

SL When the Shift load field (bit 2) and Shift 4 field (bit 4) are
set to 0, the video serializers are loaded every character
clock. When the Shift load field (bit 2) is set to 1, the
video serializers are loaded every other character clock,
which is useful when 16 bits are fetched per cycle and
chained together in the shift registers.

Extended Graphics mode behaves as if this bit is set to 0;
therefore, programs should set it to O.

D89 When set to 0, the 8/9 Dot Clocks field (bit 0) directs the
sequencer to generate character clocks 9 dots wide; when
set to 1, it directs the sequencer to generate character
clocks 8 dots wide. The 9-dot mode is for alphanumeric
modes 0 +, 1 +, 2 + ,3 +, 7, and 7 + only; the 9th dot
equals the 8th dot for ASCII codes hex CO through OF. All
other modes must use 8 dots per character clock. (See
the Enable line Graphics Character Code field in the
Attribute Mode Control register on page 2-91.)

2-50 VGA Function-September 1991

Map Mask Register

This read/write register has an index of hex 02; its address is hex
03C5.

M3E
M2E
MIE
MaE

Set to a, Undefined on Read
Map 3 Enable
Map 2 Enable
Map 1 Enable
Map a Enable

Figure 2-32. Map Mask Register, Index Hex 02

The register fields are defined as follows:

M3E, M2E, M1 E, MOE
When set to 1, the map enable fields (bits 3, 2, 1, and 0)
enable system access to the corresponding map. If all
maps are enabled (chain 4 mode), the system can write its
8-bit value to all four maps in a single memory cycle. This
substantially reduces the system overhead during display
updates in graphics modes.

Data scrolling operations can be enhanced by enabling all
maps and writing the display buffer address with the data
stored in the system data latches. This is a
read-modify-write operation.

When access to odd or even maps (odd/even modes) are
selected, maps 0 and 1 and maps 2 and 3 should have the
same map mask value.

When chain 4 mode is selected, all maps should be
enabled.

VGA Function - September 1991 2·51

Character Map Select Register

This register has an index of hex 03; its address is hex 03C5. In
alphanumeric modes, bit 3 of the attribute byte normally defines the
foreground intensity. This bit can be redefined as a switch between
character sets, allowing 512 displayable characters. To enable this
feature:

1. Set the extended memory bit in the Memory Mode register (index
hex 04) to 1.

2. Select different values for character map A and character
map B.

This function is supported by BIOS and is a function call within the
character generator routines.

7 6 5 4 3 2 1 e

- I - I MAHI MBHI MAL MBl

Set to e. Undefined on Read
MAH Character Map A Select (MSB)
MBH Character Map B Select (MSB)
MAL Character Map A Select (lS bits)
MBl Character Map B Select (lS bits)

Figure 2-33. Character Map Select Register, Index Hex 03

The register fields are defined as follows:

MAH The Character Map A Select field (bit 5) is the
most-significant bit for selecting the location of character
mapA.

MBH The Character Map B Select field (bit 4) is the
most-significant bit for selecting the location of character
mapB.

2-52 VGA Function - September 1991

MAL The Character Map A Select field (bits 3, 2) and Character
Map A Select field (bit 5) select the location of character
map A. Map A is the area of map 2 containing the
character font table used to generate characters when
attribute bit 3 is set to 1. The selection is shown in the
following figure.

Bita
532

000
001
010
011
100
101
1 1 0
1 1 1

Map
Selected

o
1
2
3
4
5
6
7

Table Location

1st 8KB of Map 2
3rd 8KB of Map 2
5th 8KB of Map 2
7th 8KB of Map 2
2nd 8KB of Map 2
4th 8KB of Map 2
6th 8KB of Map 2
8th 8KB of Map 2

Figure 2-34. Character Map Select A

MBl The Character Map B Select field (bits 1, 0) and Character
Map B Select field (bit 4) select the location of character
map B. Map B is the area of map 2 containing the
character font table used to generate characters when
attribute bit 3 is set to o. The selection is shown in the
following figure.

Bits
410

000
001
010
01 1
100
1 0 1
1 1 0
1 1 1

Map
Selected

o
1
2
3
4
5
6
7

Table Location

1st 8KB of Map 2
3rd 8KB of Map 2
5th 8KB of Map 2
7th 8KB of Map 2
2nd 8KB of Map 2
4th 8KB of Map 2
6th 8KB of Map 2
8th 8KB of Map 2

Figure 2-35. Character Map Select B

VGA Function - September 1991 2-53

Memory Mode Register

This register has an index of hex 04; its address is hex 03C5.

7 6 5 4 3 2 1 e

-I -I -I -I CH41 OE EM -I

. Set to e, Undefined on Read
CH4 Chain 4

OE Odd/Even
EM Extended Memory

Figure 2-36. Memory Mode Register, Index Hex 04

The register fields are defined as follows:

CH4 The Chain 4 field (bit 3) controls the map selected during
system read operations. When set to 0, this bit enables
system addresses to sequentially access data within a bit
map by using the Map Mask register. When set to 1, this
bit causes the 2 low-order bits to select the map accessed
as shown in the following figure.

Address
Bits
A1 AO

o 0
o 1
1 0
1 1

Map Selected

o
1
2
3

Figure 2-37. Map Selection, Chain 4

OE When the Odd/Even field (bit 2) is set to 0, even system
addresses access maps 0 and 2, while odd system
addresses access maps 1 and 3. When set to 1, system
addresses sequentially access data within a bit map, and
the maps are accessed according to the value in the Map
Mask register (hex 02).

EM When set to 1, the Extended Memory field (bit 1) enables
the video memory from 64KB to 256KB. This bit must be
set to 1 to enable the character map selection described
for the previous register.

2-54 VGA Function - September 1991

CRT Controller Registers

A data register is accessed by writing its index to the Address
register at address hex 03D4 or 0384, and then writing the data to the
access port at address hex 03D5 or 0385. The 1/0 address used
depends on the setting of the 1/0 address select bit (bit 0) in the
Miscellaneous Output register, which is described in "General
Registers" on page 2·42. The following figure shows the variable part
of the address as a question mark.

Note: When modifying a register, the setting of reserved bits must be
preserved. Read the register first and change only the bits
required.

Address Index
Register Name (Hex) (Hex)

Address 03?4 -
Horizontal Total 03?5 00
Horizontal Display-Enable End 03?5 01
Start Horizontal Blanking 03?5 02
End Horizontal Blanking 03?5 03
Start Horizontal Retrace Pulse 03?5 04
End Horizontal Retrace 03?5 05
Vertical Total 03?5 06
Overflow 03?5 07
Preset Row Scan 03?5 08
Maximum Scan Line 03?5 09
Cursor Start 03?5 OA
Cursor End 03?5 OB
Start Address High 03?5 OC
Start Address Low 03?5 OD
Cursor Location High 03?5 OE
Cursor Location Low 03?5 OF
Vertical Retrace Start 03?5 10
Vertical Retrace End 03?5 11
Vertical Display-Enable End 03?5 12
Offset 03?5 13
Underline Location 03?5 14
Start Vertical Blanking 03?5 15
End Vertical Blanking 03?5 16
CRT Mode Control 03?5 17
Line Compare 03?5 18

Index values not listed are reserved.

Figure 2·38. CRT Control/er Registers

VGA Function - September 1991 2-55

Address Register

This register is at address hex 0384 or 0304, and is loaded with an
index value that points to the data registers within the CRT controller.

7 6 5 4 3 2 1 e

-I -I -I Index

. Set to e, Undefined on Read

Figure 2-39. CRT Controller Address Register, Hex 0384/03D4

The register field is defined as follows:

Index This field (bits 4 - 0) is the index that points to the data
register accessed through address hex 0305 or 0385.

Horizontal Total Register

This register has an index of hex 00; its address is hex 0305 or 0385.

The Horizontal Total register (bits 7 - 0) defines the total number of
characters in the horizontal scan interval including the retrace time.
The value directly controls the period of the 'horizontal retrace'
Signal. A horizontal character counter in the CRT controller counts
the character clock inputs; comparators are used to compare the
register value with the horizontal width of the character to provide
horizontal timings. All horizontal and vertical timings are based on
this register.

7 6 5 4 3 2 1 e

Horizontal Total

Figure 2-40. Horizontal Total Register, Index Hex 00

The value contained in the register is the total number of characters
minus 5.

2·56 VGA Function - September 1991

Horizontal Display-Enable End Register

This register has an index of hex 01; its address is hex 0305 or 03B5.

7 6 5 4 3 2 1 o

Horizontal Display Enable End

Figure 2-41. Horizontal Display Enable-End Register, Index Hex 01

The Horizontal Display-Enable End register (bits 7 - 0) defines the
length of the 'horizontal display-enable' signal and determines the
number of character positions per horizontal line. The value in this
register is the total number of displayed characters minus 1.

Start Horizontal Blanking Register

This register has an index of hex 02; its address is hex 0305 or 03B5.

7 6 5 4 3 2 1 o

Start Horizontal Blanking

Figure 2-42. Start Horizontal Blanking Register, Index Hex 02

The value in the Start Horizontal Blanking register (bits 7-0) is the
horizontal character count at which the 'horizontal blanking' signal
goes active.

VGA Function - September 1991 2-57

End Horizontal Blanking Register

This register has an index of hex 03; its address is hex 0305 or 0385.
It determines when the 'horizontal blanking' signal wi" go active.

7

1

6 5 4 3 2 1 e

DES EB

1 Set to 1, Undefined on Read
DES Display Enable Skew Control

EB End Blanking

Figure 2-43. End Horizontal Blanking Register, Index Hex 03

The register fields are defined as follows:

DES The Display Enable Skew Control field (bits 6, 5)
determines the amount of skew of the 'display enable'
signal. This skew control is needed to provide sufficient
time for the CRT controller to read a character and
attribute code from the video buffer, gain access to the
character generator, and go through the Horizontal PEL
Panning register in the attribute controller. Each access
requires the 'display enable' signal to be skewed one
character clock so that the video output is synchronized
with the horizontal and vertical retrace signals. The skew
values are shown in the following figure.

DES Field
(binary) Amount of Skew

00
01
10
1 1

No character clock skew
One character clock skew
Two character clock skew
Three character clock skew

Figure 2-44. Display Enable Skew

Note: Character skew is not adjustable on the Type 2
video and the bits are ignored; however, programs
should set these bits for the appropriate skew to
maintain compatibility.

2-58 VGA Function - September 1991

EB The End Blanking field (bits 4-0) contains the 5 low-order
bits of a 6-bit value that is compared with the value in the
Start Horizontal Blanking register to determine when the
'horizontal blanking' signal goes inactive. The
most-significant bit is bit 7 in the End Horizontal Retrace
register (index hex 05).

To program these bits for a signal width of W, the
following algorithm is used: the width W, in character
clock units, is added to the value from the Start Horizontal
Blanking register. The 6 low-order bits of the result are
the 6-bit value programmed.

Start Horizontal Retrace Pulse Register

This register has an index of hex 04; its address is hex 0305 or 03B5.

7 6 5 4 3 2 1 e

Start Horizontal Retrace Pulse

Figure 2-45. Start Horizontal Retrace Pulse Register, Index Hex 04

The Start Horizontal Retrace Pulse register (bits 7 - 0) is used to
center the screen horizontally by specifying the character position
where the 'horizontal retrace' signal goes active.

VGA Function-September 1991 2-59

End Horizontal Retrace Register

This register has an index of hex 05; its address is hex 0305 or 03B5.

7 6 5 4 3 2 1 e

EB51 HRD EHR

EB5 End Horizontal Blanking, Bit 5
HRD Horizontal Retrace Delay
EHR End Horizontal Retrace

Figure 2-46. End Horizontal Retrace Register, Index Hex 05

The register fields are defined as follows:

EB5 The End Horizontal Blanking, Bit 5 field (bit 7) is the
most-significant bit of the end horizontal blanking value in
the End Horizontal Blanking register (index hex 03).

HRD The Horizontal Retrace Delay field (bits 6, 5) controls the
skew of the 'horizontal retrace' signal. The value of this
field is the amount of skew provided (from 0 to 3 character
clock units). For certain modes, the 'horizontal retrace'
signal takes up the entire blanking interval. Some internal
timings are generated by the falling edge of the
'horizontal retrace' signal. To ensure that the signals are
latched properly, the 'retrace' signal is started before the
end of the 'display enable' signal and then skewed several
character clock times to provide the proper screen
centering.

EHR The End Horizontal Retrace field (bits 4-0) is compared
with the Start Horizontal Retrace register to give a
horizontal character count at which the 'horizontal retrace'
signal goes inactive.

To program these bits with a signal width of W, the
following algorithm is used: the width W, in character
clock units, is added to the value in the Start Retrace
register. The 5 low-order bits of the result are the 5-bit
value programmed.

2-60 VGA Function - September 1991

Verlical Total Register

This register has an index of hex 06; its address is hex 0305 or 03B5.

7 6 5 4 3 2 1 o

Vertical Total

Figure 2-47. Vertical Total Register, Index Hex 06

The Vertical Total register (bits 7 - 0) contains the 8 low-order bits of
a 10-bit vertical total. The value for the vertical total is the number of
horizontal raster scans on the display, including vertical retrace,
minus 2. This value determines the period of the 'vertical retrace'
signal.

Bits 8 and 9 are in the Overflow register (index hex 07).

VGA Function - September 1991 2-61

Overflow Register

This register has an index of hex 07; its address is hex 0305 or 03B5.

7 6 5 4 3 2 1 e

VRS9 Vertical Retrace Start, Bit 9
VDE9 Vertical Display Enable End, Bit 9

VT9 Vertical Total, Bit 9
LC8 Line Compare, Bit 8

VBS8 Vertical Blanking Start, Bit 8
VRS8 Vertical Retrace Start, Bit 8
VDE8 Vertical Display Enable End, Bit 8

VT8 Vertical Total, Bit 8

Figure 2-48. CRT Overflow Register, Index Hex 07

The register fields are defined as follows:

VRS9 This is bit 9 of the Vertical Retrace Start register (index
hex 10).

VDE9 This is bit 9 of the Vertical Display-Enable End register
(index hex 12).

VT9 This is bit 9 of the Vertical Total register (index hex 06).

Le8 This is bit 8 of the Line Compare register (index hex 18).

VaS8 This is bit 8 of the Start Vertical Blanking register (index
hex 15).

VRS8 This is bit 8 of the Vertical Retrace Start register (index
hex 10).

VDE8 This is bit 8 of the Vertical Display-Enable End register
(index hex 12).

VT8 This is bit 8 of the Vertical Total register (index hex 06).

2-62 VGA Function - September 1991

Preset Row Scan Register

This register has an index of hex 08; its address is hex 0305 or 03B5.

7

-I
6 5 4 3 2 1 o

BP SRS

Set to 0, Undefined on Read
BP Byte Panning

SRS Starting Row Scan Count

Figure 2-49. Preset Row Scan Register, Index Hex 08

The register fields are defined as follows:

BP The Byte Panning field (bits 6,5) controls byte panning in
multiple shift modes. (BIOS modes do not use multiple
shift operation.) These bits are used in PEL-panning
operations, and should normally be set to O.

Extended Graphics mode behaves as if these bits are set
to 0; therefore, programs should set it to O.

SRS The Starting Row Scan Count field (bits 4-0) specifies the
row scan count for the row starting after a vertical retrace.
The row scan counter is incremented every horizontal
retrace time until the maximum row scan occurs. When
the maximum row scan is reached, the row scan counter
is cleared (not preset).

Note: The CRT controller latches the start address at the start of the
vertical retrace. These register values should be loaded
during the active display time.

VGA Function - September 1991 2-63

Maximum Scan Line Register

This register has an index of hex 09; its address is hex 0305 or 03B5.

7 6 5 4 3 2 1

I DScl LC91VBS91 MSL

DSC 2ee to 4ee Line Conversion (Double Scanning)
LC9 Line Compare, Bit 9

VBS9 Start Vertical Blanking, Bit 9
MSL Maximum Scan Line

Figure 2-50. Maximum Scan Line Register, Index Hex 09

The register fields are defined as follows:

DSC When the 200 to 400 Line Conversion field (bit 7) is set to
1, 200-scan-line video data is converted to 400-scan-line
output. To do this, the clock in the row scan counter is
divided by 2, which allows the 200-line modes to be
displayed as 400 lines on the display (this is called double
scanning; each line is displayed twice). When set to 0, the
clock to the row scan counter is equal to the horizontal
scan rate.

LC9 The Line Compare, Bit 9 field (bit 6) is bit 9 of the Line
Compare register (index hex 18).

VBS9 The Start Vertical Blanking, Bit 9 field (bit 5) is bit 9 of the
Start Vertical Blanking register (index hex 15).

MSL The Maximum Scan Line field (bits 4-0) specifies the
number of scan lines per character row. The value of this
field is the maximum row scan number minus 1.

2-64 VGA Function - September 1991

Cursor Start Register

This register has an index of hex OA; its address is hex 0305 or 03B5.

7 6 5 4 3 2 1 ° -I -I CO RSCB

• Set to 0, Undefined on Read
CO Cursor Off

RSCB : Row Scan Cursor Begins

Figure 2-51. Cursor Start Register, Index Hex OA

The register fields are defined as follows:

CO When the Cursor Off field (bit 5) is set to 1, the cursor is
disabled.

RSCB The Row Scan Cursor Begins field (bits 4-0) specifies the
row within the character box where the cursor begins.
The value of this field is the first line of the cursor minus 1.
When this value is greater than that in the Cursor End
register, no cursor is displayed.

VGA Function - September 1991 2-65

Cursor End Register

This register has an index of hex OB; its address is hex 03D5 or 03B5.

7 6

- I CSK

CSK
RSCE

5 4 3 2 1 o

RSCE

Set to 0, Undefined on Read
Cursor Skew Control
Row Scan Cursor Ends

Figure 2-52. Cursor End Register, Index Hex DB

The register fields are defined as follows:

CSK The Cursor Skew Control field (bits 6, 5) controls the skew
of the cursor. The skew value delays the cursor by the
selected number of character clocks from 0 to 3. For
example, a skew of 1 moves the cursor right one position
on the screen.

RSCE The Row Scan Cursor Ends field (bits 4-0) specifies the
row within the character box where the cursor ends. If
this value is less than that in the Cursor Start register, no
cursor is displayed.

2-66 VGA Function - September 1991

Start Address High Register

This register has an index of hex OC; its address is hex 0305 or 0385.

7 6 5 4 3 2 1 I:)

Start Address High

Figure 2-53. Start Address High Register, Index Hex DC

The Start Address High register (bits 7 - 0) contains the 8 high-order
bits of a 16-bit value that specifies the starting address for the
regenerative buffer. The start address points to the first address after
the vertical retrace on each screen refresh.

Note: The CRT controller latches the start address at the start of the
vertical retrace. These register values should be loaded
during the active display time.

Start Address Low Register

This register has an index of hex 00; its address is hex 0305 or 0385.

7 6 5 4 3 2 1 I:)

Start Address Low

Figure 2-54. Start Address Low Register, Index Hex 00

The Start Address Low register (bits 7 - 0) contains the 8 low-order
bits of the starting address for the regenerative buffer.

VGA Function - September 1991 2-67

Cursor Location High Register

This register has an index of hex OE; its address is hex 0305 or 0385.

7 6 5 4 3 2 1

Cursor Location High

Figure 2-55. Cursor Location High Register, Index Hex OE

The Cursor Location High register (bits 7 - 0) contains the 8
high-order bits of the 16-bit cursor location.

Cursor Location Low Register

This register has an index of hex OF; its address is hex 0305 or 0385.

7 6 5 4 3 2 1 e

Cursor Location Low

Figure 2-56. Cursor Location Low Register, Index Hex OF

The Cursor Location Low register (bits 7 - 0) contains the 8 low-order
bits of the cursor location.

2-68 VGA Function - September 1991

Vertical Retrace Start Register

This register has an index of hex 10; its address is hex 03D5 or 03B5.

7 6 5 4 3 2 1 o

Vertical Retrace Start

Figure 2-57. Vertical Retrace Start Register, Index Hex 10

The Vertical Retrace Start register (bits 7 - 0) contains the 8 low-order
bits of the 9-bit start position for the 'vertical retrace' signal; it is
programmed in horizontal scan lines. Bit 8 is in the Overflow register
(index hex 07).

Vertical Retrace End Register

This register has an index of hex 11; its address is hex 03D5 or 03B5.

7 6 5 4 3 2 1

PR Protect Registers 0-7
S5R Select 5 Refresh Cycles
EVI Enable Vertical Interrupt
CVI Clear Vertical Interrupt
VRE Vertical Retrace End

o

Figure 2-58. Vertical Retrace End Register, Index Hex 11

VGA Function - September 1991 2·69

The register fields are defined as follows:

PR When the Protect Registers 0 -7 field (bit 7) is set to 1,
write access to the CRT controller registers at index 00
through 07 is disabled. The line compare bit in the
Overflow register (index hex 07) is not protected.

S5R When the Select 5 Refresh Cycles field (bit 6) is set to 1,
five memory refresh cycles per horizontal line are
generated. When set to 0, three refresh cycles are
selected. Selecting five refresh cycles allows use of the
VGA chip with 15.75 kHz displays. This bit should be set
to ° for supported operations. It is set to 0 by a BIOS
mode set, a reset, or a power on.

EVI When the Enable Vertical Interrupt field (bit 5) is set to 0, it
enables a vertical retrace interrupt. The vertical retrace
interrupt is IRQ2. This interrupt level can be shared,
therefore, to determine whether the video generated the
interrupt, check the CRT interrupt bit in Input Status
Register O.

CVI When the Clear Vertical Interrupt field (bit 4) is set to 0, it
clears a vertical retrace interrupt. At the end of the active
vertical display time, a flip-flop is set to indicate an
interrupt. An interrupt handler resets this flip-flop by first
setti ng this bit to 0, then resetti ng it to 1.

VRE The Vertical Retrace Start register is compared with the 4
bits in the Vertical Retrace End field (bits 3 - 0) to
determine where the 'vertical retrace' signal goes
inactive. It is programmed in units of horizontal scan
lines. To program these bits with a signal width of W, the
following algorithm is used: the width W, in horizontal
scan units, is added to the value in the Start Vertical
Retrace register. The 4 low-order bits of the result are the
4-bit value programmed.

2-70 VGA Function - September 1991

Vertical Display-Enable End Register

This register has an index of hex 12; its address is hex 0305 or 0385.

7 6 5 4 3 2 1 o

Vertical Display Enable End

Figure 2-59. Vertical Display-Enable End Register, Index Hex 12

The Vertical Display-Enable End register (bits 7 - 0) contains the 8
low-order bits of a 10-bit value that defines the vertical-display-enable
end position. The 2 high-order bits are contained in the Overflow
register (index hex 07). The 10-bit value is equal to the total number
of scan lines minus 1.

Offset Register

This register has an index of hex 13; its address is hex 0305 or 0385.

7 6 5 4 3 2 1 o

Offset

Figure 2-60. Offset Register, Index Hex 13

The Offset register (bits 7 - 0) specifies the logical line width of the
screen. The starting memory address for the next character row is
larger than the current character row by 2 or 4 times the value of
these bits. Depending on the method of clocking the CRT controller,
this address is either a word or doubleword address.

VGA Function - September 1991 2-71

Underline Location Register

This register has an index of hex 14; its address is hex 0305 or 0385.

7 6 5 4 3 2 1 0

-I ow CB41 SUL

. Set to 0, Undefined on Read
OW Ooubleword Mode

CB4 Count By 4
SUL Start Underline

Figure 2-61. Underline Location Register, Index Hex 14

The register fields are defined as follows:

DW When the Ooubleword Mode field (bit 6) is set to 1,
memory addresses are doubleword addresses. See the
description of the word/byte mode bit (bit 6) in the CRT
Mode Control register on page 2-74.

CB4 When the Count 8y 4 field (bit 5) is set to 1, the
memory-address counter is clocked with the character
clock divided by 4, which is used when doubleword
addresses are used.

SUL The Start Underline field (bits 4 - 0) specifies the
horizontal scan line of a character row on which an
underline occurs. The value programmed is the scan line
desired minus 1.

2-72 VGA Function - September 1991

Start Vertical Blanking Register

This register has an index of hex 15; its address is hex 03D5 or 03B5.

7 6 5 4 3 2 1 o

Start Vertical Blanking

Figure 2-62. Start Vertical Blanking Register, Index Hex 15

The Start Vertical Blanking register (bits 7 - 0) contains the a
low-order bits of a 10-bit value that specifies the starting location for
the 'vertical blanking' signal. Bit a is in the Overflow register (index
hex 07) and bit 9 is in the Maximum Scan Line register (index hex 09).
The 10-bit value is the horizontal scan line count at which the 'vertical
blanking' signal becomes active minus 1.

End Vertical Blanking Register

This register has an index of hex 16; its address is hex 03D5 or 03B5.

7 6 5 4 3 2 1 o

End Vertical Blanking

Figure 2-63. End Vertical Blanking Register, Index Hex 16

The End Vertical Blanking register (bits 7 - 0) specifies the horizontal
scan count at which the 'vertical blanking' signal becomes inactive.
The register is programmed in units of the horizontal scan line.

To program these bits with a 'vertical blanking' signal of width W, the
following algorithm is used: the width W, in horizontal scan line
units, is added to the value in the Start Vertical Blanking register
minus 1. The a low-order bits of the result are the a-bit value
programmed.

VGA Function - September 1991 2-73

CRT Mode Control Register

This register has an index of hex 17; its address is hex 03D5 or 03B5.

7 6 5 4 3 2 1 (;)

1 RSTI WB 1 ADWI -I CB21 HRSI SRclcMsel

. Set to e, Undefined on Read
RST Hardware Reset

WB Word/Byte Mode
ADW Address Wrap
CB2 Count By Two
HRS Horizontal Retrace Select
SRC Select Row Scan Counter

CMSe CMS e

Figure 2-64. CRT Mode Control Register, Index Hex 17

The register fields are defined as follows:

RST When the Hardware Reset field (bit 7) is set to 0, this bit
disables the horizontal and vertical retrace signals and
forces them to an inactive level. When set to 1, this bit
enables the horizontal and vertical retrace signals. This
bit does not reset any other registers or signal outputs.

WB When the Word/Byte Mode field (bit 6) is set to 0, the word
mode is selected. The word mode shifts the
memory-address counter bits down 1 bit; the
most-significant bit of the counter appears on the
least-significant bit of the memory address outputs.

The doubleword bit in the Underline Location register
(index hex 14) also controls the addressing. When the
doubleword bit is 0, the word/byte bit selects the mode.
When the doubleword bit is set to 1, the addressing is
shifted by 2 bits.

When the Word/Byte Mode field is set to 1, it selects the
byte address mode. See the following figure for address
output details.

2-74 VGA Function - September 1991

Clock
Ad
Co

dress
unter

55 Wrap
Byte

MAO
to

----MA 15

----+ Bit 5 - Addre
Bit 6 - Wordl
Bit 6 - Double word Mode --+

Row Scan 0 a
Bit OCMS 0
Bit 1 SRSC

Memory

nd 1

Address Outputs

MAO
MA1
MA2
MA3
MA4
MA5
MA6
MA7
MAS
MA9
MA 10
MA 11
MA 12
MA 13
MA 14
MA 15

Byte, MAO Output MAO
Word,

to ____
MUX to

Double- MA 15 MA 15
word
MUX

Control

Modes of Addressing

Byte Word Doubleword

MAO MA 15 or 13 MA 12
MA 1 MAO MA 13
MA2 MA1 MAO
MA3 MA2 MA 1
MA4 MA3 MA2
MA5 MA4 MA3
MA6 MA5 MA4
MA7 MA6 MA5
MAS MA 7 MA6
MA9 MAS MA 7
MA 10 MA9 MAS
MA 11 MA 10 MA9
MA 12 MA 11 MA 10
MA 13 MA 12 MA 11
MA 14 MA 13 MA 12
!viA 15 MA 14 MA 13

Figure 2-65. CRT Memory Address Mapping

ADW The Address Wrap field (bit 5) selects the
memory-address bit, bit MA 13 or MA 15, that appears on
the output pin MA 0 in the word address mode. If VGA is
not in the word address mode, bit 0 from the address
counter appears on the output pin, MA O.

When set to 1, the Address Wrap field bit selects MA 15.
In odd/even mode, this bit should be set to 1 because
256KB of video memory is installed on the system board.
(Bit MA 13 is selected in applications where only 64KB is
present. This function maintains compatibility with the
IBM Color/Graphics Monitor Adapter.)

VGA Function - September 1991 2-75

CB2 When the Count By Two field (bit 3) is set to 0, the address
counter uses the character clock. When set to 1, the
address counter uses the character clock input divided by
2. This bit is used to create either a byte or word refresh
address for the display buffer.

HRS The Horizontal Retrace Select field (bit 2) selects the clock
that controls the vertical timing counter. The clocking is
either the horizontal retrace clock or horizontal retrace
clock divided by 2. When set to 1, the horizontal retrace
clock is divided by 2.

SRC

CMSO

Dividing the clock effectively doubles the vertical
resolution of the CRT controller. The vertical counter has
a maximum resolution of 1024 scan lines because the
vertical total value is 10 bits wide. If the vertical counter
is clocked with the horizontal retrace divided by 2, the
vertical resolution is doubled to 2048 scan lines.

The Select Row Scan Counter field (bit 1) selects the
source of bit 14 of the output multiplexer. When set to 0,
bit 1 of the row scan counter is the source. When set to 1,
bit 14 of the address counter is the source.

The CMS 0 field (bit 0) selects the source of bit 13 of the
output multiplexer. When set to 0, bit 0 of the row scan
counter is the source. When set to 1, bit 13 of the address
counter is the source.

The CRT controller used on the IBM Color/Graphics
Adapter was capable of using 128 horizontal scan-line
addresses. For VGA to obtain 640-by-200 graphics
resolution, the CRT controller is programmed for 100
horizontal scan lines with two scan-line addresses per
character row. Row scan address bit 0 becomes the
most-significant address bit to the display buffer.
Successive scan lines of the display image are displaced
in 8KB of memory. This bit allows compatibility with the
graphics modes of earlier adapters.

2-76 VGA Function - September 1991

Line Compare Register

This register has an index of hex 18; its address is hex 0305 or 03B5.

7 6 5 4 3 2 1 o

Li ne Compa re

Figure 2-66. Line Compare Register, Index Hex 18

The Line Compare Register (bits 7 - 0) contains the 8 low-order bits of
the 10-bit compare target. When the vertical counter reaches the
target value, the internal start address of the line counter is cleared.
This creates a split screen in which the lower screen is immune to
scrolling. Bit 8 is in the Overflow register (index hex 07), and bit 9 is
in the Maximum Scan Line register (index hex 09).

VGA Function - September 1991 2·77

Graphics Controller Registers

The Address register for the graphics controller is at address hex
03CE. The data registers are at address hex 03CF. All registers are
read/write.

Address Index
Register Name (Hex) (Hex)

Address 03CE
SetlReset 03CF 00
Enable SetlReset 03CF 01
Color Compare 03CF 02
Data Rotate 03CF 03
Read Map Select 03CF 04
Graphics Mode 03CF 05
Miscellaneous 03CF 06
Color Don't Care 03CF 07
Bit Mask 03CF 08

Figure 2-67. Graphics Controller Register Overview

Address Register

The Address register is at address hex 03CE. This register is loaded
with the index value that points to the desired data register within the
graphics controller.

7 6 5 4 3 2 1 e

-I -I -I -I Index

- . Set to e, Undefined on Read

Figure 2-68. Graphics Controller Address Register, Hex OSCE

The register field is defined as follows:

Index The Index field (bits 3-0) contains the index value that
points to the data registers.

2·78 VGA Function - September 1991

SetfReset Register

This register has an index of hex 00; its address is hex 03CF.

7 6 5 4 3 2 I e

- I - I - I - I SR31 SR21 SRII sRel

SR3
SR2
SRI
SRe

Set to e, Undefined on Read
Set/Reset Map 3
Set/Reset Map 2
Set/Reset Map I
Set/Reset Map e

Figure 2-69. Set/Reset Register, Index Hex 00

The register fields are defined as follows:

SR3, SR2, SR1, SRO
When write mode 0 is selected, the system writes the
value of each set/reset field (bits 3,2, 1, or 0) to its
respective memory map. For each write operation, the
set/reset bit, if enabled, is written to all 8 bits within that
map. Set/reset operation can be enabled on a
map-by-map basis through the Enable Set/Reset register.

VGA Function - September 1991 2-79

Enable Set/Reset Register

The index for this register is hex 01; its address is hex 03CF.

7 6

ESR3
ESR2
ESRI
ESRe

5 4 3 2 1 e

Set to e, Undefined on Read
Enable Set/Reset Map 3
Enable Set/Reset Map 2
Enable Set/Reset Map 1
Enable Set/Reset Map e

Figure 2-70. Enable Set/Reset Register, Index Hex 01

The register fields are defined as follows:

ESR3,ESR2,ESR1,ESRO
These fields (bits 3, 2, 1, and 0) enable the set/reset
function used when write mode 0 is selected in the
Graphics Mode register (index hex 05). When set to 1, the
respective memory map receives the value specified in
the Set/Reset register. When Set/Reset is not enabled for
a map, that map receives the value sent by the system.

2-80 VGA Function - September 1991

Color Compare Register

This register has an index of hex 02; its address is hex 03CF.

7 6 5 4 3 2 1

- I - I - I - I CC31 CC21 CCll ccel

CC3
CC2
CCI
cce

Set to e, Undefined on Read
Color Compare Map 3
Color Compare Map 2
Color Compare Map 1
Color Compare Map e

Figure 2-71. Color Compare Register, Index Hex 02

The register fields are defined as follows:

CC3, CC2, CC1, CCO
These color compare map fields (bits 3, 2, 1, and 0) make
up the 4-bit color value to be compared when the read
mode bit in the Graphics Mode register is set to 1. When
the system does a memory read, the data returned from
the memory cycle will be a 1 in each bit position where
the four maps equal the Color Compare register. If the
read mode bit is 0, the data is returned without
comparison.

The color compare bit is the value that all bits of the
corresponding map's byte are compared with. Each of the
8 bit positions in the selected byte are compared across
the four maps, and a 1 is returned in each position where
the bits of all four maps equal their respective color
compare values.

VGA Function - September 1991 2-81

Data Rotate Register

This register has an index of hex 03; its address is hex 03CF.

7 6 5 4 3 2 1 a

-I -I -I FS RC

Set to a, Undefined on Read
FS Function Select
RC Rotate Count

Figure 2-72. Data Rotate Register, Index Hex 03

The register fields are defined as follows:

FS Data written to the video buffer can be operated on
logically by data already in the system latches. The
Function Select field (bits 4, 3) determines whether and
how this is done.

Data can be any of the choices selected by the write mode
bits except system latches, which cannot be modified. If
rotated data is selected also, the rotate is performed
before the logical operation. The logical operations
selected are shown in the following table.

FSFleid
(binary) Function

00
01
10
1 1

Data Unmodified
Data ANDed with Latched Data
Data ORed with Latched Data
Data XORed with Latched Data

Figure 2-73. Operation Select Bit Definitions

RC In write mode 0, the Rotate Count field (bits 2 - 0) selects
the number of positions the system data is rotated to the
right during a system memory write operation. To write
data that is not rotated in mode 0, all bits are set to O.

2-82 VGA Function - September 1991

Read Map Select Register

This register has an index of hex 04; its address is hex 03CF.

7 6 5 4 3 2 1 0

-I -I -I -I -I -I MS

. Set to 0, Undefined on Read
MS Map Select

Figure 2-74. Read Map Select Register, Index Hex 04

The register field is defined as follows:

MS The Map Select field (bits 1, 0) selects the memory map
for system read operations. This register has no effect on
the color compare read mode. In odd/even modes, the
value can be a binary 00 or 01 to select the chained maps
0, 1 and the value can be a binary 10 or 11 to select the
chained maps 2, 3.

VGA Function - September 1991 2-83

Graphics Mode Register

This register has an index of hex 05; its address is hex 03CF.

7 6 5 4 3 2 1 e

- IC2561 SR OE RM -I WM

. Set to 0, Undefined on Read
C256 256 - Color Mode

SR Shift Register Mode
OE Odd/Even
RM Read Mode
WM Write Mode

Figure 2-75. Graphics Mode Register, Index Hex 05

The register fields are defined as follows:

C256 When set to 0, the 256-Color Mode field (bit 6) allows bit 5
to control the loadi ng of the shift registers. When set to 1,
this field causes the shift registers to be loaded in a
manner that supports the 256-color mode.

SR When set to 1, the Shift Register Mode field (bit 5) di rects
the shift registers in the graphics controller to format the
serial data stream with even-numbered bits from both
maps on even-numbered maps, and odd-numbered bits
from both maps on the odd-numbered maps. This bit is
used for modes 4 and 5.

OE When set to 1, the Odd/Even field (bit 4) selects the
odd/even addressing mode used by the IBM
Color/Graphics Monitor Adapter. Normally, the value
here follows the value of Memory Mode register bit 2 in
the sequencer.

RM When the Read Mode field (bit 3) is set to 1, the system
reads the results of the comparison of the four memory
maps and the Color Compare register.

When set to 0, the system reads data from the memory
map selected by the Read Map Select register, or by the 2
low-order bits of the memory address (this selection
depends on the chain-4 bit in the Memory Mode register of
the sequencer).

2-84 VGA Function - September 1991

WM The Write Mode field (bits 1, 0) determines the write mode
selected. The write mode selected and its operation are
defined in the following figure. The logic operation
specified by the function select bits is performed on
system data for modes 0, 2, and 3.

WM
Field
(binary) Mode Description

o 0 Each memory map is written with the system data rotated by the count in
the Data Rotate register. If the setfreset function is enabled for a specific
map, that map receives the a-bit value contained in the Set/Reset
register.

o 1 Each memory map is written with the contents of the system latches.
These latches are loaded by a system read operation.

1 0 Memory map n (0 through 3) is filled with a bits of the value of data bit n.
1 1 Each memory map is written with the 8-bit value contained in the

SetfReset register for that map (the Enable SetfReset register has no
effect). Rotated system data is ANDed with the Bit Mask register to form
an 8-bit value that performs the same function as the Bit Mask register in
write modes 0 and 2 (see also Bit Mask register on page 2-88).

Figure 2-76. Write Mode Definitions

VGA Function - September 1991 2·85

Miscellaneous Register

This register has an index of hex 06; its address is hex 03CF.

7 6 5 4 3 2 1 e

-I -I -I -I MM OE GM

. Set to e, Undefined on Read
MM Memory Map
OE Odd/Even
GM Graphics Mode

Figure 2-77. Miscellaneous Register, Index Hex 06

The register fields are defined as follows:

MM The Memory Map field (bits 3, 2) controls the mapping of
the regenerative buffer into the system address space.
The bit functions are defined in the following figure.

MMFleid
(binary)

00
o 1
10
1 1

Addressing Assignment

ADOOO for 128KB
ADOOO for 64KB
BOOOO for 32KB
B8000 for 32KB

Figure 2-78. Video Memory Assignments

OE When set to 1, the Odd/Even field (bit 1) directs the system
address bit, AO, to be replaced by a higher-order bit. The
odd map is then selected when AO is 1, and the even map
when AO is O.

GM The Graphics Mode field (bit 0) controls alphanumeric
mode addressing. When set to 1, this bit selects graphics
modes, which also disables the character generator
latches.

2·86 VGA Function - September 1991

Color Don't Care Register

This register has an index of hex 07; its address is hex 03CF.

7 6 5 4 3 2 1 a

-I -I -I -I M3xI M2xI MlXl Maxi

Set to a, Undefined on Read
M3X Map 3 is Don't Care
M2X Map 2 is Don't Care
MlX Map 1 is Don't Care
MaX Map a is Don't Care

Figure 2-79. Color Don't Care Register, Index Hex 07

The register fields are defined as follows:

M3X,M2X,M1X,MOX
These map don't care fields (bits 3, 2, 1, and 0) select
whether a map is going to participate in the color compare
cycle. When set to 1, the bits in that map are compared.

VGA Function - September 1991 2·87

Bit Mask Register

This register has an index of hex 08; its address is hex 03CF.

7 6 5 4 3 2 1

Bit Mask

Figure 2-80. Bit Mask Register, Index Hex 08

When a bit in the Bit Mask register (bits 7 - 0) is set to 1, the
corresponding bit position in each map can be changed. When a bit
is set to 0, the bit position in the map is masked to prevent change,
provided that the location being written was the last location read by
the system microprocessor.

The bit mask applies to write modes 0 and 2. To preserve bits using
the bit mask, data must be latched internally by reading the location.
When data is written to preserve the bits, the most current data in the
latches is written in those positions. The bit mask applies to all maps
simultaneously.

2-88 VGA Function - September 1991

Attribute Controller Registers

Each register for the attribute controller has two addresses. Address
hex 03CO is the write address and hex 03C1 is the read address. The
individual data registers are selected by writing their index to the
Address register (hex 03CO).

Register Name

Address
Internal Palette
Attribute Mode Control
Overscan Color
Color Plane Enable
Horizontal PEL Panning
Color Select

Write
Address

03CO
03CO

Figure 2-81. Attribute Controller Register Addresses

Address Register

This read/write register is at address hex 03CO.

Read
Address

03CO
03C1

Index

OO-OF
10
11
12
13
14

The attribute controller registers do not have an input bit to control
selection of the address and data registers. An internal address
flip-flop controls this selection. Reading Input Status Register 1
clears the flip-flop and selects the Address register.

After the Address register has been loaded with the index, the next
write operation to 03CO loads the data register. The flip-flop toggles
for each write operation to address hex 03CO. It does not toggle for
Read operations to 03CO or 03C1. (Also see "VGA Programming
Considerations" on page 2-96.)

7 6

IPAS

5 4 3 2 1

Index

Set to 0, Undefined on Read
Internal Palette Address Source

Figure 2-82. Address Register, Hex 03CO

VGA Function - September 1991 2-89

The register fields are defined as follows:

IPAS The Internal Palette Address Source field (bit 5) is set to 0
to load color values to the registers in the internal palette.
It is set to 1 for normal operation of the attribute
controller.

Note: Do not access the internal palette while this bit is
set to 1. While this bit is 1, the Type 1 video
subsystem disables accesses to the palette;
however, the Type 2 does not, and the actual color
value addressed cannot be ensured.

Index The Index field (bits 4-0) contains the index to the data
registers in the attribute controller.

Internal PaleHe Registers 0 through F

These registers are at indexes hex 00 through OF. Their write
address is hex 03CO; their read address is hex 03C1.

7 6 5 4 3 2 1 0

-I -I P5 P4 P3 P2 PI P0

. Set to 0, Undefined on Read
P5 to P0 Palette Data

Figure 2-83. Internal Palette Registers, Index Hex 00 - OF

The register fields are defined as follows:

P5-PO These 6-bit registers (bits 5-0) allow a dynamic mapping
between the text attribute or graphic color input value and
the display color on the CRT screen. When set to 1, this
bit selects the appropriate color. The Internal Palette
registers should be modified only during the vertical
retrace interval to avoid problems with the displayed
image. These internal palette values are sent off-chip to
the video DAC, where they serve as addresses into the
DAC registers. (Also see the attribute controller block
diagram on page 2-10.)

Note: These registers can be accessed only when bit 5 in the
Address register is set to O. When the bit is 1, writes are
"don't care" and reads return undefined data.

2-90 VGA Function - September 1991

Attribute Mode Control Register

This read/write register is at index hex 10. Its write address is hex
03CO; its read address is hex 03C1.

7 6 5 4 3 2 1 °
PS PW PP - I EB ELGI ME G

Set to 0, Undefined on Read
PS P5, P4 Select
PW PEL Width
PP PEL Panning Compatibility
EB Enable Blink/-Select Background Intensity

ELG Enable Line Graphics Character Code
ME Mono Emulation
G Graphics/-Alphanumeric Mode

Figure 2-84. Attribute Mode Control Register, Index Hex 10

The register fields are defined as follows:

PS The PS, P4 Select field (bit 7) selects the source for the PS
and P4 video bits that act as inputs to the video DAC.
When set to 0, PS and P4 are the outputs of the Internal
Palette registers. When set to 1, PS and P4 are bits 1 and
o of the Color Select register. For more information, see
"VGA Programming Considerations" on page 2-96.

PW When the PEL Width field (bit 6) is set to 1, the video data
is sampled so that 8 bits are available to select a color in
the 2S6-color mode (hex 13). This bit is set to 0 in all other
modes.

PP When the PEL Panning Compatibility field (bit S) is set to
1, a successful line-compare in the CRT controller forces
the output of the PEL Panning register to 0 until a vertical
synchronization occurs, at which time the output returns to
its programmed value. This bit allows a selected portion
of a screen to be panned.

When set to 0, line compare has no effect on the output of
the PEL Panning register.

VGA Function - Septem ber 1991 2-91

EB When the Enable Blink/-Select Background Intensity field
(bit 3) is set to 0, the most-significant bit of the attribute
selects the background intensity (allows 16 colors for
background). When set to 1, this bit enables blinking.

ELG When the Enable Line Graphics Character Code field (bit
2) is set to 0, the ninth dot will be the same as the
background. When set to 1, this bit enables the special
line-graphics character codes for the monochrome
emulation mode. This emulation mode forces the ninth
dot of a line graphic character to be identical to the eighth
dot of the character. The line-graphics character codes
for the monochrome emulation mode are hex CO through
hex DF.

For character fonts that do not use these line-graphics
character codes, bit 2 should be set to 0 to prevent
unwanted video information from displaying on the CRT
screen.

BIOS will set this bit, the correct dot clock, and other
registers when the 9-dot alphanumeric mode is selected.

ME When the Mono Emulation field (bit 1) is set to 1,
monochrome emulation mode is selected. When set to 0,
color emulation mode is selected.

G When the Graphics/-Alphanumeric Mode field (bit 0) is
set to 1, the graphics mode of operation is selected.

2-92 VGA Function - September 1991

Overscan Color Register

This read/write register is at index hex 11. Its write address is hex
03CO; its read address is hex 03C1. This register determines the
border (overscan) color.

7 6 5 4 3 2 1

Overscan Color

Figure 2-85. Overscan Color Register, Index Hex 11

The Overscan Color register (bits 7 - 0) selects the border color used
in the 80-column alphanumeric modes and in the graphics modes
other than modes 4, 5, and D.

Color Plane Enable Register

This read/write register is at index hex 12. Its write address is hex
03CO; its read address is hex 03C1.

7 6 5 4 3 2 1 e

-I -I -I -I ECP

Set to e, Undefined on Read
ECP Enable Color Plane

Figure 2-86. Color Plane Enable Register, Index Hex 12

The register field is defined as follows:

ECP Setting a bit in the Enable Color Plane field (bits 3-0) to 1
enables the corresponding display-memory color plane.

VGA Function - September 1991 2·93

Horizontal PEL Panning Register

This read/write register is at index hex 13. Its write address is hex
03CO; its read address is hex 03C1.

7 6 5 4 3 2 1 0

-I -I -I -I HPP

. Set to 0, Undefined on Read
HPP Horizontal PEL Panning

Figure 2-87. Horizontal PEL Panning Register, Index Hex 13

The register field is defined as follows:

HPP The Horizontal PEL Panning field (bits 3-0) selects the
number of PELs that the video data is shifted to the left.
PEL panning is available in both alphanumeric (A/N) and
graphics modes. The following figure shows the number
of PELs shifted for each mode.

Number 01 PELs Shilted to the Left

Mode Hex A/N All Other
Register Value 13 Modes' Modes

0 0 1 0
1 - 2 1
2 1 3 2
3 - 4 3
4 2 5 4
5 - 6 5
6 3 7 6
7 - 8 7
8 - 0 -

* Only mode 7 and the A/N modes with 400 scan lines.

Figure 2-88. Image Shifting

2-94 VGA Function - September 1991

Color Select Register

This read/write register is at index hex 14. Its write address is hex
03CO; its read address is hex 03C1.

7 6 5 4 3 2 1 0

-I -I -I -I SClI SC61 SC51 SC41

. Set to 0, Undefined on Read
SC7 S_color 7
SC6 S_color 6
SC5 S_color 5
SC4 S_color 4

Figure 2-89. Color Select Register, Index Hex 14

The register fields are defined as follows:

SC7, SC6 In modes other than mode hex 13, the S_color 7 and
S_color 6 fields (bits 3, 2) are tt'le 2 most-significant bits of
the 8-bit digital color value to the video DAC. In mode hex
13, the 8-bit attribute is the digital color value to the video
DAC. These bits are used to switch rapidly between sets
of colors in the video DAC. (For more information, see
"VGA Programming Considerations" on page 2-96.)

SC5, SC4 The S_color 5 and S_color 4 fields (bits 1, 0) can be used
in place of the P4 and P5 bits from the Internal Palette
registers to form the 8-bit digital color value to the video
DAC. Selecting these bits is done in the Attribute Mode
Control register (index hex 10). These bits are used to
switch rapidly between color sets within the video DAC.

VGA Function - September 1991 2-95

VGA Programming Considerations

The following are some programming considerations for the VGA:

• The following rules must be followed to guarantee the critical
timings necessary to ensure the proper operation of the CRT
controller:

The value in the Horizontal Total register must be at least hex
19.

The minimum positive pulse width of the 'horizontal
synchronization' signal must be 4 character clock units.

The End Horizontal Retrace register must be programmed
such that the 'horizontal synchronization' signal goes to 0 at
least 1 character clock time before the 'horizontal display
enable' signal goes active.

The End Vertical Blanking register must be set to a value at
least one horizontal scan line greater than the line-compare
value.

• When PEL panning compatibility is enabled in the Attribute Mode
Control register, a successful line compare in the CRT controller
forces the output of the Horizontal PEL Panning register to O's
until a vertical synchronization occurs. When the vertical
synchronization occurs, the output returns to the programmed
value. This allows the portion of the screen indicated by the Line
Compare register to be operated on by the Horizontal PEL
Panning register.

• A write to the Character Map Select register becomes valid on
the next whole character line. This prevents deformed character
images when changing character generators in the middle of a
character scan line.

• For mode hex 13, the attribute controller is configured so that the
8-bit attribute in video memory becomes the 8-bit address (PO
through P7) into the video DAC. The user should not modify the
contents of the Internal Palette registers when using this mode.

2-96 VGA Function - September 1991

• The following is the sequence for accessing the attribute data
registers:

1. Disable interrupts.
2. Reset the flip-flop for the Attribute Address register.
3. Write the index.
4. Access the data register.
5. Enable interrupts.

• The Color Select register in the attribute controller section allows
rapid switching between color sets in the video DAC. Bit 7 of the
Attribute Mode Control register controls the number of bits in the
Color Select register used to address the color information in the
video DAC (either 2 or 4 bits are used). By changing the value in
the Color Select register, an application can switch color sets in
graphics and alphanumeric modes. (Mode hex 13 does not use
this feature.)

Note: For multiple color sets, the user must load the color
values.

• An application that saves the video state must store the 4 bytes of
information contained in the system microprocessor latches in
the graphics controller subsection. These latches are loaded with
32 bits from video memory (8 bits per map) each time the system
reads from video memory. The application must:

1. Use write mode 1 to write the values in the latches to a
location in video memory that is not part of the display buffer,
such as the last location in the address range.

2. Save the values of the latches by reading them back from
video memory.

Note: If memory addressing is in the chain-4 or odd/even
mode, reconfigure the memory as four sequential
maps prior to performing the sequence above.

BIOS provides support for completely saving and restoring the
video state. Refer to the IBM Personal System/2 and Personal
Computer BIOS Interface Technical Reference for more
information.

VGA Function - September 1991 2-97

• The Horizontal PEL Panning register allows programs to control
the starting position of the display area on the screen. The
display area can be shifted to the left up to eight PEL positions.
In single-byte shift modes, to pan to more than eight PEL
positions, the CRT controller start address is incremented and the
Horizontal PEL Panning register is reset to O.

In multiple shift modes, the byte-panning bits (in the Preset Row
Scan register) are used as extensions to the Horizontal PEL
Panning register. This allows panning across the width of the
video output. For example, in the 32-bit shift mode, the byte pan
and PEL-panning bits provide panning up to 31 bits. To pan from
position 31 to 32, the CRT controller start address is incremented
and the panning bits, both PEL and byte, are reset to O.

Further panning can be accomplished by changing the
start-address value in the CRT controller registers, Start Address
High and Start Address Low. The sequence is:

1. Use the Horizontal PEL Panning register to shift the
maximum number of bits to the left.

2. Increment the start address.

3. Set the Horizontal PEL Panning register so that no bits are
shifted.

The screen is shifted one PEL to the left of the position it was
in at the end of Step 1. Repeat Step 1 through Step 3 as often
as necessary.

• When operating in a mode with 200 scan lines, and using a
split-screen application that scrolls a second screen on top of the
first screen, the Line Compare register (CRT Controller register
hex 19) must contain an even value. This is a requirement of the
double scanning logic in the CRT controller.

• If the value in the Cursor Start register (CRT Controller register
hex OA) is greater than that in the Cursor End register (CRT
Controller register hex 08), the cursor is not displayed.

• In 8-dot character modes, the underline attribute produces a solid
line across adjacent characters. In 9-dot character modes, the
underline across adjacent characters is dashed. In 9-dot modes
with the line-graphics characters (CO through OF character
codes), the underline is solid.

2-98 VGA Function - September 1991

Programming the Registers

Each of the video components has an address register and a number
of data registers. The data registers have addresses common to all
registers for that component. The individual registers are selected by
a pointer (index) in their Address register. To write to a data register,
the Address register is loaded with the index of the desired data
register, then the data register is loaded by writing to the common 1/0
address.

The general registers do not share a common address; they each
have their own 1/0 address.

See "Video DAC to System Interface" on page 2-103 for details on
programming the video DAC.

For compatibility with the IBM Enhanced Graphics Adapter (EGA), the
internal video subsystem palette is programmed the same as the
EGA. Using BIOS to program the palette produces a color compatible
to that produced by the EGA. Mode hex 13 (256 colors) is
programmed so that the first 16 locations in the DAC produce
compatible colors.

When BIOS is used to load the color palette for a color mode and a
monochrome display is attached, the color palette is changed. The
colors are summed to produce shades of gray that allow color
applications to produce a readable screen.

Modifying the following bits must be done while the sequencer is held
in a synchronous reset through its Reset register. The bits are:

• Bits 3 and 0 of the Clocking Mode register
• Bits 3 and 2 of the Miscellaneous Output register.

VGA Function - September 1991 2-99

RAM LoadabJe Character Generator

The character generator is RAM loadable and can support characters
up to 32 scan lines high. Three character fonts are stored in BIOS,
and one is automatically loaded when an alphanumeric mode is
selected. The Character Map Select register can be programmed to
redefine the function of bit 3 of the attribute byte to be a
character-font switch. This allows the user to select between any two
character sets residing in map 2, and gives the user access to 512
characters instead of 256. Character fonts can be loaded off line, and
up to eight fonts can be loaded at anyone time.

The structure of the character fonts is described in the following
figure. The character generator is in map 2 and must be protected
using the map mask function.

Map2

I
+ OKB

L J Font 0
J

I Il
I

+ aKB
Font 4

I

I

+16KB
Font 1

I I I I I I

I I I I
Font 5

I

I

+32KB
Font 2

I I I I I I I I I I I I I I I I I I I
Font 6

+48KB

1 IJ II 1 I II III LI lJiJLli Font 3
I I I I I I I I I I I I I I I I I I I III
I Font 7

+64KB

Figure 2-90. Character Table Structure

2-100 VGA Function - September 1991

The following figure illustrates the structure of each character
pattern. If the CRT controller is programmed to generate 16 row
scans, then 16 bytes must be filled in for each character in the font.
The example below assumes eight row scans per character.

Address

CC·32 + 0

2

3

4

5

6

7

X

X X

X X

X X

X X

X X

X X

Byte Image

x X

X X

X X

X

X

X

X

X

X

X

X

X

X

X

X

X

Data

18H

3CH

66H

66H

7EH

66H

66H

66H

·CC equals the value of the character code. For example,

hex 41 equals and ASCII II A".

Figure 2-91. Character Pattern Example

Creating a Split Screen

The VGA hardware supports a split screen. The top portion of the
screen is designated as screen A, and the bottom portion is
designated as screen S, as in the following figure.

Screen A

Screen B

Figure 2-92. Split Screen Definition

VGA Function - September 1991 2-101

The following figure shows the screen mapping for a system
containing a 32KB alphanumeric storage buffer, such as the VGA.
Information displayed on screen A is defined by the Start Address
High and Low registers of the CRT controller. Information displayed
on screen B always begins at video address hex 0000.

OOOOH

OFFFH

1000H

7FFFH

Screen B
Buffer Storage Area

Screen A
Buffer Storage Area

Figure 2-93. Screen Mapping within the Display Buffer Address Space

The Line Compare register of the CRT controller performs the split
screen function. The CRT controller has an internal horizontal scan
line counter and logic that compares the counter value to the value in
the Line Compare register and clears the memory address generator
when a comparison occurs. The linear address generator then
sequentially addresses the display buffer starting at location O. Each
subsequent row address is determined by the 16-bit addition of the
start-of-line latch and the Offset register.

Screen B can be smoothly scrolled onto the display by updating the
Line Compare register in synchronization with the 'vertical retrace'
signal. Screen B information is not affected by scrolling operations
that use the Start Address registers to scroll through screen A
information.

When PEL-panning compatibility is enabled (Attribute Mode Control
register), a successful line comparison forces the output of the
Horizontal PEL Panning register to O's until vertical synchronization
occurs. This feature allows the information on screen B to remain
unaffected by PEL-panning operations on screen A.

2-102 VGA Function - September 1991

Video Digital-to-Analog Converter

The video digital-to-analog converter (DAC) integrates the function of
a color palette with three internal DACs for driving an analog display.

The DAC has 256 registers containing 18 bits each to allow the
display of up to 256 colors from a possible 256k colors. Each output
signal is driven by a 6-bit DAC.

Register Name

Palette Address (Write Mode)
Palette Address (Read Mode)
DAC State
Palette Data
PEL Mask

Readl
Write

R/W
W
R
RIW
R

Figure 2-94. Video DAC Register

Device Operation

Address
(in Hex)

03C8
03C7
03C7
03C9
03C6

The palette address (P7 through PO) and the blanking input are
sampled on the rising edge of the PEL clock. After three more PEL
clock cycles, the video reflects the state of these inputs.

During normal operation, the palette address is used as a pointer to
one of the 256 data registers in the palette. The value in each data
register is converted to an analog signal for each of the three outputs
(red, green, blue). The blanking input is used to force the video
output to 0 volts. The blanking operation is independent of the palette
operation.

Each data register is 18 bits wide: 6 bits each for red, green, and
blue. The data registers are accessible through the system interface.

Video DAe to System Interface

The Palette Address register holds an 8-bit value that is used to
address a location within the video DAC. The Palette Address
register responds to two addresses; the address depends on the type
of palette access, read or write. Once the address is loaded,
successive accesses to the data register automatically increment the
address register.

For palette write operations, the address for the Palette Address
register is hex 03C8. A write cycle consists of writing three

VGA Function - September 1991 2-103

successive bytes to the Data register at address hex 03C9. The 6
least-significant bits of each byte are concatenated to form the 18-bit
palette data. The order is red value first, then green, then blue.

For palette read operations, the address for the Palette Address
register is hex 03C7 (in the read mode, the Palette Address register is
write only). A read cycle consists of reading three successive bytes
from the Data register at address hex 03C9. The 6 least-significant
bits of each byte contain the corresponding color value. The order is
red value first, then green, then blue.

If the Palette Address register is written to during a read or write
cycle, a new cycle is initialized and the unfinished cycle is
terminated. The effects of writing to the Data register during a read
cycle or reading from the Data register during a write cycle are
undefined and can change the palette contents.

The DAC State register is a read-only register at address hex 03C7.
Bits 1 and 0 return the last active operation to the DAC. If the last
operation was a read operation, both bits are set to 1. If the last
operation was a write, both bits are set to O.

Reading the Read Palette Address register at hex 03C8 or the DAC
State register at hex 03C7 does not interfere with read or write
cycles.

2-104 VGA Function - September 1991

Programming Considerations

• As explained in "Video DAC to System Interface" on page 2-103,
the effects of writing to the Data register during a read cycle or
reading from the Data register during a write cycle are undefined
and can change the palette contents. Therefore, the following
sequence must be followed to ensure the integrity of the color
palette during accesses to it

1. Disable interrupts.

2. Write the address to PEL Address register.

3. Write or read three bytes of data.

4. Go to Step 2, repeat for the desired number of locations.

5. Enable interrupts.

Note: All accesses to the DAC registers are byte-wide I/O
operations.

• To prevent "snow" on the screen, an application reading data
from or writing data to the DAC registers should ensure that the
blank input to the DAC is asserted. This can be accomplished
either by restricting data transfers to retrace intervals (use Input
Status Register 1 to determine when retrace is occurring) or by
using the screen off bit located in the Clocking Mode register in
the sequencer.

Note: BIOS provides read and write interfaces to the video DAC.

• Do not write to the PEL Mask register (hex 03C6). Palette
information can be changed as a result. This register is correctly
initialized to hex FF during a mode set.

VGA Function-September 1991 2-105

VGA Video Extensions

The video extensions provide a means of transferring video
information between the base video subsystem and an auxiliary video
adapter.

The video extensions consist of:

• The auxiliary video extension
• The base video extension
• The auxiliary video signals.

The base video is provided by the video subsystem integrated onto
the system board, or, when not provided on the system board, by a
suitable video adapter. Such an adapter can provide a Micro
Channel connector with the base video extension. Video adapters
supporting the base video extension must provide the VGA function
as the default. For detailed connector dimensions, see Micro
Channel Adapter Design in Personal System 2 Hardware Interface
Technical Reference - Architectures.

The buffers for the base video can be turned off to allow video output
from the auxiliary video to be sent through the base video DAC to the
display. The video extension can be driven in only one direction at a
time.

Note: The video extension supports only the VGA function (see
Figure 2-97 on page 2-110).

2·106 VGA Function - September 1991

VGA Tri-state
Function Buffer Palette

8

P7-PO ~I--/-f/~--_"" -

EXT ~----r-----~
ClK

DClK

BLANK

HSYNC. I---if-+--t--t
VSYNC

Inverter

r--' p.

.-- p-
r-

+5V -0
A

""VAV,
vv

VY

/

Base
Video
Extension
r-----
I
I

I

I

I

I
I
I
I
I
I

I

I

I

!...-----

Figure 2-95. Auxiliary Video Connector Interface

DAC To
Display

.JL.

.J4
~

Syncs

Auxiliary
Video
Extension

P7-PO
DClK
BLANK
HSYNC.

VSYNC

ESYNC
EDClK
EVIDEO

VGA Function - September 1991 2·107

Auxiliary Video Extension

This extension provides a video adapter with the ability to access the
resources of the base video subsystem.

ESYNC

P5
P4
P3

P2
P1
PO

Rear of the System Board

B A
V10

GND~ V9
va
V7 c--- GND
V6

GND- V5
V4
V3 '-- GND
V2

GND- V1
KEY

~

Channel Connector

Figure 2-96. Video Extension

VSYNC
HSYNC
BLANK

P6
EDCLK
DCLK

P7
EVIDEO

The auxiliary video extension is an optional part of the 16- or 32-bit
Micro Channel connector.

Note: For more information on the auxiliary and base video
connectors and extensions, see Micro Channel Architectures
in Personal System 2 Hardware Interface Technical Reference
- Architectures.

Base Video Extension

This extension is for adapters that provide the base video subsystem.
Only systems without a base video subsystem on the system board
have a connector with this extension. The base video extension
signals and auxiliary video extension signals are identical.

Video adapters supporting the base video extension must provide the
VGA function as the default.

The base video extension is an optional part of the 16- or 32-bit Micro
Channel connector and is positioned at the end of the matched
memory extension.

2·108 VGA Function - September 1991

Video Extension Signal Descriptions

The following are signal descriptions for the auxiliary and base video
extensions of the channel connector.

VSYNC: Vertical Synchronization: This signal is the vertical
synchronization signal to the display. Also see the ESYNC
description.

HSYNC: Horizontal Synchronization: This signal is the horizontal
synchronization signal to the display. Also see the ESYNC
description.

BLANK: Blanking Signal: This signal is connected to the BLANK
input of the video DAC. When active (0 V dc), this signal tells the DAC
to drive its analog color outputs to 0 V dc. Also see the ESYNC
description.

P7 - PO: Palette Bits: These eight signals contain video information
and comprise the PEL address inputs to the video DAC. See also the
EVIDEO description.

DCLK: Dot Clock: This signal is the PEL clock used by the DAC to
latch the digital video signals, P7 through PO. The signals are latched
into the DAC on the rising edge of DCLK.

This signal is driven through the EXTCLK input to the VGA when DCLK
is driven by the adapter. If an adapter is providing the clock, it must
also provide the video data to the DAC. Also see the EDCLK
description.

ESYNC: External Synchronization: This signal is the output-enable
signal for the buffer that drives BLANK, VSYNC, and HSYNC. ESYNC is
tied to + 5 V dc through a pull-up resistor. When ESYNC is high, the
VGA drives BLANK, VSYNC, and HSYNC. When ESYNC is pulled low,
the adapter drives BLANK, VSYNC, and HSYNC.

EVIDEO: External Video: This signal is the output-enable signal for
the buffer that drives P7 through PO. EVIDEO is tied to + 5 V dc
through a pull-up resistor. When EVIDEO is high, the VGA drives P7
through PO. When it is pulled low, the adapter drives P7 through PO.

VGA Function - September 1991 2-109

EDCLK: External Dot Clock: This signal is the output-enable signal
for the buffer that drives DCLK. EDCLK is tied to + 5 V dc through a
pull-up resistor.

When EDCLK is high, the VGA is the source of DCLK to the DAC and
the adapter. The Miscellaneous Output register should not select
clock source 2 (010 binary) when EDCLK is high.

When EDCLK is pulled low, the adapter drives DCLK. If the adapter is
driving the clock, it must also provide the video data to the OAC, and
the Miscellaneous Output register must select clock source 2 (010
binary).

Video Extension Signal Timing

DCLK

P 0-7

-BLANK

Red
Green
Blue

tT11 T2~ ~3j t
~ T5~

C

A B C

Symbol Descriplion Minimum (ns) Maximum (ns)

T1
T2
T3
T4
T5
T6
T7
T8

PEL Clock Period
Clock Pulse Width High
Clock Pulse Width Low
PEL Set-Up Time
PEL Hold Time
Blank Set~Up Time
Blank Hold Time
Analog Output Delay

28
7
9
4
4
4
4 3(T1) + 5

10,000
10,000
10,000

3(T1) + 30

Figure 2-97. Video Extension Signal Timing (DAC Signals)

2-110 VGA Function-September 1991

Section 3. XGA Function

XGA Function Introduction 3-7
VGA Mode 3-7
132-Column Text Mode 3-7
Extended Graphics Mode 3-7

IBM PS/2 8514/A Adapter Interface Compatibility 3-7
High Resolution Support ... 3-7
Direct Color Mode 3-8
Packed PEL Format 3-8
Hardware Sprite 3-8
Display Identification 3-8
Coprocessor . 3-8

XGA Components 3-9
System Bus Interface 3-10
Memory and CRT Controller 3-10
Coprocessor .. 3-10
Video Memory 3-11
Attribute Controller 3-11
Sprite Controller 3-11
The Serializer, Palette, and Video DAC 3-11
Alphanumeric (A/N) Font and Sprite Buffer 3-11

Modes Of Operation 3-12
Compatibility 3-12

8514/A Adapter Interface 3-12
LIM EMS Drivers 3-14

VGA compatibility 3-15
132-Column Text Mode 3-15
Extended Graphics Mode 3-16

Display Controller 3-16
Video Memory Format 3-16
PEL Color Mapping 3-18
Border Color Mapping 3-18
Direct Access to Video Memory 3-18

CRT Controller 3-19
CRT Controller Register Interpretations 3-20
Scrolling 3-21

Sprite 3-22
Sprite Color Mapping 3-22
Sprite Buffer Accesses 3-23
Sprite Positioning 3-24

Palette 3-25
Palette Accesses 3-25

Direct Color Mode 3-27

© Copyright IBM Corp. 1989, 1991 3-1

Coprocessor Functions 3-29
XGA Display Controller Registers 3-30

Register Usage Guidelines 3-31
Direct Access I/O Registers 3-32

Operating Mode Register (Address 21xO) 3-32
Aperture Control Register (Address 21x1) 3-33
Interrupt Enable Register (Address 21x4) 3-34
Interrupt Status Register (Address 21x5) 3-36
Virtual Memory Control Register (Address 21x6) 3-37
Virtual Memory Interrupt Status Register (Address 21x7) . 3-37
Aperture Index Register (Address 21x8) 3-38
Memory Access Mode Register (Address 21x9) 3-39
Index Register (Address 21xA) 3-40
Data Registers (Addresses 21xB to 21xF) 3-42

Indexed Access I/O Registers 3-43
Auto-Configuration Register (Index 04) 3-43
Coprocessor Save/Restore Data Registers (Index OC and

OD) 3-43
Horizontal Total Registers (Index 10 and 11) 3-44
Horizontal Display End Registers (Index 12 and 13) 3-45
Horizontal Blanking Start Registers (Index 14 and 15) ... 3-46
Horizontal Blanking End Registers (Index 16 and 17) 3-47
Horizontal Sync Pulse Start Registers (Index 18 and 19) 3-48
Horizontal Sync Pulse End Registers (Index 1A and 1B) .. 3-49
Horizontal Sync Pulse Position Registers (Index 1C and 1E) 3-50
Vertical Total Registers (Index 20 and 21) 3-51
Vertical Display End Registers (Index 22 and 23) 3-52
Vertical Blanking Start Registers (Index 24 and 25) 3-53
Vertical Blanking End Registers (Index 26 and 27) 3-54
Vertical Sync Pulse Start Registers (Index 28 and 29) 3-55
Vertical Sync Pulse End Register (Index 2A) 3-56
Vertical Line Compare Registers (Index 2C and 2D) 3-57
Sprite Horizontal Start Registers (Index 30 and 31) 3-58
Sprite Horizontal Preset Register (Index 32) 3-59
Sprite Vertical Start Registers (Index 33 and 34) 3-60
Sprite Vertical Preset Register (Index 35) 3-61
Sprite Control Register (Index 36) 3-62
Sprite Color Registers (Index 38 - 3D) 3-63
Display PEL Map Offset Registers (Index 40 - 42) 3-64
Display PEL Map Width Registers (Index 43 and 44) 3-65
Display Control 1 Register (Index 50) 3-66
Display Control 2 Register (Index 51) 3-68
Display ID and Comparator Register (Index 52) 3-70
Clock Frequency Select 1 Register (Index 54) 3-71
Border Color Register (Index 55) 3-71
Sprite/Palette Index Registers (Index 60 and 61) 3-72

3-2 VGA Function - September 1991

Sprite/Palette Prefetch Index Registers (Index 62 and 63) 3-73
Palette Mask Register (Index 64) 3-74
Palette Data Register (Index 65) 3-74
Palette Sequence Register (Bits 2 - 0 only) (Index 66) ... 3-75
Palette Red Prefetch Register (Index 67) 3-76
Palette Green Prefetch Register (Index 68) 3-76
Palette Blue Prefetch Register (Index 69) 3-76
Sprite Data Register (Index 6A) 3-77
Sprite Prefetch Register (Index 6B) 3-77
Clock Frequency Select 2 Register (Index 70) 3-78

Coprocessor Description 3-80
Programmer's View .. 3-83
PEL Formats 3-83
PEL Fixed and Variable Data 3-84
The Coprocessor View of Memory 3-84
PEL Maps 3-85

PEL Maps A, B, and C (General Maps) 3-85
PEL Map M (Mask Map) 3-86
Map Origin 3-86
X and Y Pointers 3-87
Scissoring with the Mask Map 3-90

Drawing Operations 3-95
Draw and Step 3-95
Line Draw 3-99
PEL Block Transfer (PxBlt) 3-103
Area Fill 3-107

Logical and Arithmetic Functions 3-109
Mixes 3-110
Breaking the Coprocessor Carry Chain 3-111
Generating the Pattern from the Source 3-112
Color Expansion 3-112
PEL Bit Masking 3-113
Color Compare 3-113

Controlling Coprocessor Operations 3-114
Starting a Coprocessor Operation 3-114
Suspending a Coprocessor Operation 3-114
Terminating a Coprocessor Operation 3-114

Coprocessor Operation Completion 3-115
Coprocessor-Operation-Complete Interrupt 3-115
Coprocessor Busy Bit 3-115
Accesses to the Coprocessor During an Operation 3-115

Coprocessor State Save/Restore 3-116
Suspending Coprocessor Operations 3-116

Save/Restore Mechanism 3-117
Coprocessor Registers 3-118

Register Usage Guidelines 3-121

VGA Function - September 1991 3-3

Virtual Memory Registers 3-121
State Save/Restore Registers 3-122

Coprocessor Control Register (Offset 11) 3-122
State Length Registers (Offset C and D) 3-124
Save/Restore Data Ports Register (110 Index C and D) .. 3-124

PEL Interface Registers 3-125
PEL Map Index Register (Offset 12) 3-125
PEL Map n Base Pointer Register (Offset 14) 3-126
PEL Map n Width Register (Offset 18) 3-127
PEL Map n Height Register (Offset 1A) 3-128
PEL Map n Format Register (Offset 1C) 3-129
PEL Maps A, B, and C 3-130
Mask Map 3-130
Bresenham Error Term E Register (Offset 20) 3-130
Bresenham Constant K1 Register (Offset 24) 3-131
Bresenham Constant K2 Register (Offset 28) 3-131
Direction Steps Register (Offset 2C) 3-132
Foreground Mix Register (Offset 48) 3-133
Background Mix Register (Offset 49) 3-133
Destination Color Compare Condition Register (Offset 4A) 3-134
Destination Color Compare Value Register (Offset 4C) 3-135
PEL Bit Mask (Plane Mask) Register (Offset 50) 3-136
Carry Chain Mask Register (Offset 54) 3-137
Foreground Color Register (Offset 58) 3-138
Background Color Register (Offset 5C) 3-138
Operation Dimension 1 Register (Offset 60) 3-139
Operation Dimension 2 Register (Offset 62) 3-139
Mask Map Origin X Offset Register (Offset 6C) 3-140
Mask Map Origin Y Offset Register (Offset 6E) 3-140
Source X Address Register (Offset 70) 3-141
Source Y Address Register (Offset 72) 3-141
Pattern X Address Register (Offset 74) 3-142
Pattern Y Address Register (Offset 76) 3-142
Destination X Address Register (Offset 78) 3-143
Destination Y Address Register (Offset 7A) 3-143
PEL Operations Register (Offset 7C) 3-144

XGA System Interface 3-150
Multiple Instances 3-150

Multiple XGA Subsystems in VGA Mode 3-150
Multiple XGA Subsystems in 132-Column Text Mode ... 3-150
Multiple XGA Subsystems in Extended Graphics Mode . 3-150

XGA POS Registers 3-151
Register Usage Guidelines 3-151
Subsystem Identification Low Byte Register (Base + 0) . 3-151
Subsystem Identification High Byte Register (Base + 1) 3-151
POS Register 2 (Base + 2) 3-152

3-4 VGA Function - September 1991

POS Register 4 (Base + 4) 3-154
POS Register 5 (Base + 5) 3-155

Virtual Memory Description 3-156
Address Translation 3-156

Page Directory and Page Table Entries 3-158
The XGA Implementation of Virtual Memory 3-160

The Translate Look-aside Buffer 3-160
TLB Misses 3-161
System Coherency 3-162
VM Page-Not-Present Interrupts 3-162
VM Protection-Violation Interrupts 3-163
The XGA in Segmented Systems 3-164

Virtual Memory Registers 3-165
Page Directory Base Address Register (Coprocessor

Registers, Offset 0) 3-165
Current Virtual Address Register (Coprocessor Registers,

Offset 4) 3-166
Virtual Memory Control Register (110 Address 21x6) ... 3-167
Virtual Memory Interrupt Status Register (I/O Address

21x7) 3-169
XGA Programming Considerations 3-170

Adapter Coexistence with VGA 3-170
Adapter Coexistence with Other XGA Subsystems 3-170
Locating the XGA Subsystem 3-171

Reading POS Data 3-171
Address Calculations 3-172
Display Type and Video Memory Size 3-175

VGA Primary Adapter Considerations 3-175
Chaining the INT 10h Video BIOS Handler 3-176

INT 24h, Critical Error Handler 3-177
INT 23h, Ctrl-Break Exit Address 3-177
INT 21h, Function 4Ch, Program Terminate Function ... 3-178

General Systems Considerations 3-179
Coexisting with LIM Expanded Memory Managers 3-179
INT 2Fh, Screen Switch Notification 3-179

Extended Graphics Modes Available 3-180
Setting the XGA Subsystem Mode 3-182

Individual Mode Setting Procedures 3-182
System Video Memory Apertures 3-187
Physical Addressability to System Memory 3-189
Real-Mode DOS Environments 3-189

Upward Compatibility 3-196
XGA Subsystem POS ID Allocations 3-196
General Register Usage 3-196
Video BIOS Mode 14h 3-196
PS/2 Video Memory Apertures 3-197

VGA Function - September 1991 3·5

Programming the XGA Subsystem in Extended Graphics
Mode 3-197

XGA Coprocessor PEL Interface Registers 3-197
Using the Coprocessor to Perform a PEL Blit (PxBlt) ... 3-201
Using the Coprocessor to Perform a Bresenham Line

Draw 3-209
Memory Access Modes 3-219
Motorola and Intel Formats 3-219

Other Programming Considerations 3-220
Overlapping PxBlts 3-220
Sprite Handling 3-220
Waiting for Hardware Not Busy 3-221
Destination Bit Map Width Restriction 3-222
Line Length Restriction 3-223
System Register Usage 3-223
Direct Color Mode 3-224

3-6 XGA Function - September 1991

XGA Function Introduction

The XGA function is generated by the type 2 video subsystem. This
chapter describes the capabilities and operation of the XGA function.

The XGA video subsystem has three modes:

• VGA
• 132-column text
• Extended Graphics.

VGA Mode

In VGA mode, the XGA video subsystem is VGA register compatible,
as defined in the VGA function description.

132-Column Text Mode

In this mode, text is displayed in 132 vertical columns using 200,350,
or 400 scan lines. Each character is eight PELs wide.

Extended Graphics Mode

Extended Graphics mode provides the following software and
hardware support.

IBM PS/2 8514/A Adapter Interface Compatibility

Compatibility is provided through the XGA Adapter Interface, a device
driver supplied with the subsystem as programming support for
applications operating in the disk operating system (DOS)
environment.

High Resolution Support

Depending on the display attached and the size of video memory
installed, the image on a screen can be defined using 1024 PELs and
768 scan lines with 256 colors.

XGA Function - September 1991 3·7

Direct Color Mode

In this mode, each 16-bit PEL in video memory specifies the color of
the PEL directly. This allows 65,536 colors to be displayed using 640
PELs and 480 scan lines.

Packed PEL Format

In the packed PEL format, reads and writes to the video memory
access all the data that defines a PEL (or PELs) in a single operation.

Hardware Sprite

The sprite is a 64 x 64 PEL image. When enabled, it overlays the
picture that is being displayed. It can be positioned anywhere on the
display without affecting the contents of video memory.

Display Identification

Signals from the attached display identify its characteristics.
Applications use this information to determine the maximum
resolution and whether the display is color or monochrome.

Coprocessor

The coprocessor provides hardware drawing-assist functions
throughout real or virtual memory. The following functions can be
used with the XGA Adapter Interface:

• PEL-block and bit-block transfers (PxBlt)
• Line drawing
• Area filling
• Logical and arithmetic mixing
• Map masking
• Scissoring

.• X and Y axis addressing.

3-8 XGA Function - September 1991

XGA Components

The XGA video subsystem components include:

• System bus interface
• Memory and CRT controller
• Coprocessor
• Video memory
• Attribute controller
• Sprite controller
• Alphanumeric (A/N) font and sprite buffer
• Serializer
• Palette
• Video digital-to-analog convertor (DAC).

Address
Coprocessor

System
Bus

Auxiliary
Video

Extension

System
Bus

Data Interface

Memory
and CRT

Controller

>-0
Olo
"OE
.- Ol
>~

....
Ol Ol
.~ :t::
~ Ol

PEL
.;:: ~
Ol a..

Data en

• ROM is only present on adapters.

Figure 3-1. XGA Video Subsystem

U Red
« >-a Green tV
0 0.
Ol Blue

fJl
"0 i:S :>

XGA Function - September 1991 3-9

System Bus Interface

The system bus interface controls the interface between the video
subsystem and the system microprocessor. It decodes the addresses
for VGA and XGA 1/0 registers, the memory addresses for the
coprocessor memory-mapped registers, and video memory.

It also provides the busmaster function, and determines whether the
system data bus is 16 or 32 bits wide.

Memory and CRT Controller

The memory and CRT controller controls access to video memory by
the system microprocessor, displays the contents of video memory
on the display, and provides support for the VGA and 132-column text
modes.

Coprocessor

The coprocessor provides hardware drawing-assist functions. These
functions can be performed on graphics data in video memory and
system memory.

The coprocessor updates the video memory independently of the
system microprocessor. Instructions are written to a set of
memory-mapped registers; the coprocessor then executes the
drawing function.

The coprocessor functions are:

PEL-Block or Bit-Block Transfers
Transfers a bit map, or part of a bit map, from one location to
another:

• Within video memory
• Within system memory
• Between system and video memory.

Line Drawing
Draws lines, with a programmable style, into a bit map in video
memory or system memory.

Area Fill
Fills an outlined area in video memory or system memory with
a programmable pattern.

3-10 XGA Function - September 1991

Logical and Arithmetic Mixing
Provides logical and arithmetic operations for use with data in
video memory or system memory.

Map Masking
Controls updates to each PEL for all drawing functions.

Scissoring
Provides a rectangular-mask function for use instead of the
mask map.

X and Y Axis Addressing
Allows a PEL to be specified by its X and Y coordinates within a
PEL map, instead of by its linear address in memory.

Video Memory

The video subsystem uses a dual-port video memory to store
on-screen data, so that video memory can be read serially to display
its contents as the data is being updated.

Attribute Controller

The attribute controller works with the memory and CRT controller to
control the color selection and character generation in the
132-column text mode and VGA text modes.

Sprite Controller

The sprite controller is used to display and control the position and
image of the sprite (cursor). The sprite is not available in 132-column
text mode or VGA modes.

The Serializer, Palette, and Video DAC

The serializer takes data from the serial port of video memory in 16-
or 32-bit widths (depending on the size of video memory) and
converts it to a serial stream of PEL data. The PEL data addresses a
palette location, which contains the color value. The color value is
passed to the DAC, which converts the digital information into red,
green, and blue analog signals for the display.

Alphanumeric (A/N) Font and Sprite Buffer

This buffer holds the character fonts in 132-column text mode and
VGA modes. It also stores the sprite image in Extended Graphics
mode.

XGA Function-September 1991 3-11

Modes Of Operation

The 132-column text mode and all VGA modes are available on the
XGA video subsystem.

In Extended Graphics mode, the size of the video memory determines
the screen resolutions and number of colors that are supported as
shown below:

Video
Memory Resolution
Installed (PELs) Colora (maximum)

512KB 640 x 480 256
1024 x 768 16

1MB 640 x 480 65,536
1024 x 768 256

Figure 3-2. XGA Color Resolution

Compatibility

8514/A Adapter Interface

The XGA function is not hardware register compatible with the 8514/A
Adapter Interface. Applications written directly to the register-level
interface of the 8514/A Adapter Interface do not run.

The XGA function is 8514/A Adapter Interface compatible in the DOS
environment through a DOS Adapter Interface driver supplied with
the XGA video subsystem.

Applications written to the 8514/A DOS Adapter Interface should run
unchanged with the XGA Adapter Interface. The following
differences, however, should be noted:

OS/2 protect mode adapter Interface
An XGA Adapter Interface driver is not available for the
OS/2 protect mode.

640 x 480, 4 + 4 mode with 512KB display buffer
This is not an Extended Graphics mode, but applications
using this mode and written to the rules for the 8514/A
Adapter Interface will run.

3-12 XGA Function - September 1991

Dual-display buffer applications
8514/A applications using VGA or other advanced function
modes that rely on two separate video display buffers do
not run on a single-display configuration. These
applications run correctly with two video subsystems
(when one is an XGA), and each has a display attached.

Nondisplay memory
The XGA and 8514/A nondisplay (off-screen) memory are
mapped differently. Applications using areas of the
off-screen memory for storage may not run.

Adapter Interface code size
The XGA Adapter Interface code size is larger than that
for the 8514/A. This reduces the amount of system
memory available to applications.

Adapter interface enhancements
The XGA Adapter Interface is a superset of that provided
with the 8514/A. Any 8514/A applications using invalid
specifications of parameter blocks may trigger some of
the additional functions provided by the XGA Adapter
Interface.

Use of LIM EMS drivers
Applications written to the 8514/A Adapter Interface that
locate resources, such as bit maps or font definitions, in
LIM EMS memory, and pass addresses of these resources
to the adapter interface, require a LIM driver that has
implemented the Physical Address Services Interface for
busmasters.

Time-dependent applications
Some XGA and 8514/A functions run at different speeds.
Applications that rely on a fixed performance may be
affected by these differences.

XGA Adapter Interface directory and module name
The directory and module name of the XGA Adapter
Interface \XGAPCDOS\XGAAIDOS.SYS is different from
that of the 8514/A \HDIPCDOS\HDILOAD.EXE.
Applications written to rely on the existence of either the
specific 8514/A module name or directory do not run on
the XGA Adapter Interface.

XGA Function - September 1991 3-13

8514/A and XGA Adapter Interface code type
The XGA Adapter Interface is implemented as a .SYS
device driver. The 8514/A Adapter Interface is
implemented as a terminate and stay resident program.
Applications written to rely on the adapter interface as a
terminate and reside program do not run on the XGA
Adapter Interface.

LIM EMS Drivers

The XGA coprocessor memory-mapped registers are located in
system memory address space. They reside in the top 1 KB of an 8KB
block of memory assigned to the XGA subsystem. The lower 7KB of
this block is used to address the ROM of an XGA subsystem on an
adapter card.

Although an XGA subsystem integrated on the system board does not
have a subsystem ROM, an 8KB block of memory is allocated to it to
support the coprocessor memory-mapped registers. While the lower
7KB of this 8KB block does not contain any memory, the
memory-mapped registers are accessed in the top 1 KB of the block.

Applications or drivers, such as LIM EMS drivers that scan memory
addresses looking for RAM or ROM signatures, may assume
incorrectly that all 8KB of memory is available for use.

The location of the 8KB block of memory assigned to the XGA
subsystem can be determined using the System Unit Reference
diskette. See the LIM driver installation instructions for details on
how to avoid address conflicts.

3-14 XGA Function - September 1991

VGA compatibility

The XGA subsystem is register compatible with the VGA, as defined
in the VGA function description (see "Setting the XGA Subsystem
Mode" on page 3-182 for switching between the different XGA
subsystem modes).

132-Column Text Mode

In this mode the XGA subsystem is capable of displaying 132 8-PEL
wide alphanumeric characters on the display. It is register
compatible with the VGA, except for the following VGA CRT controller
registers:

Horizontal Total
VGA requires that this register holds a value that is five less
than the number of characters on a scan line. In 132-column
text mode, this register requires a value that is one less than
the number of characters on a scan line.

The End Horizontal Retrace
In 132-column text mode the End Horizontal Retrace field has no
effect. Instead, Extended Graphics mode Horizontal Sync Pulse
End register (index hex 1A) is used to give a larger horizontal
count.

The Horizontal Retrace Delay field has no effect. Instead,
Extended Graphics mode Horizontal Sync Pulse Position
registers (index hex 1C and 1E) are used.

The End Horizontal Blanking, Bit 5 field continues to be
effective.

See "Setting the XGA Subsystem Mode" on page 3-182 for starting
132-column text mode.

XGA Function - September 1991 3-15

Extended Graphics Mode

Extended Graphics mode provides applications with high-resolution,
a wide range of colors, and high-performance. The XGA coprocessor
provides hardware assistance in drawing and moving data in video
memory and in system memory. Extended Graphics mode is
controlled using a bank of 16 I/O registers, and the coprocessor is
controlled by a bank of 128 memory-mapped registers.

See "Locating the XGA Subsystem" on page 3-171 to locate the
subsystem in I/O and memory space.

Display Controller

Video Memory Format

The XGA video memory appears to the system as a byte-addressable,
packed array of PELs. The PELs may be 1, 2, 4, 8, or 16 bits long.
The first PEL in memory is displayed at the top left corner of the
screen. The next PEL is immediately to its right and so on.
Addressing is not necessarily contiguous, going from one horizontal
line to the next. Addressing depends on the values in the Display
PEL Map Width registers. See "CRT Controller" on page 3-19.

Two orders of PELs are supported: Intel and Motorola.

To allow the XGA subsystem to function in either environment, the
Memory Access Mode register (for display controller accesses) and
the PEL Map n Format register (for coprocessor accesses) are used
to make the PELs appear in the required order.

The two formats are described in the following paragraphs.

3-16 XGA Function - September 1991

Intel Order: This table represents the first 3 bytes of the memory
map in Intel order and shows the layout of the PELs within those
bytes for all PEL sizes (bpp = bits-per-PEL).

PEL Byte = n + 2 Byte = n + 1 Byte = n + 0

7 6 5 432 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1

Size = 1bpp
Number 232221 20191817 16 151413121110 9 8 7 6 5 4 3 2 1
Bit significance 000 0 0 000 o 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Size = 2bpp
Number 11111010 9 9 8 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0
Bit significance 1 o 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Size = 4bpp
Number 5 5 5 5 4 4 4 4 3 3 3 3 2 2 2 2 1 1 1 1 0 0 0
Bit significance 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1

Size = 8bpp
Number 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
Bit significance 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1

Size = 16bpp
Number 1 1 1 1 1 1 1 1 000000 0 0 0 0 0 0 0 0 0
Bit significance 7 6 5 4 3 2 1 0 151413121110 9 8 7 6 5 4 3 2 1

Figure 3-3. Intel Order of the XGA Memory Map

0

0
0

0
0

0
0

0
0

0
0

XGA Function-September 1991 3-17

Motorola Order: This table represents the first 3 bytes of the memory
map in Motorola order and shows the layout of the PELs within those
bytes for all PEL sizes (bpp = bits-per-PEL).

PEL Byte = n + 0 Byte = n + 1 Byte = n + 2

7 6 5 4 3 2 1 0 7 6 543 2 1 0 7 6 543 2 1 0

Size = 1bpp
Number 0 1 2 3 4 5 6 7 8 9101112131415 16 17 18 19 20 21 2223
Bit significance 0 0 0 0 0 0 0 0 0 o 000 000 o 000 0 000

Size = 2bpp
Number 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8 9 910101111
Bit significance 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 o 1 o 1 0

Size = 4bpp
Number 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5
Bit significance 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0 3 2 1 0

Size = 8bpp
Number 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2
Bit significance 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

Size = 16bpp
Number o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
Bit significance 151413121110 9 8 7 6 5 4 3 2 1 0 1514 1312 11 10 9 8

Figure 3-4. Motorola Order of the XGA Memory Map

PEL Color Mapping

In 1, 2, 4, or 8 bits-per-PEL modes, the palette address is the
numerical value of the PEL.

In 16 bits-per-PEL mode (direct color), the color mapping is 5 bits red,
6 bits green, and 5 bits blue. See "Direct Color Mode" on page 3-27.

Border Color Mapping

In the border area of the display, the palette is addressed by the
Border Color register (index hex 55). The border area is defined in
"CRT Controller" on page 3-19.

Direct Access to Video Memory

An application can use normal memory accesses to read or write
PELs in video memory. All bits of one or more PELs can be accessed
in a single memory cycle.

3-18 XGA Function - September 1991

System Apertures into Video Memory: The XGA subsystem video
memory is accessed in system memory address space through three
possible apertures:

4MB Aperture
This allows up to 4MB of video memory to be addressed
consecutively. If an access is made at an offset higher
than the size of memory installed, no memory is written
and undefined values are returned when read.

1MB Aperture
This allows up to 1 MB of video memory to be addressed
consecutively. If an access is made at an offset higher
than the size of memory installed, no memory is written
and undefined values are returned when read.

Note: To use the 1 MB aperture, the Aperture Index
register must be set to O.

64KB Aperture
This allows up to 64KB of video memory to be addressed
consecutively.

The aperture can be located at any 64KB section of the
video memory using the Aperture Index register.

See "System Video Memory Apertures" on page 3-187 for details on
locating and using these apertures.

CRT Controller

The CRT controller generates all timing signals required to drive the
serializer and the display. It consists of two counters, one for
horizontal parameters and one for vertical parameters, and a series
of registers. The counters run continuously, and when the
count-value reaches that specified in one of the associated registers,
the event controlled by that register occurs.

See "Setting the XGA Subsystem Mode" on page 3-182 for mode
tables, including CRT controller register values.

XGA Function - September 1991 3-19

CRT Controller Register Interpretations

A representation of the function of each of the CRT controller
registers is given in the following figure.

Horizontal Sync HSPS~
DE HBS HBE HT H :-

VD
IE

VB is
VSPS

VSPE

VB
IE

V I

0
0

Active ..
CD

Picture 'E
Area 0

III

Border

Blanking

Border

Figure 3-5. CRT Control/er Register Definitions

01 .. c: Q)
32 'E c:

'" 0

iii III

The registers that control a horizontal scan of the display are:

HT
HDE
HBS
HBE
HSPS
HSPE

Horizontal Total register
Horizontal Display End register
Horizontal Blanking Start register
Horizontal Blanking End register
Horizontal Sync Pulse Start register
Horizontal Sync Pulse End register

The registers that control a vertical scan of the display are:

VT
VDE
VBS
VBE
VSPS
VSPE

3-20

Vertical Total register
Vertical Display End register
Vertical Blanking Start register
Vertical Blanking End register
Vertical Sync Pulse Start register
Vertical Sync Pulse End register

XGA Function - September 1991

By using a system interrupt, the XGA subsystem can be programmed
to inform the system microprocessor of the start and the end of the
active picture area. An enable bit exists for each interrupt in the
"Interrupt Enable Register (Address 21x4)" on page 3-34, and the
"Interrupt Status Register (Address 21x5)" on page 3-36 contains a
status bit for each interrupt.

Scrolling

Some or all of the displayed picture can be made to scroll. The first
PEL displayed on the screen is controlled by the Display PEL Map
Offset registers. These can be altered to a granularity of 8 bytes,
giving coarse horizontal scrolling. Vertical scrolling is achieved by
altering the Display PEL Map Offset registers in units of one line
length. The line length is stored in the Display PEL Map Width
registers. The value stored in the width registers is the amount of
memory allocated to each line, not necessarily the physical length of
the line being displayed.

Video Memory Base

Display PEL Map Offset
(B-Byte Units)

t Horizontal Display End I
(8-PEL Units) ---!
Display PEL Map Width ---------+1
(B-Byte Units)

Figure 3-6. Display PEL Map Offset and Width Definitions

The Display PEL Map Width registers must be loaded with a value
greater than or equal to the length of line being displayed. The most
efficient use of video memory is achieved when the width value is
made equal to the length of the line being displayed. However, it is

XGA Function - September 1991 3-21

often more convenient to load a width value that specifies the start of
each line on a suitable address boundary.

An area at the bottom of the display can be prevented from scrolling
by using the Vertical Line Compare registers (index hex 2C and 20).

Sprite

The sprite is a 64 x 64-PEL image stored in the XGA subsystem
alpha/sprite buffer. When active, the sprite overlays the picture that
is displayed. Each PEL in the sprite can take on four values that can
be used to achieve the effect of a colored marker of arbitrary shape.

Sprite Color Mapping

The sprite is stored as 2-bit packed PELs, using Intel format, in the
sprite buffer. Address zero is at the top left corner of the sprite.

These 2-bit PELs determine the sprite appearance as shown in the
following figure:

Bits
1 0 Sprite ERect

o 0 Sprite color 0
o 1 Sprite color 1
1 0 Transparent
1 1 Complement

Figure 3-7. Sprite Appearance Defined by 2-bit PEL

The sprite effect definitions are as follows:

Sprite Colors 0 and 1
These colors are set by writing to the Sprite Color
registers (index hex 38 through 3~).

Transparent
The underlying PEL color is displayed.

Complement
The ones complement of the underlying PEL color is
displayed.

3-22 XGA Function - September 1991

Sprite Buffer Accesses

The sprite buffer is written to by loading a number into the Sprite
Index High and Sprite/Palette Index Low registers. These registers
indicate the location of the first group of four sprite PELs to be
updated (2 bits-per-PEL implies 4 PELs-per-byte). Then the first four
PELs are written to the Sprite Data register. This stores the sprite
PELs in the sprite buffer and automatically increments the index
registers. Subsequent writes to the Sprite Data register load the
remaining sprite PELs, four at a time.

The prefetch function is used to read from the sprite buffer. The index
or address of the first sprite buffer location to be read is loaded into
the index registers. Writing to either the Sprite Prefetch Index High or
the Sprite/Palette Prefetch Index Low registers increments both
registers as a single value. The first byte of the index must be written
to a non-prefetch index register, and the second byte to the other
prefetch index register. For example, write to Sprite Index High, then
Sprite/Palette Prefetch Index Low.

Writing to a prefetch index register loads the sprite data that is stored
at the location specified in the index registers into a holding register,
then increments the index registers as a single value. Reading the
Sprite Data register returns the four sprite PELs that were prefetched,
and loads the next four sprite PELs into the holding register.
Subsequent reads from the Sprite Data register return the remaining
sprite PELs, four at a time.

The sprite and the palette use the same hardware registers during
reading and writing, so any task that is updating either the sprite or
palette when an interrupt occurs must save and restore the following
registers:

• Sprite/Palette Index Low register (index hex 60)
• Sprite Index High register (index hex 61)
• Palette Sequence register (index hex 66)
• Palette Red Prefetch register (index hex 67)
• Palette Green Prefetch register (index hex 68)
• Palette Blue Prefetch register (index hex 69)
• Sprite Prefetch register (index hex 6B).

Note: The Sprite/Palette Prefetch Index Low register (index hex 62)
and Sprite Prefetch Index High register (index hex 63) must not
be saved and restored.

XGA Function - September 1991 3-23

Sprite Positioning

Picture Area

VS

Sprite Outline VP
r---~-----'

.-------il-

HP."---! ..
HS

HS - Horizontal Sprite Start
HP - Horizontal Sprite Preset
VS - Vertical Sprite Start
VP - Vertical Sprite Preset

Figure 3-8. Sprite Positioning

Visible
Area

The sprite position is controlled by Start and Preset registers. The
Start registers control where the first displayed sprite PEL appears on
the screen, and the Preset registers control which sprite PEL is first
displayed within the 64 x 64 sprite definition. Using these registers,
the sprite can be made to appear at any point in the picture area. If
the sprite overlaps any edge, the part of the sprite outside the picture
area is not visible (does not wrap). See "Sprite Handling" on
page 3-220.

The XGA subsystem can be programmed to inform the system
microprocessor when the last line of the sprite has been displayed on
each frame using a sprite-display-complete system interrupt. An
enable bit exists for each interrupt in the Interrupt Enable register,
and the Interrupt Status register contains a status bit for each
interrupt. See "Interrupt Enable Register (Address 21x4)" on
page 3-34 and "Interrupt Status Register (Address 21x5)" on
page 3-36 for the location of the bits.

3-24 XGA Function - September 1991

Palette

The palette has 256 locations and each location contains three fields,
one each for red, green, and blue. The palette is used to translate the
PEL value into a displayed color.

Before the PEL value is used to address the palette, it is masked by
the Palette Mask register. All bits in the PEL corresponding to O's in
the Palette Mask register are forced to 0 before reaching the palette.

Palette Accesses

The Palette Data register is 1 byte wide. Because each palette
location is made up of three fields (red, green, and blue) three writes
to the Palette Data register are required for each palette location.
Palette data is held in a three-field holding register, and the contents
are loaded into the palette RAM when all three fields have been
filled. The Palette Sequence register controls the Holding Register
field (red, green, or blue) selected for access with each write to the
Palette Data register.

Two update sequences are possible:

1. Red, green, blue
2. Red, blue, green, no access.

Data is written to the palette by first loading the index, or address, of
the first group of three palette-color locations into the non-prefetched
Sprite/Palette Index Low register. Because the palette has only 256
locations, the Sprite Index High register is not used. The first color
byte is then written to the Palette Data register. This stores the color
byte in the Holding Register field indicated by the Palette Sequence
register. The Palette Sequence register then increments to point to
the next field as determined by the update order.

A second write to the Palette Data register loads the next Holding
Register field, and the Palette Sequence register increments again.
A third write to the Palette Data register loads the remaining Holding
Register field. If update sequence 1 is selected, the palette location
is loaded from the holding register and the Palette Sequence register
increments again, returning to its starting value. If update sequence
2 is selected, a fourth write to the Palette Data register is necessary
before the palette location is loaded. The no-access data is ignored.
Update sequence 2 allows the application to take advantage of the
word or doubleword access possible with the XGA subsystem. See

XGA Function - September 1991 3-25

"Data Registers (Addresses 21xB to 21xF)" on page 3-42 and "XGA
Display Controller Registers" on page 3-30 for more details.

The prefetch function is used to read from the palette. The index or
address of the first palette location to be read is loaded into the
Sprite/Palette Prefetch Index Low register.

Writing to this register loads the three color fields stored at the
location specified in the index register into the palette holding
register, then increments the index register.

A subsequent read from the Palette Data register returns the data
from the holding register color field, indicated by the Palette
Sequence register, and increments the sequence register to point to
the next color field. When the last color field, indicated by the Palette
Sequence register, is read, the holding register is loaded with the
next palette location data, and the index is incremented.

Note: If the subsystem has a monochrome display attached, all of
the palette red and blue locations must be loaded with O's.

The sprite and the palette use the same hardware registers during
reading and writing, so any task that is updating either the sprite or
palette when an interrupt occurs must save and restore the following
registers:

• Sprite/Palette Index Low register (index hex 60)
• Sprite Index High register (index hex 61)
• Palette Sequence register (index hex 66)
• Palette Red Prefetch register (index hex 67)
• Palette Green Prefetch register (index hex 68)
• Palette Blue Prefetch register (index hex 69)
• Sprite Prefetch register (index hex 6B).

Note: The Sprite/Palette Prefetch Index Low register (index hex 62)
and Sprite Prefetch Index High register (index hex 63) must not
be saved and restored.

3-26 XGA Function - September 1991

Direct Color Mode

In direct color mode the PEL values in the video memory directly
specify the displayed color.

The XGA subsystem can display direct color as a 16-bit PEL. The
color fields provide the most significant bits of the inputs to the video
DACs with the color value.

The bits in the 16-bit direct color data word are allocated to the DAC
bits as follows:

Word bit
5R, 6G, 5B

Figure 3-9. Direct C%r Mode Data Word

When selecting this mode, the palette must be loaded with data
shown in Figure 3-10 on page 3-28. Only half of the palette should
be loaded. Bit 7 of the Border Color register (index hex 55) specifies
which half to load. If the Border Color register bit 7 = 0, load the
upper half of the palette (locations hex 80 to FF). If the Border Color
register bit 7 = 1, load the lower half (locations hex 00 to 7F).

Note: Each palette location is 6 bits wide. The actual bits loaded are
from the most significant bits of the byte written to the Palette
Data register. See "Palette Data Register (Index 65)" on
page 3-74 for a description of the register.

The values shown in the following figure are written to the Palette
Data register with a byte access command. The most significant bits
have been used.

XGA Function - September 1991 3·27

Location
(Hex)

Border
Color

Bit 7 = Red Green Blue
0 1 (Hex) (Hex) (Hex)

80 0 0 0 0
81 1 0 0 8
82 2 0 0 10
83 3 0 0 18
84 4 0 0 20

9E 1E 0 0 FO
9F 1F 0 0 F8
AO 20 0 0 0
A1 21 0 0 8

BE 3E 0 0 FO
BF 3F 0 0 F8
CO 40 0 0 0
C1 41 0 0 8

DE SE 0 0 FO
OF SF 0 0 F8
EO 60 0 0 0
E1 61 0 0 8

FE 7E 0 0 FO
FF 7F 0 0 F8

Figure 3-10. XGA Direct Color Palette Load

The values shown in Figure 3-10 have been chosen to ensure future
compatibility.

See "Extended Graphics Mode" on page 3-182 and "Direct Color
Mode" on page 3-224 for more details on this mode.

3·28 XGA Function - September 1991

Coprocessor Functions

The XGA subsystem coprocessor functions do not work in 16
bits-per-PEL mode. However, the coprocessor can function in 8
bits-per-PEL mode while data is being displayed in 16 bits-per-PEL.
As a result, the coprocessor can be used to move data (in PxBlts)
from one area of memory to another.

Care should be taken when using any of the logical or arithmetic
functions since each operation is performed on only 1 byte of data at
a time, not the full 16-bit PEL.

If the coprocessor is used to move data into the Video Display Buffer
in 8 bits-per-PEL format while displaying in 16 bits-per-PEL mode, the
width of the destination map must be doubled.

See "Direct Color Mode" on page 3-224 for more information.

XGA Function - September 1991 3-29

XGA Display Controller Registers

The display controller registers occupy 16 110 addresses. The
addresses are hex 21xO through 21xF. The x is the Instance as
defined in Figure 3-161 on page 3-153. "Locating the XGA
Subsystem" on page 3-171 provides details of locating and using
these registers.

An indexed addressing scheme is used to select additional registers.
The index of the registers is written to hex 21xA; the data can then be
accessed using hex 21xB through 21xF. Because there are multiple
addresses for the data port, writes to a single register are achieved in
a single 16-bit instruction, the low byte containing the address, and
the high byte the data. Registers that need to be accessed repeatedly
(sprite data, palette data, and coprocessor save/restore data) are
accessed by setting the index correctly, then performing string I/O
instructions, either 2 or 4 bytes at a time. See "Data Registers
(Addresses 21xB to 21xF)" on page 3-42.

The 16 I/O addresses are assigned as shown in the following figure.

Address
(hex) Function

21xO Operating Mode register
21x1 Aperture Control register
21x2 Reserved
21x3 Reserved
21 x4 Interrupt Enable register
21x5 Interrupt Status register
21x6 Virtual Memory Control register
21x7 Virtual Memory Interrupt Status register
21x8 Aperture Index register
21x9 Memory Access mode
21xA Index
21xB Data
21xC Data
21xD Data
21xE Data
21xF Data

Figure 3-11. Display Controller Register Addresses

3·30 XGA Function - September 1991

Page
Reference

3-32
3-33

3-34
3-36
3-37
3-37
3-38
3-39
3-40
3-42
3-42
3-42
3-42
3-42

Register Usage Guidelines

Unless specified otherwise, the following are guidelines when using
the display controller registers:

• All registers are 8 bits wide.

• Registers can be read and written at the same address or index.

• When registers are read, they return the last written data for all
implemented bits.

• Registers are not initialized by reset.

• Special reserved register bits must be used as follows:

Register bits marked with' -' must be set to O. These bits
are undefined when read and should be masked off if the
contents of the register is to be tested.

Register bits marked with '#' are reserved and the state of
these bits must be preserved. When writing the register,
read the register first and change only the bits that must be
changed.

• Unspecified registers or registers marked as reserved in the XGA
I/O address space are reserved. They must not be written to or
read from.

• During a read, the values returned from write-only registers are
reserved and unspecified.

• The contents of read-only registers must not be modified.

• Counters must not be relied upon to wrap from the high value to
the low value.

• Register fields defined with valid ranges must not be loaded with
a value outside the specified range.

• Register field values defined as reserved must not be written.

• The function that all XGA subsystem registers imply is only
operative in XGA subsystem modes, even though the registers
themselves are still readable and writable in VGA modes.

Writing to the XGA subsystem registers when in VGA mode may
cause the VGA registers to be corrupted.

XGA Function - September 1991 3-31

Direct Access 1/0 Registers

The following registers are directly addressable in the I/O space hex
21xO through 21xF.

Operating Mode Register (Address 21xO)

This read/write register has an address of hex 21xO.

7 6 5 4 3 2 1

- I - I - I - I RF DM

- • Set to e, Undefined on Read
RF Coprocessor Register Interface Format
DM Display Mode

Figure 3-12. Operating Mode Register, Address Hex 21xO

The register fields are defined as follows:

RF The Coprocessor Register Interface Format field (bit 3)
selects whether the coprocessor registers are arranged in
Intel or Motorola format. When set to 0, Intel format is
selected. When set to 1, Motorola format is selected. See
"Coprocessor Registers" on page 3-118.

OM

OM Field
(binary)

000
001
010
01 1
100
1 0 1
1 1 0
1 1 1

The Display Mode field (bits 2 - 0) selects between the
display modes available. Both VGA and 132-column text
modes respond to VGA I/O and memory addresses. When
the XGA subsystem is in either of these modes, the
addressing of the I/O registers and the video memory can
be inhibited.

Display Mode

VGA Mode (address decode disabled)
VGA Mode (address decode enabled)
132-Column Text Mode (address decode disabled)
132-Column Text Mode (address decode enabled)
Extended Graphics Mode
Reserved
Reserved
Reserved

Figure 3-13. Display Mode Bit Assignments

3-32 XGA Function - September 1991

Aperture Control Register (Address 21x1)

This read/write register has address of hex 21x1.

7 6 5 4 3 2 1 e

-I -I -I -I -I -I ASL

. Set to e, Undefined on Read
ASL Aperture Size And Location

Figure 3-14. Aperture Control Register, Address Hex 21x1

The register fields are defined as follows:

ASL The Aperture Size and Location field (bits 1, 0) controls a
64KB aperture through which XGA memory can be
accessed in system address space. This aperture gives
real mode applications and operating systems a means of
accessing the XGA video memory. The 64KB area of the
XGA video memory accessed by this aperture is selected
using the Aperture Index register. By varying the value of
the index register, the 64KB aperture is used to access the
entire memory contents of the subsystem.

ASLField
(binary)

00
00
01
1 1

The aperture is controlled as follows:

Aperture Size and Location

No 64KB Aperture
64KB at Address Hex OOOAOOOO
64KB at Address Hex ooOBOOOO
Reserved

Figure 3-15. Aperture Size and Location Bit Assignments

The 64KB aperture and a 1 MB aperture cannot be used together
because they are both paged using the Aperture Index register. See
"System Apertures into Video Memory" on page 3-19.

XGA Function - September 1991 3·33

Interrupt Enable Register (Address 21x4)

This read/write register has an address of hex 21x4.

7 6

CC CR

CC
CR
SC
SP
SB

5 4 3 2 1

- I - I - I SC SP SB

Set to e, Undefined on Read
Coprocessor Operation Complete Enable
Coprocessor Access Rejected Enable
Sprite Display Complete Enable
Start Of Picture (End Of Blanking) Enable
Start Of Blanking (End Of Picture) Enable

Figure 3-16. Interrupt Enable Register, Address Hex 21x4

The register fields are defined as follows:

CC The Coprocessor Operation Complete Enable field (bit 7)
enables and disables the Coprocessor Operation
Complete interrupt condition that can be generated by the
subsystem. When set to 1, the interrupt is enabled. When
set to 0, the interrupt is disabled. The status of the bit in
this field has no effect on the interrupt status bits as
defined in the Interrupt Status register, but prevents the
interrupt condition from causing a system interrupt.

CR The Coprocessor Access Rejected Enable field (bit 6)
enables and disables the Coprocessor Access Rejected
interrupt condition that can be generated by the
subsystem. When set to 1, the interrupt is enabled. When
set to 0, the interrupt is disabled. The status of the bit in
this field has no effect on the interrupt status bits as
defined in the Interrupt Status register, but prevents the
interrupt condition from causing a system interrupt.

SC The Sprite Display Complete Enable field (bit 2) enables
and disables the Sprite Display Complete interrupt
condition that can be generated by the subsystem. When
set to 1, the interrupt is enabled. When set to 0, the
interrupt is disabled. The status of the bit in this field has
no effect on the interrupt status bits as defined in the
Interrupt Status register, but prevents the interrupt
condition from causing a system interrupt.

3-34 XGA Function - September 1991

SP The Start of Picture (End of Blanking) Enable field (bit 1)
enables and disables the Start of Picture interrupt
condition that can be generated by the subsystem. When
set to 1, the interrupt is enabled. When set to 0, the
interrupt is disabled. The status of the bit in this field has
no effect on the interrupt status bits as defined in the
Interrupt Status register, but prevents the interrupt
condition from causing a system interrupt.

S8 The Start of Blanking (End of Picture) Enable field (bit 0)
enables and disables the Start of Blanking interrupt
condition that can be generated by the subsystem. When
set to 1, the interrupt is enabled. When set to 0, the
interrupt is disabled. The status of the bit in this field has
no effect on the interrupt status bits as defined in the
Interrupt Status register, but prevents the interrupt
condition from causing a system interrupt.

XGA Function-September 1991 3-35

Interrupt Status Register (Address 21x5)

This read/write register has an address of hex 21x5.

7 6

CC CR

CC
CR
SC
SP
SB

5 4 3 2 1 e

- I - I - I SC SP SB

Set to e. Undefined on Read
Coprocessor Operation Complete Status
Coprocessor Access Rejected Status
Sprite Display Complete Status
Start Of Picture (End Of Blanking) Status
Start Of Blanking (End Of Picture) Status

Figure 3-17. Interrupt Status Register, Address Hex 21 x5

The register fields are defined as follows:

CC The Coprocessor Operation Complete Status field (bit 7)
contains the interrupt status bit that can be generated by
the subsystem to reset the Coprocessor Operation
Complete interrupt. When read, 1 indicates that the
interrupt condition has occurred, and 0 that it has not.
Writing a 1 to the bit clears the interrupt condition, while
writing a 0 has no effect. See "Programmer's View" on
page 3-83 for more information.

CR The Coprocessor Access Rejected Status field (bit 6)
contains the interrupt status bit that can be generated by
the subsystem to reset the Coprocessor Access Rejected
interrupt. When read, 1 indicates that the interrupt
condition has occurred, and 0 that it has not. Writing a 1
to the bit clears the interrupt condition, while writing a 0
has no effect. See" Accesses to the Coprocessor During
an Operation" on page 3-115 for more information.

SC The Sprite Display Complete Status field (bit 2) contains
the interrupt status bit that can be generated by the
subsystem to reset the Sprite Display Complete interrupt.
When read, 1 indicates that the interrupt condition has
occurred, and 0 that it has not. Writing a 1 to the bit clears
the interrupt condition, while writing a 0 has no effect.
See "Sprite" on page 3-22 for more information.

3-36 XGA Function - September 1991

SP The Start of Picture (End of Blanking) Status field (bit 1)
contains the interrupt status bit that can be generated by
the subsystem to reset the Start of Picture interrupt. When
read, 1 indicates that the interrupt condition has occurred,
and 0 that it has not. Writing a 1 to the bit clears the
interrupt condition, while writing a 0 has no effect. See
"CRT Controller" on page 3-19 (End of blanking) for more
information.

SB The Start of Blanking (End of Picture) Status field (bit 0)
contains the interrupt status bit that can be generated by
the subsystem to reset the Start of Blanking interrupt.
When read, 1 indicates that the interrupt condition has
occurred, and 0 that it has not. Writing a 1 to the bit clears
the interrupt condition, while writing a 0 has no effect.
See "CRT Controller" on page 3-19 (Start of blanking) for
more information.

Virtual Memory Control Register (Address 21 x6)

This read/write register has an address of hex 21x6. Full details of
this register are in "Virtual Memory Control Register (I/O Address
21x6)" on page 3-167.

Virtual Memory Interrupt Status Register (Address 21 x7)

This read/write register has an address of hex 21x7. Full details of
this register are in "Virtual Memory Interrupt Status Register (I/O
Address 21x7)" on page 3-169.

XGA Function - September 1991 3-37

Aperture Index Register (Address 21 x8)

This read/write register has an address of hex 21x8.

7 6 5 4 3 2 1

-I -I Aperture Index

Set to 0, Undefined on Read

Figure 3-1B. Aperture Index Register, Address Hex 21 xB

The register field is defined as follows:

Aperture Index

Aperture
Size

64KB
1MB

The Aperture Index field (bits 5 - 0) provides address bits
to video memory when the aperture in the system address
space being used is smaller than the size of video
memory installed. They are used to move both the 64KB
aperture and the 1 MB aperture. All 6 bits are used to
move the 64KB aperture in the video memory, with a
granularity of 64KB. When moving the 1 MB aperture, the
granularity is restricted to 1 MB and only bits 5 and 4 are
used. In this case, the lower order bits must be written
with O's.

See "System Apertures into Video Memory" on page 3-19
for details on the use of video memory apertures.

The bits are used as follows:

Index Bits Used

5-0
5-4

Figure 3-19. Aperture Index Bit Assignments

3-38 XGA Function - September 1991

Memory Access Mode Register (Address 21x9)

This read/write register has an address of hex 21 x9.

7 6 5 4 3 2 1 a

-I -I -I -I PO PS

. Set to a, Undefined on Read
PO PEL Order
PS PEL Size

Figure 3-20. Memory Access Mode Register, Address Hex 21 x9

The register fields are defined as follows:

PO The PEL Order field (bit 3) controls PEL ordering when the
video memory is being accessed by the system (not the
coprocessor). Intel or Motorola order can be selected.
When set to 0, Intel format is selected. When set to 1,
Motorola format is selected.

PS The PEL Size field (bits 2 - 0) selects the PEL size. The
PEL size must be selected because this register is
controlling a PEL swapper that converts from the external
format specified to the internal format used by the adapter
when the PELs are written, and converts back when they
are read.

PSFieid
(binary)

000
001
010
011
100
1 0 1
1 1 0
1 1 1

It is important to set this register correctly when accessing
video memory with the system processor.

PEL size values are assigned as follows:

PEL Size

1 Bit
2 Bits
4 Bits
8 Bits
16 Bits
Reserved
Reserved
Reserved

Figure 3-21. PEL Size Bit Assignments

XGA Function - September 1991 3-39

Index Register (Address 21xA)

This read/write register has an address of hex 21xA.

7 6 5 4 3 2 1

Register Index

Figure 3-22. Index Register, Address Hex 21 xA

The Register Index register selects the indexed Extended Graphics
mode register accessed when any address with index hex B through
F is read or written. Index values are assigned as shown in the
following figure.

Register
Index Field
(hex)

04
OC
00
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1E
20
21
22
23
24
25
26
27
28
29
2A
2C
20

Register

Auto-Configuration
Coprocessor SavelRestore Data A
Coprocessor Savel Restore Data B
Horizontal Total Low
Horizontal Total High
Horizontal Display End Low
Horizontal Display End High
Horizontal Blanking Start Low
Horizontal Blanking Start High
Horizontal Blanking End Low
Horizontal Blanking End High
Horizontal Sync Pulse Start Low
Horizontal Sync Pulse Start High
Horizontal Sync Pulse End Low
Horizontal Sync Pulse End High
Horizontal Sync Position
Horizontal Sync Position
Vertical Total Low
Vertical Total High
Vertical Display End Low
Vertical Display End High
Vertical Blanking Start Low
Vertical Blanking Start High
Vertical Blanking End Low
Vertical Blanking End High
Vertical Sync Pulse Start Low
Vertical Sync Pulse Start High
Vertical Sync Pulse End
Vertical Line Compare Low
Vertical Line Compare High

Note: Undefined index values are reserved.

Figure 3-23. XGA Index Register Assignments (Part I)

3-40 XGA Function-September 1991

Register
Index Field
(hex)

30
31
32
33
34
35
36
38
39
3A
3B
3C
3D
40
41
42
43
44
50
51
52
54
55
60
61
62
63
64
65
66
67
68
69
6A
6B
70

Register

Sprite Horizontal Start Low
Sprite Horizontal Start High
Sprite Horizontal Preset
Sprite Vertical Start Low
Sprite Vertical Start High
Sprite Vertical Preset
Sprite Control
Sprite Color 0 Red
Sprite Color 0 Green
Sprite Color 0 Blue
Sprite Color 1 Red
Sprite Color 1 Green
Sprite Color 1 Blue
Display PEL Map Offset Low
Display PEL Map Offset Middle
Display PEL Map Offset High
Display PEL Map Width Low
Display PEL Map Width High
Display Control 1
Display Control 2
Display 10 and Comparator
Clock Frequency Select 1
Border Color
Sprite/Palette Index Low
Sprite Index High
Sprite/Palette Prefetch Index Low
Sprite Prefetch Index High
Palette Mask
Palette Data
Palette Sequence
Palette Red Prefelch
Palette Green Prefelch
Palette Blue Prefetch
Sprite Data
Sprite Prefelch
Clock Frequency Select 2

Note: Undefined index values are reserved.

Figure 3-24. XGA Index Register Assignments (Part /I)

XGA Function - September 1991 3-41

Data Registers (Addresses 21xB to 21xF)

These read/write data registers have addresses of hex 21xB to 21xF.
The data registers are used when reading and writing to the register
indexed by the Index register (Address 21xA). The read/write
operation can be of byte, word, or doubleword size.

To perform a byte write to an indexed register, a single 16-bit cycle to
address hex 21xA can be used with the index in the lower byte and
the data to be written in the upper byte. For indexed registers
requiring successive writes, the index can be loaded using a byte
write to address hex 21xA, followed by either a word or a doubleword
access to address hex 21xC. Only the byte-wide register selected by
the index is updated. Word or doubleword accesses result in two or
four byte-wide accesses to the same indexed register.

3-42 XGA Function - September 1991

Indexed Access 1/0 Registers

See "Index Register (Address 21xA)" on page 3-40 for a figure of the
indexed registers.

Auto-Configuration Register (Index 04)

This read-only register has an index of hex 04. Do not write to this
register.

7 6 5 4 3 2 1 a

-I -I -I -I -I -I -I BS

Undefined on Read
BS Bus Size

Figure 3-25. Auto-Configuration Register, Index Hex 04

The register field is defined as follows:

BS The Bus Size field (bit 0) indicates whether the subsystem
is interfaced to a 16-bit or a 32-bit system interface. When
read as 0, the system interface is 16-bit, when read as 1,
the system interface is 32-bit.

Coprocessor Save/Restore Data Registers (Index OC and 00)

These read/write registers have indexes of hex OC and 00. The
registers are an image of a port in the coprocessor. See
"Coprocessor State Save/Restore" on page 3-116 for a description of
their use.

XGA Function - September 1991 3-43

Horizontal Total Registers (Index 10 and 11)

These read/write registers have indexes of hex 10 and 11.

7 6 5 4 3 2 1 o

Horizontal Total Low (Index 10H)

7 6 5 4 3 2 1 o

Horizontal Total High (Index llH)

Figure 3-26. Horizontal Total Registers, Indexes Hex 10 and 11

The Horizontal Total Low and Horizontal Total High registers (bits
7 - 0) define the total length of a scan line in units of eight PELs.
They must be loaded as a 16-bit value in the range hex 0000 to OOFF.
Values are assigned as shown in the following figure.

Value
(hex) HorIzontal Total (PELs)

0000 8
0001 16
0002 24

OOFF 2048

Figure 3-27. Horizontal Total Registers Value Assignments

3-44 XGA Function - September 1991

Horizontal Display End Registers (Index 12 and 13)

These read/write registers have indexes of hex 12 and 13.

7 6 5 4 3 2 1

Horizontal Display End Low (Index 12H)

7 6 5 4 3 2 1

Horizontal Display End High (Index 13H)

Figure 3-28. Horizontal Display End Registers, Indexes Hex 12 and 13

The Horizontal Display End Low and Horizontal Display End High
registers (bits 7 - 0) defi ne the position of the end of the active picture
area relative to the start of the active picture area in units of eight
PELs. They must be loaded as a 16-bit value in the range hex 0000 to
OOFF. Values are assigned as shown in the following figure.

Value
(hex) Display End (PELs)

0000 8
0001 16
0002 24

OOFF 2048

Figure 3-29. Horizontal Display End Registers Value Assignments

XGA Function - September 1991 3-45

Horizontal Blanking Start Registers (Index 14 and 15)

These read/write registers have indexes of hex 14 and 15.

7 6 5 4 3 2 1

Horizontal Blanking Start Low (Index 14H)

7 6 5 4 3 2 1 o

Horizontal Blanking Start High (Index 15H)

Figure 3-30. Horizontal Blanking Start Registers, Indexes Hex 14 and 15

The Horizontal Blanking Start Low and Horizontal Blanking Start High
registers (bits 7 - 0) define the position of the end of the picture
border area relative to the start of the active picture area in units of
eight PELs. They must be loaded as a 16-bit value in the range hex
0000 to DOFF. Values are assigned as shown in the following figure.

Value
(hex) Blanking Start (PELs)

0000 8
0001 16
0002 24

OOFF 2048

Figure 3-31. Horizontal Blanking Start Registers Value Assignments

3-46 XGA Function-September 1991

Horizontal Blanking End Registers (Index 16 and 17)

These read/write registers have indexes of hex 16 and 17.

7 6 5 4 3 2 1 e

Horizontal Blanking End Low (Index 16H)

7 6 5 4 3 2 1 e

Horizontal Blanking End High (Index 17H)

Figure 3-32. Horizontal Blanking End Registers, Indexes Hex 16 and 17

The Horizontal Blanking End Low and Horizontal Blanking End High
registers (bits 7 - 0) define the position of the start of the picture
border area relative to (after) the start of the active picture area in
units of eight PELs. They must be loaded as a 16-bit value in the
range hex 0000 to DOFF. Values are assigned as shown in the
following figure.

Value
(hex) Blanking End (PELs)

0000 8
0001 16
0002 24

OOFF 2048

Figure 3-33. Horizontal Blanking End Registers Value Assignments

XGA Function - September 1991 3-47

Horizontal Sync Pulse Start Registers (Index 18 and 19)

These read/write registers have indexes of hex 18 and 19.

7 6 5 4 3 2 1

HSYNC Pulse Start Low (Index I8H)

7 6 5 4 3 2 1

HSYNC Pulse Start High (Index I9H)

Figure 3-34. Horizontal Sync Pulse Start Registers, Indexes Hex 18 and 19

The Horizontal Sync Pulse Start Low and Horizontal Sync Pulse Start
High registers (bits 7 -0) define the position of the start of horizontal
sync pulse relative to the start of the active picture area in units of
eight PELs. They must be loaded as a 16 bit-value in the range hex
0000 to OOFF. Values are assigned as shown in the following figure.

Value
(hex) Horizontal Pulse Start (PELs)

0000 8
0001 16
0002 24

OOFF 2048

Figure 3-35. Horizontal Sync Pulse Start Registers Value Assignments

3-48 XGA Function-September 1991

Horizontal Sync Pulse End Registers (Index 1 A and 1 B)

These read/write registers have indexes of hex 1A and 1B.

7 6 5 4 3 2 I €I

HSYNC Pulse End Low (Index IAH)

7 6 5 4 3 2 I €I

HSYNC Pulse End High (Index ISH)

Figure 3-36. Horizontal Sync Pulse End Registers, Indexes Hex 1 A and 1 B

The Horizontal Sync Pulse End Low and Horizontal Sync Pulse End
High registers (bits 7 - 0) defi ne the position of the end of the
horizontal sync pulse relative to the start of the active picture area in
units of eight PELs. They must be loaded as a 16-bit value in the
range hex 0000 to OOFF.

This XGA subsystem register is also used in 132-column text mode in
place of the VGA End Horizontal Retrace register. In 132-column text
mode, each eight-PEL unit is equivalent to one eight-PEL character.
Values are assigned as shown in the following figure.

Value
(hex) Horizontal Sync Pulse End (PELs)

0000 8
0001 16
0002 24

OOFF 2048

Figure 3-37. Horizontal Sync Pulse End Registers Value Assignments

XGA Function - September 1991 3-49

Horizontal Sync Pulse Position Registers (Index 1 C and 1 E)

These write-only registers have indexes of hex 1C and 1E.

7 6 5 4 3 2 1 e

-I PO -I -I -I -I -I (Index lCH)

7 6 5 4 3 2 1 e

-I -I -I -I -I PO -I (Index lEH)

Set to e
PO Sync Pulse Delay

Figure 3-38. Horizontal Sync Pulse Position Registers (Index 1C and 1E)

The register field is defined as follows:

PO The Sync Pulse Delay field (bits 6, 5 or bits 2, 1) allows the
'horizontal sync' (HSYNC) signal to be delayed by up to
four PELs. The same value must be written to both
registers, as shown in the following figure.

PDFleid
(binary)

o 0
o 1
1 0
1 1

Sync Pulse Delay In PELs

o
Reserved
4
Reserved

Figure 3-39. Horizontal Sync Pulse Delay Bit Assignments

These XGA subsystem registers are also used in 132-column text
mode in place of the HRD field in the VGA End Horizontal Retrace
register.

3-50 XGA Function-September 1991

Vertical Total Registers (Index 20 and 21)

These read/write registers have indexes of hex 20 and 21.

7 6 5 4 3 2 1 0

Vertical Total Low (Index 20H)

7 6 5 4 3 2 1 0

Vertical Total High (Index 21H)

Figure 3-40. Vertical Total Registers, Indexes Hex 20 and 21

The Vertical Total Low and Vertical Total High registers (bits 7 - 0)
define the total length of a frame in units of one scan line. They must
be written as a 16-bit value in the range hex 0000 to 07FF. Values are
assigned as shown in the following figure.

Value
(hex) Total Length (Scan Lines)

0000 1
0001 2
0002 3

07FF 2048

Figure 3-41. Vertical Total Registers Value Assignments

XGA Function - September 1991 3·51

Vertical Display End Registers (Index 22 and 23)

These read/write registers have indexes of hex 22 and 23.

7 6 5 4 3 2 1 o

Vertical Display End Low (Index 22H)

7 6 5 4 3 2 1 o

Vertical Display End High (Index 23H)

Figure 3-42. Vertical Display End Registers, Indexes Hex 22 and 23

The Vertical Display End Low and Vertical Display End High registers
(bits 7 - 0) define the position of the end of the active picture area
relative to the start of the active picture area in units of one scan line.
They must be written as a 16-bit value in the range hex 0000 to 07FF.
Values are assigned as shown in the following figure.

Value
(hex) Display End (Scan Lines)

0000 1
0001 2
0002 3

07FF 2048

Figure 3-43. Vertical Display End Registers Value Assignments

3-52 XGA Function - September 1991

Vertical Blanking Start Registers (Index 24 and 25)

These read/write registers have indexes of hex 24 and 25.

7 6 5 4 3 2 1

Vertical Blanking Start Low (Index 24H)

7 6 5 4 3 2 1

Vertical Blanking Start High (Index 25H)

Figure 3-44. Vertical Blanking Start Registers, Indexes Hex 24 and 25

The Vertical Blanking Start Low and Vertical Blanking Start High
registers (bits 7 -0) define the position of the end of the picture
border area relative to the start of the active picture area in units of
one scan line. They must be loaded as a 16-bit value in the range hex
0000 to 07FF. Values are assigned as shown in the following figure.

Value
(hex) Border End (Scan Lines) Blanking Start

0000 1
0001 2
0002 3

07FF 2048

Figure 3-45. Vertical Blanking Start Registers Value Assignments

XGA Function - September 1991 3·53

Vertical Blanking End Registers (Index 26 and 27)

These read/write registers have indexes of hex 26 and 27.

7 6 5 4 3 2 1 o

Vertical Blanking End Low (Index 26H)

7 6 5 4 3 2 1 o

Vertical Blanking End High (Index 27H)

Figure 3-46. Vertical Blanking End Registers, Indexes Hex 26 and 27

The Vertical Blanking End Low and Vertical Blanking End High
registers (bits 7 - 0) defi ne the position of the start of the picture
border area relative to the start of the active picture area in units of
one scan line. They must be loaded as a 16-bit value in the range hex
0000 to 07FF. Values are assigned as shown in the following figure.

Value
(hex) Border Start (Scan Lines) Blanking End

0000 1
0001 2
0002 3

07FF 2048

Figure 3-47. Vertical Blanking End Registers Value Assignments

3-54 XGA Function - September 1991

Vertical Sync Pulse Start Registers (Index 28 and 29)

These read/write registers have indexes of hex 28 and 29.

7 6 5 4 3 2 1

VSYNC Pulse Start Low (Index 28H)

7 6 5 4 3 2 1

VSYNC Pulse Start High (Index 29H)

Figure 3-48. Vertical Sync Pulse Start Registers, Indexes Hex 28 and 29

The Vertical Sync Pulse Start Low and Vertical Sync Pulse Start High
registers (bits 7 -0) define the position of the start of the vertical sync
pulse relative to the start of the active picture area in units of one
scan line. They must be loaded as a 16-bit value in the range hex
0000 to 07FF. Values are assigned as shown in the following figure.

Value
(hex) Sync Pulse Start (Scan Lines)

0000 1
0001 2
0002 3

07FF 2048

Figure 3-49. Vertical Sync Pulse Start Registers Value Assignments

XGA Function - September 1991 3·55

Vertical Sync Pulse End Register (Index 2A)

This read/write register has an index of hex 2A.

7 6 5 4 3 2 1

VSYNC Pulse End

Figure 3-50. Vertical Sync Pulse End Register, Index Hex 2A

The Vertical Sync Pulse End register (bits 7 - 0) defi nes the position
of the end of the vertical sync pulse. The value loaded is the least
significant byte of a 16-bit value that defines the end of the vertical
sync pulse relative to the start of the active picture area in units of
one scan line. The vertical sync end position must be within 31 scan
lines of the vertical sync start position.

Note: Before setting the Operating Mode register (address 21xO) into
VGA or 132-column text mode, bit 5 of this register must be set
to 1.

This register may not return the value written, but the returned value
is valid for save/restore operations.

3-56 XGA Function - September 1991

Vertical Line Compare Registers (Index 2C and 2D)

These read/write registers have indexes of hex 2C and 20.

7 6 5 4 3 2 1 a

Vertical Line Compare Low (Index 2CH)

7 6 5 4 3 2 1

Vertical Line Compare High (Index 2DH)

Figure 3-51. Vertical Line Compare Registers, Indexes Hex 2C and 2D

The Vertical Line Compare Low and Vertical Line Compare High
registers (bits 7 - 0) define the position of the end of the scroll able
picture area relative to the start of the active picture area in units of
one scan line. They must be loaded as a 16-bit value in the range hex
0000 to 07FF. Values are assigned as shown in the following figure.

Value
(hex) Scrollable End (scan lines)

0000 1
0001 2
0002 3

07FF 2048

Figure 3-52. Vertical Line Compare Registers Value Assignments

XGA Function - September 1991 3-57

Sprite Horizontal Start Registers (Index 30 and 31)

These read/write registers have indexes of hex 30 and 31.

7 6 5 4 3 2 1

Sprite Horizontal Start Low (Index 39H)

7 6 5 4 3 2 1

Sprite Horizontal Start High (Index 31H)

Figure 3-53. Sprite Horizontal Start Registers, Indexes Hex 30 and 31

The Sprite Horizontal Start Low and Sprite Horizontal Start High
registers (bits 7 - 0) define the position of the start of the sprite
relative to the start of the active picture area in PELs. They must be
loaded with a 16-bit value in the range hex 0000 to 07FF. See "Sprite
Positioning" on page 3-24. Values are assigned as shown in the
following figure.

Value
(hex) Sprite Start (PELs)

0000 0
0001 1
0002 2

07FF 2047

Figure 3-54. Sprite Horizontal Start Registers Value Assignments

3-58 XGA Function - September 1991

Sprite Horizontal Preset Register (Index 32)

This read/write register has an index of hex 32.

7 6 5 4 3 2 1 e

-I -I Sprite Horizontal Preset

. Set to e, Undefined on Read

Figure 3-55. Sprite Horizontal Preset, Index Hex 32

The register fields are defined as follows:

Sprite Horizontal Preset
The Sprite Horizontal Preset field (bits 5 - 0) defines the
horizontal position within the 64 x 64-PEL sprite area
where the sprite starts. The sprite always ends at position
63 (it does not wrap). See "Sprite Positioning" on
page 3-24. Values are assigned as shown in the following
figure.

Value
(hex) Sprite Start (PELs)

00 0
01 1
02 2

3F 63

Figure 3-56. Sprite Horizontal Preset Value Assignments

XGA Function - September 1991 3-59

Sprite Vertical Start Registers (Index 33 and 34)

These read/write registers have indexes of hex 33 and 34.

7 6 5 4 3 2 1

Sprite Vertical Start Low (Index 33H)

7 6 5 4 3 2 1

Sprite Vertical Start High (Index 34H)

Figure 3-57. Sprite Vertical Start Registers, Indexes Hex 33 and 34

The Sprite Vertical Start low and Sprite Vertical Start High registers
(bits 7 - 0) define the position of the start of the sprite relative to the
start of the active picture area in units of one scan line. They must be
loaded with a 16-bit value in the range hex 0000 to 07FF. See "Sprite
Positioning" on page 3-24. Values are assigned as shown in the
following figure.

Value
(hex) Sprite Start (Scan Linea)

0000 0
0001 1
0002 2

07FF 2047

Figure 3-58. Sprite Vertical Start Registers Value Assignments

3-60 XGA Function - September 1991

Sprite Vertical Preset Register (Index 35)

This read/write register has an index of hex 35.

7 6 5 4 3 2 1 fl

-I -I Sprite Vertical Preset

. Set to fl. Undefined on Read

Figure 3-59. Sprite Vertical Preset, Index Hex 35

The register fields are defined as follows:

Sprite Vertical Preset
The Sprite Vertical Preset field (bits 5 - 0) defines the
vertical position within the 64 x 64-PEL sprite area where
the sprite starts. The sprite always ends at position 63 (it
does not wrap). See "Sprite Positioning" on page 3-24.
Values are assigned as shown in the following figure.

Value
(hex) Sprite Start (PELs)

00 Q

01 1
02 2

3F 63

Figure 3-60. Sprite Vertical Preset Value Assignments

XGA Function - September 1991 3-61

Sprite Control Register (Index 36)

This read/write register has an index of hex 36.

7 6 5 4 3 2 1 a

-I -I -I -I -I -I -I SC

. Set to a, Undefined on Read
SC Sprite Control

Figure 3-61. Sprite Control Register, Index Hex 36

The register fields are defined as follows:

SC The Sprite Control field (bit 0) controls the visibility of the
sprite. When set to 1, the sprite appears on the screen at
the location controlled by the sprite position registers.
When set to 0, a sprite is not displayed. This bit must be
set to 0 before any attempt is made to access the sprite
image in the sprite buffer, otherwise the sprite buffer
contents are corrupted.

3-62 XGA Function - September 1991

Sprite Color Registers (Index 38 - 3D)

These read/write registers have indexes of hex 38 through 3D.

7 6 5 4 3 2 1

Sprite Color 0 Red (Index 38H)

7 6 5 4 3 2 1

Sprite Color 0 Green (Index 39H)

7 6 5 4 3 2 1

Sprite Color 0 Blue (Index 3AH)

7 6 5 4 3 2 1

Sprite Color 1 Red (Index 3BH)

7 6 5 4 3 2 1

Sprite Color 1 Green (Index 3CH)

7 6 5 4 3 2 1

Sprite Color 1 Blue (Index 3DH)

Figure 3-62. Sprite Color Registers, Indexes Hex 38-30

The Sprite Color registers (bits 7 - 0) define the red, green, and blue
components of the PELs displayed when the sprite data for those
PELs selects color 0 or color 1. These colors are passed di rectly to
the DACs, not through the palette, and must be programmed to give
the actual color required.

Note: Only the 6 most-significant bits of these registers are used.

XGA Function - September 1991 3-63

Display PEL Map Offset Registers (Index 40 - 42)

These read/write registers have indexes of hex 40 through 42.

7 6 5 4 3 2 1 c:J

Display PEL Map Offset Low (Index 4c:JH)

7 6 5 4 3 2 1 c:J

Display PEL Map Offset Middle (Index 41H)

7 6 5 4 3 2 1 c:J

Display PEL Map Offset High (Index 42H)

Figure 3-63. Display PEL Map Offset Registers, Indexes Hex 40-42

The Display PEL Map Offset registers (bits 7-0) define the address of
the start of the visible portion of the video buffer in units of 8 bytes.
They must be loaded as a single value in the range hex 00000 to
1FFFF. See "Scrolling" on page 3-21. Values are assigned as shown
in the following figure.

Value
(hex) Display PEL Map OHset (bytes)

00000 0
00001 8
00002 16

1FFFF 1048568

Figure 3-64. Display PEL Map Offset Registers Value Assignments

3·64 XGA Function - September 1991

Display PEL Map Width Registers (Index 43 and 44)

These read/write registers have indexes of hex 43 and 44.

7 6 5 4 3 2 1

Display PEL Map Width Low (Index 43H)

7 6 5 4 3 2 1

Display PEL Map Width High (Index 44H)

Figure 3-65. Display PEL Map Width Registers, Indexes Hex 43 and 44

The Display PEL Map Width Low and Display PEL Map Width High
registers (bits 7-0) define the width of the display PEL map in units
of 8 bytes. They must be loaded as a single value in the range hex
000 to 3FF. See "Scrolling" on page 3-21. Values are assigned as
shown in the following figure.

Value
(hex) Display PEL Map Width (bytes)

000 0
001 8
002 16

7FF 16376

Figure 3-66. Display PEL Map Width Registers Value Assignments

XGA Function - September 1991 3-65

Display Control 1 Reg/ster (Index 50)

This read/write register has an index of hex 50.

7

SP

6 5 4 3 2 1

VE SO 1 DB

Preserve Value Read When Writing
1 Set to 1. Undefined on Read

SP SYNC Polarity
VE Video Extension
SO Display Scan Order
DB Display Blanking

Figure 3-67. Display Control 1 Register, Index Hex 50

The register fields are defined as follows:

SP The SYNC Polarity field (bits 7, 6) value is assigned as
shown in the following figure.

SP Field
(binary) Vertical Horizontal Lines

00 + + 768
01 + 400
10 + 350
1 1 480

Figure 3-68. Sync Polarity Bit Assignments

VE The Video Extension field (bit 4) must be set to 1 (enabled)
when the subsystem is in VGA mode. It must be be set to
o (disabled) if the subsystem is in Extended Graphics or
132-column text mode.

SO The Display Scan Order field (bit 3) determines whether
the display scan order is interlaced. When set to 0, the
display scan order is not interlaced. When set to 1. the
display scan order is interlaced.

3·66 XGA Function - September 1991

DB

DB Field
(binary)

00
01
10
11

The Display Blanking field (bits 1, 0) value is assigned as
shown in the following figure.

Display Blanking

Display Blanked, CRT Controller Reset
Display Blanked, Prepare for Reset
Reserved
Normal Operation

Figure 3-69. Display Blanking Bit Assignments

When resetting the CRT controller, the display blanking
bits must be set to 01 (prepare for reset) first, followed by
00 (CRT controller reset).

XGA Function - September 1991 3-67

Display Control 2 Register (Index 51)

This read/write register has an index of hex 51.

7 6 5 4 3 2 1 e

VSF HSF -I PS

- . Set to e, Undefined on Read
VSF Vertical Scale Factor
HSF Horizontal Scal Factor

PS PEL Size

Figure 3-70. Display Control 2 Register, Index Hex 51

The register fields are defined as follows:

VSF The Vertical Scale Factor field (bits 7, 6) controls how
many times each line is replicated. Values are assigned
as shown in the following figure.

VSFFleld
(binary) Vertical Scale Factor

00 1
01 2
10 4
11 Reserved

Figure 3-71. Vertical Scale Factor Bit Assignments

HSF The Horizontal Scale Factor field (bits 5, 4) controls how
many times each PEL is replicated horizontally. Values
are assigned as shown in the following figure.

HSFFleld
(binary) Horizontal Scale Factor

00 1
01 2
10 4
11 Reserved

Figure 3-72. Horizontal Scale Factor Bit AsSignments

3-68 XGA Function - September 1991

PS

PS Field
(binary)

000
001
010
01 1
100
101
110
1 1 1

The PEL Size field (bits 2 - 0) defines the PEL size (for the
serializer, palette, and DAC), and the display scale factors
(horizontal and vertical). Values are assigned as shown in
the following figure.

PEL Size

1 Bit
2 Bits
4 Bits
8 Bits
16 Bits (Direct Color Mode)
Reserved
Reserved
Reserved

Figure 3-73. Display Control 2 Register PEL Size Bit Assignments

XGA Function - September 1991 3·69

Display ID and Comparator Register (Index 52)

This read-only register has an index of hex 52. Do not write to this
register.

7 6 5 4 3 2 1 o

SO GO RO -I OT

SO
GO
RO
OT

Undefined on Read
Slue OAC Comparator Status
Green OAC Comparator Status
Red OAC Comparator Status
Display Type

Figure 3-74. Display ID and Comparator, Index Hex 52

The register fields are defined as follows:

BD The Blue DAC Comparator Status field (bit 7) indicates the
state of the blue DAC output. When read as 1, the blue
DAC output is high; when read as 0, the blue DAC output
is low.

GD The Green DAC Comparator Status field (bit 6) indicates
the state of the green DAC output. When read as 1, the
green DAC output is high; when read as 0, the green DAC
output is low.

RD The Red DAC Comparator Status field (bit 5) indicates the
state of the red DAC output. When read as 1, the red DAC
output is high; when read as 0, the red DAC output is low.

DT The Display Type field (bits 3-0) indicates the type of
display attached. Bit values are defined by displays.

3-70 XGA Function-September 1991

Clock Frequency Select 1 Register (Index 54)

This read/write register has an index of hex 54.

7 6 5 4 3 2 1 e

-I -I -I -I CSI VCS

. Set to e, Undefined on Read
CSI Clock Select 1
VCS : Video Clock Scale Factor

Figure 3-75. Clock Frequency Selector Register, Index Hex 54

The Clock Frequency Select 1 register must be used in conjunction
with the Clock Frequency Select 2 register. It is defined under "Clock
Frequency Select 2 Register (Index 70)" on page 3-78.

Border Color Register (Index 55)

This read/write register has an index of hex 55.

7 6 5 4 3 2 1 e

Border Color

Figure 3-76. Border Color Register, Index Hex 55

The Border Color register (bits 7 - 0) holds the border color palette
index, which is the index of the palette location selected to be
displayed in the picture border area of the display.

The inverse of bit 7 is used for palette address bit 7 in direct color
mode. See "Direct Color Mode" on page 3-27.

XGA Function - September 1991 3-71

Sprite/Palette Index Registers (Index 60 and 61)

These read/write registers have indexes of hex 60 and 61.

7 6 5 4 3 2 1 o

Sprite/Palette Index Low (Index 60H)

7 6 5 4 3 2 1 o

Sprite Index High (Index 61H)

Figure 3-77. Sprite/Palette Index Registers, Indexes Hex 60 and 61

The Sprite/Palette Index Low and Sprite Index High registers (bits
7 - 0) specify the index when writing to the sprite or the palette. See
"Sprite Buffer Accesses" on page 3-23 and "Palette Accesses" on
page 3-25 for details of these registers.

The Sprite/Palette Index Low register is used for the 256 locations of
the palette that are available. It can be loaded with any palette index
value in the range hex 00 to FF.

The Sprite/Palette Index Low and the Sprite Index High registers are
both used to access the sprite. The registers can be loaded with any
sprite index value in the range hex 0000 to 3FFF.

Accessing these registers does not cause any action other than
loading or returning the value of the next index.

The registers must be saved, and subsequently restored, by any
interrupting task that uses the palette or sprite registers.

3-72 XGA Function - September 1991

Sprite/Palette Pre'etch Index Registers (Index 62 and 63)

These read/write registers have indexes of hex 62 and 63.

7 6 5 4 3 2 1 e

Sprite/Palette Prefetch Index Low (Index 62H)

7 6 5 4 3 2 1 e

Sprite Prefetch Index High (Index 63H)

Figure 3-78. Sprite/Palette Prefetch Index Registers, Indexes 62 and 63

The Sprite/Palette Prefetch Index Low and Sprite Prefetch Index High
registers (bits 7 - 0) specify the index when reading from the sprite or
the palette. See "Sprite Buffer Accesses" on page 3-23 and "Palette
Accesses" on page 3-25 for details of these registers.

When reading from the palette, the Sprite/Palette Prefetch Index Low
register must be used. Writing the Sprite/Palette Prefetch Index Low
register also causes the palette prefetch registers to be loaded, and
the index value to be incremented.

When reading from the sprite, use either the Sprite/Palette Prefetch
Index Low register or the Sprite Prefetch Index High register. Writing
to either register also causes the sprite prefetch registers to be
loaded, and the index value to be incremented as a single value.

These registers must not be saved and subsequently restored in
hardware task switches.

XGA Function - September 1991 3-73

Palette Mask Register (Index 64)

This read/write register has an index of hex 64.

7 6 5 4 3 2 1 o

Palette Mask

Figure 3-79. Palette Mask Register, Index Hex 64

The contents of the Palette Mask register (bits 7 - 0) are ANDed with
each display memory PEL value, and the result is used to index the
palette.

Palette Data Register (Index 65)

This read/write register has an index of hex 65.

7 6 5 4 3 2 1 o

Palette Data

Figure 3-80. Palette Data Register, Index Hex 65

The Palette Data register (bits 7 - 0) is an image of the currently
selected palette RAM location. The data returned on read may not be
that last written because of the selection mechanism described in
"Palette Accesses" on page 3-25.

For monochrome displays, all of the palette red and blue locations
must be loaded with O's.

Note: Only the 6 most-significant bits of this register are used.

3-74 XGA Function - September 1991

Palette Sequence Register (Bits 2 - 0 only) (Index 66)

This read/write register has an index of hex 66.

7 6 5 4 3 2 1 0

-I -I -I -I -I CO PC

. Set to 0, Undefined on Read
CO Color Order
PC Palette Color

Figure 3-81. Palette Sequence Register, Index Hex 66

The register fields are defined as follows:

CO The Color Order field (bit 2) defines the sequence to be
followed for selecting the red, green, and blue elements
during successive Palette Data register accesses. The
color order is shown in the following figure.

COField
(binary)

o
1

Color Order

R,G,B,R,G,B, ...
R,B,G,x,R,B,G,x, ..

Note: x = discarded data.

Figure 3-82. Palette Sequence Register Color Order Bit Assignment

PC The Palette Color field (bits 1, 0) defines which of the red,
green, or blue elements of the currently selected palette
location is the current one for the Palette Data register.
The palette color selection is shown in the following
figure.

PC Field
(binary) Color

00 R
01 G
10 B
1 1 x

Note: x = discarded data.

Figure 3-83. Palette Sequence Register Palette Color Bit Assignments

See "Palette Accesses" on page 3-25 for more information.

XGA Function - September 1991 3-75

Palette Red Prefetch Register (Index 67)

This read/write register has an index of hex 67.

7 6 5 4 3 2 1 a

Palette Red Prefetch

Figure 3-84. Palette Red Prefetch Register, Index Hex 67

The Palette Red Prefetch register (bits 7 - 0) is not used for any
normal function but must be saved, and subsequently restored, by
any interrupting code that uses the sprite or palette registers.

Palette Green Prefetch Register (Index 68)

This read/write register has an index of hex 68.

7 6 5 4 3 2 1 a

Palette Green Prefetch

Figure 3-85. Palette Green Prefetch Register, Index Hex 68

The Palette Green Prefetch register (bits 7 - 0) is not used for any
normal function but must be saved, and subsequently restored, by
any interrupting code that uses the sprite or palette registers.

Palette Blue Prefetch Register (Index 69)

This read/write register has an index of hex 69.

7 6 5 4 3 2 1 a

Palette Blue Prefetch

Figure 3-86. Palette Blue Prefetch Register, Index Hex 69

The Palette Blue Prefetch register (bits 7 - 0) is not used for any
normal function but must be saved, and subsequently restored, by
any interrupting code that uses the sprite or palette registers.

3-76 XGA Function - September 1991

Sprite Data Register (Index 6A)

This read/write register has an index of hex 6A.

7 6 5 4 3 2 1 o

Sprite Data

Figure 3-87. Sprite Data Register, Index Hex 6A

The Sprite Data register (bits 7 - 0) is an image of the currently
selected sprite buffer location. The data returned on read may not be
that last written because of the selection mechanism described in
"Sprite Buffer Accesses" on page 3-23.

When used for writing sprite data, the sprite PELs are Intel format
packed PELs.

Sprite Prefetch Register (Index 6S)

This read/write register has an index of hex 6B.

7 6 5 4 3 2 1 o

Sprite Prefetch

Figure 3-88. Sprite Prefetch Register, Index Hex 68

The Sprite Prefetch register (bits 7 - 0) is not used for any normal
function but must be saved, and subsequently restored, by any
interrupting code that uses the sprite or palette registers.

XGA Function - September 1991 3-77

Clock Frequency Select 2 Register (Index 70)

This read/write register has an index of hex 70. It is used with the
Clock Frequency Select 1 Register (index hex 54) for clock selection.

7 6 5 4 3 2 1 a

-I -I -I -I CSI VCS (Index 54H)

7 6 5 4 3 2 1 a

1 CS21 -I -I -I -I -I -I -I (Index 7aH)

- . Set to a, Undefined on Read .
CSI Clock Select 1
CS2 Clock Select 2
VCS Video Clock Scale Factor

Figure 3-89. Clock Frequency Select Registers

The clock frequency select registers fields are defined as follows:

CS2 The Clock Select 2 field (bit 7 of the Clock Frequency
Select 2 register) is used in conjunction with the Clock
Frequency Select 1 register (index hex 54). See the
description of the Clock Select 1 field to learn how it is
used.

3-78 XGA Function - September 1991

eS1 The Clock Select 1 field (bits 3, 2 of the Clock Frequency
Select 1 register) must be used in conjunction with the
Clock Frequency Select 2 register. Clock selection is
shown in the following figure.

CS2Fleid
(binary)

o

o
o
o
1
1
1
1

CS1 Field
(binary)

00

01
10
1 1
00
01
10
1 1

Selected Clock

VGA 8-PEL Character Mode and 640 x 480 Graphics
Mode Clock
VGA 9-PEL Character Mode Clock
Clock Sourced from Video Extension Interface
1024 x 768 Graphics Mode Clock
132-Column Text Mode Clock
Reserved
Reserved
Reserved

Figure 3-90. Clock Selected Bit Assignments

Note: If the 132-column text mode clock is selected, the
CS2 field must be set to 0 before any VGA or 640 x
480 graphics are selected. See "Setting the XGA
Subsystem Mode" on page 3-182 for details of
mode switching.

yeS The Video Clock Scale Factor field (bits 1, 0 of the Clock
Frequency Select 1 register) controls the divide ratio of
the selected video clock before it is used by the CRT
controller. The operation of the video clock scale factor is
invisible to the programmer, but it must be set as shown
for correct operation of the hardware.

VCSFlekl
(binary)

00
01
10
1 1

Video Clock
Scale Factor

1
2
Reserved
Reserved

Mode

VGA and 640 x 480 Graphics Modes
1024 x 768 Graphics and 132-Column Text Modes

Figure 3-91. Video Clock Scale Factor Bit ASSignments

XGA Function - September 1991 3-79

Coprocessor Description

The XGA coprocessor provides autonomous drawing functions for the
video subsystem. Autonomous drawing functions means that the
coprocessor draws into memory (either video memory or system
memory) independently of the system microprocessor, while the
system microprocessor is performing some other operation.

The coprocessor supports 1, 2, 4, or 8 bits-per-PEL. See" Oi rect
Color Mode" on page 3-224 for details of using the coprocessor when
displaying in 16 bits-per-PEL (direct color) mode.

The execution of an operation using the coprocessor involves the
following steps:

1. The system microprocessor sets up the coprocessor registers to
perform a particular operation.

2. The system microprocessor writes to the PEL Operations register
to start the coprocessor operation.

3. The coprocessor performs the drawing operation. The system
microprocessor can be performing some other function at this
time.

4. The coprocessor completes the drawing operation, informs the
system microprocessor, and becomes idle.

5. The process is repeated.

The coprocessor operates on PELs within PEL maps. A PEL map is
an area of memory at a given address with a defined height, width,
and PEL format (see "PEL Maps" on page 3-85).

PELs from a source are combined with PELs from a destination under
the control of a pattern and mask, and the result is written back to the
destination.

After each access, the source, destination, pattern, and mask
addresses are updated according to the function being performed,
and the operation is repeated until a programmed limit is
encountered.

The drawing operation can be a PEL block transfer (PxBlt),
Bresenham line draw, or draw and step.

The function performed to combine the source and destination data
can be a logical or arithmetic operation. One of two possible

3-80 XGA Function - September 1991

operations is selected for each PEL by the value of the corresponding
pattern PEL. A mask PEL for each PEL protects the destination from
update.

Pattern data can be generated automatically from source data by
detecting PELs with a value of O.

A color compare function allows the modifying of the destination PEL
to be dependent on the value of the destination PEL, compared to a
programmable value.

Three general purpose PEL maps can be defined in memory. Each
map has a defined start address, width and height in PELs, and
number of bits-per-PEL. Source, pattern, and destination data can
reside in any combination of these maps. There is also a mask map
with its defined start address, width, height, and format. Mask data is
always taken from this map.

Source, pattern, and destination data are each addressed by unique
X,Y pointers. Mask data is addressed by the destination X,Y pointers
(see Figure 3-93 on page 3-86). If the source or pattern X,Y pointers
move outside the defined extremities of their PEL maps, they are
reset automatically to wrap round to the opposite side of the PEL
map. If the destination X,Y pointers move outside the extremities of
the destination map, update of the destination map is inhibited until
the X,Y pointers move back inside the map.

Figure 3-92 on page 3-82 represents the coprocessor graphics data
flow for the passage of one PEL. In reality, multiple PELs are
processed in one cycle.

XGA Function - September 1991 3·81

Fgd Mix R.:,:e""gc-_______ *_----..
Bgd Mix R_e'-"g'---____________

Pattern M..;.a-"-p ___ +r-_----..

Source
Map

Fgd COlor:..;R'-'.e:..:;g'--+-t"-_"

Bgd Colo,-r :...:Re=.;g"----tl"-_.I Mask
MUX

Old Desti:.;.na:::t::..:io~n:"-" ________ ----' ______ -+l_---1
Map

Color
Compare Color Com=pa;:.:r.;::.e_-.I

Reg ~ _____ ~

MaskMa~ ___________ ~
Combine

Masks

PEL Bit M""a""s"-k----------+L. _____ .J
Reg

Fgd - Foreground
Bgd - Background
Src - Source

MUX - Multiplexer
Reg - Register

Figure 3-92. Coprocessor Data Flow

3-82 XGA Function - September 1991

New
Destination
Map

Programmer's View

An operation is defined as the execution of a single PxBlt, line draw,
or draw and step function.

An operation is set up by first loading the registers of the coprocessor
with appropriate data, such as X,Y coordinates, function mixes, and
dimensions. Then the operation is initiated by writing to the PEL
Operations register. This defines the flow of data in the operation
and starts the operation. The coprocessor then executes the
operation and completes it when some programmed limit is reached.

There is one exception to this sequence of initiating operations: the
draw and step function (see the section "Draw and Step" on
page 3-95).

The XGA can be programmed to inform the system microprocessor of
the completion of an operation using a system interrupt. This
interrupt is called the coprocessor-operation-complete interrupt. An
enable bit and status bit exist for this interrupt in the "Interrupt
Enable Register (Address 21x4)" on page 3-34 and "Interrupt Status
Register (Address 21x5)" on page 3-36.

A mechanism is provided to let the system microprocessor suspend
or terminate an operation before it is completed. The suspension of
operations is required to allow task switches, while termination of
operations can be used to recover from errors.

PEL Formats

The coprocessor can manipulate images with 1, 2, 4, or 8
bits-per-PEL. It manipulates packed-PEL data, so each data
doubleword (32 bits) contains 32, 16,8, or 4 PELs respectively.

The PELs can be in Motorola or Intel format. See Figure 3-3 on
page 3-17 and Figure 3-4 on page 3-18 for Intel and Motorola
formats.

Each PEL map manipulated by the coprocessor can be defined as
either Motorola or Intel format. If the destination map has a different
format than the source, pattern, or mask maps, the coprocessor
automatically translates between the two formats.

Motorola or Intel format is controlled by a bit in the PEL Map Format
register.

XGA Function - September 1991 3-83

PEL Fixed and Variable Data

When executing an operation, the coprocessor reads source, pattern,
and mask data, and reads and writes destination data. The source,
pattern, and mask data can be fixed throughout the operation, or it
can vary from PEL to PEL.

If fixed data is used, it is written to the relevant fixed data register in
the coprocessor before the operation is started (Foreground Color
and Background Color registers).

If variable data is required, the data is read from memory by the
coprocessor during the operation. The coprocessor only allows
variable data from memory, and does not let the system unit system
microprocessor supply variable data.

The Coprocessor View of Memory

To the programmer, the coprocessor treats video memory and
system memory the same. Data can be moved between system
memory and video memory by defining PEL maps at the appropriate
addresses.

Accesses to the XGA video memory are faster than accesses to
system memory.

The coprocessor can address all of the video memory.

The Video Memory Base Address register and Instance indicate the
base address where the video memory appears in system address
space. This base address is on a 4MB address boundary. The
coprocessor assumes that the whole 4MB of address space above
this boundary is reserved for its own video memory. All addresses
outside this 4MB block are treated as system memory. See "POS
Register 4 (Base + 4)" on page 3-154.

"Direct Access to Video Memory" on page 3-18 describes video
memory addressing.

3·84 XGA Function - September 1991

PEL Maps

PEL Maps A, B, and C (General Maps)

The coprocessor defines three general purpose PEL maps in
memory, called PEL maps A, B, and C. Each map is defined by four
registers:

PEL Map Base Pointer

PEL Map Width

PEL Map Height

PEL Map Format

Specifies the linear start address of the
map in memory.

Specifies the width of the map in PELs.
The value programmed must be one less
than the required width.

Specifies the height of the map in PELs.
The value programmed must be one less
than the required height.

Specifies the number of bits-per-PEL of
the map, and whether the PELs are
stored in Motorola or Intel format.

Source, pattern, and destination data reside in any of PEL maps A, B,
or C, determined by the contents of the PEL Operations register.

These maps may be defined as any arbitrary size up to 4096 by 4096
PELs. Individual PELs within the maps are addressed using X,Y
pointers. See "X and Y Pointers" on page 3-87.

PEL maps can be located in video memory and in system memory.

There are two restrictions on map usage: the source and destination
maps must have the same number of bits-per-PEL, and the pattern
map must be 1 bit-per-PEL.

XGA Function - September 1991 3-85

PEL Map M (Mask Map)

In addition to the three general purpose maps, the coprocessor
defines a mask map. This map is closely related to the destination
map. It protects the destination from update on a PEL-by-PEL basis
and can be used to provide a scissoring-type function on any
arbitrary shaped area. See "Scissoring with the Mask Map" on
page 3-90.

The mask map is described by a set of registers similar to the
general purpose PEL maps A, B, and C, but it is fixed at 1 bit-per-PEL.

The mask map differs from the source, pattern, and destination maps
as follows:

• The mask map uses the destination X and Y pointers.

• The position of the mask map origin relative to the destination is
defined by the mask map origin X and Y offsets.

See "X and Y Pointers" on page 3-87 for more information.

Map Origin

The origin of a PEL map is the pOint where X = 0 and Y = O.

The coprocessor defines the origin of all its PEL maps as being at the
top left corner of the map. The direction of increasing X is to the
right; the direction of increasing Y is downward. Figure 3-93
illustrates the X,Y addressing of an XGA map.

Map origin Increasing X
(0,0) ---------"--------..~

Increasing Y

Figure 3-93. XGA PEL Map Origin

The XGA
PEL
Map

3-86 XGA Function - September 1991

In storage, PELs to the right of and below the origin are stored in
ascending, contiguous memory locations.

X and Y Pointers

The characteristics of X and Y pointers vary depending on the type of
PEL map.

Source and Pattern Maps

[!jBC
DE
F

Pattern
Map

These maps each have X and Y pointers that determine
the PEL accessed for that map. The two sets of pointers
are completely independent, and are modified as the
operation proceeds.

If, in the course of an operation, the source or pattern
pOinters are moved beyond the extremities of the PEL
map containing the source or pattern data, they are reset
to the opposite edge of the PEL map. Source and pattern
maps can be regarded as continuous, as they wrap round
at their extremities. This allows a single operation to
repeat a small pattern over a large area in the destination
map. This is known as pattern tiling, shown in
Figure 3-94.

E DE DE DE DE D
F F F F F

BCABCABCABCABCA
E DE DE DE DE D

F F F F F
BCABCABCABCABCA
E DE DE DE DE D

F F F F F

PxBlt Area

Destination Map

Figure 3-94. Repeating Pattern (Tiling)

XGA Function - September 1991 3·87

Destination Map
If a destination X or Y pOinter is moved beyond the
extremity of the PEL map containing the destination, the
pointers are not wrapped. Updates to the destination are
disabled until the pointers are moved to within the defined
PEL map. This mechanism is effectively a fixed scissor
window around the destination PEL map.

A guard band exists around the destination map to ensure
that the destination X and Y pointers do not wrap when
they move outside the limits of the map. The guardband is
2048 PELs wide on all sides of the largest definable
destination map.

The guardband is illustrated in Figure 3-95.

(-2048,-2048)

... -----Up to 4096 -----.. ~

(0,0) ,--____________ --,

i

Destination Map

Guardband (6143,6143)

Figure 3-95. Destination Map Guardband

The guardband allows the destination X and Yaddresses
to range (-2048 to 6143). All PELs within the destination
map can be updated, but updates to PELs within the
guardband are inhibited. The size of the destination map
is determined by the map width and height, so PELs within
the range (0,0) to (width - 1, height - 1) can be
updated. The guardband occupies PEL X addresses
(-2048 to -1), and width to 6143, and Yaddresses
(-2048 to -1), and height to 6143.

3-88 XGA Function - September 1991

Mask Map

To address the destination map correctly and take
advantage of the scissor capability of the coprocessor
destination boundary, X and Y destination addresses can
be calculated using 16-bit twos complement numbers. All
X and Y addresses generated by the operation must be
within the range (-2048 to 6143), and all PELs drawn
must be inside the bounds of the destination map. Any X
and Y addresses generated that are outside the range
(-2048 to 6143) cause the X and Y pointers to wrap and
produce erroneous results.

The mask map width and height can be any size less than
or equal to the dimensions of the destination map. If the
mask map is smaller than the destination map, the
hardware needs to know where the mask map is
positioned relative to the destination map. Two pointers,
the mask map origin X offset and mask map origin Y
offset, specify the X,Y position where the mask map origin
in the destination is located. The following figure
illustrates the use of these pointers.

Destination Map
(0,0) ,--------.------------------,

Y Offset

Mask Map

... 2=J...... J. ••••• • ••
•• • •• •• • ••
••••••••• LI __ ---' •••••

X Offset

Note: The Mask Map is forced to have the same map origin
as the Destination Map.

Figure 3-96. Mask Map Origin X and Y Offsets

The mask map takes its X and Y pointers from the
destination map X and Y pointers. For every PEL in the
destination map, the corresponding PEL in the mask map
is read and, depending on the value of the mask PEL,
update of the destination enabled or disabled.

XGA Function - September 1991 3-89

Scissoring with the Mask Map

Hardware scissoring is provided in the coprocessor using the mask
map. The mask map can be used for any operation in three ways, as
follows:

Disabled
Contents of the mask map and boundary position are
ignored.

Boundary Enabled

Enabled

Contents of the mask map are disabled, but the boundary
of the mask map acts as a rectangular scissor window on
the destination map. No memory is required to store the
map contents in this mode.

Contents of the mask map can be used to provide a
nonrectangular scissor window. The boundary of the
mask map also provides a rectangular scissor window at
the extremities of the mask map.

The mask map mode is controlled by a bit in the PEL Operation
register. PELs located on a scissor boundary are treated as if they
are inside it. The modes are described in the following text.

3·90 XGA Function - September 1991

Mask Map Disabled
When the mask map is disabled, updates to the
destination are performed regardless of the position or
contents of the mask map. No memory must be reserved
for the mask map. The contents of the PEL map M Base
Pointer, Width, Height, and Format registers are ignored.

If the current operation attempts to draw outside the
boundary of the destination map, the update is
automatically inhibited. The destination X and Y pointers
are incremented as normal, but destination update is not
enabled until the pointers move back inside the bounds of
the destination map. A fixed hardware scissor window
then exists around the boundary of the destination map.
This destination boundary scissor is enabled regardless of
the mask map mode.

Figure 3-97 illustrates the destination boundary scissor
operation when the mask map is disabled.

000
000 000

000 000

Destination Map

•• 0 000

•• 0 000
000

000

000
000

o Indicates a PEL drawn
• Indicates a scissored (not drawn) PEL

Figure 3-97. Destination Boundary SCissor

XGA Function - September 1991 3-91

Mask Map Boundary Enabled
Mask map boundary enabled mode provides a single
rectangular scissor window within the destination map.
The contents of the mask map are ignored, so no memory
must be reserved for the mask map.

In boundary enabled mode, the size and position of the
mask map must be specified. The PEL map M Base
Pointer, Width, Height, and Format registers must be
defined. These four registers define a rectangular
boundary within the destination map. Updates to the
destination map inside this boundary take place as
normal. Updates outside this boundary are inhibited.

The following figure illustrates a mask map boundary
enabled scissoring operation.

Destination Map

Mask Map Boundary

000
000

000
• 0

o Indicates a PEL drawn
• Indicates a scissored (not drawn) PEL

Figure 3-98. Mask Map Boundary SCissor

3-92 XGA Function - September 1991

Mask Map Enabled
When the mask map is enabled, both the mask map
boundary and contents provide scissoring action. Memory
must be reserved to hold the mask map PELs. The PEL
map M Base Pointer, Width, Height, and Format registers
must be set up to point to the mask data, describing its
size and position relative to the destination map.

Any PEL in the destination that is about to be updated has
its corresponding mask map PEL examined. If the mask
PEL is inactive (0), the destination PEL update is inhibited.
If the mask PEL is active (1), the destination PEL is
updated as normal. This mode allows drawing
nonrectangular scissor windows in the mask map prior to
an operation, then in a Single execution of an operation,
applying a nonrectangular scissor window to that
operation.

Memory must be reserved to hold the mask map contents.
The mask data is fixed at 1 bit-per-PEL. For a full screen
mask map on a 1024 x 768 PEL screen, 96KB of memory
are required. If the scissor operation does not cover the
whole destination map, a mask map smaller than the
destination map can be used to save memory.
Applications with no memory available for the mask map
contents must use the mask map boundary enabled mode.

The following figure illustrates a mask map enabled
scissor operation.

XGA Function - September 1991 3-93

Destination Map

Mask Map Boundary

"'1 ~ •••• ••• 000 ••••

••• • ••• ••• • ••• ••••••••••• • •••••

o Indicates a PEL drawn
• Indicates a scissored (not drawn) PEL
• Indicates a '0' in the Mask Map

Figure 3-99. Mask Map Enabled SCissor

Before performing an operation that requires a
nonrectangular scissor, the nonrectangular mask into the
mask map must be drawn. Windowing systems only
permit rectangular windows, so the mask can be drawn
using a sequence of PxBlt operations that have fixed
source data. For more complex shapes, the line draw and
draw and step functions can be used to draw area outlines
that can then be filled.

A large number of operations can be performed, all using
the same mask, keeping the overhead per operation in
setting up the mask small. The use of the mask to perform
nonrectangular scissors improves the performance of a
given drawing operation over a single rectangular scissor
that is provided by the hardware.

3-94 XGA Function - September 1991

Drawing Operations

The coprocessor provides four drawing operations:

• Draw and step
• Line draw
• PEL block transfer (PxBlt)
• Area fill.

The operations can be either one-dimensional or two-dimensional.
Draw and step and line draw are one-dimensional while the PxBlts
are two-dimensional. Draw and step and line draw are collectively
called draw operations in the following text.

Either of the draw operations can be read or write. Qualifiers to the
operation are described in "Line Draw" on page 3-99.

Draw and Step

This operation draws a PEL at the destination, then updates the X,Y
pointers to one of the eight neighbors of the PEL according to a 3-bit
code.

Up to 15 address steps can be specified in a fixed direction by each
draw and step code. An 8-bit code describes the vector, as shown in
Figure 3-100.

7 6 5 4 3 2 1 o
Direction Code I MID I Number of Steps

Figure 3-100. Draw and Step Code

XGA Function - September 1991 3-95

Number of Steps
This field indicates how many steps are taken, from 0 to
15. The X,V pointers are updated after the PEL is drawn,
so a draw and step function always attempts to draw at
least one PEL.

The number of steps taken in the draw and step operation
is one less than the number of PELs that the hardware
attempts to draw. When the number of steps is
programmed to five, six PELs are drawn; when zero steps
are specified, one PEL is drawn. After the draw and step
operation, the X,V pointers point to the last PEL that the
operation attempted to draw (this PEL may not be drawn if
the last PEL null drawing mode is active).

For example, a draw and step code of hex 35 moves X,V
pOinters starting at coordinates (17,10) to coordinates
(22,5), as shown in Figure 3-101.

* I

* I

* I

* I

End Point
* X,V = (22,5)

I

Step code = hex 35

(Draw in direction of
upper right PEL
taking 5 steps)

Start POint *
X,V = (17,10)

* Represents the PEL drawn
I Represents the address step to the next PEL

Figure 3-101. Draw and Step Example

MID
This field specifies if the current operation is a move
operation or a draw operation. When set to 1, PELs are
drawn. When set to 0, X and V pOinters are modified as
normal, but no PELs are drawn.

3-96 XGA Function - September 1991

Direction Code

3

This field indicates the direction of drawing relative to the
current PEL, as shown in Figure 3-102.

2

1

•••••• 4 •••• -0 •••• • 0 ••••••

5 7

6

Figure 3-102. Draw and Step Direction Codes

Draw and step codes must be written to the Direction Step register.
Each write to the register can load up to four draw and step codes in
one access. The draw and step codes are executed starting with the
least significant byte. Each group of up to four codes written to the
Direction Step register is treated as one operation. All codes are
executed before the coprocessor indicates that the operation is
complete. However, for the purposes of first and last PEL null
drawing, each code describes a distinct line.

The draw and step operation differs from other operations because it
is not initiated through the PEL Operations register. Writing a draw
and step code to the most significant byte of the Direction Step
register initiates the draw and step operation.

Before any data is written to the Direction Step register, the PEL
Operation register must be loaded to specify the particular draw and
step function and the data flow for the operation. Writing the PEL
Operation register with a function of draw and step does not initiate a
draw and step operation, but sets up the parameters for the
operation. Writing steps to the Direction Step register initiates the
draw and step operation. If the PEL Operation register specifies a
function other than draw and step when the Direction Step register is
written, no operation takes place.

XGA Function - September 1991 3·97

The XGA treats a draw and step code of 00 as a stop code. If a stop
code is encountered as one of the four codes in the Direction Step
register, the draw and step operation completes after that code has
been executed. The completion of the operation is indicated in the
normal way through the Coprocessor Control register. The
coprocessor busy bit in the Coprocessor Control register indicates
the operation has completed because a stop code was encountered.
This mechanism allows software to load sequences of draw and step
codes to the coprocessor without monitoring the number of codes that
make up the figure being drawn.

There are two ways to program fewer than four codes to the Direction
Step register. The first unwanted step code can be set to 00 (stop)
and all 32 bits of the register written, or only the required number of
codes can be written to the Direction Step register. In the latter case,
the codes must be written to the most significant bytes of the register.
The two methods are shown in Figure 3-103.

Writing 32 bits and using the stop code:

31 o

Don't care Stop code 00 Code 2 Code 1

Writing only those codes required:

31 o

Code 2 Code 1 Not written Not written

Note: The figure shows the case when only two Step codes are required.
The second method requires the 110 address programmed to change
depending on the number of steps written.

Figure 3-103. Programming Fewer Than Four Step Codes

3-98 XGA Function - September 1991

Line Draw

The line draw function uses the Bresenham line drawing algorithm to
draw a line of PEls into the destination. The Bresenham line drawing
algorithm operates with all parameters normalized to the first octant
(octant 0). The octant code for the octant in which the line lies must
be specified in the Octant field of the PEL Operation register. This
contains a 3-bit code made up of three 1-bit flags called OX, DV, and
OZ.

DX is 1 for negative X direction, 0 for positive X direction
DY is 1 for ne9ative V direction, 0 for positive V direction
DZ is 1 for IXI S Ivi. 0 for Ixi > Ivi (IXI is the magnitude of X, the

value ignoring the sign)

The Octant field is formed by concatenating OX, DV, and OZ. See
Figure 3-158 on page 3-149 for octant bit value assignments.

Figure 3-104 shows the encoding of octants.

7 3

6 2
Start

4 o

5

Figure 3-104. Bresenham Line Draw Octant Encoding

The length of the line (delta X when normalized) must be specified in
the Operation Dimension 1 register.

The coprocessor provides the following registers to control the draw
line address stepping:

• Bresenham Error Term E = 2 x deltaY - deltaX
• Bresenham Constant K1 = 2 x deltaY
• Bresenham Constant K2 = 2 x (deltaY - deltaX).

When the drawing operation has completed, X and Y pointers point at
the last PEL of the line.

XGA Function - September 1991 3-99

The coprocessor draw operations that take source data from a PEL
map apply the specified address update to either the source or
destination map. The X,Y address in the other map is always
incremented in X only. There are two possible draw operations,
Read Draw and Write Draw.

Write Draw

Read Draw

After every PEL drawn, the source X,Y pOinters are
incremented in X only. The destination X,Y pointers
are updated according to the current function
specified (Bresenham line draw or draw and step).

After every PEL drawn, the source X,Y pointers are
updated according to the current function specified
(Bresenham line draw or draw and step). The
destination X,Y pointers are incremented in X only.

The read and write in the terms read draw and write draw refer to the
direction of data transfer of the map having its addresses updated by
the specified function. During a read line draw, the map where data
is read (the source) has its addresses updated by the Bresenham line
draw function. During a write draw and step, the map where data is
written (the destination) has its addresses updated by the draw and
step function.

Note: To draw a fixed color line (by taking the source from the
Foreground Color or Background Color register), a write draw
function must be used.

Figure 3-105 on page 3-101 illustrates the stepping of X and Y
pointers during a read line draw and write line draw.

3-100 XGA Function - September 1991

Write Line Draw

Source (and pattern) map

.123456789

Read Line Draw

Source (and pattern) map

.12

9
678

345

Destination (and Mask) Map

.12

9
678

345

Destination (and Mask) Map

.123456789

The numbers 1 to 9 denote each PEL in order of drawing.

Figure 3-105. Memory to Memory Line Draw Address Stepping

In the map that is not having the current addressing function applied,
the X pointer is always incremented regardless of the direction of X in
the current addressing function. The Y pointer for the same map is
not updated during the operation.

The above description refers to the source and destination maps.
The pattern map X and Y pointers are updated in the same way as the
source pointers. The mask map X and Y pointers (that are not
directly accessible), are updated in the same manner as the
destination pointers.

If an attempt is made to move any of the map pointers outside the
bounds of their current map, the rules set out in "X and Y Pointers"
on page 3-87 apply: the source and pattern pointers wrap, and the
mask and destination scissor. To draw a line with a repeating color
scheme and pattern, the source map width and pattern map width
must be set to the required run-length of the repeating colors and
pattern respectively. The coprocessor automatically draws the
repeating run of colors and pattern. Conversely, if a line with a long
nonrepeating color scheme or pattern is required, the source and

XGA Function - September 1991 3-101

pattern map widths must be set equal to, or greater than, the line
length, otherwise wrapping occurs.

Drawing with Null Endpoint PELs: It is common to draw a series of
lines, one after the other, with the endpoint of one line being the
starting point of the next line. Such composite lines are called
polylines. A problem can arise because the common endpoint of the
two abutting lines is drawn twice, once as the last PEL of the first line,
and once as the first PEL of the second line. If a mix of XOR is active,
the common PEL is drawn and removed. Similar problems arise with
different mixes.

To avoid drawing the endpoints of polylines twice, the coprocessor
provides functions that inhibit the drawing of the end PEL. Depending
on the function selected, either the first PEL or the last PEL of
individual lines is not drawn (drawn nUll). The choice of whether to
draw first or last PEL null is arbitrary, as long as one or the other is
used for the whole figure being drawn. It is usually a convention of
the graphics application whether first or last PEL null is used.

First and last PEL null drawing functions are provided for both the
Bresenham line draw function and the draw and step function. In all
cases, the programming of parameters is the same as for normal line
draw and draw and step. Only the contents of the Drawing Mode field
in the PEL Operations register are different.

Area Boundary Drawing: The outline of an object is drawn using
Bresenham line draw, draw and step functions, or a combination of
the two. The outline is created by observing the following rules.

• If a line is drawn from screen top-to-bottom, draw with last PEL
null and draw only the last PEL in every horizontal run of PELs.

• If a line is drawn from screen bottom-to-top, draw with first PEL
nUll, and draw only the first PEL in every horizontal run of PELs.

• If a line is horizontal, draw none of the PELs.

• Always draw with a mix of XOR.

The coprocessor implements these drawing rules in hardware. A
shape drawn as an area outline must be drawn as a normal line draw
or draw and step operation, with the draw area boundary drawing
mode selected in the PEL Operation register and a mix of XOR.

3-102 XGA Function - September 1991

Area Outline SCissoring: It is important during area outline drawing
to ensure that the correct outline is drawn when the outline intersects
the scissor boundary. In particular, when the outline is scissored by
a vertical boundary at the left of a map, a PEL is drawn in the outline
to activate filling at that boundary.

Using the combination of mask map and fixed destination boundary
scissoring available in XGA, area outlines are incorrectly scissored
by the mask map, but correctly scissored by destination map
boundary scissoring. The correct area can be filled by ensuring that
the mask map SCissoring is disabled when the outline is drawn and
enabled or boundary enabled when the scan/fill part of the area fill is
drawn. This results in the correct, scissored figure being drawn. See
"Scissoring with the Mask Map" on page 3-90.

PEL Block Transfer (PxBlt)

The PxBlt function transfers a rectangular block of PELs from the
source to the destination. The width and height of the rectangle are
specified in the Operation Dimension 1 and Operation Dimension 2
registers. The transfer can be programmed to start at any of the four
corners of the rectangle, and proceed toward the diagonally opposite
corner. The address is stepped in the X direction until the edge of the
rectangle is encountered, then X is reset and the Y direction is
stepped. This process is repeated until the entire rectangle is
transferred.

PxBlts can be implemented in normal write mode or in
read/modify/write mode, depending on the number of bits-per-PEL
and the mix being used.

If the PxBlt is being implemented in read/modify/write mode (that is,
1, 2, or 4 bits-per-PEL with any mix or 8 bits-per-PEL with a
read/modify/write mix), then do one of the following:

• Ensure that the destination map has a base address that is on a
doubleword (4 byte) address boundary, and is an exact number of
doublewords wide.

• If the destination map is not doubleword aligned, ensure that the
destination map boundary is not crossed during the PxBlt
operation.

XGA Function-September 1991 3-103

PxBlt Direction: The PxBlt direction indicates in which direction the
X,Y address is stepped across the rectangie. It also defines the
starting corner of the transfer. This is significant if the destination
rectangle overlaps the source rectangle, so the PxBlt direction must
be programmed correctly to achieve the required result.

The direction octant bits in the PEL Operations register determine the
direction that the PxBlt is drawn in.

The encoding is as follows:

binary 000 or 001

binary 100 or 101

binary 010 or 011

binary 110 or 111

(000 or 001)

j

Start at top left corner of area, increasing right
and down.
Start at top right corner of area, increasing left
and down.
Start at bottom left corner of area, increasing
right and up.
Start at bottom right corner of area, increasing
left and up.

(100 or 101)

j
PxBlt Area

1
(010 or 011) (110 or 111)

Nole: Numbers are binary.

Figure 3-106. PxBlt Direction Codes

After a PxBlt operation has completed, the X and Y pointers are set
so the X pOinter contains its original value at the start of the PxBlt and
the Y pointer points to its value on the last line of the PxBlt plus or
minus 1, depending on the Y direction that the PxBlt was
programmed.

3·104 XGA Function - September 1991

See "Overlapping PxBlts" on page 3-220 for details on PxBlts where
the source and destinations overlap.

Inverting PxBIt: As detailed in "Map Origin" on page 3-86, the
coprocessor assumes that the origin of a PEL map is at the top left
corner of the map, with Y increasing downward. Applications that
use an origin at the bottom left of the map (Y increasing upward) use
either of the following:

• Modify all Y coordinates by subtracting the map height from them
before passing the modified coordinates to the display hardware.

• Use the coprocessor inverting PxBlt operation.

Inverting PxBlt use requires the application to draw into an off-screen
PEL map without any Y coordinate modification, and then use the
inverting PxBlt operation to move the data to the destination map.

Figure 3-107 on page 3-106 illustrates the X,Y addressing of the
inverting PxBlt operation, and shows how the result of the inverting
PxBlt appears the same as the original when displayed as an
inverted PEL map (that is, with the origin at the bottom left).

XGA Function - September 1991 3·105

Map
origin ___ In_c_r_ea_S_i_ng_x ___ •

(0,0) ,--_______ -,
~

>-
01
c:
.~

~
~

Ys, Ys-

~ . • • •• •
• • • •

Source

The destination, when displayed
as an inverted PEL map, appears
the same as the original.

Figure 3-107. Inverting PxBlt

Map
origin

(0,0)

>-
01
c:
·iii
a:I
Q)
0
E

>-
01
c:
.~

~
o
E

t

Increasing X

•
• • • • • •• • •

Destination

• • • •• •
• • • •

(0,0) _________ ~
Map

origin Increasing X

Destination displayed
as inverted PEL map

An inverting PxBlt is set up in the same manner as a standard PxBlt
with the following notes:

• The PxBlt direction set applies to the updating of the source X
and Y addresses.

• The destination Y pointer must be programmed to the opposite (in
Y) corner of the destination rectangle.

• The Function field in the PEL Operation register must be set to
inverting PxBlt as opposed to PxBIt.

See "Overlapping PxBlts" on page 3-220 for details on PxBlts when
the source and destinations overlap.

3·106 XGA Function - September 1991

Area Fill

The following steps are required to perform an area fill operation
without a user pattern:

1. Draw the closed outline of the area to be filled using the area
boundary drawing mode. Typically, a unique, off-screen PEL map
would be defined to draw the area boundary into. This PEL map
must be initialized to contain O-value PELs before the boundary is
drawn. This PEL map must be in a 1 bit-per-PEL format.

2. Designate the PEL map where the area boundary was drawn as
the pattern map.

3. Specify the desired destination.

4. Select the desired foreground mix and source.

5. Specify the background mix as Destination (code 5).

6. Specify the operation direction as any direction with X increasing
(Codes 0 or 1, 2 or 3), because the pattern data is scanned from
left to right. Selection of a negative X direction code for area fill
operations results in fill errors.

7. Initiate the area fill operation.

During the area fill operation, the coprocessor applies a filling
function to the pattern PELs before they are used to select
background and foreground sources and mixes in the usual way. The
filling function modifies the pattern PELs horizontally line by line. It
scans the pattern from left to right, and when encountering the first
foreground (1) PEL, sets all subsequent PELs to foreground (1) until
the next foreground PEL is encountered.

This process is illustrated in Figure 3-108.

Pattern scanned to the right ..

Original Pattern

Filled Pattern

000010000000010010100

1 Filling function

000011111111100011000

Figure 3-108. Pattern Filling

XGA Function-September 1991 3-107

The filled pattern is generated internally to the coprocessor. It is then
used exactly as the pattern in any normal operation, with foreground
(1) PELs selecting foreground source and mix, and background (0)
PELs selecting background source and mix. During area fill
operations, it is required to fill the specified area and leave all other
PELs unchanged. This is why the background mix was specified to be
destination. Figure 3-92 on page 3-82 shows the position of the
pattern-filling circuitry in the coprocessor data flow.

Area fill operations that require a pattern fill must be performed in
two stages. This is because area fill PxBlt operations use the pattern
map to perform the area fill function and cannot include a user
pattern in a single operation. However, by first combining the
contents of the mask map with a mask of the filled area, a full pattern
PxBlt of an area can be achieved as follows:

1. Both the pattern map and the destination map must be defined as
the map containing the previously drawn area boundary. The
source map must be defined as the map that would normally
supply the mask map for the operation. The mask map facility
must be disabled. An area fill PxBlt must be performed with the
following conditions:

• Foreground source = source PEL map
• Foreground mix = Source (code 3)
• Background source = background color
• Background color = 0
• Background mix = Source (code 3).

Note: All the maps in this operation must be 1 bit-per-PEL.

This operation combines the mask data for the pattern area fill
with a mask of the filled area.

2. A second non-area fill PxBlt must be performed with the
combined mask generated in step 1 defined as the mask map. All
other maps can be used as normal with no restrictions.

3-108 XGA Function - September 1991

Logical and Arithmetic Functions

During an operation in the coprocessor, source data is combined with
destination data, under the control of pattern data, and the result is
written back to the destination. Mask data can be included in the
operation to selectively inhibit updating of destination data.

Source data can be either foreground source or background source
on a PEL-by-PEL basis. The foreground source is combined with the
destination using the foreground mix; the background source is
combined with the destination using the background mix. The pattern
determines if the source and mix are foreground or background for a
particular PEL. If the pattern PEL is 1, source and mix are
foreground; if it is 0, they are background.

The foreground and background sources can each be either a fixed
color over the whole operation or PEL data taken from the source
PEL map. The background source and foreground source bits in the
PEL Operations register determine whether fixed colors or source
PEL map data is used in an operation. The fixed color that is used as
the foreground source is called the foreground color, and is stored in
the Foreground Color register. The fixed color that is used as the
background source is called the background color, and is stored in
the Background Color register.

The possible combinations of source, destination and pattern are
shown below:

• Pattern PEL = 1 (foreground source)

New destination PEL = old destination PEL Fgd OP
Foreground color

New destination PEL = old destination PEL Fgd OP PEL
map source.

• Pattern PEL = 0 (background source)

New destination PEL = old destination PEL Bgd OP
Background color

New destination PEL = old destination PEL Bgd OP PEL map
source.

Fgd OP is the logical or arithmetic function specified in the
Foreground Mix register. Bgd OP is the logical or arithmetic function
specified in the Background Mix register.

XGA Function - September 1991 3-109

These operations can be inhibited by the contents of the mask map.
If the mask PEL is 0, the destination PEL is not modified. If the mask
PEL is 1, the selected operation is applied to the destination PEL.

Mixes

The foreground and background mixes provided by the XGA are
independent. The XGA provides all logical mixes of two operands
and six arithmetic mixes. The mixes provided are as follows:

Code (hex)

00
01
02
03
04
05
06
07
08
09
OA
08
OC
00
OE
OF
10
11
12
13
14
15

Function

Zeros
Source AND Destination
Source AND NOT Destination
Source
NOT Source AND Destination
Destination
Source XOR Destination
Source OR Destination
NOT Source AND NOT Destination
Source XOR NOT Destination
NOT Destination
Source OR NOT Destination
NOT Source
NOT Source OR Destination
NOT Source OR NOT Destination
Ones
Maximum
Minimum
Add With Saturate
Subtract (Destination - Source) With Saturate
Subtract (Source - Destination) With Saturate
Average

Note: Mix codes hex 16 to FF are reserved.

Figure 3-109. Foreground and Background Mixes

Saturate means that if the result of an arithmetic operation is greater
than aIl1's, the final result remains aIl1's. If the result of an
arithmetic operation is less than 0, the final result remains at O.

3-110 XGA Function-September 1991

Breaking the Coprocessor Carry Chain

To limit the operation of the coprocessor to certain bits in a PEL (for
example, to perform an operation on both the upper and lower 4 bits
of an 8-bit PEL independently), it is not desirable for the arithmetic
operations to propagate a carry from one group of bits in the PEL to
the next. One solution is to use the XGA PEL bit mask to ensure only
one component of the PEL is processed at a time. The disadvantage
of this technique is that the operation must be repeated once for each
component in the PEL.

The XGA provides an alternative mechanism that allows PELs with
component fields to process correctly in one pass. A carry chain
mask can be specified that determines how carry bits are propagated
in the coprocessor. By loading the appropriate mask in the Carry
Chain Mask register before performing an operation involving an
arithmetic operation or color compare, the PEL is effectively divided
into independent fields. The mask prevents the coprocessor carry
being propagated across the field boundaries.

Each bit in the mask enables or disables the propagation of the carry
from the corresponding bit in the coprocessor to its more significant
neighbor. The mask is n - 1 bits wide for a PEL n bits wide, and the
carry from the most significant bit of the coprocessor is not
propagated.

An example for a carry chain mask for an 8-bit PEL with two 4-bit
fields follows:

7 6 5 4 3 2 o

I - 1 o

Figure 3-110. Carry Chain Mask for an 8-bit PEL

Bits outside the required mask size for a given PEL size need not be
written in the register.

XGA Function - September 1991 3-111

Generating the Pattern from the Source

Pattern data for an operation can be supplied by PEL maps A, B, or C,
or it can be fixed to 1 (foreground source) throughout the operation.
Pattern data can also be internally generated by the coprocessor
from source PEL map data. A comparison operation is performed on
each source PEL and the pattern data is generated depending on the
result.

The comparison operation compares the source PEL to O. For any
source PEL with a value of 0, a 0 (background) pattern PEL is
generated. For any nonzero source PEL, a 1 (foreground) pattern
PEL is generated. The internally generated pattern is then used to
select between foreground and background sources, and mixes in the
usual way. When the pattern is internally generated, the coprocessor
ignores the pattern PEL map contents.

This capability allows the background source data and mix to be
forced for all 0 value PELs in the source. In particular, it provides a
transparency function, where a multi bit character can be drawn onto
a destination with the destination data showing through any 0 (black)
PEL in the source character definition.

Color Expansion

If the source PELs for an operation have fewer bits per PEL than the
destination PELs, the source PELs must be expanded to the same
size as those in the destination before they are combined. This
process is referred to as color expansion.

The major use of color expansion is to draw 1-bit-per-PEL character
sets on n-bits-per-PEL destinations. The coprocessor performs this
function in hardware, but does not have a color expansion look-up
table. Instead, the 1-bit-per-PEL character map must be defined as
the pattern map. The PEL Operation register must be programmed to
use the Foreground Color and Background Color registers, not the
source map. The Foreground Color and Background Color registers
then act as a two-entry color expansion look-up table, and the
character map is expanded to the number of bits per PEL in the
destination.

3-112 XGA Function - September 1991

PEL Bit Masking

The PEL bit mask allows any combination of bits in a destination PEL
to be protected from update (being written). A mask value must be
loaded in the PEL Bit Mask register to enable or disable updating of
PEL bits selectively as required.

This mask is the same as the plane mask in subsystems that are
plane oriented, as opposed to packed-PEL.

When the destination bits-per-PEL is less than 8 bits, only the low
order bits of the PEL Bit Mask register are significant.

A bit that is not write enabled is prevented from affecting arithmetic
or compare operations. In effect, masked bits are completely
excluded from the operation or comparison.

Color Compare

The value that the destination PELs are compared with is stored in
the Destination Color Compare Value register. The Destination Color
Compare Condition register indicates the condition when the
destination update is inhibited. The possible conditions are as
follows:

Condition
Code

o
1
2
3
4
5
6
7

Condition

Always True (disable update)
Destination Data> Color Compare Value
Destination Data = Color Compare Value
Destination Data < Color Compare Value
Always False (enable update)
Destination Data > = Color Compare Value
Destination Data < > Color Compare Value
Destination Data < = Color Compare Value

Figure 3-111. C%r Compare Conditions

Note: A comparison result of true prevents update to the destination.

XGA Function - September 1991 3-113

Controlling Coprocessor Operations

Starting a Coprocessor Operation

Coprocessor operations are started by writing the most significant
byte of the PEL Operations register. One exception to this is the draw
and step function. For details, see "Draw and Step" on page 3-95.

Suspending a Coprocessor Operation

Coprocessor operations can be suspended before they have
completed. The state of the coprocessor, including internal register
contents, can then be read rapidly to allow task state saving. A
previous task can be restored through the same data port and the
restored operation can be restarted.

The suspend operation bits in the Coprocessor Control register are
used to suspend and restart coprocessor operations.

If a coprocessor operation is suspended, a terminate operation is
required before starting a new coprocessor operation.

Terminating a Coprocessor Operation

Operations can be terminated before they have completed. The state
of the coprocessor registers that are updated as the operation
proceeds is undefined after the operation is terminated and their
contents must not be relied upon. "Coprocessor Registers" on
page 3-118 details the registers that are updated as an operation
proceeds.

The terminate operation bit in the Coprocessor Control register is
used to terminate operations.

3-114 XGA Function - September 1991

Coprocessor Operation Completion

There are two methods for the system microprocessor to detect the
completion of a coprocessor operation:

• Receive an operation-complete interrupt from the XGA.
• Poll the coprocessor busy bit in the Coprocessor Control register.

Coprocessor-Operatlon-Complete Interrupt

The coprocessor provides an operation-complete interrupt that can
interrupt the system on completion of an operation. The interrupt is
enabled by a bit in the Interrupt Enable register and its status is
indicated by a bit in the Interrupt Status register. See "Interrupt
Enable Register (Address 21x4)" on page 3-34 and "Interrupt Status
Register (Address 21x5)" on page 3-36 for bit locations.

Regardless of the state of the operation-complete interrupt enable bit,
the status bit is always set to 1 on completion of an operation. The
application must ensure that this bit is reset before starting an
operation. This is done by writing a 1 back to the status bit.

If the interrupt enable bit is 1, the completion of an operation not only
sets the interrupt status bit, but also causes an interrupt. The system
microprocessor must reset the interrupt by writing a 1 back to the
status bit after servicing the interrupt.

Coprocessor Busy Bit

The coprocessor busy bit in the Coprocessor Control register
indicates if the coprocessor is executing an operation. It is set to 1 by
the hardware when the coprocessor is executing an operation and
reset to 0 when the operation completes. Applications can read this
bit to determine if the coprocessor is busy. See "Waiting for
Hardware Not Busy" on page 3-221 for more information.

Accesses to the Coprocessor During an Operation

When the coprocessor is executing an operation, the system
processor can only perform read accesses to the coprocessor
registers. Write accesses are not permitted because they could
corrupt operation data.

If the system processor attempts to write data to the coprocessor
registers during an operation, the coprocessor allows the access to
complete, but the executing operation may be corrupted. The

XGA Function-September 1991 3-115

coprocessor interrupts the system microprocessor to indicate a write
access occurred during an active operation and the operation may
have been corrupted. This interrupt is called the
coprocessor-access-rejected interrupt. An enable bit is in the
Interrupt Enable register and a status bit is in the Interrupt Status
register. See "Interrupt Enable Register (Address 21x4)" on
page 3-34 and "Interrupt Status Register (Address 21x5)" on
page 3-36 for bit locations.

There is one exception to this rule. The Coprocessor Control register
can be written during an operation without corrupting the operation.
See "Coprocessor Control Register (Offset 11)" on page 3-122 for
more information.

Coprocessor State Save/Restore

When operating in a multitasking environment it is necessary to save
and restore the state of the display hardware when switching tasks.

Sometimes a task switch is required when the coprocessor is in the
course of executing an operation. Not only the contents of registers
visible to the system microprocessor, but also contents of internal
registers (the state of the coprocessor) must be saved and, later,
iestoied. The copiocessoi has special haidwaie that lets it suspend
the execution of an operation and efficiently save and restore task
states.

Suspending Coprocessor Operations

At any time during the execution of a coprocessor operation, the
operation can be suspended by writing to a bit in the Coprocessor
Control register. Any executing memory cycle is completed before
the coprocessor suspends the operation. The system can then save
and restore the coprocessor contents and restart the restored
operation by clearing the bit in the Coprocessor Control register.

If a coprocessor operation is suspended, a terminate operation is
required before starting a new coprocessor operation.

3-116 XGA Function - September 1991

Save/Restore Mechanism

The coprocessor provides two special 32-bit save/restore data ports.
All the coprocessor state data passes through these ports when the
state is being saved or restored. The number of doublewords read or
written is determined by two read-only registers (State Length
registers A and B). The amount of data saved or restored is less than
1 KB. State-saving software must perform string I/O read instructions,
reading data from the two save/restore data ports in turn. The
coprocessor hardware automatically provides successive
doublewords of data on successive reads. After the state has been
saved, the coprocessor is in a reset state.

If a coprocessor operation is suspended, a terminate operation is
required before starting a new coprocessor operation.

Restoring the state of the coprocessor uses a similar process. State
data must be moved back into the coprocessor using string I/O write
instructions. The state data must be written back into the
coprocessor in the same order as it was read (first out, first in).

The exact number of doublewords specified in the State Length
registers must be read or written when saving or restoring the
coprocessor state. Failure to do this leaves the coprocessor in an
indeterminate state.

XGA Function - September 1991 3-117

Coprocessor Registers

The XGA coprocessor supports two register interface formats. The
type of interface required (Intel or Motorola) is set when selecting
Extended Graphics mode in the Operating Mode register.

The difference between Intel and Motorola formats is that, with two
exceptions, the bytes within each 4 bytes of register space are
reversed (byte 0 becomes byte 3). The two exceptions are the
Direction Steps register and the PEL Operations register. The bytes
within these registers are not reversed because the existing byte
order is required by the operation being performed.

Most of the coprocessor registers are not directly readable by the
system microprocessor. Registers that cannot be read directly can
be read indirectly using the coprocessor state save and restore
mechanism. See "Save/Restore Mechanism" on page 3-117 for
more information. Only the following registers are readable directly
by the system microprocessor:

• State Save/Restore Data Ports register
• State Length registers
• Coprocessor Control register
~ Virtual Memory Controi register
• Virtual Memory Interrupt Status register
• Current Virtual Address register
• Bresenham Error Term E register
• Source X Address and Source Y Address registers
• Pattern X Address and Pattern Y Address registers
• Destination X Address and Destination Y Address registers.

The contents of most coprocessor registers are not changed during a
coprocessor operation and therefore do not need to have their
contents reloaded before starting another similar operation. The
registers with contents that change during an operation are:

Bresenham Error Term E
The error term is updated throughout line draw
operations.

Source X Address and Source Y Address
Any operation that uses the source PEL map updates
these pointers.

3-118 XGA Function-September 1991

Pattern X Address and Pattern Y Address
The pattern map X and Y pointers are updated during any
operation that does not have the Pattern field in the PEL
Operation register set to foreground.

Destination X Address and Destination Y Address
The destination map X and Y pointers are updated during
all operations.

The following figures show the coprocessor register space in Intel
and Motorola formats.

Coprocessor Address Space

Byte 3 1 Byte 2 Byte 1 1 Byte 0

Page Directory Base Address

Current Virtual Address

State B length I State A length

l PEL Map Index Coprocessor I Control

PEL Map n Base Pointer

PEL Map n Height PEL Map n Width

I PEL Map n Format

Bresenham Error Term

Bresenham K1

Bresenham K2

Direction Steps

I Destination Color Background Mix I Foreground Mix
Compare Condition

Destination Color Compare Value

PEL Bit Mask

Carry Chai n Mask

Foreground Color Register

Background Color Register

Operation Dimension 2 Operation Dimension 1

Mask Map Origin Y Offset Mask Map Origin X Offset

Source Map Y Address Source Map X Address

Pattern Map Y Address Pattern Map X Address

Destination Map Y Address Destination Map X Address

PEL Operation

Figure 3-112. XGA Coprocessor Register Space, Intel Format

Note: All unused and undefined offsets are reserved.

0

4

8

C

10

14

18

1C

20

24

28

2C

30

34

38

3C

40

44

48

4C

50

54

58

5C

60

64

68

6C

70

74

78

7C

XGA Function - September 1991 3-119

Coprocessor Address Spece

Byte 0 I Byte 1 I Byte 2 I Byte 3

Page Directory Base Address 0

Current Virtual Address 4

8

State B length I State A length C

I PEL Map Index Coprocessor I 10
Control

PEL Map n Base Pointer 14

PEL Map n Height PEL Map n Width 18

I PEL Map n Format 1C

Bresenham Error Term 20

Bresenham K1 24

Bresenham K2 28

Direction Steps 2C

30

34

38

3C

40

44

I Destination Color Background Mix I Foreground Mix 48
Compare Condition

Destination Color Compare Value 4C

PEL Bit Mask 50

Carry Chain Mask 54

Foreground Color Register 58

cackground voior Heglster 5C

Operation Dimension 2 I Operation Dimension 1 60

64

68

Mask Map Origin Y Offset Mask Map Origin X Offset 6C

Source Map Y Address Source Map X Address 70

Pattern Map Y Address Pattern Map X Address 74

Destination Map Y Address Destination Map X Address 78

PEL Operation 7C

Figure 3-113. XGA Coprocessor Register Space, Motorola Format

Note: All unused and undefined offsets are reserved.

3·120 XGA Function - September 1991

Register Usage Guidelines

Unless otherwise stated, the following are guidelines to be used
when accessing the coprocessor registers:

• Special reserved register bits must be used as follows:

Register bits marked with' -' must be set to O. These bits
are undefined when read and should be masked off if the
contents of the register is to be tested.

Register bits marked with '#' are reserved and the state of
these bits must be preserved. When writing the register,
read the register first and change only the bits that must be
changed.

• Unspecified registers or registers marked as reserved in the XGA
coprocessor address space are reserved. They must not be
written to or read from.

• During a read, the values returned from write-only registers are
reserved and unspecified.

• The contents of read-only registers must not be modified.

• Counters must not be relied upon to wrap from the high value to
the low value.

• Register fields defined with valid ranges must not be loaded with
a value outside the specified range.

• Register field values defined as reserved must not be written.

The following sections describe the coprocessor registers in detail.
Unless stated otherwise, the register definitions are in Intel format.

Virtual Memory Registers

The XGA coprocessor virtual memory implementation is given in
"Virtual Memory Description" on page 3-156.

XGA Function - September 1991 3-121

State Save/Restore Registers

The following registers allow the internal state of the coprocessor to
be saved and restored. "Coprocessor State Save/Restore" on
page 3-116 describes this mechanism.

Coprocessor Control Register (Offset 11)

This read/write register has an offset of hex 11. The Coprocessor
Control register indicates if the coprocessor is currently executing an
operation. The current coprocessor operation can be terminated or
suspended by writing to this register.

7 6 5 4 3 2 1

L...-----II_---L.I_T_0.....L._-...JI_S0--J._---1-I_S_R-1-_----I1 (Wri te Format)

7 6 5 4 3 2 1 e

L-o-BS_y I_---'-I_T_O-'-O_S-'-_S_O--'--_-......J..I_S_R--'-_----I1 (Read Format)

BSY
TO
OS
SO
SR

Set to e, Undefined on Read
Coprocessor Busy
Terminate Operation
Operation Suspended
Suspend Operation
State Save/Restore

Figure 3-114. Coprocessor Control Register, Offset Hex 11

The register fields are defined as follows:

BSY When the Coprocessor Busy field (bit 7) is read as 1, the
coprocessor is currently executing an operation. When
read as 0, the coprocessor is idle.

3-122 XGA Function-September 1991

TO Coprocessor operations can be terminated by writing a 1
to the Terminate Operation field (bit 5). The application
must ensure that the operation has terminated before
proceeding. Termination is ensured by waiting for the
operation-complete interrupt (if enabled), or by reading
the Coprocessor Busy field until the coprocessor goes not
busy (bit 7 = 0).

After the coprocessor has terminated the operation, it
automatically sets the Terminate Operation field to o. The
coprocessor is returned to its initial power-on state, with
coprocessor interrupts masked off and certain other
register bits reset. All registers must be assumed invalid
and must be reprogrammed before another operation is
initiated.

OS The Operation Suspended field (bit 4) is set to 1 by the
coprocessor when it has suspended the operation. This
bit must be read by the system microprocessor to ensure
that an operation has been suspended before
saving/restoring is started.

SO When the Suspend Operations field (bit 3) is set to 1,
coprocessor operations are suspended.

When set to 0, the suspended processor operations are
restarted. This must be done to restart a restored
operation after a task switch. When the operation restarts,
the coprocessor resets the Operations Suspended field to
O.

Suspending an operation flushes the translate look-aside
buffer.

If a coprocessor operation is suspended, a terminate
operation is required before starting a new coprocessor
operation.

SR The State Save/Restore field (bit 1) selects whether to
save or restore the coprocessor state. When set to 0, a
state restore can be performed; when set to 1, a state
save can be performed. The Coprocessor Control register
must be written with the Suspend Operation field set and
the Save/Restore field appropriately set before each state
save or state restore.

XGA Function - September 1991 3-123

State Length Registers (Offset C and D)

These read-only registers have offsets of hex C and D. Do not write
to these registers. The State Length registers return the length, in
doublewords, of parts A and B of the coprocessor state for save and
restore.

Save/Restore Data Ports Register (I/O Index C and D)

These readlwrite registers have 1/0 indexes of hex C and D. The
SavelRestore registers are directly mapped to 110 address space and
do not appear in the coprocessor register summary. However, they
are coprocessor registers and are described here.

These registers are used to save and restore the two parts, A and B,
of the internal state of the coprocessor. After a state save or restore
is initiated, string 1/0 reads or writes must be executed from or to
these registers. The data can be read or written using any
combination of byte, word, or doubleword accesses, provided that the
exact number of doublewords specified in the State Length registers
is read or written. Failure to read or write the correct amount of data
leaves the coprocessor in an undefined state.

Data must be written back to this port in the order it was read (first
out, first in).

3-124 XGA Function - September 1991

PEL Interface Registers

The following is a detailed description of the coprocessor PEL
interface registers.

PEL Map Index Register (Offset 12)

This write-only register has an offset of hex 12.

7 6 5 4 3 2 1 e

- I - I -I -I -I - I PMI

• Set to e
PMI : PEL Map Index

Figure 3-115. PEL Map Index Register. Offset Hex 12

The register field is defined as follows:

PMI The PEL Map Index field (bits 1, 0) selects which PEL map
registers will be used.

Each PEL map used in the XGA is described by four registers, as
follows:

• The PEL Map n Base Pointer register
• The PEL Map n Width register
• The PEL Map n Height register
• The PEL Map n Format register.

Each PEL map has its own copy of these registers. so there are four
copies of these registers in the XGA, one each for:

• The mask map
• PEL map A
• PEL map B
• PEL map C.

XGA Function-September 1991 3L125

Only one of these banks of PEL map registers is visible to the system
microprocessor at any time. The PEL Map Index register is used to
select the maps the registers apply to. The encoding of the PEL Map
Index register is shown in the following figure.

PMIField
(binary)

00
01
10
1 1

PEL Map Register

Mask Map
PEL Map A
PEL Map B
PEL Map C

Figure 3-116. PEL Map Index

Before loading the PEL map base pointer, width, height, and format
for a particular map, the PEL Map Index register must be set up to
point to the registers of the required map. For example, to set up the
register for map B, first load the PEL map index with binary 10.

PEL Map n Base Pointer Register (Offset 14)

This write-only register has an offset of hex 14. The n is selected
using the "PEL Map Index Register (Offset 12)" on page 3-125.

31

PEL Map n Pointer

Figure 3-117. PEL Map n Base Pointer Register, Offset Hex 14

The PEL Map n Pointer register (bits 31-0) specifies the byte
address in memory of the start of a PEL map. If virtual address mode
is enabled, this address is a virtual address, otherwise it is a physical
address.

3-126 XGA Function - September 1991

PEL Map n Width Register (Offset 18)

This write-only register has an offset of hex 18. The PEL Map n Width
register can be loaded with any value in the range (0 to 4095). The n
is selected using the "PEL Map Index Register (Offset 12)" on
page 3-125.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEL Map n Width

Figure 3-118. PEL Map n Width Register, Offset Hex 18

The PEL Map n Width register (bits 15-0) specifies the width of a PEL
map. The width of a PEL map is measured in PELs, that is,
independent of the number of bits-per-PEL.

Widths are used during address stepping to specify the width of the
PEL map. Steps with a Y direction component are achieved by the
hardware adding or subtracting the width ± 0/1.

The PEL map width is also used for wrapping the source and pattern
maps, or to implement the fixed scissor boundary around the
destination map.

The value loaded in the width register must be 1 less than the bit map
width. For a bit map that is 1024 PELs wide, the width register must
be loaded with 1023 (hex 03FF).

XGA Function-September 1991 3·127

PEL Map n Height Register (Offset 1 A)

This write-only register has an offset of hex 1A. The PEL Map n
Height register can be loaded with any value in the range (0 to 4095).
The n is selected using the "PEL Map Index Register (Offset 12)" on
page 3-125.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

PEL Map n Height

Figure 3-119. PEL Map n Height Register, Offset Hex 1A

The PEL Map n Height register (bits 15-0) specifies the height of a
PEL map. The height of the PEL map is measured in PELs, that is,
independent of the number of bits-per-PEL.

The PEL map height is used for wrapping the source and pattern
maps, or to implement the fixed scissor boundary around the
destination map.

The value loaded in the height register must be one less than the PEL
map height. For a bit map that is 768 PELs high, the height register
must be loaded with 767 (hex 02FF).

3-128 XGA Function-September 1991

PEL Map n Format Register (Offset 1C)

This write-only register has an offset of hex 1C. The n is selected
using the "PEL Map Index Register (Offset 12)" on page 3-125.

7 6 5 4 3 2 1 0

-I -I -I -I PO PS

. Set to 0
PO PEL Order
PS PEL Size

Figure 3-120. PEL Map n Format Register, Offset Hex 1C

The register fields are defined as follows:

PO The PEL Order field (bit 3) selects the format for the
memory-to-screen mapping. When set to 0, the PEL map
is Intel-ordered; when set to 1, the PEL map is
Motorola-ordered. "PEL Formats" on page 3-83
describes the difference in formats.

PS The PEL Size field (bits 2 - 0) specifies the number of
bits-per-PEL in the PEL map. PEL maps occupied by the
source or destination map can be 1, 2, 4, or 8 bits-per-PEL.
The PEL map occupied by the pattern map must be 1
bit-per-PEL. Programming the pattern to be taken from a
PEL map that does not contain 1-bit PELs produces
undefined results. The PEL size field definitions are
shown in the following figure.

PSFieid
(binary) PEL Size

000 1 Bit
001 2 Bits
010 4 Bits
01 1 8 Bits
100 Reserved
1 0 1 Reserved
1 1 0 Reserved
1 1 1 Reserved

Figure 3-121. PEL Size Value Assignments

XGA Function - September 1991 3-129

PEL Maps A, B, and C

PEL maps A, 8, and C are all described by similar registers. The
different maps are merely three instances of PEL maps that can have
different locations in memory, sizes, and formats.

The pattern map used by the XGA must be 1 bit-per-PEl. The pattern
map must reside in a PEL map that is 1 bit-per-PEl. Failure to do this
produces undefined results.

Mask Map

The mask map has a base pOinter, width, and height that are similar
to those of PEL maps A, 8, and C.

The Mask Map Format register differs from maps A, 8, and C in that
only the Motorolallntel format bit of the mask map is programmable.
This register bit operates the same as the bit for maps A, 8, and C.
The number of bits-per-PEL is assumed to be 1 bit-per-PEl. The
bits-per-PEL must always be set to 1 bit-per-PEL to ensure future
compatibility.

Bresenham Error Term E Register (Offset 20)

This read/write register has an offset of hex 20.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bresenham Error Term

Figure 3-122. Bresenham Error Term E Register, Offset Hex 20

The 8resenham Error Term register (bits 15-0) specifies the
8resenham error term for the draw line function. The error term
value is a signed quantity, calculated as ((2 x deltaY) - deltaX)
after normalization to the first octant.

This register must be written as a 16-bit sign-extended twos
complement number in the range (-8192 to 8191).

3-130 XGA Function - September 1991

Bresenham Constant K1 Register (Offset 24)

This write-only register has an offset of hex 24.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bresenham Constant K1

Figure 3-123. Bresenham Constant K1 Register, Offset Hex 24

The Bresenham Constant K1 register (bits 15-0) specifies the
Bresenham constant, K1, for the draw line function. The K1 value is a
signed quantity, calculated as (2 x deltaY) after normalization to the
fi rst octant.

This register must be written as a 16-bit sign-extended twos
complement number in the range (-8192 to 8191).

Bresenham Constant K2 Register (Offset 28)

This write-only register has an offset of hex 28.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bresenham Constant K2

Figure 3-124. Bresenham Constant K2 Register, Offset Hex 28

The Bresenham Constant K2 register (bits 15 - 0) specifies the
Bresenham constant, K2, for the draw line function. The K2 value is a
signed quantity, calculated as (2 x (deltaY - deltaX» after
normalization to the first octant.

This register must be written as a 16-bit sign-extended twos
complement number in the range (-8192 to 8191).

XGA Function - September 1991 3-131

Direction Steps Register (Offset 2C)

This write-only register has an offset of hex 2C.

The byte order of this register is independent of whether the Intel or
Motorola register interface is enabled. The following figure shows
the Intel and Motorola views of the Direction Steps register.

Intel View Of Register

byte 3 byte 2 byte 1 byte e

31 24 23 16 15 8 7 e

step code 4 step code 3 step code 2 step code 1

Motorola View Of Register

byte e byte 1 byte 2 byte 3

31 24 23 16 15 8 7 e

step code 1 step code 2 step code 3 step code 4

Figure 3-125. Direction Steps Register, Offset Hex 2C

This register is used to specify up to four draw and step codes to the
coprocessor, and to initiate a draw and step operation.

Writing data to byte 3 of this register initiates a draw and step
operation. A draw and step operation can be initiated by a single
32-bit access, by two 16-bit accesses where bytes 2 and 3 are written
last, or by four 1-byte accesses where byte 3 is written last. If
multiple draw and step operations are required with the same draw
and step codes, the operation can be initiated by writing to byte 3.

Before initiating a draw and step operation, the PEL Operation
register must be configured to set up the data path and flags for the
draw and step operation. See "Draw and Step" on page 3-95 for full
details.

3-132 XGA Function - September 1991

Foreground Mix Register (Offset 48)

This write-only register has an offset of hex 48.

7 6 5 4 3 2 1 e

Foreground Mix

Figure 3-126. Foreground Mix Register, Offset Hex 48

The Foreground Mix register (bits 7 - 0) holds the foreground mix
value that specifies a logic or arithmetic function to be performed
between the destination and function 1 second operand PELs, during
an operation where the pattern PEL value is 1.

See "Logical and Arithmetic Functions" on page 3-109 for details and
mix functions available.

Background Mix Register (Offset 49)

This write-only register has an offset of hex 49.

7 6 5 4 3 2 1 e

Background Mi x

Figure 3-127. Background Mix Register, Offset Hex 49

The Background Mix register (bits 7 - 0) holds the background mix
value that specifies a logic or arithmetic function to be performed
between the destination and function 0 second operand PELs during
an operation where the pattern PEL value is O.

See "Logical and Arithmetic Functions" on page 3-109 for details and
mix functions available.

XGA Function - September 1991 3-133

Destination Color Compare Condition Register (Offset 4A)

This write-only register has an offset of hex 4A.

7 6 5 4 3 2 1 (:)

-I -I -I -I -I DCC

Set to (:)
DCC Destination Color Compare Condition

Figure 3-128. Destination Color Compare Condition Reg, Offset Hex 4A

The register field is defined as follows:

DCC The Destination Color Compare Condition field (bits 2-0)
specifies the destination color compare condition when
the destination update is inhibited.

The DCC field definitions are shown in the following figure.

Dec Field
(binary)

000
001
010
01 1
100
101
1 1 0
1 1 1

Destination Color Compare Condition

Always True (disable update)
Destination > Color Compare Value
Destination = Color Compare Value
Destination < Color Compare Value
Always False (enable update)
Destination > = Color Compare Value
Destination < > Color Compare Value
Destination < = Color Compare Value

Figure 3-129. Destination Color Compare Condition Bit Definition

3·134 XGA Function - September 1991

Destination Color Compare Value Register (Offset 4C)

This write-only register has an offset of hex 4C.

31 o

Destination Color Compare Value

Figure 3-130. Destination Color Compare Value Register, Offset Hex 4C

The Destination Color Compare Value register (bits 31-0) contains
the comparison value for the destination PELs to be compared when
color compare is enabled. Only the corresponding number of
bits-per-PEL in the destination are required in this register (for
example, if the destination is 4 bits-per-PEL, only the 4 low-order bits
of this register are used). The bits of this register that are more
significant than the number of bits-per-PEL need not be written.

See "Color Compare" on page 3-113 for details of the color compare
function.

XGA Function-September 1991 3·135

PEL Bit Mask (Plane Mask) Register (Onset 50)

This write-only register has an offset of hex 50.

31

PEL Bit Mask

Figure 3-131. PEL Bit Mask (Plane Mask) Register, Offset Hex 50

The PEL Bit Mask register (bits 31-0) determines the bits within each
PEL that are subject to update by the coprocessor. A 1 means the
corresponding bit is enabled for updates. A 0 means the
corresponding bit is not updated.

A bit that is not write enabled is prevented from affecting either
arithmetic operations or the destination color compare comparison,
so masked bits are excluded from the operation or comparison. Only
the corresponding number of bits-per-PEL in the destination are
required in this register (for example, if the destination is 4
bits-per-PEL, only the 4 low-order bits of this register are used). The
bits of this register that are more significant than the number of
bits-per-PEL need not be written.

See "PEL Bit Masking" on page 3-113 for details of the PEL bit mask
function.

3-136 XGA Function - September 1991

Carry Chain Mask Register (Offset 54)

This write-only register has an offset of hex 54.

31 o

Carry Chain Mask

Figure 3-132. Carry Chain Mask Field Register, Offset Hex 54

The Carry Chain Mask register (bits 31-0) contains a mask up to 31
bits wide. The mask is used to specify how the carry chain of the
coprocessor is propagated when performing arithmetic update mixes
and color compare operations.

A 0 in the mask means that the carry out of this bit-position of the
coprocessor is not to be propagated to the next significant
bit-position. A 1 in the mask means that propagation is to take place.
The PEL value can be split into sections within the PEL.

Only the corresponding number of bits-per-PEL in the destination are
required in this register (for example, if the destination is 4
bits-per-PEL, only the 4 low-order bits of this register are used). The
bits of this register that are more significant than the number of
bits-per-PEL, need not be written. There is no carry out of the
most-significant bit of the PEL irrespective of the setting of the
corresponding carry chain mask bit.

See "Breaking the Coprocessor Carry Chain" on page 3-111 for
details on the carry chain function.

XGA Function - September 1991 3-137

Foreground Color Register (Offset 58)

This write-only register has an offset of hex 58.

31

Foreground Color

Figure 3-133. Foreground Color Register, Offset Hex 58

The Foreground Color register (bits 31-0) holds the foreground color
to be used during coprocessor operations. The foreground color can
be specified as the foreground source by setting up the appropriate
field in the PEL Operations register.

Only the corresponding number of bits-per-PEL in the destination are
required in this register (for example, if the destination is 4
bits-per-PEL, only the 4 low-order bits of this register are used). The
bits of this register that are more significant than the number of
bits-per-PEL need not be written.

Background Color Register (Offset 5C)

This write-only register has an offset of hex 5C.

31

Background Color

Figure 3-134. background Color Register, Offset Hex 5C

The Background Color register (bits 31-0) holds the background
color to be used during coprocessor operations. The background
color can be specified as the background source by setting up the
appropriate field in the PEL Operation register.

Only the corresponding number of bits-per-PEL in the destination are
required in this register (for example, if the destination is 4
bits-per-PEL, only the 4 low-order bits of this register are used). The
bits of this register that are more significant than the number of
bits-per-PEL need not be written.

3-138 XGA Function - September 1991

Operation Dimension 1 Register (Offset 60)

This write-only register has an offset of hex 60.

31 o

Operation Dimension 1

Figure 3-135. Operation Dimension 1 Register. Offset Hex 60

The Operation Dimension 1 register (bits 31 - 0) specifies the width of
the rectangle to be drawn by the PxBlt function. or the length of line in
a line draw operation. The value is an unsigned quantity. and must
be one less than the required width. To draw a line 10 PELs long, the
value 9 must be written to this register.

The value written to this register must be within the range
(0 to 4095).

Operation Dimension 2 Register (Offset 62)

This write-only register has an offset of hex 62.

31

Operation Dimension 2

Figure 3-136. Operation Dimension 2 Register, Offset Hex 62

o

The Operation Dimension 2 register (bits 31 - 0) specifies the height
of the rectangle to be drawn by the PxBlt function. The value is an
unsigned quantity, and must be one less than the required height. To
draw a rectangle 10 PELs high, the value 9 must be written to this
register.

The value written to this register must be within the range
(0 to 4095).

XGA Function - September 1991 3-139

Mask Map Origin X Offset Register (Offset 6e)

This write-only register has an offset of hex 6C.

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 9

Mask Map Origin X Offset

Figure 3-137. Mask Map Origin X Offset Register, Offset Hex 6e

The Mask Map Origin X Offset register (bits 15-0) specifies the X
offset of the mask map origin, relative to the origin of the destination
map.

The value written to this register must be within the range
(0 to 4095).

Mask Map Origin Y Offset Register (Offset 6E)

This write-only register has an offset of hex 6E.

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 9

Mask Map Origin Y Offset

Figure 3-138. Mask Map Origin Y Offset Register, Offset Hex 6E

The Mask Map Origin Y Offset register (bits 15-0) specifies the Y
offset of the mask map origin, relative to the origin of the destination
map.

The value written to this register must be within the range
(0 to 4095).

3-140 XGA Function - September 1991

Source X Address Register (Offset 70)

This read/write register has an offset of hex 70.

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 8

Source X Address

Figure 3-139. Source X Address Register, Offset Hex 70

The Source X Address register (bits 15-0) specifies the X coordinate
of the coprocessor operation source PEL.

The value written to this register must be within the range
(0 to 4095).

Source V Address Register (Offset 72)

This read/write register has an offset of hex 72.

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 8

Source Y Address

Figure 3-140. Source Y Address Register, Offset Hex 72

The Source Y Address register (bits 15 - 0) specifies the Y coordinate
of the coprocessor operation source PEL.

The value written to this register must be within the range
(0 to 4095).

XGA Function - September 1991 3-141

PaHern X Address Register (Offset 74)

This read/write register has an offset of hex 74.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Pattern X Address

Figure 3-141. Pattern C Address Register, Offset Hex 74

The Pattern X Address register (bits 15 - 0) specifies the X coordinate
of the coprocessor operation pattern PEL.

The value written to this register must be within the range
(0 to 4095).

PaHern Y Address Register (Offset 76)

This read/write register has an offset of hex 76.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Pattern Y Address

Figure 3-142. Pattern Y Address Register, Offset Hex 76

The Pattern Y Address register (bits 15 - 0) specifies the Y coordinate
of the coprocessor operation pattern PEL.

The value written to this register must be within the range
(0 to 4095).

3-142 XGA Function - September 1991

Destination X Address Register (Offset 78)

This read/write register has an offset of hex 78.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination X Address

Figure 3-143. Destination X Address Register, Offset Hex 78

The Destination X Address register (bits 15-0) specifies the X
coordinate of the coprocessor operation destination PEL.

This register must be written as a 16-bit sign-extended twos
complement number in the range (-2048 to 6143).

Destination Y Address Register (Offset 7 A)

This read/write register has an offset of hex 7 A.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Destination Y Address

Figure 3-144. Destination Y Address Register, Offset Hex 7A

The Destination Y Address register (bits 15 - 0) specifies the Y
coordinate of the coprocessor operation destination PEL.

This register must be written as a 16-bit Sign-extended twos
complement number in the range (-2048 to 6143).

XGA Function - September 1991 3-143

PEL Operations Register (OHset 7C)

This write-only register has an offset of hex 7e.

The PEL Operations register is used to define the flow of data during
an operation. It specifies the address update function that is to be
performed, and initiates PxBlt and line draw operations.

The contents of the PEL Operation register are preserved throughout
an operation.

The byte order of this register Is dependent on whether the Intel or
Motorola register interface is enabled. The following figure shows
the Intel and Motorola views of the PEL Operations register.

Intel View Of Register

Byte 3 Byte 2 Byte 1 Byte e

31 • • 24 23. .16 15 • • 8 7 . e

1 Bsl Fsi Step sourcel Dest Patt I-I-I-I-IMSKI DMI-I Oct

Motorola View Of Register

Byte e Byte 1 Byte 2 Byte 3

31 • • 24 23. .16 15 • .87 . . e

IMSKI DMI-I Oct 1 Patt 1-1-1-1-1 Source 1 Dest 1 Bsl Fsi Step I

BS
FS

Step
Source

Set to e
Background Source
Foreground Source
Step Function
Source PEL Map

Dest : Destination PEL Map
Patt : Pattern PEL Map

MSK : Mask PEL Map
DM Drawing Mode

Oct : Direction Octant

Figure 3-145. PEL Operations Register, Offset Hex 7C

3-144 XGA Function-September 1991

All operations, with the exception of draw and step (see "Draw and
Step" on page 3-95 and "Direction Steps Register (Offset 2C)" on
page 3-132), are initiated by writing to the most-significant byte of
this register. Therefore, an operation can be initiated by a single
32-bit write, two 16-bit writes when bytes 2 and 3 are written last, or
four 1-byte accesses where byte 3 is written last.

The fields in the PEL Operation register are shown, by bytes, in the
following figures.

Byte 3

7 6 5 4 3 2 1

BS FS Step

BS Background Source
FS Foreground Source

Step Step Function

Figure 3-146. PEL Operations Register, Byte 3

BS

as Field
(binary)

o 0
o 1
1 0
1 1

The Background Source field (byte 3; bits 7, 6)
determines the background source that is to be
combined with the destination when the pattern PEL
equals 0 (background mix).

Background Source

Background Color
Reserved
Source PEL Map
Reserved

Figure 3-147. PEL Operations Register Background Source Value
Assignments

XGA Function - September 1991 3-145

FS

FSFieid
(binary)

o 0
o 1
1 0
1 1

The Foreground Source field (byte 3; bits 5, 4)
determines the foreground source that is to be
combined with the destination when the pattern PEL
equals 1 (foreground mix).

Foreground Source

Foreground Color
Reserved
Source PEL Map
Reserved

Figure 3-148. PEL Operations Register Foreground Source Value
Assignments

Step

Step Field
(binary)

o 0 0 0
000 1
001 0
001 1
o 1 0 0
o 1 0 1
o 1 1 0
o 1 1 1
1 000
100 1
101 0
1 0 1 1

The Step Function field (byte 3; bits 3-0) determines
how the coprocessor address is modified as PEL data is
manipulated. This field can be regarded as the
coprocessor function code. Writing to this field starts
the coprocessor operation, except for draw and step
functions. Draw and step operations are started by
writing to the Direction Steps register.

Step Function

Reserved
Reserved
Draw and Step Read
Line Draw Read
Draw and Step Write
Line Draw Write
Reserved
Reserved
PxBlt
Inverting PxBlt
Area Fill PxBlt
Reserved

Reserved

Figure 3-149. PEL Operations Register Step Function Value Assignments

3-146 XGA Function - September 1991

Byte 2

7 6 5 4 3 2 1 o

Source Dest

Source
Dest

Source PEL Map
Destination PEL Map

Figure 3-150. PEL Operations Register, Byte 2

Source

Source Field
(binary)

000 0
000 1
o 0 1 0
o 0 1 1
0 1 0 0

1 1

The Source PEL Map field (byte 2; bits 7 - 4) determines
the location of PEL map source data. The combination
of this field and the Foreground and Background Source
fields determine the data that is to be used as the
source data for coprocessor functions.

Source PEL Map

Reserved
PEL Map A
PEL Map B
PEL Map C
Reserved

Reserved

Figure 3-151. PEL Operations Register Source PEL Map Value
Assignments

Dest

Dest Field
(binary)

o 0 0 0
000 1
o 0 1 0
001 1
o 1 0 0

1 1

The Destination PEL Map field (byte 2; bits 3-0)
determines the location of the destination data to be
modified during an operation.

Destination PEL Map

Reserved
PEL Map A
PEL Map B
PEL Map C
Reserved

Reserved

Figure 3-152. PEL Operations Register Destination PEL Map Value
Assignments

XGA Function - September 1991 3-147

Byte 1

7 6 5 4 3 2 1 e

Patt -I -I -I -I
. Set to e

Patt Pattern PEL Map

Figure 3-153. PEL Operations Register, Byte 1

PaH The Pattern PEL Map field (byte 1; bits 7-4) determines
the pattern data to be used during an operation. Code
1000 causes the coprocessor to assume that the pattern
is 1 across the whole operation, and to use the
foreground function on all PELs. This effectively turns
off the use of the pattern. Code 1001 causes the pattern
to be generated from source data. Every 0 PEL in the
source generates a background pattern PEL; every
nonzero PEL in the source generates a foreground
pattern PEL.

PattField
(binary) Pattern PEL Map

000 0 Reserved
000 1 PEL map A
o 0 1 0 PEL map B
o 0 1 1 PEL map C
0 1 0 0 Reserved
0 1 0 1 Reserved
0 1 1 0 Reserved
0 1 1 1 Reserved
1 o 0 0 Foreground (fixed)
1 o 0 1 Generated from Source
1 0 1 0 Reserved

Reserved

Figure 3-154. PEL Operations Register Pattern PEL Map Value
Assignments

3·148 XGA Function - September 1991

Byte e

7 6 5 4 3 2 1 e

MSK OM -I Oct

. Set to e OM : Drawing Mode
MSK Mask PEL Map Oct : Direction Octant

Figure 3-155. PEL Operations Register, Byte 0

MSK

MSKFleld
(binary)

00
01
10
1 1

The Mask PEL Map field (byte 0; bits 7,6) determines
how the mask map is used. See "Scissoring with the
Mask Map" on page 3-90 for details of the mask map
modes.

Mask PEL Map

Mask Map Disabled
Mask Map Boundary Enabled
Mask Map Enabled
Reserved

Figure 3-156. PEL Operations Register Mask PEL Map Value Assignments

OM

OM Field
(binary)

00
01
10
1 1

The Drawing Mode field (byte 0; bits 5, 4) determines
the attributes of line draw and draw and step
operatjons.

Drawing Mode

Draw All PELs
Draw First PEL Null
Draw Last PEL Null
Draw Area Boundary

Figure 3-157. PEL Operations Register Drawing Mode Value Assignments

Oct The Oi recti on Octant field (byte 0; bits 2 - 0) is
comprised of three bits, OX, OY, and OZ.

Oct
2 1 e

OX I DY I DZ

Figure 3-158. PEL Operations Register Direction Octant Values

XGA Function - September 1991 3-149

XGA System Interface

Multiple Instances

Up to eight Instances of an XGA subsystem can be installed in a
system unit. Addressing the I/O registers, memory-mapped
registers, and video memory for each Instance is controlled by the
contents of the XGA POS registers. See "XGA POS Registers" on
page 3-151 for more information.

Multiple XGA Subsystems In VGA Mode

The VGA has only one set of addresses allocated to it. It is not
possible to have multiple XGA subsystems in VGA mode responding
to update requests simultaneously. However, more than one XGA
subsystem can be in VGA mode if only one has VGA address
decoding enabled using the Operating Mode register. Subsystems
with VGA address decoding disabled continue to display the correct
picture. See "Adapter Coexistence with VGA" on page 3-170 for
further information.

Note: The XGA must not be disabled using the Subsystem Enable
field in XGA POS Register 2.

Multiple XGA Subsystems in 132·Column Text Mode

In 132-column text mode, the XGA responds to VGA address decodes,
and the same rules apply as for multiple XGA subsystems in VGA
mode. See "Adapter Coexistence with VGA" on page 3-170 for
further information.

Multiple XGA Subsystems in Extended Graphics Mode

Extended Graphics modes are controlled by a bank of 16 I/O registers
that are located in one of eight possible locations. Up to eight XGA
subsystems can be installed in a system unit. Each Instance of XGA
installed is positioned at a unique I/O and memory location, so each
can be used independently in the system. See "Adapter Coexistence
with Other XGA Subsystems" on page 3-170 for details on controlling
multiple XGAs.

The XGA coprocessor memory-mapped registers occupy a bank of
128 contiguous register addresses that are mapped in memory space.
These registers can also be relocated, allowing up to eight Instances
of the XGA coprocessor to coexist in a system.

3·150 XGA Function - September 1991

The locations of these registers are controlled by the XGA P~S
registers. See "XGA P~S Registers" on page 3-151 for the register
details, and see "Locating the XGA Subsystem" on page 3-171 for
programming considerations on reading and using the data contained
in them.

XGA POS Registers

The XGA subsystem has movable 1/0 addresses for the display
controller, allowing more than one XGA subsystem to be installed in
a system unit.

All P~S registers detailed in this section are set up during system
configuration and must never be written. All registers are specified
relative to a base address. Details of how to locate the base address
and read the registers are given in "Locating the XGA Subsystem" on
page 3-171.

Register Usage Guidelines

Unless otherwise stated, the following are guidelines to be used
when accessing the P~S registers:

• All registers are 8 bits long.
• All registers are read only.
• Special reserved register bits must be used as follows:

Register bits marked with' -' must be masked off if the
contents of the register is to be tested.

Register bits marked with '#' are reserved and the state of
these bits must be preserved. This register must be masked
off if the contents of the register is to be tested.

Subsystem Identification Low Byte Register (Base + 0)

This read-only register is located at base address + O. Do not write
to this register. When read, this register returns the low byte of the
P~S 10. See "Reading P~S Data" on page 3-171 for more
information.

Subsystem Identification High Byte Register (Base + 1)

This read-only register is located at base address + 1, do not write to
this register. When read, this register returns the high byte of the
P~S 10. See "Reading P~S Data" on page 3-171 for more
information.

XGA Function-September 1991 3-151

POS Register 2 (Base + 2)

This read-only register is located at base address + 2. Do not write
to this register.

7 6 5 4

ROM

ROM ROM Address
INST Instance

3 2

INST

EN Subsystem Enable

1 e

EN

Figure 3-159. pas Register 2, Base Address + 2

The fields in this register are defined as follows:

ROM The ROM Address field (bits 7 - 4) specifies which of 16
possible 8KB memory locations has been assigned to the
XGA ROM. The ROM occupies the first 7KB of this 8KB
block; the other 1 KB is occupied by the coprocessor
memory-mapped registers.

Field

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

The Instance field specifies the 128-byte section within this
1 KB block that is allocated to the subsystem. See the
following figure. For example, Instance 2 has its
coprocessor registers located in the third 128-byte section
of the 1 KB block.

ROM Address Coprocessor Register Base Address (hex)

Instance:
Range (hex) 0 1 2 3 4 5 6 7

COOOO : C1BFF C1COO C1C80 C1000 C1080 C1EOO C1E80 C1FOO C1F80
C2000 : C3BFF C3COO C3C80 C3000 C3080 C3EOO C3E80 C3FOO C3F80
C4000 : C5BFF C5COO C5C80 C5000 C5080 C5EOO C5E80 C5FOO C5F80
C6000 : C7BFF C7COO C7C80 C7000 C7080 C7EOO C7E80 C7FOO C7F80
C8000 : C9BFF C9COO C9C80 C9000 C9080 C9EOO C9E80 C9FOO C9F80
CAOOO : CBBFF CBCOO CBC80 CBOOO CB080 CBEOO CBE80 CBFOO CBF80
CCOOO : COBFF cocoa COC80 COOOO C0080 COEOO COE80 COFOO COF80
CEOOO : CFBFF CFCOO CFC80 CFOOO CF080 CFEOO CFE80 CFFOO CFF80
00000 : 01BFF 01COO 01C80 01000 01080 01EOO 01E80 01FOO 01F80
02000 : 03BFF 03COO 03C80 03000 03080 03EOO 03E80 03FOO 03F80
04000 : 05BFF 05COO 05C80 05000 05080 05EOO 05E80 05FOO 05F80
06000 : 07BFF 07COO 07C80 07000 07080 07EOO 07E80 07FOO 07F80
08000 : 09BFF 09COO 09C80 09000 09080 09EOO 09E80 09FOO 09F80
OAOOO : OBBFF DB COO OBC80 OBOOO OB080 OBEOO OBE80 OBFOO OBF80
OCOOO : OOBFF OOCOO 00C80 00000 00080 OOEOO 00E80 OOFOO 00F80
OEOOO : OFBFF OFCOO OFC80 OFOOO OF080 OFEOO OFE80 OFFOO OFF80

Figure 3-160. XGA ROM, Memory-Mapped Register Assignments

3-152 XGA Function-September 1991

INST The value in this field indicates the Instance of this XGA
subsystem. Coexisting XGA Subsystems each have
unique Instance values.

INSTFleld
(binary)

000
001
010
011
100
101
110
111

The Instance field (bits 3-1) specifies the set of I/O
addresses allocated to the display controller registers.
See Figure 3-161. The lowest address of each set of
addresses is referred to as the I/O base address.

Instance
Number

o
1
2
3
4
5
6
7

Instance 1/0 Base Address (hex)

2100
2110
2120
2130
2140
2150
2160
2170

Figure 3-161. 110 Device Address Bit Assignment

EN The Subsystem Enable field (bit 0) indicates whether the
subsystem is enabled. When read as 1, the subsystem is
enabled for address decoding for all non-POS addresses.
When read as 0, only POS registers can be accessed; all
other accesses to the subsystem have no effect.

XGA Function - September 1991 3-153

POS Register 4 (Base + 4)

This read-only register is located at base address + 4. Do not write
to this register.

7 6 5 4 3 2 1 o

Video Memory Base Address VE

VE : Video Memory Enable

Figure 3-162. POS Register 4, Base Address + 4

The fields in this register are defined as follows:

Video Memory Base Address

31

This field (bits 7-1) contains the most significant 7 bits of
the address where the XGA memory is located. Three
more bits are provided by the Instance in POS byte 1.
This gives a video memory base address on a 4MB
boundary. See the following figure.

25 24 - 22 21 o

Video Memory Instance 4MB of Addressable Memory
Base Address 0 - 7

Figure 3-163. XGA Video Memory Base Address.

For example, if the video memory base address is set to 1
and Instance 6 has been selected, the XGA video memory
is located at hex 03800000.

VE When the Video Memory Enable field (bit 0) is set to 0, the
4MB aperture is disabled; when set to 1, the 4MB aperture
is enabled.

3-154 XGA Function - September 1991

POS Register 5 (Base + 5)

This read-only register is located at base address + 5. Do not write
to this register.

7 6 5 4 3 2 1 0

-I -I -I -I API

. Undefined On Read
API 1MB Aperture Base Address

Figure 3-164. POS Register 5, Base Address + 5

The field in this register is defined as follows:

AP1 The 1 MB Aperture Base Address field (bits 3 - 0) indicates
where the 1 MB aperture is placed in system address
space, or if the aperture has been disabled. The following
figure describes the use of this field.

AP1 Field
(binary)

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

1 MB Aperture Location (hex)

Disabled
00100000
00200000
00300000
00400000
00500000
00600000
00700000
00800000
00900000
OOAOOOOO
00800000
OOCOOOOO
00000000
OOEOOOOO
OOFOOOOO

Figure 3-165. 1MB Aperture Base Address Value Assignments

XGA Function - September 1991 3-155

Virtual Memory Description

The XGA coprocessor can address either real or virtual memory.
When addressing real memory, the linear address calculated by the
coprocessor is passed directly to the system microprocessor or local
video memory. When addressing virtual memory, the linear address
from the coprocessor is translated by on-chip virtual memory
translation logic before the translated address is passed to the
system microprocessor or local video memory. Virtual address
translation is enabled or disabled by a control bit in the XGA.

The coprocessor uses two levels of tables to translate the linear
address from the coprocessor to a physical address. Addresses are
translated through a page directory and page table to generate a
physical address to memory pages that are 4KB in size. The page
directory and page tables are of the same form as those used by the
80386 Processor Paging Unit.

Address Translation

The linear address from the coprocessor is divided into three fields
that are used to look up the corresponding physical address. The
fields, called directory index, table index, and offset, are illustrated in
the following figure.

31 22 21 12 11 o
Directory Index Table Index Offset

Figure 3-166. Linear Address Fields

The location of the page directory is at a fixed physical address in
memory that must be on a page (4KB) address boundary. The
coprocessor has a Page Directory Base Address register that must be
loaded with the address of the page directory base.

The translation process is illustrated in Figure 3-167 on page 3-157.

3-156 XGA Function - September 1991

Linear Address

I Directory I Table I Offset j

'- I~ Data

Page

Page Table I Page Directory Base I
Page Directory

Figure 3-167. Linear to Physical Address Translation

The Directory Index field of the linear address is used to index into
the page directory. The entry read from the page directory contains a
20-bit page table address and some statistical information in the low
order bits.

The 20-bit page table address points to the base of a page table in
memory. The Table Index field in the linear address is used to index
into the page table. The entry read from the page table contains a
20-bit page address and some statistical information in the low order
bits.

The 20-bit page address points to the base of a 4KB page in memory.
The Offset field in the linear address is used to index into the page.
The entry read from the page contains the data required by the
memory access.

XGA Function-September 1991 3-157

Page Directory and Page Table Entries

The entries of the page directory and page table are very similar.
The format of an entry is shown in the following figure.

31 12

I Page Table/Page Addr

D - Dirty Bit
A - Accessed Bit
U/S - User/Supervisor Bit
R/W - Read/Write Bit
P - Present Bit

6 5 2 1 0

Figure 3-168. Page Directory and Page Table Entry

The top 20 bits of the entry are either the page table address or the
page address. The low order bits are as follows:

Dirty Bit (bit 6): This bit is set before a write to an address covered
by that page table entry occurs. The dirty bit is undefined for page
directory entries.

Accessed Bit (bit 5): This bit is set for both types of entry before a
read or write access occurs to an address covered by the entry.

3-158 XGA Function - September 1991

User/Supervisor and Read/Write Bits (bits 2,3): These bits prevent
unauthorized use of page directory and page table entries. Accesses
by the coprocessor can be defined as a supervisor or user access,
depending on the status of the application using the coprocessor.
The access type is defined by a bit in the virtual memory (VM) Control
register. If the access is defined as supervisor, no protection is
provided and all accesses to the page directory and page tables are
permitted.

For a user access, the U/S and R/W bits are checked to ensure that
access to that entry is permitted. The meaning of these bits is shown
in the following figure.

U/S

o
o
1
1

R/W

o
1
o
1

Access Rights of User

Access not permitted
Access not permitted
Reads permitted. writes not permitted
Reads and writes permitted

Figure 3-169. Page Directory and Page Table Access Rights in User Mode

Present Bit (bit 0): The present bit indicates whether a page
directory or page table entry can be used in translation. If the bit is
set, it indicates that the page table or page that the entry refers to is
present in memory.

XGA Function - September 1991 3-159

The XGA Implementation of Virtual Memory

The XGA coprocessor operates with a page directory and page tables
in the format described. The coprocessor has its own internal cache
of translated addresses to avoid it having to perform the two-stage
translation process on every coprocessor access. This cache is
referred to as a translate look-aside buffer.

The Translate Look·aside Buffer

The translate look-aside buffer (TlB) has two entries, one entry for
the source, pattern, and mask PEL maps, and another for the
destination PEL map, as shown in Figure 3-170. Each entry is
reserved specifically for use by one of these maps. Each entry in the
TlB contains the top 20 bits of a linear address (the address tag), an
entry valid flag bit, and the top 20 bits of the physical address (the
real page address) corresponding to that linear address. When a
linear address is passed from the coprocessor to the virtual address
hardware, the top 20 bits olthe linear address are first compared
against the appropriate TlB entry address tag. If they match and the
TlB entry flag bit is valid, the real page address in that TlB is used
as the top 20 bits of the physical address for that access. The bottom
12 bits of the physical address are provided from the bottom 12 bits of
the linear address (the offset).

Source, Pattern,
and Mask Entry

Destination Entry

v

v

31 12

Linear Address Tag

Linear Address Tag

31 12

Real Page Address

Real Page Address

v -Valid Bits

Figure 3-170. Translate Look-Aside Buffer

If the linear address from the coprocessor matches the address tag in
the TlB for the particular map in use, the access is said to have
caused a TlB hit. If the tag does not match, a TlB miss occurs.

3·160 XGA Function - September 1991

The TLB contents are cleared by the hardware under the following
ci rcumstances:

• Whenever the Page Directory Base Address register is written

• Whenever a coprocessor operation is suspended (by setting the
suspend operation bit in the Coprocessor Control register). See
"Coprocessor Control Register (Offset 11)" on page 3-122.

TLB Misses

If a TLB miss occurs, the coprocessor automatically performs the
two-level translation required to form the required page address. The
contents of the XGA Page Di rectory Base Address register are used
to access the appropriate page directory entry that is used to access
the appropriate page table entry. The real page address, resulting
from the translation process, is stored in the TLB for use by
subsequent accesses that address the same page.

Memory access performed by the coprocessor can be categorized as
follows:

Read accesses Performed on the source, pattern, mask, and
destination maps.

Write accesses Performed only on the destination map.

When the virtual memory hardware accesses the page directory and
page tables for a TLB miss, it examines and updates the flags in the
low order bits of the entries, as follows:

Accessed Bit (bit 5): Any access (read or write) sets this bit in both
the page directory and page table entries.

Dirty Bit (bit 6): Write accesses set the dirty bit in the page table
entry. The dirty bit is undefined in page directory entries.

User/Supervisor and Read/Write Bits (bits 2, 3): These bits are
examined by the coprocessor. The coprocessor has a bit,
programmed by the host operating system, to indicate whether it is
being used by a supervisor or user. In user mode the coprocessor
determines whether access is permitted, depending on the state of
the user/supervisor and the read/write bits in the page directory and
page table entries. If access is not permitted, the coprocessor sends
a VM-protection-violation interrupt to the system microprocessor and
terminates the access cycle. The host operating system must take
the appropriate action to recover from the protection-violation
interrupt.

XGA Function - September 1991 3-161

Present Bit (bit 0): The coprocessor examines the present bit of the
page directory and page table entries. If this bit is not set, it indicates
that the page table or page corresponding to that entry may not be
resident in memory, and the XGA sends a VM page-not-present
interrupt to the system microprocessor. The host operating system
fetches the page table or page and places it in memory. The access
can then be completed.

Remaining Page Directory or Page Table Entry Bits: The
coprocessor ignores all the other bits in the page directory or page
table entry. The coprocessor does not modify these bits; they can be
used by the operating system. It is advisable to keep entries in the
same format as the 80386 page directory and page table entry
formats; therefore the Intel rules on the use of the remaining bits
must be followed.

System Coherency

In any virtual memory system where more than one device is
accessing virtual memory contents, problems can arise over
coherency. It is essential that one device does not corrupt the tables
or pages of the other device, and the tables and TLBs are kept
coherent (in step) with the physical allocation of storage. The
hardware mechanism provided by the coprocessor is sufficient to
implement coherent virtual memory systems, but care should be
taken to avoid coherency problems.

In particular, it is recommended that the 80386 and the coprocessor
do not share page directories or page tables. Pages must not be
marked as present unless they are locked in place in memory. This
maintains coherency between TLB entries in the coprocessor and the
true current allocation of real memory. It prevents the operating
system from moving these pages out of memory while the
coprocessor is accessing them.

VM Page-Nol-Presenlinierrupis

When the coprocessor detects that a page table or page is not
present, it sends a page-not-present interrupt to the system
microprocessor. The system microprocessor operating system then
fetches the required page table or page (usually from disk) and
places it in memory. The system microprocessor can determine the
faulting address by reading the Current Virtual Address register.
After the required page table or page has been fetched, the operating
system restarts the faulting memory access by clearing the

3-162 XGA Function - September 1991

page-not-present interrupt bit in the XGA. This causes the hardware
to retry the access to the faulted entry.

The system microprocessor operating system will probably switch
tasks when receiving a page-not-present interrupt. In this case it
suspends the coprocessor operation in the normal way (see
"Suspending Coprocessor Operations" on page 3-116) before
clearing the page-not-present interrupt. The coprocessor state is
then saved. When the task where the page-not-present interrupt
occurred is restarted, the coprocessor state is restored, the required
page table or page is placed in memory, the interrupt is cleared, and
the coprocessor operation is restarted. The interrupt must be cleared
before the coprocessor operation is restarted, otherwise further
interrupts can be lost.

VM Protection-Violation Interrupts

If the coprocessor is directed to access tables or pages that are not
permitted (as defined by the user/supervisor and read/write entry
bits), the coprocessor generates a protection-violation interrupt. This
indicates that something is wrong with the virtual memory system (as
set up by operating system software), or that the coprocessor has
been programmed incorrectly.

The operating system will probably terminate the coprocessor
operation and possibly terminate the faulting task. The coprocessor
operation can be terminated by writing to a control bit in the
Coprocessor Control register. The coprocessor responds in a similar
manner for protection-violation interrupts as it does for page not
present interrupts; clearing the interrupt causes the hardware to retry
the memory access. To avoid a repeated interrupt, the coprocessor
operation must be terminated before the protection-violation interrupt
is cleared.

XGA Function-September 1991 3-163

The XGA In Segmented Systems

In a segmented system design, all memory is allocated in blocks
called segments. Memory within a segment is guaranteed to be
contiguous, and can therefore be addressed directly by the
coprocessor using physical addresses (VM is turned off). The
segment must be locked in place before any coprocessor operation to
ensure that the operating system does not reuse the memory during
the operation.

When using 16-bit addressing in the 80386 (for example, under the
OS/2 version 1.3 operating system), it is not possible to define a
segment of more than 64KB. If the coprocessor data in system
memory is restricted to no more than 64KB in length, a single
segment can be used and the coprocessor can directly address the
data using physical addresses.

When using the OS/2 version 1.3 operating system, larger areas of
memory can be requested, but are given in blocks of 64KB
(maximum) that are unlikely to be contiguous in real memory. If
larger areas in system memory are required, the driving software can
turn on the coprocessor VM address translation and perform its own
memory management using memory allocated to it by the operating
system.

3-164 XGA Function-September 1991

Virtual Memory Registers

The following registers provide virtual memory support for the PEL
interface.

Page Directory Base Address Register (Coprocessor Registers,
Offset 0)

This write-only register has coprocessor registers offset of hex O.

31 12 11 e

Page Directory Base Addr Pointer I
- : Set all bits in field to e

Figure 3-171. Page Directory Base Address Register, Offset Hex 0

The field in this register is defined as follows:

Page Directory Base Addr Pointer
This field (bits 31-12) is a 20-bit pointer to the page in
physical memory containing the current page directory for
the current task.

Loading this register clears the translate look-aside buffer.

Note: This register can be loaded only after the XGA is put in
supervisor mode.

XGA Function - September 1991 3-165

Current Virtual Address Register (Coprocessor Registers, Offset 4)

This read-only register has coprocessor registers offset of hex 4. Do
not write to this register.

31 12 11 e

Faulting Page Address

- : Set all bits in field to e

Figure 3-172. Current Virtual Address Register, Offset Hex 4

The field in this register is defined as follows:

Faulting Page Address
After a VM hardware-not-present interrupt or protection
interrupt, read this field (bits 31 -12) to find the fault
address page.

3-166 XGA Function - September 1991

Virtual Memory Control Register (110 Address 21x6)

This readlwrite register has an 1/0 address of hex 21x6. The Virtual
Memory Control register is directly mapped to 1/0 address space.

7 6 5 4 3 2 1 o

NPE! PVE! -! - I -! us

NPE
PVE

US
EV

Set to 0, Undefined on Read
VM Page Not Present Interrupt Enable
VM Protection Violation Interrupt Enable
User / Supervisor
Enable Virtual Address Lookup

Figure 3-173. Virtual Memory Control Register

The fields in this register are defined as follows:

NPE The VM Page Not Present Interrupt Enable field (bit 7)
controls the sending of an interrupt when a VM page not
present condition is detected. When set to 1, an interrupt
is sent to the system microprocessor when the not present
condition is detected. When set to 0, the not present
condition does not send an interrupt. In both cases, the
contents of the appropriate VM Interrupt Status register
status bit are updated when the not present condition is
detected.

PVE The VM Protection Violation Interrupt Enable field (bit 6)
controls the sending of an interrupt when a VM protection
violation condition is detected. When set to 1, an interrupt
is sent to the system microprocessor when the protection
violation condition is detected. When set to 0, the
protection violation condition does not send an interrupt.
In both cases the contents of the appropriate VM Interrupt
Status register status bit are updated when the protection
violation condition is detected.

XGA Function - September 1991 3·167

US The User/Supervisor field (bit 2) indicates the privilege
level of the currently-executing task. When set to 0, the
executing task is at privilege levels 0, 1, or 2 (a supervisor
task). When set to 1, the executing task is at privilege
level 3 (a user task).

If set to supervisor (O), no protection checking is
performed by the coprocessor on page directory and page
table protection bits. If set to user (1), checking is
performed, and a protection interrupt is sent if permitted
access rights are violated.

EV The Enable Virtual Address Lookup field (bit 0) controls
the virtual address translation. Subsequent addresses
generated by the PEL interface hardware are looked up in
page tables. If this bit is not set:

• Bit maps must be resident and contiguous.
• The PEL map base addresses are physical addresses.
• All addresses generated by the coprocessor are

physical addresses.
• Nonpaged operating systems are supported.

3-168 XGA Function - September 1991

Virtual Memory Interrupt Status Register (1/0 Address 21x7)

This read/write register has an I/O address of hex 21x7. The Virtual
Memory Interrupt Register is directly mapped to I/O address space.

7 6 5 4 3 2 1 e

NPsl pvsl -I -I -I -I -I -I
. Set to e, Undefined on Read

NPS VM Page Not Present Interrupt Status
PVS : VM Protection Violation Interrupt Status

Figure 3-174. Virtual Memory Interrupt Status Register

The fields in this register are defined as follows:

NPS When a VM page not present condition occurs, the VM
Page Not Present Interrupt Status field (bit 7) is
automatically set to 1. This bit is reset to 0 by writi ng a 1
to it. This allows the value just read to be written back to
clear the bits that were set. Writing a 0 to this bit has no
effect.

Resetting this bit (writing a 1) causes the VM hardware to
retry page translation. If this bit is to be reset before the
not present condition has been repaired, the coprocessor
operation must be suspended or terminated, otherwise
another not-present interrupt is generated by the same not
present condition.

PVS When a VM protection violation condition occurs, the VM
Protection Violation Interrupt Status field (bit 6) is
automatically set to 1. This bit is reset to 0 by writing a 1
to it. This lets the value just read to be written back to
clear the bits that were set. Writing a 0 to this bit has no
effect.

Resetting this bit (writing a 1) causes the VM hardware to
retry page translation. If this bit is to be reset before the
protection violation condition has been repaired, the
coprocessor operation must be suspended or terminated,
otherwise another protection-violation interrupt is
generated by the same protection violation condition.
Most operating systems do not attempt to recover from a
protection violation condition. The coprocessor operation
causing this condition is terminated.

XGA Function - September 1991 3-169

XGA Programming Considerations

Adapter Coexistence with VGA

Because the VGA uses fixed I/O and memory mapped address
spaces, only one VGA can be active at a time in a system. When the
XGA subsystem is installed alongside a VGA or another XGA
subsystem, only one of the VGA-capable subsystems can be enabled
at one time.

An application can use multiple coexisting VGA or XGA subsystems
in VGA mode only by alternately disabling and enabling the various
VGAs.

Do not enable more than one VGA concurrently. A disabled (or
inactive) VGA retains its visible displayed data, and the overall effect
is that of a multiple VGA application.

To successively enable and disable multiple coexisting XGA
subsystems in VGA mode, use the Operating Mode register (21xO).

Adapter Coexistence with Other XGA Subsystems

Up to eight XGA subsystems can be installed in a system.

Multiple XGA subsystems can coexist in Extended Graphics mode.
Each occupies its own separate ranges of I/O and memory space. An
application written to exploit multiple XGA subsystems in this mode
can access each Instance of the subsystem without enabling and
disabling the subsystem between accesses.

To comply with the restriction on VGA coexistence, a multiple display
subsystem application must record, on initialization, the XGA
subsystem (if any) originally in VGA mode. On termination, only that
subsystem should be returned to VGA mode.

3-170 XGA Function - September 1991

Locating the XGA Subsystem

Before using the subsystem, locate the subsystem in 1/0 and memory
space by interrogating and interpreting the POS data for the
subsystem.

Reading POS Data

Put every adapter in the system, including the system board video
subsystem, into setup mode in turn, and examine their POS IDs to
locate any XGA adapters in the system.

For option cards, the procedure is described in System Services BIOS
call INT 15h, AH = C4h Programmable Option Select in the IBM
Personal Systeml2 and Personal Computer BIOS Interface Technical
Reference.

For the system board video subsystem, a different procedure is
necessary. To place the system board video subsystem in setup
mode, write hex ODF to port 94H; to enable it, write hex OFF to port
94H.

Interrupts must be disabled for the entire period of time that each
adapter is in setup mode.

The POS IDs for all adapters in the system must be read and
examined to locate all the XGA adapters in the system. The list of
POS IDs allocated to the XGA adapter is as follows:

• BFDBh
• BFD9h
• BFDAh
• BFDBh.

After successfully matching POS IDs, read the remainder of the POS
data bytes for that subsystem. This data is used to calculate the
location of the XGA subsystem registers and display buffers in 1/0
and physical system memory address space. Descriptions of the POS
data bit assignments are in "XGA POS Registers" on page 3-151. For
future compatibility, mask out all reserved and unused POS data bits
before using the data for these calculations. (See "Upward
Compatibility" on page 3-196).

XGA Function - September 1991 3-171

Address Calculations

See "XGA POS Registers" on page 3-151 for the technical
background to the following register and address space calculations.

ROM Address: Calculate the ROM address from POS data as
follows:

ROM Address = (ROM Address field x hex 2eee) + hex eceeee

The ROM Address field is read from POS Register 2, bits 4 to 7.

Coprocessor Registers: The Coprocessor registers are referenced
from a base address. This address depends on the Instance (0 - 7) of
the XGA subsystem and the ROM address calculated as shown in
"ROM Address." The Coprocessor register base address is
calculated as follows:

«(128 x Instance) + hex lCee) + ROM address)

The Instance is read from POS Register 2, bits 1 to 3.

For example:

Assuming Instance = 6 and ROM address = hex eceeee, the Coprocessor
Base Address is hex eClFee.

110 Registers: The XGA 1/0 registers are referenced from a base 1/0
address. The 1/0 address is calculated as follows:

Hex 2lxe (where x is the Instance)

The Instance is read from POS Register 2, bits 1 to 3.

The Video Memory Sase Address: The Video Memory Base Address
is calculated from the Video Memory Base Address field in POS
Register 4, and the Instance.

Figure 3-175 on page 3-173 and Figure 3-176 on page 3-173 show
how these two values combine to give the video memory base
address.

3-172 XGA Function - September 1991

31 25 24 - 22 21

Video Memory Instance 4MB of Addressable Memory
Base Address 0 - 7

Figure 3-175. XGA Video Memory Base Address

1
~

INSTANCE 1

INSTANCE 0

INSTANCE 7

INSTANCE 6

INSTANCE 5

INSTANCE 4

INSTANCE 3

INSTANCE 2

INSTANCE 1

INSTANCE 0

ROM

14096MB

..... 1"'"

72MB

68MB

64MB

60MB

56MB

52MB

48MB

44MB

40MB

36MB

32MB

16MB

1MB

----AOOO/BOOO---

SYSTEM RAM
OMB

Virtual Memory
ADDRESS (hex) Base Address

FFFFFFFF 127

((
04800000 2

04400000 2

04000000 2

03COOOOO

03800000

03400000

03000000

02COOOOO

02800000

02400000

02000000

o

0000000 o

Figure 3-176. The XGA Video Memory Base Address Diagram

o

The Video Memory Base Address field defines a 32MB address range
and the Instance defines a 4MB address range within the 32MB
range.

XGA Function - September 1991 3·173

For example:

Assuming Instance = 6 and the Video Memory Base Address field = I,
the Video Memory Base Address is hex 03800000.

The video memory base address, when calculated, serves two
separate purposes:

4MB System Video Memory Aperture: If enabled (read from bit 0 in
POS Register 4 to determine if the aperture is enabled), the 4MB
system video memory aperture is located at this address in physical
system address space. If virtual addressability to this range of
physical address space can be achieved, the entire video memory
can be accessed through this aperture at this address.

Video Memory Location in Coprocessor Address Space: The video
memory base address has a special significance to the XGA
coprocessor. It defines the location of the video memory, including
the display PEL map, in the XGA coprocessor's view of system
address space. Therefore, the XGA coprocessor recognizes
addresses in this range to be addresses in local video memory,
rather than general system memory. This is how the XGA
coprocessor differentiates video memory from system memory. If an
address passed to the XGA coprocessor is in this range, the XGA
coprocessor knows that it is operating on a bit map in video memory.
If the address is outside this range, the XGA coprocessor assumes it
is operating on a bit map in normal system memory, and attempts to
use busmastership to access it.

The XGA subsystem operates internally on a 32-bit bus. Therefore,
this address is a 32-bit address regardless of whether the XGA
subsystem is installed in a 16- or 32-bit slot or system, or whether the
4MB system video memory aperture is enabled or disabled. This
applies even on systems where such addresses are not otherwise
possible.

1MB Aperture Base Address: The 1MB aperture base address is
calculated from the 1 MB Aperture Base Address field in POS Register
5, bits 0 to 3.

If (1MB Base field ¢ 0)
1MB Aperture Base Address = 1MB Base field x hex 100000

If (1MB Base field = 0) 1MB Aperture is disabled.

3-174 XGA Function - September 1991

Display Type and Video Memory Size

The attached display type is determined by reading the Display 10
register (index hex 52). The list of display IDs, including the returned
value indicating no attached display, is listed in "Extended Graphics
Modes Available" on page 3-180. Depending on the application, it
may be necessary to determine the video memory size to ensure that
the required mode is available. The method for doing this is also
described in "Extended Graphics Modes Available" on page 3-180.

For multiple coexistent XGA subsystems (for a multiple subsystem
application), continue until sufficient Instances of the XGA have been
located.

VGA Primary Adapter Considerations

Where a single XGA subsystem is providing both VGA and Extended
Graphics function, particularly on a system with single display
subsystem or monitor, an application using the subsystem in
Extended Graphics mode takes on a number of additional systems
responsibilities.

Before switching the subsystem into Extended Graphics mode,
examine the Operating Mode register, bits 0 and 2, to determine
whether the XGA subsystem is enabled in VGA mode or 132-column
text mode.

If the XGA subsystem is not enabled in VGA mode, the subsystem is
operating as an auxiliary video subsystem and systems messages
can be left to the primary VGA source. In this case, the XGA
subsystem must not be put into VGA mode unless the current VGA is
disabled.

If the XGA subsystem is enabled in VGA mode, the subsystem is the
system primary video subsystem, and a number of special
considerations apply.

XGA Function - September 1991 3-175

Chaining the INT 10h Video SIOS Handler

The application must chain the INT 10h Video interrupt handler and
monitor calls to the INT 10h handler while the application is using the
XGA subsystem in Extended Graphics mode.

There are a number of hot-key and error handlers that may attempt to
communicate with the VGA while the XGA subsystem is in Extended
Graphics mode, so code must be written to handle such calls.

The majority of calls to the INT 10h handler can be ignored (simply
return to the caller) while the XGA subsystem is in Extended Graphics
mode, but some calls require correct handling.

(Ah) = OOh Set Mode
Set mode calls can come from a critical error or
honmaskable interrupt (NMI) handler. Because failure to
restore VGA mode can result in the loss of critical error
data or dialogue, applications must allow the mode set
operation.

For normal VGA mode setting procedure to occur, the INT
10h handler must restore the subsystem as necessary to
VGA mode before chaining on to the next INT 10h interrupt
handler.

Note: The NMI handler traditionally issues a return
current video state to determine the current mode,
followed by a video set mode to the current mode.

If the INT 10h Video interrupt handler of the application
detects a video set mode with AL = 7Fh, mode 03h should
be substituted after restoring the subsystem to VGA mode.

(Ah) = OFh Return current vIdeo state
In Extended Graphics mode, the application's INT 10h
interrupt handler should return a current mode of 7Fh in
AL, to indicate that the subsystem is in a non-VGA mode.

This is a special mode number assigned for this purpose.

3-176 XGA Function - September 1991

INT 24h, Critical Error Handler

The application should trap and revector the DOS critical error
handler interrupt vector (INT 24h), as described in the DOS Technical
Reference Manual. The application is then notified on DOS Critical
errors.

The critical error handler of the application should save the video
state of the subsystem (as far as necessary), and put the XGA
subsystem into VGA mode before chaining on, using the saved vector
to the original critical error handler. This lets the dialogue between
the critical error handler and the user proceed normally.

After returning from the chained critical error handler, the critical
error handler of the application must examine the return code in AL
to determine the appropriate action.

0,1,3

2

Control is returned to the application. Put the XGA
subsystem back into Extended Graphics mode and restore
the video state as necessary.

The program is aborted by the system. Leave the XGA
subsystem in VGA mode and return.

Alternatively, the application can take over the entire critical error
handling dialogue in Extended Graphics mode.

Note: The C language signal function can (in some implementations)
be used to intercept the critical error handler for this purpose.

INT 23h, Ctrl-Break Exit Address

The application should trap and revector the DOS Ctrl-Break exit
address interrupt vector (INT 23h), as described in the DOS Technical
Reference Manual. The application is notified when the Ctrl-Break
key combination is entered.

If the application is not otherwise intercepting Ctrl-Breaks, the XGA
subsystem must be put back into VGA mode before chaining on, using
the saved vector to the original Ctrl-Break handler. This lets the
normal Ctrl-Break handler proceed.

Alternatively, the application can take over the entire Ctrl-Break
handling in Extended Graphics mode.

Note: The C language signal function can be used to intercept the
Ctrl-Break handler for this purpose.

XGA Function - September 1991 3-177

INT 21h, Function 4Ch, Program Terminate Function

The subsystem must be in VGA mode on program termination,
regardless of the how the program terminates or is terminated.

To ensure that this is done, the application must trap and revector the
normal DOS program terminate function, DOS INT 21h function 4Ch,
as described in the DOS Technical Reference Manual. On receiving
notice of program termination, the application must put the
subsystem back into VGA mode and unhook all other hooked interrupt
vectors before chaining on for the remainder of program termination
handling.

DOS INT 21 h function 4Ch is the conventional method used by all
programs to terminate. By trapping the DOS function interrupt (INT
21 h) and monitoring calls to the program terminate function (4Ch), all
routes for a program to terminate normally must be covered.

Note: There are other program terminate functions, including:

• INT 20h
• INT 27h
• INT 21 h Function OOh
• INT 21 h Function 31 h.

For complete coverage, these calls can be revectored and
trapped, but they are not used as commonly as the INT 21 h
Function 4Ch.

All other function calls must be passed to the previous DOS function
handler using the saved interrupt vector.

On detecting a call to function 4Ch, put the XGA subsystem into VGA
mode before chaining on using the saved vector to the original DOS
function handler. This lets the DOS program terminate function
proceed normally.

Note: The C language atexit function can be used for this purpose.

3-178 XGA Function-September 1991

General Systems Considerations

Coexisting with LIM Expanded Memory Managers

The XGA subsystem uses memory-mapped registers located in the
hex COOOO/DOOOO region of physical address space, as described in
"XGA POS Registers" on page 3-151.

This area is used extensively by expanded memory managers to
provide expanded memory services to applications.

When the application determines the location of the memory-mapped
register space, it must interrogate any expanded memory manager to
ensure that there is no contention for this range of physical address
space. Use function 25 (Ah) = 58h, get physical address array, as
described in the Lotusl/ntel/Microsoft Expanded Memory
Specification Version 4.0. If there is contention, a warning should be
issued advising the user to resolve it by use of the expanded memory
manager call parameters (usually on the DEVICE = statement in
CONFIG.SYS).

INT 2Fh, Screen Switch Notification

For the application to work successfully in multiple virtual DOS
machine (MVDM) environments, or in the DOS compatibility box of
the OS/2 operating system, it must trap and revector the DOS
multiplex vector (2Fh), looking for (Ah) = 40h. Any other values must
be passed immediately to the chained INT 2Fh handler. This
multiplex interrupt is used with (Ah) = 40h to notify DOS applications
of screen switches.

(AI) =01h DOS mode application being switched to the background.

The application must save its video state and put the
display back into VGA mode (if applicable).

(AI) = 02h DOS mode application being switched to the foreground.

The application can switch the subsystem back into
Extended Graphics mode, and restore the saved video
state.

The range of operations permitted within INT 2Fh processing is
limited. For example, it is not permissible to issue disk I/O
operations, precluding an entire save and restore of video memory
and state. The only way of using this call is for the INT 2Fh interrupt
handler to notify the application that a redraw is required (if the
application program structure permits).

XGA Function - September 1991 3-179

Extended Graphics Modes Available

The following figure shows the list of modes available according to
the display type and size of video memory configured on the XGA
subsystem.

Display
10 Exampla Size Max
(binary) Display. (In.) Color Address 512KB Memory 1MB Memory

1111 None None None
1101 8503 12 Mono 640x480 640x480x64 Grays 640x480x64 Grays
1110 8513 12 Color 640x480 640x480x256 Colors 640x480x256 Colors

8512 14 640x480x65536 Colors
1011 8515 14 Color 1024x768 640x480x256 Colors 640x480x256 Colors

1024x768x16 Colors 640x480x65536 Colors
1024x768x16 Colors
1024x768x256 Colors

1001 8804 15 Mono 1024x768 64Ox480x64 Grays 640x480x64 Grays
8507 19 1024x768x16 Grays 1024x768x16 Grays

1024x768x64 Grays
1010 8514 16 Color 1024x768 640x480x256 Colors 640x480x256 Colors

1024x768x16 Colors 640x480x65536 Colors
1024x768x16 Colors
1024x768x256 Colors

0010 8514 - Color 1024x768 640x480x256 Colors 640x480x256 Colors
compatible 1024x768x16 Colors 640x480x65536 Colors

1024x768x16 Colors
1024x768x256 Colors

Figure 3-177. Availability of Extended Graphics Modes

To determine the display type, read the XGA subsystem register
index hex 52, Display 10, and examine the display 10 bits returned.

There are two ways to determine the size of video memory installed.
Both rely on a write-read back-check, in which a particular value is
written to a key location. This value is then read to determine
whether the written value has persisted.

• Use the system processor to write a value through an aperture to
the word at offset 768KB into video memory. This technique
assumes that the system video memory real mode aperture is
available. See the sample code in the following figure.

3-180 XGA Function - September 1991

;* Assume GS points to start of ABBBB Real mode aperture
;* and VGA adapter is in text mode so ABBBB Real mode
;* aperture is available for this operation.
;* Where registers are shown as (for instance 21xBh), this should
;* be filled in with the appropriate 10 port address after determining
;* the location of the XGA subsystem in 10 space
;*
;* First put the adapter PARTIALLY in extended graphics mode
;* to allow use of the system video memory Aperture

mov al,B
mov dx,21x4h ; disable XGA interrupts
out dx,al

mov ax,BB64h
mov dx,21xAh Blank palette
out dx,ax indexed XGA register 64h

mov ax,B4h
mov dx,21xBh Set adapter in Extended Graphics Mode
out dx,al

mov al ,Blh
mov dx,21xlh Locate video memory Aperture at ABBBB
out dx.al

mov dx,21x8h System video memory indx reg.
mov al.Bch Offset 768K
out dx,al

mov byte ptr gs:[B].BA5h Set byte to A5h
mov byte ptr gs:[1].Bh Avoid shadows on data lines

cmp byte ptr gs:[0].BA5h ; Test against value written
jne vram_512k ; 512K video memory only

mov byte ptr gs:[B].5Ah ; Set byte to 5Ah
mov byte ptr gs:[1].0h ; Avoid shadows on data lines

cmp byte ptr gs:[B].BA5h ; Test against value written
je vram IMeg ; 1 Meg if still matches
jmp vram=512k ; Otherwise 1/2 meg found

Figure 3-178. Video Memory Size Determination

• Use the XGA subsystem PxBlt capability to perform a similar test
to the previous example; transfer a constant color to the location
in video memory, then transfer that value back from video
memory to system memory using busmastership.

This technique works regardless of the availability of a system
video memory aperture. However, it requires physical
addressability to a location in system memory for the
busmastership operation.

XGA Function-September 1991 3-181

Setting the XGA Subsystem Mode

The following points should be observed by al/ software when
switching between modes (see "Hardware Considerations" on
page 2-11):

• All data in video memory is preserved during a mode switch,
provided that the CRT controller is halted at the time using the
Display Control 1 register (if switching out of Extended Graphics
mode), or the Reset register (if switching out of VGA mode). The
CRT controller is described in "CRT Controller" on page 3-19 and
"Display Control 1 Register (Index 50)" on page 3-66.

• When switching between VGA modes, the mapping of the VGA
memory maps to the video memory is controlled by 2 fields in the
following VGA CRT Controller registers:

Word/byte mode (CRT Mode Control register, WB field)

Doubleword mode (Underline Location register, DW field).

VGA modes can be split into three groups: byte modes, word
modes, and doubleword modes.

All switches between modes in the same group are
indistinguishable from the same mode switches on the VGA.

Switches between modes in different groups produce different
effects from those observed on the VGA. Because the bits
controlling the mapping are used for display purposes, the
picture is scrambled in both cases.

Partial mode switches (for example, to load fonts in a text mode)
are also possible. The bits used to control the mapping of the
data in video memory are used to control the picture display.
Therefore, all partial mode switches to update the video memory
that do not destroy the picture (and many that do) work correctly.

Individual Mode Setting Procedures

This section gives the register settings to set the subsystem into the
various modes available, subject to the rules described in this
section. It is important to set the registers in the order they are
presented here.

Extended Graphics Mode: To set the XGA subsystem into Extended
Graphics mode, the configuration must be capable of supporting the
required mode as listed in "Extended Graphics Modes Available" on
page 3-180.

3-182 XGA Function-September 1991

Color Mode Value (hex)

XGA 1024x 1024x 640x 640x
Reg. 768x 768x 480x 480x

XGA Register Name ID Oper 256 16 256 65536 Comments

Interrupt Enable 21x4 = 00 00 00 00 Initial Value
Interrupt Status 21x5 = FF FF FF FF

Set Extended
Operating Mode 21xO = 04 04 04 04 Graphics Mode
Palette Mask 64 = 00 00 00 00 Blank Display
Video Mem Aperture
Ctl 21x1 = 00 00 00 00 Initial Value
Video Mem Aperture
Index 21x8 = 00 00 00 00 Initial Value
VirtMem CII 21x6 = 00 00 00 00 Initial Value
Memory Access Mode 21x9 = 03 02 03 04 Initial Value
Oisp Mode 1 50 = 01 01 01 01 Prepare for reset
Oisp Mode 1 50 = 00 00 00 00 Reset CRT Ctrl
Horiz Total Low 10 = 90 90 63 63)
Horiz Total High 11 = 00 00 00 00)
Horiz Display End Low 12 = 7F 7F 4F 4F)
Horiz Display End High 13 = 00 00 00 00)
Horiz Blank Start Low 14 = 7F 7F 4F 4F)
Horiz Blank Start High 15 = 00 00 00 00)
Horiz Blank End Low 16 = 90 90 63 63)
Horiz Blank End High 17 = 00 00 00 00)
Horiz Sync Start Low 18 = 87 87 55 55)
Horiz Sync Start High 19 = 00 00 00 00)
Horiz Sync End Low 1A = 9C 9C 61 61)
Horiz Sync End High 1B = 00 00 00 00)
Horiz Sync Posn 1C = 40 40 00 00)
Horiz Sync Posn 1E = 04 04 00 00)
Vert Total Low 20 = 30 30 OC OC)
VerlTotal High 21 = 03 03 02 02)XGACRT
Vert Oisp End Low 22 = FF FF OF OF) Controller
Vert Oisp End High 23 = 02 02 01 01) param
Vert Blank Start Low 24 = FF FF OF OF)
Vert Blank Start High 25 = 02 02 01 01)
Vert Blank End Low 26 = 30 30 OC OC)
Vert Blank End High 27 = 03 03 02 02)
Vert Sync Start Low 28 = 00 00 EA EA)
Vert Sync Start High 29 = 03 03 01 01)
Vert Sync End 2A = 08 08 EC EC)
Vert Line Comp Low 2C = FF FF FF FF)
Vert Line Comp High 20 = FF FF FF FF)
Sprite Control 36 = 00 00 00 00 Initial Value
Start Addr Low 40 = 00 00 00 00 Initial Value
Start Addr Me 41 = 00 00 00 00 Initial Value
Start Addr High 42 = 00 00 00 00 Initial Value
Buffer Pitch Low 43 = 80 40 50 AO
Buffer Pitch High 44 = 00 00 00 00
Clock Sel 54 = Od Od 00 00
Display Mode 2 51 = 03 02 03 04
Ext Clock Sel 70 = 00 00 00 00
Display Mode 1 50 = OF OF C7 C7

Nole: Initial Palette loading must be done at this pOint. by writing to the appropriate XGA subsystem
palettelsprite registers.

The video memory must also be initialized at this point. to avoid random data appearing when the
palette mask is set to make the current display PEL map contents visible.

Border Color 55 = 00 00 00 00 Initial Value
Palette Mask 64 = FF FF FF FF Make visible

Figure 3-179. Extended Graphics Mode Register Settings

XGA Function - September 1991 3-183

VGA Mode: To put the XGA subsystem into VGA mode (subject to the
rules discussed in "VGA Primary Adapter Considerations" on
page 3-175), perform the following operations:

1. Clear the first 256KB of video memory contents. This avoids
screen flash caused by random data being present on switching
into VGA mode.

2. Write data to the registers in the following sequence:

Value XGA VGA
(hex) Oper Reg Reg Comments

00 = 21x1 Aperture Control register
00 = 21x4 Interrupt disable
FF = 21x5 Clear interrupts
FF = 64 Palette Mask register
15 = 50 Enable VFB, prepare for reset
14 = 50 Enable VFB, reset CRT controller
00 = 51 Normal scale factors
04 = 54 Select VGA oscillator
00 = 70 External Clock (VGAl
20 = 2A Ensure no VSync interrupts
01 = 21xO Switch to VGA mode
01 = 3C3 Enable VGA address decode

Figure 3-180. VGA Mode Write Sequence

3. Set the number of lines in VGA mode (if required) using Video
BIOS INT 10h Ah = 12h.

4. Set the required VGA mode using Video BIOS INT 10h Ah=OOh,
set mode.

The XGA subsystem is now in VGA mode.

3·184 XGA Function - September 1991

132-Column Text Mode: The 132-column text mode may be
supported in some XGA subsystems and system units. Before
directly setting the 132-column text mode, issue a Video BIOS INT 10h
Return Functionality State Information call. Examine the list of BIOS
supported modes for the existence of mode 14h.

If mode 14h is supported in BIOS, issue the appropriate Video BIOS
Set Mode call to put the subsystem into 132-column text mode.

If Video BIOS Mode 14h is not supported in BIOS, the following
sequence of operations puts the subsystem into 132-column text
mode:

1. If necessary, put the XGA subsystem into VGA mode.

2. Write data to registers in the following sequence:

Value XGA VGA VGA Other
(hex) Oper Reg 30415 3C415 VGA Comments

15 = 50 Prepare CRT controller for reset
14 = 50 Reset CRT controller
04 = 54 Select VGA clock

Figure 3-181. 132-Column Text Mode First Write Sequence

3. Set the number of lines in VGA mode using INT 10h Ah= 12h (200,
350, or 400).

4. Set VGA mode 3 using INT 10h Ax=0003h. The 132-column text
mode is a variation of the VGA text mode. The following table
gives the variations from the standard mode.

XGA Function - September 1991 3-185

5. Write data to registers in the following sequence:

Value XGA VGA VGA Other
(hex) Oper Reg 3D4/5 3C4/5 VGA Comments

01 1= 50) Prepare CRT controller for reset
FD &= 50)
FC &= 50 Reset CRT controller
03 = 21xO 132-column text mode
01 = 54 132-column clock frequency select
80 = 70 Select internal 132-column clock
EF &= 50 Disable video extension
7F &= 11 Enable VGA CRT controller reg

update
A4 = 0)
83 = 1)
84 = 2)
83 = 3)
90 = 4) Variations on VGA CRT
80 = 5) controller syncs
A3 = 1A)
00 = 18)
00 = 1C)
00 = 1E)
42 = 13)
80 1= 11 Disable VGA CRT controller reg

update
03 1= 50 Remove CRT controller reset
01 1= 01 8 bit characters .. INP 3DA Read sets attribute controller flip

flop
13 = 3CO) Sets attribute controller
00 = 3CO) Registers hex 13 to 00
20 = 3CO Restore palette

1= Logical OR to modify register contents

&= Logical AND to modify register contents

= Write value to register

INP Read value from register

Figure 3-182. 132-Column Text Mode Second Write Sequence

6. Write hex 84 to 40:4A in 810S data area to force Video 810S
recognition of 132-column text mode.

The coded text buffer is now 132 columns wide. The mode can now
be programmed like any other VGA text mode, with a coded text
buffer located at hex 88000 in system address space.

If it is necessary to invoke a mode change using Video 810S (INT 10h)
while in 132-column text mode (for example, to vary the number of
lines), follow step 1 on page 3-185 through step 6.

3-186 XGA Function - September 1991

System Video Memory Apertures

There are three possible apertures in the physical address space of
the system. If present, any of them can be used by the system
processor to access directly the packed PEL display buffer mapped
into system memory. The XGA coprocessor may make the use of an
aperture unnecessary.

The precise location of each aperture, and whether it is enabled, is
determined by decoding the XGA subsystem pas data, as described
in "Locating the XGA Subsystem" on page 3-171.

64KB System Video Memory Aperture: This aperture is at hex AOOOO
or BOOOO in physical address space. The 64KB aperture is insufficient
to access the entire subsystem display buffer. Therefore, the
aperture position over the display buffer is controlled by using the
Aperture Index register.

This is the only aperture in i86 real mode address space.

Other video adapters, such as another adapter or subsystem in either
VGA or Extended Graphics mode, may contend for the use of this
aperture. Only one video subsystem can have this aperture enabled
at a time. If there is no contention for the hex AOOOO or BOOOO
address spaces, this aperture is the only one that can be enabled by
the application.

1 MB System Video Memory Aperture: The base address of this
aperture may be located on any 1 MB boundary from 1 MB to 15MB, or
it may be disabled. The aperture address is determined by the
system configuration. To determine its position, and whether it is
enabled, decode the pas data as described in "Locating the XGA
Subsystem" on page 3-171.

In systems with multiple XGA subsystems, each one may have its
own aperture. Depending on the hardware configuration, it is
possible for some, but not all coexisting XGA subsystems to have
their 1MB system video memory apertures enabled.

This aperture is large enough to access the entire video memory
without using the Aperture Index register to move the aperture. The
Aperture Index register must be set to 0 when using this aperture.

This aperture is easily accessible only in protect mode environments.
The operating system must provide addressability to the address
range occupied by the aperture. Some operating systems attempt to

XGA Function - September 1991 3-187

restrict such addressability to protect device drivers or kernel device
drivers. A small kernel device driver may need to be written to
provide addressability. For example, in a 16-bit segmented system
such as the OS/2 version 1.3 operating system, the following steps
may be necessary to build global descriptor table (GOT)
addressability to an aperture:

1. Allocate a GOT selector.

2. Modify the GOT entry directly to alter the permission bits to allow
user mode (ring 3) access.

3. Alter the GOT segment length to be a 1MB segment. The entire
1 MB video memory display buffers can then be accessed as a
single segment.

Check that the aperture is enabled before assuming its existence. If
the aperture is disabled, it cannot be enabled by the application. The
application should then try to use the 4MB aperture.

4MB System Video Memory Aperture: The base address of this
aperture may be located on any 4 megabyte boundary at or above
16MB, or it may be disabled. The aperture address is determined by
the system configuration. To determine its position, and whether it is
enabled, decode the POS data as described in "Locating the XGA
Subsystem" on page 3-171.

In systems with multiple XGA subsystems, each one may have its
own aperture.

This aperture is not available in 16-bit systems based on the 80386SX.
This aperture does not exist when the XGA subsystem adapter is
plugged into a 16-bit (short) slot on a 32-bit system.

Check that the aperture is enabled before assuming its existence.
Also, check the Auto-Configuration register, as described in
"Auto-Configuration Register (Index 04)" on page 3-43, to determine
the bus width.

While this aperture is present when the XGA subsystem is plugged
into a 32-bit slot on a 32-bit system, it may not be easily accessible in
real-mode DOS or 16-bit protect-mode operating systems.

3-188 XGA Function - September 1991

Physical Addressability to System Memory

The XGA subsystem coprocessor can operate as a Micro Channel
busmaster. As a busmaster, the coprocessor is capable of bit map
operations on bit maps up to 4KB by 4KB PELs anywhere in system
address space, including video memory. A PxBlt operation can be
defined as a function of four separate bit maps:

D' = f(S,D,P,M)

That is, the modified destination PEL (D') is a function of the source
(5), the current destination PEL (D), the pattern (P), and the mask (M).
These bit maps can be anywhere in memory. The XGA coprocessor
handles all bit maps alike. No special handling of a bit map in video
memory is required.

This flexibility is very powerful, but requires support from the
operating system to fully realize the benefits.

Busmastership is on i386 physical address space, while applications
run on the system processor in virtual or linear address space. The
system processor automatically converts such addresses to phYSical
addresses internally through the page tables or segment descriptor
tables. An adapter, such as the XGA coprocessor, has no physical
access to the segment descriptors or the page tables. To use
busmastership, the application (or its device drivers) must provide
the XGA coprocessor with the physical address of all the bit maps on
which it requires the XGA coprocessor to operate. Methods for
providing the XGA coprocessor with physical addressability to all
such resources, and the tasks necessary, vary according to the
operating system and the mode of the system processor.

Real-Mode DOS Environments

The real-mode DOS environment is the simplest and easiest in terms
of memory management. The application is limited to 640KB of
real-mode DOS memory. Virtual-to-linear memory address
conversion is done by means of a simple shift left 4 and add
operation, and the nature of the real-mode DOS environment is that
linear addresses are identical to physical addresses.

In the multiple virtual DOS machine (MVDM) environment, however,
linear addresses are no longer identical to physical addresses, and a
DOS application or device driver may not necessarily work correctly
in an MVDM environment.

XGA Function - September 1991 3-189

In most cases, the virtualization display driver of the MVDM
hypervisor will cope with this, but applications must be tested in
individual MVDM environments before full, real-mode DOS
compatibility can be claimed.

Extended Memory: A DOS application can allocate large areas of
extended memory as working bit maps for the application. It is
unnecessary to have system processor addressability to such bit
maps. The XGA coprocessor can do all the necessary accesses, and
extended memory is ideal for this purpose.

The techniques required to allocate and use extended memory in a
DOS application are not covered here.

LIM EMS Managers: The most common memory management
technique that gives extra memory in the DOS environment is the
Lotus-Intel-Microsoft Expanded Memory Services Manager. These
memory managers implement the LIM 4.0 specification for a software
interrupt driven memory management interface using software
interrupt 67h. On 80386 and above processors, memory is physically
allocated as extended memory, and the LIM EMS manager maps this
into expanded memory using the 80386 page tables.

The drawback to this technique is that a simple shift left 4 and add
operation yields the linear, but not the physical address of the LIM
frame. To determine the physical address, it is necessary to call the
Operating System DMA services interface of the LIM EMS driver to
convert linear addresses to physical addresses. This interface,
based on Software Interrupt 4Bh, is described in the IBM Personal
Systeml2 and Personal Computer BIOS Interface Technical
Reference.

This interface is of recent origin, and early LIM drivers may not have
implemented it. There are two choices for the application:

• Do not locate resources in LIM memory on which the XGA
coprocessor is requested to operate.

• Specify a dependency in the application documentation on LIM
EMS drivers that have implemented this interface.

32-8it DOS Extended Environments: In this mode, exploitation of the
power of the XGA coprocessor is easiest. The application can
allocate large memory bit maps without accounting for the behavior
of a memory manager that might change the location of the memory.
Calculation of physical addresses is easily accomplished without the
system overheads of full-blown protect mode operating systems.

3-190 XGA Function - September 1991

Access to the XGA system video memory aperture and coprocessor
register address space can be accomplished easily.

Multiple Virtual DOS Machine Environments: In this mode, multiple
DOS applications can run concurrently (even windowed on the same
screen) in virtual DOS machines (VDMs) and each application
appears internally to be running in the bottom 1 MB of physical
address space.

Full compatibility with real-mode DOS for a busmaster, such as the
XGA coprocessor, is only provided if each DOS application using the
XGA subsystem in Extended Graphics mode is locked in the bottom
1MB of physical address space. Because this is impractical, the
virtualization display driver (VDD) of the MVDM hypervisor must
include specific support functions to support VDMs running Extended
Graphics mode applications.

One technique is described here, although there may be others that
are equally effective.

When a VDM that is running an XGA Extended Graphics mode DOS
application switches to the foreground, the VDD locks the entire
640KB of linear address space in the VDM without making the
memory contiguous. The VDD then uses the page directory entry
(POE) of the foreground VDM to provide physical addressability to
the noncontiguous linear address space. The virtual address
capability of the XGA coprocessor can then be used by giving the
XGA coprocessor direct DMA access to the page tables of the VDM.
Because the entire 640KB DOS region is locked (except for LIM which
will be discussed below), a DOS application will not normally supply
linear addresses outside that range.

The Extended Graphics mode DOS application must not modify the
XGA coprocessor Page Directory Base Address after it is set by the
VDD when switching the VDM to the foreground. Application updates
to this field can be prevented by placing the XGA coprocessor into
user mode.

The DOS application may locate a resource, such as a font definition,
in LIM memory and give the XGA coprocessor the linear address of
the LIM frame, rather than the underlying address. This is normally
handled in real-mode DOS by calling the Operating System DMA
Services interlace of the LIM EMS driver to convert linear addresses
to physical. In the MVDM environment, the XGA coprocessor is in VM
mode, and the linear address of the LIM frame is required, rather
than the physical address. The VDD can monitor the LIM software

XGA Function - September 1991 3-191

interrupt (Int 67h), and ensure that any LIM logica/16K pages
currently mapped into the LIM frames or windows of the VDM are
locked. The page tables of the VDM will then naturally reflect the
correct physical addresses for the LIM pages at the linear address of
the LIM frame. Calls to the Operating System DMA Services interface
must also be filtered out.

Protect Mode 16-8il Segmented Environment: An application written
for this environment has a range of limitations imposed by the
operating system.

64KB Segment Limit: No memory object in this environment can be
larger than 64KB, unless allocated by a kernel device driver on
initialization.

The application cannot assume that two adjacent segments are
located adjacently in physical address space.

Segment Motion: Segments may be moved in physical system
memory at any time. Segments may even be swapped out to disk
when memory is over committed.

All segments must be locked before the physical address is
established.

Consideration must be given to the overall impact on system
performance of locking large areas of memory. Locking increases
the minimum physical memory configuration required to run the
application.

System Overheads: Applications generally run at a low privilege
level and video device drivers must be easily and frequently
accessible by the application without large system overheads.

Applications using the XGA coprocessor need to make use of the
memory management services of the operating system. These
services (used for locking segments and determining the physical
address of segments) are typically restricted to device drivers
operating at high privilege levels.

The system overhead in reaching these services in such operating
systems can be so high that it makes the writing of high performance
applications difficult.

3-192 XGA Function - September 1991

Access to XGA Registers and System Memory Apertures: Ingenuity
is required to provide addressability to the I/O and memory space of
the XGA subsystem. A technique for this is described in "System
Video Memory Apertures" on page 3-187.

Following is a suggested design for an application in this
environment. This technique minimizes kernel or system overheads.

Use a kernel or ring 0 .SYS device driver to permanently allocate a
range of physical memory (typically 128K) as kernel work space
(KWS). The device driver can then generate a GOT selector to the
KWS that is valid in user mode at ring 3. Both the virtual and physical
addresses of the KWS are passed back to the application in user
mode. The kernel device driver also provides user mode
addressability to the register address space of the XGA coprocessor.

The device driver or application can then operate totally in user
mode, passing resources (for example, bit maps or patterns) by
system processor block moves into the KWS. The application can
then use the busmastership capability of the XGA coprocessor to
access the resources in the KWS without suffering the system
overheads of switching into kernel mode again. Bit maps being
transferred to or from the adapter can be double buffered through the
KWS to overlap system processor and XGA coprocessor operations
on large operations.

Paged Virtual Memory (virtual memory) Environments: This
environment shares many constraints with the 16-bit segmented
environment. The main difference is that the unit of granularity of
memory objects has dropped from 64KB to 4KB; the virtual memory
support in the XGA coprocessor is intended to support this
environment.

4KB Discontiguous Pages: In this environment, memory is allocated
to applications in 4KB pages. The system memory manager controls
paging and can swap pages in and out of physical memory
transparently to the application. The application can make no
assumptions about the relationship between adjacent pages.

There are memory management calls available to the kernel or ring 0
device driver that let the device driver build a table containing the
physical addresses of all the component pages of a large bit map. As
with 16-bit segmented environments, described in "Protect Mode
16-Bit Segmented Environment" on page 3-192, the overhead of the
transition to kernel mode makes such calls expensive. It is, however,
possible to build such a table and to operate the XGA coprocessor in

XGA Function - September 1991 3-193

virtual memory mode. The overall impact on system performance
and minimum physical memory configurations should be considered.
A bit map in this case could theoretically be 4Kx4Kx8 bits per PEL,
which is a total of 16MB of locked physical memory.

It is possible to use the XGA coprocessor to interrupt (to indicate a
page fault). However, this interrupt is a normal shared-adapter
interrupt rather than a i386 page fault interrupt, and is handled at a
lower priority. Most operating systems do not allow device drivers to
call the memory management services to request the faulting pages.

Page Table Coherency: It may appear that the XGA coprocessor can
operate off the system page tables because the XGA coprocessor
uses i386-like page tables. Unfortunately, a typical virtual memory
operating system uses one set of page tables per task. In a
multitasking environment, only the currently executing task page
tables remain coherent, while background task page tables become
outdated or incoherent.

This implies that the XGA coprocessor can be operating on a set of
page tables belonging to a background task. It cannot be assumed
that the page table remains coherent, unless the component pages
have been locked by a call to the system memory management
interface by a kernel device driver.

System Overheads: The overheads associated in switching from the
application privilege level to the kernel level have been described in
System Overheads in "Protect Mode 16-Bit Segmented Environment"
on page 3-192.

Access to XGA Registers and System Memory Apertures: It is
necessary to provide addressability to these XGA subsystem I/O
spaces. Call the operating system memory management services to
map these ranges of physical system memory into the application
task address space.

Suggested Design Model: The optimum design model is one that
minimizes kernel overhead. A model similar to that suggested in
"Protect Mode 16-Bit Segmented Environment" on page 3-192 is
appropriate for this environment.

3-194 XGA Function - September 1991

Video Memory Addressability in Virtual Memory Mode: "Video
Memory Location in Coprocessor Address Space" on page 3-174 has
a description of how the XGA coprocessor differentiates video
memory from system memory. When operating the XGA subsystem
in VM mode, this differentiation is done after page table translation
on physical address space. All addresses passed to the XGA
coprocessor by the application or device driver are in linear address
space, before page table translation. When the application or device
driver is building VM addressability to system memory bit maps for
the XGA subsystem, it must also map local video memory into the
page table structure at the correct location in physical address space
to allow the XGA coprocessor to differentiate video memory from
system memory.

System Memory Access Limitation: The XGA subsystem can be
plugged into any 16- or 32-bit slot in any i386SX, i386DX, or i486
system. In a 16-bit slot, the address range is limited because there
are only 24 address lines on 16-bit slots. The range of physical
addressability to system memory using busmastership is limited to
24-bit physical address space (or 16MB) when the subsystem
occupies a 16-bit slot.

Systems based on the i386SX are 16-bit throughout. The limit of
addressability of the system processor is 16MB.

There are constraints when:

• A 32-bit system is based on the i386DX or i486

• There is more than 16MB of physical memory installed

• The XGA subsystem is plugged into a 16-bit slot.

The XGA coprocessor cannot access memory located above the
16MB line in physical address space. To determine if the XGA
subsystem is in a 16-bit slot, examine the Auto-Configuration
register, as described in "Auto-Configuration Register (Index 04)"
on page 3-43. The application must ensure (with operating
system assistance if necessary) that all memory bit maps on
which the XGA processor is asked to operate are located below
the 16MB line in physical address space.

The alternative is for the application to specify that the XGA
subsystem is always plugged into 32-bit slots on 32-bit systems.

XGA Function - September 1991 3-195

Upward Compatibility

Upward compatibility problems can be minimized by sensible
programming practices, and the following precautions.

XGA Subsystem POS ID Allocations

The following POS IDs have been preallocated to the XGA subsystem
and follow-on XGA register compatible subsystems:

• hex SFDS
• hex SFD9
• hex SFDA
• hex SFDB.

Check for these POS IDs when determining the existence and location
of the XGA subsystem in the system.

General Register Usage

To avoid conflicts with possible future changes in the use of registers
or register fields, applications must comply with the Register Usage
Guidelines at the start of the various register definition sections.

Video BIOS Mode 14h

Video BIOS mode 14h has been reserved to support the 132-column
text mode. Applications should plan to use BIOS support for this
mode as it becomes available. They must query Video BIOS for the
existence of the mode. Given a positive response, the Video BIOS
INT 10h Set mode must be used for mode setting. Only in the
absence of INT 10h Video BIOS support should the direct mode
setting procedure described in this section be used.

3-196 XGA Function-September 1991

PS/2 Video Memory Apertures

As described in "System Video Memory Apertures" on page 3-187,
not all of the apertures may exist. However, the AOOO or BOOO
aperture can always be enabled under application control, depending
on which is available. For maximum flexibility, applications should
not use the apertures. If this is not possible, the following
considerations apply:

• If the XGA subsystem is not plugged into a 16-bit slot on a 32-bit
system, at least one of the two potential protect mode apertures
should be available.

• Inform the application user that the XGA subsystem must be
installed in a 32-bit slot on a 32-bit system.

Programming the XGA Subsystem in Extended Graphics
Mode

This section describes using Extended Graphics functions of the XGA
coprocessor.

XGA Coprocessor PEL Interface Registers

Extended graphics functions are graphics update operations involving
up to four PEL maps. A PEL map is defined by five registers:

• PEL Map Index register
• PEL Map n Base Pointer register
• PEL Map n Width register
• PEL Map n Height register
• PEL Map n Format register.

PEL Map Index Register: This register has an offset of hex 12. The
PEL Map Index register defines which of the four possible maps is to
be defined. The encoding of this 4-bit register is as follows:

Mask map hex 0
PEL map A hex 1
PEL map B hex 2
PEL map C hex 3

For example, to use PEL map A:

WRITE 01h to copr_regs offset 12h.

XGA Function - September 1991 3-197

PEL Map Base Address Register: This register has an offset of hex
14. The PEL Map Base Pointer register defines the byte address in
memory of the start of the PEL map. It is a 32-bit address register
and can therefore address up to 4096MB of memory. A PEL map can
be defined to be in the XGA video memory or in system memory.

As described in "Video Memory Location in Coprocessor Address
Space" on page 3-174, to define a PEL map as being in XGA video
memory, the address put in this register must be in the following
range:

Video Memory Base Address ~ (Video
Memory Base Address + Video Memory size)

If the PEL map is in system memory and the Micro Channel interface
is a 16-bit interface (for example, if the XGA adapter is installed in a
16-bit slot), the address of the map must be below 16MB.

PEL Map Width Register: This register has an offset of hex 18. The
PEL map width is measured in PELs and is defined as one less than
the required width.

For example, to set the width of a PEL map to 640 PELs:

WRITE 027Fh to copr_regs offset I8h

To set the width of a PEL map to 1024 PELs:

WRITE 03FFh to copr_regs offset I8h

PEL Map Height Register: This register has an offset of hex 20. The
PEL map height is measured in PELs and is defined as one less than
the required height.

For example, to set the height of a PEL map to 480 PELs:

WRITE 0IDFh to copr_regs offset 20h

To set the height of a PEL map to 768 PELs:

WRITE 02FFh to copr_regs offset 20h

3-198 XGA Function-September 1991

PEL Map Format Register: This register has an offset of hex 1 C.
This register specifies the bits per PEL of the PEL map. The encoding
of the register is as follows:

1 bit/PEL Intel format
2 bits/PEL Intel format
4 bits/PEL Intel format
8 bits/PEL Intel format
1 bit/PEL Motorola format
2 bits/PEL Motorola format
4 bits/PEL Motorola format
8 bits/PEL Motorola format

hex 00
hex 01
hex 02
hex 03
hex 08
hex 09
hexOA
hex 08

For example, for an 8-bit/PEL Motorola format PEL map:

WRITE 0Bh to copr_regs offset lCh

The relationship between Intel and Motorola format PEL maps is
discussed in "Video Memory Format" on page 3-16 and "Motorola
and Intel Formats" on page 3-219.

All four PEL maps (A, 8, C, and mask) can be initialized in this
manner to be ready for later use. Maps A, 8, and C can be used
interchangeably as the source, destination, or pattern in all
subsequent PEL operations.

XGA Function - September 1991 3-199

Other Registers: For simple operations, the PEL Interface Control
register must be cleared.

For example:

WRITE GGh to copr_regs offset Ilh

For simple operations, the Destination Color Condition Compare
register must be set so that it has no effect on the operation.

For example:

WRITE G4h to copr_regs offset 4Ah

To allow all planes of a PEL map to be updated, the PEL bit mask
must be turned on. That is, set all bits to 1 that are required for the
PEL size selected.

For example, for 8-bits-per-PEL:

WRITE GGFFh to copr_regs offset 5Gh

For Simple operations, the carry chain mask must be turned on. That
is, set all bits to 1 that are required for the PEL size selected.

For example, for 8-bits-per-PEL:

WRITE FFh to copr_regs offset 54h

3-200 XGA Function - September 1991

Using the Coprocessor to Perform a PEL Blit (PxBlt)

This section describes the actions necessary to use the XGA
coprocessor to perform a simple PxBIt.

Various types of PxBlt can be performed. This example is for a PxBlt
into video memory using the Foreground Color register as the source
data. The result is a solid rectangle drawn into the display PEL map.
The example PxBlt has the following characteristics:

• Foreground color of hex 05
• 100 PELs wide and 60 PELs deep
• Positioned at screen coordinates X = 200 and Y = 150.

The following table lists the values that must be written to the
coprocessor registers. Each value is explained following the table,
along with information on the other forms of PxBlt available.

Value (hex)

03
05
0063
0038
00C8
0096
08118000

Coprocessor Registers Offset (hex)

48
58
60
62
78
7A
7C

Figure 3-183. Coprocessor Register Write Values

XGA Function - September 1991 3-201

Mixes and Colors: Before a coprocessor operation can be
performed, the background and foreground mixes have to be set.
Mixes are logical or arithmetic functions performed on the source and
destination data when performing a coprocessor operation. The mix
functions available are as follows:

Code Function

o Zeros
1 Source AND Destination
2 Source AND NOT Destination
3 Source
4 NOT Source AND Destination
5 Destination
6 Source XOR Destination
7 Source OR Destination
8 NOT Source AND NOT Destination
9 Source XOR NOT Destination
A NOT Destination
B Source OR NOT Destination
C NOT Source
D NOT Source OR Destination
E NOT Source OR NOT Destination
F Ones
10 Maximum
11 Minimum
12 Add with Saturate
13 Subtract (Destination - Source) with Saturate
14 Subtract (Source - Destination) with Saturate
15 Average

Figure 3-184. Background and Foreground Mixes and Colors

Foreground and Background Mix Registers: The mixes to be applied
to foreground and background PELs are specified in these two
registers. The contents of the pattern map determine the PELs for
foreground and background. In this example, the PxBlt is solid and
contains only foreground PELs. The Foreground Mix register must be
set to Source to give an understandable result on the screen.

For the example:

WRITE 03h to copr_regs offset 48h

3·202 XGA Function - September 1991

Foreground and Background Color Registers: The colors to be used
for foreground and background PELs are specified in these two
registers. In this example, the PxBlt is solid and only the Foreground
Color register needs to be set up.

For the example:

WRITE 9Sh to copr_regs offset S8h

Other forms of PxBlt (for example, video memory to video memory)
from a source map into a destination map do not use these color
registers.

PxBIt Dimensions: The Operation Dimension 1 register must be
loaded with the Width of PxBlt to be performed. The value loaded
into the register must be one PEL less than the required width (in
PELs).

For example, for a 100-PEL wide Pxblt:

WRITE 9963h to copr_regs offset 69h

The Operation Dimension 2 register must be loaded with the Height of
PxBlt to be performed. The value loaded into the register must be
one PEL less than the required height (in PELs).

For example, for a 50-PEL high Pxblt:

WRITE 993Bh to copr_regs offset 62h

XGA Function - September 1991 3-203

PEL Map, Source, and Destination Registers

Source Map X and Y Registers: The source map is initialized as
detailed in "Mixes and Colors" on page 3-202. Within the source
map, two registers exist that contain the X and Y offset positions of
the start of the source data for a PxBIt. These registers are used
when performing a PxBlt using a source map. In this example, these
registers are unused.

Destination Map X and Y Registers: The destination map is
initialized as detailed in "Mixes and Colors" on page 3-202. Within
the destination map, two registers exist that contain the X and Yoffset
positions of the start of the PxBIt.

For the example, to position the PxBIt at X = 200 and Y = 150 in the
destination map:

WRITE aaC8h to copr_regs offset 78h (Destination Map X position)

WRITE aa96h to copr_regs offset 7Ah (Destination Map Y position)

Pattern Map X and Y Registers: The pattern map is initialized as
detailed in "Mixes and Colors" on page 3-202. Two registers exist
that contain the X and Y offset positions, within the pattern map, of
the start of the pattern data for a PxBIt. These registers are used
when performing a PxBlt using a pattern map.

In this example these registers are unused.

Mask Map Origin X and Y Offset Registers: The mask map is
initialized as detailed in the previous chapter. Two registers exist
that contain the X and Y offset positions of the start of the mask map
relative to the top left corner of the destination map. These registers
are used when performing a PxBlt using a mask map.

In this example these registers are unused.

3-204 XGA Function - September 1991

PEL Operations Register: This is a 32-bit register that defines the
operation the coprocessor performs.

3130 2928 27 24 23 20 19 1615 12 11 8 7 6 5 4 3 2

I J J II III II I III xlxlxlx I I x II
1 2 3 4 5 6 7 8

Figure 3-185. Bit Layout PEL Operations Register

The definition of the fields at the bottom of Figure 3-185 are:

1. Background Source
2. Foreground Source
3. Step Function
4. Source PEL Map
5. Destination PEL Map
6. Pattern PEL Map
7. Mask PEL Map
8. Drawing Mode
9. Direction Octant.

These fields, described in sequence, are required to assemble the
PEL Operations register:

Background Source: These bits determine the origin of the
background source PELs when an operation is performed.

The encoding for these bits is as follows:

Background Color Binary 00 (for example, for a fixed register
value to video memory PxBlt).

9

Source PEL Map Binary 10 (for example, for a video memory to
video memory PxBlt).

For this example, there is no background color, and the field is
ignored.

Background Source = Binary ee

0

XGA Function-September 1991 3·205

Foreground Source: These bits determine the origin of the
foreground source PELs when an operation is performed.

The encoding for these bits is as follows:

Foreground Color

Source PEL Map

Binary 00 (for example, for a fixed register
value to video memory PxBlt).
Binary 10 (for example, for a video memory to
video memory PxBlt).

For this example there is a solid foreground color:

Foreground Source = Binary 00

Step Function: These bits define the type of operation that the
coprocessor is required to do.

The encoding for these bits is as follows:

Draw and Step Read Binary 0010
Line Draw Read Binary 0011
Draw and Step Write Binary 0100
Line Draw Write Binary 0101
PxBlt Binary 1000
Inverting PxBlt Binary 1001
Area Fill PxBlt Binary 1010

For this example:

Step Function = binary 1000

Source PEL Map: These bits define the PEL map used as the source
map in the operation. This enables different maps to be setup in
advance and defined for use as this register is loaded.

The encoding for these bits is as follows:

PEL Map A
PEL Map B
PEL Map C

Binary 0001
Binary 0010
Binary 0011

For this example, the contents of this field are ignored but they must
not be a reserved value.

Source PEL Map = Binary 0001

3-206 XGA Function - September 1991

Destination PEL Map: These bits define the PEL map used as the
destination map in the operation. This enables different maps to be
setup in advance and defined for use as this register is loaded.

The encoding for these bits is as follows:

PEL Map A
PEL Map B
PEL Map C

Binary 0001
Binary 0010
Binary 0011

For this example:

Destination PEL Map = Binary 0001

Pattern PEL Map: These bits define the PEL map used as the pattern
map in the operation. This enables different maps to be setup in
advance and defined for use as this register is loaded.

The encoding for these bits is as follows:

PEL Map A
PEL Map B
PEL Map C
Foreground (fixed)
Generated from Source

For this example:

Binary 0001
Binary 0010
Binary 0011
Binary 1000
Binary 1001

Pattern PEL Map = binary 1000

Mask PEL Map: These bits define whether the mask map is used in
the operation.

The encoding for these bits is as follows:

Mask Map Disabled Binary 00
Mask Map Boundary Enabled Binary 01
Mask Map Enabled Binary 10

For this example:

Mask PEL Map = Binary 00

Drawing Mode: These bits concern line drawing only and are
discussed later. They are ignored during a PxBIt.

For this example:

Drawing Mode = Binary 00

XGA Function - September 1991 3-207

Direction Octant: These bits, when concerned with PxBlts, determine
the direction in which the PxBlt is drawn.

The encoding for these bits is as follows:

Binary 000 or 001 Start at top left-hand corner of area increasing
right and down.

Binary 100 or 101 Start at top right-hand corner of area
increasing left and down.

Binary 010 or 011 Start at bottom left-hand corner of area
increasing right and up.

Binary 110 or 111 Start at bottom right-hand corner of area
increasing left and up.

(OOO or 001) (100 or 101)
..

j j
PxBlt Area

1 1 ..
(010 or 011) (110 or 111)

Note: Numbers are binary.

Figure 3-186. Operation Direction Diagram

These bits are normally set to binary 000, but other values are
necessary to avoid PEL corruption when source and destination
rectangles overlap.

3-208 XGA FUhction - September 1991

For this example the PxBlt is in top left corner:

Direction Octant = Binary eee

Conclusion: Putting all these together for the PxBlt, the PEL
Operations register must be set as:

3130292827 2423 2019 1615 12 11 8 7 654 3 2 0

Figure 3-187. Definition for PEL Operations Register (Example)

For this example:

WRITE e8118eeeh to copr_regs offset 7Ch

Using the Coprocessor to Perform a Bresenham LIne Draw

The steps required to draw a line of palette color hex 05 from (20,15)
to (80,35), are summarized in the following table. The sections that
follow explain each value and provide information on the other line
drawing options available.

Value

Hex 03
Hex 05
Decimal- 20
Decimal 40
Decimal- 80
Decimal 60
Decimal 20
Decimal 15
Hex 05118000

Coprocessor Registers Offset (hex)

48
58
20
24
28
60
78
7A
7C

Figure 3-188. Palette Color Line Draw Steps

XGA Function - September 1991 3·209

Mixes and Colors: Before a coprocessor operation is performed, the
background and foreground mixes have to be set. Mixes are logical
or arithmetic functions performed on the source and destination data
when performing a coprocessor operation. The mix functions
available are as follows:

Code Function

0 Zeros
1 Source AND Destination
2 Source AND NOT Destination
3 Source
4 NOT Source AND Destination
5 Destination
6 Source XOR Destination
7 Source OR Destination
8 NOT Source AND NOT Destination
9 Source XOR NOT Destination
A NOT Destination
B Source OR NOT Destination
C NOT Source
D NOT Source OR Destination
E NOT Source OR NOT Destination
F Ones
10 Maximum
11 Minimum
12 Add with Saturate
13 Subtract (Destination - Source) with Saturate
14 Subtract (Source - Destination) with Saturate
15 Average

Figure 3-189. Background and Foreground Mixes and Colors

Foreground and Background Mix Registers: The Foreground Mix and
Background Mix registers allow a mix (as detailed in the table) to be
specified. These registers are discussed in the previous example,
"Using the Coprocessor to Perform a PEL Blit (PxBlt)" on page 3-201.

For this example, the Foreground Mix register must be loaded with
Source. The Background Mix register is not used in this example.

For the example with the Foreground Mix register:

WRITE 93h to copr_regs offset 48h

Foreground and Background C%r Registers: The Foreground Color
register must be set to the color required for the line.

For this example with the Foreground Color register:

WRITE 9Sh to copr_regs offset S8h

3-210 XGA Function - September 1991

Sresenham Line Draw: The algorithm used to perform the line draw
function on the XGA is the Bresenham Line Draw algorithm. This
operates with all parameters normalized to the first octant (octant 0).

The first task is to calculate deltaX and deltaY (see the following
figure).

(0,0)

YPELs

X PELs

(20,15) DeltaX = 60
+

Line Start

DeltaX = 60 (decimal)
DeltaY = 20 (decimal)

. DeltaY=20

+ (80,35)
Line End

Figure 3-190. Line Draw Example in Octant 0

A line in the first octant has deltaX greater than deltaY, with both
deltaX and deltaY positive, and deltaX greater than deltaY. If a line is
to be drawn in another octant, the octant information is specified in
the octant bits of the PEL Operation register. The line is drawn as if it
were in the first octant.

To normalize a line to the first octant, follow these rules:

• If deltaX is -ve , set DX in octant bits of the PEL Operation
register and make deltaX +ve.

• If deltaY is -ve , set DY in octant bits of the PEL Operation
register and make deltaY +ve.

• If deltaY ~ deltaX , set DZ in octant bits of the PEL Operation
register and exchange deltaX and deltaY.

XGA Function - September 1991 3-211

The terms deltaX and deltaY are the lengths of the line after it has
been normalized to octant o. The algorithm requires several
parameters to be calculated. These are:

Bresenham Error Term Register: Bresenham Error Term
E = (2 x deltaY) - deltaX

For this example:

WRITE -29 decimal (FFECh) copr_regs offset 29h

Bresenham Constant K1 Register: Bresenham Constant
K1 = 2 x deltaY

For this example:

WRITE +49 decimal (9928h) copr_regs offset 24h

Bresenham Constant K2 Register: Bresenham Constant
K2 = 2 x (deltaY - deltaX)

For this example:

WRITE -89 decimal (FFB9h) copr_regs offset 28h

Operation Dimension Registers: The Operation Dimension 1 register
should be loaded with deltaX after normalization. Because a value of
o results in a line length of 1 PEL. deltaX (calculated in Figure 3-190
on page 3-211) equals the number to be drawn minus 1.

For this example:

WRITE +69 decimal (993Ch) to copr_regs offset 69h

The Operation Dimension 2 register is not used for line draw.

3-212 XGA Function-September 1991

PEL Map Source and Destination

Source Map X and Y Registers: The source map is initialized as
described in "XGA Coprocessor PEL Interface Registers" on
page 3-197. Two registers exist that contain the X and Y offset
positions within the source map of the start of the source data for a
PxBIt. These registers are used for drawing a line using a source
map. In this example, these registers are unused.

Destination Map X and Y Registers: The destination map is
initialized as described in "XGA Coprocessor PEL Interface
Registers" on page 3-197. Two registers exist that contain the X and
Y offset positions within the destination map of the start of the line.

In this example with destination map X and Y positions:

WRITE 0014h to copr_regs
offset 78h

WRITE 000Fh to copr_regs
offset 7Ah

Pattern Map X and Y Registers: The pattern map is initialized as
described in "XGA Coprocessor PEL Interface Registers" on
page 3-197. Two registers exist that contain the X and Y offset
positions within the pattern map of the start of the pattern data for a
line. These registers are used when drawing a line using a pattern
map. In this example, these registers are unused.

Mask Map Origin X and Y Offset Registers: The mask map is
initialized as described in "XGA Coprocessor PEL Interface
Registers" on page 3-197. Two registers exist that contain the X and
Y offset positions of the start of the mask map relative to the top left
corner of the destination map. These registers are used when
drawing a line using a mask map. In this example, these registers
are unused.

XGA Function - September 1991 3·213

PEL Operations Register; This is a 32-bit register that defines the
operation that the coprocessor performs.

3130 2928 27 24 23 20 19 1615 12 11 8 7 6 5 4 3 2

J J J J J I J 1 J JI I 1 J xixJxlx I J x J J
1 2 3 4 5 6 7 8 9

Figure 3-191. Bit Layout PEL Operations Register

0

The bits 0-31 are shown on the top of Figure 3-191; Fields 1 through
9 are shown on the bottom. The definition of these fields is:

1. Background Source
2. Foreground Source
3. Step Function
4. Source PEL Map
5. Destination PEL Map
6. Pattern PEL Map
7. Mask PEL Map
8. Drawing Mode
9. Direction Octant.

These fields, described in sequence, are required to assemble the
contents of the PEL Operations register:

Background Source: These bits determine the origin of the
background source PELs when an operation is performed.

The encoding for these bits is as follows:

Background Color

Source PEL Map

Binary 00 (for example, for a fixed pattern line
draw using a fixed register value)
Binary 10 (for example, for a variable color
data pattern held in video memory to video
memory draw).

In this example, the contents of this field are ignored because the line
is solid and there are no background PELs:

Background Source = Binary ae

3-214 XGA Function - September 1991

Foreground Source: These bits determine the origin of the
foreground source PELs when an operation is performed.

The encoding for these bits is as follows:

Foreground Color Binary 00 (for example, for a fixed pattern line
draw using a fixed register value).

Source PEL Map Binary 10 (for example, for a variable color
data pattern held in video memory to video
memory draw).

For this example:

Foreground Source = Binary 00 (Solid Foreground Color)

Step Function: These bits define the type of operation that the
coprocessor is required to do.

Draw and Step Read
Line Draw Read
Draw and Step Write
Line Draw Write
PxBlt
Inverting PxBlt
Area Fill PxBlt

For this example:

Binary 0010
Binary 0011
Binary 0100
Binary 0101
Binary 1000
Binary 1001
Binary 1010

Step Function = binary 0101

Source PEL Map: These bits define the PEL map used as the source
map in the operation. This enables different maps to be setup in
advance, and defined for use as this register is loaded.

The encoding for these bits is as follows:

PEL Map A Binary 0001
PEL Map B Binary 0010
PEL Map C Binary 0011

In this example the contents of this field are ignored, but they must
not be a reserved value:

Source PEL Map = binary 0001

XGA Function - September 1991 3-215

Destination PEL Map: These bits define the PEL map used as the
destination map in the operation. This enables different maps to be
setup in advance and defined for use as this register is loaded.

The encoding for these bits is as follows:

PEL Map A Binary 0001
PEL Map B Binary 0010
PEL Map C Binary 0011

For this example with PEL map A:

Destination PEL Map = binary eeel

Pattern PEL Map: These bits define the PEL map used as the pattern
map in the operation. This enables different maps to be setup in
advance and defined for use as this register is loaded.

The encoding for these bits is as follows:

PEL Map A Binary 0001
PEL Map B Binary 0010
PEL Map C Binary 0011
Foreground (fixed) Binary 1000
Generated from Source Binary 1001

For this example:

Pattern PEL Map = binary leee

Mask PEL Map: These bits define whether mask map is used in the
operation.

The encoding for these bits is as follows:

Mask Map Disabled Binary 00
Mask Map Boundary Enabled Binary 01
Mask Map Enabled Binary 10

For this example:

Mask PEL Map = Binary ee

3-216 XGA Function - September 1991

Drawing Mode: These bits determine the attributes of a line draw.

The encoding for these bits is as follows:

Draw All PELs
Draw First PEL Null
Draw Last PEL Null
Mask Area Boundary

Binary 00
Binary 01
Binary 11
Binary 11

The first three options can be used when drawing a line. The fourth
option is for use when drawing the outline of a shape to be filled
using the area fill capability of the hardware.

For this example for draw all PELs:

Drawing Mode = Binary 00

Direction Octant: These bits, when concerned with line draws,
determine the direction in which the line is drawn.

The encoding for these bits is as follows:

Bit 2(DX)

Bit 1(DY)

Bit O(DZ)

X
Y

j
110

1 if negative X direction
o if positive X direction
1 if negative Y direction
o if positive Y direction

6 :: I~I ; I~I, (magnitude)

111 011

010

..••••• . Start· ••••••.•

100 000

101 • 001

Note: Numbers are binary.

Figure 3-192. Direction Octant (Example)

XGA Function - September 1991 3-217

For this example:

Direction Octant = binary 000 (X + ve, V + ve, Ixi > Ivl)
Conclusion: Putting all these together for the example line draw
operation, the PEL Operations register must be set as:

3130292827 2423 2019 1615 12 11 8 7 6 5 4 3 2 0

Figure 3-193. Definition for PEL Operations Register (Example)

For this example:

WRITE 05118000h to copr_regs offset 7Ch

3·218 XGA Function - September 1991

Memory Access Modes

This register has an address of hex 21x9. The Memory Access Modes
register is used to control the format of the data supplied by the
system processor through a system video memory aperture. For
conventional use, this register must be set to match the format of the
data as seen by the system processor (Motorola or Intel), and the
depth of the video memory bit map.

Through this register, the different formats available can be used to
achieve useful and otherwise difficult conversions.

Motorola and Intel Formats

The internal organization of the video memory is Intel format.
However, images and bit maps are traditionally stored in Motorola
format. It is necessary to understand the format of the application's
bit maps in system memory to get the correct results. The different
formats are described in "Video Memory Format" on page 3-16.

The internal organization of video memory as Intel format can be
hidden by appropriate use of the Memory Access Mode register
("Memory Access Modes") and the various coprocessor PEL map
format registers.

System Processor Access: When using the system processor to read
or write data directly to or from video memory through a system
video memory aperture, it is necessary to specify the format of the
data using the Memory Access Mode register.

XGA Coprocessor Accesses: The format of all bit maps in system
memory must be specified through the PEL Map Format register.
This parameter is ignored for bit maps in video memory.

Exploitation: Writing data in one format and reading it back in
another is a technique that performs many useful and otherwise
difficult or expensive bit map conversions.

XGA Function - September 1991 3-219

Other Programming Considerations

Overlapping PxBlts

PEL Block Transfer (PxBIt): The coprocessor PxBlt function is used
to transfer a rectangular block of PELs from the source to the
destination subject to a number of modifiers. It is important to
predetermine whether the source and destination rectangles overlap.
If the rectangles do not overlap, the order of processing PELs is
immaterial. If the rectangles do overlap, program the PxBlt direction
using the Direction Octant to ensure the expected result.

Inverting PxBIt: The inverting PxBlt is intended to convert images
from the traditional application format of Y increasing upwards to the
traditional display hardware format of Y increasing downwards. As
such a PxBlt operates from both ends towards the middle, an
Inverting PxBlt involving overlapping source and target rectangles
inevitably overwrites PELs. Therefore, inverting PxBlts on
overlapping rectangles should be avoided, unless for special effects.

Sprite Handling

Sprite Loading: The sprite is loaded as a 64 x 64 x 2 bits per PEL
(bpp) Intel format image definition. Because the sprite definition in
the application is invariably held in two separate 1-bpp Motorola
format bit maps, it is necessary to merge and PEL swap the sprite
definition into the 2-bpp Intel format before loading the sprite.

Sprite Positioning: The position of the sprite is then controlled by
two separate controls:

Sprite Start Registers
The sprite is positioned on the display surface by
specifying the position of the top left corner of the sprite
definition relative to the top left corner of the visible bit
map, using the Sprite Horizontal Start and Sprite Vertical
Start registers.

Sprite Preset Registers
The sprite start registers only accept positive values, and
cannot be used to move the sprite partially off the display
surface at the left and top edges. The Sprite Horizontal
Preset and Sprite Vertical Preset registers are used to
offset the start of the displayed sprite definition relative to
the loaded definition.

3-220 XGA Function - September 1991

For example, to display a 64 x 64 PEL sprite with the
leftmost 32 PELs outside the left edge of the display
surface, set the Sprite Horizontal Start register to 0, and
the Sprite Horizontal Preset register to 32. The start
position is now preset to the center of the loaded
definition, giving the required effect.

The sprite preset can also be used to display sprites
smaller than 64 x 64 PELs.

Waiting for Hardware Not Busy

The XGA coprocessor operates asynchronously with the system
processor. Wait for the previous operation to complete before issuing
the next operation. There are two ways to do this:

Polling the Busy Bit: Poll the coprocessor busy bit in the XGA
Coprocessor Control register to determine whether the previous
operation has completed before initiating the next operation.

Continuous polling of this bit slows down the coprocessor because it
pauses in its current operation to process the read of the
Coprocessor Control register.

If this method is chosen, it is advisable to code a double polling loop
that checks the coprocessor busy bit, for example, once every 100
times around the loop.

The advantages of using this method are:

• Minimal overhead. For typical PxBlts used to display text, the
previous PxBlt operation is almost complete before the system
processor is ready to issue the next operation.

• Simplicity.

The disadvantages of using this method are:

• Frequent use delays the XGA coprocessor. This can be partially
reduced by using a double-polling loop as described above.

• The processor is kept busy doing nothing, although it has to be
doing nothing for a long time to exceed the interrupt response
codepath.

XGA Function - September 1991 3-221

Operation Complete Interrupt: The coprocessor can be programmed
to cause an interrupt to the system processor when an operation is
completed.

This interrupt is a shared level. Interrupt response time therefore
depends on other interrupt handlers chained on this shared level. In
protect mode operating systems in particular, the overheads and
restrictions placed on interrupt handlers may make the performance
of this technique prohibitive.

Advantages of using this method are:

• The XGA coprocessor is not slowed while waiting for completion.

• The system processor may be freed up for other tasks.

Disadvantages of using this method are:

• Program complexity.

• Interrupt response time gives a threshold in size of operation that
is only exceeded by large PxBlt operations. The more complex
the operating system, the higher the interrupt response time, and
the larger the operation must be to benefit from using interrupts
to notify the application of operation complete.

Destination Bit Map Width Restriction

Incorrect results can be obtained if the XGA coprocessor is used to
write over the edge of a destination bit map where the edge of the bit
map is not 4-byte aligned. To avoid this, use one of the following
methods:

• Ensure that all destination bit maps have a base address that is
on a 4-byte boundary and are an exact multiple of 4 bytes wide.

The visible display bit map naturally complies with this
restriction.

• Where bit maps are not aligned, software clip all PxBlts in
advance so that the destination bit map boundary is not crossed
during the PxBIt.

3-222 XGA Function - September 1991

Line Length Restriction

The XGA coprocessor Destination X Address and Destination Y
Address registers accept coordinates in the range (-2048 to 6143).
This gives a guardband effect, where it is possible to write
coordinates anywhere in this range, and the operation is hardware
scissored to the edge of the destination bit map. The limit on bit map
size for coprocessor operations is 0 to 4095.

Because the Operation Dimension 1 register only accepts values in
the range (0 to 4095), it is not possible to draw a line in a single
operation across the entire guardband coordinate space.

A two-stage line draw can be performed easily, since the line
parameters (for example, ET, K1, K2, Destination X and Y, Pattern X)
are already set up in the hardware at the end of the previous line
segment. It is only necessary to update the new line length in the
Operation Dimension 1 register to draw the remainder of the line.

System Register Usage

When programming the XGA subsystem, it is often necessary to
maintain addressability to:

• XGA coprocessor memory mapped address space

• XGA state data segment (application dependent) containing the
1/0 base address, in other words the location of the XGA registers
in 1/0 space

• The normal function dependent application data, such as
parameter blocks

• Global application dependent data.

Many of the XGA registers are 32-bit registers.

To program the XGA subsystem efficiently, it is helpful to use the full
i386 register set, specifically the FS and GS segment registers and
the 32-bit extended data registers.

Use of the extra segment registers allows concurrent addressability
to all the separate data areas to be maintained without frequent
segment register loading (a particularly expensive operation in
protect modes).

XGA Function-September 1991 3-223

Direct Color Mode

This section deals with matters unique to the direct color mode of the
XGA subsystem.

Palette Loading: It is necessary to load the palette with a fixed set of
values. These are described in "Direct Color Mode" on page 3-27.

Coprocessor Support: The XGA coprocessor does not support the 16
bits-per-PEL (bpp) mode. This mode is a display mode only, and
must be programmed using the system processor to access the video
memory display buffer directly using one of the system video memory
apertures (see "System Video Memory Apertures" on page 3-187 and
"Memory Access Modes" on page 3-219).

The coprocessor is not disabled in this mode. However, the PEL map
formats available for coprocessor operations are restricted to 1, 2, 4,
or 8 bpp. The coprocessor can be used in this mode if the application
manages the differences in bits per PEL Some ingenuity is required
to achieve useful results using the coprocessor in this way.

Bit Block Transfer Operations
By using the PxBlt operations on an 8-bpp bit map,
doubling the dimension width of the bit maps involved,
and avoiding arithmetic mixes, bit block transfer
operations are possible. Use of the 1-bpp pattern and
mask maps are possible if carefully considered and
calculated.

Text Operations
Text operations using the coprocessor PxBlt function rely
on 1-bpp patterns. By doubling the width of the individual
character bit map patterns (interspersing the active bits
with zero bits) and writing the high and low order bytes of
the required color index separately, text operations are
possible.

3-224 XGA Function - September 1991

Section 4. Display Connector

Display Connector Introduction 4-2
Signal Timing 4-3

© Copyright IBM Corp. 1989. 1991 4-1

Display Connector Introduction

The synchronization and monitor 10 signals are TTL levels. The
video signals are analog signals ranging from 0 to 0.7 volts.

5

00000

10 6

15 11

Figure 4-1. Display Connector

Display Pins

Pin Signal Description Monochrome Color

1 Red N/C Red
2 Green Mono Green
3 Blue N/C Blue
4 Monitor 10 2
5 Ground Self Test Self Test
6 Red Ground N/C Red Ground
7 Green Ground Mono Ground Green Ground
8 Blue Ground N/C Blue Ground
9 Plug No Pin No Pin

10 Ground Ground Ground
11 Monitor 10 0
12 Monitor 101
13 Horizontal Synchronization Hsync Hsync
14 Vertical Synchronization Vsync Vsync
15 Monitor 103

Figure 4-2. Display Connector Signals

4·2 Display Connector- September 1991

Signal Timing

In the VGA modes, BIOS sets the video subsystem according to the
video mode selected. All VGA modes use a 70-Hz vertical retrace
except for modes hex 11 and 12. Modes hex 11 and 12 use 60 Hz.

For 1024 x 768 modes, the vertical retrace rate is 43 Hz (this mode is
not set by BIOS).

The video subsystem generates the signal timings required by the
displays according to the mode selected. The following timing
diagrams represent only the vertical frequencies.

Note: The vertical size of the display is encoded using the polarity of
the synchronization signals, as shown in the following figure.

VSYNC
Polarity

+
+

HSYNC
Polarity

+

+

Vertical Size

768 lines (1024 x 768 displays only)
400 lines
350 lines
480 lines

Figure 4-3. Vertical Size of Display

Video

- Vertical
Sync

Symbol

T1
T2
T3
T4
T5

r T1i
]' t T3 /1+1" _A_ct_ive_Vi~:~ __ re_a --t>I~'----

=1 t=T5 T4~1

Signal Time

2.765 ms
11.504 ms
0.985 ms

14.268 ms
0.064 ms

Vertical Timing (ms) - 362 Lines. 70 Hz

Figure 4-4. Vertical Timing, 350 Lines

Display Connector - September 1991 4-3

Video

- Vertical
Sync

Symbol T1
T2
T3
T4
T5

rT1--j
~ ~~I~~ ___ A_ct __ iv_e_v~;o __ A_re_a ____ ~~~ ________ _

-t T3r- T5 T4-----l
Signainme

1.112rns
13.156 rns
0.159 rns

14.268 rns
0.064 rns

Figure 4-5. Vertical Timing, 400 Lines

Video

- Vertical
Sync

Symbol T1
T2
T3
T4
T5

Signal Time

0.922 rns
15.762 rns
0.064 rns

16.683 rns
0.064 rns

Figure 4-6. Vertical Timing, 480 Lines

4-4 Display Connector - September 1991

Video

r T1-1
~ ~~I~~ ___ A_c_t_iv_e_v~:o __ A_re_a _____ ~~~ ~ ______ __

-t=~T5 T'~
+ Vertical

Sync

Symbol

T1
T2
T3
T4
T5

Signal Times

0.676/0.704 ms
21.620 ms
0.010 / 0.140 ms

23.000 ms
0.113 ms

(Odd/Even Lines)

(Odd/Even Lines)

Note: Because this is an interlaced mode, the timing for the odd and even lines is
different.

Figure 4-7. Vertical Timing, 768 Lines. Type 1 video does not support
these timings.

Video

- Horizontal
Sync

or

+ Horizontal
Sync

Symbol

T1
T2
T3
T4
T5
T6
T7

Active Video Area ~
-------I~----T2 ----1.~1 '-----

~r--T6-----+11
Signal Time

5.720 ps
26.058ps

0.318 ps
1.589 ps
3.813 ps

31.778 ps
3.813 ps

Figure 4-8. Horizontal Timing, 80 Column with Border

Display Connector - September 1991 4-5

Video ~ /. Active Video Area ~~ __ _

T3~ ~_T4j4_T2-=.1
- Horizontal

::"' T7-11+--4 -,-T6----+ll

+ Horizontal
Sync

Symbol

T1
T2
T3
T4
T5
T6
T7

Signal Time

6.356jJs
25.422jJs
0.636 jJs
1.907 jJs
3.813jJs

31.778jJs
3.813 jJs

Figure 4-9. Horizontal Timing, 40180 Column, without Border

Video R~ j(Active Video Area ~I
T1 -4 T2 •.

T3 IT4

+ Horizontal
Sync

Symbol

T1
T2
T3
T4 T5
T6

T6 14----r---T5---.\1
Signal Times

5.35 jJs
22.80jJs
0.18 jJs
1.25jJs

28.15 JJS
3.92jJs

Figure 4-10. Horizontal Timing, 1024 PELs. Type 1 video does not support
these timings.

4-6 Display Connector-September 1991

Appendix A. XGA Sample Code

XGA Sample Code Introduction A-2
Setting the XGA Subsystem into Extended Graphics Mode A-2

Pseudo Code A-2
Code Example A-5

Main C Program A-5
Assembler Subroutines A-19

Setting the XGA Subsystem into 132-Column Text Mode A-21
Pseudo Code A-21
Code Example A-23

Main C Program A-23
Assembler Subroutines A-32

© Copyright IBM Corp. 1989, 1991 A-1

XGA Sample Code Introduction

This appendix contains sample code for the XGA function. It includes
code to move from VGA mode to XGA mode. It also includes code to
enter 132-Column Text mode while in the XGA function.

Setting the XGA Subsystem into Extended
Graphics Mode

Pseudo Code

Main Program

• Locate first XGA subsystem with attached display
• If XGA is current system VGA subsystem

- Chain INT 10h Video handler
- Chain INT 21h DOS Function handler
- Chain INT 23h Ctrl Break Exit Address
- Chain INT 24h Critical Error handler

• If LIM Expanded Memory Manager installed
- Call LIM Fn 25.Get Physical Address Array
- Examine returned list for Memory Contention
- If contention found

- Display Warning Message
- Terminate Application

• Chain INT 2Fh Screen Switch Notification handler
• Put XGA in highest Extended Graphics Mode for attached display (see

"Extended Graphics Mode" on page 3-182)
• Draw simple rectangle (or whatever)
• Exit

Figure A-1 (Part 1 of 3). Extended Graphics Mode Setting PseudoCode

A-2 XGA Sample Code-September 1991

INT 10 Handler

• Examine value of (Ah)
OOh Set Mode

Put XGA subsystem in VGA mode (see "VGA Mode" on
page 3-184)
Chain on to saved INT 10h Video Interrupt handler

OFh Return current video state
- Set (AL) = 7Fh
- Interrupt return (IRET)

Any other value
- Interrupt return (IRET)

INT 21h DOS Function handler

• Examine value of (Ah)
4Ch Program Terminate

Put XGA subsystem in VGA mode
UnChain and restore original INT 10h Video handler

- UnChain and restore originallNT 21h DOS function
handler

• Chain on to saved INT 21h handler

INT 23h etrl Break Exit Address

• Chain on to saved INT 23h handler, using a method that ensures return
of control through this function handler.

• On return from chained handler, Examine Carry Flag (CF). If set
Put XGA subsystem in VGA mode

- UnChain and restore originallNT 10h Video handler
- UnChain and restore originallNT 21h DOS function handler

• Interrupt return (lRET)

Figure A-1 (Part 2 of 3). Extended Graphics Mode Setting PseudoCode

XGA Sample Code-September 1991 A·3

INT 24h Critical Error handler

• Save video state (or as much as is corrupted by a temporary switch into
VGA text mode).

• Put XGA subsystem in VGA mode
• Chain on to saved INT 24h handler, using a method that ensures return

of control through this function handler.
• On return from chained handler, examine AL, as follows:

0,1,3

2

Put XGA subsytem in Extended graphics mode
Restore video state

UnChain and restore original INT 10h Video handler
UnChain and restore originallNT 21h DOS function
handler

• Interrupt return (IRET)

INT 2Fh Screen Switch Notification Handler

• Examine value of (Ah)
40h Screen Switch Notification

Examine value of (AL)
01h Impending switch to background.

- Put XGA subsystem in VGA mode
- Chain on to saved INT 2Fh handler (if any)

02h Impending switch to foreground

Any other value

- Put XGA subsystem in Extended Graphics
Mode

- Semaphore redraw required to application
- Chain on to saved INT 2Fh handler (if any)

- Chain on to saved INT 2F Interrupt vector (if any)

Figure A-1 (Part 3 of 3). Extended Graphics Mode Setting PseudoCode

A·4 XGA Sample Code-September 1991

Code Example

Main C Program

/* ** */
/* */
/* */
/* Program s_ext */
/* */
/* Description This program is sample code to illustrate entry to */
/* Ext Graphics mode and back to VGA mode upon program */
1* termination. */
/* */
i* ** */

#define POS exc4
#define POS_GET_BASE_ADDRESS exee
#define FALSE exee
#define TRUE exel
#define EMM_INT ex67
#define DEVICE NAME LENGTH exe8
#define MAX_SLOTS - exeg
#define XGA_ID_UPPER ex8fdb
#define XGA_ID_LOWER ex8fd8
#define INDEX_SELECT exea
#define INDEX_DATA ex0b
#define MONITOR_ID 0x52

#include <dos.h>
#include <stdio.h>
#include <conio.h>
#include <signal.h>
#include <malloc.h>
#include <memory.h>
#include <stdlib.h>
#include <conio.h>

typedef struct
{

int
int

} MPAA

page segment
page=number

typedef struct

unsigned int pos_id
char pos_bytel
char pos_byte2
char pos_byte3
char pos_byte4

POS_REC

/* Mapable Physical Address Array struct */

/* POS Record */

XGA Sample Code-September 1991 A-5

union REGS inregs • out regs ;
struct SREGS segregs ;
unsigned int pos_base_address • IoRegBase • slot_number;

long int ROS_add_rec[16] = { exceeee •
exc2eee •
exc4eee •
exc6eee •
excseee •
excaeee •
excceee •
exceeee •
exdeeee •
exd2eee •
exd4eee •
exd6eee •
exdSeee •
exdaeee •
exdceee •
exdeeee }

unsigned char

unsigned char

{ exel • exee • exee •
exe4 • exee • exee •
exes • exff • exee •
exea • exff • ex64 •
exea • exlS • exse •
exea • exl4 • exse •
exea • exee • exSI •
exea • exe4 • exS4 •
exea • ex7f • ex7e •
exea • ex2e • ex2a •
exee • exel • exee

} ;

{ exe4 • exee • exee • exee •
exes • exff • exff • exee •
exee • exe4 • exe4 • exee •
exea • exee • exee • ex64 •
exel • exee • exee • exee •
exes • exee • exee • exee •
exe6 • exee • exee • exee •
exe9 • exe3 • exe2 • exee •
exea • exel • exel • exse •
exea • exee • exee • exse •
exea • ex9d • ex9d • exle •
exea • exee • exee • exll •
exea • ex7f • ex7f • exl2 •
exea • exee • exee • exl3 •
exea • ex7f • ex7f • exl4 •
exea • exee • exee • exlS •
exea • ex9d • ex9d • exl6 •
exea • exee • exee • exl7 •
exea • exs7 • exS7 • ex IS •
exea • exee • exee • exl9 •
exea • ex9c • ex9c • exla •

A·& XGA Sample Code-September 1991

0x0a · 0x00 • 0x00 · 0x0a · 0x40 · 0x40 · 0x0a · 0x04 · 0x04 · 0x0a · 0x30 · 0x30 · 0x0a · 0x03 · 0x03 · 0x0a · 0xff · 0xff · 0x0a · 0x02 · 0x02 · 0x0a · 0xff · 0xff · 0x0a · 0x02 · 0x02 · 0x0a · 0x30 · 0x30 · 0x0a · 0x03 · 0x03 · 0x0a · 0x00 · 0x00 · 0x0a · 0x03 · 0x03 · 0x0a · 0x08 · 0x08 •
0x0a · 0xff · 0xff
0x0a · 0xff · 0xff
0x0a · 0x00 · 0x00
0x0a · 0x00 · 0x00
0x0a · 0x00 · 0x00
0x0a · 0x00 · 0x00
0x0a · 0x80 · 0x40
0x0a · 0x00 · 0x00
0x0a · 0x0d · 0x0d
0x0a · 0x03 · ax02
0x0a · 0x00 · 0x00
0x0a · 0xef · 0x0f
0x0a · 0x00 · 0x00
0x0a · 0x00 · 0x00
0x0a · 0x00 · 0x00
0x0a · 0x(')(') · (')X(')(')

(')x(')a · 0x(')(') · (')X(')(')

(')x(')a · (')xff · (')xff
}

R G B */

unsigned char colour_default_palette[] = { (')x(')(') • (')X(')(') • (')X(')(') •

(')X(')(') • (')X(')(') • (')xa8 •
(')X(')(') • (')xa8 • (')X(')(') •

(')x(,)0 • (')xA8 • (')xA8 •
(')xA8 • (')X(')(') • 0x(')(') •
(')xA8 • (')X(')(') • (')xa8 •
(')xA8 • (')x54 • (')X(')(') •

(')xA8 • (')xA8 • 0xA8 •
(')x54 • (')x54 • (')x54 •
(')x54 • (')x54 • 0xfc •
(')x54 • 0xfc • (')x54 •
(')x54 • (')xFC • (')xFC •
(')xFC • (')x54 • (')x54 •
(')xFC • (')x54 • (')xFC •
0xFC • (')xFC • (')x54 •
(')xFC • (')xFC • (')xFC }

int Iplnt • cop_instance ;
long int ROS address ;
char XGAFound • VRAM_IMeg;

· · · · · · · · · · · · · · · · · ·

0xlb · 0xlc · 0xle · 0x20 · 0x21 · 0x22 · 0x23 · 0x24 · 0x25 · 0x26 · 0x27 · 0x28 •
0x29 · 0x2a •
0x2c · 0x2d · 0x36 · 0x40 · 0x41 · 0x42 · 0x43 · 0x44 · 0x54 · 0x51 · 0x70 · 0x50 •
0x55 · 0x60 · 0x61 · 0x62 · (')x63 · (')x64

XGA Sample Code-September 1991 A·7

char XGAInVGA , ExtG mode set, slot_enabled
void far *int Ie original vector
void far *int-2f-original-vector
FILE *stream:- -
int delay time = Ieee
char VramIr , Ale24x768 :

interrupt far int lee void) :
interrupt far int-2f(void) :
char *build ptr(unsigned int , unsigned int):
char emm installed(void) :
int far return axe void)
int far return-7f(void)
void PutXGAInVGA (void):
void PutXGAInExtG(void):
int exit handler(void) :
void signal handler(void)
void co_pro=blit(void):
void CoProWriteByte(int , unsigned char):
void CoProWriteWord(int , unsigned int):
void CoProPrintByte(int , char *):
void WaitForCoProReady(void):
void delay(long int):

/* ** */
/* */
/* */
/* Function maine) */
/* */
/* Description This is the program entry point. */
/* */
/* */
/* ** */

void maine void)
{

int index
MPAA *mpaa
unsigned int ipdata
unsigned char far *vram address
unsigned char ip_byte :-

atexit(exit handler):
signal(SIGINT ,signal_handler):
signal(SIGFPE ,signal_handler):
signal(SIGABRT , signal_handler):

ExtG mode set = FALSE :
int_le_original_vector = e
int_2f_original_vector = e

inregs.h.ah = POS :
inregs.h.al = POS GET BASE ADDRESS
int86(ex15 , &inregs-, &outregs):

A·8 XGA Sample Code-September 1991

/* get base POS address */
/* from system services */

pos_base_address = outregs.x.dx
XGAFound = FALSE ;
if(outregs.x.cflag) /* carry flag set means */

/* not a microchannel */ {
printf("No XGA Installed\n" /* machine */

}
else
{

XGAFound = FALSE
slot enabled = FALSE ;
for (slot number = 0 ; slot_number <= MAX_SLOTS; slot_number++)
{ -

disable(); /* Disable interrupts */
if (slot number == 0)
{ /* Look at the planar for XGA */

outp(0X094 • 0xBdf); /* Enable planar for setup */

else
{ /* Look in the slots for XGA */

inregs.x.ax = Bxc4Bl ;
inregs.x.bx = slot_number;
int86(Bx15 • &inregs • &outregs

}
slot enabled = TRUE ;
/* Get pos record for the slot */

/* enable slot for update */

pos_record.pos_id = inpw(pos_base_address) ;
pos_record.pos_bytel = (char)inp(pos_base_address + 2)
pos_record.pos_byte2 = (char)inp(pos_base_address + 3)
pos_record.pos_byte3 = (char)inp(pos_base_address + 4)
pos_record.pos_byte4 = (char)inp(pos_base_address + 5) ;
IoRegBase = « pos_record.pos_bytel & BxBe) « 3) + Bx21BB

if(slot number == B)
{ -

outp(BXB94 • BxBff) /* Enable planar for normal mode */
}
else
{

}

inregs.x.ax = Bxc4B2 ;
inregs.x.bx = slot_number
int86(0x15 • &inregs • &outregs) ; /* enable slot normal mode */

slot enabled = FALSE;
enable(); /* Enable interrupts */

1* Check for a valid XGA POS id */
if (pos_record.pos_id >= XGA_ID_LOWER &&

pos_record.pos_id <= XGA_ID_UPPER)
{

/* XGA found in slot */

/* Look to see if display connected to XGA */
outp(IoRegBase + INDEX_SELECT. MONITOR_ID);
if ((inp(IoRegBase + INDEX_DATA) & BxBf) 1= BxBF)
{

/* Display connected to XGA */
XGAFound = TRUE ;

XGA Sample Code-September 1991 A-9

/* Determine if XGA in VGA */
ipdata = inp(IoRegBase }
if(ipdata & 0x01 }
{

}

XGAlnVGA = TRUE ;
/* Chain Int 10H */
int_10_original_vector = _dos_getvect(0x10 }
_dos_setvect(0x10 • int_10 } ;

else
XGAlnVGA = FALSE ;

/* calculate VRAM address */
VRAM address 10 = 0x0 ;
VRAM=address=hi «short int)(pos_record.pos_byte3 & 0xfe }} « I
VRAM_address_hi 1= «short int} (pos_record.pos_by tel & 0x0e)} « 5

/* check VRAM */
outp(IoRegBase + 4 • OxOO }:
outp(IoRegBase + 0 • 0x04 }:
outp(IoRegBase + 1 • 0x01 };
outpw(IoRegBase + 0x0a • Ox0064 };

VRAM_lMeg = FALSE ;
outp(IoRegBase + 8 • 0x0c} ;
vram address = (unsigned char far *}0xa0000000
*vram_address = 0xa5

vram address++ :
*vram_address = 0

vram address-- ;
ip_byte = *vram_address

if(ip byte == Oxa5)
{ -

VRAM_lMeg = TRUE

index (pos_record.pos~byte1 »4) & 0xf ;
cop_instance = (pos_record.pos_byte1 » 1) & 0x07
ROS address = ROS add rec[index] ;
if(-emm installed(} }-
{ -

/* get number of entries in mappable physical
inregs.x.ax = 0x580l ;
int86(0xI5 • &inregs • &outregs }
i f(outregs .x. cx}
{

page */

/* entries exist in the list */
mpaa = (MPAA *}calloc(outregs.x.cx
if(!mpaa)

• sizeof(MPAA)

{
printf("Unable to allocate memory\n"};

}
else
{

segregs.es = FP_SEG(mpaa)

A·10 XGA Sample Code-September 1991

}
}

}
}

}

inregs.x.di = FP OFF(mpaa) :
int86x(Ox67 • &inregs • &outregs &segregs)

for(: Qutregs.x.cx > 0 : mpaa++)
{

if(ROS_address == mpaa->page_segment
{

}

pri ntf("Extended memory confl i ct at segement "):
printf(" address %x\n" • mpaa->page segment):
exit(O): -

/* Chain Int 2fH */
int 2f original vector = dos getvect(Ox2f)
_dos_setvect(Ox2f • int_2f)-:

PutXGAlnExtGO;

if(XGAFound) break

/* ** */
/* */
/* Function pointer = build_ptr(segment. offset) */
/* */
/* Description - Constructs a pointer from segment and offset. */
/* */
/* */
/* */
/* ** */
char *build_ptr(unsigned int segment. unsigned int offset)
{

char *ptr :

ptr = (char *)«(unsigned long)segment « 16) + offset)
return(ptr) :

/* ** */
/* */
/* Function status = emm_installed() */
/* */
/* Description - checks to see if extended memory has been installed. */
/* */
/* */
/* ** */
char emm installed()
{ -

char *EMM device name = "EMMXXXXO"
char *int:67_device_name_ptr :

XGA Sample Code-September 1991 A-11

}

inregs.h.ah .. 0x35 :
inregs.h.al .. EMM_INT :
intdosx(&inregs • &outregs • &segregs) :
int_67_device_name_ptr = build-ptr(segregs.es • 0x0a) :
if(memcmp(EMM_device_name • int_67_device_name_ptr • DEVICE_NAME_LENGTH »

return (FALSE):
else

return (TRUE) :

/* ** */
/* */
/* Function interrupt routine int_l0() */
/* */
/* Description· internal INT 10h interrupt handler */
/* */
/* */
/* ** */
interrupt far int_10(void)
{

}

unsigned int ax :

ax = return_axe) » 8
if(ax == 0)
{

}

/* set xga to vga mode */
_chain_intr(int_10_original_vector)

else if (ax == 0x0f)
{

}
else
{

A-12 XGA Sample Code-September 1991

/* ** */

1* *1
1* Function Interrupt routine int_2f() *1
1* *1
1* Description - Internal INT 2fh interrupt handler *1
1* */
/* */
/* ** */
interrupt far int 2f(void)
{ -

unsigned int ax
unsigned char ah
unsigned char al

ax = return axO
ah = (unsigned char) (ax » 8)
al = (unsigned char) (ax & 9x9f):
if(ah == 9x49)
{ /* Screen switch notification received */

}

if (al == 9x91) /* Switch to background */
PutXGAlnVGAO;

else if (al == 9x92) /* Switch to foreground */
PutXGAlnExtGO;

if(int_2f_original_vector) _chain_intr(int_2f_original_vector)
}

/* ** */
/* */
/* Function signal_handler() */
/* */
/* Description - error handler */
/* */
/* */
/* ** */
void signal handler(void)
{ -

exit(9);
}

/* ** */
/* */
/* Function exit_handler() */
/* */
/* Description - Exit handler */
/* */
/* ** */
int exit handler(void)
{ -

}

/* reset interrupt vectors to original values */
if (int 19 original vector) dos setvect(9x19
if (int:2f:original:vector) :dos:setvect(9x2f

/* reset to VGA if originally in VGA mode */
if (ExtG mode set && XGAlnVGA) PutXGAlnVGA
printf ("Completed\n");
return (0) ;

o

int 19 original vector
int:2f:original:vector

XGA Sample Code-September 1991 A-13

/* ** *1
/* */
/* Function co-pr_blit() */
/* */
/* Description - Use coprocessor to blit to the display */
/* */
/* ***********~** */
void co_pro_blit(void)
{

unsigned char i • j • k;

AI024x768 = TRUE ;

CoProWriteByte(0xll • 0x00) ;
CoProWriteByte(0xI2 • 0x0l) ;

/* set up VRAM base address */
CoProWriteWord(0x14 • VRAM address 10);
CoProWriteWord(0x16 • VRAM=address=hi);

CoProWriteWord(0x18 • A1024x768 ? 0x03ff : 0x02a8) ;
CoProWriteWord(0xla • A1024x768 ? 0x02ff : 0x0le0) ;
CoProWriteByte(0xlc (unsigned char)(VRAM_lMeg ? 0x03 0x(2»

CoProWriteByte(0x48
CoProWriteByte(0x49 •
CoProWriteByte(0x4a •
CoProWriteWord(0xS0 •
CoProWriteWord(0x54 •
CoProWriteByte(0x58 ,
CoProWriteByte(0x5c
CoProWriteWord(0x60
COProWriteWord(0x62
CoProWriteWord(0x6c
CoProWriteWord(0x6e
COProWriteWord(0x70
CoProWriteWord(0x72
CoProWriteWord(0x74
CoProWriteWord(0x76 •
CoProWriteWord(0x78 •
CoProWriteWord(0x7a
CoProWriteWord(0x7e
CoProWriteWord(0x7e

WaitForCoProReady() ;

0x03)
0x0S)
0x04)
0xff)
0x7f)
0x00)
0x0B) ;
A1024x768 ? 0x03ff
A1024x768 ? 0x02ff
0x0000)
0x0000)
0x000B)
0x0000)
0x0000)
0xB0B0)
0x0B00)
0x0000)
0x80B0)
0x0811)

CoProWriteWord(0x60 • 0x00l5) ;
CoProWriteWord(0x62 • 0x02ff) ;
CoProWriteWord(0x60 • A1024x768 ? 0x00l5
CoProWriteWord(Bx62 • A1024x768 ? BxB2ff
for (j=B; j < 30 : j++)
{

k=0:
for (i=l: i<= 34 : i++)
{

if (k > 15)
k = 1

else

A·14 XGA Sample Code-September 1991

0x02a8)
0x01e0)

0x0010)
0x02ff)

}
}

k'+ ;
CoProWriteWord(0x78 , (0x0030 * i) - 15 +j)
CoProWriteWord(0x7~ , 0x0000)
CoProWriteByte(0x58 , k) ;
CoProWriteByte(0x7f ,0x08)
WaitForCoProReady()

CoProWriteWord(0x60 0x03ff
CoProWriteWord(0x62 0x02ff
CoProWriteWord(0x70 0x0015
CoProWriteWord(0x72 0x0000
CoProWriteWord(0x78 0x0030
CoProWriteWord(0x7a , 0x0024
CoProWriteByte(0x7f ,0x28)
WaitForCoProReady() ;

/* ** */
/* */
/* Function CoProWriteByte(offset , data) */
/* */
/* Description - Writes a data byte to the coprocessor at the */
/* supplied offset. */
/* */
/* ** */
void CoProWriteByte(int offset, unsigned char ipdata)
{

}

unsigned char far *cop :
unsigned long tmp :

tmp = ROS_address + 0x1c00 + offset + (cop_instance * 128) :
cop = (void far *)«(tmp & 0xffff0)«12) + (tmp & 0x0f»
*cop= ipdata :

void CoProPrintByte(int offset. char *string)
{

}

unsigned char far *cop
unsigned long tmp

tmp = ROS_address + 0x1c00 + offset + (cop_instance * 128) ;
cop = (void far *)«(tmp & 0xffff0)«12) + (tmp & 0x0f»
pri ntf (stri ng):
printf(" %x\n",*cop):

XGA Sample Code-September 1991 A.15

/* ** */
/* */
/* Function CoProWriteWord(offset • data) */
/* */
/* Description - Writes a data word to the coprocessor at the */
/* supplied offset. */
/* */
/* ** */

void CoProWriteWord(int offset. unsigned int ipdata)
{

}

unsigned int far *cop
unsigned long tmp

tmp = ROS_address + 0x1c00 + offset + (cop_instance * 128) :
cop = (void far *)(((tmp & 0xffff0)«12) + (tmp & Gx0f»
*cop= ipdata :

/* ** */
/* */
/* Function WaitForCoProReady() */
/* */
/* Description Waits until coprocessor in ready state */
/* */
/* ** */
void WaitForCoProReady(void)
{

}

unsigned char far
unsigned long
long int

*cop
tmp ;
count :

tmp = ROS address + 0x1c00 + 0x11 + (cop instance * 128)
cop = (void far *)(((tmp& 0xffff0)«12-) + (tmp & 0x0f»
count = 0 :
for(::)
{

if (((*cop & 0x80)==0) II (count> 20000» break:
count++:

A·16 XGA Sample Code-September 1991

/* ** */

/* */
/* Function PutXGAInExtG() */
/* */
/* Description - Puts the XGA into Extended Graphics Mode */
/* */
/* ** */
void PutXGAInExtG(void)
{

}

int i, res, palette_size

outp(9x93c3 , 9x91);
ExtG mode set = TRUE ;
/* 1MB VRAM res = 1 if 512KB VRAM res = 2 */
res = VRAM IMeg ? 1 : 2 ;
for (i = 9-; i < s;zeof(nm data) ; i = i + 4
{ -

}

if (nm data[i+3])
outpw(IoRegBase + nm data[i] ,

«(int)nm_data[i+res]) « 8) + (unsigned)nm_data[i+3]
else

outp(IoRegBase + nm_data[i] , (int)nm_data[i+res]);

outpw(IoRegBase + 9x9a , 9x9966):
outpw(IoRegBase + 9x9a , 9x9969):
outpw(IoRegBase + 9x9a , 9x9961):

palette_size = sizeof(colour_default_palette)
for (i=9 : i <= palette size: i++)
{ -

/* select palette data register */
outp(IoRegBase + INDEX_SELECT , 9x65) :
outp(IoRegBase + 9x9b , (int)colour_default_palette[i]

XGA Sample Code - September 1991 A·17

1* ** *1
/* */
/* Function PutXGAlnVGA() */
/* */
/* Description - puts the XGA into VGA mode */
/* */
1* **~******************************* *1
void PutXGAlnVGA(void)
{

i nt i;

vram_address • (unsigned char far *)exAeeeeeee;

/* clear 1st 256KB of VRAM */
for (i = e ; i < 4 ; 1++)
{

outp(IoRegBase + 8 , i);
ptr = vram address ;
memset(ptr-, e ,ex8eee); /* set 1st 32KB of 64KB aperture*/
ptr = vram address + ex8eee ;
memset(ptr-, e ,ex8eee); /* set 2nd 32KB of 64KB aperture*/

for (I = e ; 1 < sizeof(vga data) ; i = i + 3)
{ -

}

if (vga_data[i+2])
outpw(IoRegBase + vga data[i] ,

«(unsigned)vga=data[i+l]) « 8) + (unsigned)vga_data[i+2]
else

outp(IoRegBase + vga_data[i] , (int)vga_data[l+l]);

outp(exe3c3 , exel);

/* select scan lines for alphanumeric modes */
inregs.h.ah = ex12
inregs.h.al = 0x02; /* 4ee scan lines */
inregs.h.bl = ex3e;
intS6(exle , &inregs , &outregs) ;

inregs.h.ah = ex0e ;
inregs.h.al • exe3 ;
int86{ 0xle ! &inregs , &outregs)

A-18 XGA Sample Code-September 1991

Assembler Subroutines

;**
;** **
;** Function _return_ax() **
;** **
;** Description unwinds the stack after a call to an interrupt **
;** routine to obtain contents of ax register, the **
;** value of which is returned. The stack is restored **
;** prior to the return. **
;** **
;**

• 286c
.MODEL SMALL
. DATA
return segment address
return-offset address
ret data seg -
ret)p -

dw ?
dw ?
dw ?
dw ?

. CODE
PUBLIC return ax

-return_ax PROC FAR
mov ret_bp , bp
pop bx
pop es
mov return_segment_address , es
mov return_off set_address , bx
add sp,+2
pop es
pop bx ; data seg
mov ret_data_seg , bx
popa
pusha
mov bx,ret_data_seg
push bx ; data seg
push es
sub sp,+2
mov eS,return_segment_address
mov bx,return_offset_address
push es
push bx
mov bp , ret_bp
ret

-return_ax ENDP

END

XGA Sample Code-September 1991 A-19

:**
:** **
;** Function return_7f **
:** **
;** Description unwinds the stack after a call to an interrupt **
;** routine to obtain contents of ax register. the **
;** value of which is returned. The stack is restored **
;** prior to the return. **
:** **
:**

.286c

.MODEL SMALL
• DATA
return segment address
return-offset address
ret data seg -
ret=bp -

dw
dw ?
dw ?
dw ?

. CODE
PUBLIC

return_7f
mov
pop
pop
moy
moy
add
pop
pop
moy
popa
moy
pusha
mov
push
push
sub
mov
mov
push
push
moy
ret

Jeturn_7f

END

return 7f
PROC FAR
ret_bp • bp
bx
es
return segment address • es
return-offset address. bx
sp.+2 - -
es
bx ; data seg
ret_data_seg • bx

ah.7fh

bx.ret_data_seg
bx ; data seg
es
sp.+2
es.return_segment_address
bx.return_offset_address
es
bx
bp • ret_bp

ENDP

A·20 XGA Sample Code-September 1991

Setting the XGA Subsystem into 132-Column Text
Mode

Pseudo Code

Main Program

o Locate XGA subsystem with attached display in VGA mode
o If none, display error message and return.
o Chain INT 10h Video handler
o Chain INT 2111 DOS Function handler
o Chain INT 23h Ctrl Break Exit Address
o Chain INT 2Fh Screen Switch Notification handler
o Put XGA into 132-column text mode (see "132-Column Text Mode" on

page 3-185)
o Display simple text
o Exit

INT 10 Handler

o Examine value of (Ah)
DOh Set Mode

- Put XGA subsystem in normal VGA mode (see "VGA
Mode" on page 3-184)

- Chain on to saved INT 10h Video Interrupt handler.
Any other value

- Interrupt return (IRET)

Figure A-2 (Part 1 of 2). 132-column Text Mode Setting Pseudo Code

XGA Sample Code-September 1991 A-21

INT 21h DOS Function handler

• Examine value of (Ah)
4Ch Program Terminate

- Put XGA subsystem in normal VGA mode
- UnChain and restore original INT 10h Video handler
- UnChain and restore originallNT 21h DOS function

handler
• Chain on to saved INT 21h handler

INT 23h etrl Break Exit Address

• Chain on to saved INT 23h handler, using a method that ensures return
of control through this function handler.

• On return from chained handler, examine Carry Flag (CF). If set
- Put XGA subsystem in normal VGA mode
- UnChain and restore original INT 10h Video handler
- UnChain and restore originallNT 21h DOS function handler

• Interrupt return (IRET)

INT 2Fh Screen Switch Notification Handler

• Examine value of (Ah)
40h Screen Switch Notification

Examine value of (AL)
01h Impending switch to background.

- Put XGA subsystem in normal VGA mode
- Chain on to saved INT 2Fh handler (if any)

02h Impending switch to foreground

Any other value

- Put XGA subsystem in 132-column text
mode

- Semaphore redraw required to application
- Chain on to saved INT 2Fh handler (if any)

- Chain on to saved INT 2F Interrupt vector (if any)

Figure A-2 (Part 2 of 2). 132-column Text Mode Setting Pseudo Code

A·22 XGA Sample Code-September 1991

Code Example

Main C Program

/* ** */
/* */
/* */
/* Program s_132n */
/* */
/* Description This program is sample code to illustrate entry to */
/* 132-column text mode and back to VGA mode upon program */
/* termination. */
/* */
/* ** */

#define POS Oxc4
#define POS GET BASE ADDRESS exes
#define FALSE - - OxOO
#define TRUE Ox01
#define EMM_INT Ox67
#define DEVICE NAME LENGTH OxOS
#define MAX SLOTS - Ox09
#define XGA-ID UPPER OxSfdb
#define XGA-ID-LOWER OxSfdS
#define INDEX SELECT OxOa
#define INDEX=DATA OxOb
#define MONITOR_ID Ox52

#include <dos.h>
#include <stdio.h>
#include <conio.h>
#include <signal.h>
#include <malloc.h>
#include <memory.h>
#include <stdlib.h>
#include <conio.h>

typedef struct
{

unsigned int pos_id
char pos_byte1
char pos_byte2
char pos_byte3
char pos_byte4

} POS_REC

1* POS Record */

XGA Sample Code - September 1991 A·23

union REGS inregs • out regs ;
struct SREGS segregs ;
unsi gned iot pos_base_address • IoRegBase • slot_number

unsigned char

char RedrawRequired ;
char XGAFound ;
char XGAlnVGA ;
void far *int 10 original vector ;
void far *int:2f:original:vector ;

interrupt far int l0(void)
interrupt f~r int-2f(void)
int far return ax(void) ;
int far return-7f(void) ;
void PutXGAlnVGA(void) ;
void PutXGAln132(void);
int exit handler(void) ;
void signal handler(void)
void DisplayText(void);

{ 0x0l • 0x00 • 0x00 •
0x04 • 0x00 • 0x00 •
0x0S • 0xff • 0x00 •
0x0a • 0xff • 0x64 •
0x0a • 0xlS • 0xS0 •
0x0a • 0x14 • 0x50 •
0x0a • 0x00 • 0xSl •
0x0a • 0x04 • 0xS4 •
0x0a • 0x7f • 0x70 •
0x0a • 0x20 • 0x2a •
0x00 • 0x0l • 0x00

} ;

A·24 XGA Sample Code-September 1991

/* ** */
/* */
/* */
/* Function maine) */
/* */
/* Description This is the program entry point. */
/* */
/* */
/* ** */

void maine void)
{

int index
unsigned int ipdata
unsigned char far *vram_address
unsigned char ip_byte ;

atexit(exit handler);
signal(SIGINT • signal_handler);
signal(SIGFPE • signal handler);
signal (SIGABRT • signal:handler);

int_ia_original_vector = a
int_2f_original_vector = a

inregs.h.ah = P~S ;
inregs.h.al = P~S GET BASE ADDRESS
int86(axiS. &inregs-. &outregs);

pos base address = outregs.x.dx
XGAfound-= FALSE ;
if(outregs.x.cflag)
{

printf(nNo XGA Installed\n"
}
else
{

XGAFound = FALSE
XGAlnVGA = FALSE

/* get base P~S address */
/* from system services */

/* carry flag set means */
/* not a microchannel */
/* machine */

for (slot number = a ; slot_number <= MAX_SLOTS; slot_number++
{ -

disable(); /* Disable interrupts */
if (slot number == a)
{ /* Look at the planar for XGA */

outp(aXa94 • axadf); /* Enable planar for setup */
}
else
{ /* Look in the slots for XGA */

inregs.x.ax = axc4ai ;
inregs.x.bx = slot number ;
int86(axiS • &inregs • &outregs)

}
/* enable slot for update */

/* Get pas record for the slot */
pos_record.pos_id = inpw(pos_base_address

XGA Sample Code-September 1991 A-25

}

pos_record.pos_bytel = (char)inp(pos_base_address + 2)
pos_record.pos_byte2 = (char)inp(pos_base_address + 3)
pos_record.pos_byte3 = (char)inp(pos_base_address + 4)
pos_record.po~_byte4 = (char)inp(pos_base_address + 5) ;
IoRegBase = « pos_record.pos_bytel & 0x0e) « 3) + 0x2I00 ;

if(slot number == 0)
{ -

outp(0X094 • 0x0ff) /* Enable planar for normal mode */
}
else
{

inregs.x.ax = 0xc402 ;
inregs.x.bx = slot number;
int86(0xI5 • &inregs • &outregs) : /* enable slot normal mode */

enable(); /* Enable interrupts */
1* Check for a valid XGA POS id */
if (pos record.pos id >= XGA ID LOWER &&

pos=record.pos=id <= XGA=ID=UPPER)

}

/* XGA found in slot */

/* Look to see if display connected to XGA */
outp(IoRegBase + INDEX_SELECT. MONITOR_ID):
if ((inp(IoRegBase + INDEX_DATA) & 0x0f) != 0x0F)
{

/* Display connected to XGA */
XGAFound = TRUE ;

/* Determine if XGA in VGA */
ipdata = inp(IoRegBase)
if(ipdata & 0x01)
{

XGAInVGA = TRUE
break:

if (XGAInVGA == FALSE)
{

printf("XGA in VGA with attached display - not found\n");
}
else
{

RedrawRequired = FALSE

/* Chain Int 10H */
int_10_original_vector = _dos_getvect(0xl0)
_dos_setvect(0xl0 • int_I0) :

/* Chain Int 2fH */
int 2f original vector = dos getvect(0x2f)
_dos_setvect(0x2f • int_Zf)-;

A-26 XGA Sample Code-September 1991

}
}

}

PutXGAIn1320 ;

Di spl ayTextO;

l* ** */
/* */
/* Function interrupt routine int_10() */
/* */
/* Description - internal INT l0h interrupt handler */
/* */
/* */
/* ** */
interrupt far int l0(void)
{ -

int ax

ax = return ax() » 8
if(ax == 0-)
{

/* set xga to vga mode */
PutXGAlnVGA() ;
_chain_intr(int_10_original_vector

}
else if (ax == 0x0f)
{

}
else
{

_chain_intr(int_10_original_vector)
}

/* ** */
/* */
/* Function Interrupt routine int_2f() */
r ~
/* Description - Internal INT 2fh interrupt handler */
/* */
/* */
/* ** */
interrupt far int 2f(void)
{ -

unsigned int ax
unsigned char ah
unsigned char al

ax = return axO
ah = (unsigned char)(ax » 8)
al = (unsigned char)(ax & 0x0f);
if(ah == 0x40)
{ /* Screen switch notification received */

if (al == 0x0l) /* Switch to background */
PutXGAlnVGAO;

XGA Sample Code-September 1991 A-27

}

else if (al == exe2) /* Switch to foreground */
{

}

RedrawRequired = FALSE;
PutXGAln1320 ;

if(int_2f_original_vector) _chain_intr(int_2f_original_vector)
}

/* ** */
/* */
/* Function signal_handler() */
/* */
/* Description - error handler */
/* */
/* */
/* ** */
void signal handler(void)
{ -

exit (e);
}

/* ** */
/* */
/* Function exit_handler() */
/* */
/* Description - Exit handler */
/* */
/* ** */
int exit_handler(void)
{

}

/* reset interrupt vectors to original values */
if (int_le_original_vector) _dos_setvect(exle
if (int_2f_original_vector) _dos_setvect(ex2f

if(XGAlnVGA)PutXGAlnVGA ();
return (e) ;

A·28 XGA Sample Code-September 1991

int_le_original_vector
int_2f_original_vector

/* ** */

/* */
/* Function PutXGAln132() */
/* */
/* Description - Puts the XGA into 132 mode */
/* */
/* ** */
void PutXGAln132(void)
{

int ipdata ;
int far *bios

outw loRegBase + 0x0a 0x1550)

outw loRegBase + 0x0a 0x1450)

outw loRegBase + 0x0a 0x0454)

/* select scan lines for alphanumeric modes */
inregs.h.ah = 0x12
inregs.h.al = 0x02; /* 400 scan lines */
inregs.h.bl = 0x30 ;
intB6(0x10 • &inregs • &outregs) ;

/* set vga mode */
inregs.h.ah = 0x00
inregs.h.al = 0x03
int86(0x10 • &inregs • &outregs

outp (loRegBase + 0x0a • 0x50)
ipdata = inp (loRegBase + 0x0b)
ipdata 1= 0x0l ;
outp (loRegBase + 0x0b • ipdata) ;

outp (loRegBase + 0x0a • 0x50) ;
ipdata = inp (loRegBase + 0x0b)
ipdata &= 0xFD ;
outp (loRegBase + 0x0b • ipdata) ;

outp (loRegBase + 0x0a • 0x50) ;
ipdata = inp (loRegBase + 0x0b) ;
ipdata &= 0xFC ;
outp (loRegBase + 0x0b • ipdata)

outp (loRegBase • 0x03) ;

outpw(loRegBase + 0x0a 0x0l54

outpw(loRegBase + 0x0a 0x8070)

outp (loRegBase + 0x0a • 0x50) ;
ipdata = inp (loRegBase + 0x0b)
ipdata &= 0xef ;
outp (loRegBase + 0x0b • ipdata) ;

outp(0x03d4 • 0xll)
ipdata = inp(0x03d5)
ipdata &= 0x7f ;

XGA Sample Code-September 1991 A-29

}

outp(8x83dS • ipdata):

outp(8x83d4 • 8x88) :
outp(8x83dS • 8xa4):

outp(8x83d4 • 8x81) :
outp(8x83dS • 8xS3):

outp(8x83d4 • 8x82) :
outp(8x83dS • 8x84):

outp(8x83d4 • 8x83) :
outp(8x83dS • 8xS3):

outp(8x83d4 • 8x84) :
outp(8x83dS • 8x98):

outp(8x83d4 • 8x8S) :
outp(8x83dS • 8xS8):

outpw(IoRegBase + 8x8a • 8xa3la)
outpw(IoRegBase + 8x8a • 8x88lb)
outpw(IoRegBase + 8x8a • 8x88lc)
outpw(IoRegBase + 8x8a • 8x88le)

outp(8x83d4 • 8xl3) :
outp(8x83dS • 8x42):

outp(8x83d4 • 8xll) :
ipdata = inp(8x83dS) :
ipdata 1= 8xS8 :
outp(8x83d5 • ipdata):

outp (IoRegBase + 8x8a • 8xS8) :
ipdata = inp (IoRegBase + 8x8b)
i pdata 1 = 8x83 :
outp (IoRegBase + 8x8b • ipdata) ;

outp(8x83c4 • 8x81) :
ipdata = inp(8x83c5) ;
ipdata 1= 8x8l :
outp(8x83cS • ipdata);

ipdata = inp(8x83da) :

outp(8x83c8 • 8xl3);

outp(8x83c8 • 8x88):

outp(8x83c8 • 8x28):

bios = (int far *)8x48884a
*bios = 8x84 ;

.
/* tel BIOS we have 132 columns */

A-30 XGA Sample Code-September 1991

/* ** */
/* */
/* Function PutXGAlnVGA() */
/* */
/* Description - puts the XGA into VGA mode */
/* */
/* ** */
void PutXGAlnVGA(void)
{

}

i nt i;

vram_address = (unsigned char far *)0xA0000000;

/* clear 1st 256KB of VRAM */
for (i = 0 ; i < 4 ; i ++)
{

outp(IoRegBase + S , i);
ptr = vram address ;
memset(ptr-, 0 ,0xS000); /* set 1st 32KB of 64KB aperture*/
ptr = vram address + 0xS000 ;
memset(ptr-, 0 ; 0xS000); /* set 2nd 32KB of 64KB aperture*/

}

for (i = 0 ; i < sizeof(vga data) ; i = i + 3)
{ -

if (vga data[i+2])
outpw(IoRegBase + vga data[i] ,

«(unsigned)vga=data[i+1]) « S) + (unsigned)vga_data[i+2]
else

outp(IoRegBase + vga_data[i] , (int)vga_data[i+1]);
}

outp(0x03c3 , 0x01);

/* select scan lines for alphanumeric modes */
inregs.h.ah = 0x12
inregs.h.al = 0x02; /* 400 scan lines */
inregs.h.bl = 0x30 ;
intS6(0x10 , &inregs , &outregs) ;

/* set vga mode */
inregs.h.ah = 0x00
inregs.h.al = 0x03
intS6(0x10 , &inregs , &outregs)

XGA Sample Code-September 1991 A·31

void DisplayText(void)
{

}

int j ;
char ch ;

for (j =1 ; j < 24 ; j++)
{ /* sample code to fill screen with 24 x 132 chars */
pri ntf("Thi s Ii ne ")
printf(" .. ")
printf(" ••.••.•••....•••• is 132 chars long")
}

printf("Press Enter to continue ••••••• ");
ch = getcharO;

Assembler SubroutInes

See "Setting the XGA Subsystem into Extended Graphics Mode" on
page A-2.

A·32 XGA Sample Code-September 1991

Index

A
access

system memory
apertures 3-193,3-194

system processor 3-219
XGA registers 3-193,3-194

access limitation, system
memory 3-195

accessed bit 3-158,3-161
accesses to coprocessor 3-115
adapter, primary 3-175
address

calculation 3-172
translation 3-156

address registers
attribute controller 2-89
palette 2-103
sequencer 2-47

address select 2-86
address space, video memory

location 3-174
addressability, physical 3-189
addressing, X and Yaxls 3-8
all points addressable (APA)

modes 2-18
alphanumeric font and sprite

buffer 3-11
alphanumeric memory

mapping 2-26
alphanumeric modes 2-15
AND data select 2-82
aperture

Personal System/2 video
memory 3-197

system memory, access
to 3-193,3-194

1MB system video
memory 3-19,3-187

4MB system video
memory 3-19,3-174,3-188

64KB system video
memory 3-19,3-187

© Copyright IBM Corp. 1989. 1991

aperture control register 3-30, 3-33
aperture index register 3-30, 3-38
applications, 8514/A DOS Adapter

Interface 3-12
area

boundary drawing 3-102
filling 3-8,3-10
outline scissoring 3-103

area boundary drawing
mode 3-107

area fill operation 3-95
description 3-10
with pattern fill 3-108
without user pattern 3-107

arithmetic functions 3-109
arithmetic mixing 3-8,3-11
arithmetic operation 3-80
asynchronous reset 2-48
attribute byte definitions 2-16
attribute controller

VGA function
blink enable 2-92
block diagram 2-10
description 2-10
registers 2-89

XGA function 3-11
attribute controller registers 2-89

address 2-89
color plane enable 2-93
color select 2-95
horiz PEL panning 2-94
internal palette 0 - F 2-90
mode control 2-91
overscan color 2-93
reserved bits 2-41

attribute definition 2-16
attribute mode control

register 2-91
auto-configuration register 3-43
auxiliary video extension 2-106,

2-108,2-109
available modes 3-180

X-1

B
background

mix 3-108
source 3-108
source, PEL operations

register 3-145
background color register 3-138,

3-203
background mix register 3-133,

3-202
base video extension 2-108
BIOS

chaining the INT 10h video
handler 3-176

mode 14h 3-185, 3-196
VGA function 2-7
video modes 2-12

bit maSk register 2-88
bit masking, PEL 3-113
bit-block transfer 3-8,3-10
bits

accessed 3-158,3-161
coprocessor 3-115
dirty 3-158,3-161
present 3-159,3-162
read/write 3-159
user/supervisor 3-159
user/supervisor and

read/write 3-161
VM page not present 3-169
VM protection violation bit

interrupt 3-169
bits-per-PEL (bpp) 3-17,3-18,3-80
blanking signal 2-109
blink enable 2-92
block diagram

address mapping 2-74
attribute controller 2-10
coprocessor data flow 3-82
graphics controller 2-9
memory read 2-40
memory write 2-39
VGA function 2-6
XGA video subsystem 3-9

border color
mapping 3-18

X·2 Index

border color (continued)
select 2-93

border color register 3-27,3-71
boundaries, area 3-102
boundary enabled 3-103
boundary enabled mask map 3-90,

3-92
bpp (bits-per-PEL) 3-17,3-18,3-80
Bresenham constant K1

register 3-99,3-131,3-212
Bresenham constant K2

register 3-99,3-131,3-212
Bresenham error term E

register 3-130
Bresehham error term

register 3-99,3-212
Bresenham line drawing algorithm

controlling address
stepping 3-99

foreground and background color
registers 3-210

foreground and background mix
registers 3-210

line draw function 3-99, 3-211
mixes and colors 3-210
operation dimension

registers 3-212
steps required 3-209

buffer
alphanumeric font and

sprite . 3-11
sprite 3-23

buffer address 2-67
buffer address select 2-86
busmaster function 3-10
busmastership 3-174,3-189
busy bit

coprocessor 3-115
polling 3-221

byte
subsystem identification

high 3-151
subsystem identification

low 3-151
byte write operation 3-42

C
calculations

address 3-172
coprocessor registers 3-172
I/O registers 3-172
ROM address 3-172
video memory base

address 3-172
1 MB aperture base

address 3-174
carry chain

breaking 3-111
mask 3-111

carry chain mask register 3-137
chain 4 bit 2-54
chaining, INT 10h video BIOS

handler 3-176
character generation

VGA text mode 3-11
132-column text mode 3-11

character generator
codes 2-92
RAM loadable 2-100
routines 2-52

character map select register 2-52
character sets 3-112
clock frequency select 1

register 3-71, 3-78
clock frequency select 2

register 3-78
clock selected bit

assignments 3-79
clock selection 3-79
clocking mode register 2-49
coexistence, XGA and VGA 3-170
coherency

page table 3-194
system 3-162

color
compare function 3-81,3-113
expansion 3-112
number supported 3-12
order, palette sequence

register 3-75
Pxblt 3-202
setting 3-210

color compare operations 2-40
color compare register 2-81
color don't care register 2-87
color graphics mode

640 x 480, 2 color 2-22
color mapping, sprite 3-22
color modes 2-12
color plane enable register 2-93
color select register 2-95
color/graphics modes 2-18
compare, line 2-77
compatibility

IBM Enhanced Graphics Adapter
(EGA) 2-99

upward 3-196
VGA mode 3-15
8514/A Adapter Interface 3-7,

3-12
completion, operation 3-98
components

subsystem 2-7
VGA function 2-7
XGA function 3-7

connector
auxiliary video extension 2-108
base video extension 2-108
display 4-2
timing 2-110

contiguous memory 3-87
control cursor

cursor off bit 2-65
skew 2-66

controller
attribute 2-10
CRT 2-7
graphics 2-8
memory and CRT 3-10

coprocessor
accesses 3-115,3-219
busy bit 3-115
carry chain 3-111
data flow 3-82
description 3-8, 3-10, 3-80
drawing-assist functions 3-8
functions 3-10,3-29
memory-mapped registers 3-14
operation completion 3-115

Index X-3

coprocessor (continued)
operation-complete

interrupt 3-115
register calculations 3-172
register space 3-119
starting operations 3-114
state save/restore 3-116
support 3-224
suspending operations 3-114,

3-116
terminating operations 3-114
video memory location in

address space 3-174
view of memory 3-84

coprocessor control register 3-115,
3-122

coprocessor memory-mapped
registers 3-150,3-152

coprocessor registers
description 3-118
usage guidelines 3-121

coprocessor save/restore data
register 3-43

coprocessor-access-rejected
interrupt 3-116

coprocessor-ope ration-complete
interrupt 3-83

count by four 2-72
count by two 2-74
creating a split screen 2-101
critical error handler, INT

24h 3-177
CRT controller

VGA function
address mapping 2-74
compatibility 2-76
description 2-7
horiz skew 2-58
registers 2-55

XGA function
description 3-19
interpretations 3-20
reset 3-67

CRT controller registers 2-55
address 2-56
cursor location 2-68
cursor start and end 2-65

X-4 Index

CRT controller registers (continued)
end horizontal blanking 2-58
end horizontal retrace 2-60
end vertical blank 2-73
horizontal display enable

end 2-57
horizontal total 2-56
line compare 2-77
max scan line 2-64
mode control 2-74
offset 2-71
overflow 2-62
preset row scan 2-63
reserved bits 2-41
start address 2-67
start horizontal blanking 2-57
start horizontal retrace

pulse 2-59
start vertical blank 2-73
underline location 2-72
vertical end 2-71
vertical retrace end 2-69
vertical retrace start 2-69
vertical total 2-61

CRT controller reset 3-67
CRT mode control register 2-74
Ctrl-break exit address, INT

23h 3-177
current virtual address

register 3-166
cursor display and control 3-11
cursor location register 2-68
cursor off bit 2-65
cursor skew control 2-66
cursor start/end register 2-65

D
DAC serializer 3-11
DAC state register 2-104
DAC (digital-to-analog converter)

palette
operation 2-103
programming

considerations 2-105
register 2-103

data flow, XGA coprocessor 3-82
data register 3-30, 3-42
data rotate register 2-82
DCLK signal 2-109
design model

paged virtual memory
environments 3-194

providing addressability 3-193
destination

address 3-80
bit map width restriction 3-222
data 3-81
map 3-88

destination color compare
condition 3-113

destination color compare condition
register 3-134

destination color compare value
register 3-113,3-135

destination map X and Y
registers 3-204

destination X address
register 3-143

destination Y address
register 3-143

device operation, DAC 2-103
digital-to-analog converter

(DAC) 2-103
dimensions 3-83
dimensions, PxBlt 3-203
direct access 1/0 registers

aperture control 3-33
aperture index 3-38
data 3-42
index register 3-40
interrupt enable 3-34
interrupt status 3-36
memory access mode 3-39
operating mode 3-32
virtual memory control 3-37
virtual memory interrupt

status 3-37
direct access to video

memory 3-18
direct color mode 3-8,3-18,3-27,

3-80,3-224

direct color palette load 3-28
direction code, draw and step 3-97
direction step register 3-97
direction steps register 3-132
directory index field 3-156
dirty bit 3-158,3-161
disabled mask map 3-90, 3-91
discontiguous pages, 4KB 3-193
display blanking values 3-67
display connector

introduction 4-2
timing 4-3

display control 1 register 3-66
display control 2 register 3-68
display controller 3-16
display controller registers

data 3-30
description 3-30
1/0 addresses 3-30
usage guidelines 3-31

display 10 and comparator
register 3-70

display mode bit assignments 3-32
display PEL map offset

register 3-21, 3-64
display PEL map width

register 3-21, 3-65
display scan order

interlaced 3-66
noninterlaced 3-66

display support 2-14
display synchronization

signals 4-3
display type 3-175,3-180
display vertical gain 2-43
display vertical size 4-3
don't care, color 2-87
DOS

extended environments,
32-bit 3-190

multiple virtual DOS machine
environment 3-191

real-mode environments 3-189
double scanning 2-64
doubleword mode 2-72
draw and step function 3-83

Index X-5

draw and step operation
description 3-95
initiating 3-97

drawing area boundaries 3-102
drawing operations

area fill 3-107
Bresenham line draw 3-80
draw and step 3-80,3-95
introduction 3-95
line draw 3-99
PEL block transfer 3-80, 3-103

drawing-assist functions 3-8

E
EDCLK signal 2-110
enable bit

video subsystem 2-14
enable blink 2-92
enable line graphics 2-92
enable set/reset register 2-80
enabled mask map 3-90, 3-93
end horizontal blanking

register 2-58
end horizontal retrace

register 2-60
end vertical blanking register 2-73
ESYNC signal 2-109
EVIDEO signal 2-109
expanded memory managers,

LIM 3-179
expansion, color 3-112
extended graphics mode

description 3-7,3-16
display mode bit

assignment 3-32
multiple XGA subsystems 3-150
programming the XGA

subsystem 3-197
selection 3-180
XGA subsystem 3-182

extended memory, DOS
application 3-190

X-6 Index

F
feature control register 2-46
field, XGA POS register

directory index 3-156
offset 3-156
table index 3-156

fixed data, PEL 3-84
fixed destination boundary

sCissoring 3-103
font, RAM loadable 2-100
foreground and background color

registers 3-210
foreground and background mix

registers 3-210
foreground color register 3-138,

3-203
foreground mix register 3-109,

3-133, 3-202
foreground source

description 3-108
PEL operations register 3-146

format
Intel 3-32,3-39,3-83,3-118,

3-219
Motorola 3-32,3-39,3-83,3-118,

3-219
packed PEL 3-8
video memory, VGA function

mode F 2-21
mode 11 2-22
mode 13 2-23
mode 4,5 2-18
mode 6 2-20
16-color modes 2-22

video memory, XGA
function 3-16

full-screen updates 2-49
function mixes 3-83
function 4Ch program terminate

function, INT 21h 3-178

G
general description

VGA function 2-5
XGA function 3-7

general register usage 3-196
general registers 2-42

input status 2-44, 2-46
miscellaneous output 2-42
reserved bits 2-41
video subsystem enable 2-46

graphics controller
block diagram 2-9
description 2-8
registers 2-78

graphics controller registers 2-78
bit mask 2-88
color compare 2-81
color don't care 2-87
data rotate 2-82
enable set/reset 2-80
miscellaneous 2-86
mode 2-84
read map select 2-83
reserved bits 2-41
set/reset 2-79

graphics mode
extended, XGA function 3-7
VGA function 2-18
320 x 200, four-color 2-18

graphics mode register 2-84
guidelines, usage

H

coprocessor registers 3-121
display controller registers 3-31
POS registers 3-151

high resolution support 3-7
horizontal blanking end

register 3-20, 3-47
horizontal blanking start

register 3-20, 3-46
horizontal display enable end

register 2-57
horizontal display end

register 3-20, 3-45
horizontal PEL panning

register 2-94
horizontal retrace select 2-74
horizontal skew 2-58

horizontal sprite preset 3-24
horizontal sprite start 3-24
horizontal sync pulse end

register 3-20, 3-49
horizontal sync pulse position

register 3-50
horizontal sync pulse start

register 3-20, 3-48
horizontal total register

VGA function 2-56
XGA function 3-20, 3-44

HSYNC signal 2-109
hypervisor, virtualization display

driver 3-191

I
image shift 2-94
index number 3-30
index register 3-40
indexed access I/O registers

auto-configuration 3-43
border color 3-71
clock frequency select 1 3-71
clock frequency select 2 3-78
coprocessor save/restore

data 3-43
display control 1 3-66
display control 2 3-68
display 10 and comparator 3-70
display PEL map offset 3-64
display PEL map width 3-65
horizontal blanking end 3-47
horizontal blanking start 3-46
horizontal display end 3-45
horizontal sync pulse end 3-49
horizontal sync pulse

position 3-50
horizontal sync pulse start 3-48
horizontal total 3-44
palette blue prefetch 3-76
palette data 3-74
palette green prefetch 3-76
palette mask 3-74
palette red prefetch 3-76
palette sequence 3-75
sprite color 3-63

Index X-7

indexed access 1/0 registers
(continued)

sprite control 3-62
sprite data register 3-77
sprite horizontal preset 3-59
sprite horizontal start 3-58
sprite prefetch 3-77
sprite vertical preset 3-61
sprite vertical start 3-60
sprite/palette index 3-72
spritelpalette prefetch

index 3-73
vertical blanking end 3-54
vertical blanking start 3-53
vertical display end 3-52
vertical line compare 3-57
vertical sync pulse end 3-56
vertical sync pulse start 3-55
vertical total 3-51

initiating draw and step
operation 3-97

input status register 2-44
instance 3-172
instances, multiple 3-150
INT 10h video BIOS handler 3-176
INT 2Fh, screen switch

notification 3-179
INT 21 h, function 4Ch, program

terminate function 3-178
INT 23h, Ctrl-break exit

address 3-177
INT 24h, critical error

handler 3-177
Intel

format 3-32,3-39,3-77,3-83,
3-118,3-219

order 3-17
interface

system bus 3-10
system to DAC 2-103
8514/A Adapter 3-7,3-12

internal palette select 2-90
interrupt

coprocessor access
rejected 3-116

operation complete 3-83,3-115,
3-222

x-a Index

interrupt (continued)
sprite display complete 3-24
system 3-21, 3-83
vertical 2-69
VM page not present 3-162
VM protection violation 3-161,

3-163
interrupt enable 2-70
interrupt enable register 3-30,

3-34, 3-115
interrupt status register 3-30, 3-36,

3-115
inverting PxBlt 3-105,3-106
i386SX system 3-195
i86 real mode address space 3-187
1/0

display controller register
addresses 3-30

register calculations 3-172
1/0 registers 3-16

L
last PEL null drawing 3-97
last PEL null drawing mode 3-96
LIM EMS drivers

description 3-14
use with 8514/A DOS Adapter

Interface 3-13
virtual DOS machine

environments 3-191
LIM EMS managers

coexisting 3-179
description 3-190

line compare register 2-77
line draw

description 3-10
used with XGA Adapter

Interface 3-8
line draw operation 3-95

description 3-99
function 3-83
read draw 3-100
two-stage 3-223
write draw 3-100

line graphics 2-92

line graphics character 2-91
line length 3-99

restriction 3-223
storage 3-21

loading palette 3-224
locating the XGA subsystem 3-171
logic support 2-7
logical functions 3-109
logical mixing 3-8, 3-11
logical operation 3-80
logical operator select 2-82
Lotus-Intel-Microsoft Expanded

Memory Services Manager 3-190
Lotus/Intel/Microsoft Expanded

Memory Specification 3-179

M
major components

VGA function 2-7
video subsystem 2-7
XGA function 3-7

map mask register 2-51
map masking 3-8,3-11
map select register 2-52
map select, read 2-83
mapping

memory 2-74
split screen 2-102

maps, memory 2-25
mask

address 3-80
data 3-81
PEL 3-81
plane 3-113

mask map
area outline scissoring 3-103
boundary enabled 3-90, 3-92
description 3-89
disabled 3-90, 3-91
enabled 3-90,3-93
full pattern Pxblt 3-108
sCissoring 3-90

mask map format register 3-130
mask map origin X and Yoffset

registers 3-204

mask map origin X offset
register 3-140

mask map origin Yoffset
register 3-140

masked bits 3-113
maximum scan line register 2-64
memory

contiguous locations 3-87
virtual 3-156

memory access mode 3-30
memory access mode

register 3-39
memory access modes 3-219
memory address select 2-86
memory and CRT controller 3-10
memory management, LIM

EMS 3-190
memory maps 2-74
memory mode 2-24
memory mode register 2-54
memory-mapped

register space 3-179
memory-mapped register 3-10,

3-14
methods for programming 2-99
miscellaneous output register 2-42
miscellaneous register 2-86
mixes

foreground and
background 3-110

PxBlt 3-202
setting 3-210
used with XGA Adapter

Interface 3-8
mode control register 2-74
mode hex F, 640 x 350

graphics 2-21
mode hex 11, 640 x 480 two color

graphics 2-22
mode hex 13, 256-color 2-22
mode register, graphics 2-84
mode 6, 640 x 200 two-color 2-20
model, design

paged virtual memory
environments 3-194

providing addressability 3-193

Index X-9

modes
all points addressable

(APA) 2-18
alphanumeric 2-15
available 3-180
BIOS 2-12
color 2-12
color/graphics 2-18
count by four 2-72
count by two 2-74
direct color 3-8, 3-27, 3-80
doubleword 2-72
extended graphics 3-7,3-16,

3-180,3-182
graphics, VGA function 2-18
last PEL null drawing 3-96
memory 2-24
memory access 3-30,3-219
memory maps 2-24
monochrome 2-12
odd/even 2-84
protect 3-187
protect, 16-bit segmented

environment 3-192
read and write 2-84
read/modify write 3-103
setup 2-14
switching 3-182
VGA 3-7,3-15,3-184
video 2-12
word/byte 2-74
132-column text 3-7,3-15,3-185
14h 3-185
16 bits-per-PEL 3-18
16-color graphics 2-22
200-scan-line 2-12
512 char font 2-100

modes of operation 3-12
modes 4 and 5, 320 x 200

four-color 2-18
monochrome display 3-26,3-74
monochrome modes 2-12
Motorola

format 3-32,3-39, 3-83, 3-118,
3-219

order 3-18

X-10 Index

multiple
instances 3-150
virtual DOS machine

environment 3-191
virtual DOS machine

environments 3-191
XGA subsystems 3-170
XGA subsystems in VGA

mode 3-150
Multiple Virtual DOS Machine

(MVDM)
hypervisor 3-190

MVDM hypervisor's virtualization
display driver 3-191

N
non-prefetch sprite index high

register 3-23
non-prefetch sprite/palette index

low register 3-25
non rectangular scissor 3-94
null endpoint PELs 3-102
number of colors 3-12

o
octant line draw function 3-99
odd/even address bit 2-54
odd/even mode 2-84
offset field 3-156
offset register 2-71
operating mode register 3-30, 3-32,

3-118,3-150,3-170
setting in VGA or 132-column text

mode 3-56
operation complete interrupt 3-222
operation completion 3-98, 3-115
operation dimension 1

reg ister 3-139
operation dimension 2

register 3-139
operation-complete interrupt 3-115
operation, set up 3-83
OR data select 2-82
organization, video memory 2-24,

2-25

outline scissoring 3-103
overflow register 2-62
overheads, system 3-192,3-194
overscan color register 2-93

p
packed PEL

data 3-83
format 3-8
video memory format 3-16

page directory
description 3-156
entries 3-158

page directory base address
register 3-161,3-165

page table
address 3-157
coherency 3-194
description 3-156
entries 3-158

paged virtual memory
environments 3-193

design model 3-194
palette

VGA function
address select 2-90
DAC 2-103
operation 2-103

XGA function
accesses 3-25
description 3-25
loading 3-224
serializer 3-11
writing data to 3-25

palette blue prefetch register 3-76
palette data register 3-25,3-74
palette green prefetch

register 3-76
palette mask register 3-74
palette red prefetch register 3-76
palette registers, VGA

function 2-90
palette sequence register 3-25,

3-75
palette sequence register color

order 3-75

pattern
address 3-80
data 3-81
fill 3-107,3-108
generating from source 3-112
maps 3-87
tiling 3-87

pattern map X address
register 3-204

pattern map Y address
register 3-204

pattern X address register 3-142
pattern Y address register 3-142
PEL

bit masking 3-113
color mapping 3-18
data 3-84
formats 3-83
general maps 3-85
map 3-80
maps 3-81
mask map (M) 3-86
size 3-69
size, memory access mode

register 3-39
PEL bit mask (plane mask)

register 3-136
PEL block transfer 3-95
PEL interface control

register 3-200
PEL interface registers

background color 3-138
background mix 3-133
Bresenham constant K1 3-131
Bresenham constant K2 3-131
Bresenham error term E 3-130
carry chain mask 3-137
destination color compare

condition 3-134
destination color compare

value 3-135
destination X address 3-143
destination Yaddress 3-143
direction steps 3-132
foreground color 3-138
foreground mix 3-133
mask map origin X offset 3-140

Index X-11

PEL interface registers (continued)
mask map origin Yoffset 3-140
operation dimension 3-139
pattern X address 3-142
pattern Yaddress 3-142
PEL bit mask (plane

mask) 3-136
PEL map index 3-125
PEL map n base pOinter 3-126
PEL map n format 3-129
PEL map n height 3-128
PEL map n width 3-127
PEL operations 3-144
source X address 3-141
source Y address 3-141

PEL map
destination map X and Y

registers 3-204
location 3-85
mask map origin X and Yoffset

registers 3-204
origin 3-86
pattern map X and Y

registers 3-204
source and destination 3-204,

3-213
PEL map base address

register 3-198
PEL map format register 3-199
PEL map height register 3-198
PEL map index register 3-125,

3-197
PEL map n base pOinter

register 3-126
PEL map n format register 3-129
PEL map n height register 3-128
PEL map n width register 3-127
PEL map registers 3-125
PEL map registers A, B, and

C 3-130
PEL map width register 3-198
PEL maps A, B, C 3-125
PEL operations register 3-83,3-97,

3-99,3-205
background source 3-145
description 3-144
destination bits 3-147

X-12 Index

PEL operations register (continued)
direction octant 3-149
drawing mode bits 3-149
foreground source 3-146
pattern PEL map bits 3-148
source bits 3-147

PEL panning 2-94
PEL source map X and Y

registers 3-204
PEL-block and bit-block transfer

description 3-10,3-103
dimensions 3-203
direction 3-104
foreground and background color

registers 3-203
foreground and background mix

registers 3-202
function 3-83
inverting 3-105
mixes and colors 3-202
overlapping 3-220
read/modify/write mode 3-103
used with XGA Adapter

Interface 3-8
using the coprocessor 3-201
(PxBlt) 3-8

Personal System/2 video memory
apertures 3-197

physical addressability 3-189
plane mask 3-113
polarity, sync 2-43
polling the busy bit 3-221
polylines 3-102
pas information 2-14
pas register 2 3-152
pas register 4 3-154
pas register 5 3-155
positioning, sprite 3-24
prefetch function 3-23, 3-26
present bit 3-159,3-162
preset row scan register 2-63
preset, horizontal sprite 3-24
preset, vertical sprite 3-24
primary adapter

considerations 3-175
Processor Paging Unit,

80386 3-156

program terminate functions 3-178
programmer's view, XGA

function 3-83
programming considerations

VGA function 2-96
XGA function 3-170

programming registers 2-99
programming the XGA

subsystem 3-197
protect mode environment 3-187
protect mode 16-bit segmented

environment
access to XGA registers and

apertures 3-193
design model 3-193
segment motion 3-192
system overheads 3-192
64KB segment limit 3-192

protect registers 2-70
P4,P5 select 2-91
P7-POsignal 2-109

R
RAM loadable character

generator 2-100
read draw operation 3-100
read map select register 2-83
read modes 2-84
read-only registers 3-31,3-121
reading POS data 3-171
read/modify/write mode 3-103
read/write bit 3-159
read/writes, memory 2-39
real-mode DOS

environments 3-189
refresh select 2-70
regen buffer address 2-67
register space

coprocessor 3-119
memory-mapped 3-179

registers
VGA

attribute controller 2-89
bit mask 2-88
color compare 2-81
color don't care 2-87
color plane enable 2-93

registers (continued)
VGA (continued)

color select 2-95
CRT controller 2-55
cursor location 2-68
cursor start and end 2-65
DAC 2-103
DAC state 2-104
data rotate 2-82
enable set/reset 2-80
end horizontal blanking 2-58
end horizontal retrace 2-60
end vertical blank 2-73
feature control 2-46
general 2-42
horiz PEL panning 2-94
horizontal display enable

end 2-57
horizontal total 2-56
input status 2-44
internal palette 0 - F 2-90
line compare 2-77
max scan line 2-64
miscellaneous output 2-42
mode 2-84
mode control 2-74
offset 2-71
overflow 2-62
overscan color 2-93
preset row scan 2-63
programming 2-99
read map select 2-83
reserved bits 2-41
set/reset 2-79
start address low 2-67
start horizontal blanking 2-57
start horizontal retrace

pulse 2-59
start vertical blank 2-73
underline location 2-72
vertical end 2-71
vertical retrace end 2-69
vertical retrace start 2-69
vertical total 2-61
video subsystem enable 2-46
write protect 2-70

video subsystem 2-41

Index X-13

registers (continued)
XGA

access 3-193,3-194
aperture control 3-30, 3-33
aperture index 3-30, 3-38,

3-187
auto-configuration 3-43
background color 3-138
background mix 3-133
border color 3-27,3-71
Bresenham constant

K1 3-131,3-212
Bresenham constant

K2 3-131,3-212
Bresenham error term 3-212
Bresenham error term

E 3-130
carry chain mask 3-137
clock frequency select

1 3-71, 3-78
clock frequency select 2 3-78
coprocessor control 3-115,

3-122
coprocessor save/restore

data 3-43
coprocessor usage

guidelines 3-121
current virtual address 3-166
data 3-30, 3-42
destination color compare

condition 3-113,3-134
destination color compare

value 3-113,3-135
destination Map X and

Y 3-204
destination X address 3-143
destination Yaddress 3-143
direction step 3-97
direction steps 3-132
display control 1 3-66
display control 2 3-68
display controller 3-30
display ID and

comparator 3-70
display PEL map offset 3-21,

3-64
display PEL map width 3-21,

3-65

X-14 Index

registers (continued)
XGA (continued)

foreground and background
color 3-203, 3-210

foreground and background
mix 3-202, 3-210

foreground color 3-138
foreground mix 3-133
horizontal blanking end 3-20,

3-47
horizontal blanking

start 3-20, 3-46
horizontal display end 3-20,

3-45
horizontal sync pulse

end 3-20, 3-49
horizontal sync pulse

position 3-50
horizontal sync pulse

start 3-20, 3-48
horizontal total 3-20, 3-44
index 3-40
interrupt enable 3-30, 3-34,

3-115
interrupt status 3-30, 3-36,

3-115
mask map format 3-130
mask map origin X and Y

offset 3-204
mask map origin X

offset 3-140
mask map origin Y

offset 3-140
memory access mode 3-39,

3-219
non-prefetch sprite/palette

index low 3-25
operating mode 3-30, 3-32,

3-56,3-118,3-150,3-170
operation dimension 3-139,

3-212
page directory base

address 3-161,3-165
palette blue prefetch 3-76
palette data 3-25,3-74
palette green prefetch 3-76
palette mask 3-74
palette red prefetch 3-76

registers (continued)
XGA (continued)

palette sequence 3-25, 3-75
pattern map X and Y 3-204
pattern X address 3-142
pattern Y address 3-142
PEL bit mask (plane

mask) 3-136
PEL interface control 3-200
PEL map 3-125
PEL map base address 3-198
PEL map format 3-199
PEL map height 3-198
PEL map index 3-125,3-197
PEL map n base

pointer 3-126
PEL map n format 3-129
PEL map n height 3-128
PEL map n width 3-127
PEL map width 3-198
PEL maps A, B, and C 3-130
PEL operation 3-99
PEL operations 3-83,3-97,

3-144, 3-205
POS register 2 3-152
POS register 4 3-154
POS register 5 3-155
read-only 3-31,3-121
reserved 3-31,3-121
save/restore data

ports 3-124
source X address 3-141
source Y address 3-141
sprite color 3-63
sprite control 3-62
sprite data 3-23, 3-77
sprite horizontal preset 3-59
sprite horizontal start 3-58
sprite prefetch 3-77
sprite vertical preset 3-61
sprite vertical start 3-60
sprite/palette index 3-72
sprite/palette index low 3-23
sprite/palette prefetch

index 3-73
state length 3-124
state length registers A and

B 3-117

registers (continued)
XGA (continued)

upward compatibility 3-196
vertical blanking end 3-20,

3-54
vertical blanking start 3-20,

3-53
vertical display end 3-20,

3-52
vertical line compare 3-22,

3-57
vertical sync pulse end 3-20,

3-56
vertical sync pulse

start 3-20, 3-55
vertical total 3-20, 3-51
virtual memory 3-165
vi rtual memory control 3-30,

3-167
virtual memory interrupt

status 3-30,3-169
write-only 3-31, 3-121

reserved register bits 3-121
reserved registers 3-31,3-121
reset bit 2-74
reset register 2-48
reset, CRT controller 3-67
restore

palette blue prefetch
register 3-76

palette green prefetch
register 3-76

palette red prefetch
register 3-76

sprite prefetch index high 3-23
sprite/palette prefeteh index

low 3-23
updating sprite or palette 3-23

restriction, line length 3-223
retrace polarity 2-43
return current video state 3-176
ROM

address, calculating 3-172
XGA subsystem 3-14

ROM BIOS 2-7
rotate data 2-82

Index X-1S

row scan counter 2-74
rules

S

area boundary drawing 3-102
programming VGA 2-96
programming XGA 3-196

sample code, XGA function A-2
satu rate 3-110
save

palette blue prefetch
register 3-76

palette green prefetch
register 3-76

palette red prefetch
register 3-76

sprite prefetch index high 3-23
sprite/palette prefetch index

low 3-23
updating sprite or palette 3-23

save/restore
coprocessor 3-116
mechanism 3-117,3-118

save/restore data ports
register 3-124

scanning, double 2-64
scissoring

area outline 3-103
description 3-11
destination boundary,

illustration 3-91
destination map

guard band 3-89
destination map, fixed

window 3-88
fixed destination

boundary 3-103
mask map 3-86, 3-90
nonrectangular 3-94
used with XGA Adapter

Interface 3-8
window 3-91

screen off bit 2-49
screen resolution 3-12
screen switch notification, INT

2Fh 3-179

X·16 Index

scrolling
description 3-21
prevention 3-22

segment motion 3-192
segmented systems 3-164
select address 2-86
select horizontal retrace 2-74
select operation 2-82
select P4,P5 2-91
select row scan 2-74
selecting extended graphics

modes 3-180
sequencer 2-8
sequencer registers 2-47

address 2-47
clocking mode 2-49
map mask 2-51
map select 2-52
memory mode 2-54
reserved bits 2-41
reset 2-48

serial izer 3-11
setting modes 2-12
setup mode 2-14
set/reset register 2-79
shift image 2-94
signal timing, display 4-3
Signal, auxiliary video 2-109
size determination, video

memory 3-181
skew control, cursor 2-66
skew control, horizontal 2-58
source

background 3-108
foreground 3-108,3-109

source address 3-80
source map X and Y

registers 3-213
source map X and Y registers, PEL

map 3-204
source select 2-90
source X address register 3-141
source Y address register 3-141
specifications, display 2-14
split screen, creating 2-101
sprite

buffer accesses 3-23

sprite (continued)
color mapping 3-22
controller 3-11
description 3-8, 3-22
display complete interrupt 3-24
handling 3-220
loading 3-220
positioning 3-24, 3-220
visibility 3-62

sprite color register 3-63
sprite control register 3-62
sprite data register 3-77
sprite horizontal preset

register 3-59
sprite horizontal start register 3-58
sprite prefetch register 3-77
sprite vertical preset register 3-61
sprite vertical start register 3-60
sprite/palette index 10 register

writing data to palette 3-25
writing data to sprite buffer 3-23

sprite/palette index register 3-72
sprite/palette prefetch index

registers 3-73
start address high register 2-67
start address low register 2-67
start horizontal blanking

register 2-57
start horizontal retrace pulse

register 2-59
start vertical blanking register 2-73
starting coprocessor

operations 3-114
start, horizontal sprite 3-24
start, vertical sprite 3-24
state length registers 3-117,3-124
state save/restore registers

coprocessor control 3-122
save/restore data ports 3-124
state length 3-124

step function 3-146
stop code 3-98
subsystem identification high

byte 3-151
subsystem identification low

byte 3-151

successive write operation 3-42
support logic 2-7
support, display 2-14
suspend operation 3-83
suspend operation bit 3-161
suspending coprocessor

operations 3-114, 3-116
switching modes 3-182
sync polarity

VGA function 2-43
VGA modes 4-3

synchronization signals 4-3
synchronous reset 2-48
system

address space 3-174
bus interface 3-10
coherency 3-162
interrupt 3-21, 3-83
overheads 3-192,3-194
processor access 3-219
register usage 3-223

system apertures
access to 3-193,3-194
Personal System/2 video

memory 3-197
system video memory 3-187
1MB system video

memory 3-19,3-187
4MB system video

memory 3-19,3-188
64KB system video

memory 3-19,3-187
system interface, DAC to 2-103
system memory access

limitation 3-195
system video memory

apertures 3-187

T
table index field 3-156
task switches 3-73,3-83
terminate operation 3-83
terminate program functions 3-178
terminating coprocessor

operations 3-114

Index X-17

text operations 3-224
timing, video 2-110
translate look-aside buffer

clearing contents 3-161
description 3-160
misses 3-161

translation, address 3-156
two-stage line draw 3-223

U
underline location register 2-72
update sequence 1 3-25
update sequence 2 3-25
updates, fUll-screen 2-49
upward compatibility 3-196
user mode 3-161
user/supervisor bit 3-159,3-161

read/write bits 3-161

V
variable data, PEL 3-84
variable graphics array (VGA) mode

multiple XGA subsystems 3-150
primary adapter

considerations 3-175
XGA function 3-7

vertical
scale factor 3-68
scrolling 3-21

vertical blanking end register 3-20,
3-54

vertical blanking start
register 3-20, 3-53

vertical display end register 3-20,
3-52

vertical display-enable end
register 2-71

vertical gain 2-43
vertical interrupt 2-69
vertical line compare

register 3-22, 3-57
vertical retrace end register 2-69
vertical retrace interrupt 2-70
vertical retrace start register 2-69

X·18 Index

vertical size 4-3
vertical sprite preset 3-24
vertical sprite start 3-24
vertical sync pulse end

register 3-20, 3-56
vertical sync pulse start

register 3-20, 3-55
vertical total register 2-61, 3-20,

3-51
VGA function

block diagram 2-6
compatibility with XGA 3-15
components 2-7
general description 2-5

VGA mode 3-184
operating mode bit

assignment 3-32
XGA function 3-7

VGA programming
considerations 2-96

video
buffer, visible portion 3-64
connector 4-2
extension bit 3-66

video BIOS mode 14h 3-196
video DAC programming

considerations 2-105
video enable bit 2-14
video memory

addressability 3-195
apertures, Personal

System/2 3-197
base address calculations 3-172
decoding 3-10
description 3-11
direct access 3-18
format 3-16
location in coprocessor address

space 3-174
size 3-175,3-180
size determination 3-181
system apertures 3-19

video memory organization 2-24
video modes 2-12
video registers 2-99
video subsystem enable 2-46

virtual memory
description 3-156
XGA implementation 3-160

virtual memory control
register 3-30, 3-167

virtual memory interrupt status
register 3-30, 3-169

virtual memory mode, video
memoryaddressability 3-195

virtual memory registers
current virtual address 3-166
description 3-165
page directory base

address 3-165
virtual memory control 3-167
virtual memory interrupt

status 3-169
virtualization display driver 3-190,

3-191
VM page not present

interrupt 3-162
interrupt bit 3-169

VM protection violation
bit interrupt 3-169
interrupt 3-161, 3-163

VSYNC signal 2-109

W
waiting for hardware not

busy 3-221
word/byte mode 2-74
write draw operation 3-100
write modes 2-85
write operations 2-39
write-only registers 3-31,3-121

x
X and Y axis addressing 3-8,3-11
X and Y coordinates 3-83
X and Y pOinters 3-81,3-87,3-96

destination map 3-88
mask map 3-89
PxBlt operation 3-104
source and pattern maps 3-87
source map 3-213

XGA Adapter Interface 3-7
XGA coprocessor PEL interface

registers
other registers 3-200
PEL map base address 3-198
PEL map format 3-199
PEL map height 3-198
PEL map index 3-197
PEL map width 3-198

XGA function
adapter interface 3-7
application interface 3-12
coexistence with other XGA

subsystems 3-170
coexistence with VGA 3-170
locating 3-171
multiple subsystems 3-170
POS registers 3-151
preallocated POS IDs 3-196
programming

considerations 3-170
register usage 3-196
sample code A-2
segmented systems 3-164
setting in extended graphics

mode A-2
Setting in 132-column text

mode A-21
virtual memory 3-160

XGA POS registers
description 3-151
POS register 2 3-152
POS register 4 3-154
POS register 5 3-155
preallocated IDs 3-196
reading data 3-171
usage guidelines 3-151

XGA subsystem interface
multiple subsystems in VGA

mode 3-150
XOR 3-102

Numerics
1MB aperture base address 3-174
1 MB system video memory

aperture 3-19,3-187

Index X-19

132-column text mode
description 3-7,3-15
display mode bit

assignment 3-32
horizontal sync pulse end 3-49
multiple XGA subsystems 3-150
setting 3-185

14h mode 3-185
16 background colors 2-92
16-bit segmented environment,

protect mode 3-192
16-bit slot, address range 3-195
16-bit system 3-188
16-color mode 2-22
200-scan-line mode 2-12
24-bit physical address

space 3-195
256-color, mode hex 13 2-22
32-Bit DOS extended

environments 3-190
320 x 200 four-color, modes 4 and

5 2-18
4KB discontiguous pages 3-193
4MB system video memory

aperture 3-19,3-174,3-188
512 character fonts 2-100
64KB segment limit 3-192
64KB system video memory

aperture 3-19,3-187
640 x 200 two-color, mode 6 2-20
640 x 350 graphics, mode hex

F 2-21
640 x 480 two color graphics, mode

hex 11 2-22
80386 Processor Paging Unit 3-156
80386SX system 3-188
8514/A Adapter Interface

applications 3-12
compatibility 3-7,3-12

X-20 Index

Keyboards

I Introduction 1
I Scan-Code Set Overview 1
I Keyboard Layouts 1
I 84-Key Position Layout 3
I 85-Key Position Layout 4

101-Key Position Layout 5
102-Key Position Layout 6
122-Key Position Layout 7
84-Key United States Keyboard 8
101-Key United States Keyboard 9

I 122-Key United States Keyboard 10
Power-On Routine .. 11

Power-On Reset (POR) 11
Basic Assurance Test 11

Commands from the System 12
Commands to the System 18

I Sequential Key-Code Detection 19
Buffer 20
Keys 20

I Two-Key Combinations 22
I Three-Key Combinations 24
I Scan Codes 26
I Using the Scan-Code Tables 26
I Typematic Keys 27
I Base Case Column 27
I Shift Case Column 28
I Num Lock Case Column 28
I Alt Case Column 29
I Ctrl Case Column 29
I 101- and 102-Key Keyboard Scan-Code Set 1 30
I 84- and 85-Key Keyboard Scan-Code Set 1 33
I 122-Key Keyboard Scan-Code Set 1 34
I 101- and 102-Key Keyboard Scan-Code Set 2 37
I 84- and 85-Key Keyboard Scan-Code Set 2 40
I 122-Key Keyboard Scan-Code Set 2 41
I 101- and 102-Key Keyboard Scan-Code Set 3 45
I 122-Key Keyboard Scan-Code Set 3 48

Cables and Connectors 51
I Specifications (84/85-Key Keyboard) 52

Specifications (101/102-Key Keyboard) 52
I Specifications (122-Key Keyboard) 53

© Copyright IBM Corp. 1990. 1991

I Appendix A. Keyboard Layouts 55
85-Key Canadian French Keyboard 57
85-Key Latin America Keyboard 58
102-Key Arabic (238) Keyboard 59
102-Key Belgian (120) Keyboard 60
102-Key Canada (French) (058) Keyboard 61
102-Key Denmark (159) Keyboard 62
102-Key Finland (153) Keyboard 63
102-Key France (120) Keyboard 64
102-Key France (189) Keyboard 65
102-Key Germany (129) Keyboard 66
102-Key Hebrew (212) Keyboard 67
102-Key Iceland (197) Keyboard 68
102-Key Italy (142) Keyboard 69
102-Key Latin America (171) Keyboard 70
102-Key Netherlands (143) Keyboard 71
102-Key Norway (155) Keyboard 72
102-Key Portugal (163) Keyboard 73
102-Key Spain (172) Keyboard .. 74
102-Key Switzerland (French) (150F) Keyboard 75
102-Key Switzerland (German) (150G) Keyboard 76
102-Key Turkey (179) Keyboard 77
102-Key United Kingdom (166) Keyboard 78
102-Key Yugoslavia (Latin) (234) Keyboard 79
122-Key Belgian (120) Keyboard 80
122-Key Canada (French) (277/058) Keyboard 81
122-Key Denmark (281/159) Keyboard 82
122-Key Finland (285/153) Keyboard 83
122-Key France (251/189) Keyboard 84
122-Key France (251/120) Keyboard 85
122-Key Germany (129) Keyboard 86
122-Key Iceland (197) Keyboard 87
122-Key Italy (293/142) Keyboard 88
122-Key Latin America (309/171) Keyboard 89
122-Key Netherlands (101/143) Keyboard 90
122-Key Norway (281N/155) Keyboard 91
122-Key Portugal (163) Keyboard 92
122-Key Spain (071/172) Keyboard 93
122-Key Switzerland (French) (150F) Keyboard 94
122-Key Switzerland (German) (150G) Keyboard 95
122-Key Turkey (402/179) Keyboard 96
122-Key United Kingdom (166) Keyboard 97
122-Key Yugoslavia (Latin) (234) Keyboard 98

Index .. 99

ii Keyboards - September 1991

Figures

1. Keyboard Commands from the System 12
2. Read ID Command Keyboard Identification 13
3. Set All Keys Commands 14
4. Set Key Type Commands 14
5. Set/Reset Status Indicators .. 15
6. Typematic Rate 16
7. Keyboard Commands to the System 18
8. Keyboard 10 Command Keyboard Identification 19

I 9. Two-Key Combinations (Alt Combinations) 22
I 10. Two-Key Combinations (Ctrl Combinations) 23
I 11. Three-Key Combinations (A It - Ctrl Combinations) 24
I 12. Three-Key Combinations (Alt - Shift Combinations) 25
I 13. Three-Key Combinations (Ctrl - Shift Combinations) 26
I 14. 101- and 102-Key Keyboard Scan-Code Set 1 30
I 15. 84- and 85-Key Keyboard Scan-Code Set 1 33
I 16. 122-Key Keyboard Scan-Code Set 1 34
I 17. 101- and 102-Key Keyboard Scan-Code Set 2 37
I 18. 84- and 85-Key Keyboard Scan-Code Set 2 40
I 19. 122-Key Keyboard Scan-Code Set 2 41
I 20. 101- and 102-Key Keyboard Scan-Code Set 3 45
I 21. 122-Key Keyboard Scan-Code Set 3 48

22. Keyboard Connectors Signal and Voltage Assignments . .. 51

© Copyright IBM Corp. 1990, 1991 Iii

Notes:

iv Keyboards - September 1991

I Introduction

I A keyboard is used as an input device to the system. The input from
I the keyboard is used by different parts of the system. Depending on
I the function of the key, action can be taken by BIOS, the keyboard
I controller, an operating system, or an application. This section
I describes what happens as keystroke information passes through the
I system; from the keyboard, through the internal layers, and finally to
I an application.

I Scan-Code Set Overview

I Each keyboard supports more than one scan-code set. When a key is
I pressed by the user, the logic in the keyboard can generate a
I different scan code, depending on the scan-code set that is currently
I in use.

I When attached to a PS/2' system, the keyboard has a defaults to
I scan-code set 2. This scan-code set is always enabled after the initial
I power-on of the keyboard or after keyboard reset. During the system
I POST (power-on self-test), some systems set the keyboard to to
I scan-code set 1. This setting will remain unless it is changed by the
I application or operating system. Most applications and operating
I systems only use scan-code set 1. If the system changes the
I scan-code set, the keyboard controller and BIOS translation routines
I are capable of interpreting the new scan-code set.

I Keyboard Layouts

I The characters on some keys are on both the top and front face.
I When there is more than one character on a key top, use the key
I combinations in the following figure to produce the desired character.

Characters Key Combinations

lower-left character Character key only

Upper-left character Shift+character key

lower-right character (or front face) Alt Gr or Alt Car+character key

Upper-right character Alt+Shift+character key

I' PS/2 is a trademark of International Business Machines Corporation.

Keyboards - September 1991 1

I The keyboard layouts shown on the following pages are the
I key-position layouts and the United States layouts for each keyboard.
I They are:

• Key-position layouts
84-key position layout
85-key position layout
101-key position layout
102-key position layout
122-key position layout

• United States Keyboard Layouts
84/85-key layout

- 101/102-key layout
- 122-key layout.

I Non-U.S. layouts for each keyboard can be found in Appendix A.

2 Keyboards - September 1991

" CD
'<
C
O
I\)
~

0.
III

I
en
CD
"'0
<D
3
c
CD
~

.....
co
co

-
00
~
I

" CD
'<
"D o
(I)
::;:

~--------------------------------~O·

9S8888888 8888 888 i
8[3[3
888

o
c -

A
CD
'<
0-o
l\) ...
Q.
CJ)

I
en
CD

¥
3
0-
CD
<0
<0

-
CO
Con •
" CD
'<
"'U o
(I)
::.;:

~------------------------------~O· a 8888 8888 8888 888 i
888
888

o c -

a (8888) 8B88 [8888) (888)

" (I)
'<
CT o
I»
a. rn
I

en
(I)

¥
3
CT
(I) ...
~

co co
~

" CD
'<
C"
0
III a.
(J)

I
(J)
CD
"0 -CD
3
C"
CD
co
co
....

-.....
N
N
I

" CD
'<
"U

~--~O

8[;]
BE]
BE]
BE]
BE]

888888888888
8B8888888888

!. =.
o
:::J
r
S»
'< o
C -

00

" CD
'<
0-
o
JI)
Co
In

en
CD

¥
3
0-
CD
.....
to
to

: •
" CD
'<
C
:::s --CD a.

" ~
C"
o
III a. rn

...
C)

en
CD

¥
3
0-
CD ...
......
co co

Power-On Routine

The following activities take place when power is first applied to the
keyboard.

Power-On Reset (POR)

The keyboard logic generates a 'power-on reset' signal when power
is first applied to the keyboard. A POR takes a minimum of 150
milliseconds and a maximum of 2.0 seconds from the time power is
first applied to the keyboard.

Basic Assurance Test

The basic assurance test (BAT) consists of a keyboard processor test,
a checksum of the read-only memory (ROM), and a random-access
memory (RAM) test. During the BAT, activity on the 'clock' and 'data'
lines is ignored. The LEOs are turned on at the beginning and off at
the end of the BAT. The BAT takes a minimum of 300 milliseconds
and a maximum of 500 milliseconds. This is in addition to the time
required by the POR.

On satisfactory completion of the BAT, a completion code (hex AA) is
sent to the system, and keyboard scanning begins. If a BAT failure
occurs, the keyboard sends an error code to the system. The
keyboard is then disabled pending command input. Completion
codes are sent between 450 milliseconds and 2.5 seconds after the
POR, and between 300 and 500 milliseconds after a Reset command
is acknowledged.

Immediately following a POR, the keyboard monitors the signals on
the keyboard 'clock' and 'data' lines and sets the line protocol.

Keyboards - September 1991 11

Commands from the System

The following figure shows the commands (and their hexadecimal
I values) that the system can send to the keyboard. All values not
I shown in the figure are reserved.

I Command

Default Disable
Echo
Enable
Invalid Command
Invalid Command
Read ID
Resend
Reset
Select Alternate Scan Codes
Set All Keys - Typematic

- Make/Break
- Make
- Typematic/Make/Break

Set Default
Set Key Type - Typematic

• Make/Break
• Make

SetlReset Status Indicators
Set Typematic Rate/Delay

I Figure 1. Keyboard Commands from the System

Hex Value

F5
EE
F4
EF
F1
F2
FE
FF
FO
F7
F8
F9
FA
F6
FB
FC
FD
ED
F3

These commands can be sent to the keyboard at any time. The
keyboard responds within 20 milliseconds, except when performing
the BAT or executing a Reset command.

The following commands are in alphabetical order. They have
different meanings when issued by the keyboard. See "Commands to
the System" on page 18.

Default Disable (Hex F5): The Default Disable command resets all
conditions to the power-on default state. The keyboard responds with
ACK, clears its output buffer, sets the typematic rate/delay (and
default key types in scan-code set 3 operation only), and clears the
last typematic key. The keyboard stops scanning and awaits further
instructions.

I Echo (Hex EE): The Echo command is a diagnostic aid. When the
I keyboard receives this command, it issues a hex EE response. If

previously enabled, it continues scanning.

12 Keyboards - September 1991

I Enable (Hex F4): When the Enable command is received, the
I keyboard responds with ACK, clears its output buffer, clears the last

typematic key, and starts scanning.

Invalid Command (Hex EF and F1): Hex EF and hex F1 are invalid
commands and are not supported. If one of these is sent, the
keyboard does not acknowledge the command. It returns a Resend
command and continues in its prior scanning state. No other
activities occur.

I Read ID (Hex F2): The Read 10 command requests identification
I information from the keyboard. The keyboard responds with ACK,

stops scanning, and sends the two keyboard 10 bytes. The second
byte must follow completion of the first by no more than 500
microseconds. After the output of the second 10 byte, the keyboard

I resumes scanning. Keyboard lOs are listed in the following figure.

I Keyboard Type

I 84/85-key keyboard

I
I 101/102-key keyboard

122-key keyboard

I Figure 2. Read ID Command Keyboard Identification

ID - Hex Value

84AB
83AB
86AB

I Resend (Hex FE): The Resend command is sent by the system when
I it detects an error in any transmission from the keyboard. It is sent

only after a keyboard transmission and before the system allows the
next keyboard output. When a Resend command is received, the
keyboard sends the previous output again (unless the previous output
was the Resend command, in which case the keyboard sends the last
byte before the Resend command).

I Reset (Hex FF): The Reset command is sent by the system to start a
I program reset and a keyboard internal self-test. The keyboard

acknowledges the command with an ACK and ensures the system
accepts ACK before executing the command. The system signals
acceptance of ACK by raising the 'clock' and 'data' lines for a
minimum of 500 microseconds. The keyboard is disabled from the
time it receives the Reset command until ACK is accepted, or until
another command is sent that overrides the previous command.

Following acceptance of ACK, the keyboard is reinitialized and
performs the BAT. After returning the completion code, the keyboard
defaults to scan-code set 2.

Keyboards - September 1991 13

I Select Alternate Scan Codes (Hex FO): The Select Alternate Scan
I Codes command instructs the keyboard to select one of three sets of

scan codes. The keyboard acknowledges receipt of this command
with ACK and clears both the output buffer and the typematic key (if
one is active). The system then sends the option byte and the
keyboard responds with another ACK. An option byte value of hex 01
selects scan-code set 1, hex 02 selects scan-code set 2, and hex 03
selects scan-code set 3.

An option byte value of hex 00 causes the keyboard to acknowledge
with an ACK and send a byte telling the system which scan-code set
is currently in use. To prevent the controller from translating this
byte, disable the keyboard-controller translate mode.

After establishing the new scan-code set, the keyboard returns to the
scanning state it was in before receiving the Select Alternate Scan
Codes command.

Set All Keys (Hex F7, FB, F9, FA)

I The Set All Keys commands instruct the keyboard to set all keys to a
condition listed in the following figure.

I Command

I Set All Keys - Typematic
I Set All Keys - Make/Break

I
I Set All Keys - Make

Set All Keys - Typematic/Make/Break

I Figure 3. Set All Keys Commands

Hex Value

F7
Fa
F9
FA

The keyboard responds with ACK, clears its output buffer, sets all
keys to the condition indicated by the command, and continues
scanning (if it was previously enabled). Although these commands
can be sent using any scan-code set, they affect only the operation of
scan-code set 3.

Set Default (Hex F6): The Set Default command resets all conditions
to the power-on default state. The keyboard responds with ACK,
clears its output buffer, sets the default key types (scan-code set 3
operation only) and typematic rate/delay, clears the last typematic
key, and continues scanning.

I Set Key Type (Hex FB, FC, FD): The Set Key Type commands
I instruct the keyboard to set individual keys to a condition listed in the

following figure.

14 Keyboards - September 1991

I Command Hex Value

I
Set Key Type - Typematic
Set Key Type - Make/Break
Set Key Type - Make

FB
FC
FD

I~--~ I Figure 4. Set Key Type Commands

The keyboard responds with ACK, clears its output buffer, and
prepares to receive key identification. The system identifies each key
by its scan-code value, as defined in scan-code set 3. Only scan-code
set 3 values are valid for key identification. The type of each
identified key is set to the value indicated by the command.

These commands can be sent using any scan-code set, but affect only
the operation of scan-code set 3.

I Set/Reset Status Indicators (Hex ED): The Set/Reset Status
I Indicators command is sent by the system to set the indicators on the
I keyboard: Num Lock, Caps Lock, and Scroll Lock. The keyboard

activates or deactivates these indicators when it receives a valid
command-code sequence from the system. The command sequence
begins with the command byte (hex ED). The keyboard responds with
ACK, stops scanning, and waits for the option byte from the system.
The bit assignments for this option byte are as follows.

Bit Function

7 - 3 Reserved (must be O's)
2 Caps Lock Indicator
1 Num Lock Indicator
o Scroll Lock Indicator

Figure 5. Set/Reset Status Indicators

If a bit for an indicator is set to 1, the indicator is turned on. If a bit is
set to 0, the indicator is turned off.

The keyboard responds to the option byte with ACK, sets the
indicators and, if the keyboard was previously enabled, continues
scanning. The state of the indicators reflects the bits in the option
byte and can be activated or deactivated in any combination. If
another command is received in place of the option byte, execution of
the Set/Reset Mode Indicators command is stopped, with no change
to the indicator states, and the new command is processed.

I Immediately after power-on, the indicators default to the Off state. If
I the Set Default and Default Disable commands are received, the

Keyboards - September 1991 15

I indicators remain in the state they were in before the command was
I received.

Set Typematlc Rate/Delay (Hex F3J: The system issues this
command to change the typematic rate and delay. The keyboard
responds to the command with ACK, stops scanning, and walts for the
system to issue the rate/delay value byte. The keyboard responds to
the rate/delay value byte with another ACK, sets the rate and delay to
the values indicated, and continues scanning (if it was previously
enabled). Bits 6 and 5 indicate the delay, and bits 4, 3, 2, 1, and 0 (the
least-significant bit) indicate the rate. Bit 7, the most-significant bit, is
always O. The delay is determined by the following equation:

Delay = (1 + A) x 250 milliseconds ±20%.
where:

A = binary value of bits 6 and 5

The period (interval from one typematic output to the next) is
determined by the following equation:

Period = «8 + A) x 28)/2 x 0.00834 seconds ±20%
where:

A = binary value of bits 2, 1, and 0
B = binary value of bits 4 and 3

The typematic rate (make codes per second) is 1 for each period.

Typematlc
Bit Rate ±20% Bit Typematlc Rate ± 20%

00000 30.0 10000 7.5
00001 30.0 10001 6.7
00010 24.0 10010 6.0
00011 24.0 10011 5.5
00100 20.0 10100 5.0
00101 20.0 10101 4.6
00110 17.1 10110 4.3
00111 17.1 10111 4.0
01000 15.0 11000 3.7
01001 13.3 11001 3.3
01010 12.0 11010 3.0
01011 10.9 11011 2.7
01100 10.0 11100 2.5
01101 9.2 11101 2.3
01110 8.6 11110 2.1
01111 8.0 11111 2.0

Figure 6. Typematic Rate

16 Keyboards - September 1991

The default values for the system keyboard are as follows:

Typematic rate = 10.9 codes per second ± 20%

Delay = 500 milliseconds ± 20%.

The execution of this command stops without change to the existing
rate if another command is received instead of the rate/delay value
byte.

Keyboards - September 1991 17

Commands to the System

The following figure shows the commands (and their hexadecimal
I values) that the keyboard can send to the system. All values not
I shown in the figure are reserved.

Hex Value

Acknowledge (ACK)
BAT Completion Code
BAT Failure Code
Break Code Prefix
Echo

I Keyboard ID

II

I Key Detection Error/Overrun
Key Detection Error/Overrun
Resend

Command

FA
AA
FC
FO
EE
83AB, 84AB, or 86AB
(Dependent on keyboard type)
00 (Code Sets 2 and 3)
FF (Code Set 1)
FE

I Figure 7. Keyboard Commands to the System

The commands the keyboard sends to the system are described in
alphabetical order. They have different meanings when issued by the
system. See "Commands from the System" on page 12.

I Acknowledge (Hex FA): The Acknowledge command is a response to
I other commands. The keyboard issues ACK to any valid input other
than an Echo or Resend command. If the keyboard is interrupted
while sending ACK, it discards ACK and accepts and responds to the
new command.

I BAT Completion Code (Hex AA): The BAT Completion Code
I command is a command that indicates BAT status. Following

satisfactory completion of the BAT, the keyboard sends hex AA. Any
other code indicates a failure of the keyboard.

I BAT Failure Code (Hex FC): The BAT Failure Code command is a
I command that indicates BAT status. If a BAT failure occurs, the

keyboard sends this code, stops scanning, and waits for a system
response or reset.

I Break Code Prefix (Hex FO): The Break Code Prefix command is a
I command that transmits a code as the first byte of a 2-byte sequence
I to indicate the "break" of a key when scan-code set 2 or 3 is used.
I The keyboard will begin transmission of the second byte (typically
I within 2 milliseconds) when the interface is enabled after the output
I of the break code prefix.

18 Keyboards - September 1991

I Echo (Hex EE): The Echo command is a diagnostic aid. The
keyboard sends this code in response to an Echo command.

I Keyboard ID (Hex B3AB, B4AB or B6AB): The Keyboard ID command
I sends identification information from the keyboard. The keyboard

responds to the Read 10 command with ACK, stops scanning, and
sends the two 10 bytes. The low byte is sent first, followed by the
high byte. Following the output of the keyboard 10, the keyboard

I begins scanning (if previously enabled). Keyboard IDs are listed in
I the following figure.

I Keyboard Type

I 84/85-key keyboard
I 1011102-key keyboard
I 122-key keyboard

I Figure 8. Keyboard ID Command Keyboard Identification

10 - Hex Value

84AB
83AB
86AB

I Key Detection Error (Hex 00 or FF): The Key Detection Error
I command sends a key detection error character if conditions in the

keyboard make it impossible to identify a switch closure. If the
keyboard is using scan-code set 1, the code is hex FF. For sets 2 and
3, the code is hex 00.

I Overrun (Hex 00 or FF): The Overrun command sends an overrun
I character that is placed in the keyboard buffer and replaces the last

code when the buffer capacity has been exceeded. The code is sent
to the system when it reaches the top of the buffer queue. If the
keyboard is using scan-code set 1, the code is hex FF. For sets 2 and
3, the code is hex 00.

I Resend (Hex FE): The Resend command is sent by the keyboard
I following receipt of an invalid input or any input with incorrect parity.

If the system sends nothing to the keyboard, no response is required.

I Sequential Key-Code Detection

I The keyboard detects all the keys that are pressed and then
I sequentially sends each scan code. If the system is busy and is
I unable to accept the scan codes, the keyboard stores the scan codes
I in its internal buffer.

I Although the keyboard can detect a key that is pressed before a
I previously pressed key is released, this ability should not be
I confused with system-supported two- and three-key combinations.

Keyboards - September 1991 19

I See "Two-Key Combinations" on page 22 and "Three-Key
I Combinations" on page 24. Each keystroke make-and-break
I combination is visible at the keyboard interface and Port 60H;
I however, a system-supported keystroke combination is translated by
I the system BIOS prior to INT 16H. All other keystroke combinations
I appear as individual keystrokes to the program at INT 16H.

I To ensure future compatibility, application programs should not use
I any keystroke combination that is not listed in the figures in
I "Two-Key Combinations" on page 22 or "Three-Key Combinations"
I on page 24, even though the keyboard logic is able to detect the
I combinations on some keyboards.

Buffer

I A first-in-first-out (FIFO) buffer in the keyboard stores the scan codes
until the system is ready to receive them. A buffer-overrun condition

I occurs when the buffer is full and an additional key is pressed. When
I this happens, an overrun code is entered in the last position in the
I buffer. If more keys are pressed before the system allows keyboard

output, the additional data is lost.

When the keyboard is allowed to send data, the bytes in the buffer are
sent as in normal operation, and new data entered is detected and
sent. Response codes do not occupy a buffer position.

If keystrokes generate a multiple-byte sequence, the entire sequence
must fit into the available buffer space, or the keystroke is discarded
and a buffer-overrun condition occurs.

Keys

I There are three different key types; make pnly, make/break, and
I typematic.

I Nole: Scan-code set 3 allows key types to be changed by the system.
I See "101- and 102-Key Keyboard Scan-Code Set 3" on
I page 45 and "122-Key Keyboard Scan-Code Set 3" on
I page 48 for the default settings.

I Make-only keys are keys that send out scan codes only when the key
I is pressed, not released. The Pause key and Space/Break key are
I examples of make only keys.

I Make/break keys are keys that send out scan codes when the key is
I pressed. When the key is released, another scan code is sent out.

20 Keyboards - September 1991

I Except for the Pause key and the Space/Break key, all keys are
I make/break in scan-code sets 1 and 2.

I Typematic keys are keys that send out scan codes when pressed and
I repeat these codes when the key is held down. Also, except for the
I Pause key and the Space/Break key, all keys are typematic in
I scan-code sets 1 and 2. When a key is pressed and held down, the

keyboard sends the make code for that key, delays 500 milliseconds
±20%, and begins sending a make code for that key at a rate of 10.9
codes per second ±20%. The typematic rate and delay can be
modified. See "Set Typematic RatelDelay (Hex F3)" on page 16.

If two or more keys are held down, only the last key pressed repeats
at the typematic rate. Typematic operation stops when the last key
pressed is released, even if other keys are still held down. If a key is
pressed and held down while keyboard transmission is inhibited, only
the first make code is stored in the buffer. This prevents buffer
overflow caused by typematic action.

Keyboards - September 1991 21

I Two-Key Combinations

I All two-key combinations on the keyboard are supported with the left
I or right Shift key. In addition, the following figures show the other
I two-key combinations that are supported by the keyboard logic. All
I other two-key combinations are reserved. To ensure future
I compatibility, programs should ignore all reserved combinations.

I In each two-key sequence shown in the following figures, the Alt and
I Gtrl combinations can use either the left or right Alt or Gtrl.

Alt - Esc
Alt - F1
Alt - F2
Alt - F3
Alt - F4
Alt - F5
Alt - F6
Alt - F7
Alt - Fa
Alt - F9
Alt - F10
Alt - F11
Alt - F12
Alt -'
Alt - 1
Alt - 2
Alt - 3
Alt - 4
Alt - 5
Alt - 6
Alt - 7
Alt - a
Alt - 9
Alt - 0

Alt Combinations

Alt -
Alt- =
Alt - Backsp
Alt - Tab
Alt - q
Alt- w
Alt- e
Alt - r
Alt - t
Alt - Y
Alt - u
Alt - i
Alt - 0

Alt - P
Alt - [
Alt -]
Alt - \
Alt - a
Alt - s
Alt - d
Alt - f
Alt - 9

Alt - h
Alt - j
Alt - k
Alt -I
Alt -;
Alt -'
Alt - z
Alt - x
Alt - c
Alt - v
Alt - b
Alt - n
Alt- m
Alt -.
Alt -.
Alt -/
Alt -Insert
Alt - Delete
Alt - Home
Alt - End
Alt - PgUp
Alt - PgDn

I Figure 9. Two-Key Combinations (Alt Combinations)

22 Keyboards - September 1991

Ctrl- Esc
Ctrl- F1
Ctrl- F2
Ctrl- F3
Ctrl- F4
Ctrl- F5
Ctrl- F6
Ctrl- F7
Ctrl- Fa
Ctrl - F9
Ctrl- F10
Ctrl- F11
Ctrl- F12
Ctrl- •
Ctrl- 1
Ctrl- 2
Ctrl- 3
Ctrl- 4
Ctrl- 5
Ctrl- 6
Ctrl - 7
Ctrl- a
Ctrl- 9
Ctrl- 0

Ctrl Combinations

Ctrl- -
Ctrl- =
Ctrl - Backsp
Ctrl- Tab
Ctrl- q
Ctrl- w
Ctrl- e
Ctrl - r
Ctrl - t
Ctrl- y
Ctrl - u
Ctrl- i
Ctrl- 0

Ctrl- p
Ctrl- [
Ctrl-]
Ctrl - \
Ctrl - a
Ctrl- s
Ctrl - d
Ctrl - f
Ctrl- 9

Ctrl- h
Ctrl- j
Ctrl - k
Ctrl-I
Ctrl- ;
Ctrl -'
Ctrl- z
Ctrl- x
Ctrl- c
Ctrl- v
Ctrl- b
Ctrl - n
Ctrl- m
Ctrl- ,
Ctrl- .
Ctrl -/
Ctrl - Insert
Ctrl - Delete
Ctrl- Home
Ctrl - End
Ctrl- PgUp
Ctrl- PgDn

I Figure 10. Two-Key Combinations (Ctrl Combinations)

Keyboards - September 1991 23

I Three-Key Combinations

I The following figures show the other three-key combinations that are
I supported by the keyboard logic. All other three-key combinations
I are reserved. To ensure future compatibility, programs should ignore
I all reserved combinations.

I In each three-key sequence shown in the following figures, the first
I two keys can be pressed in any order. Also, for Alt, Ctrl, and Shift,
I either the left or the right key can be pressed.

Alt - Ctrl - Esc
Alt - Ctrl - Fl
Alt - Ctrl - F2
Alt - Ctrl - F3
Alt - Ctrl - F4
Alt - Ctrl - F5
Alt - Ctrl - F6
Alt - Ctrl - F7
Alt - Ctrl - Fa
Alt - Ctrl - F9
Alt - Ctrl - FlO
Alt - Ctrl- Fll
Alt - Clrl - F12
Alt - Ctrl- '
Alt - etrl- 1
Alt - etrl- 2
Alt - elrl- 3
All - etrl- 4
Alt - Ctrl- 5
Alt - Ctrl- 6
Alt - Ctrl- 7
Alt - Ctrl- a
Alt - Ctrl- 9
Alt - Ctrl- 0

Alt - Ctrl
Combinations

Alt - etrl-
Alt - etrl- =
Alt - etrl - Backsp
Alt - Ctrl - Tab
All - elrl - q
Alt - etrl- w
Alt - elrl- e
Alt - etrl- r
Alt - Ctrl- t
Alt - etrl- y
Alt - Clrl- u
Alt - Ctrl- i
Alt - Ctrl - 0

Alt - Ctrl- p
Alt - Ctrl- [
Alt - etrl-]
Alt - Ctrl- \
Alt - etrl - a
Alt - Ctrl- s
Alt - Ctrl- d
Alt - Ctrl- f
Alt - Ctrl- 9

Alt - Ctrl - h
Alt - Ctrl - j
Alt - etrl - k
Alt - etrl- I
Alt - etrl - ;
Alt - Ctrl- '
Alt - etrl- z
Alt - Ctrl - x
Alt - etrl- c
Alt - Ctrl- v
Alt - etrl- b
Alt - Ctrl- n
Alt - Ctrl- m
Alt - etrl- •
Alt - etrl - .
Alt - Ctrl -/
Alt - etrl - Insert
Alt - etrl - Delete
Alt - etrl - Home
Alt - etrl - End
Alt - etrl - PgUp
Alt - etrl - PgDn

I Figure 11. Three-Key Combinations (Alt - Ctrl Combinations)

24 Keyboards - September 1991

Alt - Shift - Esc
Alt - Shift - F1
Alt - Shift- F2
Alt - Shift - F3
Alt - Shift - F4
Alt - Shift - F5
Alt - Shift - F6
Alt - Shift - F7
Alt - Shift - F8
Alt - ShiH - F9
Alt - Shift - F10
Alt - Shift- F11
Alt - Shift- F12
Alt - Shift - •
Alt - ShiH - 1
Alt - Shift- 2
Alt - Shift- 3
Alt - Shift- 4
Alt - Shift- 5
Alt - Shift - 6
Alt - Shift - 7
Alt - Shift - 8
Alt - Shift - 9
Alt - Shift - 0

Ait - ShiH
Combinations

Alt - Shift - -
Alt - Shift- =
Alt - Shift - Backsp
Alt - Shift- Tab
Alt - Shift - q
Alt - Shift - w
Alt - Shift - e
Alt - Shift - r
Alt - Shift- t
Alt - Shift - Y
Alt - Shift - u
Alt - Shift - i
Alt - Shift - 0

Alt - Shift- P
Alt - ShiH - [
Alt - Shift -]
Alt - Shift - \
Alt - Shift - a
Alt - Shift- s
Alt - Shift - d
Alt - Shift- f
Alt - Shift - 9

Alt - Shift- h
Alt - Shift - j
Alt - Shift - k
Alt - Shift- I
Alt - Shift- ;
Alt - Shift - '
Alt - Shift - z
Alt - Shift - x
Alt - Shift - c
Alt - Shift- v
Alt - Shift - b
Alt - Shift- n
Alt - Shift - m
Alt - Shift- •
Alt - Shift- .
Alt - Shift - I
Alt - Shift - Insert
Alt - Shift - Delete
Alt - Shift - Home
Alt - Shift - End
Alt - Shift - PgUp
Alt - Shift- PgDn

I Figure 12. Three-Key Combinations (Alt - Shift Combinations)

Keyboards - September 1991 25

etrl - Shift - Esc
etrl - Sh ift - F1
etrl - Shift - F2
Ctrl - Shift - F3
Ctrl - Shift - F4
Ctrl - Sh ift - F5
Ctrl - Shift - F6
Ctrl - Shift - F7
Ctrl - Shift - F8
Ctrl - Sh ift - F9
etrl - Shift - F10
Ctrl - Shift - F11
Ctrl - Shift- F12
etrl - Shift - •
Ctrl - Shift - 1
etrl - Shift - 2
etrl - Shift - 3
Ctrl - Shift - 4
Ctrl - Shift - 5
Ctrl - Shift - 6
Ctrl - Shift - 7
etrl - Shift - 8
etrl - Shift - 9
Ctrl - Shift - 0

Ctrl- Shift
Combinations

etrl - Shift - -
etrl - Shift- =
Ctrl - Shift - Backsp
etrl - Shift - Tab
Ctrl - Shift - q
etrl - Shift - w
etrl - Shift - e
etrl - Shift - r
etrl - Shift - t
Ctrl - Shift - y
etrl - Shift - u
Ctrl - Shift - i
etrl - Shift - 0

Ctrl - Shift - P
etrl - Shift - [
Ctrl - Shift -]
Ctrl - Shift - \
Ctrl - Shift - a
Ctrl - Shift - s
Ctrl - Shift - d
etrl - Shift - f
Ctrl - Shift - 9

etrl - Shift - h
Ctrl - Shift - j
etrl - Shift - k
etrl - Shift - I
Ctrl - Shift - ;
etrl - Shift - '
etrl " Shift - z
etrl - Shift - x
Ctrl - Shift - c
Ctrl - Shift - v
etrl - Shift - b
etrl- Shift - n
etrl - Shift - m
Ctrl- Shift - •
etrl - Shift - .
etrl - Shift -/
etrl - Shift - Insert
etrl - Shift - Delete
Ctrl - Shift - Home
etrl - Shift - End
etrl - Shift - PgUp
Ctrl- Shift - PgDn

I Figure 13. Three-Key Combinations (Ctrl- Shift Combinations)

I Scan Codes

I The following figures show the hexadecimal values for the keyboard's
I scan-code sets 1, 2, and 3. The system defaults to scan-code set 2,
I but can be switched to set 1 or set 3. See "Select Alternate Scan
I Codes (Hex FO)" on page 14.

I Using the Scan-Code Tables

I For scan-code sets 1 and 2, the first and second columns are the key
I numbers and the actual key associated with each key number. The
I next five columns show the base scan code and the scan codes
I generated when the various shift keys (Alt, Ctrl, and Shift) are
I simultaneously pressed along with the base key, as well as taking
I into consideration the state of the Num Lock key.

I For scan-code set 3, the first and second columns are the key
I numbers and the actual key associated with each key number. The
I next column shows the base scan code generated in scan-code set 3.
I The last column shows the default key type.

26 Keyboards - September 1991

I Note: To determine scan codes for the 84/85-key keyboard, the
101/102-key keyboard scan-code tables can be used with
certain exceptions. These exceptions are shown following
each 101/102-key keyboard scan-code table on pages 33 and
40. Scan-code set 3 for the 84/85-key keyboard is the same as
the 101/102-key keyboard scan-code set 3.

I
I
I
I
I

I Typematlc Keys

I The typematic scan code is always equal to the base-case scan code
I of the key pressed, regardless of any shift keys which may be
I pressed. For example, using the figures for scan-code set 1,101- and
I 102-key keyboard, the scan code generated for key #75 (Insert) for the
I left shift case is EO AA EO 52. If the key were held down past the
I typematic delay time, the next scan codes sent would be EO 52 (the
I base scan codes), which will be repeated until the Insert key is
I released, or until any other key is pressed.

I For scan-code sets 1 and 2 on the 101- and 102-key keyboard, all keys
I are typematic except key #126 (Pause) which is a make-only key. For
I scan-code set 3, key types are shown in the last column.

I For scan-code sets 1 and 2 on the 122-key keyboard, all keys are
I typematic except key #66 (Pause) and key #105 (Space/Break) which
I are make-only keys. For scan-code set 3, key types are shown in the
I last column.

I Base Case Column

I The Base Case column of the scan-code tables shows the
I make-and-break codes sent for each key. The make code is sent
I when the key is pressed and the break code is sent when the key is
I released. The make codes and the break codes are separated in the
I table by a slash (ul"). For example, using the figures for scan-code
I set 1, 101- and 102-key keyboard, the make code for key #15
I (Backspace) is OE and the break code is 8E.

I The Base Case column also should be used when the base key is
I pressed along with any shift key (left Shift, right Shift, or both) when
I Num Lock is in effect. Num Lock cancels the effect of the shift keys.
I The Base Case column should be used in the following cases:

• Base key only
• Left Shift + Num Lock + base key
• Right Shift + Num Lock + base key
• Left Shift + right Shift + Num Lock + base key.

Keyboards - September 1991 27

I Shift Case Column

I The Shift Case column of the scan-code tables shows the
I make-and-break codes sent when the base key is pressed (or
I released) while the left Shift is held down. This column also should
I be used when the base key is pressed along with left Shift and Alt
I key, left Shift and Ctrl key, or left Shift, Alt and Ctrl. The Shift Case
I column (left Shift) should be used in the following cases:

• Left Shift + base key
• Left Shift + Alt + base key
• Left Shift + Ctrl + base key
• Left Shift + Alt + Ctrl + base key.

I If the right Shift is pressed, the scan codes sent are similar to the left
I shift case, with the following exceptions: The make and break codes
I for the left shift are replaced with the make and break codes for the
I right shift. For example, using the figures for scan-code set 1, 101-
I and 102-key keyboard, the scan code for key #75 (Insert) for the left
I shift case is:

E0 AA E0 52 (make)
E0 02 E0 2A (break)

I The right shift case is:

E0 86 E0 52 (make)
E0 02 E0 36 (break)

I If both left and right shift keys are pressed:

E0 AA E0 86 E0 52 (make)
E0 02 E0 36 E0 2A (break)

I Num Lock Case Column
I The Num Lock case column of the scan-code tables shows the make
I and break codes sent when the base key is pressed (or released)
I while the Num Lock indicator is on. If the Alt key or the Ctrl key is
I pressed, use the corresponding column. If the Shift key is pressed,
I use the Base Case Column.

28 Keyboards - September 1991

I All Case Column
I The Alt Case column of the scan-code tables shows the
I make-and-break codes sent when the base key is pressed (or
I released) while either the left Alt or the right Alt is held down. This
I column also should be used when the base key is pressed along with
I Alt and Ctrl, Alt while the Num Lock indicator is on, or Alt and Ctrl
I while the Num Lock indicator is on. The Alt Case column should be
I used in the following cases:

• Alt + base key
• Alt + Ctrl + base key
• Alt + Num Lock + base key
• Alt + Ctrl + Num Lock + base key.

I Clrl Case Column
I The Ctrl Case column of the scan-code tables shows the
I make-and-break codes sent when the base key is pressed (or
I released) while either the left Ctrl or the right Ctrl is held down. This
I column also should be used when the base key is pressed along with
I either Ctrl while the Num Lock indicator is on. The Ctrl Case column
I should be used in the following cases:

I • Ctrl + base key
I • Ctrl + Num Lock + base key.

Keyboards - September 1991 29

1101- and 102-Key Keyboard Scan-Code Sel1

Hll-Key
Key U.S. Shift Case Num Lock

/I Legend Base Case (Left) Case Alt Case Ctrl Case

1 I 29/A9 ** ** ** **
2 1 02/82 ** ** ** **
3 2 03/83 ** ** ** **
4 3 04/84 ** ** ** **
5 4 05/85 ** ** ** **
6 5 06/86 ** ** ** **
7 6 07/87 ** ** ** **
8 7 08/88 ** ** ** **
9 8 09/89 ** ** ** **
10 9 0A/8A ** ** ** **
11 0 0B/8B ** ** ** **
12 - 0C/8C ** ** ** **
13 = 0D/8D ** ** ** **
15 Backspace 0E/8E ** ** ** **
16 Tab 0F/8F ** ** ** **
17 Q 10/90 ** ** ** **
18 W 11/91 ** ** ** **
19 E 12/92 ** ** ** **
20 R 13/93 ** ** ** **
21 T 14/94 ** ** ** **
22 Y 15/95 ** ** ** **
23 U 16/96 ** ** ** **
24 I 17/97 ** ** ** **
25 0 18/98 ** ** ** **
26 P 19/99 ** ** ** **
27 [lA/9A ** ** ** **
28] IB/9B ** ** ** **
29 \ 2B/AB ** ** ** **
30 Caps Lock 3A/BA ** ** ** **
31 A 1E/9E ** ** ** **
32 S IF/9F ** ** ** **
33 D 20/A0 ** ** ** **
34 F 21/Al ** ** ** **
35 G 22/A2 ** ** ** **
36 H 23/A3 ** ** ** **
37 J 24/A4 ** ** ** **
38 K 25/A5 ** ** ** **
39 L 26/A6 ** ** ** **
40 : 27/A7 ** ** ** **
41 I 28/A8 ** ** ** **
42 (No Key****) 2B/AB ** ** ** **
43 Enter I 1C/9C ** ** ** **
44 L. Shi ft* 2A/AA ** ** ** **
45 (No Key****) 56/D6 ** ** ** **

I

1 Figure 14 (Part 1 of 3). 101- and 102-Key Keyboard Scan-Code Set 1

30 Keyboards - September 1991

Ull-Key
Key U.S. Shift Case Num Lock
Legend Base Case (Left) Case Alt Case Ctrl Case

46 Z 2C/AC ** ** ** **
47 X 2D/AD ** ** ** **
4B C 2E/AE ** ** ** **
49 V 2F/AF ** ** ** **
50 B 30/B0 ** ** ** **
51 N 31/Bl ** ** ** **
52 M 32/B2 ** ** ** **
53 . 33/B3 ** ** ** **
54 34/B4 ** ** ** **
55 / 35/B5 ** ** ** **
57 R. Shift* 36/B6 ** ** ** **
58 L. Ctrl* ID/9D ** ** ** **
60 L. Alt* 38/B8 ** ** ** **
61 Space Bar 39/B9 ** ** ** **
62 R. Alt* E0 38/E0 B8 ** ** ** **
64 R. Ctrl* Ee ID/E0 9D ** ** ** **
75 Insert E0 52/E0 D2 E0 AA E0 52/ Ee 2A E0 52/ ** **

E0 D2 Ee 2A E0 D2 E0 AA

76 Delete E0 53/E0 D3 E0 AA E0 53/ E0 2A E0 53/ ** **
E0 D3 E0 2A E0 D3 E0 AA

79 ... Ee 4B/E0 CB E0 AA E0 4B/ E0 2A E0 4B/ ** **
E0 CB E0 2A E0 CB Ee AA

80 Home E0 47/E0 C7 E0 AA E0 47/ E0 2A E0 47/ ** **
E0 C7 Ee 2A Ee C7 Ee AA

81 End E0 4F/E0 CF E0 AA Ee 4F/ Ee 2A E0 4F/ ** **
Ee CF E0 2A Ee CF E0 AA

83 t E0 48/E0 C8 E0 AA E0 48/ E0 2A E0 48/ ** **
EG C8 Ee 2A EG C8 EG AA

84 • Ee 5G/Ee DG Ee AA EG 50/ Ee 2A Ee 5G/ ** **
EG DG EG 2A EG D0 E0 AA

85 Page Up EG 49/E0 C9 EG AA EG 49/ E0 2A E0 49/ ** **
E0 C9 E0 2A E0 C9 E0 AA

86 Page Down E0 51/EG Dl EG AA E0 51/ E0 2A EG 51/ ** **
EG Dl E0 2A E0 Dl EG AA

89 EG 4D/EG CD EG AA E0 4D/ Ee 2A EG 4D/ ** **
E0 CD E0 2A E0 CD E0 AA

90 Num Lock* 45/C5 ** ** ** **

I Figure 14 (Part 2 of 3). 101- and 102-Key Keyboard Scan-Code Set 1

Keyboards - September 1991 31

liB-Key
Key U.S. Shift Case Num Lock

* Legend 8ase Case (Left) Case Alt Case Ctrl Case

91 K.P. Home 471C7 ** ** ** **
92 K.P • ..- 48/CB ** ** ** **
93 K.P. End 4F/CF ** ** ** **
95 I E0 35/E0 85 E0 AA E0 351 ** ** **

EO 85 E0 2A
96 K.P. t 48/C8 ** ** ** **
97 K.P. 5 4C/CC ** ** ** **
98 K.P ... 50/00 ** ** ** **
99 K.P. Ins 52/02 ** ** ** **
100 K.P. * 37/87 ** ** ** **
101 K.P. Pgup 49/C9 ** ** ** **
102 K.P. -+ 40/CO ** ** ** **
103 K.P. Pgdn 51/01 ** ** ** **
104 K.P. Del 53/03 ** ** ** **
105 K.P. - 4A/CA ** ** ** **
106 K.P. + 4E/CE ** ** ** **
108 K.P.Enter E0 1C/E0 9C ** ** ** **
110 Esc 01/81 ** ** ** **
112 F1 38/BB ** ** ** **
113 F2 3C/8C ** ** ** **
114 F3 30/BO ** ** ** **
115 F4 3E/BE ** ** ** **
116 F5 3F/BF ** ** ** **
117 F6 40/C0 ** ** ** **
118 F7 41/C1 ** ** ** **
119 F8 42/C2 ** ** ** **
120 F9 43/C3 ** ** ** **
121 F10 44/C4 ** ** ** **
122 F11 57/07 ** ** ** **
123 F12 58/08 ** ** ** **
124 Print E0 2A E0 37/ E0 37/E0 B7 ** 54/04 E0 37/E0 B7

Scr/SysReq E0 B7 E0 AA (see ***) (see ***) (see ***)
125 Scrl Lock 46/C6 ** ** ** **
126 Pause/ E1 10 45 E1 ** ** ** E0 46 E0 C6

Break 90 C5

* = May cause case change (See Column Heading to determine proper case).
** = Same as base case.
*** = Num Lock does not cancel L. Shift or R. Shift, L. Shift and R. Shift do

not change Alt or Ctrl cases.
**** = Key does not exist in 101-key keyboard, but does exist in 102-key

keyboard.

I Figure 14 (Part 3 of 3). 101- and 102-Key Keyboard Scan-Code Set 1

32 Keyboards - September 1991

I 84- and as-Key Keyboard Scan-Code Set 1

84-Key
Key U.S. Shift Case Num Lock
Legend 8ase Case (Left) Case Alt Case Ctrl Case

8 7/7 00/88 ** 47/C7 ** **
9 818 09/89 ** 48/C8 ** **
10 9/9 0A/BA ** 49/C9 ** **
12 -I- 0C/8C ** 4A/CA ** **
13 "/+ 00/80 ** 4E/CE ** **
23 U/4 16/96 ** 48/C8 ** **
24 115 17/97 ** 4C/CC ** **
25 016 18/98 ** 40/CO ** **
37 J/1 24/A4 ** 4F/CF ** **
38 K/2 25/A5 ** 59/09 ** **
39 L/3 26/A6 ** 51/01 ** **
49 ;/* 27/A7 ** 37/87 ** **
43 Enter 1C/9C ** E9 1C/E9 9C ** **
52 M/9 32/82 ** 52/02 ** **
54 ./. 34/84 ** 53/03 ** **
55 I 35/85 E9 AA E9 35/ E9 35/E9 85 ** **

E0 85 E0 2A
(With Num
Lock on)

125 Scrl Lock 46/C6 45/C5 * ** ** **

* .. Key 125 becomes Num Lock in the shift case
** .. Same as base case

I Figure 15. 84- and 85-Key Keyboard Scan-Code Set 1. These are
I exceptions to the 1011102-key keyboard.

Keyboards - September 1991 33

I 122-Key Keyboard Scan-Code Set 1

122-Key
Key U.S. Shift Case Num Lock

/I Legend Base Case (Left) Case Alt Case Ctrl Case

1 I 29/A9 ** ** ** **
2 1 82/82 ** ** ** **
3 2 83/83 ** ** ** **
4 3 84/84 ** ** ** **
5 4 85/85 ** ** ** **
6 5 86/86 ** ** ** **
7 6 87/87 ** ** ** **
8 7 88/88 ** ** ** **
9 8 89/89 ** ** ** **
18 9 8A/8A ** ** ** **
11 0 0B/8B ** ** ** **
12 - 0C/8C ** ** ** **
13 = 00/80 ** ** ** **
15 Backspace 0E/8E ** ** ** **
16 Tab 0F/8F ** ** ** **
17 Q 10/90 ** ** ** **
18 W 11/91 ** ** ** **
19 E 12/92 ** ** ** **
20 R 13/93 ** ** ** **
21 T 14/94 ** ** ** **
22 y 15/95 ** ** ** **
23 U 16/96 ** ** ** **
24 I 17/97 ** ** ** **
25 0 18/98 ** ** ** **
26 P 19/99 ** ** ** **
27 [1A/9A ** ** ** **
28] 1B/9B ** ** ** **
30 Caps Lock 3A/BA ** ** ** **
31 A lE/9E ** ** ** **
32 S 1F/9F ** ** ** **
33 0 28/A8 ** ** ** **
34 F 21/Al ** ** ** **
35 G 22/A2 ** ** ** **
36 H 23/A3 ** ** ** **
37 J 24/A4 ** ** ** **
38 K 25/A5 ** ** ** **
39 L 26/A6 ** ** ** **
48 : 27/A7 ** ** ** **
41 I 28/A8 ** ** ** **
42 \ 2B/AB ** ** ** **
43 Enter lC/9C ** ** ** **
44 L. Shift* 2A/AA ** ** ** **
45 \ 56/06 ** ** ** **
46 Z 2C/AC ** ** ** **
47 X 20/AO ** ** ** **

I Figure 16 (Part 1 of 3). 122-Key Keyboard Scan-Code Set 1

34 Keyboards - September 1991

122-Key
Key U.S. Shi ft Case Num Lock
II Legend 8ase Case (Left) Case Alt Case Ctrl Case

48 C 2E/AE ** ** ** **
49 V 2F/AF ** ** ** **
513 B 313/80 ** ** ** **
51 N 31/61 ** ** ** **
52 M 32/82 ** ** ** **
53 . 33/83 ** ** ** **
54 34/64 ** ** ** **
55 / 35/85 ** ** ** **
57 R. Shift* 36/66 ** ** ** **
58 L. Ctrl* 10/90 ** ** ** **
613 L. Alt* 38/68 ** ** ** **
61 Space 8ar 39/69 ** ** ** **
62 R. Alt* E0 38/E0 88 ** ** ** **
64 R. Ctrl* Ee 1O/E0 90 ** ** ** **
65 Clear 76/F6 ** ** ** **
66 Pause E1 10 45 E1 ** ** ** E1 45 E1 C5

90 C5
67 ErEOF I 60/EO ** ** ** **
68 Copy/Play 6F/EF ** ** ** **
69 (No Key) 6C/EC ** ** ** **
70 Attn/Sysreq 71/Fl ** ** 54/04 **
71 CrSel 72/F2 ** ** ** **
72 ExSel 74/F4 ** ** ** **
73 PrtSc E0 2A Ee 37/ Ee 37/E0 87 ** Ee 37/Ee 87 Ee 37/E0 87

E0 87 Ee AA (see note*** (see note*** (see note***
74 (No Key) 75/F5 ** ** ** **
75 OupPA1 5A/OA ** ** ** **
76 End E0 4F/Ee CF Ee AA Ee 4F/ E0 2A E0 4F/ ** **

Ee CF E0 2A E0 CF E0 AA
78 ... E0 48/Ee C6 Ee AA E0 48/ E0 2A E0 46/ **

Ee C6 E0 2A Ee C6 E0 AA **
813 PgUp Ee 49/Ee C9 E0 AA E0 49/ Ee 2A E0 49/ **

Ee C9 E0 2A E0 C9 E0 AA
81 Ins E0 52/Ee 02 E0 AA E0 52/ Ee 2A E0 52/ ** **

Ee 02 E0 2A Ee 02 E0 AA
82 t E0 48/Ee C8 Ee AA Ee 48/ Ee 2A Ee 48/ ** **

E0 C8 E0 2A Ee C8 E0 AA
83 Home E0 47/E0 C7 Ee AA E0 47/ E0 2A Ee 47/ ** **

E0 C7 E0 2A Ee C7 Ee AA
84 • Ee 50/E0 013 Ee AA E0 513/ Ee 2A Ee 50/ ** **

E0 00 E0 2A Ee De Ee AA
85 PgOn Ee 51/E0 01 E0 AA Ee 51/ Ee 2A Ee 51/ ** **

E0 01 Ee 2A Ee 01 Ee AA
86 Del Ee 53/E0 03 Ee AA Ee 53/ Ee 2A Ee 53/ ** **

Ee 03 Ee 2A E0 03 Ee AA
88 E0 40/Ee CO Ee AA Ee 40/ E0 2A Ee 40/ ** **

Ee CO E0 2A E0 CO Ee AA

I Figure 16 (Part 2 of 3). 122-Key Keyboard Scan-Code Set 1

Keyboards - September 1991 35

122-Key
Key U.S. Shift Case Num Lock
Legend Base Case (Left) Case Alt Case Ctrl Case

99 Esc 91/81 ** ** ** **
91 K.P. Home/7 47/C7 ** ** ** **
92 K.P. +/41 4B/CB ** ** ** **
93 K.P. End/1 4F/CF ** ** **
95 ScrLk/NumL 46/C6 45/C5 46/C6 46/C6 46/C6
96 K.P. t/81 48/C8 ** ** ** **
97 K.P. 5 4C/CC ** ** ** **
98 K.P. +/2 59/09 ** ** ** **
99 K. P. Ins/9 52/02 ** ** ** **
199 K.P. * 1 37/B7 ** ** ** **
191 K.P. PgUp/9 49/C9 ** ** ** **
192 K.P /61 40/CO ** ** ** **
193 K.P. PgOn/ 51/01 ** ** ** **
194 K.P. Oel/. 53/03 ** ** ** **
195 Space/Break E9 39/E9 B9 ** ** ** E9 46/E9 C6
196 K.P. + I 4E/CE ** ** ** **
197 K.P. - 4A/CA
198 K.P. Enter E9 lC/E9 9C ** ** ** **
119 Fl 3B/BB ** ** ** **
111 F2 3C/BC ** ** ** **
112 F3 30/BD ** ** ** **
113 F4 3E/BE ** ** ** **
114 F5 3F/BF ** ** ** **
115 F6 49/C9 ** ** ** **
116 F7 41/Cl ** ** ** **
117 F8 42/C2 ** ** ** **
118 F9 43/C3 ** ** ** **
119 Fl9 44/C4 ** ** ** **
120 Fll 57/07 ** ** ** **
121 Fl2 58/08 ** ** ** **
122 Fl3 5B/DB ** ** ** **
123 F14 5C/OC ** ** ** **
124 Fl5 50/00 ** ** ** **
125 Fl6 63/E3 ** ** ** **
126 Fl7 64/E4 ** ** ** **
127 F18 65/E5 ** ** ** **
128 F19 66/E6 ** ** ** **
129 F29 67/E7 ** ** ** **
130 F21 68/E8 ** ** ** **
131 F22 69/E9 ** ** ** **
132 F23 6A/EA ** ** ** **
133 F24 6B/EB ** ** ** **

* = May cause case change (See Column Heading to determine proper case)
** = Same as base case
***= Num Lock does not cancel L. Shift or R. Shift. L. Shift and R. Shift do

not change Alt or Ctrl cases

I Figure 16 (Part 3 of 3). 122-Key Keyboard Scan-Code Set 1

36 Keyboards - September 1991

1101- and 102-Key Keyboard Scan-Code Set 2

HH-Key
Key U.S. Shift Case Num Lock Alt Ctrl

1/ Legend Base Case (Left) Case Case Case

1 I 0E/F0 0E ** ** ** **
2 1 16/F0 16 ** ** ** **
3 2 1E/F0 IE ** ** ** **
4 3 26/F0 26 ** ** ** **
5 4 25/F0 25 ** ** ** **
6 5 2E/F0 2E ** ** ** **
7 6 36/F0 36 ** ** ** **
8 7 30/F0 3D ** ** ** **
9 8 3E/F0 3E ** ** ** **
10 9 46/F0 46 ** ** ** **
11 0 45/F0 45 ** ** ** **
12 - 4E/F0 4E ** ** ** **
13 = 55/F0 55 ** ** ** **
15 Backspace 66/F0 66 ** ** ** **
16 Tab 00/F0 00 ** ** ** **
17 Q 15/F0 15 ** ** ** **
18 W 10/F0 10 ** ** ** **
19 E 24/F0 24 ** ** ** **
20 R 20/F0 20 ** ** ** **
21 T 2C/F0 2C ** ** ** **
22 y 35/F0 35 ** ** ** **
23 U 3C/F0 3C ** ** ** **
24 I 43/F0 43 ** ** ** **
25 0 44/F0 44 ** ** ** **
26 P 40/F0 40 ** ** ** **
27 [54/F0 54 ** ** ** **
28] 5B/F0 5B ** ** ** **
29 \ 50/F0 50 ** ** ** **
30 Caps Lock 58/F0 58 ** ** ** **
31 A 1C/F0 1C ** ** ** **
32 S 1B/F0 1B ** ** ** **
33 0 23/F0 23 ** ** ** **
34 F 2B/F0 2B ** ** ** **
35 G 34/F0 34 ** ** ** **
36 H 33/F0 33 ** ** ** **
37 J 3B/F0 3B ** ** ** **
38 K 42/F0 42 ** ** ** **
39 L 4B/F0 4B ** ** ** **
40 ; 4C/F0 4C ** ** ** **
41 I 52/F0 52 ** ** ** **
42 (No Key****) 50/F0 50 ** ** ** **
43 Enter 15A/F0 5A ** ** ** **
44 L. Shift* 12/F0 12 ** ** ** **
45 (No Key****) 61/F0 61 ** ** ** **
46 Z 11A/F0 1A ** ** ** **

1 Figure 17 (Part 1 of 3). 101- and 102-Key Keyboard Scan-Code Set 2

Keyboards - September 1991 37

101-Key
Key U.S. Shift Case Num Lock Alt Ctrl
II Legend 8ase Case (Left) Case Case Case

47 X 22/F0 22 ** ** ** **
48 C 21/F0 21 ** ** ** **
49 V 2A/F0 2A ** ** ** **
50 8 32/F0 32 ** ** ** **
51 N 31/F0 31 ** ** ** **
52 M 3A/F0 3A ** ** ** **
53 . 41/F0 41 ** ** ** **
54 49/F0 49 ** ** ** **
55 / 4A/F0 4A ** ** ** **
57 R. Shift* 59/F0 59 ** ** ** **
58 L. Ctrl* 14/F0 14 ** ** ** **
60 L. Alt* 11/F0 11 ** ** ** **
61 Space 8ar 29/F0 29 ** ** ** **
62 R. Alt* E0 11/ ** ** ** **

E0 F0 11
64 R. Ctrl* E0 14/ ** ** ** **

E0 F0 14
75 Insert E0 70/ E0 F0 12 E0 70/ E0 12 E0 70/ ** **

E0 F0 70 E0 F0 70 E0 12 E0 F0 70 E0 F0 12

76 Delete E0 71/ E0 F0 12 E0 71/ E0 12 E0 71/ ** **
E0 F0 71 E0 F0 71 E0 12 E0 F0 71 E0 F0 12

79 ..- E0 68/ E0 F0 12 E0 68/ E0 12 E0 68/ ** **
E0 F0 68 E0 F0 68 E0 12 E0 F0 68 E0 F0 12

80 Home E0 6C/ E0 FC:J 12 EC:J 6C/ EC:J 12 E0 6C/ ** **
E0 F0 6C EC:J FC:J 6C EC:J 12 EC:J FC:J 6C E0 FC:J 12

81 End E0 69/ E0 F0 12 EC:J 69/ EC:J 12 EC:J 69/ ** **
E0 F0 69 EC:J F0 69 EC:J 12 EC:J FC:J 69 E0 FC:J 12

83 t EC:J 75/ E0 FC:J 12 E0 75/ E0 12 EC:J 75/ ** **
EC:J FC:J 75 EC:J FC:J 75 E0 12 E0 F0 75 EC:J FC:J 12

84 • EC:J 72/ EC:J FC:J 12 E0 72/ EC:J 12 EC:J 72/ ** **
EC:J FC:J 72 EC:J FC:J 72 E0 12 E0 FC:J 72 EC:J FC:J 12

85 Page Up E0 70/ EC:J FC:J 12 E0 70/ E0 12 EC:J 70/ ** **
EC:J FC:J 70 EC:J FC:J 70 EC:J 12 EC:J F0 70 EC:J FC:J 12

86 Page Down EC:J 7A/ E0 FC:J 12 E0 7A/ E0 12 EC:J 7A/ ** **
EC:J FC:J 7A EC:J FC:J 7A EC:J 12 EC:J F0 7A EC:J FC:J 12

I Figure 17 (Part 2 of 3). 101- and 102-Key Keyboard Scan-Code Set 2

38 Keyboards - September 1991

101-Key
Key U.S. Shift Case Num Lock Alt Ctrl

* Legend Base Case (Left) Case Case Case

89 -+ E0 74/ E0 F0 12 E0 74/ E0 12 E0 74/ ** **
E0 F0 74 E0 F0 74 E0 12 E0 F0 74 E0 F0 12

90 Num Lock* 77/F0 77 ** ** ** **
91 K.P. Home 6C/F0 6C ** ** ** **
92 K.P . .- 6B/F0 6B ** ** ** **
93 K.P. End 69/F0 69 ** ** ** **
9S / E0 4A/ E0 F0 12 E0 4A/ ** ** **

E0 F0 4A E0 F0 4A E0 12
96 K.P. t 7S/F0 7S ** ** ** **
97 K.P. S 73/F0 73 ** ** ** **
98 K.P. t 72/F0 72 ** ** ** **
99 K.P. Ins 70/F0 70 ** ** ** **
100 K.P. * 7C/F0 7C ** ** ** **
101 K.P. Pgup 7D/F0 70 ** ** ** **
102 K.P. -+ 74/Fa 74 ** ** ** **
103 K.P. Pgdn 7A/F0 7A ** ** ** **
104 K.P. Del 71/Fa 71 ** ** ** **
laS K.P. - 7B/Fa 7B ** ** ** **
106 K.P. + E0 SA/ ** ** ** **

E0 Fa SA
108 K.P. EnterE0 SA/ ** ** ** **

E0 F0 SA
110 Esc 76/Fa 76 ** ** ** **
112 Fl 0S/F0 as ** ** ** **
113 F2 a6/Fa 136 ** ** ** **
114 F3 04/F0 134 ** ** ** **
lIS F4 aC/Fa ac ** ** ** **
116 FS 03/Fa 133 ** ** ** **
117 F6 aB/F0 0B ** ** ** **
118 F7 83/Fa 83 ** ** ** **
119 F8 0A/Fa 0A ** ** ** **
1213 F9 aI/Fa 131 ** ** ** **
121 Fla a9/Fa 139 ** ** ** **
122 Fl1 78/Fa 78 ** ** ** **
123 Fl2 07/Fa 137 ** ** ** **
124 Print E0 12 E0 E0 7e/ ** 84/F0 E0/7C Ea

Scr/SysReg7C/Ea Fa E0 F0 7C 84 (see F0 7C (see
7C Ea Fa 12 (see note ***) note*** note ***)

125 Scrl Lock 7E/Fa 7E ** ** ** **
126 Pause/ E1 14 77 E1 ** ** ** **

Break F0 14 Fa 77

* = May cause case change (See Column Heading to determine proper case).
** = Same as base case.
*** = Num Lock does not cancel L. Shift or R. Shift. L. Shift and R. Shift do

not change Alt or Ctrl cases.
**** = Key does not exist in 1a1-key keyboard. but does exist in 1a2-key

keyboard.

I Figure 17 (Part 3 of 3). 101- and 102-Key Keyboard Scan-Code Set 2

Keyboards - September 1991 39

I 84- and 8S-Key Keyboard Scan-Code Set 2

84-Key
Key U.S. Shift Case Num Lock Alt
Legend Base Case (Left) Case Case

8 7/7 30/FO 3D ** 6C/FO 6C **
9 8/8 3E/FO 3E ** 75/FO 75 **
10 9/9 46/FO 46 ** 70/FO 70 **
12 -/- 4E/FO 4E ** 7B/FO 7B **
13 =/+ 55/FO 55 ** 79/FO 79 **
23 U/4 3C/FO 3C ** 3C/FO 3C **
24 1/5 43/FO 43 ** 73/FO 73 **
25 0/6 44/FO 44 ** 74/FO 74 **
37 J/l 3B/FO 3B ** 69/FO 69 **
38 K/2 42/FO 42 ** 72/FO 72 **
39 L/3 4B/FO 4B ** 7A/FO 7A **
40 ;/* 4C/FO 4C ** 7C/FO 7C **
43 Enter 5A/FO 5A ** EO 5A/EO FO SA **
52 M/O 3A/FO 3A ** 70/FO 70 **
54 ./. 49/FO 49 ** 71/FO 71 **
55 / 4A/FO 4A EO FO 12 EO 4A/ EO 4A/EO FO 4A **

EO FO 4A EO 12
(With Num
Lock on)

125 Scrl Lock 7E/FO 7E 77 /FO 77 * ** **

* = Key 125 becomes Num Lock in the shift case
** = Same as base case

Figure 18. 84- and 85-Key Keyboard Scan-Code Set 2. These are
exceptions to the 1011102-key keyboard.

40 Keyboards - September 1991

Ctrl
Case

**
**
**
**
**
**
**
**
**
**
**
**
**
**
**
**

**

I 122-Key Keyboard Scan-Code Set 2

122-Key
Key U.S. Shift Case Num Lock Alt Ctrl

1/ Legend Base Case (Left) Case Case Case

1 I eE/Fe eE ** ** ** **
2 1 16/Fe 16 ** ** ** **
3 2 IE/Fe IE ** ** ** **
4 3 26/Fe 26 ** ** ** **
5 4 25/Fe 25 ** ** ** **
6 5 2E/Fe 2E ** ** ** **
7 6 36/Fe 36 ** ** ** **
8 7 3D/Fe 3D ** ** ** **
9 8 3E/Fe 3E ** ** ** **
Ie 9 46/Fe 46 ** ** ** **
11 e 45/Fe 45 ** ** ** **
12 - 4E/Fe 4E ** ** ** **
13 = 55/Fe 55 ** ** ** **
15 Backspace 66/Fe 66 ** ** ** **
16 Tab eD/Fe eo ** ** ** **
17 Q 15/Fe 15 ** ** ** **
18 W IO/Fe 10 ** ** ** **
19 E 24/Fe 24 ** ** ** **
2e R 20/Fe 20 ** ** ** **
21 T 2C/Fe 2C ** ** ** **
22 y 35/Fe 35 ** ** ** **
23 U 3C/Fe 3C ** ** ** **
24 I 43/Fe 43 ** ** ** **
25 0 44/Fe 44 ** ** ** **
26 P 40/Fe 40 ** ** ** **
27 [54/Fe 54 ** ** ** **
28] 5B/Fe 5B ** ** ** **
3e Caps Lock 58/Fe 58 ** ** ** **
31 A lC/Fe 1C ** ** ** **
32 S 1B/Fe 1B ** ** ** **
33 0 23/Fe 23 ** ** ** **
34 F 2B/Fe 2B ** ** ** **
35 G 34/Fe 34 ** ** ** **
36 H 33/Fe 33 ** ** ** **
37 J 3B/Fe 3B ** ** ** **
38 K 42/Fe 42 ** ** ** **
39 L 4B/Fe 4B ** ** ** **
4e : 4C/Fe 4C ** ** ** **
41 I 52/Fe 52 ** ** ** **
42 \ 50/Fe 50 ** ** ** **
43 Enter 5A/Fe 5A ** ** ** **
44 L. Shift* 12/Fe 12 ** ** ** **
45 \ 61/Fe 61 ** ** ** **

I Figure 19 (Part 1 of 4). 122-Key Keyboard Scan-Code Set 2

Keyboards - September 1991 41

122-Key
Key U.S. Shift Case Num lock Alt Ctrl
legend 8ase Case (left) Case Case Case

46 Z 1A/F0 1A ** ** ** **
47 X 22/F0 22 ** ** ** **
48 C 21/F0 21 ** ** ** **
49 V 2A/F0 2A ** ** ** **
50 8 32/F0 32 ** ** ** **
51 N 31/F0 31 ** ** ** **
52 M 3A/FO 3A ** ** ** **
53 . 41/FO 41 ** ** ** **
54 49/FO 49 ** ** ** **
55 / 4A/FO 4A ** ** ** **
57 R. Shift* 59/FO 59 ** ** ** **
58 l. Ctrl* 14/FO 14 ** ** ** **
60 l. Alt* l1/FO 11 ** ** ** **
61 Space 8ar 29/FO 29 ** ** ** **
62 R. Alt* EO l1/EO ** ** ** **

FO 11
64 R. Ctrl* EO 14/EO ** ** ** **

FO 14
65 Clear 5F/FfJ 5F ** ** ** **
66 Pause El 14 77 El ** ** ** El 77 E1

FfJ 14 FfJ 77 FfJ 77
67 ErEOF 5fJ/FfJ 5fJ ** ** ** **
68 Copy/Play 6F/FfJ 6F ** ** ** **
69 (No Key) 48/FfJ 48 ** ** ** **
70 Attn/Sysr 19/FfJ 19 ** ** ** **
71 CrSel 39/FfJ 39 ** ** ** **
72 ExSel 53/FfJ 53 ** ** ** **
73 PrtSc EfJ 12 EfJ 7C EfJ 7C/EfJ FfJ 7C ** EfJ 7C/EfJ EfJ 7C/EfJ

EfJ FfJ 7C EfJ (See note ***) FfJ 7C(See FfJ 7C (See
F0 12 note ***) note ***)

74 (No Key) 5C/FfJ 5C ** ** ** **
75 OupPA1 17/F0 17 ** ** ** **
76 End EfJ 69/ EfJ FfJ 12 EfJ 69/ EfJ 12 EfJ 69/ ** **

EfJ FfJ 69 EfJ FfJ 69 EfJ 12 EfJ FfJ 69 EfJ FfJ 12
78 +- EfJ 68/ EfJ FfJ 12 EfJ 68/ EfJ 12 EfJ 68/ ** **

EfJ FfJ 68 EfJ FfJ 68 EfJ 12 EfJ FfJ 68 E0 FfJ 12
80 PgUp EfJ 70/ E0 FfJ 12 EfJ 70/ EfJ 12 EfJ 70/ ** **

EfJ FfJ 70 E0 FfJ 70 EfJ 12 EfJ FfJ 70 E0 FfJ 12

I Figure 19 (Part 2 of 4). 122-Key Keyboard Scan-Code Set 2

42 Keyboards - September 1991

122-Key
Key U.S. Shift Case Num Lock Alt Ctrl

/I Legend Base Case (Left) Case Case Case

81 Ins EG 7GI Ea FG 12 EG 7GI EG 12 EG 7GI ** **
EG FG 7G Ea FG 7G EG 12 EG FG 7G EG FG 12

82 t EG 751 Ea FG 12 EG 751 Ea 12 Ea 751 ** **
EG FG 75 EG FG 75 EG 12 EG FG 75 EG FG 12

83 Home EG 6CI EG FG 12 EG 6CI EG 12 Ea 6CI ** **
EG FG 6C EG FG 6C EG 12 EG FG 6C EG FG 12

84 t EG 721 EG FG 12 EG 721 EG 12 EG 721 ** **
EG FG72 EG FG 72 EG 12 EG FG 72 EG FG 12

85 PgDn EG 7AI EG FG 12 EG 7AI EG 12 EG 7AI ** **
EG FG 7A EG FG 7A EG 12 EG FG 7A EG FG 12

86 Del EG 711 EG FG 12 EG 711 EG 12 EG 711 ** **
Ea FG 71 EG FG 71 EG 12 EG Fa 71 EG FG 12

88 -+ EG 741 Ea FG 12 Ea 741 EG 12 EG 741 ** **
Ea FG 74 EG FG 74 EG 12 EG FG 74 EG FG 12

9G Esc 76/FG 76 ** ** ** **
91 K.P. Home/7 6C/FG 6C ** ** ** **
92 K.P 14 6B/FG 6B ** ** ** **
93 K.P. End/1 69/FG 69 ** ** ** **
95 ScrkLk/NumL 7E/FG 7E 77/FG 77 7E/FG 7E 7E/FG 7E 7E/FG 7E
96 K.P. t/8 I 75/FG 75 ** ** ** **
97 K.P. 5 73/FG 73 ** ** ** **
98 K.P. t/2 72/FG 72 ** ** ** **
99 K.P. Ins/G 7G/FG 7G ** ** ** **
leG K.P. * I 7C/FG 7C ** ** ** **
lei K.P. PgUp/9 7D/FG 70 ** ** ** **
1G2 K.P. -+/61 74/FG 74 ** ** ** **
1G3 K.P. t/3 7A/Fa 7A ** ** ** **
1G4 K.P. Dell. 71/FG 71 ** ** ** **
1G5 Space/Break EG 29/EG ** ** ** EO 7EI

I FG 29 EG FG 7E
le6 K.P. + 79/FG 79 ** ** ** **
1G7 K.P. - 7B/FG 7B ** ** ** **
1G8 K.P. Entei EG 5A/EG ** ** ** **

FG SA

I Figure 19 (Part 3 of 4). 122-Key Keyboard Scan-Code Set 2

Keyboards - September 1991 43

122-Key
Key U.S. Shift Case Num Lock Alt Ctrl
I Legend Base Case (Left) Case Case Case

lUI F1 as/Fa as ** ** ** **
111 F2 a6/Fa a6 ** ** ** **
112 F3 a4/Fa a4 ** ** ** **
113 F4 aC/Fa ac ** ** ** **
114 FS a3/Fa a3 ** ** ** **
l1S F6 aB/Fa aB ** ** ** **
116 F7 83/Fe 83 ** ** ** **
117 F8 aA/Fa aA ** ** ** **
118 F9 aI/Fa a1 ** ** ** **
119 Fla a9/Fa a9 ** ** ** **
12a F11 78/Fa 78 ** ** ** **
121 Fl2 a7/Fe a7 ** ** ** **
122 Fl3 IF/Fa IF ** ** ** **
123 Fl4 27/Fa 27 ** ** ** **
124 FlS 2F/Fa 2F ** ** ** **
12S Fl6 SE/Fa SE ** ** ** **
126 Fl7 a8/Fa a8 ** ** ** **
127 Fl8 la/Fa la ** ** ** **
128 Fl9 18/Fe 18 ** ** ** **
129 F2a 2a/Fa 2a ** ** ** **
13a F21 28/Fa 28 ** ** ** **
131 F22 3a/Fa 3a ** ** ** **
132 F23 38/Fa 38 ** ** ** **
133 F24 4a/Fa 4a ** ** ** **

* = May cause case change (See column heading to determine proper case)
** = Same as base case
***= Num Lock does not cancel L. Shift or R. Shift, L. Shift and R. Shift do

not change Alt or Ctrl cases

I Figure 19 (Part 4 of 4). 122-Key Keyboard Scan-Code Set 2

44 Keyboards - September 1991

I 101- and 102-Key Keyboard Scan-Code Set 3

Ull-Key Default
Key U.S. Key

/I Legend Base Case Type

1 I eE/Fe eE Typematic
2 1 16/Fe 16 Typematic
3 2 1E/Fe 1E Typematic
4 3 26/Fe 26 Typematic
5 4 25/Fe 25 Typematic
6 5 2E/Fe 2E Typematic
7 6 36/Fe 36 Typematic
8 7 3D/Fe 3D Typematic
9 8 3E/Fe 3E Typematic
10 9 46/Fe 46 Typematic
11 e 45/Fe 45 Typematic
12 - 4E/Fe 4E Typematic
13 = 55/Fe 55 Typematic
15 Backspace 66/Fe 66 Typematic
16 Tab eD/Fe eD Typematic
17 Q 15/Fe 15 Typematic
18 W 1D/Fe 1D Typematic
19 E 24/Fe 24 Typematic
2e R 2D/Fe 2D Typematic
21 T 2c/Fe 2C Typematic
22 y 35/Fe 35 Typematic
23 U 3C/Fe 3C Typematic
24 I 43/Fe 43 Typematic
25 0 44/Fe 44 Typematic
26 p 4D/Fe 4D Typematic
27 [54/Fe 54 Typematic
28] 5B/Fe 5B Typematic
29 \ 5c/Fe 5C Typemati c
3e Caps Lock 14/Fe 14 Make/Break
31 A 1C/Fe 1C Typematic
32 S 1B/Fe 1B Typematic
33 D 23/Fe 23 Typematic
34 F 2B/Fe 2B Typematic
35 G 34/Fe 34 Typematic
36 H 33/F0 33 Typematic
37 J 3B/Fe 3B Typematic
38 K 42/Fe 42 Typematic
39 L 4B/Fe 4B Typematic
4e ; 4C/Fe 4C Typematic

I Figure 20 (Part 1 of 3). 101- and 102-Key Keyboard Scan-Code Set 3

Keyboards - September 1991 45

101-Key Default
Key U.S. Key
Legend Base Case Type

41 I 52/F0 52 Typematic
42 (No Key) 53/F0 53 Typematic
43 Enter 5A/F0 SA Typematic
44 L. Shi ft 12/F0 12 Make/Break
45 (No Key) 13/F0 13 Typematic
46 Z 1A/F0 1A Typematic
47 X 22/F0 22 Typematic
48 C 21/F0 21 Typematic
49 V 2A/F0 2A Typematic
50 B 32/F0 32 Typematic
51 N 31/F0 31 Typematic
52 M 3A/F0 3A Typematic
53 . 41/F0 41 Typematic
54 49/F0 49 Typematic
55 / 4A/F0 4A Typematic
57 R. Shift 59/F0 59 Make/Break
58 L. Ctrl 11/F0 11 Make/Break
60 L. Alt 19/F0 19 Make/Break
61 Space Bar 29/F0 29 Typematic
62 R. Alt 39/F0 39 Make only
64 R. Ctrl 58/F0 58 Make only
75 Insert 67/F0 67 Make only
76 Delete 64/F0 64 Typematic
79 ~ 61/F0 61 Typematic
80 Home 6E/F0 6E Make only
81 End 65/F0 65 Make only
83 t 63/F0 63 Typematic
84 60/F0 60 Typematic
85 Page Up 6F/F0 6F Make only
86 Page Down 6D/F0 60 Make only
89 ~ 6A/F0 6A Typematic
90 Num Lock 76/F0 76 Make only
91 K.P. Home 6C/F0 6C Make only
92 K.P. ~ 6B/F0 6B Make only
93 K.P. End 69/F0 69 Make only
95 / 77 /F0 77 Make only
96 K.P. t 75/F0 75 Make only
97 K.P. 5 73/F0 73 Make only
98 K.P •• 72/F0 72 Make only
99 K.P. Ins 70/F0 70 Make only
100 K.P. * 7E/F0 7E Make only

I Figure 20 (Part 2 of 3). 101- and 102-Key Keyboard Scan-Code Set 3

46 Keyboards - September 1991

UH-Key Default
Key U.S. Key
Legend Base Case Type

UH K.P. Pgup 7D/FO 70 Make only
102 K.P. ~ 74/FO 74 Make only
103 K.P. Pgdn 7A/FO 7A Make only
104 K.P. Del 71/FO 71 Make only
lOS K.P. - S4/FO 84 Make only
106 K.P. + 7C/FO 7C Typematic
lOS K.P. Enter 79/FO 79 Make only
110 Esc OS/FO OS Make only
112 Fl 07/FO 07 Make only
113 F2 OF/FO OF Make only
114 F3 17/FO 17 Make only
llS F4 IF/Fa IF Make only
116 FS 27/FO 27 Make only
117 F6 2F/FO 2F Make only
I1S F7 37/FO 37 Make only
119 FS 3F/FO 3F Make only
120 F9 47/F13 47 Make only
121 flO 4F/FO 4F Make only
122 Fll 56/FO S6 Make only
123 Fl2 SE/FO SE Make only
124 Prt Screen S7 FO 57 Make only
12S Scrl Lock 5F/FO SF Make only
126 Pause 62/FO 62 Make only

I Figure 20 (Part 3 of 3). 101- and 102-Key Keyboard Scan-Code Set 3

Keyboards - September 1991 47

I 122-Key Keyboard Scan-Code Set 3

I22-Key Default
Key U.S. Key

IJ Legend Base Case Type

1 I 0E/F0 0E Typematic
2 I 16/F0 16 Typematic
3 2 1E/F0 IE Typematic
4 3 26/F0 26 Typematic
5 4 25/F0 25 Typematic
6 5 2E/F0 2E Typematic
7 6 36/F0 36 Typematic
8 7 30/F0 3D Typematic
9 8 3E/F0 3E Typematic
Hl 9 46/F0 46 Typematic
11 0 45/F0 45 Typematic
12 - 4E/F0 4E Typematic
13 = 55/F0 55 Typematic
14 (No Key) 50/F0 50
15 Backspace 66/F0 66 Typematic
16 Tab 0D/F0 00 Typemati c
17 Q 15/F0 15 Typematic
18 W 10/F0 10 Typematic
19 E 24/F0 24 Typematic
20 R 20/Fe 20 Typematic
21 t 2C/F0 2C Typematic
22 y 35/F0 35 Typematic
23 U 3C/F0 3C Typematic
24 I 43/F0 43 Typemati c
25 0 44/F0 44 Typematic
26 p 40/F0 40 Typematic
27 [54/F0 54 Typematic
28] 5B/F0 5B Typematic
29 (No Key) 5C/F0 5C Typematic
30 Caps Lock 14/F0 14 Make/Break
31 A le/F0 1C Typematic
32 S 1B/F0 1B Typeniatic
33 0 23/F0 23 Typematic
34 F 2B/F0 2B Typematic
35 G 34/F0 34 Typematic
36 H 33/F0 33 Typematic
37 J 3B/F0 3B Typematic
38 K 42/F0 42 Typematic
39 L 4BtH) 4B Typematic
40 ; 4C/F0 4C Typematic

I Figure 21 (Part 1 of 3). 122-Key Keyboard Scan-Code Set 3

48 Keyboards - September 1991

122-Key Default
Key U.S. Key

* Legend Base Case Type

41 I 52/F9 52 Typematic
42 \ 53/F9 53 Typematic
43 Enter 5A/F9 5A Typematic
44 L. Shi ft 12/F9 12 Make/Break
45 (No Key) 13/F9 13 Typematic
46 Z 1A/F9 1A Typematic
47 X 22/F9 22 Typematic
48 C 21/F9 21 Typematic
49 V 2A/F9 2A Typematic
59 B 32/F9 32 Typematic
51 N 31/F9 31 Typematic
52 M 3A/F9 3A Typematic
53 . 41/F9 41 Typematic
54 49/F9 49 Typematic
55 / 4A/F9 4A Typematic
56 (No Key) 51/F9 51
57 R. Shift 59/F9 59 Make/Break
58 L. Ctrl 11/F9 11 Make/Break
69 L. Alt 19/F9 19 Make/Break
61 Space Bar 29/F9 29 Typematic
62 R. Alt 39/F9 39 Make/Break
64 R. Ctrl 58/F9 58 Make/Break
65 (No Key) 96/F9 F6
66 Pause 9C/F9 9C Make only
67 (No Key) 9B/F9 9B
68 (No Key) 9A/F9 9A
69 (No Key) 09/F9 99
79 Attn/Sysreq 95/F9 05 Make only
71 (No Key) 94/F9 94
72 (No Key) 93/F9 93
73 PrtSc 83/F9 83 Make only
74 (No Key) 91/F9 91 ,

75 (No Key) 67/F9 67
76 End 64/F9 64 Typematic
78 +- 61/F9 61 Typematic
89 PgUp 6E/F9 6E Make only
81 Ins 65/F9 65 Make only
82 t 63/F9 63 Typematic
83 Home 62/F9 62 Make only
84 + 69/F9 69 Typematic
85 PgOn 6F/F9 6F Make only
86 Del 60/F9 60 Typematic
88 -. 6A/F9 6A Typematic
99 Esc 76/F9 76 Make only

I Figure 21 (Part 2 of 3). 122-Key Keyboard Scan-Code Set 3

Keyboards - September 1991 49

122-Key Default
Key U.S. Key
Legend Base Case Type

91 K.P. Home!7 6Cm) 6C Make only
92 K.P. +/4 6B/Ffl 6B Make only
93 K.P. End/1 69/Ffl 69 Make only
94 (No Key) 68/Ffl 68
95 ScrLk/NumL 77/Ffl 77 Make only
96 K.P. t/8 75/Ffl 75 Make only
97 K.P. 5 73/Ffl 73 Make only
98 K.P. t/2 72/Ffl 72 Make only
99 K.P. Ins/fl 7fl/Ffl 7fl Make only
1flfl K.P. * 7E/Ffl 7E Make only
WI K.P. PgUp/9 7D/Ffl 70 Make only
Ifl2 K.P /6 74/Ffl 74 Make only
1fl3 K.P. pgDn/3 7A/Ffl 7A Make only
W4 K.P. Del/. 71/Ffl 71 Make only
1fl5 Space/Break 84/Ffl 84 Make only
1fl6 K.P. + 7C/Ffl 7C Typematic
Ifl7 K.P. - 7B/Ffl 7B
W8 K.P. Enter 79/Ffl 79 Make only
1fl9 (No Key) 78/Ffl 78
11fl F1 fl7/Ffl fl7 Make only
111 F2 flF/Ffl flF Make only
112 F3 17/Ffl 17 Make only
113 F4 IF/Ffl IF Make only
114 F5 27/Ffl 27 Make only
115 F6 2F/Ffl 2F Make only
116 F7 37/Ffl 37 Make only
117 F8 3F/Ffl 3F Make only
118 F9 47/Ffl 47 Make only
119 F1fl 4F/Ffl 4F Make only
12fl Fll 56/Ffl 56 Make only
121 F12 5E/Ffl 5E Make only
122 F13 fl8/Ffl fl8 Make only
123 F14 1fl/Ffl 1fl Make only
124 F15 18/Ffl 18 Make only
125 F16 2fl/Ffl 2fl Make only
126 F17 28/Ffl 28 Make only
127 F18 3fl/Ffl 3fl Make only
128 F19 38/Ffl 38 Make only
129 F2fl 4fl/Ffl 4fl Make only
13fl F21 48/Ffl 48 Make only
131 F22 5fl/Ffl 5fl Make only
132 F23 57/Ffl 57 Make only
133 F24 5F/Ffl 5F Make only

I Figure 21 (Part 3 of 3). 122-Key Keyboard Scan-Code Set 3

50 Keyboards - September 1991

Cables and Connectors

The keyboard cable connects to the system with a 6-pin miniature DIN
connector and to the keyboard with a 6-position connector. The
following figures show the pin configuration and signal assignments.

System
Connector

DIN Connector
Pins

1
2
3
4
5
6

Shield

6

1 2

Signal Name

+KBDDATA
Reserved
Ground

+5.0Vdc
+KBDCLK
Reserved

Frame Ground

Keyboard
Connector

FEDCBA

Keyboard Connector Pins

B
F
C
E
o
A

Shield

Figure 22. Keyboard Connectors Signal and Voltage Assignments

Keyboards - September 1991 51

I Specifications (84/85-Key Keyboard)

I Specifications for the keyboard are as follows:

I Power Requirements

I • +5 V dc ± 10%
I • 275 mA.

I Size

I • Length: 406 mm (16.0 in.)
I • Depth: 190 mm (7.5 in.)
I • Height: 58 mm (2.3 in.), legs extended.

I Weight

I • 1.90 kg (4.2 Ib).

Specifications (101/1 02-Key Keyboard)

Specifications for the keyboard are as follows:

Power Requirements

• +5 V dc ± 10%
• 275 mA.

Size

• Length: 492 mm (19.4 in.)
• Depth: 210 mm (8.3 in.)
• Height: 58 mm (2.3 in.), legs extended.

Weight

• 2.25 kg (5.0 Ib).

52 Keyboards - September 1991

I Specifications (122-Key Keyboard)

I Specifications for the keyboard are as follows:

I Power Requirements

I • +5 V dc ± 10%
I • 275 mAo

I Size

I • Length: 532 mm (20.9 in.)
I • Depth: 215 mm (8.46 in.)
I • Height: 70 mm (2.76 in.), legs extended.

I Weight

I • 2.32 kg (5.12 Ib).

Keyboards - September 1991 53

54 Keyboards - September 1991

I Appendix A. Keyboard Layouts

I The keyboard layouts shown on the following pages are presented in
I alphabetical order, as follows. The number in parenthesis is the
I language 10 number of the country.

• 84/85-key keyboard layouts:
- Canadian French
- Latin America

• 101/102-key keyboard layouts:
- Arabic (238)
- Belgium (120)
- Canada (French) (058)
- Denmark (159)
- Finland (153)
- France (120)
- France (189)
- Germany (129)
- Hebrew (212)
- Iceland (197)
- Italy (142)
- Latin America (171)
- Netherlands (143)
- Norway (155)
- Portugal (163)
- Spain (172)
- Switzerland (French) (150F)
- Switzerland (German) (150G)
- Turkey (179)
- United Kingdom (166)
- Yugoslavia (Latin) (234)

• 122-key keyboard layouts:
- Belgium (120)
- Canada (French) (277/058)
- Denmark (2811159)
- Finland (285/153)
- France (2511189)
- France (251/120)
- Germany (129)
- Iceland (197)
- Italy (293/142)
- Latin America (309/171)
- Netherlands (101/143)
- Norway (281N/155)
- Portugal (163)

© Copyright IBM Corp. 1990. 1991 55

- Spain (071/172)
- Switzerland (French) (150F)
- Switzerland (German) (150G)
- Turkey (4021179)
- United Kingdom (166)
- Yugoslavia (Latin) (234).

58 Keyboards - September 1991

~
co
I» ...
0-
m

rn
CD

I
D"
CD
~ ...

" ~
0-o
III
Co
I/)

en
CD

¥
3
0-
CD
......
l8

...
o
N
I r:

'<

~
I»
0-
(;'

~
W
CD -~n~

~~.:
go
I» ..
'"

" (I)
'<
0-o
I» ...
Q.
fII

I
en
CD

"B-
CD
3
0-
CD ...
......
CD
CD

....
S
I

E
m
CD
C
i"
:::s -.... I\)
o

~~

1r-"-I.IIr-"""\UIr-""'I.Ur-""'I.1

'<
0' o
S» a

en
<D

¥
3
e
<D
-"
<0
<0
-"

GI

..a.
o
I\)
I

5
(')
S»
::s
S»
Q.
S»

" ~
0-o
I» ...
C
UI

(J)
CD

"C
CD
3
0-
CD ...
......
co
co

~Q
~~

" CD
'<
0-o
Jl)

a.
fJI

en
CD

¥
3
0-
CD
<0
<0

~Q
~ -..... N

S

§OOg~
789 tr
... + & 0

S» a.

en
til

¥
3
C"
til
to
to ...

" \I)
'<
tr o
III
Q.
rn

(JJ
\I)
'C
CD
3
tr
\I) .,
......
co
co

~
CT o
II)

a.
UI

en
CD

¥
3
CT
CD ...
.....
~

~~~~~ 
~ 

1~~{D}~I~~.,~{Ir-{II~~IJ~:lr~IIr-~B}~nr~.~{lr~:~I~ ~ 
>-------I~ 



~g---



" CD 
'< 
CT o 
I» ... 
Q. 
en 

en 
CD 
'C 
<D 
3 
CT 
CD ... 
...... 
CD 
CD ...... 

""" o 
N 
I 

" CD 
'< --I» 
-< -""" t -
" ~gi 

~8 901» ~ .,....., ... 
+ a. 

~ 
~ 



.... 
o 

" CD 

~ o 
SD a. 
(Jl 

I 
(J) 
CD 
"9. 
CD 
3 
tT 
CD .... 
..... 
l8 ..... 



" CD 
'< 
C
O 
III 
a. 
en 
I 

en 
CD 

¥ 
3 
c
CD ., 
.... 
l8 .... 
.... ... 



A 
~ 
c:r o 
I» .... 
0-m 

.... 
o 

'" • 
~ 
'< 
Z o .. 
::IE 
m 
'< -.... en en 

~~ 
7 8 9 '< 

l' 0' o 
L-~'L--..JI'L-~ + m 

a. 



" (\) 
'< 
tT o 
I» ... a. 
(II 

C/) 
(\) 
"'0 
<D 
3 
tT 
(\) ... 
..... 
~ ..... 



" ~ 
0' o 
III 
a 
(JJ 

en 
CD 

¥ 
3 
0' 
CD ., 
-' 

:8 
-' 

§ ~OOOO§OO§ 
l~nr~.=~.~'U~'.~II~II~n~u,~uJ~Ur~Ur~l~ 

,---=,,~~~~~~.-::.::!!-::~!!-~~f] 
~i 

7 8 9 0 
, S» 

a. 



Keyboards - September 1991 75 



" CD 
'< 
C" o 
III 
a 
(II 

en 
CD 
'0 
<D 
3 
C" 
CD ... .... 
CD 
CD .... 

.... 
o 
N 
I 

~ 
'< 
en 
:I 
if 
CD .. 
Dr 
~ 
D. 

~~gggi .. 
~'''''''' 789 3 oj, ,...,.,. .. ~t I) 

"=:""","=,,,,"=="I + ~ -



" ~ 
C' 
o 
III ..., 
0-
00 

I 
CIl 
(!) 

"C 
CD 
3 
C' 
(!) ... ... 
l8 ... 
.... .... 



" CD 
'< 
0-o 
III .., 
Q. 
en 

en 
CD 
"S-
CD 
3 
0-
CD .., 
--' co co 
--' 



" ~ 
CT o 
PI 
a. 
UI 

I 
en 
CD 

¥ 
3 
CT 
CD .., 
..... 
~ ..... 

.... 
o 
I\) 
• 
~ 
'< 
-< 
C 
fa a 
i' 
< 
ii 



" (I) 
'< 
tT o 
III 
a. m 

(J) 
(I) 
"0 
CD 
3 
g ... 
..... 
l8 ..... 

..... 
N 
N 
I 

~ 
CD. 
'< 
III 
CD 
~ 
ii' 
::s -..... N 
S 



" ~ 
0-
o 
III ... 
a. 
(Jj 

C/) 
<D 
"0 
Cii 
3 
0-
<D ... 
..... 
<0 
<0 ..... 

00 .... 



" (I) 
'< 
CT 
o 
III a. 
1/1 

I 
en 
(I) 

¥ 
3 
CT 
(I) ... .... 
<0 
<0 ..... 

-
...I. 
I\,) 
I\,) 
I 

" CD 
'< 
C 
CD 
:::s 
3 
I» 
""I 
~ 



~ 
CD 
'< 
C" 
o 
I» .... 
0. 
IJ) 

I 
C/J 
CD 
"'0 
m 
3 
C" 
CD .... 
~ 

co co 
~ 



" Q) 
'< 
0" o 
III 
a. 
(II 

fJ) 
(I) 

¥ 
3 
0" 
Q) ., 
..... 
~ ..... 



en 
CD 

¥ 
3 
'0' 
CD .... 
...... 
~ ...... 

~ • • - ... 
~ ..... -Fl. -

-N en .... 



en 
CD 

¥ 
3 
0' 
CD ... .... 
co co .... 

~-'''" .... gl----



-...a. 

~ -



" (J) 
'< 
0-o 
I» ..... a. 
m 

(J) 
(J) 
"0 
lD 
3 
0-
(J) 
..... 
..... 
co 
co ..... 



" ~ 
CT o 
III ... a. 
m 
I 

CJ) 
CD 
"0 
<t 
3 
CT 
CD ... 
....L 

:g 
....L 



" CD 
'< 
tr o 
III 
a. 
III 

I 
en 
CD 

¥ 
3 
tr 
CD .... 
..... 
:g 
..... 



" ~ 
t1' 
o 
I» ... 
Q. 
UI 

I 
en 
CD 

¥ 
3 
t1' 
CD ... 
~ 

CD 
CD ..... 

m 
00 
QQ 
~ 

99'-,.,. ... PIa - -
00 



" CD 
'< 
0" o 
III a. 
C/J 

I 
en 
CD 

¥ 
3 
0" 
CD 
~ .... 
co co .... 



A 
~ 
r:J' 
o 
III .... 
0. 
(J) 

I 
C/) 
CD 

¥ 
3 
r:J' 
CD .... .... 
~ .... 
CD 
W 



" CD 
'< 
C
O 
III .... 
Co en 

en 
CD 
"0 
<ii 
3 
c
CD .... .... 
co co .... 

-" §9hap .... 00'" ~ otth • I ::a 

~8 9~:g. 
" .,. ;t + --005 00- ~ +- ... Q 

" ~2 JB-F~ • i ~ 

~nE"" ~ 
~~ g 

~ a. 



en 
(I) 
"0 
CD 
3 
r:T 
(I) ... 
-' co co 
-' 



" (I) 

'< 
0-
o 
III ... 
Co 
C/l 

(J) 
(I) 

"9-
(I) 

3 
0-
(I) ... 
..... 
<0 
<0 ..... 



-
...A. 
N 
N 
I 

~ 
'< 
C 
:::s 
::;: 
CD 
Q, 

~ 

OO~OO~OO§ i 
m ~~~~~~ ~~ §900~ ~ OO~~~iA~~j 

i ~§ ~OOg[J~OOgg~~ ~ ~[J~gi 
~ 9~ ~gg~~goo~~ ~: ~~ ~ ~~O~ 
~ ggid~~ ~~~. ggU 
CD 
3 
CT 
(1) 

"" ~ 
co co .... 
CD ..... 



" CD 
'< 
0-o 
I» ... 
Q, 
en 

en 
CD 
"2-
CD 
3 
0-
CD ., ... 
co 
co ... 



Index 

A 
acknowledge (ACK) command 18 

B 
basic assurance test (BAT) 11 
BAT completion code command 18 
BAT failure code 18 
break code 21 
break code prefix command 18 
buffer overrun condition 20 

C 
cables 51 
commands from the system 12 
commands to the system 18 
connectors 51 

D 
default disable command 12 
delay, typematic 21 
detection, key-code 19 

E 
echo command 12, 19 
enable command, keyboard 13 

F 
FIFO (first-in-first-out) 20 

invalid command 13 

K 
key detection error command 19 
key-code detection 19 

© Copyright IBM Corp. 1990, 1991 

keyboard buffer overrun 
condition 20 

keyboard description 1 
keyboard 10 command 19 
keyboard layouts 2, 55 
keys 20 

L 

make-only 20 
make/break 20 
typematic 21 

line protocol, keyboard 11 

M 
make-only keys 20 
make/break codes 21 
make/break keys 20 
mode, keyboard data stream 12 

o 
outputs, keyboard 26 
overrun command 19 
overrun condition, keyboard 

buffer 20 

p 
power-on reset (POR) 11 
power-on routine, keyboard 11 
protocol, keyboard 11 

R 
rate, typematic 16, 21 
read 10 command, keyboard 13 
resend command 13, 19 
reset command 13 
reset, power-on (POR) 11 

99 



S 
scan codes, keyboard 26 
scan-code set overview 1 
scan-code tables 26 
select alternate scan codes 

command 14 
sequential key-code detection 19 
set all keys command 14 
set default command 14 
set key type command 14 
set typematic rate/delay 16 
set/reset status indicators 

command, keyboard 15 
specifications 52, 53 

T 
test, basic assurance (BAT) 11 
three-key combinations 24 
two-key combinations 22 
typematic delay 21 
typematic keys 21 
typematic rate 16, 21 

Numerics 
101/102-key scan-code set 1 30 
101/102-key scan-code set 2 37 
101/102-key scan-code set 3 45 
101/102-key specifications 52 
122-key scan-code set 1 34 
122-key scan-code set 2 41 
122-key scan-code set 3 48 
122-key specifications 53 
84/85-key scan-code set 1 33 
84/85-key scan-code set 2 40 
84/85-key specifications 52 

100 



Characters and Keystrokes 

Character Codes 
Quick Reference 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 1 
8 

© Copyright IBM Corp. 1990 



Notes: 

II Characters and Keystrokes- October 1990 



Character Codes 

The following figures show the decimal values, hexadecimal values, 
and keystrokes for each character. The notes referred to in the 
figures are on page 7. 

Character Codes and Keystrokes- October 1990 1 



Value 

09 

OA 

As Character. 

Backspace, 

Shift 

Backspace 

Ctrll 

Value 

He" Dec 

18 24 

19 25 

lA 28 

lB 'ZT 

lC 28 

10 29 

lE 30 

IF 31 

20 32 

21 33 

22 34 

23 35 

24 36 

25 37 

28 36 

'ZT 39 

28 40 

29 41 

2A 42 

2B 43 

2C 44 

20 45 

2E 46 

Symbol 

I 
I 
-
-

L-

-
.t-

'f' 

Blank 
Space 

, 
" 

# 

$ 

% 

& 

( 

) . 
+ 
, 

-

2 Character Codes and Keystrokes - October 1990 

As Character. 

Keystrok .. Note. 

CtrlX 

Ctrl Y 

Ctrl Z 

Ctrl C 

Esc, Shift 

Esc, Crtl 

Esc 

Ctrl 

Clrl J 

Ctrl6 

Ctrl-

Space Bar, 
Shift, 
Space, 
Ctrl Space, 
All Space 

, Shift 

" Shift 

# Shift 

$ Shift 

% Shift 

& Shift 

Shift 

( Shift 

) . Note 1 

+ Shift 

. 
-

Note 2 



Value As Characlers Value AB Characlers 

Hex Dec Symbol Keyslrokes Noles Hax Dec Symbol Keyslrokes Noles 

2F 47 I I 
48 75 K K Note 4 

30 48 0 0 Note 3 
4C 76 L L Note 4 

31 49 1 1 Note 3 
40 77 M M Note 4 

32 50 2 2 Note 3 
4E 78 N N 

33 51 3 3 Note 3 
4F 79 0 0 Note 4 

34 52 4 4 Note 3 
50 80 p P Note 4 

35 53 5 5 Note 3 
51 81 Q Q Note 4 

36 54 6 6 Note 3 
52 82 R R Note 4 

37 55 7 7 Note 3 
53 83 S S Note 4 

38 56 8 8 Note 3 
54 84 T T Note 4 

39 57 9 9 Note 3 
55 85 U U Note 4 

3A 58 : : Shilt 
56 86 V V Note 4 

38 59 ; ; 

3C 60 < < Shift 
57 87 W W Note 4 

3D 61 = = 58 88 X X Note 4 

3E 62 > > Shilt 
59 89 Y Y Note 4 

3F 63 ? ? Shift 
5A 90 Z Z Note 4 

40 64 @ @ Shift 
58 91 [ [ 

41 65 A A Note 4 
5C 92 \ \ Note 4 

42 66 8 8 Note 4 
50 93 1 1 

43 67 C C Note 4 
5E 94 " " Shift 

44 68 0 0 Note 4 
5F 95 - - Shift 

45 69 E E Note 4 
60 96 • . 

46 70 F F Note 4 
61 97 a a Note 5 

47 71 G G Note 4 62 98 b b NoteS 

48 72 H H Note 4 63 99 c c Note 5 

49 73 I I Note 4 64 100 d d Note 5 

4A 74 J J Note 4 65 101 e e Note 5 

66 102 I I Note 5 

Character Codes and Keystrokes- October 1990 3 



Value As Characters Value As Cheracter. 

Hex Dec Symbol Keystrokes Notes Hex Dec Symbol Keyslrokes Notes 

67 103 9 9 Nole5 80 128 C All 128 Nole6 

68 104 h h Nole5 
81 129 ii All 129 Nole6 

69 105 i i Nole5 82 130 e All 130 NoleS 

6A 106 j j Nole5 
83 131 A All 131 Nole6 

68 107 k k Nole5 
84 132 ii All 132 Nole6 

6C 108 I I Nole5 85 133 a All 133 Nole6 

60 109 m m Nole5 
86 134 a All 134 Nole6 

6E 110 n n Nole5 
87 135 Y All 135 Nole6 

6F 111 a a Nole5 
88 136 4! All 136 Nole6 

70 112 P P Nole5 
69 137 Ii All 137 Nole6 

71 113 q q Nole5 8A 136 e All 136 Nole6 

72 114 r r Nole5 88 139 i All 139 Nole6 

73 115 s s Nole5 8C 140 i All 140 Nole6 

74 116 I I Nole5 80 141 I AI! 141 Nole6 

75 117 u u Nole5 8E 142 A All 142 Nole6 

76 118 v v NoleS 8F 143 A All 143 Nole6 

77 119 w w Nole5 90 144 to All 144 Nole6 

78 120 x x Nole5 91 145 III All 145 Nole6 

79 121 Y Y Nole5 92 146 IE All 146 Nole6 

7A 122 z z Nole5 93 147 6 All 147 Nole6 

78 123 { { Shift 94 148 0 All 148 Nole6 

7C 124 
, , 

Shift , , 95 149 6 All 149 Nole6 

70 125 } } Shift 96 150 Q All 150 Nole6 

7E 126 - - Shift 97 151 iI All 151 Nole6 

7F 127 6. Clrl· 98 152 Y All 152 Nole6 

99 153 0 All 153 Nole6 

9A 154 0 All 154 Nole6 

4 Character Codes and Keystrokes - October 1990 



Value A. Character. Value AB Characters 

Hex Dec Symbol Keystrokes Notes Hex Dec Symbol Keystrokes Note. 

9B 155 ¢ All 155 Nole6 B7 183 r-n Alt 183 Note 6 

9C 156 £ All 156 Nole6 B8 164 rl Alt 164 NOle6 

90 157 ¥ All 157 Nole6 B9 185 t:::J Alt 185 Nole6 

9E 156 PI All 156 Nole6 

9F 159 f All 159 Nole6 BA 186 Alt 166 Note 6 

AO 160 ~ All 160 Note 6 BB 187 Rl Alt 187 NoteS 

AI 161 I All 161 Note 6 BC 188 f=J All 188 NoteS 

A2 162 6 Alt 162 Nole6 BO 189 UJ Alt 189 NoteS 

A3 163 U All 163 Nole6 

A4 164 n Alt 164 Note 6 BE 190 ~ Alt 190 NoleS 

A5 165 fl All 165 Nole6 BF 191 h Alt 191 NoleS 

A6 166 .!. All 166 Nole6 CO 192 L- Alt 192 NoteS 

A7 167 .Q. All 167 NOle6 
Cl 193 I All 193 NOleS 

A6 168 L Alt 168 Nole6 
C2 194 Alt 194 NOleS 

A9 169 r- All 169 NOle6 C3 195 1--= All 195 NoteS 

AA 170 --, All 170 Nole6 C4 19S All 196 Nole 6 

AB 171 Yo All 171 Nole6 
C5 197 Alt 197 NoteS 

AC 172 Y. All 172 NOle6 
C6 198 I All 198 NOleS 

AD 173 I All 173 Nole6 
C7 199 ~ AItI99 Nole S 

AE 174 « All 174 Nole6 C8 200 ~ All 200 Note S 

AF 175 » Alt 175 Note 6 

BO 176 ... Alt 176 Nole6 

C9 201 Alt201 NoleS 

II 
Bl In I All 177 Nole6 

--' L....-
CA 202 Alt202 NoteS 

B2 178 I All 178 Nole6 CB 203 --. r- All 203 NoteS 

B3 179 All 179 Note 6 CC 204 I~ Alt204 NoteS 

B4 180 f.- Ait 180 Nole6 CO 205 Alt205 NoteS 

B5 181 C All 181 Note 6 

B6 182 R1 Alt 182 Note 6 
CE 206 ~~ Alt206 NoteS 

CF 207 Alt207 NoteS 

DO 206 Alt206 NoteS 

Character Codes and Keystrokes - October 1990 5 



Value A. Characters Value As Character. 

Hex Dec Symbol Keystrokes Notes 

EC 236 00 Alt236 Note 6 

ED 237 t/J Alt237 Note 6 

EE 238 E Alt238 Note 6 

EF 239 n Alt239 Note 6 

FO 240 ;: Alt240 Note 6 

F1 241 ± Alt241 Note 6 

F2 242 ?! A1t242 Note 6 

F3 243 S A1t243 Note 6 

F4 244 r Alt244 NoteS 

F5 245 J Alt245 Note 6 

F6 246 + Alt246 NoteS 

F7 247 "" Alt247 NoteS 

F8 248 0 Alt248 Note 6 

F9 249 • A1t249 NoteS 

FA 250 • Alt250 Note 6 

FB 251 r Alt251 Note 6 

FC 252 n Alt252 Note 6 

FD 253 2 Alt253 Note 6 

FE 254 • Alt254 Note 6 

FF 255 BLANK Alt255 Note 6 

6 Character Codes and Keystrokes - October 1990 



Notes: 
1. Asterisk (*) can be typed by pressing the * key or, in the shift state, 

pressing the 8 key. 

2. Period (.) can be typed by pressing the. key or, in the shift or Num 
Lock state, pressing the Del key. 

3. Numeric characters 0-9 can be typed by pressing the numeric 
keys on the keyboard or, in the shift or Num Lock state, pressing 
the numeric keys in the keypad portion of the keyboard. 

4. Uppercase alphabetic characters (A-Z) can be typed by pressing 
the character key in the shift state or the Caps Lock state. 

5. Lowercase alphabetic characters (a-z) can be typed by pressing 
the character key in the normal state or in Caps Lock and shift 
state combined. 

6. The three digits are typed on the numeric keypad while pressing 
the Alt key. Character codes 001-255 may be entered in this 
fashion (with Caps Lock activated, character codes 97-122 display 
in uppercase). 

Character Codes and Keystrokes - October 1990 7 



Quick Reference 

~!~~AL .. 0 16 32 48 64 80 96 112 

• ~~~~~L 0 1 2 3 4 5 6 7 
VALUE 

0 0 BLANK 
~ 

BLANK 0 @ p , 
P (NULL) (SPACE) 

1 1 9 ~ 
, . 1 A Q a q 

2 2 - t I I 2 B R b r 
3 3 , 

" # 3 C S c s .. 
4 4 + ~ $ 4 D T d t 

5 5 4- § 0/0 5 E U e u 
6 6 ~ - & 6 F V f v 

7 t I 7 G W g W 7 • -

8 8 i ( 8 H X h x 

0 ~ ) 9 I Y 
. 

9 9 1 Y . 
10 A -+ * · J Z J z · 
11 B cf +- + · K [ k { , 
12 C ~ L < L " 1 I , I 

l3 D ~ +-+ - - M ] m } -

14 E ].l A . > N /\ n ,..., 

15 F * , / ? 0 - 0 6 

8 Characters Codes and Keystrokes- October 1990 



I~~AL • 128 144 160 176 192 208 224 240 

• ;E§iAL 8 9 A B C D E F 

<; , , -0 0 E a ex:: --000 

1 1 
.. , ::::: p + u re 1 ..... ...... 

2 2 
, 

1E 
, 

!!! r > e 0 II 
" 

.A- , lL n < 3 3 a 0 u -

4 4 
.. .. "" b L r a 0 n - I--

, , "'"" a J 5 5 a 0 N == F 
0 " a J == fJ . 

6 6 a u r-- --, . 
7 c; 

, 
0 y 1"'-1 7 U 11 1"'-1 

" 
.. 

<I> 0 y . 
8 8 e ~ ==l 

.. •• I d e • 9 9 e 0 I 
r-

, .. WL Q 10 A e U I • 
.. ¢ 'li =j c5 11 B 1 r- -v-
" £ Y4 bd 00 n 12 c 1 
, 

¥ . UJ cfJ 2 13 D 1 l .. 
Il bd u E I 14 E A « 11 

15 F A f » II n BLANK 
°FP 

Characters Codes and Keystrokes- October 1990 9 



Notes: 

10 Characters Codes and Keystrokes - October 1990 



Compatibility 

Description ..................................... 1 
Application Guidelines ............................. 1 
Hardware Interrupts ............................... 1 
Software Interrupts ................................ 3 
High-Level Language Considerations .. . . . . . . . . . . . . . . . . .. 3 
Assembler Language Programming Considerations .......... 3 

Opcodes ..................................... 4 
80286 Anomalies .... . . . . . . . . . . . . . . . . . . . . . . . . . . .. 8 
80386 Anomalies .......................... . . . . .. 8 
80486 Anomalies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 13 
80387 Anomalies .... . . . . . . . . . . . . . . . . . . . . . . . . . .. 14 
ROM BIOS and Operating System Function Calls ......... 14 

Software Compatibility ............................ 16 
Multitasking Provisions ............................ 17 

Interfaces ................................... 18 
Classes ..................................... 19 
Time-Outs ................................... 20 

Machine-Sensitive Programs ........................ 20 
Math Coprocessor Compatibility ...................... 20 

I 80486 to 80387 Compatibility ....................... 21 
80387 to 80287 Compatibility ....................... 23 
Exceptions ................................... 24 
80287 to 8087 Compatibility ... . . . . . . . . . . . . . . . . . . . .. 25 

Diskette Drives and Controller ....................... 27 
Fixed Disk Drives and Controller ...................... 28 

© Copyright IBM Corp. 1990 



Ii Compatibility- October 1990 



Figures 

1. String Instruction/Register Size Mismatch ....... . . . .. 10 
2. Write and Format Head Settle Time ................ 15 
3. Functional Code Assignments .................... 19 
4. Math Coprocessor Software Compatibility . . . . . . . . . . .. 21 
5. Diskette Drive Read, Write, and Format Capabilities ..... 27 

© Copyright IBM Corp. 1990 III 



Iv Compatibility- October 1990 



Description 

The differences in system microprocessors, math coprocessors, 
general system architecture, and diskette drive capabilities must be 
taken into consideration when designing application programs 
exclusively for a specific model or programs compatible across the 
IBM Personal Computer and Personal System/2 product lines. This 
section discusses these major differences and provides some 
suggestions to aid you in developing your program. 

Application Guidelines 

Use the following information to develop application programs for the 
IBM Personal Computer and Personal System/2 products. Whenever 
possible, BIOS should be used as an interface to hardware in order to 
provide maximum compatibility and portability of applications across 
systems. 

Hardware Interrupts 

Hardware interrupts are level-sensitive for systems using the Micro 
Channel architecture while systems using the Personal Computer 
type I/O channel design have edge-triggered hardware interrupts. 
The interrupt controller clears its in-service register bit when the 
interrupt routine sends an End-of-Interrupt (EOI) command to the 
controller. The EOI command is sent whether the incoming interrupt 
request to the controller is active or inactive. 

In level-sensitive systems, the interrupt-in-progress latch is readable 
at an I/O address bit position. This latch is read during the interrupt 
service routine and may be reset by the read operation or may 
require an explicit reset. 

Note: Designers may want to limit the number of devices sharing an 
interrupt level for performance and latency considerations. 

Compatlbility- October 1990 1 



The interrupt controller on level-sensitive systems requires the 
interrupt request to be inactive at the time the EOI command is sent; 
otherwise, a "new" interrupt request will be detected and another 
microprocessor interrupt caused. 

To avoid this problem, a level-sensitive interrupt handler must clear 
the interrupt condition (usually by a Read or Write to an 1/0 port on 
the device causing the interrupt). After clearing the interrupt 
condition, a JMP $ + 2 should be executed prior to sending the EOI 
command to the interrupt controller. This ensures that the interrupt 
request is removed prior to re-enabling the interrupt controller. 
Another JMP $+2 should be executed after sending the EOI 
command, but prior to enabling the interrupt through the Set Interrupt 
Enable Flag (STI) command. 

In the level-sensitive systems, hardware prevents the interrupt 
controllers from being set to the edge-triggered mode. 

Hardware interrupt IRQ9 is defined as the replacement interrupt level 
for the cascade level IRQ2. Program interrupt sharing should be 
implemented on IRQ2, interrupt hex OA. The following processing 
occurs to maintain compatibility with the IRQ2 used by IBM Personal 
Computer products: 

1. A device drives the interrupt request active on IRQ2 of the 
channel. 

2. This interrupt request is mapped in hardware to IRQ9 input on the 
second interrupt controller. 

3. When the interrupt occurs, the system microprocessor passes 
control to the IRQ9 (interrupt hex 71) interrupt handler. 

4. This interrupt handler performs an EOI command to the second 
interrupt controller and passes control to IRQ2 (interrupt hex OA) 
interrupt handler. 

5. This IRQ2 interrupt handler, when handling the interrupt, causes 
the device to reset the interrupt request prior to performing an 
EOI command to the master interrupt controller that finishes 
servicing the IRQ2 request. 

2 Compatibility- October 1990 



Software Interrupts 

With the advent of software interrupt sharing, software interrupt 
routines must daisy chain interrupts. Each routine must check the 
function value and if it is not in the range of function calls for that 
routine, it must transfer control to the next routine in the chain. 
Because software interrupts are initially pointed to 0:0 before daisy 
chaining, it is necessary to check for this case. If the next routine is 
pointed to 0:0 and the function call is out of range, the appropriate 
action is to set the carry flag and do a RET 2 to indicate an error 
condition. 

High-Level Language Considerations 

The IBM-supported languages of IBM C, BASIC, FORTRAN, COBOL, 
and Pascal are the best choices for writing compatible programs. 

If a program uses specific features of the hardware, that program 
may not be compatible with all IBM Personal Computer and Personal 
System/2 products. Specifically, the use of assembler language 
subroutines or hardware-specific commands (for example In, Out, 
Peek, and Poke) must follow the assembler language rules. See 
"Assembler Language Programming Considerations." 

Any program that requires precise timing information should obtain it 
through an operating system or language interface; for example, 
TIME$ in BASIC. If greater precision is required, the assembler 
techniques in "Assembler Language Programming Considerations" 
are available. The use of programming loops may prevent a program 
from being compatible with other IBM Personal Computer products, 
IBM Personal System/2 products, and software. 

Assembler Language Programming 
Considerations 

This section describes fundamental differences between the systems 
in the Personal Computer and Personal System/2 product lines that 
may affect program development. 

Compatibility- October 1990 3 



Opcodes 

The following opcodes work differently on systems using either the 
80286 or 80386 microprocessor than they do on systems using the 
8088 or 8086 microprocessor. 

• PUSH SP 

The 80286 and 80386 microprocessors push the current stack 
pointer; the 8088 and 8086 microprocessors push the new stack 
pointer, that is, the value of the stack pointer after the PUSH SP 
instruction is completed. 

• Single step interrupt (when TF= 1) on the interrupt instruction 
(Opcode hex CC, CD): 

The 80286 and 80386 microprocessors do not perform a 
single-step interrupt on the INT instruction; the 8088 and 8086 
microprocessors do perform a single-step interrupt on the INT 
instruction. 

• The divide error exception (interrupt 0): 

The 80286 and 80386 microprocessors push the CS:IP of the 
instruction that caused the exception; the 8088 and 8086 
microprocessors push the CS:IP of the instruction following the 
instruction that caused the exception. 

• Shift counts for the 80286 and 80386 microprocessors: 

Shift counts are masked to 5 bits. Shift counts greater than 31 are 
treated mod 32. For example, a shift count of 36 shifts the 
operand four places. 

• LOCK prefix: 

When the LOCK prefix is used with an instruction, the system 
microprocessor executes the entire instruction before allowing 
interrupts. If a Repeat String Move instruction is locked, 
interrupts may be disabled for a long duration. 

The 8088, 8086, and 80286 microprocessors allow the LOCK prefix 
to be used with most instructions. However, the 80386 
microprocessor restricts the use of LOCK to the following 
instructions: 

Bit Test and Set Memory, Register/Immediate 
Bit Test and Reset Memory, Register/Immediate 
Bit Test and Complement Memory, Register/Immediate 
XCHG Register, Memory 
XCHG Memory, Register 
ADD, OR, ADC, SBB, Memory, Register/Immediate 

4 Compatibility- October 1990 



- AND, SUB, XOR Memory, Register/lmmediate 
- NOT, NEG, INC, DEC Memory. 

An undefined opcode trap (lNT 6) is generated if the LOCK prefix 
is used in the 80386 environment with an instruction not listed. 

When the 80286 is operating in the virtual memory mode, the 
LOCK prefix is 10PL-sensitive. Since the 80386 restricts the use 
of the LOCK prefix to a specific set of instructions, the LOCK 
prefix is not 10PL-sensitive in the 80386 environment. 

• Multiple lockout instructions: 

There are several microprocessor instructions that, when 
executed, lock out external bus signals. DMA requests are not 
honored during the execution of these instructions. Consecutive 
instructions of this type prevent DMA activity from the start of the 
first instruction to the end of the last instruction. To allow for 
necessary DMA cycles, as required by the diskette controller in a 
multitasking system, multiple lock-out instructions must be 
separated by a JMP SHORT $+2. 

• Back-to-back I/O commands: 

Back-to-back I/O commands to the same I/O ports do not permit 
enough recovery time for some I/O adapters. To ensure enough 
time, a JMP SHORT $+2 must be inserted between IN/OUT 
instructions to the same I/O adapters. 

Note: MOV AL,AH type instruction does not allow enough 
recovery time. An example of the correct procedure 
follows: 

OUT IO_ADD,AL 
JMP SHORT $+2 
MOV AL,AH 
OUT IO_ADD,AL 

• I/O commands followed by an STI instruction: 

I/O commands followed immediately by an STI instruction do not 
permit enough recovery time for some system board and channel 
operations. To ensure enough time, a JMP SHORT $+2 must be 
inserted between the I/O command and the STI instruction. 

Note: MOV AL,AH type instruction does not allow enough 
recovery time. An example of the correct procedure 
follows: 

Compatibility- October 1990 5 



OUT IO_ADD,AL 
JMP SHORT $+2 
MOV AL,AH 
STI 

• NT bit and 10PL bits: 

When the 80286 is operating in the Real Address mode, the NT 
and 10PL bits in the flag register cannot be changed; the bits are 
zero. 

The 80386 allows the NT bit and the 10PL bits to be modified by 
POP stack into flags, and other instructions, while operating in 
the Real Address mode. This has no effect on the Real Address 
mode operation. However, upon entering Protected Mode 
operation, the NT bit should be cleared to prevent erroneous 
execution of the IRET instruction. If NT is set, the IRET attempts 
to perform a task switch to the previous task. 

• Overlap of OUT and following instructions: 

The 80386 has a delayed write to memory and delayed 
output-to-I/O capability. It is possible for the actual output cycle 
to I/O devices to occur after the completion of instructions 
following the Out instruction. Under certain conditions, this may 
cause some programs to behave in an undesirable manner. For 
example, an interrupt handler routine may output an EOI 
command to the interrupt controller to drop the interrupt request. 
If the interrupt handler has an STI instruction following the output 
instruction, the 80386 may re-enable interrupts before the 
interrupt controller drops the interrupt request. This could cause 
the interrupt routine to be reentered. 

To avoid this problem, either of the following procedures may be 
used: 

Place a JMP SHORT $+2 instruction between the OUT 
instruction and the STI instruction, or 

Read back the status from the interrupt controller before 
executing the STI instruction. 

Math coprocessor instructions: 

In 80386-based systems, the mode of the microprocessor and 
math coprocessor are tightly coupled. This is not the case for 
80286-based systems. The 80286-based systems require the 
math coprocessor FSETPM instruction to be executed to enable 

6 Compatibility - October 1990 



the 80287 to operate in the Protected mode. The 80287 remains 
in the Protected mode until it is reset. 

The mode of the 80287 determines the format in which the math 
coprocessor state information is saved by the FSTENV and 
FSAVE instructions. In the Protected mode, the instruction and 
data operand pointers are saved as selector/offset pairs; in the 
Real Address mode, the physical address and opcode are saved. 

If the FSETPM instruction is encountered in the 80386 
environment, it is ignored. The formatting is performed by the 
80386, which internally maintains the instruction and data 
operand pointers. The Real Address mode format image is saved 
when the 80386 is operating in the Real Address mode or Virtual 
8086 mode. The Protected mode format is used otherwise. 

See also "Math Coprocessor Compatibility" on page 20 for more 
information. 

• Use of 32-bit registers and the 32-bit addressing mode: 

It is possible to use the 32-bit registers and 32-bit addressing 
mode in all operating modes of the 80386 through the use of the 
operand-size prefix or address-size prefix. 

In a multitasking environment, extreme care must be taken to 
avoid conflicts with other tasks that use extended registers. If the 
operating system saves the extended 32-bit registers and new 
segment registers in the task context save area, conflicts will be 
avoided; if the operating system does not provide this function, 
another method must be implemented. 

One possible method is to disable the interrupts while using the 
extended registers. The extended registers should be saved 
before use and restored immediately after use while the 
interrupts are still disabled. The time that interrupts are disabled 
should be kept as short as possible. 

• Operand Alignment: 

When multiple bus cycles are required to transfer a multi byte 
logical operand (for example, a word operand beginning at an 
address not evenly divisible by 2), the 80386 transfers the highest 
order bytes fi rst. 

This characteristic may affect adapters with memory-mapped I/O 
that require or assume that sequential memory accesses are 
made to the memory I/O ports. 

This problem may be avoided by using a REP MOV8(yte) instead 
of a REP MOVSW(ord). 

Compatibility- October 1990 7 



80286 Anomalies 

In the Protected mode, when any of the null selector values (hex 0000, 
0001, 0002, and 0003) are loaded into the OS or ES registers with a 
MOV or POP instruction or a task switch, the 80286 always loads the 
null selector hex 0000 into the corresponding register. 

If a coprocessor (80287) operand is read from an "executable and 
readable" and conforming (ERC) code segment, and the coprocessor 
operand is sufficiently near the segment limit that the second or 
subsequent byte lies outside the limit, an interrupt 9 will not be 
generated. 

The following describes the operation of all 80286 parts: 

• Instructions longer than 10 bytes (instructions using multiple 
redundant prefixes) generate an interrupt 13 (General Purpose 
Exception) in both the Real Address mode and Protected mode. 

• If the second operand of an ARPL instruction is a null selector, 
the instruction generates an interrupt 13. 

I 80386 Anomalies 

I The following describes anomalies that apply to the 8-1 stepping 
I level of the 80386 microprocessor. Use the Interrupt 15 call with 
I (AH) = C9 to determine the stepping level. 

80386 Real Address Mode Operation 

• FSAVE/FSTENV opcode field incorrect: 

The opcode of some numeric instructions is saved incorrectly 
in the FSAVE/FSTENV format image when the 80386 is 
operating in the Real Address mode or Virtual 8086 mode. 

The power-on self-test (POST) code in the system ROM 
enables hardware interrupt 13 and sets up its vector (lNT hex 
75) to point to a math coprocessor exception routine in ROM. 
Any time this routine is executed as a result of an exception, 
it repairs the opcode field by performing the following 
sequence: 

1. Clears the 'busy' signal latch 
2. Executes FNSTENV (save image on stack) 
3. Extracts instruction pointer from FSTENV memory image 
4. Skips over prefix bytes until opcode is found 
5. Inserts correct opcode information in the memory image 
6. Executes FLOENV to restore the corrected opcode field 

8 Compatibility- October 1990 



7. Writes the EOI command to the interrupt controller 
8. Transfers control to the address pointed to by the NMI 

handler. 

Any math coprocessor application containing an NMI handler 
should require its NMI handler to read the status of the 
coprocessor to determine if the NMI was caused by the 
coprocessor. If the interrupt was not generated by the 
coprocessor, control should be passed to the original NMI 
handler. 

Applications do not require any modification for this errata 
because the 810S exception routine repairs the opcode field 
after exceptions. However, if a debugger is used to display 
the math coprocessor state information, the opcode field will 
contain an incorrect value for some math coprocessor 
instructions. 

• Single stepping repeated MOVS: 

If a repeated MOVS instruction is executed when 
single-stepping is turned on (TF = 1 in the EFLAGS register), 
a single-step interrupt is taken after two move steps on the 
80386 microprocessor. The 8088, 8086, and 80286 
microprocessors take a single-step interrupt after every 
iteration step. However, for the 80386, if a data breakpoint is 
encountered on the first iteration of a repeated MOVS, the 
data break is not taken until after the second iteration. Data 
breakpoints encountered on the second and subsequent 
iterations stop immediately after the step causing a break. 

• Wrong register size for string instructions: 

One of the (E)CX, (E)SI, or (E)DI registers will not be updated 
properly if certain string and loop instructions are followed by 
instructions that either: 

Use a different address size (that is, either the string 
instruction or the following instruction uses an address 
size prefix), or 

Reference the stack (such as PUSH/POP/CALLIRET) and 
the "8" bit in the SS descriptor is different from the 
address size used by the instructions. 

The size of the register (16 bits or 32 bits) is taken from the 
instruction following the string instruction rather than from 
the string instruction itself. This could result in one of the 
following conditions: 

Compatibility- October 1990 9 



Only the lower 16 bits of a 32-bit instruction updated (if 
the 32-bit string instruction was followed by an instruction 
using a memory operand addressed with a 16-bit 
address). 

All 32 bits of a register updated rather than just the lower 
16 bits. 

The following is a list of the instructions and the affected 
registers: 

Instruction Register 

REP MOVS 
MOVS 
STOS 

(E)SI 
(E)DI 
(E)DI 
(E)DI 
(E)CX 

INS 
REP INS 

Notes: 

1. A 32-bit effective address size specified with a string instruction indicates that 
the 32-bit ESI and EDI registers should be used for forming addresses, and the 
32-bit ECX register should be used as the count register. 

2. A 32-bit operand size on a repeated string move (MOVS) should be used only 
if the compiler or programmer can guarantee that the strings do not overlap 
destructively. An S-bit or 16-bit MOVS has a predictable effect when the 
strings overlap destructively. 

Figure 1. String Instruction/Register Size Mismatch 

The problem only occurs if instructions with different address 
sizes are mixed, or if a code segment of one size is used with 
a stack segment of the other size. 

To avoid this problem, add a NOP instruction after each of the 
instructions listed in Figure 1 and ensure that the NOP 
instruction has the same address size as the string/loop 
instruction. If necessary, an address size prefix hex 67 may 
precede the NOP instruction. 

• Wrong ECX update with REP INS: 

ECX (or CX in a 16-bit address size) is not updated correctly 
in the case of a REP INS1 followed by an early start 
instruction2• After executing any repeat-prefixed instruction, 
the contents of ECX is supposed to be 0, but in the case of an 

1 REP INS refers to any input string instruction with a repeat prefix. 

2 An early start instruction refers to PUSH, POP, or memory reference instructions. 

10 Compatibility - October 1990 



REP INS instruction, ECX is not updated correctly and its 
contents become hex FFFFFFFF for 32-bit address size 
operations and hex OFFFF for 16-bit address size operations. 
INS is still executed the correct number of times and EDI is 
updated properly. 

To avoid this problem, one of the following procedures may 
be used: 

Insert an explicit MOV ECX,O (or MOV CX,O) instruction 
after any REP INS instruction. This ensures that the 
contents of ECX or CX are O. 

Do not rely on the count in ECX (or CX) after a REP INS 
instruction but instead, move a new count into ECX (or 
CX) before using it again. 

• Test register access fails: 

Accessing the Translate Lookaside Buffer (TLB) test 
registers, TR6 and TR7, may not function properly. 

Avoid using test registers TR6 and TR7 to test the TLB. 

80286 Compatible Protected Mode Operation 

• Math coprocessor Save/Restore environment operands: 

If either of the last two bytes of an FSAVE/FRSTOR or 
FSTENV/FLDENV is not accessible, the instruction cannot be 
restarted. An FINIT instruction must be issued to the math 
coprocessor before any other math coprocessor instruction 
can be executed. This problem arises only in demand-paged 
systems, or demand-segmented systems that increase the 
segment size on demand. 

• Wrap-around math coprocessor operands: 

The 80386 architecture does not permit a math coprocessor 
operand, or any other operand, to wrap around the end of a 
segment. If such an instruction is issued in a protected 
segmented system, and the operand starts and ends in valid 
parts of a segment, but passes through an inaccessible 
region of the segment, the math coprocessor may be put in 
an indeterminate state. Under these conditions, an FCLEX or 
FINIT must be sent before any other math coprocessor 
instruction is issued. 

Compatibility- October 1990 11 



• Load Segment Limit instruction cannot precede PUSH/POP: 

If the instruction executed immediately after a Load Segment 
Limit (LSL) instruction does a stack operation, the value of 
(E)SP may be incorrect after the operation. 

Note: Stack operations resulting from noninstruction 
sources, such as exceptions or interrupts following the 
LSL, do not corrupt (E)SP. 

To avoid this problem, make sure that the instruction 
following an LSL instruction is never one that does a push to 
or pop off the stack. This includes PUSH, POP, RET, CALL, 
ENTER, and other such instructions. This can be achieved by 
always following an LSL instruction with a NOP instruction. 
Even if a forbidden instruction is used, (E)SP may be updated 
correctly since the problem is data-dependent and only 
occurs if the LSL operation succeeds (that is, sets the ZF 
flag). 

• LSLlLARIVERRIVERW malfunction with a NULL selector: 

An LSL, LAR, VERR, or VERW executed with a NULL selector 
(that is, bits 15 through 2 of the selector set to 0) operates on 
the descriptor at entry 0 of the Global Descriptor Table (GOT) 
instead of unconditionally clearing the ZF flag. 

This problem can be avoided by filling in the "NULL 
descriptor" (that is, the descriptor at entry 0 of the GOT) with 
all zeroes, which is an invalid descriptor type. 

The access to the "NULL descriptor" is made but fails since 
the descriptor has an invalid type. The failure is reported 
with ZF cleared, which is the desired behavior. 

80386 Extended Protected Mode Operation 

The following problems exist for operation in the Virtual 8086 
mode. 

• Task switch to Virtual 8086 mode does not set prefetch limit: 

The 80386 prefetch unit limit is not updated when doing a task 
switch to the Virtual 8086 mode. This can cause an incorrect 
segment limit violation to be reported if the microprocessor 
instruction fetches the segment limit that existed before the 
task switch. 

This problem can be avoided by using an IRET with the 
appropriate items on the stack to start the Virtual 8086 task in 
place of the task switch method. 

12 Compatibility- October 1990 



• FAR jump near page boundary in Virtual 8086 mode: 

When paging is enabled in the Virtual 8086 mode, and a 
direct FAR jump (opcode EA) instruction is located at the end 
of a page (or within 16 bytes of the end), and the next page is 
not cached in the TLB internal to the 80386, the FAR jump 
instruction leaves the prefetcher limit at the "end" of the old 
code segment instead of setting it at the "end" of the new 
code segment. This can allow execution off the end of the 
new segment to trigger a segment limit violation, or cause a 
spurious GP fault if the old and new segments overlap and a 
prefetch crosses the old segment limit. 

There is no way to detect code "walking off" the end of a 
code segment. However, the spurious GP fault can be 
avoided by simply performing an IRET back to the instruction 
causing the fault. The IRET will set the prefetch limit 
correctly, provided the exception handler has the ability to 
determine a spurious GP fault from a "real" GP fault. 

I 80486 Anomalies 

I The following describes anomalies that apply to the B stepping level 
I of the 80486 microprocessor. Use the Interrupt 15 call with (AH) = C9 
I to determine the stepping level. 

I Programs with time-delay dependencies should be reexamined for 
I proper operation in systems using the 80486 microprocessor. 

I Programs using single JMP SHORT $+2 (a delay mechanism) to 
I separate 110 operations will perform properly. However, programs 
I using multiple JMPs to separate 110 operations might not perform 
I properly. Each JMP will delay three clocks on the 80486 
I microprocessor instead of five clocks as on the 80386 
I microprocessor. 

I In protect mode and virtual 8086 mode, the microprocessor allows 
I doubleword accesses to some locations masked by the 110 
I Permission Bit Map. This problem occurs only when doubleword 
I accesses are made to a port address using an I/O instruction. It does 
I not occur when byte or word accesses are made to I/O ports. 

I Programs using STI/CLI sequences (interrupt enable/disable) should 
I ensure that multiple instructions execute between the STI and the CLI 
I instructions. A single instruction (including NOP) is not sufficient to 
I guarantee recognition of an interrupt. 

Compatibility- October 1990 13 



I 80387 Anomalies 

I FCOMP will return an incorrect comparison when the memory 
I operand is used. When the memory operand is a denormal number 
I with the same exponent as the operand in the ST register but with a 
I different significant part, the comparision indicates equality between 
I the two operands. An alternative method is to put both operands onto 
I the register stack before comparing them. When both operands are 
I on the stack, the comparison result is correct. 

ROM BIOS and Operating System Function Calls 

For maximum portability, programs should perform all I/O operations 
through operating system function calls. In environments where the 
operating system does not provide the necessary programming 
interfaces, programs should access the hardware through ROM BIOS 
function calls, if permissible. 

• In some environments, program interrupts are used for access to 
these functions. This practice removes the absolute addressing 
from the program. Only the interrupt number is required. 

• The coprocessor detects six different exception conditions that 
can occur during instruction execution. If the appropriate 
exception mask within the coprocessor is not set, the coprocessor 
sets the 'error' signal. This 'error' signal generates a hardware 
interrupt 13 (IRQ 13) causing the 'busy' signal to be held in the 
busy state. The 'busy' signal can be cleared by an 8-bit 110 Write 
command to address hex OOFO with bits 00 through 07 equal to O. 

The power-on self-test code in the system ROM enables 
hardware IRQ 13 and sets up its vector to point to a routine in 
ROM. The ROM routine clears the 'busy' signal latch and then 
transfers control to the address pointed to by the NMI vector. 
This maintains code compatibility across the IBM Personal 
Computer and Personal System/2 product lines. The NMI handler 
reads the status of the coprocessor to determine if the NMI was 
caused by the coprocessor. If the interrupt was not caused by the 
coprocessor, control is passed to the original NMI handler. 

• In systems using the 80286 or 80386 microprocessor, IRQ 9 is 
redirected to INT hex OA (hardware IRQ 2). This ensures that 
hardware designed to use IRQ 2 will operate in these systems. 
See "Hardware Interrupts" on page 1 for more information. 

• The system can mask hardware sensitivity. New devices can 
change the ROM BIOS to accept the same programming interface 
on the new device. 

14 Compatibility- October 1990 



• In cases where BIOS provides parameter tables, such as for 
video or diskette, a program can substitute new parameter values 
by building a new copy of the table and changing the vector to 
point to that table. However, the program should copy the current 
table, using the current vector, and then modify those locations in 
the table that need to be changed. In this way, the program does 
not inadvertently change any values that should be left the same. 

• The Diskette Parameters table pointed to by INT hex 1 E consists 
of 11 parameters required for diskette operation. It is 
recommended that the values supplied in ROM be used. If it 
becomes necessary to modify any of the parameters, build 
another parameter block and modify the address at INT hex 1 E 
(0:78) to point to the new block. 

The parameters were established to allow: 

Some models of the IBM Personal Computer to operate both 
the 5.25-inch high-capacity diskette drive (96 tracks per inch) 
and the 5.25-inch double-sided diskette drive (48 tracks per 
inch). 

Some models of the Personal System/2 to operate both the 
3.5-inch 1.44MB diskette drive and the 3.5-inch 720KB 
diskette drive. 

The gap length parameter is not always retrieved from the 
parameter block. The gap length used during diskette read, 
write, and verify operations is derived from within diskette BIOS. 
The gap length for format operations is still obtained from the 
parameter block. 

Note: Special considerations are required for format operations. 
Refer to the diskette section of the IBM Personal System/2 
and Personal Computer BIOS Interface Technical 
Reference for the required details. 

If a parameter block contains a head settle time parameter value 
of 0 milliseconds, and a write or format operation is being 
performed, the following minimum head settle times are 
enforced. 

Drive Type 

5.25-lnch Diskette Drives: 
Double Sided (48 TPI) 
High Capacity (96 TPI) 

3.5-lnch Diskette Drives: 
720KB 
1.44MB 

Head Settle Time 

20 ms 
15 ms 

20 ms 
15 ms 

Figure 2. Write and Format Head Settle Time 

Compatibility- October 1990 15 



Read and verify operations use the head settle time provided by 
the pararneter block. 

If a parameter block contains a motor-start wait parameter of less 
than 500 milliseconds (1 second for a Personal Computer 
product) for a write or format operation, diskette BIOS enforces a 
minimum time of 500 milliseconds (1 second for a Personal 
Computer product). Verify and write operatiohs use the 
motor-start time provided by the parameter block. 

• Programs may be designed to reside on both 5.25-inch or 3.5-inch 
diskettes. Since not all programs are operating-system 
dependent, the following procedLire can be used to determine the 
type of media inserted into a diskette drive: 

1. Verify Track 0, Head 0, Sector 1 (1 sector): This allows 
diskette BIOS to determine if the format of the media is a 
recognizable type. 

If the verify operation fails, issue the reset function (AH = 0) to 
diskette BIOS and try the operation again. If another failure 
occurs, the media needs to be formatted or is defective. 

2. Verify Track 0, Head 0; Sector 16 (1 sector). 

If the verify operation fails, either a 5.25-inch (48 TPI) or 
3.5-inch 720KB diskette is present. The type can be 
determined by verifyihg Track 78, Head 1, Sector 1 (1 sector). 
A sLiccessful verification of Track 78 indicates a 3.5-inch 
720KB diskette is installed; a verification failure indicates a 
5.25-inch (48 TPI) diskette is installed. 

Note: Refer to the DOS Technical Reference for the File 
Allocation Table parameters for single-sided and 
double-sided diskettes. 

3. Read the diskette controller status in BIOS starting with 
address 40:42. The fifth byte defines the head that the 
operation ended with. If the operation ended with head 1, the 
diskette is a 5.25-inch, high-capacity (96 TPI) diskette; if the 
operation ended with head 0, the diskette is a 3.5-inch 1.44MB 
diskette. 

Software Compatibility 

To maintaih software compatibility, the interrupt polling mechanism 
used by IBM personal computer products is retained. Software that 
interfaces with the reset port for the IBM personal computer 

16 Compatibility- October 1990 



positive-edge interrupt sharing3 does not create interference. 
Level-sensitive interrupt hardware allows several devices to 
simultaneously set a common interrupt line active (low) without 
interference. 

Application code that deals directly with the interrupt controller may 
try to reset the controller to the positive edge-sensitive mode when 
relinquishing control. The interrupt control circuitry of the system 
board prevents setting the controller to the edge-sensitive mode by 
blocking positive edge-sensitive commands to the interrupt 
controllers. 

Multitasking Provisions 

The BIOS contains a feature to assist multitasking implementation. 
"Hooks" are provided for a multitasking dispatcher. Whenever a 
busy (wait) loop occurs in the BIOS, a hook is provided for the 
program to break out of the loop. Also, whenever BIOS services an 
interrupt, a corresponding wait loop is exited, and another hook is 
provided. Thus a program can be written that employs the bulk of the 
device driver code. The following is valid only in the Real Address 
mode and must be taken by the code to allow this support. 

• The program is responsible for the serialization of access to the 
device driver. The BIOS code is not for a reentrant device. 

• The program is responsible for matching corresponding Wait and 
Post calls. 

Warning: Because data width conversions can require more than 12 
microseconds, 32-bit operations to the video subsystem can cause a 
diskette overrun in the 1.44MB mode. If an overrun occurs, BIOS 
returns an error code and the operation should be retried. 

3 Hex address 02FX or 06FX, where X is the interrupt level. 

Compatibility- October 1990 17 



Interfaces 

There are four interfaces to be used by the multitasking dispatcher: 

Startup: First, the startup code hooks interrupt hex 15. The 
dispatcher is responsible for checking for function codes of AH = hex 
90 or 91. The following "Wait" and "Post" sections describe these 
codes. The dispatcher must pass all other functions to the previous 
user of interrupt hex 15. This can be done by a JMP or a CALL. If the 
function code is hex 90 or 91, the dispatcher should do the 
appropriate processing and return by the IRET instruction. 

Serialization: The multitasking system must ensure that the device 
driver code is used serially. Multiple entries into the code can result 
in serious errors. 

Wait: Whenever the BIOS is about to enter a busy loop, it first issues 
an interrupt hex 15 with a function code of hex 90 in AH, signaling a 
wait condition. At this point, the dispatcher should save the task 
status and dispatch another task. This allows overlapped execution 
of tasks when the hardware is busy. The following is an outline of the 
code that has been added to the BIOS to perform this function. 

MOY AX, 90XXH 

INT 15H 
JC TIMEOUT 

NORMAL TIMEOUT LOGIC 

wait code in AH and 
type code in AL 
issue call 
optional: for time-out or 
if carry is set, time-out 
occurred 
normal time-out 

Post: Whenever the BIOS has set an interrupt flag for a 
corresponding busy loop, an interrupt hex 15 occurs with a function 
code of hex 91 in AH. This signals a Post condition. At this point, the 
dispatcher should set the task status to "ready to run" and return to 
the interrupt routine. The following is an outline of the code added to 
BIOS that performs this function. 

MOY AX, 91XXH 

INT 15H 

post code AH and 
type code AL 
issue call 

18 Compatibility- October 1990 



Classes 

The following types of wait loops are supported: 

• The class for hex 0 to 7F is for serially reusable devices. This 
means that for the devices that use these codes, access to the 
BIOS must be restricted to only one task at a time. 

• The class for hex 80 to BF is for reentrant devices. There is no 
restriction on the number of tasks that can access the devices. 

• The class for hex CO to FF is for noninterrupt devices. There is 
no corresponding interrupt for the wait loop. Therefore, it is the 
responsibility of the dispatcher to determine what satisfies this 
condition to exit from the loop. 

Function Code Classes 

Type Code (AL) 

00H->7FH 

80H->OBFH 

OCOH->OFFH 

Description 

Serially reusable devices; the operating system 
must serialize access. 

Reentrant devices; ES:BX is used to distinguish 
different calls (multiple 1/0 calls are allowed 
simultaneously). 

Wait-only calls. There is no complementary Post 
for these waits; these are time-out only. Times 
are function-number dependent. 

Function Code Assignments: The following are specific assignments 
for the Personal System/2 BIOS. Times are approximate. 

Type Code (AL) 

OOH 
01H 
02H 
OFCH 
OFDH 
OFEH 

Time Out 

Yes (12 seconds) 
Yes (2 seconds) 
No 
Yes 
Yes (500-ms Read/Write) 
Yes (20 seconds) 

Figure 3. Functional Code Assignments 

Description 

Fixed Disk 
Diskette 
Keyboard 
Fixed Disk Reset 
Diskette Motor Start 
Printer 

The asynchronous support has been omitted. The serial and parallel 
controllers generate interrupts, but BIOS does not support them in the 
interrupt mode. Therefore, the support should be included in the 
multitasking system code if that device is to be supported. 

Compatibility- October 1990 19 



Time-Outs 

To support time-outs properly, the multitasking dispatcher must be 
aware of time. If a device enters a busy loop, it generally should 
remain there for a specific amount of time before indicating an error. 
The dispatcher should return to the BIOS wait loop with the carry bit 
set if a time-out occurs. 

Machine-Sensitive Programs 

Programs can select machine-specific features, but they must first 
identify the machine and model type. IBM has defined methods for 
uniquely determining the specific machine type. The location of the 
machine model bytes can be found through interrupt 15 function code 
(AH) = hex CO. See the IBM Personal Systeml2 and Personal 
Computer BIOS Interface Technical Reference for a listing of model 
bytes for IBM Personal Computer and Personal System/2 products. 

Math Coprocessor Compatibility 

IBM systems use three math coprocessors: the 8088- and 8086-based 
systems use the 8087, the 80286-based systems use the 80287, and 
the 80386-based systems use the 80387. 

In the Real Address mode and Virtual 8086 mode, the 80386 computer 
with an 80387 Math Coprocessor is upward object-code compatible 
with software for the 8086/8087 and 80286/80287 Real-Address mode 
systems; in the Protected mode, the 80386/80387 is upward 
object-code compatible with software for the 80286/80287 
Protected-mode systems. However, if a math coprocessor instruction 
other than FINIT, FSTSW, or FSTCW is executed by an 80386-based 
system without an 80387 present, the 80386 waits indefinitely for a 
response from the 80387. This causes the system to stop processing 
without providing an error indication. To prevent this problem, 
software should check for the presence of the 80387 before executing 
math coprocessor instructions. The BIOS equipment function should 
be used when possible as the method for detecting the presence of 
the math coprocessor. 

The only other differences of operation that may appear when 
8086/8087 programs are ported to a Protected-mode 80386/80387 
system (not using the Virtual 8086 mode), are in the format of 
operands for the administration instructions FLDENV, FSTEN, 

20 Compatibility- October 1990 



FRSTOR, and FSAVE. These instructions are normally used only by 
exception handlers and operating systems, not by application 
programs. 

Software Written for: 
8087 80287 80287 

Operating Modes Real Real Protected 

8087 Real Mode Yes Yes' No 
80287 Real Mode Yes' Yes No 
80387 Real Mode Yes'" Yes" No 
803878086 Virtual Mode Yes'" Yes" No 
80287 Protected Mode No Yes" Yes 
80387 Protected Mode No No Yes" 
• See "8087 to 80287 Compatibility." 
•• See "80287 to 80387 Compatibility." 
"'See "8087 to 80287 Compatibility" and "80287 to 80387 Compatibility." 

Figure 4. Math Coprocessor Software Compatibility 

Many changes have been designed into the 80387 to directly support 
the IEEE standards in hardware. These changes result in increased 
performance by eliminating the need for software that supports the 
IEEE standard. 

I 80486 to 80387 Compatibility 

I The 80486 microprocessor and the level C 80387 coprocessor treat 
I numeric precision exception (PE) differently from previous levels. If 
I the PE bit was reset to 0 before the instruction is executed, the C1 (A) 
I bit in the condition code indicates the round-up direction of the last 
I ESC instruction when the result is inexact. If the PE bit was set to 1 
I before the instruction is executed, the round-up bit is undefined. 

I The 80486 reports some numeric exceptions later than the level C 
I 80387 does. For some numeric exceptions, the NPX Exception 
I Interrupt (IRQ 13) is not generated until the next noncontrol floating 
I point or FWAIT instruction is about to be executed. On the other 
I hand, the 80387 always generates the NPX Exception Interrupt at the 
I completion of the floating point instruction that caused the exception. 

I Programs must detect the presence of the microprocessor before 
I using the ET bit in Control Register 0 (CRO). The ET bit in CRO is 
I hardwired to 1. Programs write 0 or 1 to this bit, but a 1 is always 
I returned on read. 

Compatibility- October 1990 21 



I The following problems exist for operations with paging enabled. 

• Coprocessor operands: 

To avoid having a nonstartable instruction involving math 
coprocessor operands in demand-paged systems, ensure the 
operands do not cross page boundaries. This can be 
accomplished by aligning math coprocessor operands in 128-byte 
boundaries within a segment, and aligning the start of segments 
on 128-byte physical boundaries. 

• Page fault error code on stack is not reliable: 

When a page fault (exception 14) occurs, the three defined bits in 
the error code can be unreliable if a certain sequence of 
prefetches occurred at the same time. 

Although the page-fault error code pushed onto the page-fault 
handler stack is sometimes unreliable, the page-fault linear 
address stored in register CR2 is always correct. The page-fault 
handler should refer to the page-fault linear address in register 
CR2 to access the corresponding page table entry and thereby 
determine whether the page fault was due to a page-not-present 
condition or a usage violation. 

• 1/0 relocated in paged systems: 

When paging is enabled (PG = 1 in CRO), accessing 1/0 
addresses in the range hex 00001000 to hex OOOOFFFF, or 
accessing a 80387 Math Coprocessor using ESC instructions (1/0 
addresses hex 800000F8 to hex 800000FF) can generate incorrect 
1/0 addresses on A12 through A31 if the 1/0 address is the same 
as a memory linear address that is mapped by the TLB. 

The physical address corresponding to the memory linear 
address mapped by the TLB is ANDed with the 1/0 address, 
causing the 1/0 address to be incorrect in most cases. 

A suggested method for handling normal 1/0 addresses between 
hex 00000 and hex OFFFF is as follows: The operating system is 
required to map the lowest (first) 64KB of linear address space to 
16 pages, which are defined such that bits 12 through 15 of the 
linear and physical addresses are equal. This requires that the 
pages be aligned on a 64KB physical boundary (the physical 
address associated with the first page has address bits 15 
through 0 equal to 0). 

A suggested method for handling the math coprocessor I/O 
addresses requires that the memory page at linear address hex 
80000000 always be 

22 Compatibility- October 1990 



marked "not present" so it cannot be cached in the TLB. This 
may be accomplished in one of the following ways: 

Require the operating system to handle a 4KB "hole" in the 
linear address space at the 2GB boundary. 

Restrict the linear address space to a 2GB maximum instead 
of 4GB. No segments will have a linear address above the 
2GB boundary. 

• Spurious page level protection fault: 

This problem only occurs when the page table and the directory 
entries that map the stacks for the inner levels of a task are 
marked as supervisor access only, and an external bus HOLD 
comes during the cycle that pops (E)SP off the stack during an 
inter-level RET or IRET. 

This problem can be avoided by marking the pages that map the 
inner level stacks (level 0, 1, and 2) to permit the user read 
access. The segmentation protection mechanism can be used to 
prevent user access to the linear addresses containing these 
stacks, if required. 

80387 to 80287 Compatibility 

The following summarizes the differences between the 80387 and 
80287 Math Coprocessors, and provides details showing how 80287 
software can be ported to the 80387 Math Coprocessor: 

Note: Any migration from 8087 directly to the 80387 must also take 
into account the differences between the 8087 and the 80287. 
This information is provided on page 25. 

• The 80387 supports only affine closure for infinity arithmetic, not 
projective closure. 

• Operands for FSCALE and FPATAN are no longer restricted in 
range (except ±co); F2XM1 and FPTAN accept a wider range of 
operands. 

• Rounding control is in effect for FLO constant. 

• Software cannot change entries of the tag word to values (other 
than empty) that differ from actual register contents. 

• In conformance with the IEEE standard, the 80387 does not 
support special data formats pseudozero, pseudo-NaN, 
pseudoinfinity, and unnormal. 

Compatibility- October 1990 23 



Exceptions 

When the overflow or underflow exception is masked, the only 
difference from the 80287 is in rounding when overflow or underflow 
occurs. The 80387 produces results that are consistent with the 
rounding mode. 

For exceptions that are not masked, a number of differences exist due 
to the IEEE standard and to functional improvements to the 
architecture of the 80387: 

• There are fewer invalid-operation exceptions due to denormal 
operands, because the instructions FSORT, FOIV, FPREM, and 
conversions to BCD or to integer normalize denormal operands 
before proceeding. 

• The FSORT, FBSTP, and FPREM instructions may cause 
underflow, because they support denormal operands. 

• The denormal exception can occur during the transcendental 
instructions and the FXTRACT instruction. 

• The denormal exception no longer takes precedence over all 
other exceptions. 

• When the operand is zero, the FXTRACT instruction reports a 
zero-divide exception and leaves -00 in ST(1). 

• The status word has a new bit (SF) that signals when 
invalid-operation exceptions are due to stack underflow or 
overflow. 

• FLO extended precision no longer reports denormal exceptions, 
because the instruction is not numeric. 

• FLO single/double precision when the operand is denormal 
converts the number to extended precision and signals the 
denormalized operand exception. When loading a signaling NaN, 
FLO single/double precision signals an invalid-operation 
exception. 

• The 80387 only generates quiet NaNs (as on the 80287); however, 
the 80387 distinguishes between quiet NaNs and signaling NaNs. 
Signaling NaNs trigger exceptions when they are used as 
operands; quiet NaNs do not (except for FCOM, FIST, and FBSTP, 
which also raise IE for quiet NaNs). 

• Most 80387 numeric instructions are automatically synchronized 
by the 80386. No explicit Wait instructions are required for these 
instructions. To maintain compatibility with systems using the 
8087, an explicit Wait is required before each numeric instruction. 

24 Compatibility- October 1990 



• The FLDENV and FRSTOR instructions should be followed by an 
explicit Wait when used in the 80387 environment. An explicit 
Wait is not required after these instructions in the 80287 
environment. 

• The 80287 FSETPM (set Protected mode) instruction performs no 
useful purpose in the 80387 environment; if encountered, it is 
ignored. 

• The format of the FSAVE and FSTENV instructions is determined 
by the current mode of the 80386; the Real Address mode format 
is used when the 80386 is in the Real Address mode, and the 
Protected mode format is used when the 80386 is in the Protected 
mode. 

• The following applies only to the 81 stepping level 80386: An 
interrupt 9 does not occur for an operand outside a segment size; 
an interrupt 13 occurs. 

80287 to 8087 Compatibility 

The 80287 operating in the Real Address mode can execute 8087 
software without major modifications. However, because of 
differences in the handling of numeric exceptions by the 80287 and 
the 8087, exception-handling routines may need to be changed. 

The following summarizes the differences between the 80287 and 
8087 Math Coprocessors, and provides details showing how 8087 
software can be ported to the 80287 Math Coprocessor. 

• The 8087 instructions FENI/FNENI and FDISI/FNDISI perform no 
useful function in the 80287 environment. If the 80287 encounters 
one of these opcodes in its instruction stream, the instruction is 
effectively ignored; none of the 80287 internal states are updated. 
While 8086 code containing these instructions may be executed 
on an 80287, it is unlikely that the exception-handling routines 
containing these instructions will be completely portable to the 
80287. 

• The ESC instruction address saved in the 80287 includes any 
leading prefixes before the ESC opcode. The corresponding 
address saved in the 8087 does not include leading prefixes. 

• In the Protected mode, the format of the 80287 saved instruction 
and address pointers is different from the format of the 8087. The 
instruction opcode is not saved in the Protected mode; exception 
handlers have to retrieve the opcode from memory if needed. 

Compatibility- October 1990 25 



• Interrupt 7 occurs in the 80286 when executing ESC instructions 
with either TS (task switched) or EM (emulation) of the 80286 
MSW set (TS = 1 or EM = 1). If TS is set, then a Wait instruction 
also causes interrupt 7. An exception handler should be included 
in 80286 code to handle these exceptions. 

• Interrupt 9 occurs if the second or subsequent words of a 
floating-point operand fall outside a segment size. Interrupt 13 
occurs if the starting address of a numeric operand falls outside a 
segment size. An exception handler should be included in the 
80286 code to report these programming errors. 

• Most 80287 numeric instructions are automatically synchronized 
by the 80286. The 80286 automatically tests the 'busy' signal from 
the 80287 to ensure that the 80287 has completed its previous 
instruction before executing the next ESC instruction. Explicit 
Wait instructions are not required to ensure this synchronization. 
An 8087 used with 8086 and 8088 system microprocessors 
requires explicit Waits before each numeric instruction to ensure 
synchronization. Although 8086 software having explicit Wait 
instructions executes perfectly on the 80286 without reassembly, 
these Wait instructions are unnecessary. 

The processor control instructions for the 80287 may be coded 
using either a WAIT or No-WAIT form of the mnemonic. The WAIT 
forms of these instructions cause the assembler to precede the 
ESC instruction with a microprocessor Wait instruction. 

26 Compatibility- October 1990 



Diskette Drives and Controller 

The following figure shows the read, write, and format capabilities for 
each type of diskette drive. 

DlskeHe 160/180KB 320/360KB 720KB 1.44MB 
Drive Type Mode Mode Mode Mode 

5.25-lnch Diskette Drive: 
Single Sided (48 TPI) RWF 
Double Sided (48 TPI) RWF RWF 

3.5-lnch Diskette Drive: 
720KB Drive RWF 
1.44MB Drive RWF RWF 

R-Read W-Write F-Format 

Figure 5. Diskette Drive Read, Write, and Format Capabilities 

Notes: 

1. 5.25-inch diskettes designed for the 1.2MB mode cannot be used 
in either a 160/180KB or a 320/360KB diskette drive. 

2. 3.5-inch diskettes designed for the 1.44MB mode cannot be used 
in a 720KB diskette drive. 

Warning: 32-bit operations to the video subsystem can cause a 
diskette overrun in the 1.44MB mode because data width conversions 
may require more than 12 microseconds. If an overrun occurs, BIOS 
returns an error code and the operation should be retried. 

Copy Protection 

The following methods of copy protection may not work on systems 
using the 3.5-inch 1.44MB diskette drive. 

• Bypassing BIOS Routines: 

Data Transfer Rate: BIOS selects the proper data transfer 
rate for the media being used. 

Diskette Parameters Table: Copy protection, which creates 
its own Diskette Parameters table, may not work on these 
drives. 

• Diskette Drive Controls: 

Rotational Speed: The time between two events on a diskette 
is a function of the controller. 

Compatibility- October 1990 27 



Access Time: Diskette BIOS routines must set the 
track-to-track access time for the different types of media 
used in the drives. 

Diskette Change Signal: Copy protection may not be able to 
reset this signal. 

• Write Current Control: Copy protection that uses write current 
control will not work because the controller selects the proper 
write current for the media being used. 

Detailed information about specific diskette drives is available in 
separate technical references. 

Fixed Disk Drives and Controller 

Reading from and writing to the fixed disk drive is initiated in the 
same way as with IBM Personal Computer products; however, new 
functions are supported. Detailed information about specific fixed 
disk drives and fixed disk adapters is available in system-specific 
technical references. 

28 Compatibility- October 1990 



SCSI Subsystem 

Description ..................................... 1 
Subsystem Components ............................ 3 

Microprocessor ................................ 3 
SCSI Bus Controller ............................. 3 
Data Flow Controller ............................. 4 
System Interface/Bus Master Controller ................ 4 

Statement of Conformance ........................... 5 
Alternatives ................................... 5 
Level of Conformance ............................ 5 
Implemented Options . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 5 

Supported Devices ................................ 6 
Supported SCSI Commands ........................ 6 
Supported SCSI Messages ......................... 7 
Device Requirements for POST Support ................ 7 

Programmable Option Select ......................... 8 
pas Register 2 (Hex 0102) ......................... 9 
pas Register 3 (Hex 0103) ........................ 10 

Subsystem-to-System Interface ....................... 10 
Command Interface Registers (Hex 00-03) ............. 10 
Attention Register (Hex 04) ........................ 12 
Basic Control Register (Hex 05) ..................... 14 
Interrupt Status Register (Hex 06) ................... 15 
Basic Status Register (Hex 07) ..................... 17 

Resetting the Subsystem ........................... 18 
Command Processing ............................. 19 

Subsystem Control Blocks ........................ 22 
System Interface ............................... 25 

Abort ............. . . . . . . . . . . . . . . . . . . . . . . .. 26 
Assign .................................... 27 
Device Inquiry .............................. 28 
Device Inquiry Data Block . . . . . . . . . . . . . . . . . . . . . .. 29 
DMA Pacing Control .......................... 29 
Feature Control .............................. 30 
Format Prepare . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. 31 
Format Unit ................................ 31 
Get Command Complete Status ................... 34 
Command Complete Status Block ................. 34 
Get pas and Subsystem Information ............... 40 
pas and Subsystem Information Status Block ......... 40 
Read Data ................................. 43 
Read Device Capacity ......................... 44 
Device Capacity Data Block ..................... 44 

ill 



Read Verify ................................ 45 
Reassign Block .............................. 46 
Reassign Block Defect List ...................... 46 
Request Sense .............................. 47 
Sense Data Block ............................ 48 
Extended Sense Data Block ..................... 49 
Reset .................................... 51 
Send Other SCSI Command ..................... 52 
Write Data ........ .. . . . . . . . . . . . . . . . . . . . . . . .. 53 
Write with Verify ............................. 54 

Error-Recovery Procedures ......................... 55 
Subsystem-Error Recovery ........................ 55 

Data Error ................................. 55 
Positioning Error ............................. 56 
SCSI-Bus Parity Error ......................... 56 
Operational Time-Outs ......................... 56 

System-Error Recovery .......................... 57 
Compatibility ................................... 62 

Commands .................................. 62 
Rejected Commands ............................ 62 
Command Options ............................. 63 
Interrupts .................................... 65 
Other Differences .............................. 66 

SCB Enable Word 1 ........................... 66 
SCB End Status Word 1 ........................ 67 
SCB Command Status Register ................... 68 
SCB Subsystem Control Register .................. 69 
SCB Immediate Command Format ................. 70 

Device Signals .................................. 73 
Connectors .................................... 75 

Index ........................................ 79 

Iv SCSI Subsystem - September 1991 



Figures 

1. Subsystem Block Diagram ....................... 2 
2. SCSI Commands .............................. 6 
3. SCSI Messages .............................. 7 
4. pas Register Selection ......................... 8 
5. pas Register 2 (Hex 0102) ....................... 9 
6. pas Register 3 (Hex 0103) ...................... 10 
7. 110 Registers ............................... 10 
8. Register Content for SCB ....................... 11 
9. Register Content for Immediate Command ........... 11 

10. Attention Register ............................ 12 
11. Request Codes .............................. 12 
12. Basic Control Register ......................... 14 
13. Interrupt Status Register ....................... 15 
14. Interrupt ID Table ............................ 16 
15. Subsystem Device Selection Defaults ......... . . . . .. 16 
16. Basic Status Register ......................... 17 
17. Subsystem Reset Status .. . . . . . . . . . . . . . . . . . . . . .. 19 
18. Issuing a Command . . . . . . . . . . . . . . . . . . . . . . . . . .. 20 
19. Processing an Interrupt ........................ 21 
20. Subsystem Control Block Structure ................ 23 
21. Enable Options .............................. 23 
22. Subsystem Command List ...................... 25 
23. Abort Command ............................. 26 
24. Assign Command ............................ 27 
25. Device Inquiry Command ....................... 28 
26. Device Inquiry Data Block ...................... 29 
27. DMA Pacing Control Command ................... 29 
28. Device Data-Transfer Rate ...................... 30 
29. Feature Control Command ...................... 30 
30. Format Prepare Command ...................... 31 
31. Format Unit Command ......................... 31 
32. Defect List Block Format ....................... 33 
33. Get Command Complete Status Command ........... 34 
34. Command Complete Status Block ................. 35 
35. SCB End Status ............................. 35 
36. Command Status Codes ........................ 37 
37. Device Status Byte ........................... 37 
38. Bits 4 -1 Device Status Code .................... 37 
39. Bits 15-8 Command Error Code .................. 38 
40. Bits 7 - 0 Device Error Code .................... 38 
41. Get pas and Subsystem Information Command ........ 40 
42. pas and Subsystem Information Status Block ......... 40 

SCSI Subsystem - September 1991 v 



43. Channel Connector Size ... . . . . . . . . . . . . . . . . . . . .. 41 
44. Read Data Command ........................ .. 43 
45. Read Device Capacity Command .................. 44 
46. Device Capacity Data Block ..................... 44 
47. Read Verify Command ......................... 45 
48. Reassign Block Command ...................... 46 
49. Reassign Block Defect List ...................... 46 
50. Request Sense .............................. 47 
51. Sense Data Block ............................ 48 
52. Extended Sense Data Block ..................... 49 
53. Sense Key ................................. 49 
54. Reset Command ............................. 51 
55. Send Other SCSI Command ..................... 52 
56. Write Data Command . . . . . . . . . . . . . . . . . . . . . . . . .. 53 
57. Write with Verify Command ..................... 54 
58. SCSI Command ERP Table ...................... 58 
59. Subsystem Command ERP Table . . . . . . . . . . . . . . . . .. 59 
60. SCB Enable Word 1 ........................... 66 
61. SCB End Status Word 1 ........................ 67 
62. SCB Command Status Register ................... 68 
63. SCB Subsystem Control Register ................. 69 
64. SCB Immediate Command Format ................. 70 
65. SCSI Internal Connector Pin Assignments ............ 75 
66. SCSI External Connector Pin Assignments ........... 76 
67. 60-Pin External Connector, Front View .............. 77 
68. 60-Pin External Connector, Side View ... . . . . . . . . . . .. 78 

vi SCSI Subsystem - September 1991 



Description 

The SCSI subsystem serves as the interface between the system and 
devices using Small Computer System Interface (SCSI) architecture. 

The subsystem supports: 

• A broad range of internal and external SCSI devices. 

• Up to seven SCSI physical devices. Each physical device can 
support eight logical devices. 

• Overlapped command processing for up to 15 devices. 

• Devices compatible with SCSI Common Command Set. 

• A data transfer rate of up to 5 million bytes-per-second between 
the subsystem and the external devices. 

• A data transfer rate of up to 20 million bytes-per-second from the 
subsystem to the system (burst rate). 

• A 16-bit data bus. 

• A 24- or 32-bit address bus (automatically configurable). 

The subsystem also serves as a bus master (intelligent bus 
controller). 

Warning: In this technical reference, the term "Reserved" describes 
certain signals, bits, and registers that should not be changed. Use of 
reserved areas can cause compatibility problems, loss of data, or 
permanent damage to the hardware. When the contents of a register 
are changed, the state of the reserved bits must be preserved. When 
possible, read the register first and change only the bits that must be 
changed. 

SCSI Subsystem - September 1991 1 



The following is a block diagram of the subsystem. 

50-Pin 60-Pin 
Internal SCSI Bus External SCSI Bus 
Connector Connector 

II 
Removable 
SCSI Terminator 

'I , 
SCSI Controller SCSI 

~ n BIOS RAM 
System Interface 

Microprocessor I 

System Channel I 
Figure 1. Subsystem Block Diagram 

2 SCSI Subsystem -September 1991 



Subsystem Components 

The subsystem components described in this section are: 

• Microprocessor 

• SCSI bus controller 

• Data flow controller 

• System interface/bus master controller. 

Microprocessor 

The subsystem microprocessor controls all subsystem operations. It 
translates commands received from the system into a series of 
operations. For example, the subsystem microprocessor controls 
data transfers to and from the system, and executes all necessary 
error detection and recovery procedures to ensure data integrity. 

SCSI Bus Controller 

The SCSI bus controller transmits commands, receives status, 
transfers data between attached SCSI devices and the subsystem, 
and provides the following functions: 

• SCSI bus arbitration 

• Device selection and reselection 

• SCSI phase change detection 

• SCSI bus parity generation and checking. 

SCSI Subsystem-September 1991 3 



Data Flow Controller 

The data flow controller manages the flow of parallel data between 
the SCSI bus and the system. The controller enables concurrent data 
transfers between the SCSI bus and the system. 

The bus-steering and data-flow logic enables either byte or word 
transfers to the system, and performs these transfers in the pipeline 
or nonpipeline mode. 

System Interface/Bus Master Controller 

The system interlace/bus master controller provides the command 
and interrupt registers. These registers receive commands from the 
system and interrupt the system when a command is completed. The 
transfer of data between the subsystem and the system is controlled 
through the bus master. Data transfers of up to 20 million 
bytes-per-second are supported. 

4 SCSI Subsystem - September 1991 



Statement of Conformance 

The following statements are in the format specified in Appendix E of 
the American National Standards Institute (ANSI) SCSI Standard 
X3.131-1986. 

Alternatives 

• Single-ended receivers and drivers are used. 

• + Terminator Power is supplied by the system board. 

• Parity is used on all SCSI data transfers. 

• Hard reset of the SCSI bus is implemented. 

• Target reservation queueing is supported. 

Level of Conformance 

The level of conformance is Level 2. 

Implemented Options 

The Synchronous Data Transfer Request message is supported. 
Maximum request-to-acknowledge offset is 7. Minimum transfer 
period implemented is 200 nanoseconds. 

SCSI Subsystem-September 1991 5 



Supported Devices 

The subsystem supports devices that conform to the ANSI SCSI 
Standard X3.131-1986. These devices must support the mandatory 
commands and messages specified in Addendum 4.8, also known as 
the Common Command Set. 

Each SCSI device connected to a single SCSI subsystem must be 
given, at time of installation, a unique SCSI identification number (10). 
The 10 must be set on each device at the time of installation. The 10 
must not be the same 10 given to any other device connected to the 
same subsystem, or the 10 given to the subsystem itself. The SCSI 10 
is also the physical unit number (PUN). 

Supported SCSI Commands 

The subsystem supports the following SCSI commands from the 
Common Command Set. 

Copy· 
Format Unit· 
Inquiry· 
Mode Select 
Mode Sense 
Prevent/Allow Medium Removal 
Read· 
Read Buffer 
Read Capacity· 
Read Defect Data 
Read Extended • 
Reassign Blocks· 
Receive Diagnostic Results 

Release 
Request Sense· 
Reserve 
Rezero Unit 
Seek 
Send Diagnostic 
Start/Stop Unit 
Test Unit Ready 
Verify • 
Write· 
Write and Verify • 
Write Buffer 
Write Extended· 

• SCSI commands issued by the controller when translating the system interface 
commands (op codes hex 01 to 1E). 

Note: SCSI commands shown without an asterisk can be issued only with the 
command Send Other SCSI Command. SCSI commands not shown are not 
supported. 

Figure 2. SCSI Commands 

6 SCSI Subsystem - September 1991 



Supported SCSI Messages 

The following SCSI messages are supported by the subsystem. 

SCSI Messages 

Abort 
Bus-Device Reset 
Command Complete 
Disconnect 
Identify 
Initiator-Detected Error 
Linked Command Complete 
Linked Command Complete with Flag 
Message Parity Error 
Message Reject 
No Operation 
Restore Pointers 
Save Data-Pointer 

SCSI Status Messages 

Busy 
Check Condition 
Condition Met/Good 
Good 
Immediate/Good 
Intermediate/Condition Met/Good 
Reservation Conflict 

Note: The SCSI extended message Synchronous Data Transfer Request is also 
supported by the subsystem. 

Figure 3. SCSI Messages 

Device Requirements for POST Support 

The following are the minimum requirements that SCSI devices must 
meet to be supported by the POST routines. 

• All devices must be able to respond to the Inquiry and Request 
Sense commands within 3 seconds after being powered-on. 

• Device type 0 must respond to the Start/Stop Unit and Test Unit 
Ready commands within 3 seconds after being powered-on. 

• Device type 0 with non-removable media must make the drive 
ready for media access within 30 seconds of receiving a 
Start Unit command. 

• Device type 0 must respond to the Read and Read Capacity 
commands. 

• While configuring the SCSI bus, POST issues the Inquiry 
command to all 56 possible combinations of physical unit 
number/logical unit number (PUN/LUN) until 15 logical devices 
are assigned. Therefore, all devices must respond to each 
possible LUN for its SCSI ID. 

SCSI Subsystem-September 1991 7 



Programmable Option Select 

The subsystem contains options that can be configured. These 
options are controlled through the programmable option select (POS) 
registers. These registers are accessible only when the 'chip setup' 
signal is active. 

Warning: IBM recommends that programmable options be set only 
through System Configuration utilities. Directly setting the 
complementary metal-oxide semiconductor (CMOS) parameters or 
POS registers can result in multiple assignment of the same system 
resource, improper operation of the feature, loss of data, or possible 
damage to the hardware. 

Address 
(Hex) 

0102 
0103 

Register 

P~S Register 2 
P~S Register 3 

Figure 4. POS Register Selection 

Note: When the system is modifying a register, the state of the 
reserved bits must be preserved. When possible, read the 
register first and change only the bits required. 

8 SCSI Subsystem - September 1991 



POS Register 2 (Hex 0102) 

Bit Function 

7-4 Revision 10 
3 - 2 Reserved 
1 8K NVRAM Disabled 
o Chip Enable 

Figure 5. POS Register 2 (Hex 0102) 

Bits 7 -4 These read-only bits identify the level of the chip. 

Bits 3 - 2 These bits are reserved. 

Bit 1 Setting this bit to 1 blocks access to the 8K NVRAM. Do 
not set this bit to 1 because this function is unsupported by 
the system. 

Bit 0 When this bit is set to 1, the chip is enabled. When this bit 
is set to 0, the chip responds only to POS read and write 
operations. Subsystem interrupts are disabled. This bit is 
set to 0 when the 'channel reset' signal on the system 
channel becomes active. 

SCSI Subsystem - September 1991 9 



POS Register 3 (Hex 0103) 

BH 
7-5 
4 
3-0 

Function 

SCSI 10 
Reserved = 0 
Reserved = 0 

Figure 6. POS Register 3 (Hex 0103) 

Bits 7 -5 These bits determine the SCSI 10 (0 through 7) of the 
subsystem. Each device on the SCSI bus must have a 
unique SCSI 10. If the SCSI 10 for the subsystem is 
changed, a subsystem-hardware reset should be 
performed. 

Bit 4 This bit is reserved and must be set to O. 

Bits 3 - 0 These bits are reserved and must be set to O. 

Subsystem-to-System Interface 

The subsystem operates as a bus master to the system in a 
subsystem-to-system interface mode. A set of eight I/O registers 
issues commands and receives status from the subsystem. The 
addresses for these registers are 3540 hex through 3547 hex. 

Register 

Command Interface Register 1 
Command Interface Register 2 
Command Interface Register 3 
Command Interface Register 4 
Attention Register 
Basic Control Register 
Interrupt Status Register 
Basic Status Register 

Figure 7. I/O Registers 

Read/Write 

Read/Write 
Read/Write 
Read/Write 
ReadlWrite 
Read/Write 
ReadlWrite 
Read 
Read 

Command Interface Registers (Hex 00 - 03) 

Offset 

00 
01 
02 
03 
04 
05 
06 
07 

The system uses these four 8-bit registers to transfer either a 32-bit 
immediate command or the subsystem control block (SCB) address 
from the system to the subsystem. The immediate command or the 
SCB specifies the operation to be performed by the subsystem and 
also specifies any necessary parameters. 

10 SCSI Subsystem-September 1991 



Before the system writes an attention request code (1, 3, 4, or F) and 
a device number to the Attention register, it writes an immediate 
command or the SCB address to the Command Interface registers. 
The subsystem interrupts the system when the command is 
completed. 

The following figures show the relationship between the Command 
Interface registers and the immediate command or the SCB address. 

Command Interface Register Bits 
15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 9 

<-- Command Register 1 ---> < Command Register 0 > Low 5CB Address 

<-- Command Register 3 ---> < Command Register 2 > High 5CB Address 

Figure 8. Register Content for SCB 

Command Interface Register Bits 
15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 9 

<-- Command Register 1 ---> < Command Register 0 > Word 0 

<-- Command Register 3 ---> < Command Register 2 > Word 1 

Figure 9. Register Content for Immediate Command 

SCSI Subsystem - September 1991 11 



Attention Register (Hex 04) 

The system uses this 8-bit read/write register to request a subsystem 
operation. The value in this register specifies the operation and the 
device. When a value is written to the Attention register, bit 0 (busy) 
in the Basic Status register is set to 1. The busy bit remains set until 
the subsystem is ready for another attention request. This bit is 
usually cleared within approximately 50 microseconds; however, if a 
Reset command to the subsystem is received, the busy bit remains 
set until the subsystem microprocessor has completed the reset 
sequence (up to 30 seconds). 

With system interrupts disabled, the system must verify that the busy 
bit is set to 0 before writing to the command interface registers or the 
Attention register. 

Bit 

7-4 
3-0 

Name 

Request Code 
Device Select Code 

Figure 10. Attention Register 

Bits 7-4 The request code prompts the subsystem to perform a 
specific action for the indicated device or subsystem. The 
following figure provides additional information regarding 
request codes. 

Hex 
Value Description 

1 Immediate Gommand 
3 Start SGB 
4 Start Long SGB 
E End of Interrupt 
F Start Long SGB 

Figure 11. Request Codes 

1 Requests that the subsystem perform the immediate 
command specified in the Command Interface registers. 

3 Requests that the subsystem perform the command, as 
indicated by the SCB in system memory, at the 24-bit 
address contained in the command interface registers. 

12 SCSI Subsystem - September 1991 



4 Requests that the subsystem perform the command as 
indicated by the long SCB in system memory. This 
request also can be used to start a Send Other SCSI 
Command SCB. If started with this code, the entire Send 
Other SCSI Command SCB will be fetched at the same 
time. If a Send Other SCSI Command SCB is started by 
request code 3, two control-block fetches are required to 
get the entire command. 

E Indicates to the subsystem that the system has completed 
processing the last interrupt. The subsystem can issue 
another interrupt to the system and reset the hardware 
interrupt-request latch. 

The end-of-interrupt (EOI) request is not the same as the 
EOI instruction to the interrupt controller. The EOI 
instruction is in addition to the EOI request code required 
by the subsystem to properly end an interrupt. To avoid 
false interrupts, issue the EOI request to the subsystem 
before issuing the EOI to the system interrupt controller. 
The subsystem requires 250 nanoseconds to clear the 
interrupt request after issuing the EOI request. 

F Same as 4. 

The following information refers to Figure 10 on page 12. 

Bits 3-0 These bits specify the number of the logical device that 
will perform the operation. The value of hex F specifies 
the subsystem and is used for global commands. The 
system can change the number assigned to a SCSI device 
through the Assign command. When the subsystem is 
reset, the device assignments are set to their default 
values. For further information, refer to Figure 15 on 
page 16. 

SCSI Subsystem - September 1991 13 



Basic Control Register (Hex 05) 

This a-bit read/write register controls various subsystem functions. 

BII Symbol 

7 Hardware Reset 
6 - 2 Reserved 
1 Direct Memory Access (DMA) Enable 
o Interrupt Enable 

Figure 12. Basic Control Register 

Bit 7 When this bit is set to 1, the subsystem hardware is reset. 
The subsystem stays in the reset mode until this bit is set 
to O. This reset does not affect other devices on the SCSI 
bus. P~S information is not affected. When this bit is set 
to 1, the system should not set this bit to 0 for at least 50 
microseconds. This bit must be set to 0 before setting 
either bit 0 or bit 1 in this register to 1. 

Bits 6 - 2 These bits are reserved. 

Bit 1 When set to 1, this bit enables the subsystem controller. 

Bit 0 When set to 1, this bit enables interrupts to the system. 

14 SCSI Subsystem - September 1991 



Interrupt Status Register (Hex 06) 

The subsystem uses this 8-bit read-only register to return 
command-completion information to the system. It the subsystem 
interrupt is enabled, a system interrupt (IRQ14) is generated when the 
subsystem updates the Interrupt Status register. 

After receiving an interrupt, the system may read the Interrupt Status 
register to determine the device and 10 of the interrupt. The system 
may clear the interrupt by issuing an EOI request. This register also 
is updated after the subsystem is reset. For more information see 
"Resetting the Subsystem" on page 18. 

The subsystem clears the Interrupt Status register only after an 
end-ot-interrupt request. This enables the program to read the 
Interrupt Status register as many times as necessary to determine the 
routine that will process the interrupt. 

Bit Symbol 

7-4 Interrupt ID 
3-0 Device 10 Number 

Figure 13. Interrupt Status Register 

SCSI Subsystem - September 1991 15 



Bits 7 - 4 These bits identify the type of interrupt, as shown in the 
following figure. 

Hex 

1 
5 
7 
A 
C 
E 
F 

More information about interrupt status is available in the 
command status block (see "Get Command Complete 
Status" on page 34). 

Interrupt 

SCB Command Completed with Success 
SCB Command Completed with Success after Retries 
Subsystem Hardware Failure 
Immediate Command Completed 
Command Completed with Failure 
Command Error (Invalid Command or Parameter) 
Software Sequencing Error 

Note: All values not shown are reserved. 

Figure 14. Interrupt ID Table 

Bits 3 - 0 These bits identify the device reporting the interrupt. 

SCSI SCSI 
Hex Physical Unit Logical Unit 
Value Device Selected Number Number 

0 Logical Device 0 0 0 
1 Logical Device 1 1 0 
2 Logical Device 2 2 0 
3 Logical Device 3 3 0 
4 Logical Device 4 4 0 
5 Logical Device 5 5 0 
6 Logical Device 6 6 0 
7 Logical Device 7' Not Assigned Not Assigned 
8 Logical Device 8 Not Assigned Not Assigned 
9 Logical Device 9 Not Assigned Not Assigned 
A Logical Device 10 Not Assigned Not Assigned 
B Logical Device 11 Not Assigned Not Assigned 
C Logical Device 12 Not Assigned Not Assigned 
0 Logical Device 13 Not Assigned Not Assigned 
E Logical Device 14 Not Assigned Not Assigned 
F Subsystem 

, The device number that is equal to the SCSI 10 of the subsystem is not assigned 
after Reset. The default value for this SCSI 10 is 7. 

" Logical Device 15 is reserved for the subsystem. 

Note: These assignments may be changed by POST. 

Figure 15. Subsystem Device Selection Defaults 

16 SCSI Subsystem - September 1991 



Basic Status Register (Hex 07) 

This 8-bit read-only register returns subsystem status information to 
the system. 

Bit 

7-4 
3 
2 
1 
o 

Symbol 

Reserved 
Command Interface Register Full 
Command Interface Register Empty 
Interrupt Request 
Busy 

Figure 16. Basic Status Register 

Bits 7 - 4 These bits are reserved. 

Bit 3 This bit is set to 1 after all Command Interface registers 
are loaded. It is set to 0 when anyone of these registers 
is read by the subsystem. 

Bit 2 This bit is set to 1 after all Command Interface registers 
are read by the subsystem. It is set to 0 by the subsystem 
when anyone of the Command Interface registers is 
loaded. 

Bit 1 This bit is set to 1 when the subsystem is presenting an 
interrupt to the system. This bit is set to 0 when an EOI 
request code is written to the Attention register. This bit 
will be set to 1 if an interrupt request is active, even if the 
Basic Control register interrupt enable bit is set to O. This 
allows the subsystem to operate without presenting 
hardware interrupts to the system. 

Bit 0 This bit is set to 1 when the Attention register is loaded or 
when a hardware reset occurs. It is set to 0 by the 
subsystem after the Attention register and Command 
Interface registers have been read or the hardware reset 
is completed. If a Reset command is issued to the 
subsystem, this bit is set to 0 after completing the reset 
function and before setting the command complete 
interrupt. 

SCSI Subsystem-September 1991 17 



Resetting the Subsystem 

When the subsystem is reset, diagnostic routines are run to 
determine if the subsystem is functioning properly. The subsystem 
can be reset by: 

• CHRESET on the system channel going active. 
• Setting bit 7 (hardware reset) in the Basic Control register to 1. 
• Issuing the Immediate Reset command to the subsystem (device 

15). This command performs a soft reset of the subsystem. 

A soft reset occurs when the Reset command is issued to a SCSI 
device or to the subsystem (device 15). When the command is issued 
to the subsystem, the subsystem activates the 'reset' signal on the 
SCSI bus, which resets all devices on the bus and clears all pending 
commands. When the command is issued to any other SCSI device, 
only that device is reset. 

A hard reset occurs when the system 'reset' signal (+ CHRESET) is 
pulsed active or when bit 7 in the Basic Control register is set to 1. A 
hard reset does not reset the SCSI bus or any attached devices; it 
does, however, reset the subsystem. 

After the reset sequence is completed, results are posted in the 
Interrupt Status register. After a hardware reset, bits 7 -4 are set as 
shown in the following figure; bits 3 - 0 are always set to hex F. 

Note: After a soft reset, hex AF indicates a successful reset; hex 7F 
indicates a hardware failure. 

18 SCSI Subsystem - September 1991 



Hex 

o 
1 
2 
3 
4 
5 
6 
7 
8 

Interrupt 

No Error - Reset Completed 
Microprocessor ROM Test Failed 
Local RAM Test Failed 
Power Protection Device Error 
Microprocessor Internal Peripheral Test Failed 
Buffer Control Chip Test Failed 
Reserved 
System Interface Control Chip Test Failed 
SCSI Interface Test Failed 

Note: All values not shown are reserved. 

Figure 17. Subsystem Reset Status 

If a failure occurs during the reset sequence, the subsystem will 
accept only a hard reset. This prevents accidental loss of data. 

Command Processing 

Four 8-bit command interface registers are used in conjunction with 
the Attention register to issue commands to the subsystem. The data 
written to the Command Interface registers consists of either a 32-bit 
immediate command or a 24-bit address that points to a subsystem 
control block stored in system memory. The data written to the 
Attention register specifies the device-select code and a request 
code. The request code indicates if the Command Interface registers 
contain an immediate command or a pointer to a subsystem control 
block. See "System Interface" on page 25 for more information 
about supported commands. 

One command can be specified for each of 15 SCSI logical devices 
and one global subsystem command, for a maximum of 16 
overlapped commands in progress. New commands can be issued 
even while a data transfer is in progress for a previous command. If 
a command is directed to a device with a command already in 
progress, the command in progress is ended with a command 
sequence error, and the new command is ignored. Before starting a 
command, make sure bit 0 in the Basic Status register is set to 0, and 
the system interrupts are disabled. 

SCSI Subsystem - September 1991 19 



The following flowchart shows the sequence for issuing a command. 

System 
Entry 

I 
.. Disable System 

Interrupts 

I 
Read Basic 

Status Register 

Enable System 
Yes Is Interrupts 

(To allow pending Bit 0 

interrupts to be Set t01? 

serviced) 

No 

Load Command 
Interface Registers 

I 
Load Request Code 
and Device Select 
Code to Attention 

Register 

I 
Enable System 

Interrupts 

J 
Command 

Issued 

Figure 18. Issuing a Command 

20 SCSI Subsystem-September 1991 



The following flowchart shows the sequence for processing an interrupt. 

Interrupt Received 
from Adapter 

Read Interrupt Status 
Register to Determine Interrupting 

Device and Status 

Disable System 
Interrupts 

Read Basic 
Status Register 

Enable System 
Is Interrupts 

Yes Bit 0 (To allow pending 
interrupts to be Set 

serviced) to 1? 

No 

Load EOI Request Code and 
Device Select Code to 

Attention Register 

Enable System 
Interrupts 

Interrupt Processing 
Complete 

Figure 19. Processing an Interrupt 

SCSI Subsystem - September 1991 21 



Nole: If the busy bit has not cleared within 400 microseconds, the 
application performs time-out procedures. When a subsystem 
Reset command is in progress, allow up to 30 seconds for the 
busy bit to clear. 

After a command is completed, the subsystem interrupts the system 
by loading the Interrupt Status register with summary status (the 
completing device number and an interrupt 10). The subsystem waits 
for the EOI request before it issues another interrupt or changes the 
contents of the Interrupt Status register. 

When the system reads the Interrupt Status register, the interrupting 
device number and status may be obtained. The Command Complete 
status block contains more status information about the completed 
command. 

Note: To get the status block, use the Get Command Complete 
Status command, or inspect the termination status block, if 
available. 

The system then loads the interrupting device number and the EOI 
request into the Attention register. This tells the subsystem that the 
system has finished processing that interrupt. 

Subsystem Control Blocks 

The Subsystem Control Block commands relieve the system of 
transferring command blocks to the subsystem through programmed 
input and output. The SCBspecifies the desired command and 
associated parameters. An SCB must begin on a doubleword 
boundary, and any address translations, from virtual to physical, must 
be performed by system software before the SCB pointer is loaded 
into the Command Interface registers. If 80386 virtual page mode is 
being used, system software must also ensure that the SCB, data 
buffers, and termination status block (TSB) areas are locked into 
memory. The SCB specifies the desired command and associated 
parameters. When the SCB command (or chain of SCB commands) 
has been performed by the subsystem, an interrupt request is issued 
to the system. The subsystem presents only one interrupt request at 
a time to the system. 

22 SCSI Subsystem -September 1991 



The following figure shows the format of the subsystem control block 
as it applies to device-related commands. 

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 8 Remarks 

<---- Command Dependent ---> NO NS C5 C4 C3 C2 Cl ce Command Word 
RD ES RE PT e SS BB e e e e e e e e CH Enable Word 
<------------ Least Significant Word --------------> Logical Block 
<------------ Most Significant Word ---------------> Address 
<------------ Least Significant Word --------------> System-Buffer 
<------------ Most Significant Word ---------------> Address 
<------------ Least Significant Word --------------> System-Buffer 
<------------ Most Significant Word ---------------> Byte Count 
<------------ Least Significant Word --------------> Termination-Status-Block 
<------------ Most Significant Word ---------------> Address 
<------------ Least Significant Word --------------> Optional SCB-Chain 
<------------ Most Significant Word ---------------> Address 
<------------ Number of Blocks --------------------> Block Count 
<------------ Block Size --------------------------> Block Length 

Figure 20. Subsystem Control Block Structure 

A command is encoded in the first word of the SCB. The setting of 
bits 15-8 of the first word depends on the specific command 
identified in bits 5 - O. If bit 7 (ND) of this word is set to 1, the 
subsystem will not disconnect the target device during command 
execution. If bit 6 (NS) of this word is set to 1, the subsystem will not 
send any Synchronous Data Transfer Request messages to the target 
device. 

The second word of the SCB is used to enable options that are used 
to modify a specified command, as shown in the following figure. 

Bit 

15 
14 
13 
12 
10 
9 
8-1 
o 

Symbol 

RD 
ES 
RE 
PT 
SS 
BB 

CH 

Function 

Input/Output Control 
Report TSB Status Only on Error 
Retry Enable 
Pointer to List 
Suppress ExceptionShort 
Bypass Buffer 
Reserved 
Chain on No Error 

Figure 21. Enable Options 

SCSI Subsystem - September 1991 23 



Bit 15 (RD) When this bit is set to 1, the subsystem transfers data 
from the SCSI device or subsystem into system memory 
(read). When this bit is set to 0, the subsystem transfers 
data from system memory to the SCSI device or 
subsystem (write). 

Bit 14 (ES) When this bit is set to 1, the TSB is transferred to 
memory only if an error (Interrupt 10 = C) is detected. 
When this bit is set to 0, the TSB is always transferred. 

Note: This bit should always be set to 1, unless the 
command requires the TSB when no error 
occurs; command performance is degraded by 
unnecessarily writing to memory. 

Bit 13 (RE) This bit is included for reference only. This bit is not 
used nor checked by the subsystem. 

Bit 12 (PT) When this bit is set to 1, it allows a single command to 
write data to or read data from several different areas in 
memory (buffers) as specified in a list. This list 
contains up to 16 pairs of values, each pair being a 
32-bit address and its related 32-bit count. In the SCB, 
the system-buffer address field contains the address of 
the list, and the system-buffer byte count field contains 
the length of the list in bytes. 

Bit 10 (SS) When this bit is set to 1, it allows the amount of data 
transferred on a read operation to be shorter than the 
system buffer byte count, specified in the SCB, without 
generating an error. 

BII 9 (BB) This bit is included for reference only. This bit is not 
used nor checked by the subsystem. 

Bits 8 -1 These bits are reserved. 

Bit 0 (CH) This bit selects the type of chaining condition used in 
command block transfers. When it is set to 0, chaining 
is disabled. When command blocks are chained, the 
SCB must contain the 32-bit address of the next SCB. 
When this bit is set to 1, chaining will occur if the SCB 
ends with no error. 

24 SCSI Subsystem - September 1991 



System Interface 

The following is a list of supported commands. 

Supported 
Device 

Command Hex Numbers Page 
Type Command Code (Hex) Relerence 

Immediate Abort OF O-F 26 
Immediate Assign OE F 27 
SCB Device Inquiry OB O-E 28 
Immediate DMA Pacing Control 00 F 29 
Immediate Feature Control OC O-F 30 
Immediate Format Prepare 17 O-E 31 
SCB Format Unit 16 O-E 31 
SCB Get Command 07 O-F 34 

Complete Status 
SCB Get POS Information OA F 40 
SCB Read Data 01 O-E 43 
SCB Read Device Capacity 09 O-E 44 
SCB Read Verify 03 O-E 45 
SCB Reassign Block 18 O-E 46 
SCB Request Sense 08 O-E 47 
Immediate Reset 00 O-F 51 
SCB Send Other SCSI 1F O-E 52 
SCB Write Data 02 O-E 53 
SCB Write with Verify 04 O-E 54 

Figure 22. Subsystem Command List 

Note: The hex code above represents bits 5-0 of the first command 
word. 

SCSI Subsystem - September 1991 25 



The subsystem maintains a Command Complete status block for each 
of the command blocks. The command blocks are updated at the 
completion of each command. This command status block can be 
obtained by using the Get Command Complete Status Block 
command. See "Command Complete Status Block" on page 34. 

The format for each command is given following the associated 
command. 

Abort 

This immediate command causes the logical device to immediately 
end the command in progress and go to the bus-free state. This 
command sends an Identify message followed by an Abort message 
to the device. An Abort command to the subsystem clears an active 
global command. 

After the command is completed, the system can request the status 
block of the cancelled command. The status block shows the state of 
the operation at the time it was ended. 

The Abort command is issued only when the system has timed out 
while waiting for the subsystem to complete a command. In response 
to this command, the subsystem stops the current command and 
maintains command status information. This information may be 
used to determine where the command problem occurred. The 
subsystem interrupts the system when it has completed the Abort 
command. 

Command Interface Register Bits 
15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 8 Remarks 

o 0 0 0 0 1 0 0 0 0 0 0 1 1 1 1 Abort 
<------------------ Reserved ---------------------> 

Figure 23. Abort Command 

26 SCSI Subsystem - September 1991 



Assign 

This immediate command assigns a device number (0 to 14) to a 
particular SCSI device. This allows any 15 SCSI devices to have 
command processing active at one time. The Assign command must 
be directed to the subsystem (device 15). 

When the SCSI device is assigned a device number, subsystem 
retries are enabled for that device number. 

Notes: 

1. A device cannot be assigned the same SCSI physical unit number 
(PUN) as the subsystem SCSI ID set in POS Register 3. 

2. A hardware reset sets all device number assignments to the 
default value. See Figure 15 on page 16. 

3. Device number assignments may be removed (devices 0 to 14 not 
assigned) by issuing the Assign command, with bit 7 (R) of the 
second word of the command block set to 1. 

4. If the device number being assigned to a SCSI logical unit (LUN) 
has a command in progress when the Assign command is 
received, the attachment will end the command with an error, and 
the assignment will not be changed. 

5. Only one device number can be assigned to a particular SCSI 
device. If an attempt is made to assign more than one device 
number to the same SCSI device, the command will end with an 
error (Interrupt ID = C). 

Command Interface Register Bits 
15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 8 

o 0 0 0 0 1 0 0 0 0 0 0 1 110 
<--- Reserved ---> <LUN> R <PUN> <Dev> 

Figure 24. Assign Command 

Remarks 

Assign 
Logical Unit, 
Physical Unit, 
and Device No. 

SCSI Subsystem - September 1991 27 



Device Inquiry 

Through the SCB Device Inquiry command, the system determines 
which SCSI devices are attached to the subsystem and specific 
information about those devices. When the Device Inquiry data block 
has been transferred, the subsystem interrupts the system. Because 
the length of the returned data block is device dependent, the system 
should specify the amount of data to be returned. If this is not known, 
then the system should specify the maximum value (255) and set the 
suppress short exception (SS) bit to 1. After the Device Inquiry data 
block is transferred to the specific address, the subsystem interrupts 
the system to indicate that the command is complete. 

If a SCSI device is not attached at the assigned physical SCSI 
address, the command-completed-with-failure interrupt will be 
returned in the Interrupt Status register. The command complete 
status will indicate selection time-out. If the SCSI logical unit number 
is not supported by an attached SCSI physical unit, the device type in 
the Device Inquiry data block is set to hex 7F by the SCSI physical 
device. 

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 9 

o 0 0 1 1 1 0 0 NO NS 0 0 1 0 1 1 
1 ES RE 0 0 SS 1 0 0 0 0 0 0 0 0 CH 
<---------- Reserved ------------------------> 
<---------- Reserved ------------------------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Reserved ------------------------> 
<---------- Reserved ------------------------> 

Figure 25. Device Inquiry Command 

28 SCSI Subsystem - September 1991 

Remarks 

Device Inquiry 
Enable Word 

System-Buffer 
Address 

System-Buffer 
Byte Count 

Termination-Status-Block 
Address 

Optional SCB-Chain 
Address 



Device Inquiry Data Block 

Byte 

o 
1 
2 
3 
4 

76543 2 1 8 

<Peripheral Device Type> 
RMB <- Type Qualifier -> 
<ISO> <-ECMA-> <-ANSI-> 
<------ Reserved ------> 
<- Additional Length --> 

Reurks 

Major Type 
Removable Media Bit 
Standards Compliance 

No. Of Bytes (N-4) 

5 <-- Additional Data ---> Additional 

Inquiry 

N <-- Additional Data ---> Data 

ECMA - European Computer Manufacturer's Association 
ISO - International Standards Organization 

Figure 26. Device Inquiry Data Block 

For more information about the Device Inquiry data block, refer to the 
American National Standards Institute SCSI Standard X3.131-1986. 

DMA Pacing Control 

This immediate command is issued to the subsystem (device 15). It 
controls the pacing of DMA transfers by the subsystem. The pacing 
factor is specified as a percentage of the total bandwidth the 
subsystem is allowed to use. The acceptable range is 25 to 100 
percent. 

The pacing value is used until a new value is specified or until a 
subsystem power-on or Micro Channel" reset occurs. A power-on or 
Micro Channel reset will set pacing to 100% (no pacing). 

Command Interface Register Bits 
15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 8 

o 0 000 1 000 000 1 101 
<------ Reserved ---------> <---Pacing Factor --> 

Figure 27. DMA Pacing Control Command 

Remarks 

Pacing 
Control 

Micro Channel is a trademark of the International Business Machines Corporation. 

SCSI Subsystem -September 1991 29 



Feature Control 

This immediate command controls various features of the SCSI 
subsystem. The command time-out limit (in seconds) can be 
specified through bits 12-0 of the second word of the command 
block. A value of 0 prevents the subsystem from timing out. The 
time-out for a command defaults to 45 seconds upon a subsystem 
hardware reset. When this command is issued to the subsystem 
(device 15), the maximum SCSI bus synchronous-data-transfer rate 
allowed by the subsystem can be specified through bits 15-13 of the 
second word of the command block. The following figure describes 
the relationship between the setting of bits 15-13 and the maximum 
data-transfer rate. 

Bits 
15 14 13 

000 
001 
o 1 0 
o 1 1 
100 
1 0 1 
1 1 0 
1 1 1 

Rate Specified 
(Millions of Bytes per Second) 

5.00 (power-on default) 
4.00 
3.33 
2.86 
2.50 
2.22 
2.00 
1.82 

Figure 28. Device Data-Transfer Rate 

When this command is issued to the subsystem (device 15), the data 
rate and time-out value applies to all devices. When this command is 
issued to a device (device 0 -14), the data-rate control bits are 
ignored and the time-out value applies only to the device to which the 
command was issued. 

Command Interface Register Bits 
15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 9 

e e e eel e e e e e e e e 
Max SCSI 
< D-Rate > <---- Command Global Time-out Value ----> 

Figure 29. Feature Control Command 

30 SCSI Subsystem - September 1991 

Remarks 

Feature 
Control 
Data-Transfer 
Rate 



Format Prepare 

This immediate command acts as a format interlock to prevent 
inadvertent data destruction. The Format Prepare command must be 
issued immediately prior to the Format Unit command. If another 
command is issued between the Format Prepare command and the 
Format Unit command, the format is not performed and ends in an 
error. 

Command Interface Register Bits 
15 14 13 12 11 18 9 8 7 6 5 4 

e e e e e e e e e e 1 
e 1 e 1 e e 1 1 e 1 e 

Figure 30. Format Prepare Command 

Format Unit 

3 2 

e 1 
1 e 

1 8 

1 
e 

Remarks 

Format Prepare 
55AA 

This 8CB command is used to format a storage device. Formatting 
the storage device destroys all data. The device performs defect 
management as specified in the command. Bits within the command 
specify the source of the defect list and the use and disposition of any 
defect list on the device. 

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 8 

e eel lIe e NO NS eel 1 e 
e ES RE e eel e e e e e e e e CH 
<------ Reserved ----> e e e FO CL e e e 
<---------- Interleave Factor ----------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Number of Blocks -----------------> 
<---------- Block Size -----------------------> 

Figure 31. Format Unit Command 

Remarks 

Format Unit 
Enable Word 
Modifier Bits 
Interleave 
System-Buffer 
Address 

Oefect-Li st 
Byte Count 

Termination-Status-Block 
Address 

Optional SCB-Chain 
Address 

Block Count 
Block Length 

SCSI Subsystem - September 1991 31 



The interleave factor used during the format operation is specified in 
the control block. An interleave factor of 0 selects the device default. 
A factor of 1 selects sequential numbering of logical blocks. All other 
factor values are device dependent. 

Modifier bits select options to be used during formatting and are 
defined as follows: 

FD Format Data: When this modifier bit is set to 1, the system 
supplies a defect list for the format operation. The 
structure of the list depends on the device being 
formatted. The system-buffer address points to the defect 
list; the length is specified in the byte count. If this bit is 
set to 0, no defect list is transferred to the device. 

Note: Not all SCSI devices support the transfer of a defect 
list. 

CL Complete List: If the defect list is supplied, this bit 
determines whether the supplied defect list is in addition 
to, or replaces, the defect list already in the device. If the 
bit is set to 1, any previous defect list is replaced. 

Note: Only a defect list in the following block format is supported by 
the subsystem. See the ANSI SCSI Standard or specific device 
specification for more information. 

32 SCSI Subsystem - September 1991 



Byte 

o 
1 
2 
3 

4 
5 
6 
7 

Defect List Header 
7 6 5 4 3 2 1 8 

<----- Reserved -----> 
<----- Reserved -BF--> 
<----- High Byte ----> 
<----- Low Byte -----> 

Defect Descriptors 
<----- High Byte ----> 
<--------------------> 
<--------------------> 
<----- Low Byte -----> 

Remarks 

First 
Defective Block 
Address 

<----- High Byte ----> Last 
<--------------------> Defective Block 
<--------------------> Address 

N <----- Low Byte -----> 

Figure 32. Defect List Block Format 

BF Background Format: When this bit is set to 1, the device 
performs a background format. If the device supports this 
option, it checks the format of the command, then returns 
a command status indicating good status, and starts the 
format operation. If the device does not support the 
option, it may return a command status block indicating a 
check condition. 

Commands received before completing the background 
format are returned with a command status block 
indicating a check condition. The request sense command 
returns a sense key indicating that the device is not ready 
and returns an additional sense code indicating that a 
Format operation is in progress. The request sense data 
block also shows the percentage of the format completed. 

SCSI Subsystem - September 1991 33 



Get Command Complete Status 

This SCB command requests the command complete status block for 
the last command executed on a specified device. When the status 
block is transferred to the system, the subsystem generates an 
interrupt and updates the Interrupt Status register. 

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 8 

00011 100 0 0 000 1 1 1 
1 ES RE 0 0 0 1 0 0 0 0 0 0 0 0 CH 
<---------- Reserved ------------------------> 
<---------- Reserved ------------------------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
o 0 0 0 0 0 0 0 000 1 1 0 1 0 
o 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Reserved ------------------------> 
<---------- Reserved ------------------------> 

Remarks 

Get Command Status 
Enable Word 

System-Buffer 
Address 

System-Buffer 
Byte Count 

Termination-Status-Block 
Address 

Optional SCB-Chain 
Address 

Figure 33. Get Command Complete Status Command 

Command Complete Status Block 

The command complete status block is returned to the location 
specified in the system-buffer address field of the Get Command 
Complete Status command. It contains the status of the last 
command to a device. It is unchanged until another command is 
issued to that device or until a reset occurs. 

An optional termination status block is returned automatically 
whenever an error (Interrupt 10 = C) occurs. This allows command 
complete status to be returned for error recovery. See Figure 21 on 
page 23 for more information. 

The command complete status block and termination status block 
contain the same information. 

Note: A Get Command Complete Status command returns valid 
status information following a hardware error interrupt. For 
errors (Interrupt 10 = 7, E, and F) caused by hardware 
problems do not use the termination status block; the 
subsystem internally cancels a command at the pOint of the 
hardware error. 

34 SCSI Subsystem - September 1991 



Word 

a 
1 
2 
3 
4 

5 
6 

7 

8 
9 
A 
B 
C 

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 8 

<---------- SCB End Status Word --------------> 
<---------- Reserved--------------------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word------------> 

<---------- Most Significant Word ------------> 
a a a a a a a a a a a all a a 

<-- Command Status --><---- Device Status ----> 

<-- Command Error ---><---- Device Error -----> 
<---------- Reserved -------------------------> 
<---------- Reserved -------------------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 

Figure 34. Command Complete Status Block 

Word 0 - Subsystem Control Block End Status 

Bit 

15-13 
12 
11 
10 
9 
8 
7 
6 
5 
4 
3 
2 
1 
o 

Function 

Reserved 
Major Exception Occurred 
Device Not Initialized 
Reserved 
Device-Dependent Status Available 
Additional Status Available 
sce Interrupt Queued 
sce Halted (Error/End Chain) 
Long Record Exception 
sce Specification Check 
sce Rejected 
Invalid Command Rejected 
Short Record Exception 
sce Ended (No Error) 

Remarks 

SCB Status 

Residual Byte 
Count 
Scatter/Gather 
List 

Element Address 
Device-Dependent 
Status Length 

Command Device 
Status 

Error Codes 

Last SCB Address 
Processed 

Note: The function indicated Is true when the value of the bit is one. Reserved 
bits are undefined. 

Figure 35. SCB End Status 

SCSI Subsystem - September 1991 35 



Word 1 - Reserved 

Words 2 and 3 - Residual Byte Count: These words contain the 
number of bytes that were not transferred. 

Words 4 and 5 - Scatter/Gather List Element Address: These words 
contain the address of the scatter/gather list element being used 
when the command was ended. 

Word 6 - Device-Dependent Status Length: This word contains the 
number of bytes of device status information that follow. This word is 
set to hex OC to indicate 12 bytes. 

36 SCSI Subsystem - September 1991 



Word 7 - Command and Device Status 

Hex Command Status 

1 SCB Command Completed with Success 
5 SCB Command Completed with Success after Retries 
7 Subsystem Hardware Failure 
A Immediate Command Completed 
C Command Completed with Failure 
E Command Error (Invalid Command or Parameter) 
F Software Sequencing Error 

Note: All values not shown are reserved. 

Figure 36. Command Status Codes 

Bit Function 

7 Reserved 
6 Vendor Unique Bit 
5 Vendor Unique Bit 
4 - 1 Device Status Code 
o Vendor Unique Bit 

Figure 37. Device Status Byte 

Hex Device Status 

o Good Status (No Error) 
1 Check Condition (Error) 
2 Condition Met/Good (No Error) 
4 Busy (Error) 
8 Intermediate/Good (No Error) 
A Intermediate/Condition Met/Good (No Error) 
C Reservation Conflict (Error) 

Note: All values not shown are reserved. 

Figure 38. Bits 4 - 1 Device Status Code 

SCSI Subsystem - September 1991 37 



Word 8 - Command Error Code/Device Error Code 

Hex 

00 
01 
02 
03 
04 
05 
06 
07 
08 

09 
OA 
OB 
OC 
00-12 
13 
14-1F 
20 
21 
22 
23 
24 
25-7F 
80 
81-FF 

Error 

No Error 
Invalid Parameter in SCB 
Reserved 
Command Not Supported 
Command Ended (By System) 
Reserved 
Reserved 
Format Rejected - Sequence Error 
Assign Rejected - Command in Progress on 

Device 
Assign Rejected - SCSI Device Already Assigned 
Command Rejected - SCSI Device Not Assigned 
Maximum Logical Block Address Exceeded 
16-Bit Card Slot Address Range Exceeded 
Reserved 
Invalid Device for Command 
Reserved 
Subsystem Hardware Error 
Global Command Time-out 
DMA Error 
Subsystem Buffer Defective 
Command Ended by Subsystem 
Reserved 
Subsystem Microprocessor Detected Error 
Reserved 

Figure 39. Bits 15-8 Command Error Code 

Hex 

00 
01 
02 
03-0F 
10 
11 
12 
13 
14-1F 
20 
21-FF 

Error 

No Error 
SCSI Bus Reset Occurred 
SCSI Interface Fault 
Reserved 
SCSI Selection Time-out (device not available) 
Unexpected SCSI Bus Free 
Reserved 
Invalid SCSI Phase Sequence 
Reserved 
Short Length Record 
Reserved 

Figure 40. Bits 7-0 Device Error Code 

38 SCSI Subsystem - September 1991 



Word 9 - Reserved 

Word A - Reserved 

Word B - Last SCB Address Processed - Low Word 

Word C - Last SCB Address Processed - High Word 

SCSI Subsystem-September 1991 39 



Get POS and Subsystem Information 

This SCB command requests the subsystem to return P~S 
information and subsystem parameters. 

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 9 

a a all 1 a a a a a a 1 a 1 a 
1 ES RE e eel e e e e e e e e CH 
<---------- Reserved ------------------------> 
<---------- Reserved ------------------------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
a e e e e a e a e eel eel e 
a e e e e a e e e a e a e e e e 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Reserved ------------------------> 
<---------- Reserved ------------------------> 

Remarks 

Get POS Information 
Enable Word 

System-Buffer 
Address 

System-Buffer 
Byte Count 

Termination-Status-Block 
Address 

Optional SCB-Chain 
Address 

Figure 41. Get POS and Subsystem Information Command 

POS and Subsystem Information Status Block 

Word 15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 9 Remarks 

ale eel lIe 1 1 1 1 1 lIe Subsystem 10 
1 <--- POS Register 2 ---><-- POS Register 3 --> POS Regs 2-3 
2 <--- POS Register 4 ---><-- Interrupt Level--> POS Reg 4/Intr Level 
3 <- Size --><---- Revision Level -------------> Subsystem Level 
4 <-No. Devices Supported-><No. LUNs per Device> No. Devices/ 

No. LUNs per Device 
5 <- No. Logical Dev Nos.-><-- Pacing Factor --> No. of Logical 

Dev Nos. Pacing 
Factor 

6 <--- Max Busy Time ---><-- EOI to Intro Off -> Max Busy Time/ 
EOI to Int off 

7 <--------------- Reserved -------------------> 
8 <--------------- Reserved -------------------> 

Figure 42. POS and Subsystem Information Status Block 

40 SCSI Subsystem - September 1991 



Word 0 - Subsystem POS ID = Hex 8EFE 

Bits 15-8 These bits contain hex 8E. 

Bits 7-0 These bits contain hex FE. 

Word 1 - POS Registers 2 and 3 

Bits 15-8 These bits contain the current value for 
POS Register 2. 

Bits 7-0 These bits contain the current value for 
POS Register 3. 

Word 2 - POS Register 4/Subsystem Interrupt Level 

Bits 15 -8 These bits contain the current value for 
POS Register 4. 

Bits 7-0 These bits contain Interrupt level, hex OE. 

Word 3 - Channel Connector Size/Subsystem Revision Level 

Bits 15 -12 These bits indicate if the subsystem is currently 
installed in a 16- or 32-bit Micro Channel 
connector. 

Bits 
15141312 

0000 
000 1 

Channel 
Connector 

32-Blt 
16-Blt 

Figure 43. Channel Connector Size 

Bits 11-0 These bits are reserved. 

Word 4 - Number of Devices Supported/Number of Logical Units per 
SCSI Device 

Bits 15-8 These bits contain the number of physical units 
supported (up to 7). 

Bits 7-0 These bits contain the number of logical units 
supported (up to 8). 

SCSI Subsystem - September 1991 41 



Word 5 • Number of Logical Device Numbers Supported/Pacing Factor 

B11815-8 These bits contain the number of logical devices 
supported (16). 

Blt87-0 These bits contain the DMA Pacing factor (%) as 
set by the Immediate Pacing control command. 

Word 6 • Maximum Subsystem Busy Time/EOI to Interrupt Off Time 

B11815-8 These bits specify the time (up to 30 seconds) from 
hardware reset to busy off. 

Blt87-0 

Word 7 - Reserved 

Word 8 - Reserved 

These bits specify the time (one microsecond) 
from load of the End of Interrupt request code until 
the 'hardware interrupt' signal is deactivated. 

42 SCSI Subsystem - September 1991 



Read Data 

This SCB command is used for devices with fixed-length blocks, such 
as fixed disk drives. This command causes the subsystem to send 
the SCSI Read command to the device. The blocks specified are read 
and the data is transferred to the system. 

The Read Data command supports multiple block operations up to 
65 535 blocks or 16MB minus 1 byte (MB equals 1 048576 bytes), 
whichever is less, of total data transferred. 

For devices with variable length blocks, such as tape drives, the Send 
Other SCSI SCB command should be used to generate the SCSI Read 
command. 

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 8 

o 0 0 1 1 1 0 0 ND NS 0 0 0 0 0 1 
1 ES RE PT 0 0 BB 0 0 0 0 0 0 0 0 CH 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Number of Blocks ----------------> 
<---------- Block Size ----------------------> 

Figure 44. Read Data Command 

Remarks 

Read Data 
Enable Word 
Logical 
Address 

System-Buffer 
Address 

System-Buffer 
Byte Count 

Termination-Status-Block 
Address 

Optional SCB-Chain 
Address 

Block Count 
Block Length 

SCSI Subsystem - September 1991 43 



Read Device Capacity 

This SCB command is used to return the Device Capacity status block 
of the specific device. 

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 9 

o 0 0 1 1 1 0 0 ND NS 0 0 1 0 0 1 
1 ES RE 0 0 0 1 0 0 0 0 0 0 0 0 CH 
<---------- Reserved ------------------------> 
<---------- Reserved ------------------------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
000 0 0 0 0 0 0 000 1 000 
000 0 0 0 0 0 0 0 0 0 0 0 0 0 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Reserved ------------------------> 
<---------- Reserved ------------------------> 

Figure 45. Read Device Capacity Command 

Device Capacity Data Block 

Byte 7 6 5 4 3 2 1 9 Remarks 

o <----- High Byte ------> 

Remarks 

Read Device Capacity 
Enable Word 

System-Buffer 
Address 

System-Buffer 
Byte Count 

Termination-Status-Block 
Address 

Optional SCB-Chain 
Address 

1 <----------------------> Last Logical 
2 <----------------------> Block Address 
3 <----- Low Byte -------> 
4 <----- High Byte ------> 
5 <----------------------> Block 
6 <----------------------> Length 
7 <----- Low Byte -------> 

Figure 46. Device Capacity Data Block 

44 SCSI Subsystem - September 1991 



Read Verify 

This SCB command reads the specified blocks of data and checks for 
errors. Data is not transferred by this command; it serves to verify 
the readability of the data and the correct operation of the device. 
This command is used for devices with fixed-length blocks, such as 
fixed disk drives. This command causes the subsystem to send the 
SCSI Read and Verify commands to the device. The blocks specified 
are read and the data is transferred to the system. 

The Read Verify command supports multiple block operations up to 
65 535 blocks or 16MB minus 1 byte (MB equals 1 048576 bytes), 
whichever is less, of total data transferred. 

For devices with variable length blocks, such as tape drives, the Send 
Other SCSI SCB command should be used to generate the SCSI Read 
and Verify commands. 

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 8 

o 0 0 1 1 1 0 0 NO NS e 0 0 0 1 1 
1 ES RE 0 0 0 1 0 0 0 0 0 0 0 0 CH 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Reserved ------------------------> 
<---------- Reserved ------------------------> 
<---------- Reserved ------------------------> 
<---------- Reserved ------------------------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Number of Blocks ----------------> 
<---------- Block Size ----------------------> 

Figure 47. Read Verify Command 

Remarks 

Read Verify 
Enable Word 
Logical Block 
Address 

Termination-Status-Block 
Address 

Optional SCB-Chain 
Address 

Block Count 
Block Length 

SCSI Subsystem - September 1991 45 



Reassign Block 

This sea command reassigns the logical block address for a 
defective block to a spare block. The system supplies the reassign 
block defect list. The system-buffer address in the command block 
serves as a pointer to the defect list. 

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 8 

e eel lIe e e eel 1 e e e 
e ES RE e eel e e e e e e e e CH 

<---------- Reserved -------------------------> 
<---------- Reserved -------------------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<-----------Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Reserved -------------------------> 
<---------- Reserved -------------------------> 

Figure 48. Reassign Block Command 

Reassign Block Defect List 

Byte 

e 
1 
2 
3 

Defect List Header 
7 6 5 432 1 9 

<----- Reserved -----> 
<----- Reserved -----> 
<----- High Byte ----> 
<----- Low Byte -----> 

Defect Descriptors 
<----- High Byte ----> 

Remarks 

Defect List 
Length 

Remarks 

Reassign Block 
Enable Word 

System-Buffer 
Address 

System-Buffer 
Byte Count 

Termination-Status-Block 
Address 

Optional SCB-Chain 
Address 

4 
5 
6 
7 

<--------------------> 
<--------------------> 

Defective Logical 
Block 

<----- Low Byte -----> Address 

Figure 49. Reassign Block Defect List 

46 SCSI Subsystem - September 1991 



Request Sense 

This SCB command is used to return the sense data for the specified 
device. The subsystem interrupts the system when the Sense data 
block is transferred. The length of the data block depends on the 
device and can be four bytes (non-extended) or more (extended). The 
format of the data block for both cases is shown. The system should 
specify the amount of data to be returned in the SCB based on the 
particular device attached, or specify the maximum value (255) and 
set the suppress short exception (55) bit to 1. 

The sense data is valid only if a Check Condition status was returned 
for the previous command to the device. The sense data provides 
additional information on the check condition. Refer to the ANSI SCSI 
publication or the particular SCSI device specification for detailed 
information about the request sense data block. 

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 8 

G G G 1 1 1 G a NO NS a a 1 a a a 
1 ES RE a a ss 1 G G a a a a a a CH 
<---------- Reserved ------------------------> 
<---------- Reserved ------------------------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Least Significant Word ----------> 
<---------- Most Significant Word -----------> 
<---------- Reserved ------------------------> 
<---------- Reserved ------------------------> 

Figure 50. Request Sense 

Remarks 

Request Sense 
Enable Word 

System-Buffer 
Address 

System-Buffer 
Byte Count 

Termination-Status-Block 
Address 

Optional SCB-Chain 
Address 

SCSI Subsystem - September 1991 47 



Sense Data Block 

Byte Sense Bits 
7 6 5 4 3 2 1 8 Remarks 

o AV <Class> <- Code -> Error Class/Code 
1 X X X < High Byte> Logical 
2 <--------------------> Block 
3 <----- Low Byte -----> Address 

Figure 51. Sense Data Block 

Byte 0 Error Class/Error Code 

Bit 7 Address Valid: When this bit is set to 1, the logical 
block address field is valid. 

Bits 6 - 4 Error Class: When the error class is 0, the sense 
data block is in the format shown above. When the 
error class is 7, the sense data block is in the 
extended format, shown on the following page. All 
other settings are device dependent. 

Bits 3-0 Error Code: Errors are device dependent. 

Bytes 1-3 Logical Block Address: This address is device 
dependent. 

Note: The subsystem does not examine or use device-dependent 
information. 

48 SCSI Subsystem - September 1991 



Extended Sense Data Block 

Byte 

o 
1 
2 
3 
4 
5 
6 
7 
8 

N 

Sense Bits 
7 6 543 2 1 9 

VII 1 <-- Code --> 
<---- Segment No. ----> 
FM EM IL X <-- Key --> 
<- Most Significant --> 
<---------------------> 
<---------------------> 
<- Least Significant -> 
<--Additional Length--> 
<--Additional Sense --> 

<--Additional Sense---> 

Remarks 

Error Class/Code 
Segment Number 
Sense Key 
Information Bytes 

No. of Bytes 
Additional 
Sense 

Bytes 

Figure 52. Extended Sense Data Block 

Byte 0 Error Class/Error Code 

Bit 7 The Information bytes are valid only if this bit is a 1. 

Bits 6-4 Error class 7 is for extended-sense data. 

Bits 3 - 0 Error code 0 is standard format. Error codes hex 1 -
E are reserved. Error code hex F is device 
dependent. 

Byte 1 Segment Number: This byte contains the current segment 
descriptor. 

Byte 2 Extended Error Bits/Sense Key 

Bit 7 A filemark (FM) has been reached on a sequential 
access device. 

Bit 6 An end of medium (EM) has been reached on a 
sequential access device. 

Bit 5 An Invalid length (Il) resulted when the specified 
logical block length did not match the device. 

Bit 4 X - This bit is reserved. 

Bits 3 - 0 The coding of these bits is shown in the following 
figure. 

SCSI Subsystem - September 1991 49 



Hex Value 

o 
1 
2 
3 
4 
5 
6 
7 
8 
9 
A 
B 
C 
o 
E 
F 

Figure 53. Sense Key 

Function 

No Sense 
Recovered Error 
Not Ready 
Medium Error 
Hardware Error 
Illegal Request 
Unit Attention 
Data Protect 
Blank Check 
Device Dependent 
Copy Ended 
Command Ended 
Equal 
Volume Overflow 
Miscompare 
Reserved 

Bytes 3 - N Device-Dependent Status: Refer to the particular device 
specifications for a definition of these bytes. 

Note: The subsystem does not examine or use device-dependent 
information. 

50 SCSI Subsystem - September 1991 



Reset 

This immediate command enables the system to reset a specific 
physical device or globally reset the subsystem and all attached 
devices. A Reset command issued to a SCSI device causes the 
subsystem to send a SCSI Bus-Device Reset message to the 
corresponding physical device. The SCSI Bus-Device Reset message 
causes the physical device to immediately end all commands in 
progress on all logical units attached, and go to the bus-free state. 
The system can reset the subsystem by a soft reset if, for example, 
the system times out while waiting to complete an Abort command. 

To reset the subsystem, issue a Reset command to device hex F. The 
subsystem stops all current activity and all attached devices are reset 
by activating the SCSI 'reset' signal. When the Reset command is 
completed, the subsystem sets the Interrupt Status register to 
indicate the results. When the Command Complete interrupt occurs, 
the system reads the Interrupt Status register and checks for the 
Immediate Command Complete interrupt (hex A). A value of hex 7F 
in the Interrupt Status register indicates a diagnostic routine within 
the subsystem has detected an error and the subsystem may be 
defective. Individual devices can be reset as required for 
initialization or error recovery. 

Command Interface Register Bits 
15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 9 Remarks 

e e e eel e e e e e e e e e e Reset 
<------------------ Reserved ---------------------> 

Figure 54. Reset Command 

SCSI Subsystem - September 1991 51 



Send Other SCSI Command 

This SCB command is used to send any SCSI command not supported 
by the subsystem directly to a SCSI device. The command to be 
issued is placed at the end of the SCB. When commands are issued 
directly to a device using this command, messages are handled by 
the subsystem. Data transfer direction is controlled by the 
read-option bit (RD) in the Enable word. When this bit is set to 1, the 
subsystem transfers data to the system from the device. When the 
read-option bit is set to 0, the subsystem transfers data to the device 
from the system. If the system-buffer byte count specified in the SCB 
is 0, no data is transferred. 

Notes: 

1. This command should be used only when other commands 
cannot perform the operation; otherwise, performance of the SCSI 
subsystem can be impacted. 

2. This command should be issued only to logical device numbers ° 
to 14. 

lS 14 13 12 11 18 9 8 7 6 S 4 3 2 1 8 

o 0 1 0 0 1 0 0 ND NS 0 1 1 1 1 1 
RD ES RE PT 0 SS 1 0 0 0 0 0 0 0 0 CH 
<------ Reserved -----><-- SCSI CMD Length ---> 
<---------- Reserved -------------------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<-------1------- SCSI Command -------0--------> 
<-------3------- SCSI Command -------2--------> 
<-------5------- SCSI Command -------4--------> 
<-------7------- SCSI Command -------6--------> 
<-------9------- SCSI Command -------8--------> 
<------11------- SCSI Command ------10--------> 

Figure 55. Send Other SCSI Command 

52 SCSI Subsystem - September 1991 

Remarks 

Send Dther SCSI Command 
Enable Word 

System-Buffer 
Address 

System-Buffer 
Byte Count 

Termination-Status-Block 
Address 

Optional SCB-Chain 
Address 

SCSI Command 

Six Bytes or 

Ten Bytes or 
Twelve Bytes 



Write Data 

This SCB command writes data from the system to the device in 
consecutive blocks. This command is used for devices with 
fixed-length blocks, such as fixed disk drives. This command causes 
the subsystem to send the SCSI Write command to the device. The 
blocks specified are read and the data is transferred to the system. 
No verification is performed. 

The Read Data command supports multiple block operations up to 
65 535 blocks or 16MB minus 1 byte (MB = 1 048576 bytes), 
whichever is less, of total data transferred. 

For devices with variable length blocks (such as tape drives) the 
Send Other SCSI SCB command should be used to generate the SCSI 
Write command. 

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 9 

o 0 0 1 1 1 0 0 NO NS 0 0 0 0 1 0 
o ES RE PT 0 0 BB 0 0 0 a a 0 a a CH 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Number of Blocks -----------------> 
<---------- Block Size -----------------------> 

Figure 56. Write Data Command 

Remarks 

Write Data 
Enable Word 
Logical-Block 
Address 

System-Buffer 
Address 

System-Buffer 
Byte Count 

Termination-Status-Block 
Address 

Optional SCB-Chain 
Address 

Block Count 
Block Length 

SCSI Subsystem - September 1991 53 



Write with Verify 

This SCB command is similar to Write Data, except that a Read Verify 
command is performed after all blocks are written. This command is 
used for devices with fixed length blocks, such as fixed disk drives. 
This command causes the subsystem to send the SCSI Write and 
Verify commands to the device. The blocks specified are read and 
the data is transferred to the system. 

The Write with Verify command supports multiple block operations up 
to 65 535 blocks or 16MB minus 1 byte (MB = 1 048576 bytes). 
whichever is less, of total data transferred. 

If an error occurs during a Write with Verify command, the system 
should retry the command. If all retries of the command fail, the 
system can allocate a spare block to replace the failing one through 
the Reassign Block command, and then reissue the command. 

For devices with variable length blocks, such as tape drives, the Send 
Other SCSI SCB command should be used to generate the SCSI Write 
and Verify commands. 

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 9 

e eel 1 1 e e NO NS e eel S S 
e ES RE PT S S ss S sse e s S S CH 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Least Significant Word -----------> 
<---------- Most Significant Word ------------> 
<---------- Number of Blocks -----------------> 
<---------- Block Size -----------------------> 

Figure 57. Write with Verify Command 

54 SCSI Subsystem - September 1991 

Remarks 

Write Verify 
Enable Word 
Logi cal-Block 
Address 

System-Buffer 
Address 

System-Buffer 
Byte Count 

Termination-Status-Block 
Address 

Optional SCB-Chain 
Address 

Block Count 
Block Length 



Error-Recovery Procedures 

This section describes the error-recovery procedures for the 
subsystem and the system. 

Subsystem-Error Recovery 

The subsystem performs the error-recovery procedures (ERP) as 
necessary to ensure data integrity and maintain system availability. 
The subsystem will not perform retries regardless of the setting of RE 
command option bit in the SCB. 

Device level retries are device dependent and are usually disabled 
through the SCSI Mode Select command. 

Data Error 

The following section will discuss read operations, write operations, 
and format operations in data-error recovery. 

Read Operations: SCSI devices automatically perform read-error 
recovery procedures unless this function is disabled. 

When a device error persists, the logical block causing the error can 
be reassigned to a spare block by using the Reassign Block 
command. The subsystem does not reassign a defective block on its 
own. 

Write Operations: Each device performs its own write-error recovery 
procedures unless this function is disabled. 

If a device error persists, the logical block in error can be reassigned. 
The subsystem does not reassign defective blocks on its own. 

Format Operations: Each device performs its own format-error 
recovery procedures unless retries have been disabled. If a device 
returns a format error, and all retries are unsuccessful, the 
subsystem terminates the command with an error. 

SCSI Subsystem - September 1991 55 



Positioning Error 

Each device performs its own positioning-error-recovery procedures 
unless error recovery is disabled. If a device returns an error 
indicating a positioning error, and all retries were unsuccessful, the 
subsystem ends the command with an error. 

SCSI-Bus Parity Error 

If a SCSI-bus parity error occurs, the subsystem retries the failing 
sequence unless retries have been disabled. If the retry is 
unsuccessful, or if the total number of errors reaches nine, the 
command is terminated immediately with a nonrecoverable error. 

Operational Time-Outs 

The subsystem ensures timely completion of commands through local 
and global time-outs. If a SCSI device does not respond to a 
selection sequence within the time-out period, a selection time-out 
error will be returned to the system. If a command is not completed 
within the time-out period, a global time-out error is returned to the 
subsystem. 

The subsystem time-out values are 260 milliseconds for a selection 
time-out, and 45 seconds (default), which is changed through the Set 
Features command, for a global time-out. 

56 SCSI Subsystem - September 1991 



System-Error Recovery 

The system must process errors reported after a reset or command 
completion. Some types of errors are normal. For instance, a unit 
attention error after a device is reset, or after removable media is 
changed, is normal. When an error is reported that is not expected or 
not normal, the system should follow the error-recovery and 
fault-isolation procedure table. This procedure helps determine if the 
error is recoverable, and if it is the result of a command error, a 
system programming error, or a subsystem hardware failure. 
Recommended actions are indicated for each class of command, 
based on the interrupt 10 returned. 

SCSI Subsystem - September 1991 57 



The following two figures describe error-recovery procedures (ERP). 

Command 
Class 

Device 
Reset 
Command 

Device 
Abort 
Command 

Request 
Sense 
Commands 

All Other 
Device 
Commands 

Interrupt 10 

AX 
7X 
CX 
EX 
FX 
Others 
Time-out 

AX 
7X 
CX 
EX 
FX 
Others 
Time-out 

1X 
5X * 
7X 
CX 
EX 
FX 
Others 
Time-out 

1X 
5X 
7X 
CX 
EX 
FX 
Others 
Time-out 

Recommended Action 

ERP Complete/Retry Original Commands 
ERP19 
ERP18 
ERP 11 
ERP 14 
ERP18 
ERP19 

ERP Complete/Retry Original Commands 
ERP19 
ERP16 
ERP 11 
ERP14 
ERP18 
ERP18 

ERP3 
ERP9 
ERP19 
ERP15 
ERP 11 
ERP14 
ERP18 
ERP18 

No Errors 
ERP8 
ERP19 
ERP 1 
ERP 11 
ERP14 
ERP18 
ERP18 

Figure 58. SCSI Command ERP Table 

58 SCSI Subsystem - September 1991 



Command 
Class 

Subsystem 
Reset 
Command 

Subsystem 
Abort 
Command 

All Other 
Subsystem 
Commands 

Hardware 
Reset 

Interrupt 10 

AF 
7F 
CF 
EF 
FF 
Others 
Time-out 

AF 
7F 
CF 
EF 
FF 
Others 
Time-out 

1F 
5F 
7F 
EF 
FF 
Others 
Time-out 

OF 
3F 
8F 
Others 
Time-out 

Recommended Action 

ERP Complete/Retry Original Commands 
ERP 20 
ERP18 
ERP 11 
ERP14 
ERP 19 
ERP19 

ERP Complete/Retry Original Commands 
ERP 20 
ERP19 
ERP 11 
ERP14 
ERP 19 
ERP19 

No Errors 
ERP8 
ERP 20 
ERP 11 
ERP 14 
ERP 17 
ERP 17 

ERP Complete/Retry Original Commands 
ERP 20 
ERP 21 
ERP 22 
ERP 22 

Figure 59. Subsystem Command ERP Table 

The following error-recovery procedures assume that subsystem and 
device retries have not been disabled. 

ERP 1 

ERP2 

ERP3 

ERP4 

If the termination status block or command complete 
status block indicates a Check condition in the device 
status byte, go to ERP 2. Otherwise, go to ERP 12. 

Issue the Request Sense command to the SCSI device. 
See the appropriate ERP table. 

If the Sense key from the request-sense data equals 6 
(Unit Attention), go to ERP 6. Otherwise, go to ERP 4. 

If the Sense key from the request-sense data equals 2 (Not 
Ready), go to ERP 5. Otherwise, go to ERP 15. 

SCSI Subsystem - September 1991 59 



ERP5 

ERP6 

ERP7 

ERP8 

ERP9 

ERP10 

ERP 11 

ERP12 

ERP13 

ERP14 

ERP15 

ERP16 

ERP17 

If the removable media bit (RMS) is set to 1 (bit 7 in the 
Device Inquiry data block), the program should handle 
media installation (for example, prompt for media 
insertion), then go to ERP 7. If the RMB is set to 0, go to 
ERP 15. 

If the RMS is set to 1, the program should take any action 
needed when the media is changed, then go to ERP 7. If 
the RMS is set to 0, go to ERP 7. 

Retry the original operation three times or more. If an 
error persists, go to ERP 15. 

Log the soft error counts from TSS or command-complete 
status block (CCSS) if desired. Continue normal 
operations. 

Log the soft error counts from TSB or CCSS if desired. Go 
to ERP 3. 

Retry the original operation at least three times. If an 
error persists, go to ERP 17. 

Check the command and the parameters for validity. 
Check the TSS or CCSS command error code for 
additional information. 

If the TSB or CCSB command error code is hex OA 
(device not assigned), suspect a system software 
initialization or configuration problem. If none is found, 
proceed to ERP 13. 

If the TSB or CCSS device error code equals hex 10 
(Selection Time-Out), make sure the SCSI device is 
properly connected to the SCSI bus. Also, be sure that the 
SCSI address (10) on the device is set properly and is not 
the same as any other device (including the subsystem 
SCSI 10 set in POS register 3). Otherwise, proceed to ERP 
18. 

Check the system software command queuing/delivery 
code for a possible problem. If none is found, go to ERP 
18. 

Issue an Immediate Abort command to the SCSI device. 
See the appropriate ERP table. 

Issue an Immediate Reset command to the SCSI device. 
See the appropriate ERP table. 

Issue an Immediate Abort command to the subsystem. 
See the appropriate ERP table. 

60 SCSI Subsystem - September 1991 



ERP18 

ERP19 

ERP20 

ERP 21 

ERP22 

Issue an Immediate Reset command to the subsystem. 
See the appropriate ERP table. 

Perform a hardware reset through the Basic Control 
register bit 7. Set bit 7 to 1. Then, reset bit 7 to 0 to 
perform the reset. See the appropriate ERP table. 

Verify the proper connection of the SCSI bus cables and 
termination networks. If an error persists, proceed to ERP 
21. Otherwise, replace the defective SCSI bus cable or 
the defective termination network. 

Remove the devices from the SCSI bus, one at a time, and 
perform a hardware reset until the error condition is 
removed. If all the devices and cables (except the 
terminators) are removed and an error persists, proceed 
to ERP 22. Otherwise, replace the defective SCSI device, 
the defective SCSI bus cable, or the defective termination 
network. See the appropriate ERP table. 

Replace the defective subsystem. Restore the system to 
the original configuration. See the appropriate ERP table. 

SCSI Subsystem - September 1991 61 



Compatibility 

The subsystem uses the SCB architecture as an interface to the 
system. Some differences, however, exist between the architecture 
definition and how the subsystem implements the architecture. This 
section describes those differences. 

Commands 

The subsystem does not support all commands defined by the 
architecture. In addition, the subsystem does not support a command 
hierarchy. The architecture allows the Suspend and the Reset 
Interrupt Status commands to be accepted by a device while it is 
performing another command, and the subsystem does not. 

The following SCB commands defined by the architecture are not 
supported by the subsystem: 

• Suspend 
• Resume 
• Initialize Device 
• Non-operation. 

The Non-operation Immediate command defined by the architecture 
is not supported by the subsystem. 

Rejected Commands 

The architecture defines that a subsystem indicate that a command 
has been rejected by setting the reject bit in a status area called the 
Command Status byte. Under the following conditions, the subsystem 
generates a command-sequence interrupt: 

• The device interrupt queue is full 
• The attention code is not valid 
• The Immediate-command operation code is not valid 
• The device is busy 
• The device is not available 
• The device specified is not valid. 

62 SCSI Subsystem - September 1991 



Command Options 

The architecture allows optional facilities to be selected for 
commands sent to each device; these options are selected using 
Enable word (Word 1) of the control block. The Enable word also 
allows for subsystems, such as the subsystem, to define certain bits 
for their specific needs. 

The subsystem does not use some of these options; bits selecting 
these options are reserved on the subsystem and must be set to O. 

The following shows the differences in the options between the 
subsystem and the architecture. 

• SCB Interrupts on Command Complete 

Architecture: Allows an optional interrupt on any SCB. The 
architecture will allow any SCB in a chain to request an SCB 
interrupt. 

Subsystem: Issues an interrupt for every SCB not in a chain. 
The subsystem will not allow an interrupt for normal SCB 
completion except for the last SCB in the chain. 

• SCB Interrupts on Non-SCB Command Complete 

Architecture: Allows optional specification on some 
commands. Disallows interrupts on other commands to avoid 
recursion problems with full interrupt queues. 

Subsystem: Issues an interrupt after every command. 

• Storing End Status Word 1 on an SCB Interrupt for Normal 
Completion 

Architecture: Compatible with the subsystem when the 
Device Interrupt Identification register is not supported. 

Subsystem: Stores TSB word 0 only when requested by SCB 
Enable word. 

• Storing of Residual Buffer Address in the TSB on Errors 

Architecture: To standardize error handling, always store a 
Buffer address in the TSB whenever a Residual Byte count is 
provided. 

Subsystem: Stores buffer address only when Indirect list is 
used in SCB. 

SCSI Subsystem - September 1991 63 



• Suppress Exception Long in SCB Enable Word 1 

Architecture: This is an optional feature. 

Subsystem: The subsystem does not support this option. 

• Extended SCBs and TSBs 

Architecture: This is an optional feature that allows usage of 
two operand-storage addresses including incrementing and 
decrementing. 

Subsystem: The subsystem does not support this option. 

64 SCSI Subsystem-September 1991 



Interrupts 

The following section describes the differences between the SCB 
architecture definition of interrupts and the subsystem 
implementation of the architecture. 

• Presentation of Interrupt Status in the Interrupt Status Register 

Architecture: Supports two modes of Interrupt handling. In 
the simple mode, all interrupts flow through the Interrupt 
Status register, which is compatible with the subsystem 
implementation. In the Device Interrupt Identification register 
mode, SCB interrupts are not presented through the Interrupt 
Status register. 

Subsystem: All interrupts flow through a single Interrupt 
Status register. 

• Command to Clear the Interrupt Status Register 

Architecture: Compatible with subsystem implementation 
when the Device Identification Interrupt register extension to 
the architecture is not implemented. 

Subsystem: Implements only a single command, and can 
clear only a single interrupt at a time. 

• Clearing Multiple SCB Logical Interrupts on a Single Command 

Architecture: Supported by Reset SCB interrupt command 
when the Device Identification Interrupt register is supported. 

Subsystem: This is not supported. 

• Presentation of Multiple Causes on Physical Interrupt 

Architecture: Multiple causes presented in the Device 
Identification Interrupt register method of interrupt handling. 

Subsystem: Only one cause per Physical interrupt. 

• Interrupt Code Returned for Reset Device 

Architecture: Returns Interrupt code hex 0 (reset complete) 
to allow a program to discard interrupt data in the Interrupt 
Status port for a device when a Reset Device is issued. 

Subsystem: Returns Interrupt code hex A (immediate 
command complete) no error. 

SCSI Subsystem - September 1991 65 



Other Differences 

sca Enable Word 1 

This section describes the differences between the SCB architecture 
definition of the SCB Enable Word 1 and how the subsystem 
implements the architecture. 

Subsystem 

1 1 1 1 1 
5 4 3 2 (3 9 8 7 6 5 4 3 2 C:l 

IRD ITSBIRE IPT I C:l ISESIBB I (3 I C:l I C:l C:l C:l C:l C:l C:l ICH I 

l ~INTERRUPT ON ERROR OR COMMAND 
COMPLETE 

OPTIONAL 

'-----'-------'--QNLy DEFINED FOR SCSI SUBSYSTEM 

sca Architecture 

1 1 1 1 1 
5 4 3 2 (3 9 8 7 6 543 2 C:l 

~ OPTIONAL I IF ZERO. INTERRUPT ON ERROR OR COMMAND COMPLETI t IF ONE. INTERRUPT ON ERROR 

Figure 60. SCB Enable Word 1 

Note: Consider the following when examining both Enable Words. 

• Bits shown as 0 in the subsystem are reserved and must be set to 
O. These bits are upward compatible with the architecture. 

• Bits CH and CNE are the same (chain no error). 

• Bits PT and IL 1 are the same (indirect list specified). 

• Bits marked as DO are usable for subsystem-defined functions. 
This is compatible with the architecture. 

66 SCSI Subsystem-September 1991 



sca End Status Word 1 

This section describes the differences between the SCB architecture 
definition of the SCB End Status Word 1 and how the subsystem 
implements the architecture. 

Subsystem 

1 1 1 1 1 
5 4 3 2 e 9 8 7 6 5 4 3 2 e 

I I I ALWAYS ZERO 

sca Architecture 

1 1 1 1 1 
5 4 3 2 e 9 8 7 6 5 4 3 2 e 

l L OONE L RESERVED 

IF SET TO ONE THEN CHAIN ADDRESS II USED 

Figure 61. SGB End Status Word 1 

Note: Consider the following when examining the TSB End Status 
Word 1 and the SCSI TSB Word Zero. 

• Bits shown as R for the subsystem are reserved and must be set 
to O. These bits are upward compatible with the architecture. 

• Bits SEI and SLE are the same (short length exception detected.) 

• Bit TSA is upward compatible with bits ASA and DSA. These bits 
indicate the amount of TSB status stored. 

• Bits ME and ERR are the same. These bits indicate that a major 
error or exception has occurred. 

• Bits marked as DO in the architecture are device dependent. 

SCSI Subsystem - September 1991 67 



SCB Command Status Register 

This section describes the differences between the SCB architecture 
definition of the SCB Command Status register and how the 
subsystem implements the architecture. 

Subsystem 

7 6 5 4 3 2 o 

l l l L L ATTACHMENT BUSY 
INTERRUPT REQUEST (ISP) 

COMMAND INTERFACE REGISTER EMPTY 
COMMAND INTERFACE REGISTER FULL 

SET TO ZERO 

SCB Architecture 

7 6 5 4 3 2 o 

S S : S I REJ I DO I DO IV B 

L L ATTACHMENT BUSY 
INTERRUPT REQUEST (ISP) 

Figure 62. SCB Command Status Register 

Note: Consider the following when examining the Command Status 
registers. 

• Bits I and IV are the same. Both show that an interrupt value has 
been placed in the Interrupt Status register. 

• Bits marked as DD are usable for subsystem defined functions. 

68 SCSI Subsystem - September 1991 



sca Subsystem Control Register 

This section describes the differences between the SCB architecture 
definition of the SCB Subsystem Control register and how the SCSI 
subsystem implements the architecture. 

Subsystem 

7 6 5 4 3 2 (J 

I R I (J I (J (J (J (J o I I 

l L SETUP 

~ ENABLE INTERRUPTS 

RESET SUBSYSTEM 

sca Architecture 

7 6 5 4 3 2 (J 

I RST I R I RR R I SO SO I OMA I EI 

l l RESET REJECT 

~ ~ ENABLE INTERRUPTS 
ENABLE OMA 

RESET SUBSYSTEM 

Figure 63. SCB Subsystem Control Register 

Note: The following pOints should be considered when examining 
the Basic Control register and the Subsystem Control register. 

• Bits shown as 0 in the subsystem are reserved and must be set to 
O. These bits are upward compatible with the architecture. 

• Bits I and EI are the same. These bits enable the subsystem to 
send interrupts to the system unit. 

• Bits D and DMA are the same. These bits enable the subsystem 
to continue to use DMA services. 

• Bits Rand RST are the same. These bits perform a hardware 
controlled reset of the subsystem. 

• Bits marked as SD are usable for subsystem defined functions. 
This is compatible with the architecture. 

SCSI Subsystem - September 1991 69 



sce Immediate Command Format 

This section describes the differences between the SeB architecture 
definition of the SCB Immediate command format and how the 
subsystem implements the architecture. 

Subsystem 

COMMAND INTERFACE REGISTER FORMAT 0 

3 
1 

OP CODE DEPENDENT 

sce Architecture 

COMMAND INTERFACE REGISTER FORMAT 0 

31 

OP CODE DEPENDENT 

COMMAND INTERFACE REGISTER FORMAT 1 

31 

RESERVED 

1 1 1 1 
6 5 4 3 --- 9 8 7'.4---0 

16 15 14 13 +4 -- 9 8 7'.4--- 0 

16 15 14 13 +4 -- 9 8 7'.,,--- 0 

1 IMMEDIATE CMD 

Figure 64. SCB Immediate Command Format 

Note: The following points should be considered when examining 
immediate command format zero: 

.. The Immediate CMD codes assigned are compatible. 

.. The 001 bit is compatible with subsystem implementation. When 
set to 0, this bit leaves the device enabled for interrupts. When 
set to one, this bit disables the device from sending interrupts to 
the system unit. 

70 SCSI Subsystem - September 1991 



• The DCI bit is compatible with subsystem implementation. When 
set to zero, this bit requests an interrupt on completion. When set 
to one, this bit does not request an interrupt on completion of an 
immediate command. The architecture is a superset when this 
bit is not ignored by the command (Reset Interrupt Status 
register.) 

This section describes additional differences between the SCB 
architecture definition and how the subsystem implements the 
architecture. 

• Specification Testing of SCBs 

Architecture: This is an optional feature. 

Subsystem: Compatible with architecture. 

• Device Number for Subsystem 

Architecture: Subsystem is device hex 00. 

Subsystem: Subsystem is device hex OF. 

• Attention Code to Start Long SCB 

Architecture: These are device-dependent attention codes in 
the architecture. They are compatible with the subsystem 
implementation. 

Subsystem: Uses hex 04 or hex OF. 

• Attention Code Hex 00. 

Architecture: Uses as device reset. 

Subsystem: Not implemented. Does a device reset under 
Attention Code hex 01. 

SCSI Subsystem - September 1991 71 



• Interrupt Status Codes are the same except for: 

Architecture: Uses 

0- Reset device or subsystem complete 
2 - Notify event when Locate mode commands use Move 
mode command delivery 
5 - Device dependent (compatible with implementation) 
6 - Inform event when Locate mode commands use Move 
mode command 
8 - Hardware failure reading control block command or 
storing TSB status. 
E - Command rejected when Locate mode commands use 
Move mode command delivery 
D - Non-SCB command error 
F - Device dependent 

Subsystem: Uses 

0- Reset subsystem complete 
2 - Reserved 
5 - SCB Completed with retries 
6 - Reserved 
8 - Reserved 
E - Invalid command 
D - Reserved 
F - Software sequence error 

• Disabling Device on Immediate Commands 

Architecture: Controlled by the DDI in the Immediate 
command format. 

Subsystem: Enables devices by default. The subsystem 
does not support this option. This is a proper subset of the 
architecture. 

72 SCSI Subsystem-September 1991 



Device Signals 

The subsystem supports single-ended drivers and receivers. All 
signal lines are digital, open collector transistor-transistor logic 
(TTL), and provide signals to the various SCSI devices. The drivers 
have the following electrical specifications: 

Active: 0.0 V dc to 0.5 V dc at 48 milliampere (maximum) 

Inactive: 2.5 V dc to 5.25 V dc at 250 microampere (open collector) 

The following are the signal descriptions for the subsystem-to-device 
connector. 

-Acknowledge (-ACK) 

-Attention (-A TN) 

-Busy (-BSY) 

-Control/Data (-C/D) 

-Data Bits (-DO-7,DP) 

This signal is driven by the subsystem to 
acknowledge the request for data transfer. 

This signal is driven by the subsystem to 
initiate the transfer of a message to a 
device. 

This signal is the OR input from all devices 
on the bus, including the subsystem. It is 
driven active by a device to indicate that 
the bus is in use. 

This signal indicates if the data bus 
contains control or data information. When 
the signal is low, the data bus contains 
control information. This signal is driven 
by the device. 

These signals contain the eight data bits 
plus the one parity bit that make up the 
data bus. Data bit 7 is the most-significant 
bit and has the highest priority during 
arbitration. The subsystem uses odd parity 
for all transfers except arbitration. When 
the signal is low, the respective bit is a 
logical 1. 

SCSI Subsystem - September 1991 73 



-Input/Output (-1/0) 

-Message (-MSG) 

-Request (-REQ) 

-Reset (-RST) 

-Select (-SEL) 

This signal indicates the direction of the 
signal flow regarding the subsystem. When 
this signal is low, the data is either being 
sent to the subsystem, or the 'select' signal 
is being driven by a device. This signal is 
driven by the device. 

This signal is driven by a device to indicate 
that the data bus contains a message. 

This signal is driven by a device to initiate 
a data transfer. 

This signal is driven by the subsystem to 
reset all SCSI devices. This will occur as a 
result of a subsystem Reset command. 

This signal is bidirectional and indicates 
that the data bus contains a device 10. This 
signal is either driven by the subsystem to 
select a device, or driven by the device to 
reselect the subsystem. 

74 SCSI Subsystem - September 1991 



Connectors 

The subsystem has two connectors. The internal connector is a 
keyed 2- by 25-pin header located on the right side of the system 
board. This connector supports SCSI devices mounted inside the 
system unit. Even-numbered pins are on the main component side of 
the subsystem, with pin 2 at the end closest to the O-shell connector. 

The following figure shows the signals and pin assignments for the 
internal connector. 

Pin Signal Pin Signal 

1 Ground 2 -Data Bits(O) 
3 Ground 4 -Data Bits(1) 
5 Ground 6 -Data Bits(2) 
7 Ground 8 -Data Bits(3) 
9 Ground 10 -Data Bits(4) 
11 Ground 12 -Data Bits(5) 
13 Ground 14 -Data Bits(6) 
15 Ground 16 -Data Bits(7) 
17 Ground 18 -Data Bits(P) 
19 Ground 20 Ground 
21 Ground 22 Ground 
23 Ground 24 Ground 
25 Not Connected 26 + Terminator Power 
27 Ground 28 Ground 
29 Ground 30 Ground 
31 Ground 32 -Attention 
33 Ground 34 Ground 
35 Ground 36 -Busy 
37 Ground 38 -Acknowledge 
39 Ground 40 -Reset 
41 Ground 42 -Message 
43 Ground 44 -Select 
45 Ground 46 -Control/Data 
47 Ground 48 -Request 
49 Ground 50 -Input/Output 

Figure 65. SCSI Internal Connector Pin Assignments 

SCSI Subsystem - September 1991 75 



A 60-pin external connector on the rear of the subsystem allows 
attachment of external SCSI devices. Pins 1 through 50 correspond to 
pins 1 through 50 of the SCSI Standard. Pin 51 can be used as 
ground. 

The following figure shows the signals and pin assignments for the 
external connector. See Figure 67 on page 77 for pin location on the 
external connector. 

Pin Signal Pin Signal 

1 Ground 31 Ground 
2 -Data Bits(O) 32 -Attention 
3 Ground 33 Ground 
4 -Data Bits( 1) 34 Ground 
5 Ground 35 Ground 
6 -Data Bits(2) 36 -Busy 
7 Ground 37 Ground 
8 -Data Bits(3) 38 -Acknowledge 
9 Ground 39 Ground 
10 -Data Bits(4) 40 -Reset 
11 Ground 41 Ground 
12 -Data Bits( 5) 42 -Message 
13 Ground 43 Ground 
14 -Data Bits(6) 44 -Select 
15 Ground 45 Ground 
16 -Data Bits(7) 46 -Control/Data 
17 Ground 47 Ground 
18 -Data Bits(P) 48 -Request 
19 Ground 49 Ground 
20 Ground 50 -Input/Output 
21 Ground 51 Ground 
22 Ground 52 Reserved 
23 Ground 53 Reserved 
24 Ground 54 Reserved 
25 Not Connected 55 Reserved 
26 + Terminator Power 56 Reserved 
27 Ground 57 Reserved 
28 Ground 58 Reserved 
29 Ground 59 Reserved 
30 Ground 60 Reserved 

Figure 66. SCSI External Connector Pin Assignments 

76 SCSI Subsystem - September 1991 



The following diagrams show the dimensions of the 60-pin external 
connector. 

~ w 
en 
~ 
0 (\1-

t- N 
I c:i~ 

~ 
T" ..;. 

LO T" 
C'J T" 

• N 

~ 
LO..;. 

""'~ 
- V 

~ 
.... ,: 

T" 
:It: c:: a: - LOa ~~ C2i~ T"O 

C':l~ T"LO 
. N 

~~ t- . LO • o . 
LO~ v.:::: v.:::: 

0 
C'J 

:It: c:: 

~ 
...,." 
~ 

~ -
ED 

...... 
~ 

~I~ . t-
"-3 

'Jure 67. 60-Pin External Connector, Front View 

SCSI Subsystem - September 1991 77 



6.9 _ .. 
r 

(.272) 

\, 

.llL 

. (.292) 

Figure 68. 60-Pin External Connector, Side View 

78 SCSI Subsystem-September 1991 



Index 

A 
abort command 26, 60 
American National Standards 

Institute (ANSI) 5, 6 
architecture, SCB 62 
assign command 27 
attention register 12, 17 
attention request 12 

B 
basic control register 10, 14 
basic status register 10, 17 
BB option bit 24 
BIOS (basic input/output system) 3 
block diagram, subsystem 2 
block, logical 55 
buffers 24 
burst rate 1 
bus 

cables, SCSI 61 
controller, SCSI 3 
data 73,74 
master 1,10 
SCSI 4 

bus-device reset 51 

C 
cables, SCSI bus 61 
capacity, device 44 
CCSB (command-complete status 

block) 60 
chain condition 24 
channel connector size 41 
check condition 33, 47 
CHRESET 18 
CMOS (complementary metal-oxide 

semiconductor) 8 
command 

and interrupt register 4 
common command set 1,6 

command (continued) 
complete status block 

(CCSB) 60 
descriptions 26, 30 
error code table 38 
initiation 19 
interface registers 10, 17 
list 25 
processing 19, 20 
queuing/delivery code 60 
reset 74 
sequence 19 
status codes 37 

commands 
abort 26,60 
assign 27 
command complete status 

block 34 
device inquiry 28 
DMA pacing control 29, 42 
feature control 30 
format prepare 31 
format unit 31 
get command complete 

status 34 
get POS and Subsystem 

information 40 
immediate 10,25 
read data 43 
read device capacity 44 
read verify 45 
reassign block 46, 55 
request sense 47,59 
reset 51,74 
SCB (subsystem control 

block) 10, 16 
SCB, not supported 62 
SCSI command set 6 
SCSI mode select 55 
send other SCSI 52 
set features 56 
subsystem 25 
subsystem reset 74 

Index 79 



commands (continued) 
write data 53 
write with verify 54 

common command set 1, 6 
complementary metal-oxide 

semiconductor (CMOS) 8 
components, subsystem 3 
configuration 60 
configuration, system 8 
conformance 5 
connectors 75 
connector, external (diagram) 77 
control blocks, subsystem 

(SCB) 22 
control command, immediate 

feature 30 
controllers 

D 

data flow 3, 4 
SCSI bus 3 
system interface/bus master 4 
system interrupt 13 

data 
buffers 22 
error recovery 55 
flow controller 3, 4 
transfer 24, 43 
transfer rate 1 
transfer rate, device 30 

data block 47 
data block, extended sense 49 
defect management 31 
description 

command 26 
subsystem 1 

detection, SCSI phase change 3 
device 

-dependent status 50 
address 10 
attached 28 
capacity data block 44 
data-transfer rate 30 
dependent status length 36 
error code 38 
error recovery 55 

80 Index 

device (continued) 
external 76 
10 15,74 
inquiry 28 
internal 75 
level retries 55 
logical 13 
number 11, 27 
requirements for POST 

support 7 
reset 51 
retries 59 
select code 12 
selection and reselection 3, 16 
signals 73 
status 37 

devices supported 6 
direct memory access (OMA) 14 
OMA pacing control command 29 

E 
enable options 23 
EOI (end-of-interrupt) 

instruction 13 
request 13, 22 

error class 48 
error code, command/device 38 
error-recovery procedures (ERP) 

SCSI commands 58 
subsystem 55 
subsystem commands 59 
subsystem microprocessor 3 
system 57 

ES option bit 24 
extended data block 47 
extended message 7 
extended sense data block 49 
external connector diagram 77 

F 
fault isolation 56 
feature control command 30 
flowchart 20, 21 
format prepare command 31 



format unit command 31 

G 
get command complete 

status 22, 34 
get POS and subsystem 

information 40 
global time-out error 56 

H 
hard reset 5, 18 
hardware error interrupt 35 
hardware interrupt-request 

latch 13 
hardware reset 14,30 

10 (identification) 
device 15 
interrupt 15 
subsystem POS 41 
subsystem SCSI 60 

identification number (10), SCSI 6 
identify message 26 
immediate commands 10, 25 
immediate pacing control 

command 42 
initialization 60 
interface, subsystem-to-system 10 
interleave factor 32 
interrupt 

command complete 17 
device reporting 16 
enable 14 
false 13 
hardware 17 
10 15,56,57 
processing 21 
request 17,22 
SCB architecture vs. 

subsystem 65 
status register 10, 15, 22 
subsystem 9, 11 
system (IRQ14) 15 

interrupt (continued) 
type 16 

IRQ14 15 
issuing a command 20 
1/0 registers 10 

L 
LBA (logical block address) 46 
level, conformance 5 
logical 

block 55 
block address (LBA) 46 
device 1,28 
unit 41 

logical unit 41 
logical unit number (LUN) 7, 27 
logic, bus-steering 4 
logic, data-flow 4 
LUN (logical unit number) 7 

M 
mechanical specifications 77 
media, removable 60 
messages, SCSI 7 
Micro Channel 4 
microprocessor, subsystem 3, 12 

N 
non-extended data block 47 

o 
operational time-outs 56 
options, enable 23 

p 
pacing control command, OMA 29 
page mode 22 
parity error, SCSI bus 56 
parity generation and checking, 

SCSI bus 3 
phase change 3 
physical device 1, 28 

Index 81 



physical unit number (PUN) 6, 7, 
27 

pin assignments, connectors 75, 
76 

pas (programmable option 
select) 8 

and Subsystem information 
status block 40 

read and write operations 9 
registers 8,9,41 
subsystem ID 41 
warning 8 

positioning-error recovery 56 
POST (power-on self test) 7 
procedures, error-recovery 55, 59 
PT option bit 24 
PUN (physical unit number) 6, 7 

Q 
queuing/delivery code 60 

R 
RAM (random access memory), 

subsystem microprocessor 19 
rate, burst 1 
rate, transfer 1 
RO option bit 24 
RE option bit 24 
read 

buffer 6 
capacity 6 
commands 43 
data 43 
defect data 6 
device capacity 44 
error 55 
extended 6 
operations 55 
pas read and write 

operations 9 
read-only memory (ROM) 4 
verify 45 

reassign block command 46, 55 
registers 

attention 12, 17 

82 Index 

registers (continued) 
basic control 10, 14 
basic status 10, 17 
command and interrupt 4 
command interlace 10, 17 
interrupt status 10, 15,22 
I/O 10 
pas 8,41 

removable media bit (RMB) 60 
request 

attention 12 
codes 12 
sense command 47 
sense data block 47 

reselection, device 3 
reserved areas, warning 1 
reset command 51, 74 
resetting the subsystem 18 
reset, hardware 30 
residual byte count 36 
ROM (read-only memory) 

S 

segment address select 9 
test 19 

SCB (subsystem control block) 
address 10 
architecture vs. subsystem 62 
commands not supported 62 
long 13 
structure 23 
transfer 22 

SCSI (small computer system 
interface) 

address switches (10) 60 
bus 4 
bus cables 61 
bus controller 3 
bus parity error 56 
commands 6 
common command set 1, 6 
conformance statement 5 
devices 56,74 
error recovery 56, 58 
10 60 
10 (identification number) 6 



SCSI (small computer system 
interface) (continued) 

logical unit number (LUN) 27 
messages 7 
mode select command 55 
phase change detection 3 
physical unit number (PUN) 27 
selection timeout 56 
signals 75, 76 
standard 5 
subsystem 10 60 

segment number 49 
selection time-out 60 
selection, device 3 
send other SCSI command 6,13, 

52 
sense data block 48 
sense key 49 
set features command 56 
signals 

device 73 
hardware interrupt 42 
SCSI 75,76 
system 'reset' (+ CHRESET) 18 
'card setup' 8 
'channel reset' 9 

small computer system interface 
(SCSI) 1 

soft errors 60 
soft reset 18, 51 
specifications, mechanical 77 
SS option bit 24 
status 

bit descriptions 35 
codes 37 
commands 26 
messages, SCSI 7 
subsystem 17 

status blocks 
command complete 22, 26, 35 
device capacity 44 
get command complete 26 
POS and subsystem 

information 40 
termination (TSB) 24, 34 

storage device 31 

subsystem 
block diagram 2 
command error-recovery 

procedures (ERP) 59 
commands 25 
components 3 
description 1 
error-recovery procedures 3, 

55,59 
microprocessor 3, 12 
POS 10 41 
reset command 51, 74 
reset status 19 
resetting 18 
SCSI (small computer system 

interface) 10 60 
status 17 
time-out 56 
to system interface 10 
vs. SCB architecture 62 

subsystem control block (SCB) 22 
supported devices 6 
synchronous data transfer 

request 5, 23 
system 

configuration 8 
error-recovery procedures 57 
interface 10, 25 
interface/bus master 

controller 3 
interrupt controller 13 
interrupt (IRQ14) 15 

T 
termination 

networks 61 
status 35 
status block 34, 60 

terminator power 5, 75, 76 
time-out 

error 56 
global command 56 
operational 56 
selection 56, 60 
subsystem 56 
values, subsystem 56 

Index 83 



transfer rate, data 
transfer rate, device 30 
transfers 4 
TSB (termination status block) 60 
TTL (transistor-transistor logic) 73 

U 
unique address 10 
unit attention 59 

V 
virtual page mode 22 

W 
warning, P~S 8 
warning, reserved areas 
write 

commands 54 
data 53 
operations 55 
with verify 54 

84 Index 


	0000
	0001
	0001
	0002
	0003
	0004
	0005
	0006
	01_0001
	01_0002
	01_0003
	01_0004
	01_001
	01_002
	01_003
	01_004
	01_005
	01_006
	01_007
	01_008
	01_009
	01_010
	01_011
	01_012
	01_013
	01_014
	01_015
	01_016
	01_017
	01_018
	01_019
	01_020
	01_021
	01_022
	01_023
	01_024
	01_025
	01_026
	01_027
	01_028
	01_029
	01_030
	01_031
	01_032
	01_033
	01_034
	01_035
	01_036
	01_037
	01_038
	01_039
	01_040
	01_041
	01_042
	01_043
	01_044
	01_045
	01_046
	01_047
	01_048
	01_049
	01_050
	01_051
	01_052
	01_053
	01_054
	01_055
	01_056
	01_057
	01_058
	01_059
	01_060
	01_061
	01_062
	01_063
	01_064
	01_065
	01_066
	01_067
	01_068
	01_069
	01_070
	01_071
	01_072
	01_073
	01_074
	01_075
	01_076
	01_077
	01_078
	01_079
	01_080
	01_081
	01_082
	01_083
	01_084
	01_085
	01_086
	01_087
	01_088
	01_089
	01_090
	01_091
	01_092
	01_093
	01_094
	01_095
	01_096
	01_097
	01_098
	01_099
	01_100
	01_101
	01_102
	02_0001
	02_0002
	02_0003
	02_0004
	02_01
	02_02
	02_03
	02_04
	02_05
	02_06
	02_07
	02_08
	02_09
	02_10
	02_11
	02_12
	03_0001
	03_0002
	03_0003
	03_0004
	03_01
	03_02
	03_03
	03_04
	03_05
	03_06
	03_07
	03_08
	03_09
	03_10
	03_11
	03_12
	03_13
	03_14
	04_0001
	04_0002
	04_0003
	04_0004
	04_01
	04_02
	04_03
	04_04
	04_05
	04_06
	04_07
	04_08
	04_09
	04_10
	04_11
	04_12
	04_13
	04_14
	04_15
	04_16
	05_0001
	05_0002
	05_0003
	05_0004
	05_01
	05_02
	05_03
	05_04
	05_05
	05_06
	05_07
	05_08
	05_09
	05_10
	05_11
	05_12
	05_13
	05_14
	05_15
	05_16
	05_17
	05_18
	05_19
	05_20
	05_21
	05_22
	05_23
	05_24
	05_25
	05_26
	05_27
	05_28
	05_29
	05_30
	05_31
	05_32
	05_33
	05_34
	05_35
	05_36
	05_37
	05_38
	06_0001
	06_0002
	06_0003
	06_0004
	06_01
	06_02
	06_03
	06_04
	06_05
	06_06
	06_07
	06_08
	06_09
	06_10
	06_11
	06_12
	06_13
	06_14
	06_15
	06_16
	06_17
	06_18
	07_0001
	07_0002
	07_0003
	07_0004
	07_01
	07_02
	07_03
	07_04
	07_05
	07_06
	07_07
	07_08
	07_09
	07_10
	07_11
	07_12
	07_13
	07_14
	07_15
	07_16
	07_17
	07_18
	07_19
	07_20
	07_21
	07_22
	07_23
	07_24
	07_25
	07_26
	07_27
	07_28
	07_29
	07_30
	07_31
	07_32
	07_33
	07_34
	07_35
	07_36
	07_37
	07_38
	07_39
	07_40
	07_41
	07_42
	07_43
	07_44
	07_45
	07_46
	07_47
	07_48
	08_0001
	08_0002
	08_0003
	08_0004
	08_01
	08_02
	08_03
	08_04
	08_05
	08_06
	08_07
	08_08
	08_09
	08_10
	08_11
	08_12
	08_13
	08_14
	08_15
	08_16
	08_17
	08_18
	08_19
	08_20
	08_21
	08_22
	09_0001
	09_0002
	09_0003
	09_0004
	09_0005
	09_0006
	09_0007
	09_0008
	09_0009
	09_0010
	09_1-01
	09_1-02
	09_2-001
	09_2-002
	09_2-003
	09_2-004
	09_2-005
	09_2-006
	09_2-007
	09_2-008
	09_2-009
	09_2-010
	09_2-011
	09_2-012
	09_2-013
	09_2-014
	09_2-015
	09_2-016
	09_2-017
	09_2-018
	09_2-019
	09_2-020
	09_2-021
	09_2-022
	09_2-023
	09_2-024
	09_2-025
	09_2-026
	09_2-027
	09_2-028
	09_2-029
	09_2-030
	09_2-031
	09_2-032
	09_2-033
	09_2-034
	09_2-035
	09_2-036
	09_2-037
	09_2-038
	09_2-039
	09_2-040
	09_2-041
	09_2-042
	09_2-043
	09_2-044
	09_2-045
	09_2-046
	09_2-047
	09_2-048
	09_2-049
	09_2-050
	09_2-051
	09_2-052
	09_2-053
	09_2-054
	09_2-055
	09_2-056
	09_2-057
	09_2-058
	09_2-059
	09_2-060
	09_2-061
	09_2-062
	09_2-063
	09_2-064
	09_2-065
	09_2-066
	09_2-067
	09_2-068
	09_2-069
	09_2-070
	09_2-071
	09_2-072
	09_2-073
	09_2-074
	09_2-075
	09_2-076
	09_2-077
	09_2-078
	09_2-079
	09_2-080
	09_2-081
	09_2-082
	09_2-083
	09_2-084
	09_2-085
	09_2-086
	09_2-087
	09_2-088
	09_2-089
	09_2-090
	09_2-091
	09_2-092
	09_2-093
	09_2-094
	09_2-095
	09_2-096
	09_2-097
	09_2-098
	09_2-099
	09_2-100
	09_2-101
	09_2-102
	09_2-103
	09_2-104
	09_2-105
	09_2-106
	09_2-107
	09_2-108
	09_2-109
	09_2-110
	09_3-001
	09_3-002
	09_3-003
	09_3-004
	09_3-005
	09_3-006
	09_3-007
	09_3-008
	09_3-009
	09_3-010
	09_3-011
	09_3-012
	09_3-013
	09_3-014
	09_3-015
	09_3-016
	09_3-017
	09_3-018
	09_3-019
	09_3-020
	09_3-021
	09_3-022
	09_3-023
	09_3-024
	09_3-025
	09_3-026
	09_3-027
	09_3-028
	09_3-029
	09_3-030
	09_3-031
	09_3-032
	09_3-033
	09_3-034
	09_3-035
	09_3-036
	09_3-037
	09_3-038
	09_3-039
	09_3-040
	09_3-041
	09_3-042
	09_3-043
	09_3-044
	09_3-045
	09_3-046
	09_3-047
	09_3-048
	09_3-049
	09_3-050
	09_3-051
	09_3-052
	09_3-053
	09_3-054
	09_3-055
	09_3-056
	09_3-057
	09_3-058
	09_3-059
	09_3-060
	09_3-061
	09_3-062
	09_3-063
	09_3-064
	09_3-065
	09_3-066
	09_3-067
	09_3-068
	09_3-069
	09_3-070
	09_3-071
	09_3-072
	09_3-073
	09_3-074
	09_3-075
	09_3-076
	09_3-077
	09_3-078
	09_3-079
	09_3-080
	09_3-081
	09_3-082
	09_3-083
	09_3-084
	09_3-085
	09_3-086
	09_3-087
	09_3-088
	09_3-089
	09_3-090
	09_3-091
	09_3-092
	09_3-093
	09_3-094
	09_3-095
	09_3-096
	09_3-097
	09_3-098
	09_3-099
	09_3-100
	09_3-101
	09_3-102
	09_3-103
	09_3-104
	09_3-105
	09_3-106
	09_3-107
	09_3-108
	09_3-109
	09_3-110
	09_3-111
	09_3-112
	09_3-113
	09_3-114
	09_3-115
	09_3-116
	09_3-117
	09_3-118
	09_3-119
	09_3-120
	09_3-121
	09_3-122
	09_3-123
	09_3-124
	09_3-125
	09_3-126
	09_3-127
	09_3-128
	09_3-129
	09_3-130
	09_3-131
	09_3-132
	09_3-133
	09_3-134
	09_3-135
	09_3-136
	09_3-137
	09_3-138
	09_3-139
	09_3-140
	09_3-141
	09_3-142
	09_3-143
	09_3-144
	09_3-145
	09_3-146
	09_3-147
	09_3-148
	09_3-149
	09_3-150
	09_3-151
	09_3-152
	09_3-153
	09_3-154
	09_3-155
	09_3-156
	09_3-157
	09_3-158
	09_3-159
	09_3-160
	09_3-161
	09_3-162
	09_3-163
	09_3-164
	09_3-165
	09_3-166
	09_3-167
	09_3-168
	09_3-169
	09_3-170
	09_3-171
	09_3-172
	09_3-173
	09_3-174
	09_3-175
	09_3-176
	09_3-177
	09_3-178
	09_3-179
	09_3-180
	09_3-181
	09_3-182
	09_3-183
	09_3-184
	09_3-185
	09_3-186
	09_3-187
	09_3-188
	09_3-189
	09_3-190
	09_3-191
	09_3-192
	09_3-193
	09_3-194
	09_3-195
	09_3-196
	09_3-197
	09_3-198
	09_3-199
	09_3-200
	09_3-201
	09_3-202
	09_3-203
	09_3-204
	09_3-205
	09_3-206
	09_3-207
	09_3-208
	09_3-209
	09_3-210
	09_3-211
	09_3-212
	09_3-213
	09_3-214
	09_3-215
	09_3-216
	09_3-217
	09_3-218
	09_3-219
	09_3-220
	09_3-221
	09_3-222
	09_3-223
	09_3-224
	09_4-01
	09_4-02
	09_4-03
	09_4-04
	09_4-05
	09_4-06
	09_A-01
	09_A-02
	09_A-03
	09_A-04
	09_A-05
	09_A-06
	09_A-07
	09_A-08
	09_A-09
	09_A-10
	09_A-11
	09_A-12
	09_A-13
	09_A-14
	09_A-15
	09_A-16
	09_A-17
	09_A-18
	09_A-19
	09_A-20
	09_A-21
	09_A-22
	09_A-23
	09_A-24
	09_A-25
	09_A-26
	09_A-27
	09_A-28
	09_A-29
	09_A-30
	09_A-31
	09_A-32
	09_X-01
	09_X-02
	09_X-03
	09_X-04
	09_X-05
	09_X-06
	09_X-07
	09_X-08
	09_X-09
	09_X-10
	09_X-11
	09_X-12
	09_X-13
	09_X-14
	09_X-15
	09_X-16
	09_X-17
	09_X-18
	09_X-19
	09_X-20
	10_0001
	10_0002
	10_0003
	10_0004
	10_001
	10_002
	10_003
	10_004
	10_005
	10_006
	10_007
	10_008
	10_009
	10_010
	10_011
	10_012
	10_013
	10_014
	10_015
	10_016
	10_017
	10_018
	10_019
	10_020
	10_021
	10_022
	10_023
	10_024
	10_025
	10_026
	10_027
	10_028
	10_029
	10_030
	10_031
	10_032
	10_033
	10_034
	10_035
	10_036
	10_037
	10_038
	10_039
	10_040
	10_041
	10_042
	10_043
	10_044
	10_045
	10_046
	10_047
	10_048
	10_049
	10_050
	10_051
	10_052
	10_053
	10_054
	10_055
	10_056
	10_057
	10_058
	10_059
	10_060
	10_061
	10_062
	10_063
	10_064
	10_065
	10_066
	10_067
	10_068
	10_069
	10_070
	10_071
	10_072
	10_073
	10_074
	10_075
	10_076
	10_077
	10_078
	10_079
	10_080
	10_081
	10_082
	10_083
	10_084
	10_085
	10_086
	10_087
	10_088
	10_089
	10_090
	10_091
	10_092
	10_093
	10_094
	10_095
	10_096
	10_097
	10_098
	10_099
	10_100
	11_0001
	11_0002
	11_01
	11_02
	11_03
	11_04
	11_05
	11_06
	11_07
	11_08
	11_09
	11_10
	12_0001
	12_0002
	12_0003
	12_0004
	12_01
	12_02
	12_03
	12_04
	12_05
	12_06
	12_07
	12_08
	12_09
	12_10
	12_11
	12_12
	12_13
	12_14
	12_15
	12_16
	12_17
	12_18
	12_19
	12_20
	12_21
	12_22
	12_23
	12_24
	12_25
	12_26
	12_27
	12_28
	13_0003
	13_0004
	13_0005
	13_0006
	13_01
	13_02
	13_03
	13_04
	13_05
	13_06
	13_07
	13_08
	13_09
	13_10
	13_11
	13_12
	13_13
	13_14
	13_15
	13_16
	13_17
	13_18
	13_19
	13_20
	13_21
	13_22
	13_23
	13_24
	13_25
	13_26
	13_27
	13_28
	13_29
	13_30
	13_31
	13_32
	13_33
	13_34
	13_35
	13_36
	13_37
	13_38
	13_39
	13_40
	13_41
	13_42
	13_43
	13_44
	13_45
	13_46
	13_47
	13_48
	13_49
	13_50
	13_51
	13_52
	13_53
	13_54
	13_55
	13_56
	13_57
	13_58
	13_59
	13_60
	13_61
	13_62
	13_63
	13_64
	13_65
	13_66
	13_67
	13_68
	13_69
	13_70
	13_71
	13_72
	13_73
	13_74
	13_75
	13_76
	13_77
	13_78
	13_79
	13_80
	13_81
	13_82
	13_83
	13_84

