
Issue 3, 1990

IBM Personal Systems Technical Solutions
--------- - - --- ---- - ---- - - ------ ----- ·-®

IBM Personal Systems Technical Solutions is
published by the U.S. Marketing and Ser­
vices Group, International Business Machines
Corporation, Roanoke. Texas, U.S.A.

Editor
Consulting Editor
Technical Consultant
Automation Consultant
Little Solutions
Communications
Layout, Cover Design
Illustrator
Manager

Ed Bamberger
Libby Boyd

Dave Dill
Andy Frankford

Larry Pollis
Elisa Davis

Corporate Graphics
Bill Carr

Bill Hawkins

To correspond with IBM Personal Systems
Technical Solutions, please write the editor at:

IBM Corporation
Internal Zip 40-A2-04
One East Kirkwood Blvd.
Roanoke, TX 76299-0015

To subscribe to this publication, use an IBM
System Library Subscription Service (SLSS)
form, available at IBM branches, and specify
form number GBOF-1229.

Permission to republish information from this
publication is granted to publications that are
produced for non-commercial use and do not
charge a fee. When republishing, please in­
clude the names and companies of authors ,
and please add the words "Reprinted by per­
mission of IBM Personal Systems Teclz11ical
Solutions."

Titles and abstracts, but no other po11ions, of
information in this publication may be copied
and distributed by computer-based and other
information-service systems. Permission to
republish infornrntion from this publication in
any other publication or computer-based in­
fom1ation system must be obtained from the
editor.

IBM believes the statements contained herein
are accurate as of the date of publication of
this document. However, IBM hereby dis­
claims all warranties as to materials and
workmanship, either expressed or implied, in­
cluding without limitation any implied war­
ranty of merchantability or fitness for a
particular purpose. In no event will IBM be
liable to you for any damages, including any
lost profits, lost savings or other incidental or
consequential damage arising out of the use
or inability to use any information provided
through this service even if IBM has been ad­
vised of the possibility of such damages, or
for any claim by any other patty.

Some states do not allow the limitation or ex­
clusion of liability for incidental or conse­
quential damages so the above limitation or
exclusion may not apply to you.

This publication could contain technical inac­
curacies or typographical errors. Also, illus­
trations contained herein may show prototype
equipment. Your system configuration may
differ slightly.

IBM has tested the programs contained in
this publication. However, IBM does not
guarantee that the programs contain no errors.

This information is not intended to be a state­
ment of direction or an assertion of future ac­
tion. IBM expressly reserves the right to
change or withdraw current products that
may or may not have the same characteristics
or codes listed in this publication. Should
IBM modify its products in a way that may
affect the information contained in this publi­
cation, IBM assumes no obligation whatever
to inform any user of the modifications.

It is possible that this material may contain
reference to, or inforn1ation about , IBM prod­
ucts (machines and programs), programming
or services that are not announced in your
country. Such references or information
must not be construed to mean that IBM in­
tends to announce such products, program­
ming or services in your country.

IBM may use or distribute any of the infor­
mation you supply in any way it believes ap­
propriate without incurring any obligation
whatever.

All specifications are subject to change with­
out notice.

© Copyright 1990 by International Business
Machines Corporation

_ f/J ___ _
...

_ c: ___ _
Software

1 DOS - A Look Under the Hood to See How It Spins

1 2 Memory Management in a DOS Environment

20 FASTOPEN -The DOS Performance Enhancer

24 DOS 4.00 Compatibility Issues

28 'Out of Environment Space' Errors

34 A New LAN Requester for DOS Systems

43 Creating a Dialog Box Dynamically Using WinCreateDig

53 An Alternative for the OS/2 START Command

Random Data
65 CUA: A Consistent Interface

69 Little Solutions

71 New Products

Personal Systems/Issue 3, 1990

Trademarks

IBM, OS/2, Personal Computer AT, AT, Personal System/2, PS/2, PROFS, Quietwriter, RT, and Wheelwriter
are registered trademarks of International Business Machines Corp.
AD/CYCLE, AD(, AIXwindows, Application System/400, AS/400, Assistant Series, Audio Visual Connection,
A VC, C/2, COBOL/2, Communication Manager, Database Manager, DisplayWrite 4, FORTRAN/2, ODOM,
Gearbox, Independence Series, KnowledgeTool, Micro Channel, MVS/ESA, MVS/XA, MYS/SP, NetView,
NetView/PC, Office Vision, Operating System/2, OS/400, Pascal/2, Personal Computer XT, PC XT, Personal
Science Laboratory, PSL, PhoneCommnunicator, Plant Floor Series, Presentation Manager, Screen Reader,
Speech Viewer, Storyboard, Systems Application Architecture, SAA, System/360, VM/XA, and 3090 are trade­
marks of International Business Machines Corp.

Adobe and Postscript are trademarks of Adobe Systems Inc.
ALL CHARGE CARD is a trademark of ALL Computer Inc.
Audapter is trademark of Personal Data Systems.
Copiscan is a registered trademark of Bell and Howell Corp.
DESQview is a trademark of Quarterdeck Office Systems.
dBASE llI is a registered trademark, and dBASE IV is a trademark of Ashton-Tate Corp.
EASEL is a registered trademark of Interactive Images Inc.
Ethernet is a registered trademark of Xerox Inc.
Hewlett-Packard, HP, and LaserJet are registered trademarks of Hewlett-Packard Corp.
Intel is a registered trademark and i860, 386, i486, 80286, 80386, 80386SX, and 80486 are trademarks of Intel

Corp.
Lotus is a registered trademark, and Lotus 1-2-3 is a trademark of Lotus Development Corp.
Microsoft is a registered trademark, and Microsoft C and Windows are trademarks of Microsoft Corp.
MultiScope is a trademark of MultiScope Inc.
NeXT is a registered trademark, Nextstep and AD(NextStep Interface Builder are trademarks of NeXT Inc.
Objective-C is a trademark of Stepstone Inc.
OSF/Motif is a trademark of the Open Software Foundation.
Paradox is a registered trademark of Borland International.
Software Carousel is a trademark of SoftLogic Solutions Inc.
Network File System and NFS are trademarks of Sun Microsystems Inc.
WordPerfect is a trademark of WordPerfect Corp.
X Window System is a trademark of Massachusetts Institute of Technology.

DOS - A Look
Under the
Hood to See
How It Spins
Pylee Lennil
IBM Corporation
Boca Raton, Florida

This article provides an in-depth
look into the internal workings of
IBM PC DOS. It describes PC
DOS major components, which in­
clude: COMMAND.COM, IBMDOS,
IBMBIO, device drivers, File Allo­
cation Table, disk structure, root
directory, master boot record, and
BIOS parameter block. Included
is a detailed description of how
these components are intercon­
nected and how they interface
from user level to hardware level.

Tum on the PC, and within a few
seconds you will notice the DOS C:
prompt indicating that DOS is up
and running. What happens during
the first few seconds? How does
DOS load, initialize itself and start
running? Type DIR, and DOS dis­
plays directory entries. How does
DOS search for a file? How does
DOS access file sectors on the disk?
How does it execute a program?

Before we look into the details of
DOS, let's start with a general over­
view. DOS is the most widely used
PC operating system. It is a single­
task operating system that executes
one program at a time. Basically,
an operating system is a program
that manages the system resources,
such as memory, disk, diskette, con-

1

sole, keyboard, and printer. The op­
erating system makes these re­
sources available to the application
through operating system services.
These services include allocation
and deallocation of memory, manip­
ulation of files and directories, and
other miscellaneous operating sys­
tem functions.

To access the system services, the
operating system provides a set of
functions to the application. Simi­
larly, DOS provides a set of func­
tions (INT 20H, INT 21H, INT
24H, INT 25H, and INT 26H). In­
stead of accessing the resources di­
rectly, the application calls these
functions for DOS services. DOS,
in tum, allows the application to ac­
cess the system resources in a con­
trolled manner.

DOS is basically composed of a
user interface program (DOS shell),
DOS kernel, and a set of DOS de­
vice drivers. These components re-

Personal Systems/Issue 3, 1990

side in a bootable disk or diskette
device. When the system is turned
on, the PC ROM BIOS exercises
the system hardware by executing
the Power On Self Test (POST). It
then initiates the DOS loading. Dur­
ing loading, a user can configure
DOS using the system configuration
commands in the CONFIG.SYS
file. This file contains commands
to load the installable device drivers
as well as to specify the number of
system buffers and tables needed by
DOS.

Once DOS is running, users can run
applications by either typing the pro­
gram name or by specifying the
name in a batch file. DOS supports
two types of executable programs:
Transient programs stay in memory
only during execution time; Termi­
nate-and-Stay-Resident (TSR) pro­
grams stay in memory until the
system is boot loaded. TSR pro­
grams can be activated by pressing
a special combination of keys.

DOS has a tree-structured file sys­
tem that stores user files and directo­
ries. The file system consists of a
root directory with subdirectories
and files. DOS maintains special
areas on the disk and diskette to
store the information and locations
of these files and directories as well
as the disk-specific information.
These areas are the file allocation
table (FAT), root directory, master
boot record, and boot sector. These
areas are created when the
FORMAT utility is used to format
the disk or diskette.

DOS maintains the file system in
both hard disk and diskette devices.
A diskette device is always main­
tained as a single partition, while a
hard disk can be divided into one or
more partitions. Each partition is
identified by a drive letter such as
C:, D:, E:, and so forth. The disk
partitioning is done using the
FDISK program. FDISK also cre­
ates a master boot record that indi­
cates the location of all partitions
on a hard disk.

DOS supports internal device driv­
ers and installable device drivers.
A device driver provides device-in­
dependent hardware services. The
internal device drivers are part of
DOS, while installable device driv­
ers are loaded and initialized during
DOS loading and configuration time.

To learn how DOS works, let's
peek under the hood, look at its
major components, and see how
they interact with one another from
application level to hardware level.

At first glance, you will notice that
DOS is composed of three major
components:

• COMMAND.COM

• IBMDOS

• IBMBIO

2

COMMAND.COM I Application

IBMDOS

IBMBIO

ROM BIOS

Hardware

Figure 1. Basic DOS Structure

Figure 1 shows how these compo­
nents form several layers between
the application and the hardware.
Let's examine each layer.

Applications access DOS services
through DOS function calls. COM­
MAND.COM provides the user in­
terface. IBMDOS is known as the
DOS kernel and provides hardware­
independent DOS services to the ap­
plications.

IBMBIO loads and initializes
IBMDOS and COMMAND.COM,
and it contains a set of internal de­
vice drivers that are used by the ker­
nel to access the hardware devices.

Basic Input/Output system (ROM
BIOS) resides permanently in the
Read-Only Memory (ROM), and it
provides the most basic input/output
services to the DOS kernel and to
applications.

Now that we have observed the
major components, let's examine
these components in detail.

COMMAND.COM
The COMMAND.COM provides
the following major functions:

• The user interface to DOS

• Loading and executing user com­
mands or programs

Personal Systems/Issue 3, 1990

• Redirecting output of one com­
mand to input of another com­
mand

• Processing batch files

COMMAND.COM is loaded by
IBMBIO during the last phase of
the DOS initialization. As shown in
Figure 2, there are two sections in
COMMAND.COM. The first is a
resident section, which is loaded
just above the DOS system buffers.
This section contains setup func­
tions, Ctrl-Break and Critical Error
Handling routines. The second sec­
tion is the transient section that is
loaded into the upper memory just
below 640 KB. This section con­
tains code for batch file handling
and DOS internal commands such
as DIR, DEL, and COPY. The tran­
sient part may eventually be over­
written by the application. If that
happens, it will be reloaded when
the application returns control to
COMMAND.COM.

COMMAND.COM can execute two
types of commands: l) internal
DOS commands such as DIR, CD,
and PATH, and 2) external com­
mands, which can be either DOS
utilities such as XCOPY and
BACKUP, or applications, or batch
files. External commands must be
loaded from disk.

COMMAND.COM checks the
user's command to see whether it is
an internal or external command. If
it is internal, it is executed immedi­
ately, because it is part of COM­
MAND.COM. If it is an external
command (an .EXE, .COM or .BAT
program), the current drive and cur­
rent directory will be searched for
the program, unless the program
path was specified in the command
line. COMMAND.COM will
search first for .COM, then .EXE,
and finally a .BAT program. Addi-

tional drives and directories will be
searched if they are specified in the
PATH command. If the file is
found, it will be loaded into mem­
ory and executed. If the file is not
found in any of the directories, the
"Bad command or file name" mes­
sage is displayed.

IBMDOS (DOS Kernel)
IBMDOS provides the following
hardware independent DOS services
to applications:

• Directory Operations - MKDIR,
CHDIR, RMDIR, FIND-FIRST,
FIND-NEXT

• Dynamic Memory Allocation and
Deallocation - Alloc, Dealloc,
Setblock

• Block Device and Character De­
vice I/O functions - Keyboard
Input, Display

• Critical Error Generation - INT
24H

• File Operations - CREATE,
OPEN, READ, WRITE, CLOSE,
DELETE

• Miscellaneous functions - Get
Date and Time, Get Disk Infor­
mation

• Disk 1/0 - Reset Disk, Select
Disk

IBMDOS is loaded by IBMBIO dur­
ing the system initialization and con­
figuration time. It is composed of
the following types of routines:

• DOS function call dispatcher rou­
tine

• DOS function call handler rou-
tines

• File system support routines

These routines are further composed
of the following interrupt handlers:

• INT OOH - Divide Overflow
Handler

3

ROM BIOS

Adapters

Video Buffers

COMMAND.COM
(Transient Portion)

Free Area
(For Application)

COMMAND.COM
(Resident Portion)

DOS Tables

DOS Buffers

Installable Device Drivers

IBMDOS
(From IBMDOS.COM)

IBMBIO
(From IBMBIO.COM)

DOS Communications Area

ROM BIOS Tables

Interrupt Vectors

Figure 2. DOS Memory Layout

• INT 20H - Program Termination
Handler

• INT 21H - DOS Function Call
Handler

• INT 25H - Absolute Disk Read
Handler

• INT 26H - Absolute Disk Write
Handler

• INT 27H - DOS Callbacks Han­
dler

• INT 2FH - Multiplex Interrupt
Handler

A DOS INT 21H function call by
an application generates an INT
21H interrupt. This interrupt is in­
tercepted by IBMDOS. Figure 3

Personal Systems/Issue 3, 1990

IM B

EOOO:

AOOO:

DO

0000:

0000:

0000

0000 (640K)

s

0070: 0000

0400

0000

shows the function dispatcher,
which gets the control first. The dis­
patcher checks the interrupt's func­
tion code and calls the appropriate
DOS function handler routine to
handle the call. If the call requires
file or directory access, it calls the
file system support routines. These
routines search for the file and read
the data from the disk using the
DOS internal disk driver provided
by IBMBIO. Upon completion,
IBMDOS returns control back to
the caller with the results in regis­
ters and buffers. Each of the other
DOS interrupts are handled by their
own interrupt handlers within
IBMDOS.

I COMMAND.COM I

l ! INT21H

4

Application

l ! INT21H

DOS Function Dispatcher

DOS Function Handlers IBMDOS

File System Support Routines

f ! Driver Request

Initialization and Configuration Routines
IBMBIO

Internal Device Drivers

Disk I Console I Printer I COM

l ! INT 13H ! INT 16H ! INT 17H ! INT 14H

ROM BIOS

l !
I Disk

Figure 3. Flow of DOS Function Call

System Buffers
Figure 4 shows DOS system buff­
ers, which IBMDOS maintains.
This set of circular buffers keeps
the sectors read during a disk read
operation. The number of buffers
to be allocated can be specified by
the BUFFERS=N parameter in the
CONFIG.SYS file. Each buffer has
a buffer header and a 512-byte sec­
tor data area. The header contains
the sector number, the drive associ­
ated with the sector, and flags indi­
cating whether the buffer is free or
in use. The system buffers are cre­
ated by IBMBIO during system con­
figuration time.

In addition to holding data before it
being passed to the application,
these buffers improve system perfor­
mance by caching the recently read

!
Console Printer

disk sectors. When an application
issues a disk read, IBMDOS checks
these buffers to see whether the de­
sired sector already exists in one of
the buffers from a previous read. If
it exists, it simply copies the sector
from this buffer to the application
buffer, avoiding an extra disk read
and improving performance. As ad­
ditional sectors are read, the avail­
able buffers will be filled. Data in
the least recently used buffer sectors
are replaced by the latest data read
from the disk.

IBMBIO
The major functions of IBMBIO are:

• Initializing the hardware and
DOS internal device drivers

• Setting up the disk parameter
block chain

Personal Systems/Issue 3, 1990

• Loading IBMDOS

• Configuring the system using
commands in CONFIG.SYS file

• Loading and initializing install­
able device drivers

• Setting up DOS system buffers
and tables

• Loading COMMAND.COM

IBMBIO is loaded during system
boot time. As shown in Figure 3,
IBMBIO contains DOS configura­
tion code and DOS internal device
drivers. These drivers - CON,
AUX, PRN, CLOCK, COMl,
COM2, COM3, COM4, LPTl,
LPT2 and LPT3 - are used to ac­
cess the video, keyboard, printer
and asynchronous communication
ports. The system configuration
code is needed only during DOS
loading and initialization time. This
code is discarded once the configu­
ration is done.

The first task of IBMBIO is to deter­
mine the types of hardware on the
system, especially the types of disk
drives, console, keyboard, printer

!

Buffer Header

Sector Data

l
Buffer Header

Sector Data

l
Buffer Header

Sector Data

l
Figure 4. DOS System Buffers

and asynchronous communication
lines. It then initializes the internal
drivers to support the preceding de­
vices. Next, IBMBIO creates a disk
parameter block table for every disk
partition and the diskette drives on
the system. The table, known as
Block Device Structure (BOS), con­
tains disk-specific information. Dur­
ing this process, a drive letter will
be assigned to each partition. The
BOS tables are chained, and they
will be searched by IBMDOS if
disk-specific information is needed
for a DOS service call. IBMBIO
then loads IBMDOS from the
IBMDOS.COM file on the boot
disk.

Once IBMDOS is loaded, the basic
DOS functions are available for fur­
ther system configuration work.
IBMBIO opens the system configu­
ration file CONFIG.SYS and parses
the commands. These commands
could be BUFFERS=, DEVICE=,
INST ALL=, BREAK=, and so on.
If, for example, BUFFERS=lO is
found, it creates ten system buffers,
each with 512 bytes. If it is a DE­
VICE=XXXXXX.SYS, it loads and
installs the installable device driver
XXXXXX.SYS. It also loads
SHARE if a disk partition greater
than 32 MB exists on the disk. The
final task of the IBMBIO is to load
and pass control to COM­
MAND.COM. Figure 2 shows the
DOS memory map once DOS is
fully loaded.

Device Driver
A device driver is a DOS extension
that contains code to handle specific
hardware devices. It is the lowest
DOS level, which allows all other
DOS levels to work independent of
the hardware devices. Device driv­
ers allow enhancements to the de­
vice handling routines to be added
independently of the DOS kernel.

5

There are two types of device driv­
ers:

• Internal Device Drivers - Internal
device drivers reside permanently
in IBMBIO. They are initialized
during system initialization time.
These drivers support the stan­
dard devices such as disk, con­
sole, keyboard, printer and
asynchronous communication
lines. These drivers are used
only by the DOS kernel.

• Installable device drivers - In­
stallable device drivers are
loaded when they are needed
using the
DEVICE=XXXXXX.SYS com­
mand in the CONFIG.SYS file.
For example, ANSI.SYS is an in­
stallable device driver, which is
used to replace the DOS built-in
console driver. During system
configuration, IBMBIO loads and
initializes these drivers just be­
fore loading COMMAND.COM.

Figure 5 shows the structure of a de­
vice driver, which is composed of a
device header, a strategy routine,
and an interrupt routine. Figure 6
shows the header, which is an eight­
byte block structure. The header
contains the link address to the next
driver in the chain as well as the ad­
dress of the strategy and interrupt
routines.

The interrupt and strategy routines
contain the driver code. Whenever
a driver service is needed, the call­
ing routine builds a request packet
containing the type of driver and
the function to be performed, then
calls the strategy and interrupt rou­
tines to perform a specific driver
function. The strategy routine saves
the request packet address, then the
requested function is performed by
the interrupt routine. Figure 7
shows the structure of the request
packet.

Personal Systems/Issue 3, 1990

Device Header

Strategy Routine

Interrupt Routine

Figure 5. Device Driver Structure

Link Address To Next
Driver

Device Attribute

Offset To Strategy
Routine

Offset To Interrupt
Routine

Device Name

Figure 6. Device Header Structure

Request Header Length

Unit Number of This
Request

Command or
Function Code

Return Status From Driver

Media Descriptor Byte

Data Transfer Memory
Address

Data Transfer Byte/Sector
Count

Starting Sector

Figure 7. Request Packet Structure

For example, if IBMDOS needs to
read a specific logical sector on the
disk, it prepares a request packet.
The size of the request packet may
vary, depending on the type of
driver service requested. IBMDOS
then calls the DOS internal disk de­
vice driver strategy and interrupt
routines. The strategy routine saves
the request packet address, and the
interrupt routine performs the func­
tion specified in the request packet.

ROM BIOS (Basic
Input/Output System)
This software is the lowest level of
input/output routines. Figure 2
shows this software permanently re­
siding in ROM above 640 KB in
segment E0OOH. ROM BIOS is not
a part of DOS, even though DOS
utilizes the ROM BIOS functions to
perform low-level input/output oper­
ations. The ROM BIOS consists of
the following sections:

• Power on self test (POST)

• Low-level 1/0 routines

When the system is turned on,

Block Header

Application! Block

Block Header

FREE Block

Block Header

Application! Block

Block Header

Application2 Block

Figure 8. DOS Memory Blocks

6

Figure 9a. DOS Disk Structure

POST routines exercise the system
hardware, CPU, timer, DMA and
memory, and also initiates the DOS
system boot load. The low-level
1/0 routines, known as BIOS func­
tions, provide a set of function calls
for DOS and applications. For ex­
ample, BIOS function INT lOH sup­
ports video, while INT 13H and
INT 9 support disk and keyboard.
Applications use INT lOH to dis­
play ASCII characters. The
IBMBIO disk driver uses INT 13H
for disk 1/0.

DOS Memory Management
In Figure 2, DOS and applications
reside below 640 KB. Video buff­
ers, adapters, and ROM BIOS re­
side between 640 KB and I MB.
DOS divides memory between 0
and 640 KB into two areas:

Operating System: Contains inter­
rupt vectors, DOS communications,
ROM BIOS tables, DOS code, DOS
buffers and tables. The size of this
area depends on the number of de­
vice drivers installed and number of
disk buffers specified.

Personal Systems/Issue 3, 1990

Applications: Contains application
memory blocks and free memory
blocks. DOS allocates memory to
the application during run time.
The memory is allocated in blocks.
Figure 8 shows blocks associated
with an application, which are
chained together. When an applica­
tion requests memory, IBMDOS
looks through the memory block
chain until a free block of the de­
sired block size is found. This
block is then linked to the applica­
tion memory block chain. DOS pro­
vides the following memory
management function calls to allo­
cate, deallocate, and modify mem­
ory blocks:

48H - Allocate memory block
(Alloc)

49H - Free memory block (Dealloc)

4AH - Modify memory block
(Setblock)

Prior to loading a program for exe­
cution, DOS allocates available free
memory to the application. This ba­
sically allocates the largest free

Figure 9b. Disk Partition Structure

block in the chain for the applica­
tion. If the application needs more
memory during run time, it has to
first deallocate part of the memory,
then , using the Alloc function, allo­
cate the specific size of memory
needed. The Setb/ock allows the ap­
plication to change existing blocks.
When an application terminates ,
DOS releases all memory blocks be­
longing to the application, except in
the case of TSR programs. Blocks
allocated to the TSR programs can­
not be freed until the system is
rebooted.

DOS Disk Structure
The disk is divided into tracks, and
each track is subdivided into sec­
tors, as shown in Figure 9a. A sec­
tor is the basic unit of storage for
the disk. Sectors are made up of
512 bytes, and each byte consists of
eight bits. During a disk read or
write operation, the read/write head
is positioned to the specific track
first, and then the data on a specific
sector is read as the sector passes
by the head.

The hard disk can be divided into

7

.....,'---Root Directory

Boot Sector

areas called partitions as shown in
Figure 9a. Partitioning is done by
the FDISK utility. The entire disk
can be composed of one or more
partitions. A diskette is maintained
as a single partition. In Figure 9b,
each partition is again subdivided
into the following special areas by
the FORMAT utility:

Master Boot Record

• Boot sector

• File Allocation Table (FAT)

• Root directory

• File data and directory data sec­
tors

Master Boot Record and
Partition Table
The Track 0, Head 0, Sector I of
every hard disk contains a Master
Boot Record created by the FDISK
utility. Figure 10 shows the Master
Boot Record, which consists of a
loader program and a partition
table. The purpose of this loader
program is to load the Boot Sector,
which is found in the bootable disk
partition.

A hard disk can be divided into four
areas. DOS uses the first two areas,
which are called DOS Primary and
DOS Extended partitions. The
other two areas can be used by non­
DOS operating systems such as
OS/2. Figure 10 shows the partition
table, which contains four entries
that describe the area type and the

DOS Primary Partition

_J Boot Record

1-------------- 1--------------

j ,.._ __ i_s_t _E_nt_r_Y _ _ __,

Loader Program

I

2nd Entry ---i DOS Extended Partition Partition
Table 1------ L. .-------,

3rd Entry

L._ __ 4_th_E_n_t_ry--~= [~=L=o=g=ic=a=l D=ri=v=e=I=~

Logical Drive 2

Figure 10. Layout of Master Boot Record and Partition Table

Personal Systems/Issue 3, 1990

8

Partition #1 - DOS Primary Partition

Partition #2
DOS Extended Partition

I

Figure 11. DOS Hard Disk Partitions

physical location of the four disk
areas. Figure 11 shows the DOS ex­
tended partition, which can be subdi­
vided into 24 subpartitions called
the logical drives. DOS assigns the
drive letter C to the primary parti­
tion and to each logical drive start­
ing with C:.

Figure 12 shows the Partition Table
Entry Structure. This table contains
the Starting Head, Sector, and Cylin­
der, pointing to the beginning point
for the related partition, the Boot
Sector on the partition. The Ending
Head, Sector, and Cylinder points to
the end of the partition. The Parti-

Logical Drive #I

Logical Drive #2

II II II II ti II II II II II

II II II II II II II II II II

Logica l Drive #24

tion Type indicates the type of file
system in the partition as well as
whether the partition is a primary or
extended partition. The Boot Indica­
tor field indicates whether the parti­
tion is bootable or non-bootable.

Figure 13 shows that the FORMAT
utility divides each DOS partition
into five areas. The first area is the
Boot Sector, which contains a table
of the disk characteristics as well as
a boot program. The File Alloca­
tion Table contains locations of
each block of every file on the disk.
The disk root directory contains en­
tries of a fixed number of files and

Boot Indicator - Indicator whether the partition is bootable
or nonbootable

Starting Head
Starting Sector
Starting Cylinder
Partition Type

Ending Head
Ending Sector
Ending Cylinder
First Partition Sector

00 = Nonbootable
80H = Bootable

- Starting head of the partition
- Starting sector of the partition
- Starting cylinder of the partition
- Type of file system in the partition

00 = Type unknown
0 l = DOS 12-bit FAT file system
04 = DOS 16-bit FAT file system
05 = DOS extended partition
06 = DOS 4.0 partition, size greater

than 32 MB
- Ending head of the partition
- Ending sector of the partition
- Ending cylinder of the partition
- Sector number of the first partition

Figure 12. Partition Table Entry Structure

Personal Systems/Issue 3, 1990

directories in the file system root di­
rectory. The file data area contains
entries of data files , subdirectory
files and free sectors. Note that
each file entry is 32 bytes and con­
tains basic file information.

Boot Sector
The Boot Sector, the first sector of
the partition, is created when the
disk partition is formatted. Figure
14 shows the boot sector, which
consists of four fields. The first
field is a three-byte JUMP instruc­
tion to the Loader program. The
second field is an eight-byte vendor
identification associated with the
PC manufacturer. The third field
contains disk-specific information
called the BIOS Parameter block
(BPB). The last field contains the
LOADER program. This program
is loaded into memory by the loader
program in the Master Boot Record
at the beginning of the system boot.

BIOS Parameter Block
(BPB)
The BPB field is part of the Boot
Sector. This field contains the fol­
lowing disk-specific information:

• Bytes per sector

• Sectors per cluster

• Number ofFATs

• Number of root-directory entries

• Total number of sectors

• Media descriptor byte

• Number of sectors per FAT

• Sectors per track

• Number of heads

• Number of hidden sectors

During system initialization,
IBMBIO reads the BPB field of
every DOS partition and diskette
drive. Using the BPB information,
it creates a BPB table-linked list.
The IBMDOS searches the linked

list for a specific drive BPB table
whenever it accesses that drive.

Root Directory
The disk root directory contains a
32-byte entry for each file and direc­
tory in the DOS file system root di­
rectory. Entries of other files and
subdirectories in the file system are
kept in other areas on the disk. Fig­
ure 15 shows the structure of each
file entry. Each entry contains the
basic information of files, such as
file name, attribute, date and time,
and starting cluster number.

An entry is created when a file or di­
rectory is created. When a file
name is specified in a DOS func­
tion, IBMDOS searches the file
entry on the disk. If the entry is
found, IBMDOS uses the starting
cluster number of the file to locate
the starting point of the file cluster
chain in the File Allocation Table.
Using cluster numbers, DOS can lo­
cate the file sectors.

File Allocation Table (FAT)
A file is saved on the disk as one
block or several blocks scattered
throughout the disk. A block is a
collection of contiguous sectors on
the disk. On the disk, DOS main­
tains a table that contains informa­
tion of different blocks of every file
on the disk. This table is called the
File Allocation Table (FAT). Dur­
ing file processing, IBMDOS
searches the FAT if it needs to find
out the physical location of file
blocks. In Figure 16, each block of
the file in the FAT is identified by
set of chained clusters. Each cluster
points to one more continuous physi­
cal sectors on the disk. The number
of sectors per cluster depends on the
size of the disk.

Figure 16 shows a File Allocation
Table that contains two cluster

9

chains for files FILEl and FILE2.
Note that the starting cluster of the
file is in the file entry, created when
the file is created. Using the start­
ing cluster number, IBMDOS reads
each cluster number of the file from
the FAT. Each cluster number rep­
resents one to four contiguous sec­
tors on the disk. The sector is then
read by calling the DOS disk driver
in IBMBIO. The disk driver calls
the BIOS disk read function INT
13H to read the sectors from the
disk.

In Figure 16, FILEI is stored on the
disk as a single block, which is iden­
tified by clusters 5, 6, 7, and 8.
Note that starting cluster 5 can be
found within the FILEl entry. An
FFF indicates the end of the cluster
chain, and O indicates a free cluster.
Usually a cluster number represents
two or four sectors; but, for exam­
ple, assume that each cluster repre­
sents one sector. FILEl then
occupies sectors 5, 6, 7, and 8 on
the disk. To read FILEl, IBMDOS
reads sectors 5, 6, 7, and 8. Simi­
larly, FILE2 is composed of two
blocks. The first block consists of
clusters 11 and 12. The second
block consists of 15, 16, 17, and 18.
Thus FILE2 occupies sectors 11,
12, 15, 16, 17, and 18 on the disk.

DOS File System
The DOS file system root directory
is tree-structured. Figure 17 shows
this file system root directory,
which consists of a disk root direc­
tory with subdirectories (special file
types) and files. The disk root direc­
tory contains an entry for every file
and directory in the file system root
directory. Entries of other sub­
directories and files can be found
on other areas of the disk. Each
entry is 32 bytes, and contains basic
file information such as file name,
file extension, file attribute, date

Personal Systems/Issue 3, 1990

Boot Sector

File Allocation Table #1

File Allocation Table #2

Root Directory

File Data Area

Figure 13. Partition Structure

JUMP Instruction To
Loader Program

OEM Vendor Name

BIOS Parameter Block
(BPB)

Loader Program

Figure 14. Boot Sector Structure

File Name

File Name Extension

Attribute

Reserved

Time

Date

Starting Cluster Number

File Size

Figure 15. File Entry Structure

10

Cluster 2 3 4 5 6 7 8 9 IO I I 12 13 14 15 16 17 18 19 20

Pointer LI o::......i__::_o ...L....:.o_J_o__L6__.l_l _7 ...1._s_J_IF_F_JFILO_i_l _o ...LI -:-:12_1_1 _15:--11_o__J_o-----'-I -:16___,._I _17;--'-I_' 8-;--I._FFF~I _o ~I ~o I
uuu LJI rLJLJLJ

FILEI.TXT

Starting
Cluster

[5]

FILE I File Entry

Figure 16. File Allocation Table

and time of file creation, and the
starting cluster of the file. A file is
a collection of disk sectors. These
sectors may be contiguous, in one
block, or in several discontiguous
blocks scattered throughout the disk.

IBMDOS uses information from
FAT entries to access files and di­
rectories. A file entry is searched to
find out whether the file exists. If
found, IBMDOS gets the starting
cluster number of the file. The start­
ing cluster gives the entry point to
the file cluster chain in the FAT.
The clusters in the chain give a com­
plete picture of the file sectors on
the disk. IBMDOS uses its internal
disk driver to reads these sectors.

FILE2.TXT

Starting
Cluster

(11]

FILE2 File Entry

DOS provides the FIND-FIRST and
SEARCH-FIRST functions to
search for a specific directory. The
FIND-NEXT and SEARCH-NEXT
functions are used to search for
files. The CREATE, OPEN,
CLOSE, READ, WRITE, and DE­
LETE functions can be used to ma­
nipulate files. Similarly, the
MKDIR, CHOIR, and RMDIR func­
tions can be used to manipulate di­
rectories.

Useful Scenarios
Now that the functions of major
DOS components have been de­
fined, the following scenarios will
examine how all these components
work together:

ROOT DIRECTORY

\

DIRl DIRX DIRY

I I
DIR2

I FILE2 FILE3
FILE!

Figure 17. DOS File System Structure

Personal Systems/Issue 3, 1990

• DOS startup and system configu-
ration

• List a directory

• Load and execute a program

DOS Startup and System
Configuration: The system startup
sequence begins with the Power On
Self Test (POST). The POST is
part of the ROM BIOS that resides
permanently in the system over 640
KB, starting at E000:0000. After
the PC is powered on, the first in­
struction executed is a JUMP in­
struction at FFFF:0000. It is afar
jump to the beginning of the POST.
The POST performs the following
steps:

• Exercises CPU by executing criti­
cal instructions

• Validates every byte of RAM by
simple read/writes

• Exercises the system timer chip

• Exercises the system Direct Mem­
ory Access (DMA) controller chip

• Exercises the video controller
and video RAM

• Verifies the keyboard for a stuck
key

• Verifies the 32 KB interpreted
BASIC ROM

An error code is displayed on the
screen if any of the preceding tests
fail. A successful POST is indi­
cated by a short beep and continues
to the next phase. In this phase,
POST issues an INT I 9H to load
the DOS from the boot device.
This second phase involves the fol­
lowing steps:

I. POST checks diskette drive A:
to see if a diskette is present in the
drive. If found, POST checks to
see if the diskette contains a valid
boot sector. If found, POST loads
the loader program from the disk­
ette boot sector. POST then goes to
step 4. If no valid boot sector ex­
ists, the familiar "Non-System disk
or disk error" message appears, wait­
ing for the user to insert a proper
diskette.

2. If there is no diskette in the disk­
ette drive, POST checks the disk in
drive C: for a valid master boot re­
cord.

3. If it is present, the loader pro­
gram in the master boot record is
loaded and executed. The loader
searches the partition table for a
bootable DOS partition, usually the
DOS primary partition. If a boot­
able partition is found, it uses the in­
formation in the partition table entry
to locate the boot sector. It loads
the boot sector and executes the
first instruction, which is a JUMP in­
struction to the boot sector loader
program.

4. This loader program loads the
first part of IBMBIO, the DOS
loader. DOS loader loads the re­
maining parts of IBMBIO.

5. IBMBIO initializes the internal
device drivers for console, key­
board, printer, and communication
lines. It also creates a Block De-

11

vice Structure (BDS) linked list for
all disk device partitions on the sys­
tem and assigns a drive letter.

6. IBMBIO then loads and initial­
izes IBMDOS. At this point, the
basic DOS functions are available
for further system configuration
work.

7. Using the open function,
IBMBIO opens and processes the
CONFIG.SYS file.

8. Using the instructions in the
CONFIG.SYS, IBMBIO loads and
initializes the installable device driv­
ers based on the DEVICE= com­
mand. It sets up system buffers and
file control blocks based on BUFF­
ERS= and FCB= commands.

9. Finally, IBMBIO uses the DOS
EXEC function to load and execute
COMMAND.COM. The COM­
MAND.COM splits itself into a resi­
dent section and a transient section.
The resident section is loaded next
to the system buffers, and the tran­
sient section is loaded just below
the 640 KB boundary. The COM­
MAND.COM loads and executes
the AUTOEXEC.BAT file, which
displays the DOS prompt and issues
the DOS function 0AH to read
input from the keyboard. At this
point, DOS is fully loaded and
ready to run.

Note that the Power On Self Test
will be executed only if the system
is turned on. POST will not be exe­
cuted if the Ctrl-Alt-Del keys are
pressed to reboot the system. In­
stead, BIOS issues an INT 19H, and
system loading starts from the sec­
ond phase.

List Directory: The List Directory
command (DIR) performs the fol­
lowing steps:

Personal Systems/Issue 3, 1990

1. Locates the current directory
entry on the disk using the
SEARCH-FIRST (l lH) function.

2. Locates file entry of next file in
the directory using the SEARCH­
NEXT (12H) function.

3. Displays file entry information
using the Write (40H) function.

4. Repeats steps 2 and 3 for subse­
quent files under the current direc­
tory.

Load and Execute a Program: If
the user types a program name to be
executed, the COMMAND.COM as­
sumes the control. COM­
MAND.COM calls the EXEC
(4BH) function to load and execute
the program. The EXEC function
performs the following steps:

• Reads the file entry from the disk
and assigns a file handle.

• Allocates the largest free memory
block to the program.

• Reads the file clusters from the
FAT using the starting cluster
from the file entry.

• Reads the file sectors from the
disk using cluster numbers.

• Finally, transfers control to the
program.

ABOUT THE AUTHOR

Pylee Lennil is a staff programmer
at IBM Entry Systems Division in
Boca Raton, Florida. He is
presently involved in the
development of PC DOS. Pylee,
who joined IBM in 1983, received
his B.S. in physics from Kerala
University in India, and an M.S. in
computer engineering from the
University of Lowell in Lowell,
Massachusetts.

Memory
Management
in a DOS
Environment
Bruce G. Borkosky
IBM Corporation
Boca Raton, Florida

This article has two goals: to
help the reader understand differ­
ent types of memory, and to sug­
gest several ways to use memory
types in a DOS environment. An
understanding of these two princi­
ples is important because differ­
ent systems support different
types of memory, and different ap­
plications may either require or
use one or more of these memory
types.

Four Types of Memory
There are four basic types of mem­
ory that can be supported by DOS:
conventional, expanded memory
(EMS), extended memory, and high
memory. Figure 1 shows how these
memory types show up in a DOS
system. Figures 2 and 3 show the
different types of memory and on
which types of system units they are
supported.

Conventional Memory: Conven­
tional memory was the first and
only type of memory for the early
IBM PCs. It had a maximum size
of 640 KB, which seemed more
than adequate back in the days
when the maximum RAM that
could be put on a PC was 128 KB.

Conventional memory is supported
on all systems and can be used for
all application purposes: code, data,
stack, and heap (temporary data stor­
age during application processing).

12

16 MB-------

Extended

HIMEM
1 MB 1-------------1

BIOS

EMS

Video
640 KB 1-----------4

Conventional

O'-------~

Figure 1. DOS Memory Map

All programs today use at least a
portion of conventional memory,
and many use only conventional
memory. Many application pro­
grams have not been recoded to use
the newer types of memory because
some users do not have other types
of memory. And conventional mem­
ory, despite its limitation of 640
KB, is still the fastest memory to
use under DOS.

In fact, there are really only two rea­
sons to use the other types of memo-

EMS

ries: either the application has out­
grown 640 KB, or the application
has to coexist with other large appli­
cations.

EMS Memory: The most widely
used of the newer types of memory
is Expanded Memory Specification
(EMS). Depending on the applica­
tion, EMS memory can be used to
contain code, data, and heap.

EMS memory has medium access
speed for applications in the DOS

Figure 2. System Unit Support - EMS (Expanded)

Personal Systems/Issue 3, 1990

environment, and all systems are ca­
pable of providing some type of
EMS support. The maximum
amount of EMS memory available
is 32 MB; however, this 32 MB
limit has not yet been implemented
in most systems.

Implementing EMS on either a 286
or 386® and above system requires
hardware "memory relocation"
logic and an EMS driver (EMM),
which interfaces between the appli­
cation and the hardware remapping
logic. It acts as the "BIOS" for
EMS. For 386 and above systems,
this hardware logic is located in the
processor. For 286 systems and
below, the hardware can be added
through an EMS-capable memory
card or a hardware device such as
the ALL CHARGECARD™. It can
also be added to the planar of the
system unit.

To support EMS on most 286 sys­
tems, memory cards can be con­
verted to either extended or EMS
memory. These cards contain
enough logic to be used either as ex­
tended or EMS memory or as some
combination of both. By contrast,
most 286 planar memory must re­
main as extended memory. On 386
and above systems, all memory -
both planar and on cards - can be ei­
ther extended or EMS. A 386-spe­
cific EMS device driver, which uses
the processor's own logic, is used to
convert extended memory to EMS.

Figure 4 shows which items are
needed to have EMS on any PC sys­
tem. All system units require at
least an EMS-aware application and
an EMS device driver. For 8088
and 80286 systems, a hardware card
is also required.

In supporting EMS on any machine,
two factors must be taken into ac­
count: the physical and logical

13

Figure 3. System Unit Support (Extended)

pages available on the system.
"Physical pages" refer to how large
a "window" the system has, while
"logical pages" refer to the total
amount of memory on the EMS
card or cards.

In order to support the Lotus-Intel­
Microsoft (LIM) 3.2 specification, a
machine must provide a 64 KB win­
dow that is located between 640 KB
and 1 MB. To support the LIM 4.0
specification, the system, EMS card,
and EMS driver must all support
more than the 64 KB "window."
For the LIM 4.0 specification, the

system should also provide physical
pages below 640 KB.

Figure 5 shows how LIM 3.2 mem­
ory is configured in a typical DOS
system. Notice that there is a single
application using all of the EMS
memory. Also, there is only a single
window, which is located at D000
hex.

Figure 6 shows how the LIM 4.0
specification has made several en­
hancements over LIM 3.2. In this
example, there are two applications
sharing the EMS memory. They

EMS MEMORY REQUIREMENTS

8088/286

EMS DRIVER

386/486

Figure 4. EMS Memor y Requirements

Personal Systems/Issue 3, 1990

14

EMS - LIM 3.2

896 KB

832 KB
Page Frame

E000

D000
EMS

Logical Pages
768 KB

VGA

640 KB

Lotus 1-2-3 A000
Lotus 1-2-3

Data

DOS
0

Figure 5. LIM 3.2 EMS Configuration

are using it for both data and code
segments. In addition, they are both
using more physical pages than the
EMS page frame.

Extended Memory: Extended
memory is located at l MB and
above. As a result, it can only be

EMS - LIM 4.0

0

896 KB E000

832 KB
Pages 4-7

D000
Page Frame

768 KB VGA cooo

Lotus 1-2-3

supported by systems that have 286
and above processors, because
8088/8086 processors cannot ad­
dress above l MB. Extended mem­
ory can only contain data in real
mode. It is usually used for device
drivers such as virtual disks, disk
caches, and printer spoolers.

EMS
Logical Pages

Lotus 1-2-3
Data

Additio ns
APP2

Code and Data
APP2 - More Pages > 640 KB

g - Sharin
- Code

DOS - More
0 0

Figure 6. LIM 4.0 EMS Configuration

Functions
Logical Pages

Personal Systems/Issue 3, 1990

The maximum amount of extended
memory available is limited by sev­
eral factors, including address space
of the processor, address space of
the Direct Memory Access (DMA)
chip (which allows devices to trans­
fer data from a device such as a
hard file directly to and from mem­
ory) and the physical limits of the
system unit bus and the cards them­
selves.

The maximum amount of extended
memory on most machines today is
15 MB. For 286 systems, that limit
will remain at 15 MB, because the
286 processor has an address limit
of 16 MB. But for 386 and 486®
processors, the address limit is 4
GB; on most systems today the
DMA chip still has a limit of 16
MB. As memory requirements
grow, the maximum memory limit
will exceed 15 MB and will then be
limited only by the physical limits
of card size and number of bus slots.

Figure 7 demonstrates that extended
memory is used by some TSR appli­
cations to store data. In this exam­
ple, VDISK and IBMCACHE are
sharing extended memory. The
code for these TSRs exists below
640 KB.

High Memory: Technically, this
memory is just extended memory
that is located at the 1 MB bound­
ary and is almost 64 KB in size.
Because of an anomaly in the 286
processor that has been replicated
on subsequent processors, the first
64 KB of extended memory can be
accessed from real - rather than pro­
tected - mode.

That real mode access makes high
memory almost as fast as conven­
tional memory, and, unlike true ex­
tended memory, both code and data
can be placed into high memory.
For DOS, high memory has the ef-

feet of increasing the real mode
memory beyond the 640 KB limit.

High memory has two drawbacks,
however. It is small - only 64 KB -
and difficult to share. As a result, it
is normally used for single applica­
tions that will reserve the entire 64
KB area for themselves.

Figure 8 displays the memory map
of the high memory area. Notice
how it exists within the first 64 KB
of extended memory. The high
memory area is normally used by a
single application.

Application Types
In the DOS environment, there are
four different types of memory,
each with different characteristics,
from size to speed to the application
program interfaces (API) needed to
access that type of memory. There
are also different types of applica­
tions, some of which require certain
memory, and each of which may be
able to make use of certain types of
memory.

Unaware Applications: Unaware
applications were created according
to the model of the original PCs and
PC XTs, and as a result, are not
aware of any memory type except
conventional memory. These appli­
cations are usually text-oriented and
may have some Color Graphics
Adapter (CGA) graphic capabilities.

Memory-A ware Applications:
Memory aware applications have
been coded to interface with one or
more of the newer types of mem­
ory. They have been modified, or
in the case of new applications, cre­
ated to use the appropriate API for
each type of memory used.

The most common of the memory­
aware applications are EMS-aware.
They are usually coded to the LIM

15

16 MB

I MB

640 KB

0

VDISK
Data

IBMCACHE
Data

APP

IBMCACHE

VDISK

DOS

Figure 7. Extended Memory Map

3.2 specification, which calls for 64
KB of physical pages above 640
KB. Some common examples of
these application are Lotus 1-2-3™
Version 2.X, Excel, WordPerfect™,
Microsoft Word™, and Paradox®.

Some EMS-aware applications use
the LIM 4.0 specification to make
use of more than the LIM 3.2 page

1,384 MB

1 MB

640 KB

0

320 KB

HIMEM

APP

TSR

DOS

Figure 8. HIMEM Memor y Map

Personal Systems/Issue 3, 1990

Real Mode
Requires:
- 286 or above
- l MB RAM

frame. An example of this type of
application is Advanced Revelation
Version 2.0.

Applications use EMS memory for
two reasons. First, the application
may be larger than available mem­
ory. Before the LIM specification
was created, developers could only
solve that problem by using disk

-
Requires:
- 286 or above
- l MB RAM
- Driver

,---

16 MB------~

APPA

1 MB

640 KB~-----~

APPA

DOS
O'---------'

Figure 9. Extended Memory Map

overlays. But disk overlays are
slow for the user and complicated
for the developer. Second, EMS is
also used to allow the application to
keep large amounts of data in mem­
ory all the time. Otherwise, most of
the data would have to be kept on
disk, which slows performance.

High memory-aware applications
are mostly Operating System Exten­
sions (OS/Es), such as Windows®
and DESQview™. These applica­
tions can move parts of themselves
into the high memory area, leaving
more room for other applications
that run under the OS/E.

DOS extender applications are
aware of and use extended memory,
but do so in a different way from
most applications. These memory­
aware applications have been com­
piled with a feature known as a
DOS extender. This tool is a mini­
mal protected-mode operating sys­
tem whose main function is to
provide memory management to a
single application. Examples of
DOS extender applications are
Lotus 1-2-3 Version 3.0, Paradox

16

"DOS Extender"
Requires:
- 286 or above
- I MB RAM

386, IBM Interleaf Publisher, and
Mathematica.

A DOS extender application loads it­
self into both conventional and ex­
tended memory, taking over almost
the entire system memory. It nor­
mally runs in the protected mode of
the processor. But when it needs to
access a DOS or BIOS function, it
passes back into real mode, per­
forms the function, then returns to
protected mode to process the
results.

Figure 9 shows how almost the en­
tire memory of a system is under
the control of a DOS extender appli­
cation. This is due to its inclusion
of a protected-mode operating
system.

The resource requirements for DOS
extenders can be large. The mini­
mum requirements for some DOS
extender applications is a 286 pro­
cessor and 2 MB of RAM. Others
require a 386 processor, 3 MB of
RAM and several megabytes of
available disk space. If users need
applications as powerful as these,

Personal Systems/Issue 3, 1990

they will get the best performance if
they run the applications on a
higher-end hardware system, one
that has at least a 386 processor and
2MB of RAM.

A DOS extender offers developers a
consistent interface for all types of
memory and lets the developer use
that memory for code, data, stack,
and heap.

But DOS extender applications can
cause problems for the user, be­
cause other resident applications
may be incompatible with them.
These other resident applications
may not follow all the protected
mode rules that the DOS extender
application follows, which can
make the DOS extender perform
poorly.

These DOS extender compatibility
problems are likely to become less
severe in the future. For instance,
Windows 3.0 is a DOS extender
that, for 386s, executes DOS appli­
cations in their own virtual 8086
box. This has the effect of increas­
ing compatibility by isolating any
programs that perform poorly in pro­
tected mode. In addition, industry
standards will probably emerge in
the DOS extender area. Applica­
tions may be developed that will
share a single extender, thus increas­
ing the stability of systems running
DOS extenders.

Memory Management
Solutions
With this background on the types
of memory and applications, let us
now look at memory management -
how to put memory types and appli­
cation types to work in the DOS en­
vironment.

Solutions for Unaware
Applications: With older applica­
tions, users can access either EMS
or high memory to extend capabili­
ties of their systems. EMS solu­
tions are compatible across all
systems, while high memory solu­
tions require at least a 286 proces­
sor.

If you are using a Local Area Net­
work, the DOS LAN Redirector
(DLR) from the OS/2 LAN Man­
ager will place part of itself into
high memory. This reduces the resi­
dent size of the DLR below 640
KB, which increases the space avail­
able for applications by about 40
KB.

If you have EMS and are using
DOS 4.00, you can create the same
result by placing parts of DOS itself
(such as BUFFERS, FASTOPEN,
and VDISK) into EMS. Corrective
Service Diskette (CSD) number
UR38619, dated April 1989 or later,
makes DOS compatible with either
LIM 3.2 or LIM 4.0 EMS cards and
drivers. DOS 4.00 (dated July
1988), however, requires a LIM 4.0
card.

Users who communicate with an
IBM mainframe computer through
Personal Communications/3270
(PC3270) can place parts of
PC3270 into either EMS or high
memory. This will increase the ap­
plication space from about 30 KB
to 70 KB, depending on the system
configuration. In addition, the latest
CSD from this program should be
used.

Other utility programs, such as local
area networks, can also use either
EMS, high memory or extended
memory. Users should consult their
vendors to determine whether and
how they can use each memory type.

17

These solutions operate on systems
that have unaware applications.
The methods described involve plac­
ing one or more TSRs into either
EMS, high memory or both. To im­
plement these solutions, you should
have at least 384 KB of extended
memory (1 MB total system mem­
ory) or 512 KB of EMS memory.
Even though high memory uses
only 64 KB of extended memory,
384 KB is usually the minimum
you can buy. On systems with 1
MB or more, the 384 KB is usually
included. In those cases, all users
need to implement high memory is
the appropriate driver (for example,
HIMEM.SYS). Similarly, 512 KB
is usually the minimum amount of
EMS that can be purchased, even
though the application or utility will
probably use less. Having the full
512 KB allows users to later add
other EMS-aware applications.

There is another way to use newer
memory types with unaware applica­
tions. This approach uses EMS-like
capabilities, but is not a pure EMS
solution. It places memory or EMS
pages starting at 640 KB and back­
fills the memory from 640 KB to
the start of the video buffer. For
CGA systems, this increases the
total memory from 640 KB to 736
KB, for an additional 96 KB of ap­
plication workspace.

This solution requires several items
that must all work together in order
to implement it. First, the unaware
applications must not use higher
graphics modes of the EGA or
VGA graphics adapters. If you cur­
rently have either a monochrome or
CGA card, it is acceptable. If you
have an EGA or VGA card, you
may still be okay if your application
uses only the CGA-mode graphics.

Another required item is an EMS
card and driver. On 386 systems,

Personal Systems/Issue 3, 1990

you will need extended memory and
a 386 EMS driver. You can also
use extended memory on a 286 sys­
tem if you use a hardware device
such as the ALL CHARGECARD.

The EMS drivers you use must also
be capable of extending the DOS
box past the 640 KB limit. If it is,
you will have an additional 64 KB
to 96 KB of space for your applica­
tions.

This solution uses an aspect of the
PC architecture that slightly bends
the rules. As originally designed,
applications were limited to 640
KB, while the rest of the 384 KB ad­
dress space was "reserved."

However, for monochrome and
CGA systems, much of this re­
served space went unused. Fortu­
nately, some of this unused space
can be reclaimed.

An example of how this solution is
implemented is shown in Figure 10.
This user has a CGA system, and is
using the ALL CHARGECARD.
The DEVICE= statement was
placed in the CONFIG.SYS file,
and the size of the DOS box is en­
larged to 736 KB.

Figure 11 provides a detailed look
at the reserved area of the PC archi­
tecture. Monochrome and CGA
video buffers are smaller, then, and
fit inside of the VGA buffers.

Solutions for EMS-Aware
Applications: Using EMS-aware
applications may require either up­
grading software or purchasing ap­
plications that are aware of EMS.
In some cases, this is as simple as
buying a new version for an exist­
ing application program. In other
cases, the applications may support
EMS, but the system on which they
are running may not have EMS.

18

Device = ALLEMM4.SYS Include= AOO0-B7FF

Provides 736 KB DOS Area
With Color Graphics Adapter

736 KB

CGA

640 KB >--------------< l
DOS

0

Figure 10. Solution for Unaware Applications

Then the solution is to purchase an
EMS card and driver.

In general , this requires at least 512
KB of EMS memory. Because one
of the assumptions of EMS memory

1.384 MB

384 KB

1.064 MB

1 MB

960 KB

896 KB

832KB

is that it will be shared, it is best to
buy at least 1 MB of EMS memory
so that adding EMS applications or
increasing the size of the data does
not present problems.

320 KB
Extended

64 KB HIMEM

BIOS

BIOS

EMS Page Frame

Adapter ROM/ RAM

1000

F000

E000

D000

cooo

B000

AO00

768 KB
VGA

704 KB

640 KB
VGA

Figure 11. PC Memory Map Rese r ved Area

Personal Systems/Issue 3, 1990

In all cases, users should ask their
vendors whether an application uses
EMS and, if so, how it uses it and
what its specific requirements are.
Because the LIM specification is
vague, some EMS implementations
may not meet an application's re­
quirements. Some of the questions
that should be asked of a vendor are:

• How many 16 KB physical pages
are required?

• Does the application use only the
LIM 3.2 page frame, or does it re­
quire more?

• Can it work with just a single
physical page?

• How much EMS memory (logi­
cal pages) does it require?

• What are the minimum and maxi­
mum amounts of memory it can
use?

Solutions Using Operating System
Extensions (OS/E): OS/E applica­
tions manage memory for multiple
applications. They allow one or
more applications to be loaded into
memory at the same time. Depend­
ing on the design of the OS/E, they
may or may not provide multitask­
ing, a graphics interface (GUI) and
a programming interface. Some ex­
amples of OS/E applications are
Windows 2.11, Windows 3.0,
DESQview and Software
Carousel™.

OS/Es provide some OS/2 benefits
at a lower cost than OS/2. These ap­
plications also may be used on ma­
chines that cannot run OS/2. As a
result, OS/Es allow users to retain
their investments in current ma­
chines, while giving a common in­
terface across all machines at the
site.

As older machines are gradually re­
placed with OS/2-capable machines,
users can make the transition

quickly and easily, since they will
have already begun working in an
OS/2-like environment.

Requirements for this memory man­
agement solution vary, depending
on the OS/E and the application.
Some applications perform ade­
quately on 8088 machines. But
graphics-intensive OS/Es and appli­
cations need at least a 286 proces­
sor and from l MB to 2 MB of
RAM. The total amount of RAM
needed depends on the applications.
The larger and more powerful the
application, the more memory it re­
quires. In general, users can as­
sume from 512 KB to 1 MB of
memory per application. Therefore,
to have three applications in mem­
ory at once, a system needs from 2
MB to 4 MB of RAM.

For most OS/Es, the primary mem­
ory interface is EMS because it is
large, reasonably fast to access, can
be shared, and supports multiple ap­
plications. OS/Es using EMS re­
quire full LIM 4.0 services: pages
below 640 KB, pages anywhere in
the l MB address space, aliasing
and at least one fast register set for
every program that is to run simulta­
neously.

Figure 12 demonstrates how an op­
erating system extension might use
memory. In this example, four ap­
plications are loaded into memory,
but only one - Excel - is currently
active. The other three applications
are not running. However, the
OS/E has loaded the entire applica­
tion - code, data, stack, and heap -
into EMS.

By contrast, Windows 3.0 uses ex­
tended memory by placing the pro-

19

896 KB
Page 4-7

832 KB

Page Frame
768 KB

VGA

E000

0000

cooo

AO00

EMS
Logical Pages

MS WRITE
Code
Data
Stack

640 KB

256 KB

Excel } EMSPages

4000

PageMaker
Code
Data
Stack

DRAW!
Windows Additions Code

- Pages Below 640 KB Data
DOS - Fast Register Sets Stack

0 0

Figure 12. EMS LIM 4.0 Operating System Extensions

cessor into protected mode. This
may prove to be a better solution
than EMS for 386 and above ma­
chines because 386s and 486s have
features designed to support multi­
ple DOS applications.

Conclusion
OS/2 is - and will be - the best so­
lution for using different types of
memory. In OS/2, all memory is re­
ally extended memory because all
memory is treated the same by all
applications. Whether an applica­
tion is running above or below 1
MB, it runs the same way.

In DOS, as was described here,
things are much different. For in­
stance, under DOS, extended mem­
ory can only be accessed in
protected mode, and the system
then must be reset to real mode.
This access is time-consuming,
slowing the application's perfor­
mance under DOS.

But the primary consideration for
any user is the application. If a re-

Personal Systems/Issue 3, 1990

quired application runs under OS/2,
users should determine whether that
environment might be a better
choice than DOS. Because the stan­
dard OS/2 platform of the 1990s
will be a 386 processor with 4 MB
of RAM and a 60 MB hard file,
users who choose OS/2 ought to
consider that the minimum hard­
ware investment.

ABOUT THE AUTHOR

Bruce Borkosky is a senior
associate programmer at IBM's
Entry Systems Division in Boca
Raton, Florida. He received a BA.
in music from Ohio Wesleyan
University, an M.S. in computer
science from the University of
Dayton, and is a 1991 Ph.D.
candidate from Miami University.
After joining IBM in /984, Bruce's
responsibilities have included
developing PC DOS and working as
an advisor for new memory card
development.

FASTOPEN
The DOS
Performance
Enhancer

Pylee Lennil
IBM Corporation
Boca Raton, Florida

This article describes FASTOPEN
and how it improves DOS perfor­
mance. Also included are the dif­
ferent conditions in which
FASTOPEN works, its user com­
mands, and a comparison be­
tween FASTOPEN and system
buffers.

FASTOPEN is one of the least-un­
derstood DOS components. The pri­
mary reason is that FASTOPEN
functions are closely associated
with the internal operations of the
DOS kernel, an area quite alien to
most people. Basically,
FASTOPEN is an extension of the
DOS kernel. It can improve DOS
performance by helping DOS access
directories and files more efficiently.

FASTOPEN is a stay-resident pro­
gram. When loaded, it becomes a
part of the DOS kernel. The kernel
uses the FAS TO PEN features to
cache the file and directory path in­
formation as well as the location of
the sectors of most recently ac­
cessed files. This information can
be reused during subsequent access
of the same file and directory,
which eliminates further disk read­
ing, resulting in an improvement in
DOS performance.

To learn how FASTOPEN enhances
performance, it's important to know
that DOS uses the following steps
to access files:

20

1. Read file path entry information
from the disk

2. Read file sector location informa­
tion from the File Allocation Table
(FAT)

3. Using the sector information,
read the file data sectors from the
disk

Performance will be improved if the
DOS kernel can perform steps 1
and 2 less frequently with the help
of FASTOPEN. In order to per­
form step 1 less frequently,
FASTOPEN caches the path infor­
mation of recently accessed files
and directories. Similarly, step 2
can be performed less frequently by
caching the file sector location infor­
mation of recently opened files in a
cache buffer. Both path and sector
information in the cache buffer can
be reused for subsequent access of
the same path and file, resulting in
improved performance.

Why does DOS need path informa­
tion from the disk? Usually a file
path consists of or one more sub-

File Name

File Name Extension

Attribute

Reserved

Time

Date

Starting Cluster

File Size

Figure 1. File Entry Structure

Personal Systems/Issue 3, 1990

directories plus a file name. If an
application calls a DOS function
with a file path, DOS searches the
disk for entries of each directory
and file in the path. The primary
reason for this search is to find out
if the file exists on the disk. If not
found, DOS displays the "File not
found" message. If the file entry is
found, it uses the entry information
to handle the file operations.

Why does DOS need file sector lo­
cation information from the FAT?
A file usually consists of a collec­
tion of discontiguous blocks. Each
block consists of a collection of con­
tiguous sectors. The file blocks are
scattered throughout the the disk.
To access a file, DOS must find the
location of file sectors from the
FAT. Once the sectors are located,
DOS reads the file sectors by call­
ing the disk driver.

File and Directory Entries
DOS maintains an entry associated
with every file and directory under
the file system. These entries are
stored on the disk. Because a direc­
tory is a special type of file, the
entry of a file and directory has the
same structure. The file structure is
shown in Figure 1. Each entry has
32 bytes and contains information
such as name, attribute, date and
time, and starting cluster number.
When DOS accesses a file or direc­
tory, it needs the entry information
of each directory and file in the
path. Once the path entries are
found, they can be stored in the
FAS TO PEN path caching buffers
for future use.

File Allocation Table (FAT)
DOS needs some mechanism to lo­
cate file blocks during file access.
For this, DOS maintains a table in a
special area of the disk called the
File Allocation Table (FAT). The

basic structure of a File Allocation
Table is shown in Figure 2.

The FAT contains cluster chains of
every file on the disk. The cluster
chain contains groups of contiguous
clusters for every block in the file.
The beginning of a file cluster chain
is identified by a starting cluster.
The starting cluster is recorded in
the file entry. As shown in Figure
2, FILEl consists of one block and
this block is identified by clusters 5,
6, 7, and 8. Note that starting clus­
ter 5 is recorded in the file entry.

Cluster 2

Pointer 0 0

FILEI.TXT

Starting
Cluster

[5]

FILE! Entry

3 4

0 0

Figure 2. File Allocation Table Structure

5

6

21

To access a file, DOS reads the
starting cluster from file entry.
Using the starting cluster number, it
locates the beginning of the file clus­
ter chain in the FAT. DOS then
reads the rest of the file clusters.
Using the file clusters, the corre­
sponding file sectors are read from
the disk by calling the disk driver.

Caching Path Information
FASTOPEN maintains a cache
buffer for saving the information of
most recently accessed paths. This

cache memory is a collection of
fixed-size buffers. The number of
buffers can be specified by n in the
FASTOPEN command:

F ASTOPEN D: (n,m)

Here n is the number of buffers allo­
cated in the cache area. Each
buffer can hold either one file or di­
rectory entry information. Each
buffer contains the basic file infor­
mation such as file name, attribute,
date and time of file, and starting
cluster of the file. If a path consists

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

7 8 IFFFI 0

LJ LJ LJ
FILE2.TXT

Starting
Cluster

[11]

FILE2 Entry

0 I 12 I 15 I 0

LJI

Personal Systems/Issue 3, 1990

0 I 1611 7118 IFFFI 0 0

rl.JLJLJ

of two directory names and one file
name, three buffers are needed to
save the three entries. As shown in
Figure 3, FILEl requires three buff­
ers and FILE2 requires only one.

When an application issues a DOS

Path: \DIR1\DIR2\FILE1

1 i
DIR!
Entry

l i
DIR2
Entry

l l
FILEl
Entry

22

function with a path, DOS calls the
FASTOPEN for path information.
If the information is not found in
the FASTOPEN cache buffer, DOS
reads entry information of each ele­
ment in the path from the disk. As
each entry is found, it gives the

Path: FILE2

l l
FILE2
Entry

Figure 3. F ASTOPEN Disk Directory Information Cache Buffers

FILE!

I l BLOCK!

Starting Cluster
[5]

Count
[4]

Figure 4. FASTOPEN File Sector Cache Buffers

FILE2

l l BLOCK!

Starting Cluster
[I I]

Count
[2]

l 1 BLOCK2

Starting Cluster
(15]

Count
[4]

Personal Systems/Issue 3, 1990

entry information to FASTOPEN
for caching. FASTOPEN saves in­
formation in the linked buffers. At
the completion of the DOS func­
tion, the buffers will have entries
for the full path specified in the
function call. Now that the entries
are in the FASTOPEN cache buffer,
the next time a DOS function speci­
fies the same path, DOS wilJ re­
quest FAS TO PEN for the path
information. FASTOPEN looks
through the cache buffers and re­
turns the path information to DOS.
Because the information is available
from the FASTOPEN cache buffer,
additional disk reads are eliminated,
which results in improved DOS per­
formance.

Caching File Sector Location
FAS TO PEN maintains a cache
memory area for caching file sector
information from the FAT. The
cache memory is composed of a col­
lection of buffers. Each buffer has
16 bytes and holds the cluster infor­
mation of a file block. The number
of buffers can be specified using the
"m" parameter in the FASTOPEN
command:

F ASTOPEN D: (n,m)

Figure 4 shows the buffer setup.
Each buffer contains a starting clus­
ter of the block and a count indicat­
ing the number of contiguous
clusters in the block. If a file is
composed of three blocks, then
three buffers are needed to save its
sector information. These buffers
form a linked list that can be
searched by FASTOPEN. As
shown in Figure 4, FILE! consists
of a single block that contains clus­
ters 5, 6, 7, and 8. The sector infor­
mation of this file is recorded in a
single cache buffer with starting
cluster number 5 and count 4.

To access FILEl, DOS needs to
know the FILEl sector location in­
formation. DOS calls FASTOPEN
for this information. In Figure 4,
FASTOPEN looks through the
buffer chain and locates the single
buffer associated with FILE 1. It
reads the starting cluster 5 and com­
putes the remaining clusters 6, 7,
and 8, using the count 4. The
FILEl cluster information is then
sent to DOS.

FASTOPEN Performance
Considerations
Performance improvement by
FASTOPEN strictly depends on the
behavior of the application. Cach­
ing the path information will im­
prove the performance of an
application that does constant direc­
tory and file access. Caching the
file sector location will improve the
performance of an application that
does continuous random disk access
on large, less fragmented files.

23

FASTOPEN Versus System
Buffers
What is the advantage of
FASTOPEN over system buffers?
System buffers cache all sectors
read during disk read operations.

F ASTO PEN can provide
better performance that

may not be available
from system buffers.

These sectors include sectors associ­
ated with the file entries and FAT
information. But it is unlikely that
these sectors will stay long enough
in the system buffers for future use,
because these sectors will be re­
placed by sectors from subsequent
disk reads. If FASTOPEN is used,

Personal Systems/Issue 3, 1990

it is guaranteed that the file entry
and FAT information will stay in
the cache buffer unless the least re­
cently used information is replaced
by the recent ones because the
buffer is full. Usually with suffi­
cient cache buffers and less frag­
mented files, the information stays ·
until the file is deleted or the path is
changed. FAS TO PEN can therefore
provide better performance that may
not be available from system buffers.

ABOUT THE AUTHOR

Pylee Lennil is a staff programmer
at IBM Entry Systems Division in
Boca Raton, Florida. He is
presently involved in the
development of PC DOS. Pylee
joined IBM in 1983, and received
his B .S. in physics from Kera/a
University in India and an M.S. in
computer engineering from the
University of Lowell, in Lowell,
Massachusetts.

DOS 4.00
Compatibility
Issues
Bruce G. Borkosky
IBM Corporation
Boca Raton, Florida

This article investigates the confu­
sion about the so-called incompat­
ibility of DOS 4.00 with some of
its application programs. The
causes of these alleged incompati­
bilities will be discussed here,
and solutions given when incom­
patibilities do exist.

All versions of software are, to
some extent, incompatible with pre­
vious versions of the same software.
Often, there are better ways of
doing things that are different from
the older ways. For example, some­
times fewer key strokes are required
to perform the same function. This
new way is better than the old, but
it is still "incompatible."

Some of the previous DOS versions
were less compatible with older ap­
plications than DOS 4.00. How­
ever, the incompatibilities were
tolerated because these DOS ver­
sions were announced simulta­
neously with new personal
computers. The changes to DOS
were expected and dealt with be­
cause the operating system took ad­
vantage of the new hardware
features.

PS/2 Hardware
Enhancements
Changes made to DOS 4.00 take ad­
vantage of some new features in
IBM PS/2® systems. These en­
hancements had not been made in
DOS 3.30. DOS 4.00 supports
these new features, which include
large hard file support, expanded

24

memory (EMS), enhanced key­
board, and video graphic array
(VGA) graphics. These enhance­
ments are the cause of most of the
reported incompatibilities.

One of these hardware enhance­
ments was actually released in DOS
3.30. The IBM BIOS has always
had the capability for multi-track
1/0 to the hard file. In DOS 3.30
and 4.00, DOS uses this feature to
improve performance. This may
cause a problem for some users who
have purchased "IBM-compatible"
machines. Some of these machines
do not support multi-track 1/0.

If you have an IBM-compatible ma­
chine, are upgrading DOS from ver­
sion 3.21 or below, and are
experiencing problems, either the
system or hard file manufacturer
should be contacted. The manufac­
turer may have developed a new
BIOS that supports multi-track 1/0.

MODE now supports display
screens of greater than 25 lines.

Personal Systems/Issue 3, 1990

Some applications may have diffi­
culty with these large number of
lines and may not work properly. If
this is the case, simply set the lines
per screen back to 25 before run­
ning the application, and set it back
when the application is complete.

Use of Undocumented
Interfaces
Another reason for incompatibility
is in the application programs them­
selves. Almost all applications are
compatible with DOS 4.00 because
they are coded to the standard DOS
interfaces. Some applications are
not compatible because these stan­
dard interfaces are not used. U ndoc­
umented disk or memory system
areas may be used. These areas are
undocumented because they may
frequently change, as they did for
DOS 4.00.

DOS Version Change
Other applications check for a spe­
cific DOS version number. These
applications may actually be com­
patible with DOS 4.00. However,
they specifically check for a version
level of 3.30. When they do so,
they refuse to run on DOS versions
greater than 3.30. Therefore, the ap­
plication is perceived by the user to
be incompatible with DOS 4.00.

There are two types of applications
that will not load in the DOS 4.00
environment. There are those that
use undocumented areas of DOS,
and those that check for a specific
version. If you have one of these
applications, contact the vendor to
determine if those applications have
been updated for DOS 4.00. Most
application vendors have updated
their code to be compatible with
DOS 4.00.

Backwards Compatibility
Designed Into DOS 4.00
Some applications were written for
previous versions of DOS. There
are features in DOS 4.00 that make
it more compatible with those appli­
cations. Likewise, there are fea­
tures in DOS 4.00 that make the
user interface more compatible with
previous DOS versions. The follow­
ing DOS commands contain fea­
tures that increase compatibility:

FDISK: Some applications cannot
handle logical drives larger than 32
MB. These are usually utility pro­
grams that access system areas of
the disk. Most of these utility appli­
cations have been updated for DOS
4.00. Most of the utilities will work
correctly if the logical drives are de­
fined as less than 32 MB.

SHARE: Some applications do not
run correctly when SHARE is
loaded. Because SHARE must be
loaded with logical drives larger
than 32 MB, keeping the logical
drives below 32 MB will also solve
this problem.

Most applications that have prob­
lems with SHARE are single-user
versions of database programs. The
applications that seem to have a
problem with SHARE do not handle
file accesses in a standard, error-re­
coverable manner. Usually, multi­
user versions of the database
management systems (DBMSs),
which can run on network servers,
can correctly work with SHARE.

DOSSHELL: Many Terminate-and­
Stay-Resident (TSR) programs can­
not handle the graphics mode of the
DOSSHELL. These programs usu­
ally pop up onto the screen on top
of whatever application is running
at the time. The programs may run
correctly, but do not restore the

25

screen properly upon returning to
the application.

An example of this type of program
is a 3270 emulation program, which
allows the personal computer to act
as a terminal to a 370-type main­
frame. When the user presses the
"hot key" to access the emulator,
the program takes control of key­
board and screen accesses, and runs
the emulator program. But when
the user presses the "hot key" to go
back, the display is garbled.

The DOSSHELL uses VGA graph­
ics in PS/2 systems. The problem
encountered when using TSR pro­
grams affects any application that
places the display into graphics
mode. The actual problem lies in
the TSR program and not the appli­
cation running when the "hot key"
is pressed.

If you have a TSR program with
this problem, there are three alterna­
tives. First, obtain an update of the
TSR program from your vendor.
Determine whether the application
is compatible with DOS 4.00, and
which version number is compatible.

Personal Systems/Issue 3, 1990

Second, start the DOSSHELL in
text mode by using the /TEXT
switch on the command line while
starting the DOSSHELL (for exam­
ple, DOSSHELL /TEXT).

Third, the DOSSHELL can still be
used in graphics mode with your
TSR program. Use the COM­
MAND prompt to temporarily exit
from the DOSSHELL to the DOS
command line. This command will
load another copy of COM­
MAND.COM and will place the dis­
play into text mode. Another way
to get to the command prompt is by
pressing the Shift and F9 keys .

From this "shell", you can then "hot
key" to your TSR, and then return
to it after completing your task.
Then type "exit" on the command
line to return to the DOSSHELL.

SWITCHES: Some applications
cannot handle the key codes from
the new keys on the PS/2 enhanced
keyboard, which is now standard on
most PS/2 systems. These new
keys include the Fl 1 and Fl2 keys,
which produce extended key codes.
If the command SWITCHES=/K is
placed in the CONFIG.SYS file,
these new, extended keys will not
be used by the system.

Applications that have a problem
with the new keys are often TSR
programs that intercept all key code
values from the system, such as key­
board translation programs.

XMAEM: Some applications use a
"DOS extender." These extenders
allow the application to use portions
of extended memory; XMAEM im­
plements EMS for 386 systems by
using the same extended memory.
Both DOS extenders and XMAEM
use extended memory to place the
system into protected mode; there-

fore, they both cannot be active at
the same time.

Currently, XMAEM is incompatible
with these DOS extenders, but com­
patibility is planned. To use both,
the CONFIG.SYS file must be
changed and XMAEM must be re­
moved before using the application.
Then reboot the system without run­
ning XMAEM, and the application
can be loaded.

Also, XMAEM is not currently com­
patible with HIMEM.SYS. One of
the main features of HIMEM is to
make the 64 KB area available, be­
ginning at l MB. XMAEM was de­
signed to use this area itself, and it
is not compatible with any other ap­
plication that uses the same memory
location.

BUFFERS, XMA2EMS: Some ap­
plications cannot handle the addi­
tional physical EMS (see note)
pages that XMA2EMS can allocate
(pages P254 and P255). If you
have such an application, do not
place the P254= and/or P255=

p

0.

26

parameters on XMA2EMS. You
should be able to use the FRAME=
parameter without problem.

Likewise, do not use the /XS param­
eter on BUFFERS. The /XS param­
eter on BUFFERS tells DOS to use
pages P254 and P255; instead, use
the /X parameter, which tells DOS
to use the EMS page frame (pages
0-3).

Note: For more details about EMS,
refer to the article entitled "Memory
Management in a DOS Environ­
ment," which begins on page 12.

XMA2EMS I XMAEM: The im­
plementation and use of EMS in
DOS 4.00 has caused some confu­
sion among some users. This confu­
sion has created the impression with
some of those users that DOS was
incompatible with EMS and the
LIM specification. The issues in­
volved will be explored in order to
end the confusion.

First, the IBM device driver
XMA2EMS only works with, and

Personal Systems/Issue 3, 1990

was tested for, IBM (and fully com­
patible) memory cards. This is the
normal and expected operating pro­
cedure for EMS cards, and those de­
vice drivers work only with that
vendor's EMS hardware. Because
IBM did not originally provide the
drivers for its EMS-capable mem­
ory cards, it was decided that the
best vehicle was with the IBM ver­
sion of DOS. All IBM EMS-capa­
ble cards are also compatible with
the LIM 4.0 and 3.2 specifications.

XMAEM is less IBM-hardware spe­
cific, although some users may expe­
rience difficulty. XMAEM runs on
systems with 80386® (or above)
processors; it uses any extended
memory that is physically placed in
the system unit, up to 16 MB. In
conjunction with XMA2EMS, it
converts this extended memory to
EMS memory. It checks the system
model byte (in the system ROM
BIOS) for a model byte. On IBM
systems, this model byte indicates
that the system has a 386 or above
processor. Other systems and accel­
erator cards may have a PC AT-
type model byte for compatibility
with PC AT® hardware.

BUFFERS, FASTOPEN and
VDISK
Not only does DOS 4.00 implement
EMS, but parts of it also use EMS.
The DOS components that use EMS
are BUFFERS, FASTOPEN, and
VDISK. These components, as orig­
inally designed, make use of the
LIM 4.0 features that were built
into IBM EMS cards and the IBM
device drivers.

However, this caused a problem for
non-IBM EMS cards. Even though
these non-IBM cards had been up­
dated via software to the LIM 4.0
specification, the hardware was de­
signed for the LIM 3.2 specifica-

tion, and some features could not be
implemented via software alone.
These features relate directly to the
page frame or number of physical
pages on the card.

The LIM 3.2 specification allows
for four physical pages of 16 KB
each, which makes a total of a 64
KB window into EMS memory.
This is called the EMS page frame.
The LIM 4.0 specification allows
physical pages to be placed any­
where in the 1 MB address space,
thus allowing a theoretical maxi­
mum of 64 physical pages.

BUFFERS, FASTOPEN, and
VDISK use these LIM 4.0 pages to
access EMS memory. By going out­
side the LIM 3.2 page frame, these
components can provide faster and
more reliable performance than by
sharing the page frame with other
applications.

Because the DOS components used
the LIM 4.0 features that these
other cards could not provide, it
was considered an incompatibility.
These components were not de­
signed to exclude these other cards,
but rather to take unique advantage
of the IBM EMS card capabilities.
IBM's cards can provide more than
the LIM 3.2 EMS page frame; these
additional pages are specified in the
LIM 4.0 specification.

Enhanced EMS Usage
As a result of user requests, these
components can now share the LIM
3.2 EMS page frame with other ap­
plications. This will allow these

27

components to operate with these
non-IBM EMS cards. It is impor­
tant to remember that operating in
this mode has some limitations, and
is somewhat slower than the origi­
nal mode.

For example, if /X or /XD is speci­
fied in the BUFFERS command,
BUFFERS will use the EMS page
frame instead of using page 255.

FAS TO PEN and VDISK can also
use the EMS page frame. To imple­
ment this option, do the following:
First, place an /X parameter on
FASTOPEN and/or VDISK. Then,
specify on the BUFFERS command
either /X, /XD, or no parameter. In
other words, do not specify an /XS
parameter on BUFFERS.

BUFFERS, FASTOPEN, and
VDISK can still use the additional
EMS pages. /XS must be specified
on the BUFFERS command line,
and /X on the command line for
FAS TO PEN and for VDISK. Ask
your dealer for the latest DOS 4.00
Corrective Service Diskette (CSD),
dated May 1989 or later.

Installing Over MS-DOS
and OS/2
The original version of DOS 4.00
checked for the character string
"IBM " in the disk boot record.
This caused problems when
customers attempted to use DOS
4.00 after previous versions of MS­
DOS or OS/2 were installed. This
requirement has been removed ~n
later versions of DOS 4.00. Check

Personal Systems/Issue 3, 1990

with your vendor to obtain the latest
DOS 4.00 CSD.

DOS 4.00 cannot be used with the
OS/2 Version 1.0 compatibility box.
This compatibility box was de­
signed using DOS 3.30 as a base.
If DOS 4.00 compatibility is
needed, it is recommended that you
upgrade to OS/2 Version 1.2.

Conclusion
Today, almost all applications are
compatible with DOS 4.00. If you
experience problems, try one of the
solutions mentioned in this article.
You may also want to consider con­
tacting your vendor to determine if
your software was written for a spe­
cific DOS version. If you have not
tried DOS 4.00 because you have
heard there are problems, you may
want to give it a try - there are
many new features available that
are worth the upgrade.

ABOUT THE AUTHOR

Bruce G. Borkosky is a senior
associate programmer at IBM's
Entry Systems Division in Boca
Raton, Florida. He received a B.A.
in music from Ohio Wesleyan
University, an M.S. in computer
science from the University of
Dayton, and is a 1991 Ph.D.
candidate from Miami University.
After joining IBM in 1984, Bruce' s
responsibilities have included
developing PC DOS and working as
an advisor for new memory card
development.

'Out of
Environment
Space' Errors

Thomas H. Sutherland
IBM Corporation
Dallas, Texas

In this article you'll learn how to
use the MEM.EXE program to
monitor the DOS master environ­
ment. You'll also be shown how
"Out of Environment Space" er­
rors can be eliminated by using a
work-around technique to ensure
that enough environment space
has been allotted.

Good grief! What is this error, and
how can we fix it?

First, let's define an environment.
Beginning with DOS Version 2, the
concept of an environment was in­
troduced. An environment is a
memory area that contains variable­
length, zero-terminated ASCII
strings. These strings provide infor-

I AUTOEXEC . BAT :

@ECHO OFF

28

mation to COMMAND.COM and
other programs, such as the current
search path, PROMPT command
format, and even the location of
COMMAND.COM itself.

COMMAND.COM creates the
system's master environment from
the contents of the CONFIG.SYS
and the AUTOEXEC.BAT files, via
the PATH, PROMPT, and SET com­
mands. Beginning with DOS Ver­
sion 3.2, the initial size of this
environment can be adjusted via the
SHELL command in the

SET COMSPEC-C : \D0S40\COMMAND.COM
PATH-C:\TDIR;C:\D0S40;D : \PCTOOLS;D:\ WORKS ; D:\E3 ; D: \
PROMPT LP$G

CONFIG . SYS :

BREAK=ON
BUFFERS-20 IX
FILES=8
LASTDRIVE=G
SHELL=C : \D0S40\COMMAND.COM IP [NO PARAMETER]
DEVICE=C : \D0S40\XMAEM . SYS
DEVICE=C : \D0S40\XMA2EMS.SYS FRAME=D000 P254=COOO P255=C400
DEVICE=C:\D0S40\ANSI.SYS
DEVICE=C:\D0S40\VDISK.SYS 1440 IX
DEVICE=C:\MOUSE.SYS
INSTALL=C:\D0S40\FASTOPEN.EXE D:=(50,25)

Figure I. My Example Files

Personal Systems/Issue 3, 1990

CONFIG.SYS file by using the /E
parameter. For example:

SHELL=C : \COMMAND.COM IPIE:2048

sets the size of the environment to 2
KB . The default size (no parame­
ter) is 160 bytes.

The SET command entered with no
parameters displays the current envi­
ronment. Also, the SET command
can be used to modify the current
environment.

Now that we know how to set the
size of this environment, what hap­
pens if the provided strings are
larger than the allotted environment
space? We'll get the "Out of Envi­
ronment Space" message.

There are a variety of ways to work
with this environment space and use
it to your advantage. However, the
scope of this article is limited to
showing how you can use the
MEM.EXE program to watch what
happens to your environment space
as you request changes. We'll also
show you how to change this space
via batch files to avoid the "Out of
Environment Space" message.

Figure 1 contains listings intended
to show you how I set up the initial
environment. I used a PS/2 Model
80 running DOS 4.01 with correc-

MEM /PROGRAM <ENTER>

Address Name

000000
000400
000500

000700 IBMB IO

002C40 I BMDOS

00B990

015C20
015CBO
015CFO
0184CO
019070
01B3CO
01B470
01B4CO
02E430

IBMBIO
XMAEM
XMA2EMS
ANSI
VDISK
MOUSE

MEM
IBM DOS
FASTOPEN
SHARE
COMMAND
COMMAND
COMMAND
MEM
IBM DOS

Size

000400
000100
000200

002540

008050

OOA280
000140
004B70
0011B0
000890
002700
ooooco
000100
000200
000010
000270
OOOCDO
000080
000030
0027CO
0018AO
001640
OOOOAO
000040
012F60
0717CO

655360 bytes total memory
654336 bytes available

29

Type

Interrupt Vector
ROM Communication Area
DOS Communication Area

System Program

System Program

System Data
DEVICE­
DEVICE­
DEVICE­
DEVICE­
DEVICE­
FILES­
FCBS-

BUFFERS­
LASTDRIVE­
STACKS-

Environment
- Free -
Program
Program
Program
Environment+-- Master Environment Of
Data 160 Bytes (Hex AO)
Program
- Free -

542512 largest executable program size

8519680 bytes total EMS memory
7028736 bytes free EMS memory

8650752 bytes total extended memory
0 bytes available extended memory

Figure 2. MEM /Program Printout

SET <enter >

COMSPEC- C:\DOS40\COMMAND.COM
PATH-C:\TDIR;C:\DOS40;0:\PCTOOLS;D:\WORKS;D:\E3 ; D: \
PROMPT-lP$G

Figure 3. Master Environment Contents

Personal Systems/Issue 3, 1990

tive service diskette (CSD)
UR25066 installed. The results
we'll get should be the same regard­
less of the PC model used. What
we'll be observing is a function of
DOS itself.

Figure 2 shows the actual environ­
ment count while running the
MEM.EXE program in DOS 4.01.
The command environment is the
master environment. The environ­
ment that you see with the MEM
entry is the one that COM­
MAND.COM passes to a program
before it is loaded.

Note: In Figures 5, 7, 8, and 11,
lines l through 17 are the same as
in Figure 2.

The SET, PATH, PROMPT, and
SHELL commands set up the mas­
ter environment. Because I used
the 160-byte default, the remaining
environment space will be 160
minus the number of bytes con­
sumed by the four commands. We
can confirm this space usage by en­
tering the SET command without
any parameters (Figure 3). Simply
count the number of characters
shown. Your remaining environ­
ment space will be 64 bytes (160 -
96 = 64). Four bytes are for zero
termination at the end of each line
plus end of file. Therefore, if you
have any programs that would add
to this environment, the set string
should not be any longer than 64
bytes (63 + zero terminator).

However, the following test will
show us that we can, in fact, use a
string longer than 64 bytes under
certain conditions. In Figure 4,
SETE.BAT is our test file to prove
this theory. The total number of
bytes requested is 760 (750 + 10,
zero terminators). For those who
are counting, the remaining eight
bytes are the result of the 16-byte

30

SETE . BAT

SET LINEl= .. .
SET LINE2-
SET LINE3=
SET LINE4-
SET LINES= .. .
SET LINE6-
SET LINE?=
SET LINES= .. .
SET LINE9-
SET LINEA=

Figure 4. SETE.BAT File Contents

I MEM / PROGRAM <E NTE R>

Address Name Size Type

(Lines 1 through 17 a re the same as in Figure 2)

015C20 I8MDOS ooooco - Free -
015CFO FASTOPEN 0027CO Program
0184CO SHARE 0018AO Program
019070 COMMAND 001640 Program
0183CO COMMAND 000360 Environment+- Master Environment Is
018730 COMMAND 000040
018780 MEM 00037-0
018800 MEM 012F60
02EA70 I8MDOS 071180

655360 bytes total memory
654336 bytes available

Data
Environment
Program
- Free -

540912 largest executable program size

8519680 bytes total EMS memory
7028736 bytes free EMS memory

8650752 bytes total extended memory
0 bytes available extended memory

Now 864 Bytes (Hex 360)

Figure 5. Master Environment Size After Running SETE.BA T

SET <enter>

COMSPEC-C:\DOS40\COMMAND.COM
PATH-C:\TDIR;C:\DOS40;0:\PCTOOLS;D:\WORKS;D:\E3;0:\
PROMPT- LP$G

paragraph boundary rule. The
MEM command shows the ex­
panded space in Figure 5.

Figure 6 shows the result after re-en­
tering the SET command to confirm
the newly expanded environment.
However, when I invoke a Termi­
nate-and-Stay-Resident (TSR) pro­
gram, we'll find out that the
environment will get "locked in" its
memory location. Figure 2 shows
the result after rebooting and return­
ing to my 160-byte environment.
Figure 7 shows the results after sim­
ply loading the PRINT.COM pro­
gram, which is a TSR.

Now, when I run SETE.BA T as
shown in Figure 4, we ' ll get the
"Out of Environment Space" mes­
sage from DOS. Figure 8 will show

LINEl-
LINE2= .. .
LINE3-
LI NE4-
LI NE5- .. .
LI NE6- .. .
LINE?- .. .
LINES- .. ·,·
LI NE9- .. .
LINEA-

Figure 6. Master Environment Contents After Running SETE.BAT

Personal Systems/Issue 3, 1990

31

MEM /PROGRAM <ENTER>

Address Name Size Type

(Lines 1 through 17 a re the same as in Figure 2.)

015C20 MEM 000080 Environment
015C80 I8MDOS 000030 - Free -
015CFO FASTDPEN 0027CO Program
0184CO SHARE 0018AO Program
019D70 COMMAND 001640 Program
0183CO COMMAND OOOOAO Environment - 160 Bytes - No Change
018470 IBM DOS 000040
0184CO PRINT 001680
01C880 COMMAND 000040
01C8DO MEM 012F60
02F840 IBM DOS 070080 -

655360 bytes total memory
654336 bytes available

- Free -
Program
Data
Program
Free -

536608 largest executable program size

8519680 bytes total EMS memory
7028736 bytes free EMS memory

8650752 bytes total extended memory
0 bytes available extended memory

Figure 7. Results After Loading PRINT.COM

MEM /PROGRAM <ENTER>

Address Name Size Type

(Lines 1 th rough 17 are the same as in

015C20 IBM DOS ooooco - Free -
015CFO FASTDPEN 0027CO Program
0184CO SHARE 0018AO Program
019D70 COMMAND 001640 Program

Free Space
TSR

Figure 2)

0183CO COMMAND OOOOFO Environment +-- Size Expanded to 240
0184CO PRINT 001680
01C880 COMMAND 000040
OlCBDO MEM 000110
OlCCFO MEM 012F60
02FC60 IBM DOS 06FF90

655360 bytes total memory
654336 bytes available

Program
Data
Environment
Program
- Free -

536320 largest executable program size

8519680 bytes total EMS memory
7028736 bytes free EMS memory

8650752 bytes total extended memory
O bytes available extended memory

Figure 8. Results After Running SETE.BAT

Bytes

Personal Systems/Issue 3, 1990

us what happened. The master envi­
ronment expanded by taking in the
"IBMDOS - Free -" area of mem­
ory, which was created by DOS as
free space when I loaded the TSR.
However, because the TSR is now
preventing further expansion, you
will continue to get the messages
and cannot increase or add to your
environment space. Again, running
the SET command (Figure 9) will
confirm our finding: 6 zero termina­
tions+ 28 + 51 + 13 + 75+ 67 =
240 bytes. So, how do we increase
the environment space for our pro­
grams? There are two techniques
we can employ:

1. Set the /E: parameter higher in
the SHELL= statement of your
CONFIG.SYS.

Prior to DOS Version 3.1, the de­
fault environment space was 160
bytes and could not be changed.
Therefore, the only solution was to
keep your path statement to a mini­
mum. With DOS Version 3.1 (see
note below) and higher, we can set
the size of the master environment.
Simply increase the decimal number
high enough to accommodate your
requirements. The maximum is 32
K. Remember, this use of memory
deducts from available conventional
memory. Therefore, don't set this
any higher than needed.

Note: Under DOS 3.1, the number
you specified was not the actual
size, but a multiple of the number,
times 16 (16-byte paragraphs). For
example, /E:20 really means 320
bytes (20 x 16). With the release of
DOS 3.2 and higher, the number
you chose was the actual decimal
size of the environment.

2. Run COMMAND /E:XXX

The second method is to create a
temporary environment (secondary

32

SET <e nter>

COMSPEC=C:\DOS40\COMMAND.COM
PATH- C:\TDIR;C:\DOS40;D:\PCTOOLS;D:\WORKS;D:\E3;D:\
PROMPT-LP$G
LINEl- .. .
LINE2=

Figure 9. Master Environment Contents With a TSR Loaded

command processor) shell by enter­
ing the following statement at the
command line or from within a
batch file. Remember, you are
using up conventional memory, and
therefore you should keep the size
of this space to a minimum. Also,
you release this space if you have
no further need for it by entering
"exit" from the command line.

Example:

C: COMMAND /E:XXXX

Be sure to use the appropriate deci­
mal number based on your DOS ver­
sion as mentioned previously.

Here is one way you can make use
of the shell environment. I have

SETEE . BAT

made a batch file called COM­
SET.BA T, which contains one line:

C:\COMMAND /E:2048 SETEE.BAT

Next, I load the Print TSR (Figure
7) to lock in the environment space.
We already know that we' ll get the
"Out of Environment Space" mes­
sage if we run the SETEE.BA T file
as shown in Figure 10. However, if
I run the COMSET.BAT file first,
we ' ll temporarily increase the envi­
ronment space to run the
SETEE.BAT file. This batch file
will create a file showing the MEM
/PROGRAM output and the SET
program output. Note, these files
are created before the EXIT state­
ment is executed to prove that you
did have a larger environment dur-

ing the execution of the two output
requests. Figure 11 shows the
MEM printout, and Figure 12 is the
SET output. Once you have run
this program, due to the exit state­
ment your environment will revert
back to the original setting and
should look like Figure 3.

Summary
With some basic understanding of
how DOS creates and employs the
environment space, and knowing
how to use the MEM.EXE program,
you should be able to use and han­
dle programs that require large envi­
ronments. By increasing your
environment and then releasing it,
you can minimize the impact on
memory usage that is so vital to

SET lINEl- .. .
SET 2INE2-
SET 3INE3- .. .
SET 4INE4- .. .
SET 5INE5-
SET 6INE6-
SET 7INE7-
SET BINES-
SET 9INE9-
SET AINEA-
SET BI NEB-
SET CI NEC= .. .
SET DINED-
SET EI NEE-
SET FINEF-
SET PATH=D : \TELIX;%PATH%;
MEM /PROGRAM >COMSET.TST
SET >SET.TST
EXIT

Figure 10. SETEE.BA T Contents

Personal Systems/Issue 3, 1990

33

MEM /PROGRAM <ENTER>

Address Name Size Type

(Lines 1 through 17 a re the same as in Figure 2)

015C20 COMMAND 000080 Data
015CBO IBM DOS 000030 - Free -
015CFO FASTOPEN 0027CO Program
0184CO SHARE 0018AO Program
019070 COMMAND 001640 Program
0183CO COMMAND OOOOAO Environment - Original Environment
018470 IBMDOS 000040 - Free -
0184CO PRINT 001680 Program TSR
01CB80 COMMAND 000040 Data
OlCBDO COMMAND 001640 Program
01E220 COMMAND 000800 Environment +-- New Environment - 2 KB
01EA30 COMMAND 000040
01EA80 MEM 0004FO
01EF80 MEM 012F60
031EFO IBMDOS 060000

655360 bytes total memory
654336 bytes available

Data
Environment
Program
-Free -

527472 largest executable program size

8519640 bytes total EMS memory
7028736 bytes free EMS memory

8650752 bytes total extended memory
0 bytes available extended memory

in Size as Requested

Figure 11. Results Showing Size of New Temporary Environment

SET <enter>

COMSPEC=C:\DOS40\COMMAND.COM
PROMPT=LP$G

DOS users. The actual byte usage
count you have seen varies between
systems. The concept of taking the
guesswork out of setting up the envi­
ronment and avoiding the "Out of
Environment Space" message is
what we're trying to achieve.

ABOUT THE AUTHOR

Thomas Sutherland is an associate
market support representative in the
Personal Systems Technical Support
Center in Dallas, Texas. He
received his B.A. in business from
Texas Wesleyan College in Fort
Worth, Texas. He joined IBM in
1966 as afield customer engineer,
and presently supports PCs for the
DOS and OS/2 operating systems.

lINEl= .. .
2 I NE2= .. ·
3INE3= .. · · · · ·
4INE4= .. .
5INE5= .. .
6 I NE6= .. .
7INE7= .. .
SINES- .. .
9INE9- .. ·
AINEA- .. .
BI NEB- ... · · · · · · · · · · · · · · · · · ·
CI NEC= .. .
DINED= ... ··················
EI NEE= .. .
FINEF- .. .
PATH-D:\TELIX;C:\TDIR;C:\DOS40;D:\PCTOOLS;D:\WORKS;D:\E3;D:\;

Figure 12. New Temporary Environment Contents

Personal Systems/Issue 3, 1990

A New LAN
Requester for
DOS Systems
Roy A. Feigel, Steven French, and
Albert Chang
IBM Corporation
Austin, Texas

This article presents an overview
of the DOS LAN Requester (DLR)
program. DLR, which is a part of
the OS/2 LAN Server 1.2 package
and replaces PC LAN Program 1.3
(PCLP), is for workstations used
in an OS/2 LAN Server 1.2 do­
main. DLR provides many func­
tional enhancements over PCLP
including flexible installation op­
tions, reduced low memory re­
quirement and improved
performance.

34

Packaging
The DOS LAN Requester (DLR),
designed for use in an OS/2 LAN
Server 1.2 environment, is a replace­
ment product for users of the PC
LAN Program 1.3 (PCLP). DLR
and the required NETBIOS support
provided by LAN Support Program
1.1 (LSP) are included in the OS/2
LAN Server 1.2 package. Purchase
of the server package permits users
to copy DLR and LSP for use on up
to 128 workstations. The server
package contains separate diskettes
for the DLR and LSP.

Installation
Installation and setup of various
workstation configurations of DLR
are straightforward. Among the
available configurations are systems
that start from a hard disk or disk­
ette, and systems set up for Remote

I\ PLACE YOUR ORDER HIBt71

• Reduced MemoryRe9uiremenTs
• Improved Performance and

Bufferin9

D
L_J\

7
• 1.2 Improved Server Fhforrnance

ii} • Automatic Pdribut;on of DLR
1

- 1 frorn LAN Server 1.2
• Right to Copy 128 times

0 In.stallation attd Cohn9uration
Flexibility

elrnprove.d API 2>upport
/4"~'/

J~), ~ ~-

I l'~:J
l

~ "-.__~-) . ~.\~~-

Ii) ~ A~~~· "
F io~ ~
~~___,~~"\ CTI I

Personal Systems/Issue 3, 1990

Initial Program Load (these systems
may or may not contain media).

The OS/2 LAN Server installation
process, which is performed after in­
stalling Extended Edition 1.2, also
has an option to install DOS, LSP,
and DLR onto the server, which is
necessary to support all but the first
of the following environments:

Hard Disk Based Systems: DLR
and LSP may be installed directly
onto a hard disk system using the re­
spective installation utilities. Both
processes require the user to answer
a few simple questions. Installation
on a system already configured with
DOS 3.30 or 4.00 can take as little
as 10 to 15 minutes. The DLR in­
stallation utility has been improved
from PCLP by allowing the user to
install the program in any directory
on any partition (C: through F:).
The program consists of approxi­
mately 60 files and is installed into
a single directory. The default desti­
nation is C:\DOSLAN.

Automatic Download of DOS
LAN Requester: A second option
for hard disk systems requires that
DLR and LSP be installed on a
OS/2 LAN Server 1.2 domain
controller.

When a PCLP 1.3 user attempts to
log on to an OS/2 LAN Server 1.2
domain, the DLRINST service run­
ning on the OS/2 LAN Server 1.2
domain controller intercepts the
logon request. The logon will ap­
pear successful, but the user will no­
tice that the usual entries on the
PCLP applications menu have been
replaced with an option to initiate
the DLR download process. When
selected, the DLR and LSP pro­
grams will be copied from the
server to the hard disk of the work­
station. The DLRINST service ex­
amines the current configuration of

PCLP to determine the default DLR
configuration, and the
AUTOEXEC.BAT and
CONFIG.SYS files are updated to
allow DLR and LSP to start.

PCLP programs are removed from
the disk to ensure enough disk
space is available to complete the
process. The process takes approxi­
mately three minutes. When com­
plete, the workstation is
automatically rebooted, DLR is
started, and the user is presented
with the DLR logon panel, at which
point the user can log on to the
OS/2 LAN Server 1.2 domain.

Diskette-Based Systems/Remote
Initial Program Load: For sys­
tems that start from diskette or that
are configured for Remote Initial
Program Load (RIPL), the system
administrator can create IPL disk­
ettes or RIPL images from standard
definitions. These definitions in­
clude the portions of DOS, LSP,
and DLR needed to start the system
and the DLR program. These disk­
ette images define proper connec­
tions to the domain controller for
subsequent access to DOS and DLR
program files. Standard image defi­
nitions can be edited or new ones
can be created to meet user needs.

Memory Requirements
The available memory within the
DOS addressable range below 640
KB is critical to users of the large
DOS applications available today.
A major design point of DLR is to
provide functional enhancements to
PCLP while using less resident
memory below 640 KB . This has
been accomplished by allowing con­
figuration of optional functions and
by using extended and expanded
memory technologies .

DLR allows for the optional loading

35

Code
Resident Network Support

Basic Redirector

(6 KB)

(34 KB)

I
0KB

6KB

6KB

- Basic File/Print Redirection
- Named Pipe Redirection
- Performance Enhancements
- Memory Conservation
- Auto Session Reconnect

40 KB

API Level 1 (Optional - 4 KB)

- NetServerEnum Support
- Mailslot Support

44KB

API Level 2 (Optional - 6 KB)

- Full API Support (Including Admin.)

Password Encryption Support (Optional - 2 KB)

50 KB

I 52KB

I Receiver Support (Optional - 10 KB) I 52KB

62KB

I Message Pop-up Support (Optional - 18 KB) I 62KB

80KB

Data
Static Data and Default Buffering (30 KB) I

80KB

110KB

Additional Buffering (Optional - 35 KB) I
110KB

145 KB

Figure 1. DOS LAN Requester RAM Utilization - Maximum Configuration

of several functions at initialization
time so users can load only those
services desired. Figure l shows
the Redirector or RDR configura­
tion, which includes the basic
file/print redirection functions and
several functional enhancements
over PCLP, including remote named
pipe support, auto session recon­
nect, and performance enhance­
ments.

Optional services for the RDR con-

Personal Systems/Issue 3, 1990

figuration include local Application
Program Interface (API) support
and password encryption, which pro­
vides the same password encryption
algorithm used by OS/2 Extended
Edition 1.2 requesters.

The local API can be loaded in two
sections: mailslot and server enu­
meration, and full API support. The
former is a prerequisite for the lat­
ter. It should be noted that the pre­
ceding support is needed only for

36

Code

Resident Network Support

Basic Redirector

(6 KB)

(34 KB)

I 0KB

6 KB
6 KB

- Basic File/Print Redirection
- Named Pipe Redirection
- Performance Enhancements
- Memory Conservation
- Auto Session Reconnect

Data

40KB
40 KB

Static Data and Default Buffering (30 KB) I 70 KB

Figure 2. DOS LAN Requester RAM Utilization - Default

local APL Remote API call support
is provided in the base redirector
function and does not require local
API support. For more details, refer
to the API section.

The Receiver or RCV configuration
includes all the functions and op­
tions of the Redirector and contains
message reception capabilities.
These messages can be logged to a
user-specified file. Also, the mes­
sage pop-up service can be loaded,
which causes a message pop-up to
be displayed once messages are re­
ceived. The logging and message
pop-up can be paused and continued
independently.

DLR does not require the
IFSFUNC.EXE, as is the case with
PCLP 1.3, which saves approxi­
mately 15 KB in a DOS 4.00
environment.

DLR has two mechanisms that
allow the code segment of the
redirector (REDIR33.EXE or
REDIR40.EXE) to be loaded above
the 640 KB mark.

The first method is to use the
HIMEM.SYS driver that is included
with DLR. This function is acti­
vated by placing a
DEVICE=HIMEM.SYS statement
in CONFIG.SYS. When DLR is
started, the redirector code segment
will be placed in the first segment
above the 1 MB address. Use of
HIMEM.SYS requires a 80286® or
above processor, and at least 64 KB
of extended memory.

The second way to free up memory
in the 640 KB range is to use the
DOS 4.00 EMS support. For 8088
and 80286 processors, an Expanded
Memory Adapter (XMA) and the
use of XMA2EMS.SYS is required.

RDR RAFEIGEL LS12DOM
/SRV:8 /ASG:29 /NBC:4
/PBC:4 /PBS:128 /PFS:32
/WRK: 1111211012

/NBS:lK /BBC:l /BBS:4K
/PFT : 900 /PWT:250 /KUC :600 /KST :600

Figure 3. Default DOSLAN.INI

Personal Systems/Issue 3, 1990

The extended memory of 80386 pro­
cessors can be used as expanded
memory by including
XMAEM.SYS along with
XMA2EMS.SYS.

Figure 1 represents the maximum
configuration. Figures 2 and 3
show the the default DLR memory
requirements and the default
DOSLAN.INI file. Figure 4 shows
a minimum DLR configuration
using HIMEM.SYS and reduced net­
work buffers. Note that the op­
tional local API support, if
specified, is also loaded into the
HIMEM area. Figures 5 and 6
show the CONFIG.SYS and the
DLR parameter values (displayed
from the NET START command)
used to achieve this configuration in
a DOS 3.30 environment. Total
DOS available memory below 640
KB is approximately 520 KB in this
configuration.

Performance Improvements

Concepts: The new DOS LAN Re­
quester delivers better performance
than its predecessor, the PC LAN
Program (PCLP), through improved
internal buffering, lower memory
usage, an improved network com­
mand dialect ("SMB protocol"),
more configuration flexibility, and a
faster server platform.

Buffering: The DOS LAN Re­
quester has three types of user-con­
figurable buffers: network buffers,
big buffers, and pipe buffers. There
is also a non-configurable facility to
do transfers directly to memory for
large file reads. Users are permitted
to set the size and number of each
of the three buffer types. Because
default values are not optimal for
all customer environments, network
administrators may change the de­
fault values to improve the perfor­
mance of commonly used

applications. Because each buffer
talces away from memory in the
lower 640 KB available to an appli­
cation, delicate balancing between
application program and DOS LAN
Requester memory needs may be
required.

Network buffers are used for smaJI
reads and writes. Because many
database applications read and write
small records, the number of net­
work buffers can affect performance
dramatically in database-intensive
environments. The size of typical
database records may vary, so
changing the network buffer size ac­
cordingly can also improve
performance.

If a read or write is too large to use
a network buffer, DLR will attempt
to use a larger "big" buffer instead.
Some network operations, such as
printing to a network server printer,
or writing a small word processing
document to a redirected drive, can
use big buffers. In some environ­
ments big buffers can be disabled
with little performance impact.

For the largest reads and writes,
"raw" 1/0 can be performed, which
allows data to be read from or writ­
ten directly into the applications
memory. As long as the server has
a large (usually 64 KB) buffer avail­
able at the time, raw 1/0 can be per­
formed very quickly. Raw 1/0 is
especially beneficial when loading a
large program or data file. Al­
though this feature is not configur­
able, it can be disabled from either
the server or requester.

The third, user-configurable set of
buffers is the pipe buffers. These
allow the DOS requester to cache
read and write requests when access­
ing remote-named pipes. As with
the two other buffer types, the size
and number are configurable.

37

Code
~-H_IM_E_M_._s_Y_s_o_e_v_ic_e_D_r_iv_e_r ____ (_2_K_B~) I I 8 KB

8 KB
8 KB

~-R_e_si_d_en_t_N_e_t_w_o_rk_s_u_pp_o_r_t _____ (6_KB_)~I I
8 KB
8 KB Data

~-S-ta_t1_· c_o_a_t_a_a_nd_M_i_n_im_a_l_B_u_f_fe_r_in_g __ c 1_6_K_B_)_, I
24 KB

C~e 1MB

Basic Redirector (34KB)

- Basic File/Print Redirection
- Named Pipe Redirection
- Performance Enhancements
- Memory Conservation
- Auto Session Reconnect

+34 KB
API Level I (4KB)

- NetServerEnum Support
- Mailslot Support

+ 38 KB
API Level 2 (6KB)

- Full API Support
+44KB

Figure 4. DOS LAN Requester RAM Utilization - Minimum Configuration

Because DLR does not require pipe
buffers for proper functioning,
named pipes can be disabled, espe­
cially in environments where named
pipe applications are used
infrequent] y.

Server Performance: DLR is
custom-designed to talce advantage

files - 8
fcbs - 4,0
BREAK=0N
LASTORIVE=F

of a number of performance im­
provements in LAN Server 1.2.
Therefore, it performs best when ac­
cessing LAN Server 1.2 resources.
Also, DLR improvements provide
better performance than PCLP re­
questers when accessing older serv­
ers (LAN Server 1.0 and PCLP).
Among the advantages of the new

SHELL=C:\D0S33\C0MMAND.C0M /E:2000 /P
BUFFERS=20
device-C:\D0SLAN\himem.sys
DEVICE-C:\D0SLAN\LSP\DXMA0M0D.SYS 001
DEVICE- C:\D0SLAN\LSP\DXMC0M0D.SYS
DEVICE=C:\D0SLAN\LSP\DXMTOM0D.SYS S- 4 C- 8 ST- 1 0=Y N-6

Figure 5. CONFIG.SYS for DLR Minimum Memory Configuration

Personal Systems/Issue 3, 1990

38

IBM DOS Local Area Network Requester
(C) Copyright IBM Corporation 1984, 1989
Level : WR 4000

Configuration: REDIRECTOR
Computer Name: RAFEIGEL
Default Domain: LS12DOM

/SRV:
/NBC:
/BBC:
/PBC:
/PFS:
/PWT:
/KST:
/WRK:

2
3
0
0
0

250
600

1111211012

/ASG:
/NBS:
/BBS:
/PBS:
/PFT:
/KUC:
/HIM

5
128

0
0
0

600

Figure 6. DLR Parameter for Minimum Memory Configuration as Displayed from
NET ST ART Command

1.2 release of the server are access
control improvements, the new
High Performance File System and
cache, and a faster network file
manager.

Server Message Blocks: One of
the principal differences between
PC LAN Program and the DOS
LAN Requester is the Server Mes­
sage Block (SMB) dialects that each
supports. Commands are passed be­
tween the server and requester
through SMBs, which can be
thought of as the network equiva­
lent of many of the functions avail­
able in the DOS APL For example,
there are SMBs for reading, lock­
ing, and writing to files, just as
there are similar API calls in DOS
and OS/2. Because these SMBs are
shorthand commands, they simplify
the communication of common net­
work operations. SMB headers and
their data are placed in NETBIOS
frames for transfer across the net­
work. While changes to the SMB
protocol are invisible to application
programs, they can significantly im­
pact performance.

The newer SMB dialect that DOS
LAN Requester uses allows it to
combine common operations such

as opening and reading, together
into one SMB, reducing the number
of required NETBIOS frames.
Many network operations, which in
PCLP were issued in separate
NETBIOS frames, can now be
chained together and placed in a sin­
gle NETBIOS frame. Because
reads are frequently done immedi­
ately after opening a file, and writes
are frequently done after Jocking a
range of bytes, these combined
SMBs are very useful.

A facility exists that allows request­
ers and servers to negotiate the
level of SMB dialect to be used.
This facility allows for interoperabil­
ity among current and future LAN
products. When DOS LAN Re­
quester machines use resources on
PCLP servers, they use the basic
"core" SMB protocol. Although
more restricted, they support most
common operations. The same core
protocol is used when PCLP request­
ers access OS/2 LAN Server 1.2.

Configuration Flexibility: With
more than 30 separate configurable
parameters, the DOS LAN Re­
quester allows users to customize a
machine for individual needs.
While the default parameter values

Personal Systems/Issue 3, 1990

are set for typical environments,
users can change a range of options
such as the buffer sizes and counts,
and the network behavior on read­
ing, locking, and writing.

Miscellaneous:
PC LAN Program used a function
in DOS 4.00, IFSFUNC.EXE,
which caused execution of an extra
layer of code when accessing the
redirector. By eliminating that inter­
mediate step, performance has im­
proved in DLR.

Connectivity
DLR users are required to log on to
a OS/2 LAN Server 1.2 domain be­
fore access to network resources are
allowed from either the command
line or menu interface. Once
logged on, connections can be made
to resources on the following server
products:

• PC LAN Program 1.3

• OS/2 LAN Server 1.0

• OS/2 LAN Server 1.2

Application Program
Interface

DOS LAN Requester (DLR)
Application Programming
Interface Support: The Applica­
tion Programming Interface (API) is
designed so users can easily per­
form functions in their application
programs. It shields users from the
underlying implementation details.
For example, an application pro­
gram could enumerate the shared
network resources on a server and
link those that are needed automati­
ca11y using the LAN APL

Most functions in the OS/2 LAN
Server 1.2 are supported on DOS
LAN Requester 1.2. There are
more than 100 function calls for
DOS LAN Requester application de-

39

Category Purpose

Access Permission View or modify user or group access permission on a resource.

Auditing View or clear the audit file, which contains an audit trail of op-
erations that occur on a server.

Configuration Obtain network configuration information of the system from
the IBMLAN.INI file.

Connection List all connections made to a server by a requester client, or all
connections made to a server's shared resource.

Domain Provide domain-wide information.

File Provide functions to monitor which file, device, and pipe re-
sources are open on a server, and to close one of these re-
sources, if necessary.

Group Control groups in the User Accounts Subsystem (UAS).

Handle Get and set information on a per-handle basis.

Mailslot Provide one-way interprocess communication.

Message Send, read, and log messages.

Named Pipe Supplies interprocess communications between server and re-
quester

Remote Utility Enable applications to copy and move remote files, and access
the time-of-day on a remote server.

Requester Control the operation of requesters.

Serial Device Control shared serial devices and their associated queues.

Server Enable remote administration tasks to be performed on a local
or remote server, and to get and set server information

Service Start and control network service programs.

Session Control network sessions established between requesters and
servers.

Share Control shared resources on a server.

Statistics Obtain and clear the operating statisitics for requesters and serv-
ers.

Use Use or control the uses between shared resources on a server
and a requester.

Figure 7. Application Programming Interface Categories

velopers to write network-aware ap­
plications, client/server applications,
distributed processing applications,
new network services, and so on.

These API functions allow users to
perform network functions, such as

remote interprocess communication,
messaging, access control, resource
sharing and use, statistics, file trans­
fer, and so forth. The API catego­
ries supported on DOS LAN
Requester 1.2 are shown in Figure
7. The most common types of oper-

Personal Systems/Issue 3, 1990

ation the users can perform are add,
delete, enumerate, get, and set.

Differences From OS/2 LAN
Server/Requester API Support:
The API support on DOS LAN Re­
quester is primarily for existing
DOS users. Be aware that DOS, un­
like OS/2, does not support pointer
checking, semaphores, or shared
memory segments. All file names,
directory names, or parts of a path
name, including Universal Naming
Convention (UNC) server and net­
work names, must follow DOS nam­
ing conventions.

Unlike OS/2, DOS does not support
dynamic link libraries (DLL).
Under DOS, the application has to
be linked with DOSNET.LIB and
SYSCALL0.LIB libraries.

For more details about using the
DLR APis, refer to the sections of
DOS considerations in the OS/2
LAN Server Version 1.2 Application
Programmer' s Reference, S0lF-
0256.

Configuration
This section gives a detailed descrip­
tion of the various DLR parameters
along with their memory require­
ments. The NETBIOS requirements
for each configuration are also
given.

The parameter defaults have been
chosen to balance memory usage
and function. Values should be se­
lected based upon the specific user
needs. The DOSLAN.INI file con­
tains the parameter values to be
used each time DLR is started. Any
parameter value can be overridden
by explicitly indicating the desired
parameter and value on the com­
mand line. System default values
are assumed for all parameters not
specified in DOS LAN .INI or on the

command line. DOSLAN.INI must
be in the same directory as the DOS
LAN Requester program files.

DLR Parameters:

• /SRV:n - Defines the maximum
number of unique servers that
can be accessed at one time. The
value of n must be from 1
through 251. The default value
for n is 8. Each /SRV requires
approximately 28 bytes of
memory.

• /ASG:n - Defines the maximum
number of network resources that
can be accessed at one time. The
value of n must be from 1
through 254. The default value
for n is 29. Each /ASG requires
approximately 75 bytes of
memory.

• /NBC:n - Defines the maximum
number of buffers used for net­
work file or print caching. The
value of n must be from 3
through 64. The default value
for n is 4.

• /NBS:n[K] - Defines the buffer
size used for network file or print
caching. The value of n must be
from 128 through 16 KB. The
default value for n is 1 KB.
/NBS times /NBC bytes of mem­
ory are required. If /API is speci­
fied, the minimum is 1 KB.

• /BBC:n - Defines the number of
large buffers used for file cach­
ing (or printing). Values for n
must be from O through 64. The
default for n is I.

• /BBS:n [K] - Defines the size of
the large buffers used for file
caching (or printing). Values for
n must be from 1 KB through 32
KB. The default for n is 4 KB.
If /BBC is 0, then /BBS is implic­
itly set to 0. /BBC times /BBS
bytes of memory are used. /BBS
must be greater than /NBS.

40

• /PBC:n - Defines the maximum
number of buffers used for re­
mote pipe caching. The value of
n must be from O through 16.
The default value for n is 4. A
value of O indicates no pipe
buffering.

• /PBS:n[K] - Defines the size of
the buffers used for remote pipe
read-ahead. The value of n must
be from 128 through 16 KB.
The default value for n is 128. If
/PBC is 0, /PBS is implicitly set
to 0. /PBS times /PBC bytes of
memory are required.

• /PFS:n[K] - Defines the maxi­
mum size pipe write that can be
buffered. A single write of more
than n characters is written di­
rectly to the server. The value of
n must be from O through 32 KB.
The default value for n is 32. If
n is greater than the /PBS value,
/PFS is set to the /PBS value. If
/PFS is 0, no pipe writes are
buffered. If /PBC is 0, /PFS is
automatically set to 0.

• /PFT:n[K] - Defines the number
of quarter seconds to wait before
flushing a pipe write buffer. The
value of n must be from 0
through 65535. The default
value for n is 900. If /PFT is 0,
no pipe writes are buffered. If
/PBC is 0, /PFT is automatically
set to 0.

• /PWT:n[K] Defines the number
of milliseconds to wait for
blocked pipe 1/0. The value of n
must be from O through 65535.
The default value for n is 250. A
value of O indicates no wait time.
A value of 65535 indicates wait
forever.

• /KUC:n[K] - Defines the number
of seconds after the last reference
to keep a UNC connection ac­
tive. When the time expires, the
session is disconnected. The
value of n must be from 0

Personal Systems/Issue 3, 1990

through 32 KB. The default
value for n is 600.

• /KST:n[K] - Defines the number
of seconds to keep search first
and next directory entries in a
local buffer. When the time ex­
pires, the entries are no longer
valid. The value of n must be
from O through 32 KB. The de­
fault value for n is 600.

• /NVS:n - Indicates NetServer­
Enum API support and defines
the number of server entries sup­
ported. If this parameter is not
present, there is no NetServer­
Enum support. No NetServer­
Enum support is the default. If
used, the value of n must be
from I through 255. NetServer­
Enum requires 70 bytes of mem­
ory for each specified entry.

• /NMS - Indicates mailslot API
support and defines the number
of mailslots that can be created.
If this parameter is not present,
there is no Mailslot API support.
No Mailslot support is the de­
fault. If present, the value of n
must be from 1 through 64. Re­
ceiver configuration requires a
minimum value of 2. A value of
1 is automatically adjusted to 2
for the Receiver service. If
/NVS is present, the minimum
number of n for the configuration
is implied.

• /NDB:n - Indicates datagram sup­
port and defines the number of
buffers used to receive the
mailslot and server announce­
ment datagrams. If present, the
value of n must be from 2
through 255. The default is is 2
(3 if both /NVS and /NMS are
present). Each buffer requires ap­
proximately 580 bytes of
memory.

• I API - Indicates support for gen­
eral network application program­
ming interfaces (API), if present.

Nonpresence is the default. API
support requires approximately
9.5 KB of memory and /NBC,
/NBS, /NVS, and /NMS support
as prerequisites. See these param­
eters for additional information.

• /EMS - Indicates that the redirec­
tor component is loaded into high
memory using the LIM 4.0 speci­
fication. This parameter is valid
only for 386-based machines
with expanded memory or 286-
based machines with an XMA
card available. The default ac­
tion is to load the redirector into
low memory (below 640 KB).
/EMS and /HIM parameters are
mutually exclusive.

• /HIM - Indicates that the code
segment of the redirector compo­
nent is loaded into the first seg­
ment above the 1 MB address.
This parameter is valid only for
286- and 386-based machines
with extended memory available.
The default action is to load the
redirector into low memory
(below 640 KB). /HIM and
/EMS parameters are mutually
exclusive.

• /ENC - Indicates support for
password encryption. The de­
fault is nonpresence. Password
encryption requires 1.5 KB of
memory. Password encryption
support is not required.

• /MBl:n[K] - Indicates that the
size of the message buffer n can
be from 512 through 4 KB. The
default value for n is 512.

• /POP - Specifies that the pop-up
message service is to be used dur­
ing this network session. Non­
presence is the default.

• /RPL - Indicates a remote-IPLed
workstation . Required for work­
stations that require DOS LAN
Requester to be accessed from a
remote-IPL server. Nonpresence
is the default.

41

A. Write Behind/Write through behavior

0 Set the write-through bit for Open&X and WriteBlockRaw protocols. This
disables any server disk cache or write-behind operations on all files.

l Clear the write-through bit for Open&X and WriteBlockRaw protocols. This
allows the server to write behind data written to the file and removes one
SMB exchange on raw 1/0. This is the default.

B. Write&X behind

0 Disallows all Write&X behind behavior.

l Issue Write&Close, Write&Unlock, and Close SMBs asynchronously behind.
This means that DOS LAN Requester does not wait for SMBs to be re-
sponded (default).

C. Specifies NETBIOS behavior. Valid values are:

0 NETBlOS cannot accept NCBs at interrupt.

l NETBIOS can accept NCBs at interrupt time (default).

D. Core read protocol behavior

0 Limit transfers using core protocols to the minimum negotiated buffer size.

l Uses "message incomplete" by posting a receive for the SMB header, then
posting a receive for data once the SMB has been received (default).

2 Break reads larger than the Redirector buffer size into two read operations; the
first read for the SMB header and the second directly into the reader address.

E. Buffer read-ahead behavior

0 Always read in a full buffer when the read is less than the buffer size.

I Always read in only the user's requested read amount.

2 Read /NBS bytes if sequential (default).

F. Hard error behavior

0 Return errors without popping them up on the screen

l Pop-up error messages on the screen.

G. Big buffer read-ahead behavior

0 When a read is larger than the redirectory buffer but smaller than the big
buffer, read only the requested amount.

l When a read is larger than the redirector buffer, but smaller than a big buffer,
fill in the big buffer even if it is smaller than the requested amount (default).

H. Process exit behavior

0 Never send process exit SMBs.

l Always send process exit SMBs

2 Send process exit SMBs depending on RPDB structure.

I. Opportunistic locking behavior

0 Do not use Oplock.

I Use Oplock.

J. Open&Read behavior

0 Never Open&Read

I Open&Read on read and execute files.

2 Open&Read on read, execute, and write files.

Figure 8. DLR Work Heuristic Descriptions

Personal Systems/Issue 3, 1990

42

64K = (/SRV * 28) + (/ASG * 75) + (/NBC * (/NBS+ 90))
+(!BBC* (!BBS+ 90)) + (2 * /PBC *(!PBS+ 90))
+ (/NMS * 130) + (LASTDRIVE * 80) + ((FILES+ FCBS) * 30)
+ lOK

Figure 9. Formula for Determining Maximum Parameter Values

Minimum NETBIOS resource requirements are:

Resource: Redirector:
/SRV + 1
/NBC+ 5

Receiver:
/SRV + 2
/NBC+ 8

Sessions
Commands
Names 3 (4 if remote IPL) 5 (6 if remote IPL)

Figure 10. NETBIOS Requirements

• /WRK: ABCDEFGHIJ - Defines
the behavior of a set of internal
working heuristics. This parame­
ter provides the ability to specify
how to use a set of redirector
component functions. The de­
fault value is 1111211012. The
functions of each heuristic and its
values are in Figure 8.

Notes:

Make sure your workstation has
enough memory to support the con­
figuration selected and still leave
enough memory to allow your appli­
cations to run.

A maximum of 64 KB is available
for the data segment of DLR. Each
parameter in the following formula
requires memory allocation within
this segment. The sum of all of the
memory required as indicated can­
not exceed 64 KB (Figure 9).

The minimum NETBIOS resource
requirements are indicated in Figure
10. These parameters are specified
in the DEVICE=DXMTOMOD.SYS
statement on the CONFIG.SYS file.

Personal Systems/Issue 3, 1990

ABOUT THE AUTHORS

Roy Feigel is an advisory
programmer in IBM's Entry
Systems Division in Austin, Texas.
He is the lead designer for the OS/2
LAN Server 1.2/Extended Edition
1.2 LAN Requester/DOS LAN
Requester. In 1982, Roy joined
IBM in Austin as a programmer
assigned to text applications on the
5520 Administrative System. He
received a B .S in computer science
from the University of Southwestern
Louisiana.

Steven French is a senior associate
programmer in IBM' s Entry
Systems Division in Austin, Texas.
He joined IBM in 1989 and
presently is the technical inte,face
to LAN development. Steven
received a B.A. in computer science
and an M.S . in electrical and
computer engineering from Rice
University.

Albert Chang is a senior associate
programmer in IBM's Entry
Systems Division in Austin, Texas.
Currently, he is a member of the
OS/2 LAN Server 1.2 design team.
Albert joined IBM in 1983 and has
held development and test positions
in AIX, OS/2 Database Manager
and OS/2 LAN Server. He received
a B.S. in chemistry from Chung
Yuan University of Science and
Engineering in Taiwan, Republic of
China, and an M.S. in computer
science from the University of
Houston.

Creating a
Dialog Box
Dynamically
Using
WinCreateDlg
Eric Hauser
Dallas, Texas

This article shows how to dynami­
cally create the necessary struc­
tures for the WinCreateDlg
function call in OS/2 Presentation
Manager. An example program
demonstrates the process. Some
knowledge of Presentation Man­
ager programming techniques is
assumed.

There are two ways to create a dia­
log box for Presentation Manager.
The easiest, and most straightfor­
ward way, is by using the resource
compiler. To define a dialog box
using resource script, a programmer
must simply define the size of the
box and list the types and positions
of the controls within the box.
While this is simple, it is limiting in
that the dialog box must be com­
pletely defined prior to running the
program. In some situations, the
particular controls on a dialog box
may be data dependent. In these sit­
uations, the dialog box must be de­
fined during program execution by
using the WinCreateDlg function.
The use of this function is the sec­
ond way to create a dialog box.

The WinCreateDlg function ex­
pects a parent and owner window
handle, a dialog box procedure, a
pointer to the dialog template struc­
ture, and a pointer to data passed in
the WM_INITDLG message. The
difficult part is setting up the array
of structures in memory that -
WinCreatDlg expects to find.

43

The Example Program
The example program creates a dia­
log box containing a number of
check boxes that are equal to the
number of files in the current direc­
tory whenever the menu item Cre­
ate Dialog is selected. The dialog
box will also contain OK and Can­
cel pushbuttons. When the user
presses the OK pushbutton, all files
checked are deleted. Pressing the
Cancel pushbutton will dismiss the
dialog box without erasing any files.

The function that actually creates
the dialog box is called check dia­
log. The check_ dialog fu ncti;n is
.brokeR down into eight steps:

• Variable declaration

• Frame setup

• Check box setup

• Header definition

• Frame definition

• Check box definition

• Pushbutton definition

• Function call

Personal Systems/Issue 3, 1990

The steps in the process are ex­
plained in Figures la through le.
The program is shown in Figures 2a
through 2f. The numbers on the left
are not a part of the program; they
are for reference only.

Conclusion
Dynamically creating a dialog box
is a tedious endeavor. It is recom­
mended that, if possible, program­
mers should create their own dialog
boxes with the aid of the resource
compiler. The intention of this arti­
cle is to explain the process of creat­
ing a dialog box dynamically for
those situations where a static dia­
log box is not practical.

ABOUT THE AUTHOR

Eric Hauser is a cooperative
education student at IBM in Dallas,
Texas. He has extensive training in
OS/2 programming techniques and
has specialized in Presentation
Manager. Eric is a sophomore at
the University of North Texas
pursuing a degree in computer
science.

44

Step 1- Variable declaration (lines 104-121)
The check_ dialog function uses a global data area, two user-defined structures, and several local vari­
ables.

The following structure is not necessary to create a dialog box dynamically. It does help to simplify the
creation process.

struct _ checkstruct{
CHAR text[21];
POINTL pt;
SIZEL szl;
SHORT id;
SHORT offset;

}

text is used to define the text that appears for dialog control.
pt is the point at which the control will appear.
szl defines the actual size of the control.
id is the window ID of the control
offset defines the number of bytes from the dialog header that the text
for the control appears. This will become clearer in Step 5.

The following structure is used to pass data to the dialog procedure. More information can be placed in
the structure as required.

struct _ dialog {
int total; total is the number of files in the current directory.

}

BYTE DataArea[2048]; - DataArea is used as a workspace in memory in which the dialog box
will be created. The actual size of this workspace depends on how complicated or simple the dialog box
will be. This is the only global variable used.

DLGTEMPLATE *dt; - dt is a pointer to the DLGTEMPLATE structure that is defined in the
PMWIN.H header file included with the OS/2 Toolkit. All information about the dialog box will be
placed in memory relative to dt.

CHAR *cTemp; - cTemp is used to position the text for a dialog control at the proper offset into the
DataArea. This offset is identified in the _checkstruct structure and will be explained in detail in Step 5.

HWND hwndDlg; - hwndDlg is the handle to the dialog box that is returned from the WinCreateDig
function call in Step 8.

struct _ checkstruct cs[20]; - cs is an array of the user-defined structure_ checkstruct. cs[0] defines
the frame of the dialog box. The remaining elements of the cs array each define a check box for the files
in the current directory.

struct _dialog *data; - data is a pointer to the _dialog structure. It is passed as the last parameter in
the WinCreateDig function call. This pointer appears in message parameter 2 in the dialog procedure
on a WM_INITDLG message.

HDIR hdir; USHORT usSearch- Count; FILEFINDBUF findbuf; - These variables are not used
for the actual creation of the dialog box. They are used in conjunction with the DosFindFirst and
DosFindNext functions. These functions will not be discussed in this article.

Step 2 - Frame Setup (lines 126-132)
The first element of the cs array is defined to be the dialog box frame. These assignments position the di­
alog frame at the point 100,100 with a size of 180,100. The window ID for the frame is defined as
l 000, and the text offset is defined to be 500 bytes. The text offset will be described in detail in Step 5.

Step 3 - Check box Setup (lines 137-157)
The remaining elements of the cs array are defined in this section. Line 137 allocates memory for the
structure that is to be passed to the dialog procedure when it is created. This structure will contain the
total number of files in the current directory. This number is assigned on line 157.

Figure la. Creating a Dialog Box

Personal Systems/Issue 3, 1990

45

On line 138, a DosFindFirst function call is used to obtain a pointer to the first file in the directory.
The next line marks the start of a do{ .. }while(); loop. This loop goes through all the files in the cur­
rent directory using the DosFindNext function. The loop sets up the a new element in the cs array on
every pass. The cs text field is loaded with the current file name. The x and y location is defined by
using a simple algorithm; each check box will appear 10 pels below the previous one. The size of each
check box is defined to be the same for every file. The window ID is set to 1000 + the pass number of
the loop. The text offset, described in Step 5, is defined as 500 + the passnumber times 20.

Step 4 - Header Definition (lines 162-169)
At this time, the actual structures that WinCreateDlg expects to find will be filled out. The first struc­
ture is DLGTEMPLATE. The DLGTEMPLATE structure contains eight fields:

USHORT cbTemplate

USHORT type
USHORT codepage

USHORT offadlgti

USHORT fsTemplateStatus
USHORT iltemFocus

USHORT cotlPresParams

DLGTITEM adlgti[l]

cbTemplate defines the total number of bytes used by the dialog struc­
tures.
type must be set to zero.
codepage must be set correctly. The US keyboard requires a codepage
= 850.
offadlgti is the number of bytes from the header structure that the array
of control structures begins.
fsTemplateStatus must be set to zero.
iltemFocus identifies the index of the control that will begin with the
focus.
cotlPresParams defines the offset into the DataArea at which the pre­
sentation parameters exist.
adlgti is a pointer to the first element of an array of DLGTITEM struc­
tures. Each DLGTITEM structure defines a single control in the dialog
box.

The variable dt is a pointer to this structure type. On line 162, dt is set to the beginning of DataArea.
The ch Template field is set to 1024 bytes. This number is larger than the actual amount of memory
used to define the dialog box, but using a static number is simpler for example purposes. The remaining
fields are set up to allow the system to use default values in the creation of the dialog box.

Step S - Frame Definition (lines 177-197)
This step defines the frame for the dialog box based on the first element of the cs array. The frame, like
all of the dialog box controls, is defined in a DLGTITEM structure. This structure contains 14 fields:

USHORT fsltemStatus
USHORT cChildren
USHORT cchClassName
USHORT otTCiassName

USHORT cchText
USHORT ofIText

ULONG flStyle

SHORT x, y
SHORT ex, cy
USHORTid
USHORT otlPresParams

Figure l b . C reating a Dialog Box

fsltemStatus must be set to zero.
cChildren is the number of controls existing under this control.
cchClassName should be set to zero for all system-defined classes.
otTClassName is the WC window class for this control. For example,
the frame would use WC -FRAME.
cchText is the length of the window text for this control.
ofIText is the number of bytes into DataArea that the text for this con­
trol exists.
flStyle is the creation window style for this control. It is usually a num­
ber of WS and FS constants or'd together.
x and y define the location of the control within the dialog box.
ex and cy define the size of the control.
id is the window ID of the control.
otlPresParams is the number of bytes into DataArea that the presenta­
tion parameters for this control exist.

Personal Systems/Issue 3, 1990

46

USHORT offCltData offCtIData define the frame creation for the dialog box. For example,
FCF _ TITLEBAR.

Line 178 sets cChildren to total+2. The variable total was set to the number of files in the current direc­
tory. There is one check box for each file. There are also two pushbuttons, OK and Cancel. Therefore,
the total number of controls under the dialog box frame is equal to the total number of check boxes plus
the two pushbuttons: total+2.

The offText field defines the number of bytes into DataArea that the text for this control will appear.
This offset must be beyond the array of DLGTITEM structures. The offset for the frame's window text
was set to 500 in Step 2. The WinCreateDig function then knows to look 500 bytes into DataArea to
find the window text for this control. By examining the cchText field, the function knows how many
characters to read from the offset.

Many fields in the DLGTITEM structure are defined by assigning the value contained in the related cs
field. This was done to simplify the process of setting up the structures initially.

On lines 196 and 197, the actual window text is written to the proper offset by using strcpy.

Step 6 - Checkbox Definition (lines 203-221)
This step is simply a loop through all of the remaining cs elements. One adlgti element is defined for
each cs element. The actual assignments are similar to Step 5, although there are some important differ­
ences.

First, notice that on line 205, the cChildren field is set to zero because check boxes have no controls
under them. The offClassName is set to WC_CHECKBOX to identify the control for what it is. The
rest of the adlgti fields follow a similar setup process to Step 5. Notice that cTemp is again used to
write the window text at the proper offset into DataArea.

Step 7 - Pushbutton Definition (lines 226-260)
This step is simply an extension of the previous two. Here, the two pushbuttons, OK and Cancel, are de­
fined. The setup is again very similar to those in Steps 5 and 6. Notice that on line 237, the ID field is
set to DID_OK. This is so the dialog box procedure can intercept a DID_OK when the OK button is
pressed. Line 255 is set to DID_CANCEL for the same reason.

Step 8 - Function Call (line 262)
Line 262 is the actual call to the WinCreateDig function. The function is in the following form:

HWND APIENTRY WinCreateDig(HWND hwndParent,
HWND hwndOwner,
PFNWP pfnDigProc,
PDLGTEMPLA TE pdlgt,
PVOID pCreateParams);

The fourth parameter is the pointer to the dialog template header structure, dt. The fifth parameter is a
pointer to the user-defined data structure containing the number of files found in the current directory.

Figure le. Creating a Dialog Box

Personal Systems/Issue 3, 1990

1
2
3
4
5

47

#define INCL_DOS
#define INCL_WIN
#include <os2.h>
#include <stdio.h>
#include <string.h>

6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

#include <malloc.h>
/**
Function Prototypes
**/
MRESULT EXPENTRY DlgProcl(HWND, USHORT, MPARAM, MPARAM);
MRESULT EXPENTRY WinProc(HWND, USHORT, MPARAM, MPARAM) ;
PVOID MemAllocMemory(USHORT);
HWND check_dialog(HWND hwnd);

/**
This is the data area in which the dialog box will be created.
**/
BYTE DataArea[2048]; /* Memory in which structures are placed */

!**
main
**/
main ()
{

ULONG flags;
HAB hab;
HMO hmq;
HWND hwndFrame

hwndClient;
OMSG qmsg;
char primeclass[20];

strcpy(primeclass,"pri mec l ass")
flags=FCF_TITLEBAR I FCF_SYSMEN U
FCF_SHELLPOSITION I FCF_TASK LIST
hab=Winlnitialize(O);

37 hmq=WinCreateMsgQueue(hab,0);

/* Handle to anchor block
/* Handle to message queue
/* Main window frame
/* Main window client
/* Message queue
/* Class name of primary window

FC F _SIZEBORDER
FCF_MENU;

FCF MINMAX

38 WinRegisterClass(hab, primeclass, WinProc, CS_SIZEREDRAW, O) ;
39 hwndFrame-WinCreateStdWindow(HWND_DESKTOP ,W S_VISIBLE,&flags,primeclass,
40 NULL,Ol,NULL,256,&hwndC l ient);
41
42 while(WinGetMsg(hab, &qmsg, NULL, 0, 0))
43 WinDispatchMsg(hab, &qmsg);
44
45 WinDestroyWindow(hwndFrame);
46 WinDestroyMsgQueue(hmq) ;
47 WinTerminate(hab) ;
48
49

*I
*I
*I
*I
*I
*I

so /**
51 DlgProcl - This is the window procedure for the dialog box we have created. It is just like any other
52 dialog box procedure you might use for a resource-loaded dialog box.
53 **/
54 MRESUL T EXP ENTRY Dl gProc l (HWND hw nd. USHORT msg . MPA RAM mp l. MP ARAM mp2)
55 {

Figure 2a. Example Program

Personal Systems/Issue 3, 1990

48

56 typedef struct
57 int total;
58 } dialog;
59 static dialog *data;
60 static char filename[20][13];
61 int i ;
62 RECTL rel;
63 SWP swp;
64 char buffer[81];
65
66 switch(msg){
67 case WM_ INITDLG:
68 data-(di al og *) (MPFROMP(mp2));
69 for(i-O;i<data - >total ;i++){
70 WinQueryWindowText(WinWindowFromID(hwnd,lOOO+i+l),13,filename[i]);
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110

break;
case WM_COMMAND:

switch(COMMANDMSG(&msg)->cmd){
case DID_OK:

for(i=O;i<data ->total ;i++){
if(WinSendDlgitemMsg(hwnd,lOOO+i+l,BM QUERYCHECK,NULL,NULL)){

if(WinMessageBox(HWND DESKTOP,hwnd,filename[i],
"Delete File?". 0. MB_OKCANC EL) - =D ID_OK l {

unlink(filename[i]);

free (data l;
WinDismissDlg(hwnd,FALSE);
return O;

case DID_CANCEL:

default:

WinDismissDlg(hwnd,FALSE);
free (data);
return O;

return WinDefDlgProc(hwnd,msg,mpl,mp2);

/**
check_dialog - This is the function that actually creates the dialog box. It is called from the WinProc window
procedure whenever mouse button 2 is pressed. It sets up the necessary structures and makes the
WinCreateDlg function call. From here, the WM_INITDLG message is sent to the DlgProcl function.
**/
HWND check_dialog(HWND hwnd)
{

DLGTEMPLATE *dt;
CHAR *cTemp;
HWND hwndDlg;
struct _checkstruct{

CHAR text[21];
POINTL pt;
SIZEL szl;

/* Pointer to the DLGTEMPLATE structure */
/* Character pointer for string placement */
/* Handle to the dialog box created */
/* Check box information structure */
/* The text next to the check box */
/* Position of text */
/* Size of text rectangle */

Figure 2b. Example Program

Personal Systems/Issue 3, 1990

111
112

SHORT id;
SHORT offset;

49

/* ID of text
/* offset of text into memory

*I
*I

113 Jcs[20J;
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165

SHORT i, total - 1;
HOIR hdir = HOIR CREATE;
USHORT usSearchCount=l;
FILEFINDBUF findbuf;

struct di al og(
int total;

}*data;

/* Some counters
/* Used in DosFindFirst ...

*I
*I

/**
This is the first structure in the list. It represents the dimensions of the dialog box frame.
**/

strcpy(cs[OJ.text,"Delete Boxes"); /*Titleofdialogbox */
cs[OJ. pt.x- 100; /* x coord from parent window */
cs[OJ.pt.y=lOO; /*ycoordfromparentwindow */
cs[OJ.szl.cx-180; /*width */
cs[OJ.szl.cy=llO; /*height */
cs[OJ. i d- 1000; /* resource ID to associate to dialog */
cs [0 J. off set=500; /* offset of text into data area */

/***
This section searches the current directory for all files and creates a structure array element for each file.
***/

data=(struct _dialog *)malloc(sizeof(struct _dialog));
DosFindFirst("*.*",&hdir,FILE_NORMAL,&findbuf,sizeof(findbuf).&usSearchCount,01);
do(

strcpy(cs[total].text,findbuf.achName);

if(total<9)(
cs[total].pt.x=5;
cs[total].pt.y=lOO·(lO*total);

else(
cs[total].pt.x=85;
cs[total].pt.y=lOO·(lO*(total-8));

}

cs[total J. szl. cx-80;
cs[total J. szl. cy-10;
cs [total J. i d- lOOO+tota l ;
cs[total].offset=500+(total*20);
total++;

}while(!(DosFindNext(hdir,&findbuf,sizeof(findbuf).&usSearchCount)));
total··;
data·>total - total;

/**
This section defines the dialog template header.
**/

dt-(DLGTEMPLATE *)DataArea;
dt·>cbTemplate-1024;
dt·>type=O;
dt·>codepage=850;

/* Size of this stuff (too big is okay)
/* must be zero

*I
*I

Figure 2c. Example Program

Personal Systems/Issue 3, 1990

166
167
168
169
170

dt->offadlgti=l4;
dt->fsTemplateStatus=O;
dt->iitemFocus=l;
dt->coffPresParams=O;

50

I* item number to start with focus
I* must be zero

*I
*I

171 /**
172 This section actually creates the array structure element for the dialog frame. The frame is always the first
173 element in the structure array. The second parameter must equal the number of dialog items that will follow.
174 The total variable is equal to the number of file names found. One check box will be created for each file
175 name located. Also, an OK button and a cancel button will be placed at the bottom of the dialog.
176 **/
177 dt->adlgti[OJ.fsitemStatus- 0; /* must be zero */
178 dt- >ad 1 gt i [OJ. cChi 1 d ren-tota 1 +2; /* total check boxes and two buttons */
179 dt->adlgti[OJ.cchClassName-0; /* 0=systemdefined */
180 dt->adlgti[OJ.offClassName-(USHORT)WC_ FRAME;
181 dt->adl gt i [OJ. cchText=strl en (cs [OJ. text); /* length of text */
182 dt->adl gti[OJ .offText=cs[OJ. offset; /* offset to text */
183 dt->adlgti[OJ.f1Style=FS_N08YTEALIGN FS_ DLGBORDER I WS_VISIBLE I WS_SAVEBITS;
184 dt->adlgti[OJ.x=cs[OJ.pt.x; /*posofdlg */
185 dt- >ad lgti[OJ.y=cs[OJ.pt.y;
186 dt- >a dlgti[OJ.cx=cs[OJ.szl.cx; /*size of dig */
187 dt ->ad lgti [OJ .cy=cs[OJ . sz l .cy;
188 dt->adlgti[OJ.id=cs[OJ.id;
189 dt->adlgti[OJ.offPresParams-0;
190 dt->adlgti[OJ.offCtlData-(USHORT)FCF_TITLEBAR;
191
192 /**
193 This section assigns a pointer to the offset into the data area defined by the sixth parameter in the frame's
194 structure. The text for the title of the dialog box is placed at this offset by using the strcpy function.
195 **/
196 cTemp=&DataArea[cs[OJ.offsetJ;
197 strcpy(cTemp, cs[OJ.text);
198
199 /**
200 This loop creates the array of structures needed to place the check boxes with the file names into the dialog
201 box. The second parameter for all of these items must be zero. Otherwise, it is similar to the frame's structure.
202 **/
203 for(i - l;i <total+l;i++){
204 dt ->adlgti[iJ.fsitemStatus=O;
205 dt- >ad lgti[iJ.cChildren=O;
206 dt- >ad lgti[iJ.cchClassName=O;
207 dt ->adlgti[iJ.offClassName- (USHORT)WC_BUTTON;
208 dt ->adlgti[iJ.cchText=strlen(cs[iJ.text);
209 dt->adlgti[iJ.offText=cs [iJ.offset;
210 dt->adlgti[iJ.flStyle=BS_AUTOCHECKBOX WS_TABSTOP I WS_VISIBLE;
211 dt->adlgti[iJ.x=cs[iJ.pt.x;
212 dt->adlgti[iJ.y=cs[iJ.pt.y;
213 dt->adlgti[iJ.cx=cs[iJ.szl .ex;
214 d t - >a d 1 gt i[i J . cy- c s [i J . s z 1 . cy ;
215 dt ->adlgti[iJ.id=cs[iJ.id;
216 dt- >a dlgti[iJ.offPresParams=O ;
217 dt -> adlgti[iJ . offCtlData=O;
218
219 cTemp=&DataArea[cs[iJ.offsetJ;
220 s trcpy(cTemp, cs[iJ.text);

Figure 2d. Example Program

Personal Systems/Issue 3, 1990

221
222

51

223 /**
224 This section creates the OK pushbutton placed at the bottom of the screen.
225 **-******************/
226 dt->adlgti[total+l].fsitemStatus-0;
227 dt ->adlgti[total+l].cChildren=O;
228 dt->adlgti[total+l].cchClassName=O;
229 dt ->adlgti[total+l].offClassName- (USHORT)WC_8UTTON;
230 dt->adlgti[total+l].cchText=2;
231 dt->adlgti[total+l].offText=cs[totalJ.offset+20;
232 dt->adlgti[total+l].flStyle=BS_ PUSHBUTTON I WS_TABSTOP I WS_VISIBLE;
233 dt -> adlgti[total+l].x- 50;
234 dt -> adlgti[total+l].y- 5;
235 dt->adlgti[total+l].cx-40;
236 dt->adlgti[total+l].cy- 15;
237 dt ->adlgti[total+l].id- DID_OK;
238 dt->adlgti[total+l].offPresParams-0;
239 dt->adlgti[total+l].offCtlData-0;
240
241 cTemp- &DataArea[cs[total].offset+20];
242 strcpy(cTemp,"OK");
243
244 dt->adlgti[total+2].fsitemStatus-O;
245 dt->adlgti[total+2].cChildren-O;
246 dt->adlgti[total+2].cchClassName-O;
247 dt->adlgti[total+2].offClassName- CUSHORT)WC_BUTTON;
248 dt->adlgti[total+2].cchText=6;
249 dt->adlgti[total+2].offText=cs[total].offset+40;
250 dt->adlgti[total+2].f1Style-BS_PUSHBUTTON I WS_TABSTOP I WS_VISIBLE;
251 dt ->adlgti[total+2].x-100;
252 dt->adlgti[total+2].y-5;
253 dt->adlgti[total+2J.cx=40;
254 dt->adlgti[total+2J.cy=l5;
255 dt->adlgti[total+2].id-DID_CANCEL;
256 dt->adlgti[total+2J.offPresParams=O;
257 dt->adlgti[total+2].offCt1Data- O;
258
259 cTemp=&DataArea[cs[total].offset+40];
260 strcpy(cTemp,"Cancel");
261
262 hwndDlg-WinCreateDlg(hwnd, hwnd, DlgProcl, dt, (long far*)data);
263 return hwndDlg;
264 }
265
266 /**
267 winproc - This is the primary window procedure.
268 **/
269 MRESULT EXPENTRY WinProc(HWND hwnd, USHORT msg, MPARAM mpl, MPARAM mp2)
270 {
271 HPS hps;
27 2 int index. i ;
273 static HWND hwndDlg;
275 RECTL rel;
276 DLGTEMPLATE *dt;

Figure 2e. Example Program

Personal Systems/Issue 3, 1990

276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297 }

SEL sel;

switch(msg)(

52

case WM_C0MMAND:
switch(C0MMANDMSG(&msg)->cmd)(

case 258 :
hwndDlg-check_dialog(hwnd);
break;

case 259:

}

WinSendMsg(hwnd,WM_CL0SE,01 ,01);
break;

return 0;
case WM_PAINT:

hps-WinBeginPaint(hwnd,NULL.&rcl);
WinFillRect(hps,&rcl ,CLR_CYAN);
WinEndPaint(hps);
break;

default:
return WinDefWindowProc(hwnd,msg,mpl,mp2);

Figure 2f. Example Program

Personal Systems/Issue 3, 1990

An Alternative
for the OS/2
START
Command

William J. Wen
Houston, Texas

START2.EXE is a utility program
written in C. It fully utilizes all op­
tions of the DosStartSession API
call for starting independent OS/2
sessions. This utility is similar to
the OS/2 START command, but
contains more options. This arti­
cle demonstrates how to set up a
program for various OS/2 API
calls.

Have you ever wished that you
could expand the flexibility of the
OS/2 START command, giving it
an even richer set of options than
the robust set of parameters already
available? For example, wouldn't it
be nice if the OS/2 START com­
mand would let you associate a
customized, default icon for specific
programs? How about if you

53

wanted to START an application in
full-screen or windowed without
having the session start in the
foreground?

The OS/2 ST ART command is an
essential utility to start programs in
separate OS/2 sessions. For in­
stance, it allows the user to specify
various options to control how the
session is started, such as full­
screen, windowed, or PM-based, to
keep the OS/2 session after execut­
ing a command or exit immediately
when the command is finished.
You can provide all the functions
given by the START command in­
side an OS/2 application by using
the DosStartSession API call. If
you compare the options given by
the DosStartSession API call with
those given by the OS/2 START
command, you suddenly realize that
the DosStartSession API call pro­
vides even more options and
flexibility.

Take, for example, the case where
you want to start a session explicitly
in full-screen, windowed, or PM­
based (that is, you specify IFS,

Personal Systems/Issue 3, 1990

/WIN, or /PM for the START com­
mand). The START command as­
sumes that you want the session to
begin in the foreground. There is
not an option to specify IFS , /WIN ,
or /PM and have the session start in
the background using the START
command, though there is no such
restriction when using the DosStart­
Session API call. How about start­
ing a windowed session minimized
or maximized? How about picking
a distinctive icon for a full-screen or
windowed application instead of the
icon with the "OS/2" symbol?

START Command Options
Because the DosStartSession API
call provides an even more abun­
dant set of options than those pro­
vided by the OS/2 START
command, I decided to write my
own version of this command. I
call it START2. I wrote this utility
using IBM C/2™ Version 1.1 and
the OS/2 Toolkit Version 1.1. Be­
cause I had some trouble setting up
the various OS/2 API calls, I have
included the source code to this util­
ity program in hope that this code

will help you in your own ventures
into OS/2 programming.

All the options of the START com­
mand are included in ST ART2.
However, two of the parameters are
different: The program title and the
/F parameter.

Because of a command line parsing
problem (as far as I can determine,
the OS/2 program loader strips off
the double quote character from the
command line, so no application
can detect the double quote charac­
ter in the command line), the pro­
gram title enclosed in double quotes
must include a space or tab. For ex­
ample, if the program title is two
words or more (for example, "Com­
munications Manager"), then the
space is already included. If the
program title is a single word, then
you can include a space preceding
the actual title; if the first character
in the program title is a space, then
the START2 command line parsing
routine will skip over the first space
in the program title. For example,
to display a program title of "Dem­
onstration", you would specify

" DEMONSTRATION"

on the command line for the
START2 program.

The /F parameter must be specified
if you want the session to start in
the foreground. This is different
from the OS/2 START command,
as specifying IFS, /WIN, or /PM
with the START command will
start the session in the foreground.

Additional Options Under
STARTZ.EXE
The help text is included in the
START2 program. The help text is
displayed either when the user asks
for help or when a parameter is
specified incorrectly. To ask for

54

help from ST ART2, type in any one
of the following four:

START2
START2 ?
START2 /?
START2 /help

In the help text, I tried to implement
all the options that apply to starting
an independent session. I did not in­
clude any of the options that apply
to a dependent session; if you need
this level of control to start a ses­
sion, you would probably want to
code to the DosStartSession API
call inside your own application in­
stead of shelling out of your pro­
gram to execute START2.

ST ART2 gives the user
two ways to specify

the icon file.

You can also associate an icon file
when starting a session. Icon files
can be created using the icon editor
utility, which comes with the OS/2
Version 1. 1 Toolkit package.
START2 gives the user two ways to
specify the icon file. One way is
for the user to specify the fully qual­
ified filename of the icon file, by
using the /ICON=filename parame­
ter. The other way is for the user to
specify the /ICON parameter, and
START2 will look for the icon file.
ST ART2 will assume that the icon
file has the .ICO file extension and
is stored in the same directory as
the program file (the program file
has either .EXE or .CMD file exten­
sion).

Personal Systems/Issue 3, 1990

The criteria that ST ART2 uses to
find the icon file are fairly close to
the criteria that OS/2 uses to find
the program file (.EXE or .CMD):
If path information is included in
the filename (for example,
D:PROGl, E:\DIRl\PROGl,
DIRl\PROGl, and so forth),
START2 will look for the file in the
specified drive and/or directory; if
no path information is included on
the filename, START2 will look for
the file using the PA TH= environ­
ment string. If no file extension is
specified, START2 will try finding
the file with .EXE extension first
and, if not found, try finding the file
with .CMD extension. Once the
file is found, ST ART2 replaces the
file extension with .ICO.

Please be aware that only when you
use the /ICON parameter will the
icon file need to have a .ICO file ex­
tension and be stored in the same di­
rectory as the program file. If
/ICON = filename is specified, then
the icon file can reside on any disk
in any directory with any file
extension.

Another parameter that occasionally
comes into use is /NAC. This pa­
rameter comes in handy when you
are using the /N parameter. Some­
times a program does not provide a
pause, allowing the user to read the
output on the screen before closing
the session. If the user starts such a
program using the /N parameter, the
program runs, displays its output to
the screen, and exits (which by de­
fault automatically closes the ses­
sion); in the meantime, the user gets
but a glimpse of the output. Using
the /NAC option will keep the ses­
sion after the program has exited;
the user has to manuaJly close any
session started with /NAC parame­
ter, either through the system menu
or the task manager.

Known Inconsistency
If you specify starting a windowed
session in the foreground , mini­
mized and with a specific icon file
(the /F, /ICON or /ICON=filename,
and /MIN all used together), the
icon you selected will not display
until you restore and then minimize
the session again. As far as I can
tell, this seems to be a characteristic
of the DosStartSession APL If you
specify starting a windowed session
in the background, minimized with
a specific icon file (the /ICON or
/ICON=filename, with the /MIN
used together), the icon is displayed
correctly.

Examples For Using
START2
If you want to start the program
PROG l .CMD with its own default
icon file , then type:

START2 /ICON PROGl

If you want to start the program
PROG2.EXE in the directory
C:\DIRl as a windowed session
without loading the command pro-

55

cessor, using an icon file in the
C:\DIR2 directory with the filename
of MYICON2.ICO, then type:

START2 /N /WIN
/ICON=C:\DIR2\MYICON2.ICO
C:\DIR1\PROG2.EXE

If you want to start PROG2.EXE in
the C:\DIRl directory as a
windowed session without loading
the command processor, and posi­
tion it on the lower left comer, cov­
ering approximately a fourth of the
screen, then type:

START2 /N /WIN /POS=(O,O)
/SIZ=(300,300)
C:\DIR1\PROG2.EXE

If you would like, you can also spec­
ify the icon file to the previous ex­
ample. To specify starting a session
with the command processor and
start PROG 1.CMD with the default
icon file and the program title of
"My program", type:

START2 "My program" /ICON
PROGl

To start the same program as the
previous example but with the pro-

Personal Systems/Issue 3, 1990

gram title of "Program!", type:

START2 " Programl" /ICON PROGl

Please note that the program title
needs to include a space. For single­
word titles, you can add a space be­
fore the actual title. If START2
detects the first character in the pro­
gram title as a space, it will skip
over the space. This is why in
order to display the program title of
"Program l ", you need to type on
the command line:

" Programl"

for the program title.

ABOUT THE AUTHOR

William Wen received a bachelor's
degree in electrical engineering
from the University of Houston,
Central Campus. Bill worked for
six co-op terms as a supplemental
employee in the IBM Marketing
Technical Support Center in Dallas.

56

An alternate version of the OS/2 START command A:\START2.EXE
Help: displayed due to syntax error or user request.

parameters:

>,.,-------.-.--.--,----.-.--- -.-,-----r.----,---,--~ command-,-------.-,l
"pgm title"

"pgm title"

/K
IC
IN
command
cmd inputs

Press enter to
/I
/ICON- ...

/ICON

IFS
/WIN
/POS-(x,y)

/SIZ-(x,y)
/PM
/F

/NAC
/INV
/MIN
/MAX

/K
IC
IN

/NAC
/INV
/MAX
/MIN

/?
?

/F /FS / I cmd inputs
/PM
/WIN ~.------.

/POS-(X,Y)
/SIZ- (X,Y)

/ICON -----------~
/ICON-<fully qualified filename>

/Help

Specifies the program title displayed in the PM menu; must have
a space inside quotes. Space as first character inside quotes
wi 11 be removed. Example : " Demo" wi 11 become "Demo".
Start the program using COMSPEC- env. string, with /K.
Start the program using COMSPEC- env. string, with /C.
Sta rt the program directly, without using COM SPEC=.
Command or program (.EXE or .CMD) to be started.
Parameters for the command.

continue ...
Causes new session to inherit environment from CONFIG.SYS.
Use icon file; the filename after equal sign must be a fully
qualified filename.
Use default icon file; th i s icon file needs to be in the same
directory as the program/command, and must have the same file
name as the program/command, except with a file extension of .ICO
Start the program full screen.
Start the program in windowed screen.
Start window at coordinates (x,y) pixels. (0,0) is lower, left-hand
corner.
Start window with size of (x,y) pixels.
Start the program in PM window.
Start the program in foreground. This is different from the OS/2
START command; you must specify /F for the program to start in
the foreground, even with /WIN or /PM.
Specify No Automatic Close after session ends.
Specify no icon for session(invisible); visible in Task Manager.
Start the session minimized (iconed).
Start the session maximized.

Figure la. Help Text from the Start2 Program

Personal Systems/Issue 3, 1990

#define LINT_ARGS
#define INCL_ DOS
#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include <string.h>
#include <os2.h>
#include <dos.h>
#include <ctype.h>
ffodefi ne NO_ COMSPEC 1
#define DEF _ I CON 2

extern char far *_ pgmptr;

USHORT SessID;
USHORT ProcessID;
STARTDATA StartD;

char CurDir[8O];
char PT[6O] - "";
char PN[6O] - "";
char parms[6O] - "";
char IcF[6O] - "";
char buffer[255], buffer2[8O];
char *help_ text[J - {

"parameters:

57

">~------~~--~~---~~---~~--~~---~--~command ~----~~\ n",
\"pgm title\"

"\"pgm title\"

" /K
" IC
" /N
" command
" cmd inputs
" /I
" /ICON= ...

" /ICON

Figure lb. Start2 Program

/K

IC
/N

/NAC
/INV
/MAX
/MIN

/F

/ICON

/ FS /I
/PM
/WIN ~-----~

/POS- (x,y)
/SIZ-(x,y)

cmd inputs

-E
/ICON- <fully qualified filename>

I?

~Help J \n\n",

Specifies the program title displayed in the PM menu; MUST have\n",
" a space inside quotes. Space as first character inside quotes \n",
"will be removed. EX: \" Demo\" will become \"Demo\".\n",
Start the program using COMSPEC- env. string, with /K.\n",
Start the program using COMSPEC- env. string, with /C.\n",
Start the program directly, without using COMSPEC-.\n",
Command or program (.EXE or .CMD) to be started.\n",
Parameters for the command.",
Causes new session to inherit environment from CONFIG.SYS.\n",
Use icon file: the filename after equal sign must be a full y\n",

" qualified filename.\n",
Use default icon file; this icon file needs to be in the same\n",
" di rectory as the program/command, and must have the same fi l e\n",
" name as the program/ command, except with a file extension of . I CO",

Personal Systems/Issue 3, 1990

\n".
\n",
\n".
\n",
\n",
\n",
\n",
\n"'
\n".
\n",

" IFS
" /WIN
" /POS-(x,y)

" /SIZ- (x,y)
" /PM
" /F

" /NAC
" /INV
" /MIN
" /MAX

} ;

FileError(char *):

58

Start the program full screen. \n".
Start the program in windowed screen.\n".
Start window at coordinates (x,y) pixels. (0,0) is lower, left -\n",
" hand corner. \n".
Start window with size of (x,y) pixels.\n",
Start the program in PM window.\n".
Start the program in foreground. This is different from the OS/2\n",
" START command; you MUST specify /F for the program to start in\n",

" the foreground, even with /WIN or /PM. \n".
Specify No Automatic Close after session ends.\n",
Specify no icon for session(invisible); visible in Task Manager.\n".
Start the session minimized (iconed).\n",
Start the session maximized.\n",

void parsename(char * char*);

/**
* START2.C *
* By William J. Wen

*
* This utility program provides all the options under the DosStartSession API call, except for those options related
* to starting dependent sessions. The help text, which explains all the options available, is shown by typing
* one of the following:

*
*
*
*

START2/
START2 /?
START2?
START2 /help

*
*
*
*
*
*
*
*
*

**/
main(argc, argv)

int argc;
char *argv[];

char *ptemp:
int count=!:
USHORT Options - 0, size:
HDIR dirl:
FILEFINDBUF info:

printf("\nAn alternate version of the OS/2 START command=");
while(*_ pgmptr) putchar(*_ pgmptr++):
printf("\n By William J. Wen\n\n"):

/**
* Display help when requested *
**/

if (argc==l) help():
else if (*argv[l]-='? ·) help():
else if (!strcmp(argv[l]. "/?")) help():
else if (!strcmpi(argv[l]. "/help")) help():

i nit():

/**
* Pick up program title, if it exists *
**/

Figure le. Start2 Program

Personal Systems/Issue 3, 1990

59

if (*argv[l] !-' / ·) {
if (strpbrk(argv[l]. " \t") !- NULL)

count++;
StartD.PgmTitle - PT;

/* program name*/

if((*argv[l]--' ·) 11 (*argv[l]--' \'")) strcpy(PT. (argv[l]+l));
else strcpy(PT, argv[l]);
if(*(PT+strlen(PT)-1)--'\'") *(PT+strlen(PT)-1) - '\0';

}/* endif */
}/* endif */
if (count==argc) help();

!**
* Loop until there is no "/" parameter left *
**/
for (; COUNT<a rgc; count++) {

if(*argv[count] !-' /') break;
strupr(argv[count]);
ptemp - argv[count]+2;
switch (*(ptemp-1)) {
case 'N':

if (*ptemp) {
if(strcmp(ptemp. "AC")) help();
else StartD.PgmControl I- 8;

else {
Options I- NO_COMSPEC;
parms[O] - O;

/* endif */
break;

case 'K':
if (*ptemp) help();
else {

break;
case 'C':

strcpy(parms, "/K");
Options &- ~NO_ COMSPEC;

if (*ptemp) help();
else {

strcpy(parms, "/C");
Options &= ~NO_ COMSPEC;

break;
case 'F':

if (*ptemp) {
if(strcmp(ptemp, "S")) help();
else StartD.SessionType - l;

} else StartD.FgBg = O;
break;

case 'P':
if (*ptemp) {

if (strcmp(ptemp, "M")) {
if (ptemp=-strstr(ptemp, "OS")) {

StartD.PgmControl I- Ox8000;
if((ptemp-strchr(ptemp, '('))==NULL) help();
if(sscanf(++ptemp, "%d .%d". &StartD. lnitXPos.

&StartD. Ini tYPos) !- 2) help();
else help();

} else StartD.SessionType - 3;
} else help();

Figure ld. Start2 Program

/* not "/POS ... " */
I* "/PM" */
I* "IP" not a valid parameter */

Personal Systems/Issue 3, 1990

60

break;
case 'W':

if (*ptemp) {
if(ptemp!=strstr(ptemp, "IN")) help();
else StartD.SessionType = 2;

} else help();
break;

case 'I':

}

if (*ptemp) {
if (ptemp=strstr(ptemp. "CON")) {

ptemp = ptemp + 3;
StartD. Icon Fi le IcF;
switch (*ptemp) {
case '\O':

Options /= DEF_ ICON;
IcF[OJ = O;
break;

case ·=·:
strcpy(IcF, ++ptemp);
Options &= ~DEF_ ICON;
break;

default:
help();

}
} else if (ptemp==strstr(ptemp.
else help();

else StartD.InheritOpt = O;
break;

/* endswitch */
"NV")) Start 0. PgmControl

case 'M':
if (*ptemp) {

if(ptemp==strstr(ptemp, "IN")) StartD.PgmControl · I= 4;

I= i:

else if(ptemp==strstr(ptemp, "AX")) StartD.PgmControl I= 2·
else help();

}else help();
break;
case ·s·:

if (*ptemp) {
if (ptemp==strstr(ptemp, "IZ")) {

Sta rtD. PgmCont ro 1 I= Ox8000;
if((ptemp=strchr(ptemp. '('))=NULL) help();
if (s scanf (++ptemp, "%d. %d", &Sta rtD. I nitXSi ze,

&StartD.InitYSize)!=2) help();
else help();
else

break;
default:

help();

help();

if (count==argc) help();
ptemp = argv[count]; strupr(ptemp);

/* not "/SIZ .. " */
I* "IS" invalid */

/* endswitch */
/* endfor */

/**
* Looks for icon file if /ICON is specified *
**!

if (Options & DEF _ ICON) {
if (Options & NO_ COMSPEC) {

strcpy(IcF, argv[count]);

Figure le. Start2 Program

Personal Systems/Issue 3, 1990

61

if(ptemp - strrchr(IcF, '.')) strcpy(ptemp, ".ICO"J;
else FileError(argv[count]J;

else {
parsename(buffer, argv[count]);
if(((buffer+strlen(buffer)-4)-strstr(buffer, ".EXE")) 11

((buffer+strlen(buffer)-4)-strstr(buffer. ".CMD"JJ J {
dirl - (HDIR) 1;
size - l;
if(!DosFindFirst(buffer. &dirl, 0, &info, sizeof(info),
&size. OLJJ {

strcpy (IcF, buffer);
ptemp - strrchr(IcF, '.');
strcpy (ptemp, ".ICO");

else FileError (buffer);

}else if (strchr(buffer, '.')-NULL)
strcat (buffer, ".EXE");

/* No file extension */
I* try .EXE for extension*/

)

di rl - (HDIRJ 1;
&size - 1;
if (DosFindFirst(buffer, &dirl. 0, &info, sizeof(info),
&size, OLJJ {

ptemp - strchr(buffer, '.');
st rcpy (++ptemp. "CMD"); /* try .CMD for extension */
dirl - (HDIRJ l;
size - l;
if(DosFindFirst(buffer, &dirl. 0, &info, sizeof(info),
&size, OLJ) {

printf("\nTry to find file via PATH- environment string.\n");
else {
strcpy(lcF, buffer);
ptemp = strrchr(IcF, '.');
strcpy(ptemp, ". ICO"J;

} else {
strcpy(IcF, buffer);
ptemp = strrchr(IcF, '.');
strcpy(ptemp. ". ICO"J;
}

i f (! I c F [OJ J { /* Still haven't found file * /
strcpy(buffer2, argv[count] J;
ptemp - buffer2;
if(((ptemp+strlen(ptemp)-4)-strstr(ptemp, ".EXE")) 11

((ptemp+strlen(ptemp)-4) - strstr(ptemp, ".CMD")J) {
if(!DosSearchPath(3, "PATH", ptemp, buffer, sizeof(buffer)J)(

strcpy(IcF, buffer);
ptemp - strrchr(IcF, '.');
strcpy(ptemp, ". ICO");

} else FileError(argv[countJ) ;
} else if (strchr(ptemp, '.')-NULL) {
strcat(ptemp, ".EXE");
if (DosSearchPath(3, "PATH", ptemp, buffer, sizeof(buffer))) {

ptemp - strchr(argv[count]. •. • J;
strcpy(++ptemp, "CMD");
i f(DosSearchPath(3, "PATH". argv[count]. buffer,
sizeof(buffer))) FileError(argv[count]);
else {

strcpy(lcF, buffer);
ptemp - strrchr(IcF, '.');

Figure lf. Start2 Program

Personal Systems/Issue 3, 1990

62

strcpy(ptemp, ".IC0");
}
J else {

strcpy(IcF, buffer);
ptemp - strrchr(IcF, '.');
strcpy(ptemp, ". IC0");
)

/* endif */
/* endif */
/* endif */

/**
* Clean up for the /N parameter *
**/
if (0ptions&N0_ C0MSPEC) {

strcpy(PN, argv[count++]);
else {
if(!strlen(parms)) strcpy(parms, "/K");

/* endif */

for (; count<argc; count++) {
strcat(parms. " ");
strcat(parms, argv[count]);

/* endfor */

if (StartD.PgmTitle) printf("\nProgram title %s", PT);
if (StartD. PgmName) printf("\nProgram name %s", PN);

printf("\nParameters %s", parms);
if (StartD.IconFile) printf("\nlcon file name %s", IcF);
printf("\nReturn code %u\n", DosStartSession(&StartD, &SessID,
&Process ID));
)

/**
* Function to initialize DosStartSession data structure to defaults. The defaults set in this function are the same *
* ones set in the 0S/2 ST ART command. *
**/
i nit ()
{
StartD.Length = 50;
StartD.Related - 0;
StartD.Trace0pt - 0;
StartD.TermQ = NULL;
StartD.Environment - NULL;
StartD.PgmHandle - 0;
StartD.PgmTitle - NULL;
StartD.PgmName - PN;
strcpy(PN, getenv("C0MSPEC"));
StartD.Pgmlnputs = parms;
StartD.IconFile - NULL;
StartD.FgBg = l;
StartD.Inherit0pt = 1;
StartD.SessionType = l;
StartD.PgmControl - 0x0000;
StartD.InitXPos - 50;
StartD.InitYPos = 40;

StartD.InitXSize - 200;

Figure lh. Start2 Program

/* data structure length*/
/* independent process */
/* trace option off*/

/* program title*/

/* icon tile * /
/* background */
/* inherit from shell proc */
/* screen set by shell */

Personal Systems/Issue 3, 1990

StartD.InitYSize - 400;
}

63

/**
* Generic tile error function. Function does little more than display the error number. *
**/
Fil eError(s)
char *s;
(

}

int i - 0;
printf("\nError looking for default icon file of: %s\nBuffer is: ", s);
while((i < sizeof(buffer)) && (buffer[i]! - '\0')) putchar(buffer[i++]);
pause();
exit(l);

/**
* Pause function. Handy during troubleshooting *
**/
pause()
(

printf("\n
getchar();

Press enter to continue ... ");

/**
* Function to display help *
**/
help()
{
int i;
printf("Help: displayed due to syntax error or user request.\n");
for (i=O; *help_ text[i]; i++) (

if(strstr(help_ text[i]. "/I ")!-NULL) pause();
printf("%s", help_text[i]);

/* endfor */
exit(l);
}

/**
* Function to parse the tile name from the command line. I could not find a function to return a fully qualified
* file name from different combinations of what the user might want to type on the command line, so I had to
* write the function. For example, assume that a system has two logical drives, C and D. The current directory is
* \CDIR1\CDIR2 for the C: drive, and \DDIR1\DDIR2 on D: drive. There is a CDIR3 subdirectory in the
* \CDIR1\CDIR2 directory, and a DDIR3 subdirectory in the \DDIR1\DDIR2 directory. Assume that the current
* drive is C:. Assume that each directory has programs that a user might want run; programs named as follows:
* PROGCl.EXE in C:\CDIRl directory, PROGC2.EXE in C:\CDIR1\CDIR2 directory, PROGD3.EXE in
* D:\DDIR1\DDIR2\DDIR3 directory, and so on.
*
* If the user types in:
* the function returns:

*
* If the user types in:
* the function returns:

*
* If the user types in:

Figure Ii. Start2 Program

PROGC2
C:\CDIR1\CDIR2\PROGC2

CDIR3\PROGC3
C:\CDIR1\CDIR2\CDIR3\PROGC3

\CDIRl\PROGCl

Personal Systems/Issue 3, 1990

*
*
*
•
*
•
*
•
*
*

*
*
*
•
•
•

64

* the function returns: C:\CDIRl\PROGCl *
* *
* If the user types in: .. \PROGCl *
* the function returns: C:\CDIRl\PROGCl *
* *
* If the user types in: D:DDIR3\ .. \..\PROGD1 *
* the function returns: D:\DDIRl \PROGDl *
**!
void parsename(out, in)
char *in, *out;
{

char *ptrl;
US HORT d rv, path_ l en;
ULONG drv_map;

if (*(in+l)==':' && isalpha(*in))
*out= toupper(*in++);
drv = *out - 'A'+ 1;
in++;

} else {
DosQCurDi sk(&drv, &drv_map);
*out= drv + 'A' - l;

} /* endif */
strcpy(out+l, ":");
if (*in=='\\') in++;
else {

DosQCurDir(drv, CurDir, &path_ len);
*(CurDir+path_ len) = '\O';
strcat(out, "\\");
strcat (out, CurDi r);
}

while (*in) {
if (*in=='.') {

if (*++in = · . ')
if (ptrl=strrchr(out, '\ \')) {

*ptrl = '\O';
} else {

/* endif */

printf("\nCannot chdir back past the root.\n");
exit(l);

/* endif */
in++;

} /* endif */
in++;

} else {
ptrl =out+ strlen(out);
*ptrl++ = '\\';
while (*in && *in!='\\') *ptrl++ - *in++;
*ptrl = '\0';
if (*in='\\') in++;

Figure lj. Start2 Program

/* endif */
/* endwhile */

Personal Systems/Issue 3, 1990

CUA: A
Consistent
Interface

Jennifer L. Wilson
IBM Corporation
Boca Raton, Florida

Common User Access (CUA),
which is one section of Systems
Application Architecture TM

(SAA™), provides a consistent
user interface for application de­
velopers. The current version of
CUA defines models and design
principles for high-level design.
For detailed design, individual
components are defined. When

65 . I
,.,..4," :.I - - I - . . . :'

designing applications, basic
CUA principles should be fol­
lowed, which will produce an ap­
plication interface that is easy to
use and learn.

With the large number of applica­
tions available today, application de­
velopers must find as many ways as
possible to get the competitive edge
for their products. One way is to de­
sign applications using the Common
User Access (CUA) interface. With
CU A, applications are easier to use
and provide a consistent interface
with other applications and the oper­
ating system. Tools for developing
CUA applications are available to
shorten your development time.

Personal Systems/Issue 3, 1990

SAA and CUA
Systems Application Architecture
(SAA) is a set of guidelines that al­
lows applications to be more consis­
tent. CUA is the part of SAA that
describes the panel display and the
user interaction of a product. SAA
and CUA apply to both the program­
mable workstation environment and
to nonprogrammable terminal
interfaces.

By designing applications using
CUA, applications are easier to
learn. CUA let application users
focus on the actual work they are
trying to do, rather than on the inter­
face being used. Rather than focus­
ing on which keys to press to use an

editor, for example, the focus is on
the document being edited.

It is also easier for users to switch
from one CUA application to an­
other without having to learn a new
interface. This is very useful, espe­
cially for OS/2 applications, be­
cause applications can be windowed
on the same screen. Consistency
within the product itself is also a
benefit of CUA.

CUA Evolution
The original definition of CUA was
published in December 1987 as
SAA, CUA: Panel Design and User
Interaction (SC26-435 I). Two sets
of rules were defined depending on
the application type: one for graph­
ics and the other for text.

This manual was replaced in June
1989 by the SAA, CUA: Basic Inter­
face Design Guide (SC26-4583) and
the SAA, CUA: Advanced lnte,face
Design Guide (SC26-4582). The
basic guide defines the interface for
nonprogrammable terminal applica­
tions, while the advanced guide de­
fines the interface for workstation
applications (such as those running
on OS/2).

The guides define CUA at three lev­
els of detail. First, the basic design
principles are defined. Next, mod­
els for high-level guidelines are de­
scribed; and finally, detailed
descriptions of the use of CUA com­
ponents are given.

The principles, models, and rules
are for generic rather than specific
application types, such as word pro­
cessing or accounting.

The basic CUA design principles
are to let users control the action
and to encourage a conceptual
model of the interface. Users

66

should be able to continue when
they run into problems, and should
find that the interface is similar to
others they use.

CUA Models
Entry and graphical are the two
basic CUA models. The entry
model can be used for non­
programmable terminals, while the
graphical model is for programma­
ble workstations.

Both models define the display and
interaction of applications. An ob­
ject-action philosophy is used,
where, for example, files (objects)
are selected, and the delete function
(action) is chosen and performed.

System pull-downs
include options to size,

restore, move, minimize,
and maximize the

window.

Workplace Environment
As the graphical model is an exten­
sion of the December 1987 CUA
graphics definition , the workplace
environment is an extension of the
graphical model.

The workplace environment focuses.
strongly on objects and lists. Inter­
action between objects and in­
stances of objects can be done by
mouse drag. Connections can also
be made between objects. The
Office Vision™ product has many of
the features of the workplace model.

As computer use and technology

Personal Systems/Issue 3, 1990

continue to change, CUA will
evolve to meet the future needs.

CUA Components
The various components of a pro­
grammable terminal application in­
terface are defined by the graphical
model CUA rules. The components
include the basic display (Figure 1)
with windows and dialog boxes,
and the contents of the display used
to implement the interface. Display
contents can include the action bar
and pull-downs, pushbuttons , help,
scroll bars, and many types of lists.

Figure I shows the location and ap­
pearance of some CUA compo­
nents. For more details, use the
CUA design guides.

A window, and its ability to be
sized and moved, is defined by
CUA. Borders, system pull-downs,
and window-sizing icons are de­
fined. System pull-downs include
options to size, restore, move, mini­
mize, and maximize the window.

A dialog box (also sometimes called
a pop-up box) is used for interac­
tions requiring a response. A dialog
box may be modal, where the re­
sponse must be received before con­
tinuing or modeless, allowing users
to work in other windows before
responding.

Action bars and the pull-downs asso­
ciated with the action bar items con­
tain the operations to perform on
the objects selected. These bars are
used in windows where various op­
erations can be performed. Stan­
dard pull-downs are defined for
actions used often in applications.

The use of pushbuttons is an easy
way to complete a panel or cancel
an operation. Pushbuttons are often
found in dialog boxes.

Scroll bars are often used when
long lists of items are displayed.
The scroll bar represents the entire
list. The slider box represents the
proportional size and position
within the list of currently displayed
items.

Help is an important part of an ap­
plication. Having help information
available for each item on the
screen is called "contextual help."
Other help options are available
from the help pull-down, which can
also be selected from the help panel
itself.

Many controls are defined to make
selection easier. Controls used to
make selections from lists are radio
buttons, check boxes, list boxes,

67

combination boxes, drop-down lists,
drop-down combination boxes, spin
buttons, and value sets.

Depending on the control, users
may select one or any number of
items, choose from selections, or
turn items off or on. Radio buttons
are used when only one selection
can be made. Check boxes are used
if choices are on or off. The list,
combination, drop-down list, drop­
down combination boxes and the
spin button, are all controls used to
select an item from a list of items.

Single- and multiple-line entry
fields are fill-in controls. Entry
fields may have a default value or
may be filled in by users.

Designing CUA Applications
CUA can easily be incorporated
into a new application if it is in­
cluded in the early design process.
Some tools to help you to include
CUA-compliant components are
available, such as OS/2 Presentation
Manager™ and Dialog Manager.

To increase application usability,
your design should follow CUA
guidelines, along with some com­
mon sense. Some basic guidelines
to follow are to:

• Keep it simple

• Allow recovery from mistakes

• Limit the amount of information
the user must remember

• Group common objects close
together

System Icon Group - Main

Entry Field

I
Control Panel

_erogram

[tB File Man

I~ lntroducin

Action Bar

Help index ... ----t1--1- +1--- Pull-down
Communications Port

Communi ations settings

los,21 0S/2 Wind._o_w _____ _ - Scroll Bar

Port l @j ~9M1 : OC0M2
[os,2] 0S/2 Full Screen

~ Print Manager
Baudrate: ~
Word length O 5 0 6 @7 ~

--Radio Button

Parity

Stop bits

O Even

@1

@Odd

01.5

Handshake O Hardware @ None

~ancell ~

Figure 1. CUA Components

0 None

02 --Dialog Box

- Pushbutton

Personal Systems/Issue 3, 1990

Window

ii
Desktop Manager

• Offer a default when there is a
common answer

• List the most frequently re­
quested items first

• Allow the interface to be tailored
where possible for transition
from new to experienced users

Where possible, pertinent informa­
tion in help and information panels
should be on one page.

Summary
CUA sets a standard of providing
application users easy learning and
transition. By using the tools avail­
able, your applications can be made

68

easier by designing CUA into them.
CUA will continue to evolve as in­
terface technology improves, giving
users improved access to their work.

References

• SAA, Common User Access:
Basic Interface Design Guide
(SC26-4583)

• SAA, Common User Access: Ad­
vanced Interface Design Guide
(SC26-4582)

• SAA, Writing Applications: A De­
sign Guide (SC26-4362)

• SAA, A Guide for Evaluating Ap­
plications (G320-9803)

Personal Systems/Issue 3, 1990

ABOUT THE AUTHOR

Jennifer Wilson is a senior
associate programmer in IBM' s
Entry Systems Division (ESD) in
Boca Raton, Florida, working in
OS/2 Systems Assurance. Since
joining IBM in 1985, she has
worked in ESD development for
educational software and inte1face
tools, as well as on the design and
development of the DOS 4.00 shell.
Jennifer has a dual degree in
computer science and mathematics
from Pennsylvania State University ,
and recently received an MB.A.
from Nova University.

69

Little Solutions

Welcome to Little Solutions. Starting with this issue, this column will be
a regular feature. It will become a repository for those tidbits of informa­
tion that are just lurking in the back of the mind ... waiting to get out and
help the readers with a problem they may come across ... one whose solu­
tion may cause a deep sigh of relief and, just maybe, elicit a "Why didn't
I think of that?" response. Then again, it could be a short-and-sweet so­
lution that took its author weeks to stumble across.

We hope you enjoy the column, and welcome your ideas and submissions
that can make a workday task easier for other readers. Read on, and
send us your own Little Solutions in care of the Editor.

WinSetPresParam(...
WinSetPresParam is a new API in
OS/2 Version 1.2. Its purpose is to
set (or change) a presentation param­
eter of a window. This change can
be the background and foreground,
hilite or normal, or disabled colors
of a window. It can also be used to
set or change the font name and
size or the font handle.

WinSetPresParam is an easy way to
set the presentation parameters of
controls. A Listbox was the only
control that the programmer had di­
rect control over in OS/2 Version
1. 1. Now that same capability and
more can be used for all controls.

One of the idiosyncrasies of the API
is how you pass the size of the pre­
sentation parameter. When setting
a font in a control, you may have
the following:

fontname - "8.helv"
WinSetPresParam(hwnd.
PP FONTNAMESIZE,
s i ~eof (fontname)+ 1. fontname)

Be sure that the "sizeof' parameter
is increased by one to accommodate
the NULL terminator that C re­
quires. If this is not done, the re­
sults of the call will be
unpredictable. - Lany Pollis, IBM,
Dallas

Personal Systems/Issue 3, 1990

Enhanced 80386 Memory
Adapter Needs Installation
Program
The Enhanced 80386 Memory Ex­
pansion Option (referred to hereaf­
ter as the Memory Adapter) requires
an installation program when used
in a PS/2. These programs are de­
scribed in more detail in the PS/2
Hardware lnte1face Technical Refer­
ence (S68X-2330).

When any adapter is installed in a
PS/2, the Automatic Configuration
Utility must be used to tell the PS/2
that the adapter is there. This utility
requires an Adapter Description File
(ADF file), which describes the
adapter being installed. Most adapt­
ers on the market today only require
this file. However, some memory
adapters may also require an
Adapter Description Program
(ADP). If required, ADP is identi­
fied by the EXEC_ADP entry in the
ADF file. The SETUP program
uses the adapter description pro­
gram to initialize these adapters be­
fore the Power On Self Test (POST)
is run. POST checks to see if the
hardware is working properly.

Complicated adapters (like the En­
hanced 80386 Memory Expansion
Option) require an initialization pro­
gram that runs after POST. Before
a PS/2 can use the adapter, this pro­
gram must have information stored
on track O of the hard file or have a
device driver on the boot diskette.

Using an initialization program
means that POST, and therefore the
system reference diskette, won't rec­
ognize the memory installed, be­
cause it has not yet been initialized.
This means that displaying the sys­
tem configuration, using the system
reference diskette, won't show the
adapter memory even though it's
correctly installed. However, oper-

ating systems (DOS, OS/2, and
AIX) will recognize and use this
memory as long as the track 0 pro­
gram is installed (when booting
from hard disk) or the device driver
is installed (when booting from disk­
ette or server image).

The Memory Adapter uses an initial­
ization program to support 1 MB, 2
MB, and 4 MB Single In-Line Mem­
ory Modules (SIMMs), installed in
any combination in any of the four
SIMM sockets. These programs are
installed on the fixed disk by the
Set Configuration Option of the
main menu on the systems reference
diskette and must be used to install
an initialization program correctly.
The programs are not installed by
the automatic configuration program.

The Set Configuration Option exam­
ines the adapter 's ADF file . If this
file contains an INITPROG state­
ment, the required code is installed
on track 0 of the fixed disk. This
program will have a name like
ICardlD.ADF, where the CardID
part is the adapter's POS identifica­
tion in hex. For the Memory
Adapter the ADF file is
IFDDF.ADF.

To understand how these programs
work, see what happens at IPL time.
After powering on, POST is exe­
cuted. If the hardware is working,
POST passes control to the operat­
ing system. It expects to find the
boot record on track 0. This boot re­
cord loads the operating system.

At installation time, based on infor­
mation in the Memory Adapter's
ADF file on the reference diskette,
setup moves the master boot record
on track 0 and replaces it with the
initialization program for the
adapter. When POST passes con­
trol to what it thinks is the master
boot record, it's really passing con-

70

trol to the adapter's initialization
program. When the adapter setup is
complete, the initialization program
passes control to the master boot re­
cord, and the operating system is
loaded.

When power is turned on, POST
checks the hardware and counts any
memory that it knows about. Be­
cause the Memory Adapter has not
yet been initialized, POST doesn't
see this memory and won't count it.
This doesn't mean the memory
won't be used by the operating sys­
tem. When POST is complete, it
passes control to the Memory
Adapter's initialization program,
which counts the memory installed
on the adapter. It then turns control
over to the boot record, and the op­
erating system is loaded.

Assuming a PS/2 Model 70 with 4
MB installed on the system board, 6
MB installed on the Memory
Adapter, and a power-on password
installed, POST will count to 4096,
prompt for the power-on password,
then tum control over to the initial­
ization program, which will count
from 4097 to 10240. Control is
then passed to the operating system,
and it's loaded. Note: Both OS/2
and AIX require at least 3 MB of
memory for installation. If only 2
MB of memory is installed on the
system board, the Enhanced 80386
Memory Expansion Option Disk­
ette, Version 1.03, must be used, or
the installation cannot be com­
pleted. - Chuck Hanford, IBM, Dal­
las

Installing an i486 Power
Platform
The key is to follow the installation
instructions; otherwise, problems
will ensue. First read the IBM PS/2
Model 70 486 Software Support
Package. Next, read the installation

Personal Systems/Issue 3, 1990

instructions prior to installing both
the power platform kit and the com­
munications software. Each of the
following have their own steps:

3270 Connections: With the IBM
Token-Ring Network Adapter/A or
the Local Area Network Program,
some files in the 486 support disk­
ette must replace some files on your
fixed disk. If these files are not re­
placed, problems may occur while
bringing up communications on the
power platform.

LAN 1.32: The NET-
WORK 1.CMD file, usually found
in the \pclpxs\netl_30 directory on
the fixed disk, must be updated.
Use the DOS COPY command and
the support diskette to replace the
old file with the new one. This is a
read-only file, and the read-only at­
tribute must be turned off before re­
placing the old file.

Network Bridge Program 1.0:
ECCC0MOD.SYS, usually found in
the root directory, must be replaced.

IBM Token-Ring Network Bridge:
ECCC0MOD.SYS and
ECCSBMOD.SYS files must be re­
placed. They are usually found in
the R_BRIDGE directory.

LAN Support Program 1.1: The
DXMC0MOD.SYS and
DXMT0MOS.SYS files, usually
found in the root directory , must be
replaced.

The token-ring diagnostics on the
PS/2 Model 70 486 reference disk­
ette must also be updated. Use the
DOS COPY command to copy the
files @E000.DGS and
DIFPDPM.EXE from the support
diskette to a backup copy of the
Model 70 486 reference diskette. -
Chuck Hanford, IBM, Dallas

New Products

Hardware

IBM PS/2 Model 80
(8580-A21, -A31)
The PS/2 Model 80 fami ly is expanded
with two new models, the 8580-A21
and 8580-A31. The Model 80 A21 and
A3 l are high-function, Micro Channel
floor-standing systems utilizing the
Intel® 80386 processor running at 25
MHz with 64 KB memory cache. With
these systems, IBM introduces Small
Computer System Interface (SCSI) as a
standard feature to the PS/2 product
line. In addition, this system contains 4
MB of 80-nanosecond, high-speed mem­
ory, and a Direct Memory Access
(OMA) parallel printer port. The
8580-A2 l contains a 120 MB SCSI
fixed-disk drive with 23 millisecond av­
erage access time, and the 8580-A3 l
contains a technologically advanced 320
MB SCSI fixed-disk drive with a 64 KB
look-ahead buffer and 12.5 millisecond
average access time.

Design enhancements to these systems
offer significant advantages in configura­
tion flexibility and expansion. In addi­
tion to providing seven available adapter
slots, the standard configuration will sup­
port up to five internal Direct Access
Storage Devices (DASO), such as disk­
ette drives, fixed-disk drives, tape
backup and CD-ROM. An optional fea­
ture allows support of up to six internal
DASO devices.

The IBM PS/2 4 MB System Board
Memory Expansion Kit allows greater
system board memory expansion. This
feature is for the Model 80 A21 and
A3 l only and provides an additional 4
MB of 80-nanosecond system board
memory.

The IBM PS/2 1.44 MB One-inch High
Diskette Drive Kit C allows the installa­
tion of the second 1.44 MB diskette
drive.

The Models 8580-A2 l and 8580-A3 l
are supported by OS/2 Standard Edition
1.1 and 1.2, OS/2 Extended Edition 1.1

71

and 1.2, and DOS Version 3.30 and
4.00, and Advanced Interactive Execu­
tive PS/2 (AIX PS/2) Version 1.2.

Highlights:

• PS/2 Micro Channel SCSI Adapter -
as standard DASO controller

• 64 KB memory cache

• 4 MB standard system board memory
- expandable to 8 MB

• 120 MB SCSI 23 millisecond 320
MB SCSI 12.5 millisecond fixed­
disk drive models

• Micro Channel architecture with
eight 1/0 slots: the 8580-A2land
-A31 contain four 32-bit slots and
four 16-bit slots

• Five internal DASO bays - option­
ally expandable to six bays

• Support for 5.25- inch internal DASO
device

IBM PS/2 Model 80-061,
-121, -321
The PS/2 Model 80 family is expanded
with two new models, the IBM PS/2
Model 8580-121 and the IBM PS/2
Model 8580-321. The 8580- 121 and
-321 are high-function Micro Channel
floor-standing systems utilizing the Intel
80386 processor running at 20 MHz.

Standard features include 1.44 MB, 3.5-
inch, half-high diskette drive, VGA
graphics and 2 MB of 80-nanosecond
memory on the system board. The
fixed-disk controller is the newly intro­
duced SmaJI Computer System Inter­
face, the PS/2 Micro Channel SCSI
Adapter. This bus master adapter has
additional expansion capability and an
interface for the new 3.5-inch, half-high
SCSI fixed-disk drives of either 120
MB (8580-121) or 320 MB (8580-321).
Both models can be expanded to 4 MB
of memory on the system board and sup­
port up to 16 MB of system memory.

Design enhancements to these systems
offer significant advantages in configura­
tion flexibility and expansion. In addi­
tion to providing several available
adapter slots, the standard configuration

Personal Systems/Issue 3, 1990

will support up to five internal Direct
Access Storage Devices (DASO), such
as diskette drives, fixed-disk drives, tape
back-up, and CD-ROM. An optional
feature allows support of up to six inter­
nal DASO devices.

The Models 8580-121 and 8580-321 are
supported by OS/2 Standard Edition 1.1
and 1.2, OS/2 Extended Edition 1.l and
1.2, the DOS Version 3.30 and 4.00,
and Advanced Interactive Executive
PS/2 (AlX PS/2) Version 1.2.

Highlights:

• PS/2 Micro Channel SCSI Adapter -
as standard DASO controller

• 2 MB SCSI 23 millisecond or 320
millisecond SCSI 12.5 millisecond
fixed-disk drive models

• 120 MB SCSI 23 millisecond or 320
MB SCSI 12.5 fixed-disk drive
models

• Micro Channel architecture with
eight l/0 slots: 8580-121, -32 1 con­
tain three 32-bit slots and five J 6-bit
slots (SCSI adapter requires one 16-
bit slot)

• Five internal DASO bays - option­
al ly expandable to six bays

• Support for 5.25-inch internal
DASO bay

IBM PS/2 Model 65 SX
-061, -121, -321
The PS/2 Model 65 SX 8565-061 and
the 8565-121, two new Micro Channel
architecture models based on the popu­
lar Intel 80386 SX® processor, utilize
the 80386 SX processor running at 16
MHz. Standard features include a 1.44
MB, 3.5-inch, half-high diskette drive,
VGA graphics and 2 MB of memory on
the system board . The fixed-disk drive
controller is the recently introduced
Small Computer System Interface
(SCSI), the PS/2 Micro Channel SCSI
Adapter. This bus master adapter has
additional expansion capability while
providing an interface for the new 3.5-
inch, half-high SCSI fixed-disk drives
of either 60 MB (8565-061) or 120 MB
(8565-121). Both models can be ex-

panded to 8 MB of memory on the sys­
tem board and support up to 16 MB of
system memory.

Design enhancements to these systems
offer significant advantages in configura­
tion flexibility and expansion. In addi­
tion to providing seven available adapter
slots, the standard configuration will sup­
port up to five internal Direct Access
Storage Devices (DASD), such as disk­
ette drives, fixed-disk drives, tape
backup and CD-ROM. An optional fea­
ture allows support of up to six internal
DASD devices.

The model 8565-061 and 8565-121 are
supported by OS/2 Standard Edition 1.1
and 1.2, OS/2 Extended Edition 1.1 and
1.2, the DOS Version 3.30 and 4.00.

Highlights:

• PS/2 Micro Channel SCSI Adapter -
as standard DASD controller

• 60 MB or 120 MB SCSI 23 millisec­
ond fixed-disk models

• 2 MB memory standard on system
board - expandable to 8 MB

• Micro Channel architecture with
eight 16-bit 1/0 slots (SCSI adapter
requires one I/O slot)

• Five internal DASD Bays - option­
ally expandable to six bays

• Support for 5.25-inch internal DASD
device

IBM PS/2 Model 25 286
(8525-006, G06~ 026, G36)
The PS/2 Model 25 286 system unit is
an enhanced version of the PS/2 Model
25 and features an 80286 microproces­
sor, expanded system board memory (.5
to 4 MB), new 3.5-inch DASD options,
and an integrated 12-inch VGA color
monitor. The PS/2 Model 25 286 uti­
lizes the 80286 processor operating at
10 MHz with one wait state to system
memory and has the following inte­
grated functions: parallel port, serial
port, pointing device port, keyboard
port, 1.44 MB diskette drive support,
and VGA graphics. The PS/2 Model 25
286 is offered in diskette only and 30

72

MB fixed-disk models with the IBM En­
hanced (IOI-key) or Space Saving
(84-key) Keyboard.

The following new options are also of­
fered:

• IBM PS/2 1.44 MB One-inch High
Diskette Drive I

• IBM PS/2 20 MB Fixed Disk Drive I

• IBM PS/2 30 MB Fixed Disk Drive I

• IBM PS/2 Fixed Disk Drive Kit A

Highlights:

• .5 MB (diskette only) or 1 MB mem­
ory standard on the system board

• Capability for increased memory to 4
MB on the system board

• 30 MB fixed-disk capacity

• Audio earphone connector

• 12-inch VGA color monitor

PS/2 Micro Channel SCSI
Adapter
The IBM PS/2 Micro Channel SCSI
Adapter is a 16-bit Micro Channel bus
master adapter that is expandable for all
PS/2 Micro Channel architecture sys­
tems. This adapter connects multiple in­
ternal and/or external SCSI devices and
has a 8.3 MB per second Micro Channel
burst transfer rate. The adapter card
may be installed in a 16- or 32-bit card
slot and connects SCSI high-perfor­
mance fixed-disk drives, scanners, print­
ers, CD-ROMs and other SCSI
peripherals.

The IBM PS/2 Card to Option Cable at­
taches the first external SCSI device to
the Micro Channel SCSI adapter. The
PS/2 Micro Channel SCSI Adapter Op­
tion Interface Terminator, included with
the PS/2 Card to Option Cable, is a ter­
minator installed on the last SCSI de­
vice to terminate the SCSI bus.

The IBM PS/2 Option to Option Cable
is a standard SCSI cable that attaches an
external SCSI device to another external
SCSI device.

Personal Systems/Issue 3, 1990

Highlights:

• Industry-standard interface

• PS/2 16-bit intelligent bus master
adapter

• Supports up to seven physical SCSI
devices

• Supports internal and external SCSI
devices (single-ended)

• Micro Channel data transfer rate of
up to 8.3 MB per second

• Supports asynchronous or synchro­
nous SCSI devices

IBM PS/2 Micro Channel
SCSI Adapter with Cache
The PS/2 Micro Channel SCSI Adapter
with Cache is a 32-bit bus master
adapter with expandability for all PS/2
Micro Channel systems. This Small
Computer System Interface (SCSI)
adapter can be installed in either a 16-
or 32-bit card slot, has a 16.6 MB burst
transfer rate, and a 521 KB Cache
buffer. It adheres to the Small Com­
puter System Interface (SCSI), which
connects for multiple internal and/or ex­
ternal SCSI devices. These devices in­
clude SCSI high-performance fixed-disk
drives, scanners, CD-ROM drive , and
other SCSI peripherals.

The PS/2 Micro Channel SCSI Adapter
External Terminator is a plug required
to terminate the SCSI bus at the external
port on the SCSI adapter. The external
terminator is installed at the SCSI
adapter port when no external SCSI de­
vices are attached.

Highlights:

• Industry-standard interface

• PS/2 32-bit intelligent bus master
adapter

• Supports a maximum of seven physi­
cal SCSI devices

• Supports internal and external SCSI
devices (single-ended)

• Installable in any full-length micro
channel 16- or 32-bit slot

• Micro Channel data transfer rate of
up to 16.6 MB per second

• Supports asynchronous or synchro­
nous SCSI devices

IBM PS/2 320 MB, 120 MB,
60 MB SCSI Fixed-Disk
Drive and Kit A
IBM introduces a new family of storage
devices, the PS/2 60 MB SCSI Fixed
Disk Drive, 120 MB SCSI Fixed Disk
Drive, and 320 MB SCSI Fixed Disk
Drive. These Small Computer System
Interface (SCSI) fixed-disk drives, with
either a PS/2 Micro Channel SCSI
Adapter or a PS/2 Micro Channel SCSI
Adapter with Cache installed, enhance
the storage expandability of all PS/2
Models 8560, 8565, and 8580.

The PS/2 SCSI Fixed Disk Drive Kit A
is specifically designed and required to
support the installation of two SCSI
fixed-disk drives in the front bay of
PS/2 Models 8560, 8565, and 8580 with
a PS/2 Micro Channel SCSI Adapter or
a PS/2 Micro Channel SCSI Adapter
with Cache installed.

Highlights:

• Industry-standard SCSI interface (sin­
gle-ended)

• High-performance storage devices

- 60 MB formatted capacity, 23 mil­
lisecond average access time, 32
KB buffer

- 120 MB formatted capacity, 23
millisecond average time, 32 KB
buffer

- 320 MB formatted capacity, 12.5
millisecond average access time,
64 KB look-ahead buffer

• Improved system configuration flexi­
bility

PS/2 CD-ROM Drive and
Kit A
The PS/2 CD-ROM Drive is a Compact
Disc-Read Only Memory drive. This in­
ternal device expands application solu­
tions of all PS/2 Models 8560, 8565,
and 8580 with Micro Channel by en-

73

abling various applications such as cata­
logs, libraries, and archives that are dis­
tributed on compact discs to be accessed
by a computer. The PS/2 CD-ROM
Drive adheres to the SmaJl Computer
System Interface (SCSI) and supports
compact discs with 600 MB typical ca­
pacity.

The IBM PS/2 CD-ROM Drive Kit A is
specifically designed and required to
support the installation of a PS/2 CD­
ROM Drive in PS/2 Models 8580, 8565,
and 8560 with a PS/2 Micro Channel
SCSI Adapter or the PS/2 Micro Chan­
nel SCSI Adapter with Cache instaJled.

Highlights:

• Industry-standard SCSI interface (sin­
gle ended)

• Industry-standard compact disc (ISO
9660)

• 380 millisecond average access time

• Analog stereo headphone output jack

• Improved flexibility

PS/2 SCSI External
CD-ROM and Cables
The PS/2 External CD-ROM Drive
Model 001 (3510-001) is an external
Compact Disc-Read Only Memory
drive. This external device expands ap­
plications solutions of all PS/2 Micro
Channel systems by enabl ing various ap­
plications such as catalogs, libraries, and
archives, which are distributed on Com­
pact Discs to be accessed by a com­
puter. The PS/2 External CD-ROM
Drive utilizes the Small Computer Sys­
tem Interface (SCSI) and supports com­
pact discs with 600 MB typical capacity.

The PS/2 External CD-ROM Drive can
be attached to any PS/2 Micro Channel
system with a PS/2 Micro Channel
SCSI Adapter or the PS/2 Micro Chan­
nel SCSI Adapter with Cache instaJled.
The first PS/2 External CD-ROM Drive
is attached to the SCSI adapter through
a PS/2 Card to Option Cable. Addi­
tional PS/2 External CD-ROM Drives or
external SCSI devices are attached
through the PS/2 Option to Option
Cable.

Personal Systems/Issue 3, 1990

Highlights:

• Industry-standard SCSI interface (sin­
gle-ended)

• Industry-standard compact disc (ISO
9660)

• 600 MB typical formatted capacity
(disc dependent)

• 380 millisecond average access time

• Analog stereo output jack

• Universal 32-watt power supply

• External SCSI ID selector

• Pushbutton power switch with power­
on indicator

IBM PS/2 Internal Tape
Backup Unit Installation
Kit A
The IBM PS/2 Internal Tape Backup
Unit Installation Kit A allows the IBM
PS/2 Internal Tape Backup Unit, which
is sold separately (Feature 5279, part
number 30F5279), to connect and be
easily installed in the new PS/2 Model
80 - A21, A31, 121,321 and the new
PS/2 Model 65 SX - 06 I, 121 system
units.

Highlights:

• Allows installation of PS/2 Internal
Tape Backup Unit in new system
units of the PS/2 Model 80s and
Model 65 SX

• Easy to instaJI

• Flat cable, 1.7 inches long, with edge
connector on one end and 34-pin con­
nector on other end

IBM PS/2 Model P70 386
The PS/2 Model P70 386 (8573-031) is
a new model of the P70 family, provid­
ing high-function at a lower entry point
than the previously announced models.
The 8573-031 is a 16 MHz version,
with a 30 MB fixed-disk drive. It in­
cludes Micro Channel architecture, a
VGA, 16-gray scale plasma display and
a fully compatible PS/2 enhanced key­
board, all integrated into a single pack­
age. The new model features the 80386

32-bit microprocessor, high-density
memory technology, and a wide range
of integrated features. With the capabil­
ity of supporting up to 16 MB of high­
speed real memory, 30 MB of disk
storage, full VGA graphics, and an op­
tional 80387 math co-processor, the
8573-031 provides significant perfor­
mance for portable computer operations.
All P70 models maintain compatibility
with most existing software products for
IBM personal systems.

The 8573-031 provides 16 MHz 80386
performance with 2 MB of high-speed
(85 ns) memory and a 30 MB fixed disk.

Highlights:

• 30 MB portable version of 16 MHz
PS/2 Model 70 (8570)

• 2 MB memory standard, expandable
to 8 MB on the system board

• High-quality, 16-gray scale-inte­
grated gas plasma display

• 80386 16 MHz 32-bit microprocessor
and optional co-processor

• 30 MB fixed disk with integrated con­
troller

• Micro Channel architecture with a 16-
and 32-bit bus

• One full- and one half-length expan­
sion slot

• Ergonomic briefcase, portable design

• External storage device port

IBM PS/2 Color Display
8515
The IBM PS/2 Color Display 8515 is a
multimode, analog, color display featur­
ing high contrast and clarity for alphanu­
meric, graphics, and image applications.
The 14-inch screen has a data area of
9.8 x 7.4 inches. It supports all VGA
modes and has a maximum of 1024 x
768 pixel addressability, and 256 colors
at a time may be selected when using
the IBM 8514/A Display Adapter.

In response to emerging customer re­
quests, the PS/2 Color Display 8515 has
lower VLMF (Very Low Magnetic
Field), meeting field emission require-

74

ments of Scandinavia. The tilt/swivel
base is standard.

Highlights:

• 14-inch display with four programma­
ble selected modes up to 1024 x 768
pixel resolution.

• 0.28 mm phosphorus-dot pitch per­
mitting .sharp, clear viewing

• Data area 42 percent larger than the
8513

• High-contrast screen with reduced
glare and minimum color washout in
bright lighting conditions

• Tilt/swivel pedestal with 300 degrees
rotation

IBM LaserPrinter E
(4019-E0l)
The IBM LaserPrinter E is a lower­
speed version of the IBM LaserPrinter.
It can produce letter-quality text at up to
five pages per minute, and graphics at
up to 300 x 300 dots per inch (DPI).
Datastream, graphics, and paper-han­
dling capability of the IBM LaserPrinter
E is identical to that of the IBM
LaserPrinter.

The IBM LaserPrinter E uses the same
single-element print cartridge, and sup­
ports all the optional paper-handling fea­
tures, memory cards, font cards,
downloadable font packages,
PostScript® options, and printer-sharing
option currently available for the IBM
Laser Printer.

The IBM LaserPrinter E can be con­
verted to the IO-page-per-minute IBM
LaserPrinter via the upgrade option.
The IBM LaserPrinter E attaches to
IBM PS/2 products, IBM Personal Com­
puters, and selected IBM displays and
IBM systems.

Highlights:

• Prints up to five pages per minute, up
to 300 DPI for text and image on a
variety of stationery supplies, in ei­
ther portrait or landscape orientation

• Compact size: 360 mm X 469 mm
(14.2 X 18.5 in) footprint

Personal Systems/Issue 3, 1990

• Single-element high-yield cartridge
with up to 10,000-page yield in typi­
cal text-printing applications

• Two hundred-sheet auto feeder stan­
dard, 500-sheet second drawer and
auto envelope feeders optional

• Support for IBM Personal Printer
Data Stream (PPDS), HewJett­
Packard® (HP®) LaserJet® Series II
emulation, and plotter emulation
(IBM 7372 and HP 7475A color plot­
ters)

• Extensive font support: resident
fonts, downloadable fonts, and font
cards

• Commonality of features and sup­
plies with the IBM LaserPrinter
(4019-001)

• 5 12 KB memory standard, expand­
able to 1.5 MB, 2.5 MB, or 4 MB

• Can be shared by up to six PCs via
the printer sharing option

Postscript Options and
Download Font Card for
the IBM LaserPrinter
The PostScript Options provide the IBM
LaserPrinter with Postscript processing
capability. They consist of the
PostScript Option, which has 17 resi­
dent outline fonts; the PostScript Option
(Premium Font Package) has 17 resi­
dent, plus 22 outline fonts (located on
the Outline Font Card). The Outline
Font Card is avai lable separately.

Screen fonts in the Microsoft Windows
and the Adobe® formats are provided,
and allow the document to be displayed
as it will be printed.

Highlights:

• Fu ll PostScript page description lan­
guage capability

- Choice of either 17 or 39 outline
fonts

- Screen fonts to display the docu­
ments as it will be printed

• 3.5 MB memory card supports more
complex jobs in all IBM LaserPrinter
operating modes

- Can increase performance in Post­
Script mode

- Provides storage for additional
fonts

Bell and Howell Copiscan II
Document Scanners
The Bell and Howell Copiscan®ll Docu­
ment Scanner, Models 2135 and 3338,
allows users to convert documents to
digital records that can be managed,
transmitted, displayed, printed, and
stored. The scanners are part of IBM's
ImagePlus ™ support and are attachable
to an IBM PS/2 via an IBM Image
Adapter/A Card.

The Copiscan II Document Scanner,
Models 2135 and 3338, replaces the
Copiscan I, Model 21151, and has im­
proved scanning capabilities .

Models 2135 and 3338 have been veri­
fied for compliance with FCC rules as
FCC, Class A devices for use only in in­
dustrial, commercial , or business envi­
ronments.

The Model 2135 has an average scan­
ning speed of 1.2 seconds per 8- l/2-by-
11-inch page and 200 dot-per-inch
resolution. The transport speed is 9.0
inches per second with a data rate of 5.0
Mbps. It handles document sizes from
2-1 /2 to 8-1 /2 inches wide and 14
inches long.

The Model 3338 ' s average scanning
speed per 8-1/2-by- l 1-inch page de­
pends on the resolution selection (300
or 200 dots per inch, respectively). It
handles documents sizes from four to 11
inches wide and 17 inches long.

Highlights:

• High-quality resolution; selectable
resolution with Model 3338

• Accepts various document sizes

• High transport speed and data rate

• More reliable due to less mechanical
parts

• Accepts a wide range of document
thickness ranging from .002" to 008"

75

Software

IBM Office Vision/2 Release
1.1 Availability
Office Vision/2 Release 1. 1 offers in­
creased flexibility in the areas of migra­
tion and communications configuration.
The OS/2 Office Feature now suggests
OS/2 Extended Edition Version 1.2 and
OS/2 LAN Server Program Version 1.2,
providing a logical migration path to fu­
ture OfficeVision/2 offerings. The OS/2
Office DOS Requester feature download
option allows the user to execute the re­
quester code from the IBM Disk Operat­
ing System (DOS) workstation that may
result in improved performance.

A key enhancement to the OS/2 Office
Feature is the application launch facility
that allows a customer to add OS/2 ap­
plications to the Office window. The
user provides the application name and
the desired icon (a personalized icon,
using the OS/2 icon editor or the default
icon) in a single-step enrollment pro­
cess. Once enrolled, each OS/2 applica­
tion can be invoked via an icon on the
office window. A new "Forward-With­
A-Reply" mail function enables a user
to add text to an existing note and for­
ward the updated note to other users.

Availability of U.S. English is planned
for May 25 , 1990.

This product features an application
launch facility, which allows the user to
SNAP-ON OS/2 application as icons
onto the main OS/2 Office window.

IBM PS/2 Internal Tape
Backup Program and
Upgrade (0S/2 Version),
and Convenience Kit.
The PS/2 Internal Tape Backup Program
(OS/2 Version) enhances the PS/2 Mod­
els 50, 50Z, 60, 70, and 80 by allowing
users to transfer up to 120 MB of OS/2
formatted data from a disk storage de­
vice to a removable .25-inch mini tape
cartridge for later recall.

For the customer's convenience, the
IBM PS/2 Internal Tape Backup Conve-

Personal Systems/Issue 3, 1990

nience Kit (OS/2 Version) has in one
package the IBM PS/2 Internal Tape
Backup Program (OS/2 Version), the
IBM PS/2 Internal Tape Backup Unit
and formatted mini tape cartridge. The
IBM PS72 Internal Tape Backup Pro­
gram provides the customer with an
easy-to-use, easy-to-install, and techno­
logically advanced internal tape backup
system.

Customers can upgrade from the DOS
version of the Internal Tape Backup Pro­
gram to the OS/2 version by ordering
the upgrade.

This product gives users the ability to
back up and restore data internally from
the fixed disk while the systems manage­
ment process is enhanced.

IBM DisplayWrite 5
Composer
IBM DisplayWrite™ 5 Composer is a
PC DOS-based application product, con­
taining all the functions of the IBM Per­
sonal Computer DisplayWrite 5/2
Composer licensed program, including a
user-specified option to select between
two different user levels, the ability to
view and print text, images and graph­
ics; and a command line function that
gives an expert user the ability to by­
pass menus while in text. IBM and non­
IBM printer support are featured.
Direct customer support for end users
via the IBM Support Center, l 800 237-
5511, will be available at general avail­
ability.

Linguistics functions such as spell aid,
spell verify, hyphenation, and synonyms
(in selected languages) are supported by
means of the IBM DisplayWrite diction­
aries that include 16 additional lan­
guages, plus legal and medical
terminologies. Up to three of these dic­
tionaries can be used concurrently with
DisplayWrite 5.

Highlights:

• List processing

• Table of Contents/Index/Table of Au­
thorities (reference lists)

• LAN server code included

• Host integration using the GCI Intel
1860 Developer Toolkits for C and
Fortran

IBM Current, Version 1.1
The IBM Current, Version 1.1 licensed
program is a flexible and easy-to-use in­
formation manager that enables users to
organize and retrieve personal data. Ver­
sion 1.1 supports Microsoft® Windows
Version 2.0 and 3.0.

A program upgrade option is offered, at
no charge, that allows IBM Current, Ver­
sion 1.0 users to obtain the new func­
tions.

Highlights:

• Categories increased to 100; connec­
tions increased to 200; reports in­
creased to 100; views increased to
100; items increased to 4,000 and
fields increased to 50

• Dynamic Data Exchange (DOE) sup­
port

• Tagged windows can be saved; more
fonts supported including fractional
fonts

• Alarms can be set to signal appoint­
ments

• Apply auto-assignment rules during
import

• Multiple data directories can be cre­
ated for applications use

• Allows reversal of first and last
names on reports

• Existing information in dBASE III®,
dBASE IV™, DIF and ASCII files
can be easily incorporated into IBM
Current using the versatile import fea­
ture

Intel 1860 Developer
Toolkits for C and Fortran
The Intel i860™ Software Development
Tools for FORTRAN vendor-logo pro­
grams that contain the software tools for
development of FORTRAN applications
for the IBM PS/2 Wizard Adapter
(3462) feature. The software developer
can develop numeric-intensive FOR-

76

TRAN applications running under OS/2
that can take advantage of Intel i860
RISC processor. These tools are native
compiler, consisting of an assembler,
linker, debugger, FORTRAN compiler,
libraries and vectorizers that that pro­
vide access to the capabilities of the
i860 microprocessor.

Highlights:

• The combination of software develop­
ment tools with the PS/2 Wizard
Adapter (#7321) feature and the PS/2
Model 70 and 80 provides and excel­
lent new platform for C an FOR­
TRAN applications running under
AIX and OS/2

• User productivity gains are realized
through a flexible, desktop solution
for a broad range of applications that
typically run on workstation or main­
frame platforms

• The customers investment is pro­
tected when an upgrade path mi­
grates from a general-purpose PS/2
system configuration to a technical
computing platform

• The application developers can ex­
pand the applications base to include
both C and FORTRAN applications,
running under OS/2 or AIX

AIX PS/2 Xstation Manager
The AIX PS/2 Xstation Manager li­
censed program supports the IBM Xsta­
tion 120, a low-priced,
advanced-function X server station that
is local area network (LAN)-attached.
The combination of the AIX PS/2 Xsta­
tion Manager and Xstation 120 allows
for X client graphics and character­
based applications. Windows can be
opened on the Xstation 120 by an appli­
cation running on an AIX host, non­
AIX hosts or non-IBM host that
supports X Window System™ Version
11, Release 3. The X Window sepa­
rated from user interaction and dis­
played (at the X server station) Xstation
120 users may control and view multi­
ple applications in multiple windows on
a single screen.

Personal Systems/Issue 3, 1990

Highlights:
Supports for attachment of one or more
IBM Xstation 120 systems

• Allows Ethernet® or optional IBM
Token Ring attachment

• Is designed to be compatible with X
Window System Version 11 ,
Release 3

• Provides functions that are equivalent
to the IBM AIX Xstation Man­
ager/6000

IBM AIXwindows
Environment for PS/2
The AIXwindows™ Environment is a
state-of-the-art graphical user environ­
ment for PS/2 models using the AIX®
PS/2 Operating System. The AIX­
windows Environment lets users de­
velop and run AIXwindows application
and AIX PS/2 X-Windows-based appli­
cations. The AIXwindows Environment
for PS/2 consists of the following com­
ponents:

• AIXwindows - A graphical user in­
terface and tool kit based on the
OSF/MotiffM user environment com­
ponent

• AIXwindows Desktop - A graphical
desktop that allows users to browse
the file system and start-up applica­
tions

• AIX PS/2 X-Windows Version 1.2
based on the X Window System Ver­
sion 11 Release 3

Highlights:

• AIXwindows graphical user interface
and on OSF/Motif

• Desktop function for end users

• AIX PS/2 X-Windows support

AIX PS/2 NextStep
Environment Version 1.1
AIX PS/2 NextStep™ Environment is a
state-of-the-art graphical user interface
and programming environment for IBM
AIX workstations, and compatible with
the same application programming inter­
face (API) as the NextStep product

(Software Release 1.0, provided by
NeXT® Inc.). (Note: AIX PS/2
NextStep Environment Version 1.1 is
marketed as AIX PS/2 Graphic User En­
vironment Version 1.1 in some other
countries).

AIX PS/2 NextStep Environment Ver­
sion 1.1 has icons and menus for easy
access to system utilities and applica­
tions. The AIX NextStep Interface
Builder® has a rich set of well-defined
objects and graphical cut-and-paste capa­
bilities for designing and implementing
application user interfaces. The Objec­
tive-C™ Complier provides the benefits
for object-oriented programming for de­
velopers who choose to design addi­
tional objects for the application
development environment. AIX PS/2
NextStep Environment is designed to in­
crease the productivity of programmers
and end users.

Highlights:

• A Window Server

• Display PostScript interpreter

• Workspace management tool

• Full use of screen and control of mul­
tiple applications

• Objective-C capability to design addi­
tional objects for the application de­
velopment environment

• Cut-and-paste capabilities for
designing and implementing applica­
tion user interfaces

• Client/Server model for distributed
windows using PostScript protocol

IBM PS/2 ImagePlus
Workstation Program
Version 1.1
IBM PS/2 lmagePlus Workstation Pro­
gram Version 1.1 is the latest release of
the ImagePlus Workstation Program de­
signed to capture, view, print, and ma­
nipulate image documents on an IBM
PS/2 Micro Channel architecture com­
puter in a DOS Version 4.0 environ­
ment. This program is a component of
the IBM ImagePlus MYS/Enterprise
Systems Architecture (MVS/ESA ™),

77

Application System/400® (AS/400™),
and System/36 Systems, which allow
the conversion of paper-intensive appli­
cations to computer-based electronic sys­
tems. It is being made available with a
number of new functions designed to
further enhance high-volume image doc­
ument handling in high-performance en­
vironments.

Highlights:

• New functions (table of contents,
movable horizontal ruler line, page
marking, adjustable zoom box, and
enhanced document/ working set ma­
nipulation) and additional scanner
support, to improve workstation pro­
ductivity

• New features (configurable display
options and co-resident functions) to
augment image-processing applica­
tions

• Statements of directions to prepare
customers for high-speed batch scan­
ning audio capture and playback, and
future OS/2 versions of the IBM
ImagePlus Workstation Program.

IBM SAA EASEL/2
Version 1.1 and Statement
of Direction
IBM is announcing enhancements to the
two currently available OS/2 Extended
Edition Licensed Programs EASEL®
for OS/2 EE Development System and
EASEL for OS/2 EE Runtime Facility.
These IBM programs are used for devel­
oping and executing graphical applica­
tions on OS/2 programmable
workstations. With this announcement,
EASEL now supports:

• OS/2 EE Database Manager

• Cooperative processing via an Ad­
vanced Program-to-Program Commu­
nication (APPC) mapped
conversation interface

• Access to AS/400 applications
through the OS/2 EE 5250 Worksta­
tion Feature

• The Common User Access (CUA)
graphical model user interface en­
hancements of OS/2 Version 1.2

Personal Systems/Issue 3, 1990

The Layout/CUA facility, which is part
of the EASEL for OS/2 Development
System, provides a highly productive
CUA user interface definition facility
that prompts application developers for
conformance with Systems Application
Architecture (SAA) and CUA guide­
lines. The EASEL for OS/2 EE Devel­
opment System also contains the
EASEL for OS/2 EE Runtime Facility
to help developers debug newly devel­
oped EASEL for OS/2 EE applications.

IBM EASEL for OS/2 EE is in the Anal­
ysis/Design phase of the AD/CYCLE™
framework. It is a design tool allowing
the developer to create the end-user in­
terface part of a cooperative processing
application.

EASEL can support cooperative process­
ing applications, stand-alone applica­
tions and applications that are front ends
to existing host terminal-based applica­
tions. Front ends can be written for
host applications that use 5250 termi­
nals, in addition to the existing EASEL
support for front ends to host applica­
tions that use 3270 an asynchronous ter­
minals.

EASEL for OS/2 EE is developed by In­
teractive Images Inc. Woburn, Mass.

Highlights:

• Growth can be enabled by writing
new EASEL for OS/2 EE applica­
tions using new easily learned, power­
ful programming facilities that
support cooperative processing and
audio capture and playback

• User productivity gains can be
achieved by implementing consistent
graphical CUA and SQL-based appli­
cations

• Investments are protected by imple­
menting EASEL for OS/2 applica­
tions that build on existing
AS/400-based applications and exist­
ing data

IBM OS/2 Extended Edition
Version 1.2 Available
OS/2 Extended Edition (OS/2 EE) Ver­
sion 1.2 is available with the functions

announced May 16, 1989, and the en­
hancements announced November 14,
1989.

IBM OS/2 Local Area
Network Server Version 1.2
Availability
The OS/2 LAN Server Version 1.2 of­
fers significant new functions in LAN re­
source and information sharing for IBM
DOS and OS/2 Requesters on IBM
Token Ring and personal computer net­
works. Enhancements include a DOS
LAN Requester and LAN Support Pro­
gram Version 1.1 included in the prod­
uct, full-function server support for the
OS/2 Extended Edition (EE) Version
1.2 Requester, a new file replication ser­
vice for automatically copying selected
files , enhanced Requester access to re­
sources controlled by LAN Servers, a
Server Migration Utility that will assist
in the move from IBM Personal Com­
puter LAN Program (PCLP) Version 1.3
Server and IBM OS/2 LAN Server Ver­
sion 1.0 and additional LAN enhance­
ments derived from the the IBM OS/2
Extended Edition Version 1.2 features,
including support for Ethernet LANs.

IBM TCP/IP Version 1.1
For OS/2 Extended Edition
The Transmission Control Protocol/Inter­
net Protocol (TCP/IP) Version 1.1 for
OS/2 EE completely replaces the
TCP/IP Version 1.0 offering. TCP/IP
Version 1.1 for OS/2 Extended Edition
offers all the function of the Version 1 .0
product and makes available a new fea­
ture, Network File System™ (NFS™)
Client. The NFS Client feature is based
on Request for Comments (RFC), 1094,
Network File System Protocol Specifica­
tion.

Additionally, client support of the Serial
Line Internet Protocol (SLIP) is pro­
vided. Support is also included for a
File Transfer Protocol Application Pro­
gramming Interface (FTP API) and PC
Network. Support of the IBM Industrial
Computer, GEARBOX™ Model 800 is
announced for both TCP/IP Version 1.0
for OS/2 and for TCP/IP Version 1.1 for
OS/2 Extended Edition.

78

The requirement for both the IBM C
Language Complier Version 1.1 and the
Microsoft C™ Compiler Version 5.1 has
been removed. The only compiler re­
quirement is the IBM C Language Com­
plier Version 1.1.

Highlights

• Business solutions enabled by the
NFS Client function

• Growth enablement and investment
protection facilitated by the NFS Cli­
ent capability and support of the PC
Network

IBM GDDM-OS Link
Version 1.0 Available
GDDM™ - OS/2 Link provides host
graphics support for the GDDM Series
under OS/2 Extended Edition. The user
can run typical GDDM applications in
the OS/2 Presentation Manager window­
ing environment, save a picture locally,
and print and plot via the OS/2 Presenta­
tion Manager.

IBM Gearbox Language
Extensions Version 1.2
Available
GEARBOX Language Extensions Ver­
sion 1.2 is now available.

GEARBOX Language Extensions for
PC DOS and GEARBOX Language Ex­
tensions for OS/2 programs have been
enhanced to support the GEARBOX
Model 800. GEARBOX Language Ex­
tensions for PC DOS and OS/2 are de­
signed to allow GEARBOX Model 800,
7552 users to write programs that take
advantage of the unique features of the
processors, such as power-fail notifica­
tion, that are not a part of other IBM in­
dustrial computers.

IBM Spelling Series: Levels
1-111 Version 1.10
The IBM Spelling Series is an educa­
tional program that combines practices,
tests, games, and activities making learn­
ing to spell enjoyable. The series devel­
ops and improves spelling skills for
Grades 1-6. Spelling patterns and tradi­
tional "trouble words" are included .

Personal Systems/Issue 3, 1990

More than 700 words are presented.
Product features include the ability to
alter the lesson sequence, add spelling
word lists, delete and hide lessons, and
with the the use of speech adapter, pro­
vide teacher recorded and digitized
speech. The Spanish alphabet can also
be supported. The series may be used
on IBM Personal Computers or PS/2
system units in a network or stand-alone
environment.

Highlights:

• Creates a highly interactive learning
environment for spelling instruction
in grades 1-6

• Uses human speech to provide audi­
ble instructions, demonstrations,
hints, and feedback, eliminating read­
ing dependencies

• Provides a combination of structured
and exploratory activities

• Permits teacher control of activities
and lesson sequence

• Allows additional word lists to be
added

IBM SciBench
IBM SciBench is a general-purpose labo­
ratory data acquisition and processing
system that allows a user to write sim­
ple data acquisition programs for dis­
playing and plotting the data on any
OS/2 display and OS/2 supported
printer or plotter. IBM SciBench is de­
signed to be used to a stand-alone plot­
ting package or as a data acquisition
package to meet the needs of the physi­
cal scientist.

Highlights:

• Uniquely designed to meet the needs
of the physical scientist

• Stand-alone plotting package or data
acquisition package

• Device-independent graphical
hardcopy

• Prototype device drivers

• Display and plotting functions for
graphical representation of scientific
data

Personal Science
Laboratory (PSL) Explorer
Software and Curriculum
Personal Science Laboratory® (PSL®)
Explorer Version 1.00 is the interactive
software that gives teachers and students
the ability to control microcomputer­
based laboratory experiments.

Personal Science Laboratory (PSL) Cur­
riculum Version 1.00 is the instructional
material designed for students in grade
levels 6 through 12 who are questioning
the world around them and who are in
the midst of developing important sci­
ence and math skills. This curriculum
materials are also applicable for college­
for collage and university-level science
and math students. By using the curricu­
lum materials with the PSL Tempera­
ture, Light, pH, and Motion modules
and sensors the student and teacher are
guided through a variety of interesting
experiments.

Highlights:

• Allows students to analyze, explore,
ask "what if' questions, and use the
computer to make measurements and
to graph data

• Allows students and teachers to solve
experimental problems by doing real­
time data collection, graphing, and
analyses with curricular emphasis on
development of process skills, prob­
lem solving, and higher-order think­
ing ski lls

• Creates a self-paced, highly interac­
tive learning environment of personal
discovery and involvement, which
helps stimulate students' curiosity

79

• Teacher guides and lesson plans de­
signed to help teacher and student ex­
periment in a guided format based on
student ability and varying grade lev­
els

• Provides experiments in various sci­
ence subjects from grades 6-12

• Instruction is based on research meth­
odologies

• Complements other IBM math and
science offerings

Reading for Meaning;
Levels II-IV Version 2.0
The IBM Reading for Meaning Series is
an educational reading program that
draws from current theory and technol­
ogy. The series is designed to lead stu­
dents in grades three through eight
through a variety of instructions that in­
creases reading awareness and compre­
hension while making the reader think
about what is read. The levels indicate
complexity so students are able to use
reading materials that correspond to
their achievement level. Features in­
clude colored illustrations, interesting
stories, and editing capabilities, which
allow teachers to create lessons of their
own or edit existing ones.

Highlights:

• Allows the adding of teacher-ori­
ented materials

• Permits the teacher to edit existing
lessons

• Provides a 485-picture library to illus­
trate teacher-authored stories. A por­
tion of these graphics support adult

Personal Systems/Issue 3, 1990

themes in support of adult literacy re­
quirements

• 256 color mode graphics are used to
create exciting, motivational pictures

• Online keyboard guide helps are in­
cluded

Statement of
Direction

Image Plus System PS/2 -
Statement of Direction
[BM intends to provide an IBM
lmagePlus System PS/2, an OS/2 LAN­
based addition to the lmagePlus Family.
This ImagePlus system will provide
image capability for customers' OS/2
line-of business applications. It will pro­
vide image storage and retrieval, with
document/folder/case and workflow
management capabilities similar to cur­
rent lmagePlus family members (lmage­
Plus System MVSS/ESA, AS400, and
System/36). The system will utilize
scanners, facsimile 1/0 (FAX), magnetic
and optical disk(ettes) , optical libraries,
image displays, and page printers to cap­
ture, index, store, retrieve, and distribute
image documents electronically. This
will permit customers to convert large
volumes of paper-based documents to
electronic image processing. The sys­
tem is being designed using IBM's SAA
and lmagePlus object architectures and
will be common user access (CUA) com­
pliant. This system is being developed
jointly by IBM and Eastman Kodak
Company.

Depending on the application, EMS memory can be used to contain code,
data and hea . a e 12

FASTOPEN can provide better performance that may not be
___________________________ a_v_ailable from s stem buffers. (a e 23)

Good grief! What is this error, and how can we fix it?
(a e 28)

DOS LAN Requester provides many functional enhancements
____________________________ o_ver PC LAN Pro ram 1.3. (a e 34)

In some situations, the particular controls on a
_____ d_ialo box ma be data de endent. (a e 43) --------- - - --- ---

ST ART2 gives the user two ways to specify
the icon file. (page 54)

System pull-downs include options to size, restore, move,
____________ m_i_n_im_ iz_e----'-,_a_n_d_m_ aximize the window. (age 66) ______ _

------------------ -

Welcome to Little Solutions.
(a e 69)

5325-5007-00

