
IBM'S MAGAZINE FOR PC PROFESSIONALS

NIi's La [rOJ[1QJm Wmrnillili~
Distributed SOM
~@[MJ &][if)@ @[p)@[if)@@@

S\IX31 'Hll:JOM ll:JO:J
9 ,O, .llV'Jl:l3d

Ol'vd
38\f.lSOd ·s·n

3.1\fl:l >nnB --------- -- --- - -- - ---- - - ---=="= ':' =<&

1,14RC
Ut4HRC
.... c. ..
A.f"UO""...AN
At41E>N M
AMIQt..l"(

AHll"'Ati~ h1
Al1ll.Aaf "'

•. l•-fittt@fifUkl-Mi ,_ ·· D

Clf:>.EXE

EAUT " EGA qc

""" """"' FOISK COH
FDISKPMf.XE
Ft.£S :'0

~ ..
ICO"ED T exe
NUC

INISYS RC

KE"-'ICO,,,,
K£YIOARD OCP

-';OE C'.>M

~ITORDF
MORE COH

::s2 1u

PLASI-\A R(""

fflCHIOSK EXf'.
PHCOHTRL SAIC
::ittcO!'lmt.. NF

~ORHArEJ<f
p~)()(EX?

PH$i-1£. FXE
Pt1$?:>0l. EX'"
PR NT.CC"M
i>S..:i::i~ ... $1:.":I
OSTAT.E.XE

Soff ouch Systems, Inc., Workstation
1300 South Meridian, Suite 600, Oklahoma City, Oklahoma 731 08

Specialists Since 1989
Circle #15 on reader service card.

Lock and Load!
CENTRALLY MANAGING, SECURING, AND
DELIVERING AN OS/2 DESKTOP OVER ANY LAN BY ERIC OSMANN

OS/2 has become a corporate workhorse
since its inception several years ago. Yet many
questions have arisen on how to manage the
workplace shell and, most important, secure
it and the applications it helps launch.

There are a few tools which advocate
their ability to manage the shell - most work
best in a stand-alone mode. Still, the corpo­
rate environment demands efficient central­
ized management and security optimized for
networks. This requirement, combined with
my background in development of the OS/2
workplace shell, has led to a careful exami­
nation of OS/2 security and commitment to
The Desktop Observatory by Pinnacle Tech­
nology. This paper discusses the requirements
and the features built into Pinnacle's unique
technology.

Requirements
Although pure file level security requires

IBM's Security Enabling Services (Pinnacle
has been a member of Beta efforts and is
architected to support these key features al­
ready available for 2.11), there are critical
elements in OS/2 security that go well be­
yond the simple ability to restrict right mouse
button options. These include: 1) ease of
creating desktops; 2) network design; 3) ad­
ditional security elements; and 4) flexibility.

Ease
Pinnacle has developed a powerful SOM

based tool called "Finder". Finder allows an
administrator to quickly create a desktop,
snap a picture of it (including all of those ob­
lique DOS settings) and save it to Pinnacle's
bandwidth-sensitive file (patent pending).
Files can, of course, be saved anywhere on
the network and instantly be built at any ma­
chine. There is no need for an administrator
to know REXX, although those who do will
appreciate Pinnacle's ability to associate

Eric O.Hm11111 ll'as a member of OS/2 \Vork­
place Shell developmeut team at IBM aud
left iu late /995 to lead developmeut at Pi11-
11llcle Tec/1110/ogy. Jue. He resides n-ith his
fllmily iu Colorndo Springs lllllf cau be
reached through electro11ic mail at
helpdesk@pi1111llcletech.<·om.

The above is an advetti.sement, Copyright 1995, Pinnncl~ T~chnology In c.

"events" (programs, etc.) with objects and the
pure speed at which it builds desktops.

Network Design
The Desktop Observatory was designed

with networks in mind. Administrators will
appreciate Pinnacle's small file size of less
than IOk per desktop and its ability to work
over any protocol and NOS. With this band­
width, lap tops can be secured over a phone
line!

ACCESS DENIED!

The Desktop Ob1ervato1:v i, able to limit us­
ers to a centrally managed specific list of ap­
plicatiou,. User a/tempts to cleverly create
objects ,·ia Prog,\1a11, ll'ord 11roce,sors, or
REXX will result iu a sernrity violatiou !

Another feature of the Desktop Obser­
vatory is that it allows administration of
OS/2 clients with the current security server
for network based applications. Regardless
what NOS is being utilized by a firm, The
Desktop Observatory will not build an ob­
ject unless it can resolve its security checks.
It cannot resolve these check unless users are
correctly authenticated. The result is a user
gets his/her appropriate desktop whenever
and wherever they log on and the adminis­
trator does not have to redundantly maintain
rights. No desktop need be provided until
after a user has been authenticated (those in­
terested in Single Sign-On should contact
Pinnacle).

More on Security
Auditing is a common requirement for

the security conscious. A full capability is
built into The Observatory. This is integrated
with the security daemon which includes the
ability to restrict clever users from building
their own objects to violate client security.
Also, great pains are taken to reduce all ex­
posures between power-on and the workplace
shell. A special program was created to start

the shell (dskshell.cmd), insure networking
starts correctly, and inhibit user's ability to
interrupt the process via a end-break. Dis­
abling the Alt-Fx function is a feature that
can be engaged, if desired. Users can enable
their hardware boot protection in the bios or
call Pinnacle for a centrally distributable soft­
ware solution.

Flexibility
There are circumstances where corpo­

rations do not need high security and only
need the ability for users to get the appropri­
ate desktop. In fact, this may be combined
with the need for users to be able to modify
their own desktop yet move from machine to
machine-or what some customers refer to as
a "follow me" desktop. Pinnacle uses MID
(Mobile Independent Desktops) to provide
this flexibility. MID simply utilizes the Finder
function mentioned earlier to "snap" the desk­
top at log off and save the appropriate file to
the network so it can be delivered at the next
Jog on. This process applies to PowerPC
desktops as well (the Observatory is provided
on the PowerPC- OS/2 Application Sampler).
End Users should not care what type of OS/2
machine they log onto and with Pinnacle's
technology they don't have to.

Summary
Whether you are interested in security

or centralized management and delivery of
OS/2 desktops, the technology available
through Pinnacle can save a great deal of
heartache and headaches.

Pi1111acle Technology, Inc. ll'as founded iu
1992 to bri11g four key elemellls to OS/2: I)
Ceutralized Ma11ageme11t; 2) Security; 3)
user-proof; am/ -I) ba11d11"idth sensitivity.
Pi1111acle\ unique means of efficieutly de­
livering desktops (patent pe11di11g) is used 011
m·er I 00,000 OS/2 ll'orkstatious ll'orldwide.
Current 11roducts include The Deskto/J Ob­
servatory V-1 (ceutralized desktop 11u11wge­
me11I and security), The Desktop Com­
mander (ceutrali~etl de.,ktop 111a11ageme11I),
aud Kid l'roof/2 (for sta11d-alo11e 11wchi11es).
They ca11 be reached at (800)-525-1650,
(317)-279-5/57, ll'Ww.pi111wcletech.c·om, or
ehe1111i11g@pi111wclctech.co111.

See us at Booth 515 at the IBM Technical Interchange Conference
Circle #17 on reader service card

The Object of This Issue

Back when I was in school (no unkind comments,
please), an object, as drilled into me by my mother
and my aunt (both of whom, as teachers in the
school I attended, suffered to teach me English
grammar) was a noun that was the result of the
action of a verb or a noun equivalent in a preposi­
tional phrase. As an editor, that definition is still
the first one that comes to mind when discussing
objects. So you can imagine the paradigm shift I
had to make when editing this issue!

If you look up "object" in IBM's Dictionary of
Computing, you'll find more than a dozen different
definitions-none of which defines today's object
technology as we discuss it here. In this issue, we're
talking about putting objects or "parts" together to
make a whole-a complete application. If you're into
developing applications, you're going to want to
read every word. Even if you're not a hard-core
developer, you'll learn how object technology is
making your computing activities easier and less
expensive.

This issue's authors teamed up to ensure they cov­
ered a wide range of SOM topics. They all used the
same sample program-a valet parking system-mak­
ing it easier for you to understand the similarities
and differences in each of the articles. In some
cases, the code samples were far too lengthy to
include in the magazine. However, you'll find all
the code samples on the World-Wide Web at
http://pscc.dfw.ibm.com/psmag/.

IBM Technical Interchange '96
Even though you'll find a wealth of information
about object technology and IBM's System Object
Model in this issue, we've just shown you the tip of
the iceberg. Where can you learn more? IBM's
Technical Interchange '96 (April 22-26 at the
Opryland Hotel in Nashville, Tennessee) provides
not only many one-hour elective sessions on devel­
oping with objects, but this year the conference is
offering five-hour tutorials, including sessions on
OpenDoc, SOM, open distributed computing, and
cross-platform application portability.

Make your plans now to attend the Technical
Interchange, where you'll have the chance to meet
and exchange ideas with your peers worldwide.
There's over 300 elective technical sessions cover­
ing four platforms-AIX, AS/400, OS/2, and S/390-
plus four keynote speakers, an exhibit hall filled
with the latest applications, and, of course, some
toe-tapping good times to be had in the capital of
country music. For more information, call (800)
872-7109 in the U.S. or Canada, or (617) 893-2056
outside of North America.

Betty Hawkins, Editor

Look for the reader service card (more information for you) and the
opinion card (so we'll know what you want) between pages 56 and 57.

Fill them out and mail them today!

2 PERSONAL SYSTEMS • MARCH/APRIL 1996

New Multimedia Sound Card for Micro Channel Newl
Produc~

Innovative 'ChipChat Sound Card' provides state-of-the-art multimedia audio for
Micro Channel computers. Supports DOS, Windows, OS/2, and ADC ...

INTRODUCING THE ChipChat®
Sound Card, an exciting new

product that provides state-of-the-art
multimedia audio for Micro Channel
computers.

Add this sound card to your PC
and hear CD quality audio from your
favorite multimedia programs.

The ChipChat Sound Card fits into
a full or half sized slot on a Micro
Channel® computer. It's hardware
compatible with just about every DOS
game and educational software out
there, including those that require
SoundBlaster® compatibility.

The ChipChat Sound Card comes
with it's own high performance soft­
ware drivers with 16-bit audio for
Windows® and for OS/2®. It also "works
like a charm" with the 8-bit audio
SoundBlaster drivers which are
shipped as standard with OS/2.

Audio In
Microphone

Audio Out

ChipChat Sound Card for Micro Channel

State of the Art Music Synthesis
The ChipChat Sound Card pro­

vides state-of-the-art music synthesis
in two forms: FM and W aveTable.

FM uses mathematical formulas to
emulate the sound of musical instru­
ments. FM synthesis provides good
quality sounds and is economical.

W aveTable synthesis stores 128
actual musical instrument samples on
a tiny chip, so it makes music that
sounds great - just like the actual
instrument! WaveTable is truly
state-of-the-art, and is the "method of
choice" of the music industry.

Exceptional Product
The ChipChat Sound Card comes

in two different models: The ChipChat
Sound-16 with FM for $199, and the
ChipChat Sound-32 with FM and
WaveTable for $259. If you buy the
Sound-16 and later decide you want
W aveTable, an upgrade is available.

The ChipChat Sound Card is
designed and manufactured in the
USA and has been subjected to rigor­
ous tests to guarantee a solid and
exceptional product.

The ChipChat Sound Card is
available direct from ChipChat Tech­
nology Group (313-565-4000), and
comes with the protection of the 30-
day moneyback ChipChat Guarantee.

Ordering information is at the
bottom of this page. Further informa-

' tion is at http://www.ChipChat.com

Send messages to wireless pagers from OS/2 Practical App I
for OS/2

Combine the Power of OS/2 with the Freedom of Wireless Messages .

THE CHIPCHAT WIRELESS COMMU­

NICATOR is an exciting software
product that sends text messages to
pagers directly from OS/2.

ChipChat workes with pagers from
any paging company, including Air­
touch, Ameritech, MobileComm,
PageNet, SkyTel and many others.

Remarkably easy to use
ChipChat has an easy-to-use,

workplace shell interface. You simply
drag a ChipChat Pager object out of a
template, configure the settings, and
start sending messages!

Page-Enable your applications
ChipChat can also send pager

messages from other applications,
including Rexx, and the command line!

ChipChat is ideal for LAN Admin­
istrators who want to receive an
informative text page when their net­
work needs attention!

Versatile, Easy, Reliable.
ChipChat is advanced multi­

threaded 32-bit object software based
on IBM's SOM technology. It's been
"through the wringer" with extensive
corporate beta testing and has passed
a suite ofrigorous tests set by IBM.
ChipChat is certified as "Ready for
08/2 Warp - NSTL Tested".

Join thousands of customers in the
USA and abroad who are successfully
using ChipChat for their OS/2 wireless
paging needs!

How much? Just $79
ChipChat Wireless Communicator

is available direct from ChipChat
Technology Group for only $79 and
comes with the protection of the 30 day
moneyback ChipChat Guarantee.

Ordering information is at the
bottom of this page.

Complete information is at the
ChipChat Internet Web site:
http://www.ChipChat.com.

The ChipChat Guarantee
If you're dissatisfied with a

ChipChat product for any reason,
if it isn't everything we say it is
and more, then return it within
30 days for a prompt, cheerful
refund.

r - How to Order
1 Phone 313-565-4000, Fax 313-565-4001, or Web http://www.ChipChat.com a Chi Chat
1 □ ChipChat Sound-16 Card with advanced FM music; DOS, Windows, and OS/2 support (AIX drivers are optional); CD quality

16-bit sound; 12-channel audio mixer; MPU-401 MIDI; Dual joystick port. (Can be upgraded to include Wave Table) . $199. I
I ID ChipChat Sound-32 Card - all the features of the ChipChat Sound-16 PLUS Incredible WaveTable music. $259.

1 □ ChipChat Wireless Communicator software with the easy-to-use workplace shell interface, powerful command line

I
C

I interface, ability to 'Page-Enable' your applications, and ability to 'Page Enable' your Internet WWWeb site. $79.

L

We accept Visa, MasterCard, and American Express. Add $10. for shipping.

@Copyright 1995 ChipChat Technology Group, 24224 Michigan Avenue, Dearborn, Michigan 48124 USA
ChipChat-Japan, Koga, Fukuoka Japan, phone: 81-(092)-943-0798 fax : 81-(092)-944-2253 --------------------------------------

Circle #18 on reader service card.

C, .,

0 II

'\ ~
n s ~®

4

-­Distributed SOM

IBM

ABOUT THE COVER
Noted Dallas artist Bill Carr captures the essence
of SOM's flexibility and power in this iss1w's cover.
SOM transforms your application development
efforts, letting you build robus~ reusable, distributed
applications.

Personal Systems
Advertising Representatives

Personal Systems accepts paid advertis­
ing for applications, products, or ser­
vices that run on or complement IBM's
personal computer hardware and soft­
ware products. To obtain a media kit
and advertising rate information, con­
tact one of the Personal Systems adver­
tising sales representatives at the
address below.

Lewis Edge & Associates, Inc.
366 Wall Street

Princeton, NJ 08540-1517

(800) ADS-4PSM

Winfield Boyer Ext. 124

Lewis Edge, Jr Ext. 123

Peter Griffin Ext. 126

Joseph Tomaszewski Ext. 125

Fax (609) 497-0412
CompuServe 72457,3535

Internet l_edge@netins.net

MCI Mail 275-0987
Voice (609) 683-7900

* Printed on partially recycled paper using
soy-based inks and may be recycled.

Printed in U.S.A.

PERSONAL SYSTEMS • MARCH/APRIL 1996

6

18

27

30

34

40

69

Personal Systems

FOCUS

What's New?
This issue's featured products include security software, data management products,
hardware and software designed for those with special needs, tax software, and Internet­
related products and information. It also highlights several books with topics ranging
from LAN management to answers for OS/2 Warp FAQs.

Seton Hall Students Lead the Way From the Wireless to the Real World
"The classroom of the future" is reality right now at Seton Hall University in South
Orange, New Jersey. Patrick Karle details the partnership between Seton Hall and IBM's
Microelectronics Division, resulting in a state-of-the-art infrared wireless classroom for
a group of high-potential students.

TECHNICAL

IBM System Object Model-The Wave of the Future (and Now!)
How does IBM's System Object Model (SOM) fit in the object world? What does SOM
mean to you as a developer? This article answers these questions, plus defines the
sample valet parking application used by the other articles in this issue.

Building SOM Objects with Native C++
Although using SOM with interface definition language (IDL) is great for new applica­
tions, what about existing C++ applications? Will you need to rewrite your class defini­
tions from C++ to IDL to take advantage of SOM and DSOM? With Direct-to-SOM (DTS),
the answer is a reverberating NO! See how you can use Direct-to-SOM to build SOM
objects directly from C++.

Distributing Objects with DSOM
This article provides you with background information for distributing objects with
Distributed SOM (DSOM) and walks you through the necessary changes to convert a
sample application into a DSOM application.

Using OpenDoc and SOM in Application Development
The initial version of OpenDoc is now available for OS/2. Learn about OpenDoc and
review the content of a simple "Hello World" component.

LITTLE SOLUTIONS

Corrective Service Information
Refer to this section for the latest maintenance release levels and other software service
information.

21

23

50

58

63

"Out, Damn Spot!"
or How to Rid Your 0S/2 Desktop of Pesky Programs

Having trouble getting rid of old applications? Want to clean up your INI files? Need to
split your EAs? Well, before you resort to Lady Macbeth's removal methods, find out
how SofTouch Systems' UniMaint will take care of these pesky problems for you.

Why SOM?
This article defines and overviews IBM's System Object Model (SOM) to give you a bet­
ter understanding of its impact on you, whether or not you're an application developer.
Alter defining SOM in detail, the article highlights its technical strengths and significance
in the marketplace.

Enabling Industrial-Strength 00 Applications with SOM and CORBAservices
This article discusses the central role that IBM's System Object Model (SOM) and Object
Management Group's (OMG's) CORBAservices specifications play in developing robust,
reusable, distributed applications. See what you can do today to prepare for tomorrow's
distributed development environments.

SOM Language Neutrality: A VisualAge for Smalltalk Perspective
This article addresses how to use VisualAge for Smalltalk (VAST), a premier workstation
application development tool, to provide a graphical user interface front end to a sample
application.

SOM Language Neutrality: An 00 COBOL Perspective
By describing an object-oriented COBOL program using SOM-enabled classes written in
C++, this article illustrates the language neutrality of SOMobjects and introduces many
of COBOL's new object-oriented language extensions.

IBM Persona/ Systems Technical Solutions is
published bimonthly by Personal Systems Competency
Center, International Business Machines Corporation,
Roanoke, Texas, U.SA. Send any correspondence and
address changes to Personal Systems at:

IBM Corp. Mail Stop 0 1 -04-60
5 West Kirkwood Blvd.
Roanoke, TX 76299-0015

Persona/ Systems can be found on the Internet's World­
Wide Web at: http://pscc.dfw.ibm.com/ psmag/

IBM customers are eligible to receive the magazine
free of charge and can request subscription informa­
tion by mail or Internet, or by faxing a request to
{817) 962-7218.

© Copyright 1996 International Business
Machines Corporation

Editor and Publisher
Betty Hawkins
(817) 962-5799

bhawkins@vnet.ibm.com

Assistant Editor
Lia Wilson

(817) 962-6267
lia@vnet.ibm.com

Business Manager/
Circulation Manager

Van Landrum
(817) 962-5810

vlandrum@vnet.ibm.com

Editorial Assistant
Jeffrey Miller

(817) 962-5823
jeffreym@dalvm41b.vnet.ibm.com

Subscription Manager
Rose McAlister
(817) 962-5821

rmcalister@vnet.ibm.com

Business Processes Assistants
Dustin Lyon

Terri Sharp-Kubica

Publication Services,
Typesetting, and Design

Terry Pinkston/Corporate Graphics
Arlington, Texas

Illustrator
Bill Carr

Dallas, Texas

Printing
Dave Willburn/Motheral Printing

Fort Worth, Texas

Editorial Services
Mike Engelberg/Studio East

Boca Raton, Florida

Executive Publishers
Beau Sinclair and Beverly Montgomery

Copying or reprinting material from this magazine
is strictly prohibited without the express written
permission of the editor. Titles and abstracts, but no
other portions, of information contained in this pub­
lication may be copied and distributed by computer­
based and other information service systems.

PERSONAL SYSTEMS • MARCH/APRIL 1996 5

6

What's New?
Tape Backup Solutions
for OS/2
□ Conner Tape Products Group,

a division of Conner
~ Peripherals Inc., offers three

high performance tape backup solution
packages for OS/ 2 Warp.

Standing one inch high, these 3.5-inch
minicartridge systems offer 4 GB of com­
pressed capacity with a data transfer rate
of 27 MB per minute. Supporting both
SCSI and IDE interfaces in the OS/2 mar­
ket, Conner's internal CTM3200 SCSI,
CTM4000 IDE, and external CTM3200E
drives are available with the comprehen­
sive, easy-to-use features of Computer
Data Strategies' Back Again/2 backup
and recovery software.

Back Again/2, designed exclusively for
systems running OS/2, features an intu­
itive graphical interface, a built-in sched­
uler, a stand-alone restore facility, pass­
word protection, and "drag and drop" file
selection flexibility. The new Conner tape
systems back up and restore HPFS and
FAT files and EAs (extended attributes),
plus LAN Server and NetWare file servers.

Designed to use Sony QIC-Wide media,
Conner's high performance minicartridge
tape drives provide reliable, high capacity
data storage on a single, low cost car­
tridge, making these drives a costs effec­
tive backup solution.

For more information, circle 1 on the
reader service card.

IBM's Independence
Series of Products

IBM has developed a number
of helpful devices and soft­
ware tools that make the com­
puter more accessible and
friendly to people with vision,
hearing, speech, mobility, and

PERSONAL SYSTEMS • MARCH/APRIL 1996

attention/memory impairments. These
products include interactive speech and
cognitive therapy tools, screen access
software, keyboard access utilities, and
screen enlargement programs.

AccessDOS
This powerful set of utility programs is
designed to give people with mobility,
vision, and hearing impairments greater
access to the computer. By providing
extended keyboard, mouse, and sound
access, AccessDOS enables IBM DOS users
to operate a computer with more ease and
efficiency, thereby increasing employability.

AccessDOS is especially helpful to anyone
with special needs, including eye/hand
coordination difficulties or mobility
impairments. For many people, AccessDOS
makes using a keyboard possible for the
first time.

Features include:

■StickyKeys solves the problem of hav­
ing to press two or more keys simultane­
ously. One key at a time does the job.

■MouseKeys makes it possible to use the
numeric keypad to move the cursor
around the screen, thus simulating the
use of a mouse.

■RepeatKeys allows you to set how fast
keys repeat when held down.

■SlowKeys enables you to set the sensi­
tivity of the keyboard. This feature
instructs the computer not to accept a
key as "pressed" until it has been held
down for a specified length of time.

■BounceKeys prevents double characters
from being typed if you bounce on the
key when releasing it.

■SerialKeys allows you to control the
keyboard and mouse using optionally
available input devices.

■ShowSounds (for the hearing impaired)
causes the screen to blink or display a
small musical note when the computer
makes a sound.

■ ToggleKeys (for the vision impaired)
provides a sound to indicate when the
Caps Lock, Num Lock, or Scroll Lock
keys are activated.

KeyGuard
KeyGuard makes it easier for people
who have mobility impairments to use
the keyboard. This plastic overlay snaps
onto several types of IBM keyboards, cre­
ating depressions into which the finger
or a typing stick can be easily guided.
KeyGuard also acts as a hand support for
users with motor coordination conditions.

Screen Magnifier/2
Screen Magnifier/2 displays screen print
in an easy to read size for those with
vision impairments. It enlarges text and
images up to 32 times their normal size in
OS/2, DOS, and Windows applications.

A feature called Focus Tracking makes the
mouse pointer automatically move to the
area of interest on a screen, saving time
and enhancing productivity. To sharpen
the clarity of text and images, Screen
Magnifier/2 can reverse colors.

Screen Reader
Screen Reader converts screen informa­
tion into speech, letting visually impaired
individuals operate a computer with
greater ease and efficiency. Screen Reader
can benefit others as well, including peo­
ple with a reading difficulty or those who
prefer listening more than reading.

The two versions of Screen Reader (DOS
and OS/2) work with a wide range of
applications, including word processors
and spreadsheets.

SpeechViewer II for DOS
SpeechViewer II 1.2 is a versatile clinical
tool for speech pathologists, teachers, and
other professionals treating communica­
tion disorders. SpeechViewer II provides a
multi-function speech therapy solution by
integrating speech analysis features, moti­
vational clinical exercises for direct client

Rrs

-·-----~--

OWERFUL SERVER

OS/2 Warp Server inherits from LAN Server 4.0 a sophisti­
cated set of network capabilities, including an easy-to-use
drag-and-drop administration model and customizable secu­
rity features. Also included is a NetWare migration utility.

HISTICATED SYSTEMS MANAGEMENT
DEEASY

OS/2 Warp Server will contain systems management fea­
tures that provide remote support, software and hardware
discovery, alert management and software distribution.

OTEACCESS

A full set of remote access capabilities is included with OS/2
Warp Server. There's a wide range of connectivity options
and multiple levels of security.

OSIBM1637
OSIBM1638

OSIBM1639

08/2 Warp Server Version 4 $518
08/2 Warp Server Version 4, First Step
(08/2 Warp Server plus 1 O users) $682
08/2 Warp Server Advanced Version 4 $1069

rp ...
pC ct ...

OS/2 Warp Server includes new printing enhancements that
will even utilize host printers.

CA'l=!EFREE SYSTEM BACKUP AND
RECOVERY

IBM has implemented a comprehensive backup and recov­
ery system in OS/2 Warp Server. An advanced disaster
recovery feature will allow a business to recover vital data,
even in the event of a complete server hard disk crash.

BROAD CLIENT SUPPORT

OS/2 Warp Server will support all prevalent network clients ,
including OS/2 Warp and OS/2 Warp Connect, DOS,
Windows® 3.x, Windows 95, Windows NT, LAN Server and
Macintosh.

UGOSIBM1560 08/2 Warp Server Version 4 Upgrade
(from Lan Server 3.0 and 08/2 2.1) $328

UGOSIBM 1562 08/2 Warp Server Version 4 Upgrade
(from Lan Server 4.0 and 08/2 2.1 $254

UGOSIBM1565 08/2 Warp Server Version 4 Competitive Upgrade $411

800-328-1319
OS/2 and IBM are registered trademar1<s of International Business Machines Col])Oration. All other prod­
uct or ocmpany names are trademarks or registered trademar1<s of their respected ocmparnes. Scftmart
is a registered service mark of Softmart. Inc. COPYRIGHT© 1996 by Sottmart. Inc.

Circle #19 on reader service card .

Schedule Programs &
Reminders Automatically ...

Chron v4.0
Scheduler for OS/2 - --• .. ·.-·· ·······

- N
Only $99

Site Licensing Available

Uses:
• Schedule backups and database maintenance
• Remind yourself of recurring meetings
• Schedule long-running or resource

consumptive tasks for after hours

Hilbert Computing
1022 N. Cooper
Olathe, KS 66061

Voice: (913) 780-5051
BBS/Fax: (913) 829-2450
CIS: 73457,365

Circle #22 on reader service card.

Unite CD• Maker'" lets you ere
desktop. Unite CD• Maker 2.0 inclu

Audio CD reading and writing
Multi-session capability
32-bitAPis

Long file name support

Device drivers for many popular
CD-recordables
Beta OpenDoc™ interface
upon request

Unite CD• Maker combines a multi-threaded design and drag-and-drop
features for a powerful and easy-to-use CD mastering tool.

CurusTechnology 1 3tJ1 69'1J 1BrJrJ Fourth Floor, 5301 Buckeystown Pike, Frederick, Maryland 21704 - - -
email: 102404.3643@compuserve.com internet: http://www.cirunite.com

Circle #5 on reader service card.

8 PERSONAL SYSTEMS • MARCH/APRIL 1996

therapy, and clinical management features
in an easy-to-use package.

With the clinical exercises, graphics, and
microphone selection, clinicians can work
with clients of all ages and with a variety
of speech disorders. Clinicians can also
use its clinical management features to
track clients' progress and performance.

THINKable/D0S
For use in schools, hospitals, and rehabili­
tation facilities, this unique, interactive
tool is designed to help individuals im­
prove attention, memory, and discrimina­
tion by making learning fun and stimulat­
ing. This easy-to-use, innovative product
uses an extensive variety of realistic com­
puter graphics to focus attention and stim­
ulate memory for people with cognitive
impairments.

The user is asked to respond to colorful
life-like pictures and graphics through
touch-screen technology. It uses real
speech for instruction, cueing, and rein­
forcement. The technology allows clini­
cians to record unique sounds or voices to
encourage participation.

Using THINKable, processes are practiced
in four critical areas that relate to daily
living: visual attention, visual discrimina­
tion, visual memory, and visual sequential
memory. To challenge the student's capa­
bilities, the clinician can select the level of
difficulty, stimulus duration, sequence
length of various on-screen exercises, and
reinforcement variables.

For more information, contact the
IBM Independence Series Information
Center at (800) 426-4832 (voice) or
(800) 426-4833 (TDD) or view informa­
tion on the World-Wide Web at
www.austin.ibm.com/pspinfo /
snshome. html.

Velcro Wire Harnesses
Polygon Wire Management
Systems of Port Coquitlam,
B.C. manufactures a line of

Velcro wire management products for
organizing and securing the disarray of
cables on telecommunication racks, work­
stations, computer networks, and cabling
systems.

It's so easy we could have
called it ''Your:\XIEB''

R: WEB - the first easy-to-use, affordable
Internet database solution.

Making a database accessible to visitors of your

Web site used to take a good understanding of
scripting and a fair chunk of change. Not any

longer. Now you can use R: WEB to effortlessly create forms for
data exchange between your Web site and your database. R:WEB
writes the code - you don't need to know HTML, CG! or PERL
scripting. And your database can reside in any ODBC-compliant
data source for R:WEB to dynamically link to it. R:WEB maintains

security over your sensitive information through data integrity
rules, constraints and password security - you have complete
control over the information a Web browser can or cannot
access. Best of all , R:WEB is built on the powerful R:BASE
engine, one of the most respected database engines available.
And, oh yeah , did we forget to mention? It's affordable.

So make your Web site work harder the easy way. With R:WEB.

And check out the FREE CD-ROM offer.

http:/ / www.microrim.com

® M!~~Q1~~I!Yl®

--­.....

I 539 5 SE. 30th Place, Be llevue, WA 98007
(206) 649-9500

R: W E.B available th ro ug h your local reselle r o r d istributor.
Copyright@ 1995 Microrim. Inc., a subsidiary of Abacus Software Group. A ll rights reserved. R:BASE, R:WEB and Microrim arc trademarks and registered t.mdcmark" of Microrim. Microrim reserves
the right to change product and services offered at any time without prior notice.

Circle #20 on reader service card .

By safely securing wires, particularly
category five and fiber optic cables, you
can prevent costly damage to them from
kinks caused when they are bent through
tray sections, relay racks, and storage cab­
inets or are pulled from their connectors
due to excessive strain. Damaged wires
can distort and cancel data transmission.

Polygon's Velcro systems are designed for
instant installation using self-adhesive or
screw mounts. Unlike nylon tie wraps and
rigid systems, these proven secure systems
are sensitive enough to avoid crushing
category five wire or glass fibers.

Polygon offers a number of devices that
are adaptable to most network setups.
Polygon also offers customized solutions
for more challenging situations.

For more information, circle 2 on the
reader service card.

Fax Boards Support
Brooktrout Technology, a fax
and voice messaging support
provider, has announced that

SO#ollleel6
Del'CfOJJnte■I 'l'oolltll

by IBM
Giveyour applications a greater degree of
openess than ever before. IBM SOM objects
gives professional programmers a compre­
hensive toolkit for creating 00 class libraries
and instances of those classes using SOM
and DSOM technology. Objects can be used
and reused independent of the program­
ming language used to create them.
1 0H9767 SOMobjects DTK v2.1 Wt: 1.13
MSRP$-365-;-00 $2S5.00
1 0H9769 SOMobjects Wkgrp Enab v2. t-= 2.0
MSRP$~ $179,00
1 0H9780 DTK v2.1 UG from 2.0 Wt: 5.0
MSRP$5G-:W $39,o.Q

.ea • .,
l,y JP Software

Open a new world of command line com­
puting with full command history, aliases,
enhanced batch files and powerful new file
processing options. Includes 4DOS for a
consistent interface in OS/2 & DOS sessions.
JPS11 MSRP $~ $72.00

its TR114 Series multi-channel fax
boards are now supported by the Lotus
Fax Server. You can use these multi­
channel fax boards with the Lotus Fax
Server for cc:Mail and Notes fax ser­
vices. Lotus cc:Mail is the world's best sell­
ing LAN-based messaging system, and
Lotus Notes is the industry standard
client/server platform for developing and
deploying groupware applications.

Brooktrout's TR114 Series boards offer
advanced fax processing on a multi-chan­
nel board with two to eight ports per
board. TR114 boards are available in a
wide variety of analog and digital configu­
rations. They offer advanced fax func­
tions, including 14.4 Kbps transmission
and reception, MMR, MR, and MH com­
pression, error correction mode opera­
tion, and support for T.434 binary file
transfer. Ideal for enterprisewide faxing,
these fax boards feature integrated on­
board DID routing as well as support for
other routing techniques, including DTMF
and T.30 sub-address routing. The TRll 4
also provides full voice processing sup­
port, including speech record and play­
back, and DTMF detection.

.,,,. De•"··· /Z"' IINHluellvllr Paek

re J ~IS! ::,!l!f]]iJ ~ -- Technologies,
1994 p-=M Inc.

DevTech, maker o e award-winn"'9
DeskMan/2, has created the powerful
DeskMan/2 Productivity Paci<. Combined
with DeskMan/2 v.1.51 (and if free upgrade
to v2.0, when available), an outstanding se­
lection of invaluable OS/2 utility products,
and money-saving coupons for AW.duct up­
grades. The Productivity Pack inducles:
DeskMan/2 , DCF/2 Lite, The Graham Utili­
ties*, Relish v2.12, & CPU Monitor Plus*.
*(special version created exclusively for this package)

DEVS0 MSRP -$-99,-95 Save $25.95

l'IE•SOR
by Athanced Idea Machines

Looking for a game you can play in minutes
or for hours? TENSOR is the game for you!
It challenges you like no game since Tetris.
Both your ability to find spacial relation­
ships and quick reaction time is challenged.
AIM10 MSRP~ $34.9S

au.

For more information, circle 3 on the
reader service card.

Color Network
Laser Printer

The Optra C from Lexmark
brings you high-quality color
printing, networking support,

and network print management capabili­
ties in one printer. Your workgroup can
do everything they always did in black
and white-letters, charts, graphics, pre­
sentations, and reports-with the full
impact of color.

Its photographic-quality color printing on
plain paper and transparencies eliminates
the time and expense of outsourcing color
proofs and multiple high-quality copies.
The Optra C prints color in 600 x 600 dpi
(dots per inch) and continuous tone, with
user-adjustable gloss levels. In 600 x 600
dpi resolution mode, Lexmark applies
advanced screening techniques to deliver
results you'd expect in higher-priced color
printers. ColorGrade ensures vibrant
color even in areas of fine detail, and

by dSoft Development
New! Version 2 Includes

Support For NDX & NTX Files!

dlllRIEXX:
This dynamic link library provides simple, af­
fordable database management from your
OS/2 REXX programs. Now accessing dBase
files is unimaginably easy.
DSF25 MSRP $99.00 1B $95.00

dlllUllt
Now your C/C + + programs can access
dBASE files! dbfLIB pr~es a consistent set
of APl's across OS/2, D Windows, Win-
dows NT and Windows 9 .
DSF22 MSRP':$-1-95.88 1B $159.00

Vidt site:
lllltp:/ /www.llldellltle-W...cea/llt

052_, ,.,._.. ___ ~ M--IN!leot•_,_,__ - llltad.....,_oo,PC...,...•052...,, ... -0S'2,DOS .. __

Circle #21 on reader service card.

1 0 PERSONAL SYSTEMS • MARCH/APRIL 1996

I _, . ~I
©

1
I

r· I
• = . c:J

·--

: ■-iiii ::::::::: ~,,.~-·---,.··- .. ,,.,,. .. ,.

Looking for blazing performance? DFl's Doubleshot 166
is fast ... really fast. Two 166MHz Pentium• processors
and preloaded OS/2 SMP pump
this fast iron. One of the few
systems that can run two of the
most powerful CPUs in the world,
the Doubleshot 166 smokes. ,,,,,,,,,_,,., ,,_, CPU

Doubleshot 166
Two 166MHz Pentium processors
VLSI Wildcat chipset - fastest available
512KB pipeline burst cache
1.6GB hard drive
32MB 60ns EDO RAM
Six speed CD-ROM
4MB PCI video card
28.8 Kbps faxmodem
3.5" floppy drive
PCI/ISA slots
101 keyboard, PS/2 mouse
Tower case -10 drive bays
OS/2 SMP 2.11 Workstation preloaded

next upgrade free when available

1 Year On-Site Warranty

Call ,u-..,.JJ.,. tor blazing speed

and a free Doubleshot glass

DFI-USA (916) 568-1234
http://www.dfiusa.com

DFl•NE (908) 390-2815

DFI-SE (305) 4n-1988
http://www.dfise.com

Circle #23 on reader service card.

for 06/2

Stochastic screening minimizes annoying
bands and distracting patterns.

A high-speed RISC processor delivers
speeds up to 3 ppm (pages per minute)
for full color and 12 ppm for mono­
chrome. The Optra C is engineered for
high volumes-up to 15,000 pages per
month duty cycle. RAMSmart, its
advanced memory management feature,
ensures it prints smoothly with its stan­
dard 8 MB of RAM. (If you require more
memory, you can purchase upgrades up
to 64 MB.)

Postscript Level 2 and enhanced PCL 5
with color emulations standard give you
compatibility with virtually any software
application without purchasing expensive
options. It supports DOS, Windows,
Macintosh, AIX/6000, and UNIX. Two
MarkNet XL internal network adapter slots
give you virtually unlimited connectivity
support.

MarkVision, Lexmark's network print
management utility, lets you control, con­
figure, and monitor job statistics of every
Optra printer on your network. You can
set up the Optra C to receive print jobs
from virtually any workstation on your
local area network. You'll get real-time
alert notifications and remote printer
management capabilities. You can even
reconfigure the printer and remotely
update its flash or hard-disk memory
option. Job accounting is easy, too-you
can print out lists of user names, printer
locations, job duration, capabilities used,
number of pages printed, and the nature
of any problem encountered, then export
the data to a Lotus 1-2-3 or Excel spreadsheet.

For more information, circle 4 on the
reader service card.

New Cirrus Technology
Products and OpenDoc
Support

Cirrus Technology, an OS/2
software developer, offers
Unite Storager, a hierarchi­

cal storage management product support­
ing optical and CD-recordable jukeboxes.

The SOM-based Unite Storager provides
native OS/2 device driver support for a
variety of SCSI-based storage devices. It
includes a complete set of 32-bit APis to
help you develop flexible and efficient
jukebox management applications. Unite
Storager can be integrated into develop­
ment environments such as IBM's
Visua!Age. Through its graphical user
interface, you can start, control, tune,
and stop Unite Storager, in addition to
performing administrative functions such
as importing, labeling, and exporting plat­
ters. Dynamic, user-defined tuning param­
eters are also available for optimizing
performance.

Unite Storager takes full advantage of
OS/ 2's multitasking capabilities to manage
thousands of store and retrieve requests
while simultaneously reading and writing
to all drives in the jukebox. Its multi­
threaded design can burn CD-recordable
discs while under heavy retrieval loads.

Cirrus also released Unitelite Version
2.0, personal imaging software for OS/2
Warp based on IBM's Workplace Shell
model. New features and productivity
enhancements include:

■ Support for highlight and pen
annotations

■ Skew detection and auto-deskew

■ Fujitsu ScanPartner 10 support

■ Multiple page TIFF file support

■ Button bar interface for easier use

■ Ability to attach images to cc:Mail
messages

UniteLite 2.0 is a personal imaging system
for file and folder management. With
UniteLite 2.0, you can scan, view, and
organize your bitonal documents and
color photographs right from the desktop.
This office tool enables you to easily get
control of all your documents.

Cirrus Technology has reaffirmed their
intention to provide the Unite software
products as OpenDoc component parts.
IBM used the beta OpenDoc Unite Objects
to develop a powerful multi-vendor sam­
ple OpenDoc application. Due to the suc­
cess of that demonstration and as
OpenDoc prepares for general release,
Cirrus Technology plans to support IBM's
OpenDoc initiative by integrating the
Unite Image Viewer Object, Unite
Scanner Object, Unite Storager, and
Unite CD-Maker into the OpenDoc envi­
ronment. The Unite OpenDoc Objects will
allow developers to choose parts from a
variety of vendors to form a complete
application solution.

For more information, circle 5 on the
reader service card.

OS/2 Image
Management Software

SYNTEGRATION's newest prod­
uct, TRAVELING WORK­
PLACE, is a useful tool for

backing up, restoring, creating, and

Customized OS/2 Modem Software to handle your mission critical needs.
Whatever you need for large installations, we will exceed your expectations

with customized RhinoCom modem software, installation and training.
Multi-user licenses, networked modems, BBS, FAX, telecommuting,

unattended data warehousing, local / remote routing and conferencing.

Reliable OS/2 Communications

1 2 PERSONAL SYSTEMS • MARCH/APRIL 1996

Call Today 1-800-234-4546.
From $5,000. BBS (301) 596-5618
Internet: www.rhintek.com/rhintek

CompuServe: go rhintek

Circle #7 on reader service card.

C!btl~!!k
Developing System Software since 1977.

We Have The Largest Selection of

Micro Channel
Products

SYSTEMS

SOUND CARDS

MPEG CARDS

VIDEO ACCELERATORS

SERIAL/PARALLEL PORTS

GAME PORTS

CD-ROMs

SCSI ADAPTERS

NETWORK CARDS

IDE AND EIDE

DATA/FAX MODEMS

EMULATION CARDS

INDUSTRIAL CONTROLLERS

MEMORY UPGRADES

IMAGE CAPTURE CARDS

Call 1-800-GET-MCDA
The MCDA is an independent worldwide organization dedicated to serving developers and users of Micro Channel-based
products. Our services include product sales, specifications, seminars, technical support, product catalogs, and newsletters.

-71 ~ CIC
Micro ChannerDevelopers Association

Call us to receive our monthly newsletter, or visit us on the Internet at
http://microchannel.inter.net/microchannel

169 Hartnell Avenue, Suite 200, Redding, CA 96002 Tel (916)222-2262 Fax (916)222-2528
Circle #24 on reader service card.

14

managing OS/ 2 workplace images that can
be saved to either a floppy drive, local
hard drive, or network file server.

TRAVELING WORKPLACE is fast and offers
network administrators many customiza­
tion options. It backs up a workplace in
about 15 seconds and restores it in 25
seconds, without requiring you to shut
down and reboot to activate the restored
workplace.

This product automatically saves the files
that define the settings and icons on an
OS/2 desktop, plus lets you select and
save additional files with the workplace
image. These files will then be recovered
when an archive set is restored.

With TRAVELING WORKPLACE, users can
back up their own desktops and restore
them on other workstations or create and
maintain up to 36 online desktops, which
they can then switch between. Switching
between desktops is much faster than
restoring.

You can use TRAVELING WORKPLACE to
maintain a different desktop for each user
accessing a workstation or to configure a
workstation that limits access to sensitive
applications. You can also set up and
remotely manage different workplaces for
users or user groups.

For more information, circle 6 on the
reader service card.

Communications
Package for
Presentation Manager

, RhinoCom, from Rhintek
Computer Engineering, is a
communications package

developed for Presentation Manager
that lets you customize communications
sessions through REXX scripting and pow­
erful macro capabilities. This package
emphasizes reliability, versatility, and
ease of use.

You can control your communications
sessions like other programs in OS/2. You
can assign macros to keystrokes, key com­
binations, the mouse buttons, or variable
names for use in scripts. You can attach a
fully configurable status box/button bar

PERSONAL SYSTEMS • MARCH/APRIL 1996

to the terminal window or leave it free­
floating on the desktop.

Its fully implemented context-sensitive
help, online "how to" reference, and inter­
active "Coach" tutorial aid in ease of use.
RhinoCom comes with a manual and a
hypertext tutorial explaining basic object
tasks. If you can't find an answer in the
documentation, Rhintek offers free techni­
cal support and a forum on CompuServe
for news and tips.

RhinoCom's native OS/2 code uses multi­
tasking, multisessions, and multimedia
sounds to provide a true OS/ 2 look and
feel. Its cut-and-paste feature uses the
OS/2 clipboard for compatibility, the
right-click context menu changes with
mouse position, its window is resizeable
without losing the terminal screen, and
RhinoCom works efficiently in the back­
ground while you continue to work.

RhinoCom is event-driven, meaning that
after a download, for example, you can
have a script or macro automatically trig­
gered to check for viruses or decompress
"on the fly. " If RhinoCom's extensive Key
Macros are not enough, try Named
Macros, which you can use in scripts, on
the menu bar, or attach to the mouse but­
tons. If you need specialized features such
as encryption or decompression, you can
"splice in" to RhinoCom to add functional­
ity. Multiple splices allow for easy module
stacking.

RhinoCom's object-oriented features make
complicated dialing sequences as simple
as manipulating objects in a folder.
Rhinodexes, based on folders, provide
dialing directory functionality, while
Rhinos, derived from program objects,
simulate dialing directory entries. Rhinos
can be placed in Rhinodexes, on the desk­
top, or on the LaunchPad. Rhinodexes can
batch Rhino connections-just once, or
until connected.

For more information, circle 7 on the
reader service card.

Tax Software for 0S/2 lr5' TAXDOUARS 1995 from
BT&T Consumer Technology,
the only tax planning and

preparing software available for OS/2

users, eases tax planning and preparing
returns through its intuitive, easy-to­
understand format. Even if you're using a
tax planner or CPA, TAXDOLLARS 1995
saves valuable time and reduces consult­
ing fees.

Specifically designed to follow Form 1040
and the most common forms, this pro­
gram prints from a single diskette on vir­
tually any type of printer; what you see
on your screen is exactly what you get on
the printer. Its friendly graphical user
interface follows the 1040 form line by
line, using automatic links to complete
other required forms or schedules.
Enhancements over last year's version
include plenty of space in each form, such
as the Schedule B (Interest Earned/
Dividends), which now allows up to 100
entries in the final version. Its automatic
calculation feature constantly updates the
bottom line on the window titles, and
results are instantaneous.

You can even look at your returns in a
variety of formats, such as the standard
tax forms or as a bar or pie chart, and
view at a glance where your tax dollars
and deductions are.

Should your tax information change at a
later date, you can remove forms or sched­
ules from the tax return without losing
your information, allowing you to re-use a
form or schedule. In addition, there is no
limit on the number of returns that you
can prepare using TAXDOLLARS 1995.

TAXDOLLARS 1995 includes the forms
needed for homeowners, investors, small
or home-based business owners, and those
seeking tax credits. Forms and schedules
included in TAXDOLLARS 1995 are Forms
1040, W2, 2106, 2441, 8829, and
Schedules A, B, C, D, E, EiC, R, and SE as
well as the IRS Accepted Tax Return
Format. Among the new forms handled in
this version are 1099-INT, 1099-DIV, etc.
In addition, state tax calculations are
included for California, Illinois, New York,
and North Carolina.

To help you plan or maximize your tax sit­
uation, TAXDOLLARS 1995 also includes
tax tips and IRS statistics. Its 1040 PC
direct deposit feature lets you receive your
refund directly into your bank account.

For more information, circle 8 on the
reader service card.

New Language
Based on HTML

■
Volant Corporation announced
htmlscript, an easy•to·use Ian•
guage for Web Servers.

Browser independent, htmlscript allows
you to develop powerful interactive Web
pages in a server safe environment.

The product installs as a standard CGI
application and provides multiple admin·
istrative controls. You can freely mix
HTML and htmlscript tags in your files.
Once executed, htmlscript achieves brows•
er independence by operating as a pre•
processor, outputting only HTML code.
The htmlscript tags provide the capa·
bility to do logic, calculations, and file
input/output operations.

Special licensing, including OEM and site
licenses, is available. The software is
available for most UNIX and UNIX·like
systems.

For more information, circle 9 on the
reader service card.

Security Software and
Services from IBM

■
~

As part of its long·standing
commitment to data security,
IBM offers a broad range of
I/T security products and ser•
vices designed to protect the
enterprise from intrusion.

Emergency Response Service
IBM's Emergency Response Service for
commercial businesses throughout the
world provides swift, expert incident
management skills to clients during and
after electronic security emergencies. The
emergency response team specializes in
electronic disasters that affect data
processing capabilities.

Available to customers on a subscription
basis via IBM's Integrated Systems
Solutions Corporation (ISSC), this global
service periodically checks customers' net•
works and can act as an extension of
clients' I/T staffs. In the event of a net·
work break·in, the team helps customers
detect, isolate, contain, and recover from
unauthorized network infiltration. They
are on call around the world 24 hours a
day, seven days a week.

Customized Weakness Detection Kit
IBM's Customized Infiltration Tool Kit
is a sophisticated set of tools that detect
security weaknesses in clients' Internet
connections. With these tools, IBM can
probe the subtlest weaknesses that the
most sophisticated hackers might try to
exploit. These tools exercise network con•
nections that go beyond the capabilities of
most existing tools on the market and are
customized to match clients' specific net•
work configurations.

Advanced Firewall Security
IBM offers the Internet Connection
Secured Network Gateway, formerly
known as the NetSP Secured Network
Gateway. The firewall supports AIX 4.1.3
and operates with the popular RISC
System/6000 workstation. It contains an
encrypted IP tunnel that encodes data
from one firewall to another using DES,
the Data Encryption Standard invented
by IBM more than 20 years ago, and
Commercial Data Masking Facility (CDMF),
an exportable encryption technology used
outside of North America. The IP tunnel
and key distribution is one of the first
that is based on the latest IETF specifica•
tions, providing the most advanced tech·
nology for firewalls currently available.

The Internet Connection Secured Network
Gateway also includes remote administra•
tion and an alarm capability that allows
you to receive alerts triggered by certain
errors or other security violations.

Secure Web Servers and Browsers
The IBM Internet Connection Secure
Web Servers for the OS/2 and AIX plat•
forms and IBM's Internet Connection
Secure WebExplorer for OS/ 2 Warp are
now available. These secure Web servers
and browser use the industry standard
protocols Secure HyperText Transfer
Protocol (S·HTTP) and Secure Sockets
Layer (SSL) to provide secure methods for
conducting commerce over the Internet,
including public key data encryption tech·
nology and digital signatures.

For more information, see the IT security
home page at http://www. i bm. com/

security/ or call (800) IBM·3333,
extension IE299 or 1 (520) 574•4600,
extension IE299 worldwide.

Full-Featured
SOL Database

Sybase, Inc. recently released
Sybase SQL Anywhere
Version 5.0, its full.featured

database optimized for the emerging
"new workplace." Driven by the need to
extend the IT·enabled workplace from
traditional environments supported by
centralized IS to anywhere people work
and anywhere business transactions
occur, new workplace applications are
being deployed across a broad range
of environments in Fortune 1000, medi·
um, and small businesses, including
departments, branch offices, mobile PCs,
and customer sites. These applications fre.
quently complement enterprise systems by
giving widely distributed and mobile
users access to corporate data.

The new version of Sybase SQL Any·
where, formerly known as Watcom SQL,
is a member of the Sybase System 11
product family and features enhanced
interoperability and compatibility with
Sybase SQL Server 11. New in this release
are Transact•SQL compatibility support,
Sybase Replication Server and Open
Client interoperability, Sybase SQL
Remote replication technology for occa•
sionally connected users, and the new
SQL Central GUI administration tool.

Sybase SQL Anywhere addresses the
needs of users in the new workplace by
offering the functionality of a true
client/server SQL database that can be
transparently deployed, easily managed,
and economically maintained. SQL
Anywhere is available on most popular
PC platforms. Its compatibility and inter·
operability with Sybase SQL Server
enables the System 11 product family to
provide a total solution, from mobile
computing to large.scale, high•perfor.
mance applications.

Sybase SQL Anywhere features SQL Re•
mote, which provides replication capa•
bility optimized for occasionally con·
nected users. This is significant in applica·
tions such as field force automation sys•
terns where a large number of remote
users periodically dial in to a server to
upload transactions and synchronize their
local database with the server. SQL Remote
is based on a hierarchical publisher/

PERSONAL SYSTEMS • MARCH/APRIL 1996 15

16

subscriber architecture optimized for
large communities of subscribers and sup­
ports the Sybase EMS and Microsoft MAPI
messaging systems. SQL Remote provides
end-user transparent centralized adminis­
tration, which is a key feature required
for simple, widespread deployment. SQL
Remote also delivers the ability to regen­
erate subscriber databases in their entirety,
transparently providing the reliability of
centralized backup for remote users.

For more information, circle 10 on the
reader service card.

Lotus Notes Data
Integration Tool

Percussion Software, a leader
in Lotus Notes tools, offers a
second generation advance­

ment that provides Notes users with
quick, accurate access to corporate data
for decision support. Notrix Composer
Live! provides instant bi-directional query
and update functionality between a Lotus
Notes front-end and a variety of relational
databases, allowing Notes users to main­
tain referential integrity between those
databases.

Notrix Composer Live! allows real-time
manipulation of data residing on a corpo­
rate relational database regardless of the
Notes application being used. Until now,
integrating data between Notes and rela­
tional databases required replicating the
data between the Notes front-end and the
database and synchronizing events to
ensure data integrity.

With Notrix Composer Live! Notes-based
information workers can query and
update the data warehouse without leav­
ing the Notes front-end, without building
an application to achieve the connectivity
and integration, and without struggling
with the synchronization and contention
issues associated with first generation
products.

Regardless of the Lotus Notes application
accessing the external database, the Notes
user fills in a Live! form within Notrix
Composer to establish the link between
Notes and the transactional database.
Once the link is created, users can
retrieve designated fields from the exter­
nal database and display them in their
Notes environment.

PERSONAL SYSTEMS • MARCH/APRIL 1996

Data obtained from an external database
via Notrix Composer Live! need not be
stored in Notes but can be dynamically
saved to the external database. With
Notrix Composer Live! new applications
that combine transactional and document
based information can be delivered to
multiplatform clients without changes to
the Notes application.

For more information, circle 11 on the
reader service card.

IBM Virtual World Links
Social Computing
■ IBM has made getting to the

information on the Internet
more exciting by allowing

users, using virtual world technology, to
converse, browse historical libraries, and
gather information on computer products
and services.

IBM Virtual World, a three-dimensional
limited demonstration environment, lets
visitors search and surf through Web sites
by simulated 3-D navigation-entering
buildings, strolling down hallways, and
conducting text-based chats. People enter­
ing the IBM Virtual World select one of
six avatars to represent them in cyber­
space. The IBM Virtual World adds a third
dimension to the Internet, making the
experience more lifelike and providing a
place for visitors to go for both informa­
tion and entertainment.

The IBM Virtual World is available, at no
cost, from the IBM Software Home Page at
http://www.software.ibm.com/
software/vi rworl d. html . Users can
download the software after completing
an online registration form and accepting
license terms and conditions.

This first version of the IBM Virtual World
focuses on the following three locations:

■ The Community Forum-IBM's center
for social computing, the Forum com­
prises three chat areas where people
can meet for open discussion. Chat
areas are divided into rooms by indus­
try, user group, and geography.

■ The Los Angeles Public Library Photo
Gallery and The Historical Library­
On display in the Gallery are eight digi­
tized photographs from the "Shades

of L.A." collection depicting life in Los
Angeles in the early 1900s. The Histori­
cal Library allows users to search for
and view rare and valuable documents.

■ The Solution Center-Potential end­
users and businesses can learn about
IBM products and services before mak­
ing buying decisions. The Center repre­
sents 13 IBM solutions, including data­
base management, application develop­
ment, and Lotus software, along with
IBM hardware, networking, and ser­
vices. By clicking on a solution, users
will be automatically linked to a related
Web page for additional information.

For Internet users, IBM offers complete
information about the company, products,
services, and technology on the World­
Wide Web. The IBM Home Page is at
http://www. i bm. com. The fastest, easi­
est way to get information about IBM
software is to go to the IBM Software home
page at http://www. software. i bm. com.

Book Answers
Frequently Asked
Questions About
0S/2 Warp

Find answers to the most fre­
quently asked questions about
OS/2 Warp with IBM's

Official OS/2 Warp FAQs by IBM soft­
ware experts Michael Kaply and Timothy
F. Sipples, with contributing editor
Bradley Kliewer.

Published by IDG Books, this IBM Press
book includes answers straight from IBM's
technical support database. It clearly
explains hardware concepts (such as OMA
and interrupts), then provides advice on
OS/2 Warp installation, configuration, and
hardware selection. IBM's Official OS/2
Warp FAQs is one of the first books to
address OS/2 Warp Connect and its net­
working features. The authors also dis­
cuss the OS/2 Warp BonusPak and give
detailed information on how to use
OS/2 Warp with practically any Internet
service provider.

This book includes the FAQ Pack, a CD­
ROM containing a complete online version
of the entire book. The CD-ROM includes
extra device drivers, fixes and patches,

hotlinks to popular Internet sites,
bitmaps, demonstrations, and free soft­
ware. For OS/2 Warp novices and power
users alike, IBM's Official OS/ 2 Warp
FAQs is the perfect companion to IBM's
best selling software.

Other IBM Press books include:
Official Guide to Using OS/ 2 Warp

ISBN l-56884-466-2-SR28-5668
OS/ 2 Warp Uncensored

ISBN 1-56884-4 7 4-3-SR28-5880-paper
OS/ 2 Warp and PowerPC

ISBN 1-56884-458-1-SR28-5881-paper
OS/ 2 Warp Internet Connection

ISBN 1-56884-465-4
The Warp Book

SR28-5785

IBM's Official OS/ 2 Warp FAQs: ISBN
1-56884-472-7. For more information,
circle 12 on the reader service card.

Book on Internet
File Formats

Internet File Formats from
the Coriolis Group covers the
file formats you'll encounter
when using the Internet (and
other applications). Author
Patrick Kientzle, editor with

Dr. Dobb's Journal and author of The
Working Programmer's Guide to Serial
Protocols, explains the major file formats,
how to use them, and where to find infor­
mation and programs on the Internet for
working with them.

You'll learn how to transfer files, how file
compression techniques supported by the
Internet work, the most efficient way to
send big files, how to convert Internet
files from one format to another, the best
places on the Internet to find different
types of files, and how to use Internet file
transfer programs such as FTP.

The book begins with information on
doing general research on the Internet
and the tools that are available. It then
describes, in six sections, the major kinds
of files you'll work with:

■ Text and document formats-HTML,
SGML, TROFF, Postscript, and PDF,
among others

■ Graphics-GIF, PNG, TIFF, JPEG, and
VRML

■ Compression and archiving-ARC, TAR,
ZIP, Compress, GZIP, SHAR, ZOO, and
Stufflt

■ Encoding-UUEncode, XXEncode, MIME,
BtoA, and BinHex

■ Sound-WAVE, AIFF, and AU

■ Movie-AV!, QuickTime, and MPEG

This book also includes a CD-ROM with
helpful tools for working with files. You'll
get player programs, compression and
decompression utilities, file conversion
utilities, file transfer software, and tools
to help you create HTML documents.

Internet File Formats: ISBN 1-883577-56-
X. For more information, circle 13 on the
reader service card.

IBM LAN Server
Sourcebook: How to
Connect Your Business
at Warp Speed

For those of you who already
have a LAN installed or who
are considering installing a

LAN using IBM OS/ 2 LAN Server, IBM
LAN Server Sourcebook: How to
Connect Your Business at Warp
Speed will help you get started. Authors
Pat Scherer and Charlie Brown, members
of IBM's LAN Server development team,
bring their expertise to you, providing
you with the information you need to
install and use a small to medium size LAN.

Published by John Wiley & Sons, the goal
of this book is to help you plan and set
up a network that will fit your needs. The
first five chapters cover preliminary infor­
mation-what you should consider before
setting up your LAN, including LAN con­
cepts and terminology, LAN Server itself,
considerations for connecting your busi­
ness, and planning advice for saving time
and money.

The remainder of the book discusses
installing and configuring LAN Server
and requesters, LAN Server administra­
tion, LAN Server commands, utilities, and

productivity aids. A chapter providing
troubleshooting tips will help you keep
your LAN running smoothly, and appen­
dices provide additional resources for use­
ful information.

IBM LAN Server Sourcebook: How to
Connect Your Business at Warp Speed:
ISBN: 0-471-13170-9. For more informa­
tion, circle 14 on the reader service card.

Way More Free Stuff
From the Internet

Way More Free Stu.ff From
the Internet, from the
Coriolis Group, follows in the

Ii footsteps of its predecessor
Free Stu.ff From the Internet
by bringing you new fun, edu­

cational, and useful stuff you can find on
the Internet. Author Patrick Vincent has
listed hundreds of interesting sites by cat­
egory (e.g., food and cooking, games, his­
tory, humor, law). His book points the
way to plenty of helpful, fun software and
information on the Internet.

Did you know you could have Caller ID
for Windows? By assigning specific .WAV
files to different incoming calls, you'll
know who's calling by the sound of the
ring. How about documenting your family
history with a genealogy application? You
can gather, store, and view information
about your ancestors with this program.
If you have any foreign travel planned, you'll
want to go to the Foreign Languages for
Travelers Web page and brush up on a few
helpful words and phrases. There are lists
of them translated in more than a dozen
languages, and audio is included so you
can hear how the words are pronounced.

Not all of the sites listed in this book are
for adults. A chapter devoted to children
highlights places of interest they will
enjoy. From a money-tracker to a diary to
educational material, children can benefit
from much of what's available on the
Internet too.

Way More Free Stu.ff from the Internet:
ISBN 1-883577-50-0. For more informa­
tion, circle 13 on the reader service card.

PERSONAL SYSTEMS • MARCH/APRIL 1996 1 7

18

Seton Hall Students Lead the Way
From the Wireless to the Real World
By Patrick Karle

"The classroom of the future" is reality right now at Seton Hall Univer­
sity in South Orange, New Jersey. Patrick Karle details the partnership
between Seton Hall and IBM's Microelectronics Division, resulting in a
state-of the-art infrared wireless classroom for a group of high-potential
students.

When Ken Stelzer realized he and
a friend were lost on the rural
back roads of Upstate New York

over Thanksgiving break, he didn't panic.
Stelzer simply called the county sheriff's
office on his friend's cellular phone and
asked them to fax a map to his trusty IBM
ThinkPad.

"We weren't really lost," said Stelzer, a 17·
year.old freshman in the W. Paul Stillman
School of Business at Seton Hall
University in South Orange, New Jersey.
"We were trying to find our way to the
mall and took a wrong turn." The sheriff's
office faxed a map to Stelzer's ThinkPad
loaded with WinFax and an IBM PCMCIA
(Personal Computer Memory Card
International Association) internal DAA
14.4 Kbps data/ fax modem. "When the
map came up on the screen, it even had a
'you are here' arrow on it. I guess we
missed the turn about five miles back,"
Stelzer said.

Although faxing a map is a small task for
IBM mobile technology, the students had
successfully demonstrated how to use IBM
PCMCIA data/ fax modems in an analog·tO·
digital communication scenario.

Stelzer learned to use IBM mobile technol·
ogy in classes taught in Seton Hall's
Stillman School of Business' new center
for leadership studies. He is one of the
first 18 freshmen business majors chosen
this past fall to participate in the center's
Leadership Program, a cohort of men and
women with high potential, hand•picked
for their academic and life achievements.

Dr. Karen Boroff, director of the center
for leadership studies, said the students

PERSONAL SYSTEMS • MARCH/APRIL 1996

are a diverse group, with high SAT scores,
bilingual skills, and significant leadership
achievements from high school. "In addi·
tion to English, they speak French, Ger·
man, Spanish, Chinese, Circassian, Rus·
sian, Ukrainian-even Latin," she said.

The group includes a National Merit
Scholarship finalist, a student who spent
six months living in Beijing, the captain
of a football team, a black•belt in karate,
several class valedictorians, and a student
who auditioned for TV's Star Search.

A Technology Partnership
IBM Microelectronics Division and the
Stillman School of Business began their
partnership in December 1994 to test
PCMCIA wireless technology applications
in a classroom environment.

IBM supplied each student and professor
in the Leadership Program with an IBM
ThinkPad 360 CSE with 8 MB RAM and
an Intel 486 DX processor. The ThinkPads
are loaded with Microsoft Windows 3.11 ,
Novell PerfectOffice, and Lotus Notes.

Each ThinkPad can be equipped with an
IBM PCMCIA Infrared (IR) Wireless LAN
Adapter for connection to an IR Wireless
LAN. IBM Microelectronics also supplied
students and faculty with IBM PCMCIA
internal DAA 14.4 Kbps PCMCIA data/ fax
modems for communication over phone
lines.

Boroff said the students carry their
ThinkPads everywhere and use them
extensively in classes, including quantita•
tive methods for business, management
information systems (MIS), freshman com•
position, and oral communication.

Students have found various uses for the
technology. They use presentation graph·
ics for their speeches in oral communica·
tion, they are learning hypertext markup
language (HTML) to design their own
home pages on the Internet, they sit up all
night "surfing the net," and they e•mail
each other and their teachers. They use
e•mail in class to send notes over an IBM
PCMCIA IR Wireless LAN.

John Shannon, dean of the Stillman
School, said the Leadership Program was
designed to teach high·potential business
majors management skills for the 21st
century. He said partnering with IBM
ensures that Seton Hall has the latest com•
puter technology, service, and training for
faculty and students.

"The ultimate goal of mobile computing
in the Leadership Program is to make the
technology part of the students' thinking
and decision.making process," Shannon
said. "With IBM, students and faculty all

Dr. Rob Weitz uses IBM ThinkPads and IBM
PCMCIA IR Wireless LAN technology to
teach current business theory, practices,
and software applications.

have the same reliable hardware and soft­
ware, and they all know how to achieve
the same results."

Getting "Un"-wired
Last summer, technicians from IBM
Microelectronics Division's Toronto Lab
installed four IBM 8227 IR Wireless LAN
access points in the ceiling of the class­
room where the leadership group meets.
IBM also installed access points in the
business school classrooms and the
library for individual or small group
wireless networking and/or access to
the wired network.

The IR Wireless LAN access points are
small black transceiver boxes about the
size and shape of a video cassette. These
access points communicate with the IBM
PCMCIA Wireless LA Adapters installed
in the instructors' and students' Think­
Pads, allowing data transfer in the
classroom using diffused infrared light
instead of a cabling system.

The access points in the ceiling are wired
to a server running Novell software,
which treats the IR Wireless LAN like the
other wired LANs in the business build­
ing. A student using a ThinkPad equipped
with a PCMCIA Wireless LAN Adapter can
access the entire wired world via IR wire­
less communication technology.

The PCMCIA IR Wireless technology can
be used in two ways. On campus, students
and teachers can log onto the PCMCIA IR
Wireless LAN via their IBM PCMCIA IR
Wireless LAN Adapters during class to
share printers, disk drives, and data.
Between classes or in small group study
sessions, it's also possible for students and
faculty to log on to the IR Wireless LAN to
share data, print documents, access the
Internet, or send and receive e-mail.

Off campus, by using their ThinkPads as
stand-alone computers or communicating
over phone lines via their IBM PCMCIA
data/ fax modems, students and faculty
avoid using on-campus wired computer
labs, which can be crowded, especially
around exam time.

Phillip Parks, a Seton Hall freshman, said
the best feature of mobile computing is
that you don't have to trudge to the cam­
pus through the rain and snow and sit in
the lab half the night typing away. "You

can sit home in bed and write your
paper," Parks said.

Computing the Benefits
Dr. Yonah Wilamowsky, who team teaches
quantitative methods, an advanced statis­
tics class in the Leadership Program, said
mobile technology allows students to

focus on math concepts rather than mere
computation. Because they are using a
statistical analysis software package on
their ThinkPads, he said he can give the
group larger, more complex, and more
realistic blocks of computations than he
would give to math students not using
ThinkPads.

Between classes, students use IBM PCMCIA IR Wireless LAN adapters and IBM ThinkPads to
access the Internet and send e-mail.

IBM PCMCIA IR Wireless LANs allow students to share data and print documents in the
classroom.

PERSONAL SYSTEMS • MARCH/APRIL 1996 19

ThinkPads can be networked on the
IR Wireless LAN in class. Students can
also use their ThinkPads to perform the
computations away from the classroom,
so they can spend more time in class
analyzing the results.

"Using the ThinkPad changes the math
experience," Wilamowsky said. "Students
can't get lost in or hide behind the com­
putations. The goal of math class is no
longer just getting the right answer," he
said. Students learn how to interpret the
numbers and explain their ramifications.

Dr. Rob Weitz, who teaches the MIS
course, said mobile technology allows
instructors to teach students how to use
common software packages, then teach
them how to apply that technology to
business concepts.

He teaches them how to use a remote
mail package with their PCMCIA modems
to send e-mail, then shows them how
e-mail is changing the way people do
business. "The next step is the possibility
of using Lotus Notes to create our own
bulletin boards," Weitz said.

Weitz feels that the IBM ThinkPad and
PCMCIA technology is impressive, and
teaching the students how to use the
technology inspires them to learn. "They
are excited about learning a technological
procedure or a software package, and
that excitement extends beyond the
classroom," he said.

2 0 PERSONAL SYSTEMS • MARCH/APRIL 1996

A Case in Point
As soon as Miguel Pagan and Tom
Palagoudis learned about spreadsheets,
they used QuattroPro to set up their
weightlifting schedules.

Pagan, who won a Rotary Club Leadership
Award in high school, said he knew very
little about computing before he entered
the Leadership Program, but now he uses
spreadsheets for everything."Spreadsheets
are great. You can even use them to keep
statistics for a sports team," Pagan said.

A Learning Experience
Shannon believes the partnership with
IBM is a good one. "IBM is learning from
us and we are learning from IBM. They
are innovative. We are innovative. It's
refreshing to work with people who are
willing to stay so far ahead of the curve,"
he said.

The IBM connection helps make the
Leadership Program, Seton Hall
University, and its students more competi­
tive, according to Shannon.

There are many business schools out
there, but Seton Hall is the only school in
New Jersey that offers to teach students
how to use mobile computing. "I don't see
how a business major can be competitive
in today's job market without mastering
mobile computing," Shannon said.

Mobile computing is a culture, a way of
life in the New York metropolitan area,
where commuting is also a way of life;
learning leading-edge information technol­
ogy job skills is one advantage the
Leadership Program offers its students.

Heavily recruited by the largest financial,
insurance, and pharmaceutical industries
in the world, Seton Hall graduates hold
some of the most respected positions on
Wall Street. Getting top jobs when they
graduate requires leadership in both the
wired and the wireless worlds. When
graduation comes, these students will
be ready.

Patrick Karle,

author of many arti­

cles on IBM prod­

ucts, is managing

director of Patrick

Karle Communica­

tion, a high-tech

marketing communi­

cation firm , in

Princeton, NJ.

Last year, Patrick won a Public Relations

Society of America award for a 1994

international media relations campaign

promoting IBM ThinkPads and an

STP/Auto Racing Writers and Broad­

casters Association Writing award for

"OS/2 Times and Scores the 1994

Indianapolis 500" (Personal Systems

July/August 1994).

You can reach Patrick at PKa r l e@MSN. Com.

"Out, Damn Spot!"
or How to Rid Your 0S/2 Desktop of Pesky Programs

By Mike Norton

Having trouble getting rid of old app lications? Want to clean up your
IN/ files? Need to split your EAs? Well, before you resort to Lady
Macbeth's removal methods, read on. SofTouch Systems' UniMaint will
take care of these pesky problems for you.

Although they are actually two sepa­
rate entities, OS/ 2 and the Work­
place Shell have become so inter­

twined in users ' minds that they are prac­
tically synonymous. The Workplace Shell
gives OS/2 its distinct personality. The
Desktop is the pride and joy of every
OS/ 2 user.

Utilities have existed for some time for
protecting the Desktop. The Workplace
Shell, however, has remained as mysteri­
ous and intimidating as disk drives once
were. UniMaint from Soffouch Systems
provides you with a glimpse into the
mysterious world of the Workplace Shell
and arms you with tools for maintaining
and protecting this powerful, integral
part of OS/2.

The Workplace Shell works its magic by
maintaining invisible associations
between objects, for example, between a
data file and its associated program.
Something every new OS/2 user discovers
is that removing applications is no longer
a simple matter of deleting the applica­
tion's directory. To mimic Dorothy's
famous quote, "We're not in DOS anymore,

Toto." Modern applications designed to
exploit the operating system's technologies
typically create user . IN I entries as well
as install help files and DLLs. Newer, bold­
er applications are exploiting the poten­
tial of object classes. In this technological­
ly advanced environment, each application
should provide for its own uninstallation.
Unfortunately, few do.

The Workplace Shell works
its magic by maintaining

invisible associations
between objects . . .

This is where UniMaint, the first unin­
staller for OS/ 2, enters the picture. Unlike
Windows uninstallers, which journal
applications and are of no use for
applications installed before the unin­
staller, UniMaint can uninstall existing
applications. Simply drag the application's
.EXE file to the uninstaller window in the

F:".i Tools Folder - Icon View

• ~
Desktop Backup end Restore Extended Attributes Getting Started INI File Maintenance

i
: ___ "-
: I

i -
l ~

Uninstell Applications Workpiece Shell UniMeint

Figure 1. UniMaint's Tools Folder

Tools Folder (Figure 1). UniMaint deter­
mines associated help files and DLLs,
searches the co N FI G . s Y s file, removes
system . IN I file entries, de-registers pro­
prietary classes, and destroys application
directories and files. And it works not
only on OS/2 applications, but on DOS
and WIN-OS2 applications as well.

This feat is accomplished by using tech­
nologies acquired through years of
developing system maintenance utilities.
UniMaint is more than just the first unin­
staller for OS/2; it is a complete package
for maintaining OS/2's critical Workplace
Shell facilities. Most users are shocked, for
example, by the sheer number of obsolete,
invalid entries infesting their critical OS/ 2
. IN I files.

These . IN I files-repositories of persis­
tent data-suffer chronically from the
poor housekeeping habits of many pro­
grams and users. Many processes-includ­
ing OS/2 itself-often don't bother to
clean up after themselves. And often a
user simply deletes an application directo­
ry, unaware of its associated . IN I
entries. These forgotten entries degrade
system performance and, in the worst
case, can cause system failure. And
because OS/2 . IN I entries are often in the
more efficient binary format (unlike the
Windows ASCII text WIN . IN I file),

Preferences end Settings

PERSONAL SYSTEMS • MARC H/APRIL 1996 21

manual maintenance is generally beyond the
technical expertise of the average user.

UniMaint provides a safe, reliable, effec­
tive, and automated way to rid your
system of these unwelcome pests. This
technology has been tested on thousands
of OS/2 machines and has proven to be
safe and reliable. If your system is mission
critical, you cannot afford to be without
UniMaint.

Besides repairing . IN I files, UniMaint
also serves as a full-featured editor for
any OS/2 . IN I file or extended attributes
(EAs). Developers will find UniMaint
invaluable for testing their own routines
exploiting the Workplace Shell. Users
who like to tinker with their system will
find numerous uses for UniMaint's . IN I

file and EA editing features, from copying
or splitting EAs to repairing application
. IN I files. Even the most casual user
will receive an invaluable education on
the Workplace Shell's inner workings by
examining . IN I files and EAs with
UniSafe, which allows the non-technical

2 2 PERSONAL SYSTEMS • MARCH/APRIL 1996

user to safely view this critical system
information without any risk of over­
writing data.

An ounce of prevention is worth a pound
of cure-backups are the best form of pre­
vention. So UniMaint naturally provides
facilities for backing up the Desktop and
OS/ 2 . IN I files. Backup is as simple as
clicking on an icon in the UniMaint Tools
folder, or it can be run from a command
line or . CMD file. The Desktop and its crit­
ical extended attributes as well as the
. IN I files are zipped into a file that
can be restored using a simple REXX
script (generated by UniMaint) from OS/ 2
maintenance mode.

With UniMaint, you can store multiple
generations of Desktops with convenient
descriptions associated with each. You
can back up other critical files, such as
CONFIG.SYS and PROTOCOL.IN!. You
can also port your Desktop to another
machine. UniMaint uses the portable
backup to compare objects on the source
machine with applications installed on

the target machine, then creates the asso­
ciated object for each file or application
present. This process allows UniMaint to
recreate Desktops independent of the
operating system version, which means
Desktops can be ported across versions
of OS/ 2.

UniMaint is available from Soffouch
Systems, 1300 S. Meridian, Suite 600,
Oklahoma City, OK, 73108. Voice: (800)
944-3028, Fax: (405) 947-8169.
CompuServe: GO SOFTOUCH. Or circle 15
on the reader service card.

Michael Norton is

the Workstation

Division Manager at

SofTouch Systems.

which provides both

mainframe and PC

software solutions.

He has a BA in

Philosophy and has
written mainframe

manuals, as well as articles in a number
of PC publications. You can reach him
atmnorton@softouch.com.

Why SOM?
By Brian Curran

In this article, Brian Curran overviews IBM's System Object Model
(SOM) to give you a better understanding of its impact on you, whether
or not you 're an application developer. After defining SOM in detail, he
highlights its technical strengths and significance in the marketplace.

S
OM stands for IBM's System Object
Model. For most of you, that's proba­
bly a cryptic term. So you may be

asking the following questions:

■ I've heard of SOM, but does it really
impact me?

■ What's so special about this technology
called SOM?

■ What benefits does SOM provide me as
a software developer?

This article answers these questions,
including why SOM technology impacts
you, whether or not you are a software
developer. Other SOM-related articles in

this issue describe how to use SOM,
including:

■ Integrating SOM with other languages:
VisualAge Smalltalk and VisualAge
COBOL-both using the same Valet class
library

■ Using a feature called Direct-to-SOM that
enables a programmer to define SOM
objects with C++ instead of IDL

■ Using SOM's distributed component,
called DSOM (Distributed SOM)

■ Glimpsing the future of SOMobjects 3.0
Object Services (Note: The information
provided in these "future" articles is

from the SOMobjects 3.0 beta and is
therefore subject to change.)

The goal for all of these SOM-related arti­
cles is simple-we want to pique your
curiosity and raise your overall awareness
of SOM technology. In this issue, we pre­
sent a relatively small amount of informa­
tion regarding SOM. Each topic uncovers
only the tip of the iceberg. Much more
information exists-it just won't fit within
the covers of this magazine. Our hope is
that after seeing the tip of the iceberg,
you will want to discover all of SOM's
benefits.

What is SOM?
At the highest level, SOM is a language
neutral, object-oriented programming
technology for building, packaging, and
manipulating binary class libraries that
can share objects across address spaces.
Whew! I'll elaborate on this definition,
overview the technical merits of SOM, and
describe why an application developer
might use SOM later in this article. First, I
want to demonstrate SOM's significance
by identifying just a few of today's lead­
ing edge technologies that incorporate
SOM's benefits.

OS/2's Workplace Shell
The Workplace Shell (WPS), OS/2's user
interface, uses SOM technology. Every user
interface object on the WPS is a true SOM
object, and many of the WPS's dynamic
capabilities are provided due to SOM's
technological underpinnings.

Workplace Shell Applications
and Tools
Many applications are WPS-enabled, mean­
ing that you interact with the application
using WPS objects (which are SOM
objects). To provide WPS extensions or
tools, developers use SOM technology
when developing their software.

OpenDoc
SOM, the object model CILabs
(Component Industry Laboratories) select­
ed specifically for OpenDoc technology,

PERSONAL SYSTEMS • MARCH/APRIL 1996 23

24

provides a packaging technology for
OpenDoc components. Larry Loucks, vice
president of software for IBM Personal
Software Products, states, "SOM just gets
us plumbing. We spent a lot of time up
front getting out a couple releases of this
stuff to make sure we have a good under­
standing of the infrastructure before we
get to the killer, which is component soft­
ware ... our approach to that is
OpenDoc." as reported by Orfali, Harkey,
& Edwards in their book, The Essential
Distributed Objects Survival Guide. 1

Orfali, Harkey, & Edwards communicate
the dramatic potential of SOM: "As an
integral part of OpenDoc, SOM will ship
with every copy of OS/2 Warp, Macintosh,
and AIX. This means SOM will become the
first high-volume CORBA [Common Object
Request Broker Architecture] ORB [object
request broker] ... " The authors con­
clude, "It will take some time before pro­
grammers get accustomed to the idea that
a full-function SOM ORB is shipped with
every OpenDoc runtime." It is important
to note that the platform support for
SOM is much broader than the initial
support for OpenDoc, which is a positive
statement regarding OpenDoc. With SOM
support on additional platforms (such as
AS/400, MVS, and others), OpenDoc com­
ponents will be able to exploit SOM's
distributed capabilities and communicate
with distributed objects on these additional
platforms.

OS/2 SOM-Compliant Products
A scan of recent computer technology
magazines revealed a large number of
advertisers claiming SOM-compliant pro­
grams. Figure 1 lists a few of the products
employing SOM technology.

Whether or not you are interested in the
ensuing technical section, the emerging
technologies and large number of prod­
ucts employing SOM technology hopefully
convince you of its importance. Now, let's
take a look at why so many applications
are employing SOM technology.

SOM's Technical Highlights
Remember that impressive definition of
SOM earlier in the article? At the highest
level, SOM is a language neutral, object-

' The Essential Distributed Objects Survival Guide.
Robert Orfali, Dan Harkey, Jeri Edwards; John
Wiley & Sons, 1996. ISBN 0-471-12993-3.

PERSONAL SYSTEMS • MARCH/APRIL 1996

Product Manufacturer

JBA Guidelines JBA International

ChipChat ChipChat Technology Group

Object Desktop Stardock Systems

Unite Objects Cirrus Technology

KidProof/2 Pinnacle Technology

Hyper ACCESS Hilgraeve

DeskMan/2 Development Technologies

VX-REXX Watcom

VisualAge C++ IBM

High C/C++ Toolset MetaWare

Figure 1. Sampling of SOM Technology Products

oriented programming technology for
building, packaging, and manipulating
binary class libraries that can share
objects across address spaces. Depending
upon your perspective, that definition
either has dramatic impact or provides
very little meaning. Let's examine each
part of this definition.

Language Neutral
SOM is language neutral, meaning that
SOM class users and creators don't have to
use the same programming language. For
example, a client application need not be
written in C++ to create, manipulate, and
delete a SOM object implemented in C++.

SOM does not replace existing object-ori­
ented languages; rather, it complements
them so that application programs written
in different programming languages can
share common SOM class libraries, such
as the Valet class library.

Note: SOM's language neutral capabilities
are demonstrated in accompanying arti­
cles. The Valet and associated classes are
implemented using C++, whereas the
client programs demonstrated are
VisualAge C++, VisualAge Smalltalk, and
VisualAge COBOL.

Object-Oriented Programming
Entire books are written on object-orient­
ed programming. Most of these books
identify three key characteristics when
determining the merits of an object-ori­
ented environment: encapsulation, inheri­
tance, and polymorphism. SOM fully sup­
ports all three characteristics.

Many of SOM's original design points
were introduced as a better way to pack­
age object-oriented technology. All soft­
ware environments have shortcomings,
but SOM solves many of the deficiencies
introduced by other object-oriented tech­
nologies, such as the fragile base class
problem introduced by C++. In addition,
SOM combines the strengths of various
object technologies into one environment.
Like Smalltalk, SOM supports class objects
and name resolution method dispatching.
Like C++, SOM supports multiple inheri­
tance and provides strong type-checking.
If you are interested in object technology,
I strongly recommend that you study SOM
technology.

Building, Packaging, and
Manipulating
When using SOM technology to build,
package, and manipulate class libraries,
you will circumvent many of the deficien­
cies introduced by other object technolo­
gies. For example, SOM can be used with
C++ to provide upwardly compatible class
libraries.

You can release a new version of a SOM
class, and as long as no changes to the
client's source code are required, the
client code does not have to be recom­
piled. For example, let's say you have a
brainstorm and can now rewrite your
Grai ns0fSand0nBeach() method with a
couple of new instance variables. When
you re-release your Beach class library,
none of the clients will need to recompile
since the public interface remains the
same. (This is the way object-oriented
programming is supposed to work.)

SOM accommodates changes in implemen­
tation details without breaking the binary
interface to a class library or requiring
client programs to be recompiled.
Specifically, you can make the following
changes to SOM classes and still retain
full backward, binary compatibility:

■ Add new methods

■ Change an object's size by adding or
deleting instance variables

■ Insert new parent classes above a class
in the inheritance hierarchy

■ Relocate methods upward in the class
hierarchy

In contrast, most changes to a C++ class
library, including adding or removing
private instance variables, require client
code to be recompiled. Keep in mind
that the public interface does not have to
change to force a recompilation. The C++
recompilation requirement seems trivial
until you consider the following two
scenarios.

Scenario 1: Your enterprise solution
includes a single C++ class library that
contains functions for eight applications
located on 3,000 desktops. Your CIO
requires that additional information be
tracked, mandating a single additional
instance variable and associated accesser
methods. You now face the unenviable
task of updating the class library, recom­
piling all eight applications, and redeploy­
ing 17 MB of code (eight applications at
2 MB per application plus 1 MB for class
library) to 3,000 desktops. In reality, the
eight applications are each in a different
phase of development, and it is highly
unlikely that all eight would be deployed
at the same time, thereby increasing
complexity.

If your class library is implemented using
SOM, your workload is significantly
reduced. Only the single 1 MB class
library needs to be redeployed to all of
the workstations. Your existing applica­
tions will not need to be recompiled and
will work with the new SOM class library.
Deploying a single 1 MB class library is
simpler and less resource-intensive.

Scenario 2: You are a vendor of a Valet
class library and have sold copies to
1,000 application developers. Hypotheti­
cally, these application developers build

applications for managing all of the park­
ing garages throughout the world. You
now have a new version of the class
library that incorporates bug fixes, perfor­
mance enhancements, and increased func­
tionality from a variety of new classes to
support long-term parking.

Let's assume 100 of your clients are lead­
ing-edge application developers. They will
be the first to extend their applications to
support the library's new long-term park­
ing feature. Obviously, the client applica­
tions will need to be recompiled to
include the enhanced functionality. But
what about the other 90 percent of your
clients? Will they need to recompile their
applications even if they don't need the
functionality?

Assuming the Valet class is implemented
in C++, the answer is yes. Unfortunately,
developers will be forced to recompile
their applications, even if their only goal
is to obtain the bug fixes and perfor­
mance enhancements. Of course, they
could decide to ignore the update (at a
cost of running with known bugs).

Assuming the Valet class is implemented
using SOM, the answer to the previous
question is no. Recompilation by the other
90 percent of the clients is not required.
The same Valet class library will support
applications with enhanced long-term
parking as well as the existing applica­
tions written when the Valet class library
did not have the long-term parking fea­
ture. SOM's upwardly compatible class
libraries provide this support.

Find "SOM" More Information on the World-Wide Web!
You can obtain the complete source
code used for the examples in this
issue's articles on Personal Systems'
home page at http: //pscc. dfw. i bm.
com/psmag/. And while you're on the
Web, you might want to take a look at
some other object technology sites:

IBM Object Technology
http://www.software.hosting.
ibm.com/objects/

A great starting place for finding infor­
mation, this site offers platform-specific
information, links to IBM partners in
object technology, and information on
products, education, and services.

IBM Solution Developer Operations
http://www.austin.ibm.com/
developer/objects/

This site offers developers information
on SOM, OpenDoc, and Taligent's
CommonPoint, plus information on
developer programs, an object technol­
ogy library, links to related Web sites,
and object-oriented news.

SOM Programming Forum
(the IBM Software Home Page)
http://www.software.ibm . com/qa/
www/

Take the opportunity to participate in
valuable exchanges with IBM's experts
in object-oriented technology. "SOM

Programming with Christina Lau," a
December 1995 forum, covers a variety
of topics.

SOMObjects Technical Support
http://www.austin.ibm.com/
somservice

Browse FAQs, update your SOMobjects
Developer Toolkit or SOMobjects
Workgroup Enabler, submit a question
or problem for the technical support
team, and obtain CSDs.

Bart's Home Page
http://goban.austin . ibm.com

On his home page, Bart Jacob, senior
developer with International Technical
Support Organization in Austin, offers
information on object-oriented projects
from the ITSO Center, access to all ITSO
Redbooks, and object-oriented
Red books.

OMG (Object Management Group)
http : //www.omg.org

Visit the non-profit consortium's home
page to find out more about the organi­
zation, obtain membership information,
and view the list of current members.
You'll also find industry information­
events, suggested reading, 00 technolo­
gy user groups, plus links to related
sites.

PERSONAL SYSTEMS • MARCH/APRIL 1996 2 5

26

Binary Class Libraries
SOM lets you deliver your class libraries
in binary format. In layman's terms, this
means that as the producer of a SOM class
library, you are able to keep proprietary
information proprietary. In delivering a
SOM class library, you provide two files:
the DLL containing your class implementa­
tion and the IDL file containing the inter­
face description. With these two files, any
individual using a language that supports
SOM can instantiate objects based upon
the class library or designate the deliv­
ered classes as sub-classes and provide
specializations! (Yes, our good friend, lan­
guage neutrality, described earlier, allows
a SOM class implemented in C++ to be
extended and derived in a completely
separate language.)

In contrast to delivering a SOM class in
binary format, C++ programmers usually
take the lesser of two evils and deliver
the source code along with the class
library. Few software engineers are accus­
tomed to delivering source code as part
of a procedural function library, but this
practice is actually common with C++
class libraries. The alternative is too much
of an administrative nightmare. If a class
library provider chooses to withhold the
source code, then the class library
provider is making the decision to devel­
op, test, ship, and track an instance of the
class library for each of the C++ compilers
on the market today. And when you con­
sider the need for maintaining multiple
versions for each instance of the class
library, the task is even more daunting.

Share Objects Across Address Spaces
Now, let's look at the last part of the SOM
definition. In an ideal software vacuum,
objects would be ubiquitous and the bene­
fits of object-oriented technologies would
be enjoyed by all. Realizing there is no
such vacuum, an object system of even
minor complexity must cross the dreaded
procedural boundary one or more times,
whether it's to an operating system-specif­
ic service, a communications API, or some
other type of legacy interface.

For those who believe in the benefits of
objects (or at least who believe in the
potential for making profits with objects),
the race is on to extend the procedural
boundary-one of the reasons why we
see such a proliferation of class libraries
in today's environments. Initially, there
was tremendous emphasis on providing

PERSONAL SYSTEMS • MARCH/APRIL 1996

an object-oriented abstraction for GUI
programmers. Disparity arose, however,
when elegant user interfaces were being
developed and programmers were still
coding linked lists. Thus, we now have
robust collection classes that should free
up the technical resources from coding
linked lists. Slowly but surely, the proce­
dural boundaries are being extended to
further and further extremities of soft­
ware systems. The move to distributed
objects is a natural progression of the
desire to further extend the procedural
boundaries. There are two reasons why
you will want to share objects across
address spaces:

■ Objects make sense in client software,
so they will also make sense in server
software

■ Objects on the client should be able to
communicate with objects on the server

DSOM, SOM's distribution component, lets
you share objects across address spaces,
either in the same machine or across the
network. DSOM simply adds distributed
capabilities to the benefits already inher­
ent in SOM classes. DSOM also conforms
with the Object Management Group's
CORBA standards. More DSOM informa­
tion is provided in "Distributing Objects
with Distributed SOM" in this issue.

Why Use SOM in Your
Application Development?
If you aren't convinced by now, here are
my top 10 reasons for using SOM in your
application development:

10. To develop a WPS application or tool

9. If you work for an object technology
center and keep two object models­
one for the C++ folks and one for the
Smalltalk folks

8. To understand deficiencies of other
00 environments

7. To develop component-based software,
specifically using OpenDoc

6. If you want object-oriented code on
your clients as well as your large
system hosts

5. If you don't want to ship your pro­
prietary source code

4. If you are tired of forcing all of your
clients to recompile when you change
your class

3. To develop a class library and expand

your market potential beyond a single
language, compiler, and platform

2. If you are interested in the promises
of CORBA and want to develop dis­
tributed object systems

1. If you want a real system object model!

Conclusion
In this article, I've attempted to:

■ Introduce SOM technology and show its
impact on you, whether or not you are
an application developer. With a better
appreciation of SOM technology, you
can be a more informed purchaser of
application software.

■ Overview SOM's technical highlights, as
well as its technical strengths.

■ Assist you in understanding when you
should use SOM technology in your
application development.

You'll find more concrete details in the
remaining SOM articles in this issue. If
you are familiar with C++ and Smalltalk,
SOM looks different. But, then again, both
C++ and Smalltalk looked quite different
when I first saw each. So keep after it;
you should be up and running with a
minimal amount of effort.

References
The Essential Distributed Objects
Survival Guide. Robert Orfali, Dan
Harkey, Jeri Edwards; John Wiley & Sons,
1996. ISBN 0-471-12993-3.

Programmer 's Guide, Volume I- SOM and
DSOM. SOMobjects Developer Toolkit.
SOMobjects Version 3.0 beta.

Programmer 's Guide, Volume II- Object
Services. SOMobjects Developer Toolkit.
SOMobjects Version 3.0 beta.

Brian Curran is a
senior marketing sup­
port representative
for the Personal
Systems Compe­
tency Center (PSCC).
He obtained a BBA
and an MBA in
Business Computer
Information Systems
from the University of

North Texas. Since working with the
PSCC, Brian has concentrated on OS/2
application development and most
recently has focused on IBM's Object
Technologies, including SOM and DSOM.
He can be reached via e-mail at
brian_curran@vnet.ibm .com .

IBM System Object Model­
The Wave of the Future
(and Now!)
How does IBM's System Object Model (SOM) fit in the object world?
What does SOM mean to you as a developer? The technical articles in
this issue answer these questions by closely examining SOM's features
and framework to show why SOM should be the infrastructure you
choose for object development.

This article describes a valet parking object model, which is used by other
articles in this issue. Refer to this article when reading the others.

0 bject-oriented analysis, object-oriented design, object-oriented data­
bases, persistent objects, object-oriented application development .. .
objects are everywhere!

"Objects" is certainly the buzzword of the '90s. You've probably heard about,
and perhaps have been sold on, the advantages of objects and object-oriented
application development. If you wade through some of the objects hype, you'll
find some tangible benefits of using objects, including:

■ Improved design

■ Improved code reuse

■ Improved code maintenance

Rick Weaver
IBM Corporation
Roanoke, Texas

Because traditional object-ori­
ented development uses lan­
guages such as C++ or Smalltalk,
there are some inhibitors. At a
high level, SOM solves the prob­
lems developers using these lan­
guages deal with daily:

■ How to share objects among
different languages

■ How to distribute class
libraries in binary format Figure 1. Object Model in Booch Notation

■ How to enhance a class library without
forcing the class library users to recom­
pile their client code

■ How to distribute and access objects on
different platforms

SOM Benefits
With SOM, you can:

■ Allow languages, such as Smalltalk, C,
and other languages that support SOM,
to use your SOM classes

■ Develop class libraries and ship only
the binary form of the classes, meaning
you don't have to ship your source code
with a class library

■ Change a class and maintain full back­
ward compatibility, meaning that any

PERSONAL SYSTEMS • MARCH/APRIL 1996 2 7

/* Va l et.idl */
#include <somobj.idl >
#i nclude <Garage. i dl >
#include <TktBookS.idl>

inte r face Car:
inte r face Valet : S0M0bject
{

attribute string valetName:

Ti cket parkCar (i n Car aCar):
Car retrieveCar (in Ticket aTicket);

/*parkCar method*/
/*retrieveCar method*/

#ifdef _ S0MIDL_
imp l ementation

{
Gara ge aGarage;
TktBookS aTi cketBookSystem:

pass th ru C_xh - "#inc l ude \ "Ticket. xh\""
"#include \"Car .xh\" "
"#i nclude \"Garage.xh\""
"#i nclude <TktBookS.xh>":

dllname - "Va l et.d l l":
releaseorder : _get_valetName, _set_valetName, _get_valetld,

_set_val etld, parkCar, retr i eveCar;
somDefaultlnit : override , i nit:
somDestruct : override:

} :
#end i f

} :

Figure 2. Valet Class Interface Definition Language (Valet.id!)

aCustomer

parkCar (Car)

aValet aTktBookS aGarage aTicket

.... -
I getlicket (Garage) ... -

getAvailableParkingSlot ()
~

- I
set_ parkingSlotNum() ... -parkCar (Car, Ticket)

~ -

Figure 3. Object Interaction Diagram for parkCar Method

client application using your class will
not need to recompile

SOM also provides what you would expect
from an object-oriented system: objects,
messages, classes, inheritance, encapsula­
tion, abstraction, and polymorphism.

2 8 PERSONAL SYSTEMS • MARCH/APRIL 1996

As you learn SOM, you should view SOM
as an extension to the programming lan­
guage you currently use, whether it be C,
C++, Smalltalk, or OO-COBOL. SOM does
not take the place of a language but
extends it. You gain SOM's benefits while
developing an object's behavior in your
preferred programming language.

The Model
Several articles in this issue use a simple
object model for some of the code exam­
ples. The object model follows a valet
parking system scenario, where cars are
parked in and retrieved from a parking
garage. The valet parking system works
as follows:

A customer drives to a stadium and gives
his car to the valet who parks the car in
the garage and provides a parking ticket
to the customer. Later, the customer
returns the parking ticket to the valet.
The valet retrieves the car from the
garage and returns the car to the cus­
tomer. All parking is free in the garage,
which has a 1,000 car capacity.

The object model (in Booch notation) is
illustrated in Figure 1.

The classes used in the valet parking
application include: Valet, Ticket, Car,
Garage, and TktBookS.

The Garage and TktBookS classes are
internal to the Valet, and any clients using
the valet parking system are not con­
cerned with these classes.

Valet Class
An attribute is private data that will have
SOM automatically generate _get and
set methods. The Valet class has two

attributes:

■ valet Name-a string

■ val etid-a long integer

The Valet class supports the following
methods:

■ parkCar

■ retrieveCar

■ _get_valetName

■ _set_va let Name

■ _get_valetld

■ _set_val et Id

The two Valet methods are the parkCar
method, which accepts a Car and returns
a Ticket, and the retrieveCar method,
which accepts a Ticket and returns a Car.

The intetface definition language (IDL)
is a COREA-compliant, language-neutral
way to define a class in SOM.

The Valet class IDL is shown in Figure 2.
Figure 3 shows the object interaction dia­
gram for the pa rkCa r method, while
Figure 4 shows the object interaction
diagram for the ret ri eveCa r method.

Ticket Class
The Ticket class has two attributes:
ticketNum and parkingSlotNum- both
of which are long integers. It also has
_get and _set methods defined for both
attributes.

Car Class
The Car class has three attributes: color,
make, and model-all of which are strings.
It also has _get and _set methods
defined for the three attributes.

Garage Class
The Garage class has one instance vari­
able: garage_l ot-a COREA sequence. An
instance variable is private data that has
no _get and _set methods generated by
SOM. A COREA sequence is simply an
array that will be used for storing cars. The
Garage class supports the following methods:

■ storeCar

■ removeCa r

■ listCar s

■ getCa rCount ()

■ getAvailableParkingSlot

■ removeA 11 Ca rs ()

The Garage class IDL is shown in Figure 5.

TktBookS Class
The TktBookS class has one instance vari­
able: nextTi cketNum. The only method
that the TktBookS class supports is the
getTi cket method.

The most interesting classes in this model
are Valet and Garage. These classes con­
tain the behavior in the valet parking sys­
tem to store and retrieve cars to and from
a garage.

As you read subsequent articles in this
issue, refer to this article for the defini­
tions of the classes used in the valet park­
ing system. You can find a complete copy
of the SOM implementation of the valet
parking system on the World-Wide Web at
http://pscc.dfw.ibm . com/psmag/.

aCustomer aValet aGarage

retrieve(ar (Ticket) ...

remove(ar (Ticket) ...

Figure 4. Object Interaction Diagram for retrieveCar Method

/* Garage.idl*/
#include <somobj.idl>
#include <Car.idl>

interface Ticket:
interface Garage : S0M0bject

{

exception carMissing
{

long errorCode:
char reason[80]:

} :

canst long PARKING_SPACES- 1000:

attribute sequence <Car, PARKING_SPACES> garage_lot:

void storeCar(in Car aCar, in Ticket aTicket):
Car removeCar(in Ticket aTicket) raises(carMissing);
void listCars():
long getCarCount():
long getAvailableParkingSlot();
void removeAllCars():

#ifdef _ S0MIDL_
impl ementation

{

passthru C_xh_before - "//include \"Ticket.xh\""
"#include \"Car.xh\""
"#include <iostream.h>":

dllname - "Garage.dll":
releaseorder : storeCar, removeCar, getCarCount, listCars.

getAvailableParkingSlot, removeAllCars:
somDefaultinit: override, init:
somDestruct: override:

} :
fiend if
} :

Figure 5. Garage Class IDL (Garage.id!)

Rick Weaver is an advisory marketing support representative in the IBM
Personal Systems Competency Center in Roanoke, Texas. He provides ser­
vices and on-site consulting on DB2 for OS/2, DB2 for NT, SOM, and object
technology to customers throughout the world . Rick joined IBM in 1990 after
earning a BS degree in Computer Science from Southwestern Adventist
College. His Internet ID is weaveros2@vnet. i bm. com.

PERSONAL SYSTEMS • MARCH/APRIL 1996 2 9

30

Building SOM Objects
with Native C++
You may think that using SOM with IDL (interface definition language)
is great for new applications. But what about existing C++ applica­
tions? Will you need to rewrite your class definitions from C++ to IDL to
take advantage of SOM and DSOM? With Direct-to-SOM (DTS), the
answer is a reverberating NO! This article discusses how you can use
Direct-to-SOM to build SOM objects from C++.

Editor's Note: The code examples in this article refer to a simple object
model discussed in Rick Weaver's article "IBM System Object Model­
The Wave of the Future (and Now!)."

D irect-to-SOM (DTS) provides an easy way to natively build ordinary C++
classes as SOM classes within C++. Normally, if you develop a SOM
class, you create the class interface in IDL, then run the IDL through the

SOM compiler (SC), and the SOM compiler generates a binding for the target
language.

If the SOM compiler emits language bindings for C++ for the Valet class, you
normally generate the following files:

■ Val et.xh (interface header file)

■ Val et. cpp (stub implementa­
tion source)

■ Val et.xi h (implementation
header file)

Rick Weaver
IBM Corporation
Roanoke, Texas

If the Valet class is a new class,
then using the SOM compiler is
probably a good choice for
developing the Valet class. But
what if the Valet class was previ­
ously written in C++ (as Figure
1 shows)? You can manually
rewrite your Valet class defini­
tion to IDL and convert Valet to
a SOM class, but it's easier and
more natural for C++ program­
mers to use a DTS compiler.

PERSONAL SYSTEMS • MARCH/APRIL 1996

\

With a DTS compiler, you can build SOM
classes directly in C++ without writing a
single line of IDL.

Currently, the IBM Visua!Age C++ and
MetaWare High C++ compilers allow you
to natively build DTS classes. The examples
in this article use the IBM Visua!Age C++
compiler.

Converting a C++ Class
to a DTS Class
Assuming you have a class definition that
can be supported under SOM,' you'll find
it easy to convert your C++ class to a DTS
class.

One way to convert a C++ class to a DTS
class is to include the header file

' SOM and C++ are slightly different in their view
of objects. For example, SOM does not support
multiple virtual inheritance.

#include <som.hh> before the first defi­
nition of the class you want SOM-enabled.
Once < s om. h h > is included, the class you
want SOM-enabled will need to be derived
publicly from SOMobject. Figure 2 shows
the Valet class defined as a SOM class.

One significant benefit of using SOM
attributes is that they can automatically
generate _get and _set member
functions. If you want one of your data
members treated as a SOM attribute, so
that the _get and _set member func­
tions are automatically generated, you
must use the #pragma S0MAttri bute
(member -data name.option) within
the class definition where the data mem­
ber is defined. If you do not use #pragma
S0MAttri bute, the data members are
considered to be instance variables, and
no _get and _set member functions are
generated. In Figure 2, if you want to
make valetName an attribute, you must
define the pragma within the Valet class:
#pragma S0MAttribute (valetName .
pri vatedata).

When defining C++ classes with SOM
attributes, keep in mind that the access
level to the _get and _set member func­
tions is the same as the data member's. If
you define the valetName in Figure 2 to
be a SOM attribute through the #pragma ,
the _get and _set member functions
behave as if they are defined in the
private section of the class definition.
Member data defined as SOM attributes
in the public section of a class will have
_get and _set member functions defined
in the public section.

If you want to define your data members
as private member data, and you want to
access this member data through public
_get and _set members, you will need
to define your own _get and _set mem­
ber functions, place them in the public
section of your class, leave your member
data as SOM instance data, and not make
it an attribute.

Another way to convert a C++ class to a
SOM class is to use the /Ga VisualAge C++
compiler option (enable implicit SOM
mode). Using the /Ga option will implicit­
ly include som. hh and implicitly derive
classes from SOMobject. Using #pragma
S0MAs0efault(on) in a class will
achieve the same result as using the / Ga
compiler option. If you do use #pragma

#ifdef _ valetHH_
#define _ valetHH_

#include <Garage.idl>
#include <TktBookS.idl>

class Car:

class Valet
{

public:
Ticket* parkCar(Car *):
Car* retrieveCar(Ticket

private:
char
1 ong

*valetName:
valetID:

Garage *aGarage;
TktBooks *aTktBookS;

} ;
//endi f

Figure 1. Valet.hpp Written in C++

#ifdef _ valetHH_
#define _ valetHH_

#include <som.hh>

#include <garage.hh>
#include <TktBooks.hh>

class Car;

*);

class Valet public SOMObject
{

public:
Ticket* parkCar(Car *):
Car* retrieveCar(Ticket

private:
char
long
Garage
TktBooks

} ;

//endi f

*valetName:
valetID:
*aGarage;
*aTktBookS:

*);

Figure 2. Valet.hh Defined as a SOM Class

S0MAs 0efault(on) , all classes will be
converted to SOM classes until /Ip r a gma
S0MAsDefault(off) is encountered.

Building a Shared Library
If you are building a class library with
your DTS class, you will need to export
the four symbols (shown below) so that
this class can be used by other clients. If
you are going to place the Valet class in a
shared library (DLL), the module definition
file (.DEF) should contain the following:

EXPORTS
ValetClassData
ValetCC l assData

Val etNewClass
S0MinitModule

The S0MinitModule is required for any
shared library that can be dynamically
loaded using methods supported by the
SOM Class Manager. The S0MinitModul e
function for the Valet class is shown in
Figure 3. The S0MinitModul e can be
included within the body of the class
implementation (.CPP) or in a separate
.CPP file, then linked together when the
shared library is built.

PERSONAL SYSTEMS • MARCH/APRIL 1996 3 1

32

void _Export _System S0MinitModule(long majorV,
1 ong mi norV,
char *className)

{

}
ValetNewClass(Valet_MajorVersion, Valet_MinorVersion):

Figure 3. Initialization Function for Valet Class in SOM Class Library

class Valet public S0M0bject
{

public:
long getCarCount(l:
Ticket* park(Car *):
Ticket* park(Bus *):

Valet& operator-(const Valet& rhs):

} :
/lendif

Figure 4. Valet Overloaded Methods

class Valet public S0M0bject
{

public:
/lpragma S0MNoMangling(0N)

long getCarCount(l:
/lpragma S0MNOMangling(0FF)

Ticket* park(Car *):
/lpragma S0MMethodName(park(Car *),"parkCar")

Ticket* park(Bus *):
/lpragma S0MMethodName(park(Bus *),"parkBus")

Valet& operator-(const Valet& rhsl:
/lpragma S0MMethodName(operator-(),"ValetEqualityTest")

} :
/lpragma S0MClassName(valet,"Valet"l
/lend if

Figure 5. Valet Overloaded Methods

SOM Release Order
in a DTS Class
SOM offers two major benefits: binary
compatibility and the ability to change
methods and add new methods without
forcing clients using a class library to
recompile. The great news is that you can
achieve this using a DTS class.

SOM maintains the binary compatibility
through a release order list containing
every method introduced by a class.
Because a DTS object is a SOM object,
there is a release order as well. You can
specify the release order of a class
through a /lpragma S0MRel ease0rder.

PERSONAL SYSTEMS • MARCH/APRIL 1996

For the Valet class in Figure 2, the
release order is defined as: //pr a gma
S0MRelease0rder(parkCar(),\
retrieveCar()) andthe/lpragma
SOM Rel ease0rder directive is specified
within the class definition of Valet.

If any of the member data in the Valet
class is defined as SOM attributes through
the #pragma S0MAtt ri bute () directive,
the _get and _set member functions
that are automatically generated for the
attribute will also need to be included in
the release order.

If you don't specify /lpragma
SOM Re 1 ease0rder, Visua!Age C++ will

generate a default release based upon the
methods declaration order and SOM
attributes in the class definition. Once a
release order is created, you should not
reorder the declaration of methods or
attributes, because doing so changes the
release order of the SOM class. Unless
they recompile, any clients using the old
release order will be unable to use the
new SOM class with the new release order.

You can use the / Fr compile option to
view the implicit release order for a class.
VisualAge C++ will write the release order
of the class to standard output. You can
then cut and paste the release order to
the . h h file and create a release order
through the /lpragma S0MRelease0rder
directive.

Building Language-Neutral
DTS Classes
As many C++ developers know, the names
of C++ functions and methods are man­
gled by the compiler. This also happens if
you are building DTS classes in C++. If
you generate IDL from your DTS class, by
default, the mangled method will be
imbedded in the IDL. If any client wants
to use your DTS from any language out­
side of C++, the client will have to use the
mangled name to invoke the desired
method.

For example, say you want to add a
few new methods to the Valet class.
One method you want to add has a 1 ong
getCa rCount (); signature. After compil­
ing Valet, the getCa rCount method is
mangled by VisualAge C++ to
getzcarzcount_ fv.

Any non-C++ class must refer to this
mangled name when invoking the
getCa rCount method, making it difficult
and error-prone to use a DTS class from a
language other than C++. Luckily, with
DTS under VisualAge C++, you can turn
off mangling for a class and specify
method names for methods that will need
to be mangled!

Let's also add two overloaded functions
to overload the = operator in Valet, as
shown in Figure 4. Keep in mind that
all functions, including overloaded func­
tions and overloaded operators, will be
mangled.

Overloaded Functions
and Operators
SOM does not natively support overloaded
functions and operators. To access the
overloaded functions and methods in a
language-neutral way through SOM (with­
out using the mangled name), you can use
#pragma S0MMethodName to give the
DTS method name a SOM name. For the
park methods in Figure 4, #pragma
S0MMethodName is defined as:

#pragma S0MMethodName
(park(Car *),"parkCar")

ffpragma S0MMethodName
(park(Bus *),"parkBus")

Any non-C++ client using this Valet class
could now invoke the park(car *)
method via the name parkCar(Car *)
method and park (bus * l via the name
parkBus(Bus *) method.

The overloaded operator (operator=)
can also be renamed using the #pragma
S0MMethodName directive. Any non-C++
client invokes the operator= method
through the SOM method name specified
in the #pragma.

As described, all methods, including
overloaded member functions, will be
mangled. In Figure 4, the getCa rCount
method will be mangled to
getzcarzcount_ fv. If you want all non­
overloaded methods within a DTS class to
have the same SOM name as the method
name, you can use the #pragma
S0MNoMangl i ng directive.

Figure 5 shows the Valet class with the
appropriate #pragma directives defined to
ensure that the methods are easy to
invoke from other languages. For any
overloaded member functions, you must
use the #pragma S0MMethodName with
the #pragma S0MNoMangl i ng, because
every SOM method must have a unique
name.

Additionally, C++ may also mangle the
class name of a DTS class, which makes it
more difficult to use from non-C++ lan­
guages. In the case of the Valet class, the
mangled class name is zva let. However,
you can either specify the #pragma

S0MNoMangl i ng directive before the class
definition so the SOM class name is not
mangled, or use #pragma S0MCl assName
(as illustrated in Figure 5) to specify a
non-mangled class name.

Watch Those Constructors!
When building your DTS classes, your
class will always need to provide a default
constructor that takes no arguments. This
SOM requirement is slightly different
than in C++. If a client application tries
to instantiate an object using a non-exis­
tence default constructor, a compile error
will occur. If a default constructor is speci­
fied in the class, the IBM VisualAge C++
compiler will generate the following
function:

somDefaultinit(this,Environment
, InitVector);

This function will be invoked when an
object is instantiated with a default con­
structor. If your DTS class contains other
non-default constructors, the constructor
names will be mangled like any other C++
member function. You should use the
#pragma S0MMethodName directive to
specify a SOM method name for all non­
default constructors. If you want these
non-default constructors to be used by
non-C++ languages, these languages must
first instantiate the SOM object through
S0MNewNoI nit. Once created, the client
can then invoke the non-default construc­
tor through the SOM name specified in
the #pragma S0MMethodName directive.

If your DTS client class is C++, then the
#pragma S0MMethodName directives are
not necessary for the constructors.

DTS Classes with DSOM
Since a DSOM object exists in a separate
process from the client application, no
direct access to member data is allowed.
Any member data defined as a SOM
attribute must be accessed through _get
and _set methods. Non-attribute member
data must be accessed through _get and
_set methods provided by the class. Of
course, all good object programmers
never allow direct access to member data,
so this should not be a consideration.

If your DTS class is going to be built into
a DLL, you should also ensure that the
DLL name is placed in the interface repos­
itory (IR) so that the DLL can be loaded in
DSOM. To accomplish this, you must use
#pragma S0MIDLPass so that you can
imbed the DLL name in the IDL. The
#pragma S0MIDLPass directive will
imbed text specified in #pragma in the IDL.

If the Valet class will be compiled into a
DLL named Valet, imbed #pragma
S0MIDLPass in the Valet class definition
as follows:

#pragma S0MIDLPass
(*, ·rmplementation-Begin".
·ctllname = \"valet.dll\";")

When you build the interface definition
language for Valet from Val et. h h,
Val et. i dl will have the dl l name=
"val et. d 11" imbedded in the implemen­
tation section of the IDL. You can then
run Val et . ID L through the SOM compil­
er to add the Valet class definition to the
interface repository. DSOM will load the
DLL and invoke methods dynamically.

SOM Objects from C++
Direct-to-SOM lets you easily build SOM
objects from C++ without writing a
single line of IDL. It allows C++ program­
mers to develop objects in a natural man­
ner. Although C++ and SOM view objects
slightly differently, with the #pragma
directives provided with IBM VisualAge
C++ and especially the #pragma
S0MMethodName, you can develop your
methods to be used by any language.

Rick Weaver is an

advisory marketing

support representa­
tive in the IBM

Personal Systems
Competency

Center in Roanoke,
Texas. He provides

services and on­

site consulting on
DB2 for OS/2, DB2 for NT, SOM, and

object technology to customers through­
out the world. Rick joined IBM in 1990

after earning a BS degree in Computer
Science from Southwestern Adventist
College. His Internet ID is
weaveros2@vnet.ibm.co~

PERSONAL SYSTEMS • MARCH/APRIL 1996 3 3

34

Distributing Objects
with DSOM
Usi,ng the same valet parking system scenario described in Rick Weaver's
"IBM System Object Model-The Wave of the Future (and Now!)" article,
this article provides you with background information for distributing
objects with Distributed SOM (DSOM) and walks you through the neces­
sary changes to convert the valet sample into a DSOM application.

D SOM is an extension to SOM that allows client applications to access
objects without building dependencies upon the object's location into
the client application's source code. It also allows clients to invoke

methods on SOM objects in other processes.

By providing a framework
for accessing objects across address
spaces within a machine or
between machines, DSOM insu­
lates clients from each object's
location. DSOM objects can be
similarly referenced, regardless
of their locations.

Randall Autry
IBM Corporation
Roanoke, Texas

Usage
DSOM is intended for applica­
tions that need to share objects
within multiple programs. The
object exists in only one process,
called the server, and clients
access the object using remote
method invocations made trans­
parent by DSOM. DSOM should be
used for objects that need to be
isolated from the main program
for reliability, portability, or dis­
tributed design.

Features
The following is a quick sum­
mary of important DSOM
features. DSOM:

PERSONAL SYSTEMS • MARCH/APRIL 1996

■ Uses the standard SOM compiler, inter­
face repository (IR), language bindings,
and class libraries, plus DSOM provides
a growth path for non-distributed SOM
applications.

■ Allows an application program to trans­
parently access a mix of local and
remote objects.

■ Provides runtime services for creating,
destroying, identifying, locating, and

dispatching methods on remote objects.
You can override or augment these
services to suit the application.

■ Uses existing interprocess communica­
tion (IPC) facilities for workstation
communication and common LAN
transport facilities for workgroup
communications.

■ Provides support for writing multi­
threaded servers and event-driven
programs.

■ Provides a default object server pro­
gram that can be easily used to create
SOM objects and make those objects
accessible to one or more client pro­
grams. If the default server program is
used, SOM class libraries are loaded
upon demand, so no server program­
ming or compiling is necessary.

■ Complies (as an object request broker
[ORB]), with the Common Object
Request Broker Architecture (CORBA)
specification published by the Object
Management Group (OMG) and X/Open,
which is important for porting applica­
tions to other CORBA-compliant ORBs.

DSOM Overview
A DSOM application typically consists of
four processes running on a single
machine or across multiple machines:

■ The client program uses DSOM classes
and is fully custom code written by the
application developer.

■ The server program may be the default
server program provided by DSOM or a
customized server program written by
the application developer. The default
server program simply runs in a loop,
listening for and servicing client
requests. It hosts a well-known server
object, which responds to generic meth­
ods for loading and instantiating appli­
cation-specific class libraries, and it
hosts the application objects created in
it. For applications requiring more flexi­
bility or functionality, a customized
server program addresses the applica­
tion's specific needs.

■ The DSOM location-service daemon,
SOMDD, runs on the same machine as
the servers. The daemon establishes
the initial connection between client
and server and dynamically starts the
server program on the client's behalf,
if necessary.

#include <somobj.idl>
#include <garage . idl>
#include <TktbookS . idl>

interface Car:

interface Valet : S0M0bject
{
attribute string valetName;
attribute long valetID;

Ticket parkCar(in Car aCar);
Car retrieveCar(in Ticket aTicket):

/*parkCar method*/
/*retrieveCar method*/

#ifdef _ S0MIDL_
impl ementat i on

{
Garage aGarage;
TktBookS aTicketBookSystem:

passthru C_xh - "#include \"Ticket.xh\""
•#include \"Car.xh\""
"#include \"Garage.xh\""
•#include <TktBooks.xh>"
•#include <string.h>";
//Previous line added for DS0M

dllname - •valet.d l l";
releaseorder : _get_valetName, _set_valetName, _get_valet ID,

_set_valetID, parkCar. retr i eveCar:

//Next l ine added for DS0M - must perform "deep copy", not
"sha 11 ow copy"

valetName : noset:

somDefaultlnit : override, init;
somDestruct : override;

} ;
fiend if

} ;

Figure 1. VALET. IDL

■ The name server provides a Naming
Service used directly by DSOM applica­
tions. DSOM also uses the name server
to provide a Factory Service used by
client programs to create remote
objects.

The DSOM application uses the fo llowing
files at runtime:

■ The SOM objects configuration file
defines runtime environment settings
for DSOM. Each of the four DSOM pro­
cesses just described can have unique
configuration file settings, or they can
share a common configuration file.
SOMobjects provide a default configura­
tion file, which you can customize using
any text editor.

■ The interface repository (IR) files pri­
marily load class libraries dynamically
in both client and server processes. IR
files are created and updated using the
SOM compiler and contain information
required only on the server the daemon

uses to start servers and required by
servers to initialize themselves. This
repository is created and updated by
usi ng regimpl or pregimpl to register
servers.

■ Naming Service files store information
from the Naming Service and the DSOM
Factory Service on disk. Naming Service
files include information about which
application classes are supported on
each registered server.

You'll perform the following tasks to con­
figure and run a DSOM application:

■ Customize the environment settings by
editing the default configuration file
and using the somenv environment
variable.

■ Configure the Naming Service and
Security Service using the som_cfg
utility (a one-time step). Update the
interface repository to include applica­
tion interface definition language (IDL).

PERSONAL SYSTEMS • MARCH/APRIL 1996 35

36

Note: Some code is omitted here to save space.

I*
*Method from the IDL attribute statement:
*"attribute string valetName"
*/

S0M_Scope void S0MLINK _set_valetName(Valet *somSelf, Environment
*ev, string valetName)

{

}

ValetData *somThis - ValetGetData(somSelf):
ValetMethodDebug("Valet•.•_set_valetName"):

//Added for DS0M since this method is only stubbed because of
"noset"

if (somThis->valetName !- 0) {
S0MFree(somThis->valetName):

} /* endif */

somThis->valetName - (char*) S0MMalloc (strlen(valetName) + 1):
strcpy(somThis->valetName. valetName):

Note: Some code is omitted here to save space.

I*
* S0M_Scope void S0MLINK somDestruct(Valet *somSelf, octet doFree.
* somDestructCtrl* ctrl)
*I

I*
* The prototype for somDestruct was replaced by the following
* prototype:
*/

S0M_Scope void S0MLINK somDestruct(Valet *somSelf, octet doFree,
som3DestructCtrl* ctrl)

ValetData *somThis: /* set in BeginDestructor */
somDestructCtrl globalCtrl:
somBooleanVector myMask:
ValetMethodDebug("Valet","somDestruct"):
Valet_BeginDestructor:

I*
* local Valet deinitialization code added by programmer
*/

delete somThis->aGarage:
delete somThis->aTicketBookSystem:

//Following lines added for DS0M
if (somThis->valetName!-0) {

S0MFree(somThis->valetName):
} /* endif */

Valet_EndDestructor:

Figure 2. VALET.CPP

■ Start S0MDD on the server machines.

■ Register application servers and classes
using the regimpl or pregimpl tool.

■ Run the client application.

At runtime, DSOM clients and servers
communicate through proxy objects
(object references). A proxy object locally
represents a remote target object. A proxy
inherits the target object's interface, so
it responds to the same methods. Opera­
tions invoked on the proxy do not exe­
cute locally, but are forwarded to the real
target object for execution. The client

PERSONAL SYSTEMS • MARCH/APRIL 1996

program treats a proxy object much like a
local object and always has a proxy for
each remote target object on which it
operates. The proxy forwards requests
and yields results from the remote object.

Changing Valet to Use
Distributed Objects
The following steps outline the changes
necessary to the valet sample to distribute
several of the objects in the valet sample.
This sample is based on the SOMobjects
3.0 Beta Toolkit instead of the SOMobjects
2.1 Toolkit used in the original sample.
The differences in code are minor and

will be pointed out separately from the
changes for distributing Valet. You can
find the complete code used for this sam­
ple on Personal Systems' home page at
http://pscc.dfw.ibm.com/psmag/.

Although SOMobjects 3.0 supports several
methods for distributing the valet exam­
ple, including using factory objects for
better location transparency, I have out­
lined a simple solution here. Valet, Car,
and Ticket will be converted to DSOM
objects to allow the valet system to be
distributed across process or machine
boundaries.

The only change required to the valet
sample for use with SOMobjects 3.0 Beta
Toolkit instead of SOMobjects 2. 1 Toolkit
is to alter *. MAK files to use S0MTKl. LIB
and S0MTK2. LIB in place of S0MTK. LIB
to use with I LINK.

Following are the programming changes
required for the valet sample to use DSOM
objects:

Distributing Valet
Although valet is partly ready for dis­
tributing, you must change the VALET. IDL,
VALET. CPP, and CLIENT. CPP files.

In VALET. IDL (see Figure I):

■Use noset to prevent the emitter from
creating a _set method for val etName.
You must customize the _set method
for val etName for DSOM to perform a
"deep" copy of the string passed in,
since the pointer will not be valid in a
separate address space. Add val etName
: nos et:

In VALET. CPP (see Figure 2):

■ Implement a deep copy for
_set_val et Name() that will work
in a separate address space where a
direct pointer assignment would be
invalid. Add the following code to
_set_valetName():

if (somThis -> valetName ! - 0) (
S0MFree(somThis- >valetName);

} /* endif */

somThis- >valetName =(char*)
S0MMa 11 oc (strl en (val etName) + 1):

strcpy(somThis->valetName ,
valetName):

Note: Comments are omitted.

#include "valet.xh"
#include "car.xh"

//Following line added for DSOM
#include <somd.xh>

#include <fstream.h>
#include <string.h>
#include <stdlib.h>

long check_ev(Environment *); //Used to check SOM exceptions

main(int argc, char *argv[J. char *envp[])
{
fstream infile;
char buf[SOJ;
char *token=O;
long tNum=O;

/*buffer for holding record from file*/
/*used when reading input file*/

Environment *ev = somGetGlobalEnvironment();

//Following lines added for DSOM
SOMD_Init(ev);
ValetNewClass (0,0);
CarNewClass (0.0);
TicketNewClass (0,0);

//Following change made for DSOM
// Valet *v = new Valet();
Valet *v =(Valet*) SOMD_ObjectMgr->somdNewObject(ev, "Valet","");
Ticket *t;

/*Create a valet object*/
v->_set_valetName(ev,"Roy Bigg");
v->_set_valetID(ev,l);

infile.open("car.scr",ios::in); //***open car . scr for input
while (!infile.eof())

{

}

buf[OJ= '\O';
infile.getline(buf,sizeof(buf), '\n');
if (strlen(buf)!=O) //***if it is a valid record

{
//Following change made for DSOM
// Car *c = new Car();
Car *c - (Car *) SOMD_ObjectMgr->somdNewObject(ev. "Car". "");

token=strtok(buf,"j");
if (*token=='P') //Park a car.

{
//Moved for consistency
Car *c =(Car*) SOMD_ObjectMgr->somdNewObject(ev, "Car", "");

token=strtok(NULL,"j");
c->_set_color(ev,token);
token - strtok(NULL,"j");
c->_set_make(ev,token ;
token= strtok(NULL,"j");
c->_set_model(ev,token);
t - v->parkCar(ev.c);
cout « "=> The "«c->_get_color(ev)«" "«c->_get_make(ev)«"

"«c>_get_model(ev)« "was parked in slot"
cout <<t->_get_parkingSlotNum(ev)<<endl;

delete t;

else //Retrieve a car.
{
//Following change made for DSOM
//Ticket *nT = new Ticket;
Ticket *nT =(Ticket*) SOMD_ObjectMgr->somdNewObject(ev, "Ticket", "");

token=strtok(NULL,"j");
tNum=atol(token);
nT->_set_parkingSlotNum(ev,tNum);
c = v->retrieveCar(ev,nT);
if (!check_ev(ev))

cout «"<=The "«c->_get_color(ev) «" "« c->_get_make(ev) «"
"« c->_get_model (ev)« " was returned from slot "« nT->
_get_parkingSlotNum(ev)<<endl;

Figure 3. CLIENT.CPP (continued on next page)

PERSONAL SYSTEMS • MARCH/APRIL 1996 3 7

38

//Following changes made for DSDM
//delete nT;
//delete c; //delete car object returned.

S0MFree (nT):
S0MFree (c);

}/*else*/
} /*if .. then*/

} /*while*/
i nfil e. close();

//Following change made for DS0M
// delete v;

}

S0MFree (v);
S0MD_Uninit(ev);

(Function check_ev (Environment *ev) omitted)

Figure 3. CLIENT.CPP (continued from previous page)

#include <somobj . idl>

interface Ticket : S0M0bject
{
attribute long ticketNum:
attribute long parkingSlotNum;

#ifdef _ S0MIDL_
implementation

{
dllname - •ticket.dll";
releaseorder : _get_ticketNum, _set_ticketNum_get_parkingSlotNum,

_set_parkingSlotNum;

//Following two lines added for DS0M
somDefaultlnit : override, init;
somDestruct : override:

} ;

f/endif
} ;

Figure 4. TICKET.IDL

Implementation id : 30eale82·001520ae-7f-00-000000002079
Implementation alias : ValetServer
ImplDef Class name : ImplementationDef
Program name : somdsvr
Multithreaded : No
Server managed : No
Server secure : No
Server class : S0MDServer
Configuration file :
Protoco l information :

Protocol: S0MD_ IPC;Hostname: thehostname;Port: 3002:

Figure 5. Implementation for ValetServer Alias

■ To properly free the memory allocated
for val et Name, add the following code
to somD estruct():

if (somThis-> val et Name !=0) {
S0M Free(somThi s·> valet Name);

} /* endif */

PERSONAL SYSTEMS • MARCH/APRIL 1996

In CLIENT. CPP (see Figure 3):

■ Include DSOM definitions by adding
#in cl ude <somd.xh>

■ Use S0MDNew0bj ect to instantiate DSOM
objects, delete new Val et ; and add:

(Val et*) S0MD_0bjectMgr­
>somdNew0bject(ev, "Valet", "");

■ Use SOM Free (v) instead of delete v
to free DSOM objects

■ Add S0MD_ I nit C ev) to initialize the
DSOM environment

■ Add a dummy class object:
ValetNewClass (0,0)

■ Add S0MD_Uninit(ev) to de•initialize
DSOM

Distributing Car
The Car object is already DSOM·ready, so
you need to change only the CLIENT.CPP
file.

In CLIENT. CPP (see Figure 3):

■ AddCarNewClass (0,0);

■ Remove Car *c - new Car();

■ Add Car *c = (Car *)
S0MD_0bjectMgr->somdNew0bject
(ev, "Car","");

■ Remove delete c;

■ Add S0MFree Cc);

Distributing Ticket
Because of its initial implementation,
Ticket requires changes to CLIENT. C PP
and TICKET. IDL.

In CLIENT.CPP (see Figure 3):

■ Add Ti cketNewCl ass CO. 0):

■ Remove Ticket *nT = new Ticket;

■ Add Ticket *nT= (Ticket *)
S0MD_0bjectMgr>somdNew0bject
(ev. "Ticket","");

■ Remove delete nT:

■ Add S0MFree (nT);

In TICKET. IDL (see Figure 4):

■ Add somDefaultinit: override,
i nit;\

■ Add somDestruct : override;\

Configuring DSOM Applications
You must configure the DSOM runtime
environment before DSOM applications
will run. To do this, perform the follow•
ing configuration tasks:

■ Set environment variables and con·
figuration file settings. DSOM settings

are stored in the SOMobjects config­
uration file in the [somd] stanza.
Most DSOM settings are optional; the
default settings provided by the default
SOMobjects configuration file are suit­
able for single-machine applications.
Set the SOME NV environment variable
for accessing the configuration file .

■ If you are using the SOMobjects Secur­
ity Service, users must log in to the LAN
server to run as authenticated clients.
Users not logged in to the LAN server
will run as unauthenticated clients;
their requests will be rejected by any
server registered as a secure server. If
you are not using the SOMobjects Secur­
ity Service, set DISABLE_AUTHN=TRUE

in the [somsec] stanza of the
SOMobjects configuration file.

■ Use the SOM Compiler (with the i r
emitter) if any application classes
need to be compiled into the interface
repository.

■ Ensure that the Naming Service has
been previously configured with the
som_cfg tool. Even though this is typi­
cally a one-time configuration step, you
should reconfigure the Naming Service
as necessary when certain DSOM com­
munication-protocol environment set­
tings are changed.

■ Use the regimpl or pregimpl tool to
register all application servers. In addi­
tion, register all application class/server
associations needed by the DSOM
Factory Service.

■ Use the s omdc h k tool to verify the
DSOM runtime environment.

Configuring DSOM for Valet
To configure DSOM for the valet sample:

■ Run s omd ch k and fix any problems
identified

■ Set beginlibpath=x:\valet\dll;

■ Set somir=%somir%;x:\valet\
valet . ir;

■ Set somddir=x:\valet\somddir\

■ Run reg imp l and add an implementa­
tion alias of ValetServer with all
defaults

■ Use reg imp l to add Valet, Car, and
Ticket classes, specifying ValetServer as
the implementation alias for each

When you use selection "4. Show one" to
display the ValetServer alias, it should
look like Figure 5.

Running DSOM Applications
To run a DSOM application, you must start
SOM DD on each server. For the valet sam­
ple, you can start SOMDD from the com­
mand line by typing START SOMDD. After
SOMDD is up and running, you can start
server applications manually or automati­
cally when requested by clients. The client
program is run on either the same or a
different machine from the server and
will connect automatically with SOMDD,

locating the appropriate server based on
the configuration.

Before running the distributed version of
valet, edit CAR.SCR to remove the invalid
references used to show exceptions. (Since
exceptions were not covered here, the

code produced will not handle them correct­
ly.) Remove line 10 R 1100 and line 31 RI 30.

Ensure that the environment variables
you set earlier are set for your current
OS/ 2 session. Start SOMDD, wait for the
Ready message, and start CLIENT. You
should see the same list of cars produced
in the previous examples, minus the
exceptions produced in the script.

References
■ SOMobjects Developer Toolkit

Programmer's Guide, Volume 1: SOM
andDSOM

■ SOMobjects Developer Toolkit
Programmer's Reference

Note: These references are included on
the CD-ROM with the software.

Randall Autry is an

OS/2 application
development and
communication

specialist on the

advanced object

technology team in

the IBM Personal

Systems Compe­

tency Center,
Roanoke, Texas. He designs and imple­

ments software systems, specializing in

OS/2 and object technology and has

focused for five years on client/server

application design and implementation,
problem determination, and consulting.

Randall 's Internet ID is
autry@vnet . ibm.com.

PERSONAL SYSTEMS • MARCH/APRIL 1996 3 9

Using OpenDoc and SOM in
Application Development
The initial version of OpenDoc is now available for OS/2. This article
explains what OpenDoc is and reviews the content of a simple "Hello
World" component.

Reflecting the growing interest for using compound document architec­
tures to build applications, the initial version of OpenDoc has recently
been made available for OS/2.

The concept behind compound document architecture is that any application
can consist of modular pieces, each performing a specific task. There may be
components for editing text, viewing images, playing back video and speech,
or recognizing handwriting. These components can be developed and market­
ed by experts with specific domain expertise, then selected and assembled by
either corporate professionals or by end users themselves.

This component-based application has many potential benefits.
As monolithic applications add function, they grow larger and
more difficult to maintain. The level of difficulty doesn't
increase linearly-it follows a more exponential curve. Compo­
nent architecture promises to help contain an application's size
as well as reduce the difficulties developers experience when
designing, coding, and testing, because each component is
smaller and focused on more specific functionality.

When components become

such as scripting, linking, and embedding,
that allows them to interoperate within a
larger entity. Finally, components are typi­
cally packaged as relatively small dynamic
link libraries (DLLs) that are easy to add
to a workstation.

OpenDoc and SOM
How do OpenDoc and SOM fit into this
application development vision?

OpenDoc is an open specification
administered by Component Integration
Laboratories (CILabs), an independent

/JMMMM ...
John Pape
IBM Corporation
Roanoke, Texas

widely available, today's
requirements for a typical
application such as word­
processing with graphics

WHAtS OPENDOC?

and image capabilities,
spelling and grammar

checkers, thesauruses, etc. will be met by interchangeable, off­
the-shelf components provided by numerous vendors. In addi­
tion, users can add new functionality, such as adding World­
Wide Web hyperlinks into a document to be electronically sent,
by embedding a new component type into the document. Then
the document can be viewed by the recipient using low- or no­
cost component viewers that vendors are being encouraged to
make available. These inexpensive component viewers will be
easy to add to user workstations, adding function while elimi­
nating the need to upgrade a large integrated package.

Several factors contribute to components' flexibility and power.
Components conform rigorously to standards administered by
an independent organization. Components add functionality,

40 PERSONAL SYSTEMS • MARCH/APRIL 1996

'[

organization whose members include
many software vendors (originally Apple,
IBM, Novell, Oracle, Sun, Taligent, Word­
Perfect, and Xerox; and later, Adobe,
Lotus, MetaWare, and OMG). C!Labs is
responsible for arbitrating the specifica­
tion of the standard for, and ensuring
conformance of, developed components.
C!Labs also recognizes the presence of
competing architectures in the market­
place, such as Microsoft's Object Linking
and Embedding (OLE), and specifies an
architecture known as Open Linking and
Embedding of Objects (OLEO) to ensure a
level of coexistence.

OpenDoc consists of several major facili­
ties, as shown in Figure 1:

■ Compound Document Management

■ Structured Storage

■ Automation and Scripting

■ Uniform Data Transfer

■ Object Bus

I'll discuss each of these facilities now.

Compound Document Management
Elements of OpenDoc's visual program­
ming differ from that of a typical
Presentation Manager (PM) or Windows
application. In OpenDoc, the goal is to
have multiple components seamlessly
share a presentation space. Components
must share access to various resources,
such as the keyboard or a menu. The end
user must be able to navigate within the
document in a comfortable, natural way
with minimum effort.

To address these requirements, OpenDoc
provides an architecture in which compo­
nents negotiate for visual space and
invoke the services of an arbitrator to
gain access to shared resources.

Usually, the space negotiation begins
when the component is first embedded in
a document. The definition of a document
is rather broad; a document does not have
to be thought of as word-processing out­
put-it can be a full business application
with communication links and database
access. Today, the basis for all documents
is the DocShell, which provides the run­
time environment. The DocShell is shown
with an embedded sample component in
Figure 2.

Structured
Storage

Uniform
Data

Transfer

Compound
Document

Management

Automation
& Scripting

Your
Parts

CORBA Bus (SOM)

Figure 1. OpenDoc: The SOM Object Bus

8 1 2 3 4 5 6 7 8

9
I'• 'I ' •' I' I' I',, I' ,, I' I' I ',, I ' I' I',, I ' I• I' l 'j 'I 'I'• 'I 'I 'I ' • 'I '•'i '• 'I

2

3

4

Page 1 of 1 Tue Jan 23 11 :38 AM

Figure 2. An OpenDoc Application

Components that allow other components
to be embedded within them are known
as containers. Space is allocated with
frames, facets, and shapes. Negotiation for
space takes place between components
and their containers at the.frame level.
Facets are areas where the frame is visi­
ble; the presence of facets aids OpenDoc's
performance. Shapes allow irregularly
shaped components, such as text that
wraps around images or a round clock.

OpenDoc differs from existing applica­
tions in the manner in which components
are selected and manipulated. OpenDoc
utilizes inside-out activation, which
means that mouse clicks are directed to
the event handler of the most deeply
embedded facet containing the point
clicked on. Activation, however, is not
automatic. In handling the mouse event,
the component can choose to issue a
request for a specific focus. Further, the

focus is obtained only after negotiation,
through the arbitrator, with the compo­
nent currently holding the requested
focus. Typically, the focuses that a com­
ponent will request include access to
keystrokes, ownership of the menu bar,
and the selection highlight.

The inside-out activation scheme allows
an aspect of the user interface known as
inplace editing. This interface enables
users to use or manipulate each of the
embedded components without having to
launch a separate application. Users can
naturally navigate through a document by
clicking on its various visual features .

A document received from another user
contains information regarding embed­
ded frames and the type of information
content they represent, called their part
kind. As shown in Figure 3, the user can
configure a workstation with preferences

PERSONAL SYSTEMS • MARCH/APRIL 1996 4 1

42

Select the Part Kind:
Kind Category

Text Part Kind
Rich Te xt Forma t
Plain Text

Text
0S2 Sta nda rd Ty pes
0S2 Standard Ty pes

Select the Preferred Editor:

Page Layout

Page_ 1 of 1

Figure 3. OpenDoc Preferences

indicating which component to use to
render each part kind.

Components are never requested by
name. Instead, OpenDoc provides a mech­
anism known as binding. A document
may contain a frame that contains infor­
mation of part kind "bitmap." The compo­
nent used to render the bitmap informa­
tion is determined by the end user 's pref­
erences. For this binding mechanism to
work, vendors must cooperate on uniform
methods of storing data content.

Structured Storage
OpenDoc provides a uniform method of
storage and representation through a
structured storage mechanism known as
Bento, a mature technology used in more

, than 100 products. OpenDoc's compound
document architecture exists largely
because of Bento's capability for storing a
large variety of different data types, such
as text, video, and sound.

A Bento container consists of a self-con­
tained indexing scheme and elements
known as storage units, which contain
properties and values. These properties
and values are represented as ISO strings,
a standardized scheme that allows data to
be identified by a commonly known char­
acter sequence. This is the scheme that
allows the binding mechanism described
earlier.

Each physical file represents a document.
Each document contains one or more
drafts, which (if appropriate) allow the
user to return to a previous state of the

PERSO NAL SYSTEMS • MARCH/APRIL 1996

Editor

Text Po.rt
Text Part
Text Part

·.Y,l

:: 10
~t-lhL
Par t Kinds ,

.!.:_ategorles,

,, File Types

Extensions

document's content. Each draft has stor­
age units, containing properties and val­
ues or references, which are links to other
storage units that are traversed to locate
the required properties and values.

Automation and Scripting
To provide automation, OpenDoc imple­
ments a content-centered scripting archi­
tecture known as the Open Scripting
Architecture (OSA}, developed by Apple
and modeled closely on AppleScript. This
architecture provides a language-neutral
way to specify semantic events, which
are defined as scripting messages that
manipulate the component's content
model. The content model lists the con­
tent objects and the operations available
to the scripting support.

By coding all routines that change a com­
ponent's content model as semantic
events, several advantages are gained.
Most simply, the user can automate the
interaction with the component, including
doing everything that could have been
done with the keyboard and mouse, by
writing scripts instead. Second, interac­
tions become recordable, so that any
sequence that the user performs frequent­
ly, such as accessing data in a database
through a complex series of queries, can
be captured and replayed. Scripts also
play a part in providing the "glue" for the
component assembly process.

In the future, components may become
intelligent enough to learn by example,

then automate entire workflows. Net­
work-aware components could roam the
Internet to perform a customized query
on a number of servers.

Uniform Data Transfer
Uniform data transfer is accomplished
through the use of three services: linking,
drag and drop, and the clipboard.
Components inherit a set of interfaces
from the base class ODPart that support
the event notification necessary to sup­
port these services. In addition, a set of
classes is provided to initiate the services
and manipulate the data being passed.
These services are uniform in that they
all use Bento storage units as the object­
based data carrier, and each mechanism
will accept the storage unit as a compo­
nent to be embedded or as content data.

OpenDoc's linking support is an extension
of Apple's publish and subscribe model.
This scheme enables components (publish­
ers) to offer source data to other compo­
nents (subscribers) that want to stay syn­
chronized. When establishing the link, the
user can choose to have source updates
received automatically or by request. Each
time that the link source updates the
source data and marks it as changed, the
updated storage unit is transferred to the
link destination, which will embed the
data as a new component or add it to its
own data content. The underlying
Distributed SOM (DSOM) support allows
linking to components within the same
document, between documents (interpro­
cess), or between systems (intersystem).

Drag and drop refers to the user's ability
to select or "drag" a component or data
container and "drop" it onto another
object. OS/ 2 users are familiar with this
interaction with the Workplace Shell.
The source component packages data in
response to a start drag event, and, if a
drop occurs, the destination component
is given the opportunity to accept the
passed storage unit and decide how to
incorporate it into its own content. The
accepted object may either be added to
the component's own data content, or, if
the receiving component is a container
and the storage unit does not represent its
own part kind, it may be embedded as a
component.

The clipboard allows an object to be
transferred through an intermediate

location. The object, still represented by a
Bento storage unit, is copied or moved
(cut) to the clipboard and can be retriev­
ed (pasted) at a later time by another
component.

Object Bus
OpenDoc uses SOM as the underlying
client/server middleware and requires
that every machine it runs on have a
COREA-compliant SOM object request
broker (ORB). To fully enable the
exchange of components across an
enterprise, OpenDoc will require the
widespread adoption of Distributed SOM.

SOM adds several capabilities to the
OpenDoc implementation:

■ Components can be packaged as binary
libraries and shipped as DLLs.

■ Components can be extended through
implementation inheritance.

■ Components are dynamically bound
and can be added to documents at
any time.

■ SOM provides transparent interprocess,
intersystem communications.

Anatomy of an OpenDoc
Application
As shown in Figure 4, coding an OpenDoc
component essentially means providing
behaviors for more than 60 SOM methods.
The term part is widely used and is inter­
changeable with component. (Though
"component" is the official term, many
OpenDoc classes and methods use "part"
in their names.)

An OpenDoc component has no "main"
section-it is developed as a DLL. These
methods are organized into 12 major
categories: imaging, user interface events,
part activation, binding, frames, facets,
containing parts, embedding, drag and
drop, linking, undo, and constructors/
destructors. These categories are
described next.

■ Imaging-The drawing code available to
components is platform-specific, with
OS/2 using PM caJls to the graphics pro­
gramming interface (GPI) or to WIN
APis. OpenDoc notifies your component
that it needs to update its presentation
space by invoking ODPart's imaging
methods. ODPart's Draw method is simi­
lar to the WM_PAINT message received
by PM applications.

ODPart
/

Draa And Drop
• FullillPromise e DrogWithin

• DropCompleted • Drogleove

e DrogEnter e orop
E . ■-

• ContoiningPortPropertiesChonged

• GetContoiningPortProperties

• CreoteEmbeddedFromelterotor

e ReveolFrome I e EmbeddedFromeSpec

Frames
• DisployFromeAdded e AttochSourceFrome

• 0isployfromeRemoved • DisplayFromeClosed

• FromeShapeChonged • DisployfromeConnected

e PresentotionChonged e ViewTypeChanged

• WritePortlnfo • Sequence(hanged

• Open • ReodPortlnlo

Containing Parts
e RequestEmbeddedFrome

e RemoveEmbeddedFrome

e RequestFromeShape

e UsedShopeChonged • AdjustBorderShope

Facet
e FocetAdded • Canvas(hanged

• FacetRemoved • GeometryChanged

Figure 4. Methods of OOPart

■ User inte,:face events- These consist of
two methods: Handl eEvent and
Adj ustMenus. Handl eEvent is similar
to a PM application's window proce­
dure, except, through the help of
ODDispatcher, the events received will
correspond to the specific focus types
held. AdjustMenus is used to dynami­
cally alter the runtime state of the
menu selections, such as graying out
currently inactive choices.

■ Part activation-Three of these
methods (Begi nRel i nqui sh Focus,
CommitRelinquishFocus, and
Abort Relinquish Focus) are con­
cerned with managing the transfer of
focus away from your component.
Begi nRel i nqui sh Focus aJlows you
to declare that your component will
relinquish the specific focus requested
on this call. A commit scheme is used
for focus sets; if all current focus hold­
ers have agreed to relinquish focus,
then CommitRel i nqui sh Focus aJlows
any additional processing that your

-...........
lma1lna

e Drow e ConvosUpdoted

e HighlightChonged • GetPrintResolution

Unking
e Creotelink e LinkUpdoted

• Reveollink • LinkStotusChonged

e EmbeddedFromeChonged

Part Activation
e BeginRelinquishFocus

• CommitRelinquishFocus

• AbortRelinquishFocus

• FocusAcquired • Focuslost

Blnclng
e ExternolizeKinds e ChongeKind

e GetReolPort e lsReolPart

• ReleoseRealPart

UI Events
e HondleEvent I e AdjustMenus

Undo
e U ndoAction I e RedoAction

• WriteActionState I • ReodActionState

• DisposeActionStote

Constructors/Destrudors
e 1nitPart I • lnitPortFromStoroge

component will require to record the
commitment; otherwise, ODArbitrator
will invoke Abort Relinquish Focus
to notify your component that it still
retains the focus. FocusAcqui red
and Focus Lost aJlow your component
to respond to unusual circumstances,
such as losing a focus due to a system
failure.

■ Binding-A component's metaclass pro­
vides the information necessary to
update the part registration database as
to the part kinds (data formats) sup­
ported. During runtime, a component
only needs to externalize its preferred
representation. ChangeKi nd can
request that your component change its
representation, such as changing the
part kind of a graphics image from GIF
to BMP. External i zeKi nds will
request that your component write sev­
eral different representations to its stor­
age unit based on a provided list.

PERSONAL SYSTEMS • MARCH/APRIL 1996 4 3

44

■ Frames-Frames manage the display
area available to your part. Frames
encapsulate certain platform-specific
structures, such as the internal
transform that locates the frame rela­
tive to the component's content area
and the used shape that defines the
available area. OpenDoc interfaces with
your component's frames through sever­
al groups of methods, some of which
allow you to provide code in response
to events that caused your frame to be
added or removed. Your frame should
provide code that responds to a request
for a specific presentation type, such as
a tabular or graphical format. A request
for a particular view type will request
either a frame (normal window),
thumbnail (miniature window), or icon.
Frames are permitted to persistently
store data about themselves in a part
information area and are notified of
when to internalize and externalize
their data with ReadPartlnfo and
WritePartlnfo.

■ Facets-Facets are concerned only with
the imaging aspects of the component.
Facets encapsulate an external

transform that positions the facet in
relation to the containing frame. Facets
contain a clip shape that allows a
facet to create an irregular shape; draw­
ing will always clip to this shape, so as
to not interfere with the drawing of
other facets. Facets also contain an
active shape that defines the hit
region for mouse events; this is used by
the dispatcher to route mouse-related
messages. ODPart's facet-related meth­
ods should respond to the addition or
removal of a facet. In a component
where the content area is larger than
the screen's display area, facets may be
dynamically added and removed as they
are scrolled in and out of view. Facets
are temporary-they exist as a set of
structures parallel to the frame, and
they exist to enhance drawing and hit
testing performance.

■ Containing parts-Frames are managed
by containers. If a contained component
requires a new display frame, the com­
ponent will invoke the container's
RequestEmbedded Frame method.
Negotiations for new frame sizes are
provided through RequestFrameShape.
The container is responsible for drawing
the frame borders that are visible when
the part is active or selected, so a

PERSONAL SYSTEMS • MARCH/APRIL 1996

container component should respond to
the AdjustBorderShape method. A
container is notified when the used
shape of an embedded frame changes
with UsedShapeChanged and may
respond with code that reflows text
around the embedded frame or may
recalculate new frame shapes for sur­
rounding components and then notify
them with FrameShapeChanged.

■ Embedding-These methods synchro­
nize the data content of the container
and the information to be displayed by
an embedded frame. Containers must
also manage a list of embedded frames
and return an iterator when requested.

■ Drag and drop-This sequence is initiat­
ed when a source part is notified,
through the normal event notification
scheme, of the start of a drag. The
source is responsible for recognizing
the selected data and obtaining an
object of class 00DragAndDrop, adding
storage content, and starting the drag.
OpenDoc will assist from there, invok­
ing the Drag Enter, DragWi thin, and
Drag Leave methods of the potential
destination parts. You should use these
methods to provide a visual indication
about whether a drop is accepted. If the
user drops the object, the destination
part will have its Drop method invoked,
from which the storage unit can be
added to the data content, or you can
invoke the draft's Acqui rePart
method to embed the data as a new
component.

■ Linking-The potential to "link" is
advertised by writing a link specifica­
tion to the clipboard or to drag-and­
drop objects. Destination parts recog­
nize this and display a "Paste As" dia­
log. If the user desires a permanent
link, the destination should invoke
Getl ink of the draft object. The source
will have its Createlink method
invoked, where it will invoke
Crea tel i nkSource of the draft and
write any required data into it. On a
continuing basis, the link source can
update the content and flag it as
changed, causing the destination's
Lin kUpdated method to be called.

■ Undo-OpenDoc provides for undo/ redo
capability through the ODUndo object.
You are responsible for recording all
undoable actions appropriate for the
component in the action history. This
history contains both part data and

action data. When the Undo method of
ODUndo is called, the component repre­
sented by the part data will have the
action data passed to its Undo method.

■ Constructors/destructors- In it Pa rt

and InitPartFromStorage are used
as constructors for the OpenDoc compo­
nent. In i t Pa rt is invoked only when
the component is constructed from an
empty storage unit. Reopening a docu­
ment or embedding a component template
will cause InitPartFromStorage to be
passed an existing storage unit contain­
ing the component's content. Upon clos­
ing the document, the Externalize

method will be invoked, allowing you
to update the storage unit content.

An OpenDoc "Hello World"
Application
It will rarely be necessary to provide spe­
cific behaviors for all of these methods.
Two techniques allow generic behavior to
be implemented. The first technique uses
SOM's capability to subclass off of a base
part. The second possibility, and likely to
become the most prevalent, is to use a
framework that has implemented default
behavior. Two such frameworks are in
development now: Apple's OpenDoc
Framework and IBM's Taligent-based
StarterSet. Under the covers, frameworks
will provide implementations for all of
these required methods and will be imple­
mented in a way that will m·ake it easier
to customize and extend.

To give an example of the coding required
to create a component, I present a "Hello
World" example coded using native
OpenDoc application programming inter­
faces (APis) and native System Object
Model interface definition language (SOM
IDL). To keep the example to a reasonable
length, only those methods that imple­
ment function specific to this example are
included. You can find the complete sam­
ple part on the World-Wide Web at
http://pscc.dfw.ibm.com/psmag/.

The first step in coding an application
that uses SOM IDL for the class definition
is to code the IDL and generate a skeleton
source file using the SOM compiler.
Figure 5 shows the main body of the class
definition. We will add some new user
methods and also override the default
base class methods that we need to imple­
ment this component. OpenDoc requires

an implementation for all methods of
ODPart and also the inclusion of a meta­
class to be used for component registra­
tion. Since this component derives from a
base part, a default implementation for all
methods of ODPart has already been pro­
vided. For this example, the OpenDoc run­
time will interface to our part only
through the methods of ODPart, though
more complex programs can publish
extensions.

After the SOM compile, we have the neces­
sary header files and the skeleton .CPP
source code file. Figure 6 shows the con­
structor methods of our new component.

When a component is loaded into storage,
one of the two constructors will be
invoked. When a physical instance of the
component is first created, the OpenDoc
runtime invokes the component's
InitPart method, annotated as (1) in
Figure 6. This usually occurs when the
part template is created on the desktop.
Creating a template for a part consists of
executing the component under the con­
trol of a registration routine, allowing the
component to initialize its data content in
an empty storage unit. The template creat­
ed in the desktop templates folder will be
the externalized storage unit.

When the template is embedded in a doc­
ument, or when an existing document is
later reopened, InitPartFromStorage
(2) will be invoked instead of InitPart,
and the component will reinitialize based
upon the storage unit content.

Regardless of whether this is a new or
existing component, there are certain
functions programmers have found useful
to implement. Section (3) shows the com­
ponent obtaining the address of the
ODSession object. ODSession is the main
anchor for access to the OpenDoc runtime
environment. We will store it persistently,
because it is commonly used both for
requesting the creation of service objects
and for locating them at runtime. Figure 7
shows the objects that can be accessed
using ODSession methods.

The second line in section (3) of Figure 6
shows ODSession being used to locate OD­
Arbitrator. ODArbitrator manages the
transfer of focus between cooperating
components. Some of the specific types
of focus that can be owned are:

interface HelloPart : BasePart
{

void Commonlnit(in 0DPart partWrapper);
attribute 0DByteArray * data:

#ifdef _ S0MIDL_
implementation

{

functionprefix - Hello;
metaclass - M_HelloPart;

re l easeorder:
Commoninit,
_get_data,
_set_data:

override:
sominit,
somUni nit.
InitPart,
InitPartFromStorage,
Externalize.
DisplayFrameAdded,
DisplayFrameRemoved,
ReadPartinfo,
WritePa rt Info.
Draw,
HandleEvent,
AdjustMenus:

#ifdef _ PRIVATE_
0DSession
0DArbitrator
0DFocusSet
0DMenuBar
0DPopup

#endif II PRIVATE_
} ;

#endif II _ S0MIDL_
} ;

interface M_HelloPart
{
#ifdef _ S0MIDL_

implementation
{

fSession:
fArb;
fFocusSet:
fMenuBar;
fPopup;

M_0DPart

functionprefix - M_Hello;
override:

clsGet0DPartHandlerName,
clsGet0DPartHandlerDisplayName,
clsGet0DPartKinds,
clsGet0LE2Classid,
clsGetWindowsiconFileName;

} ;
#end if
} ;

Figure 5. Using SOM IDL for the Class Definition

■ Key Focus

■ Menu Focus

■ Selection Focus

■ Modal Focus

■ Scrolling Focus

■ Clipboard Focus

■ StatusLine Focus

As discussed earlier, if a component needs
several focus types at once to effectively
carry out its task, the required focuses
should be requested as a set. Hello World
requires the menu, keyboard, and selec­
tion focuses. Section (4) shows the code
required to build the ODFocusSet object.

Section (5) shows an implementation in
which the part creates its menu bar by

PERSONAL SYSTEMS • MARCH/APRIL 1996 45

46

(1) SOM_Scope void SOMLINK HellolnitPart(Hel loPart *somSelf, Environment
ev. ODStorageUnit storageUnit.

)

ODPart* partWrapper)

HelloPartData *somThis - HelloPartGetData(somSelfl:
HelloPartMethodDebug("HelloPart·.-HellolnitPart"):

_InitPersistentObject(ev, storageUnitl:
_Commonlnit(ev. partWrapper):

ODSUForceFocus(ev, storageUnit. kODPropContents, kOD!ntlTextl:
ODByteArray * temp - CreateByteArray("Hello World", lll:
storageUnit · >SetValue(ev. temp):
DisposeByteArray(temp);

(2) SOM Scope void SOMLINK HellolnitPartFromStorage(HelloPart *somSelf,
Environment *ev, ODStorageUnit* storageUnit.
ODPart* partWrapper)

(3)

(4)

(5)

HelloPartData *somThis - HelloPartGetData(somSelfl;
HelloPartMethodDebug("Hel loPart","HellolnitPartFromStorage"l

_In i tPersistentObjectFromStorage(ev, storageUnit);
_Commonlnit(ev, partWrapper):

if (ODSUExistsThenFocus(ev, storageUnit. kODPropContents. kODintlText) {
if (storageUnit·>GetSize(ev)) {

)
else {

ODByteArray * temp - CreateByteArray("",
storageUnit· >GetSize(ev)l:

storageUnit · >GetValue(ev. temp):
_ set _data I ev, temp l:

_ set_data(ev. CreateByteArray("No Data". 7)):

SOM Scope void SOMLINK HelloCommonlnit(HelloPart *somSelf. Environment
*ev, ODPart * partWrapper)

HelloPartData *somThis - HelloPartGetData(somSelf):
HelloPartMethodDebug("HelloPart","HelloCommonlnit");

if (_fSession - 0):
{

_fSess i on - _GetStorageUnit(ev)·>GetSession(evl:
_fArb - _fSession·>GetArbitrator(evl:

_fFocusSet - _fArb·>CreateFocusSetlevl:
_fFocusSet· >Add(ev. fSessi on· >Tokeni ze(ev. kODSel ecti on Focus l l:
_fFocusSet·>Add(ev. _fSession·>Tokenize(ev. kODMenuFocus)l:
_fFocusSet·>Add(ev . _fSession ·>Tokenize(ev. kODKeyFocusll:

_fMenuBar - _fSession · >GetWindowState(evl ·>CopyBaseMenuBar(evl:
_fPopup - _fSession ·>GetWindowState(ev)·>CopyBa sePopup(ev):

i f (fMenuBar) {

l

ODPlatformMenu selMenu - _fMenuBar · >CopySelectedMenu(ev):
_fMenuBar·>AddSelectedMenu(ev, selMenul:

ODPlatformMenultem mi:
memset((PCH)&mi. 0, sizeoflMENUITEMll:
mi.afStyle - MIS_TEXT:
mi .id - IDS_OPENWINDOW:
_fMenuBar·>AddMenultemlastlev, !OMS _SELECTED, SEL_OPENAS. &mil:
_fMenuBar·>SetMenultemText(ev, IDMS_SELECTED, mi.id, "Window"):

if _ f Popup) {
_ fPopup·>RemoveMenultem(ev, VIEW SHOWAS, VIEW_SALARGEICON);
_fPopup·>RemoveMenultem(ev. VIEW SHOWAS, VIEW_SASMALLICON);
_fPopup· >RemoveMenultemlev. VIEW SHOWAS, VIEW _SATHUMBNA!Ll:

Figure 6. Hello World Initialization

copying the base OpenDoc menu bar. This
maintains consistency in the default menu
items and their placement. Since the
object is a copy, we can modify the menu
contents without affecting other running
parts. (Those familiar with the Macintosh
desktop will notice the similarity with the

PERSONAL SYSTEMS • MARCH/APRIL 1996

Mac's ever-present menu bar at the top of
the screen.)

When you write the persistent data, I rec­
ommend that you use the predefined
properties and types. Assume (if it is rea­
sonable) that the end user may prefer to

work with a different component editor
or viewer when working with this storage
content. Another preferred editor will
likely recognize only the standard defini­
tions in the specification maintained by
CILabs. In this example, the "Hello World"
string has been stored as a standard inter­
national text string and can be viewed
and modified by any other component
recognizing this part kind.

A component must have a display frame
in order to own display space on the
screen. The initial display frame is allocat­
ed by the embedding container. The space
received can be negotiated by requesting
a different sized area. The request may or
may not be granted. A component is not
limited to one display frame.

The main function we perform in Figure 8
is to allocate a class that we have written
to manage the frame's runtime informa­
tion. This area is known as the
PartlnfoArea and is similar to the pro­
vision for window words in PM.

We create and initialize the PartlnfoArea
when the display frame is first added. Our
Frame I nfoRec class stored its address in
the ODFrame object using the frame's
SetPartlnfo method. When the docu­
ment is closed, the WritePartlnfo
method will be invoked to give us the
chance to externalize our current status in
the provided storage unit. When the docu­
ment is later reopened, ReadPartlnfo
will be invoked, allowing the component
to internalize the saved content.

To be visible, a component must, of
course, be able to render its contents. To
do this, the Draw method is invoked.
OpenDoc requires that the imaging be
done with platform-specific APis, though
future frameworks will provide an inter­
mediate API that allows components to be
platform-neutral. The example in Figure 9
takes advantage of the CFocus class, sup­
plied with OpenDoc, to provide the
required platform-specific setup.

OpenDoc provides an ODDispatcher class
facility. ODDispatcher examines all events
that are received by the OpenDoc PM mes­
sage queue. This message queue is created
by the DocShell. Based on information
from ODArbitrator about which part has a
specific focus, the OpenDoc dispatcher
will direct the message to the appropriate

component's Handl eEvent code. This
method is implemented similarly to a PM
window procedure. Figure 10 shows our
event handler code.

Our part recognizes a click from mouse
button 1 as a signal that the user wants
to activate this part. After checking that
we are not already active (by checking
whether we already have the selection
focus) , we issue a request for our required
focus types. If this method returns suc­
cessfully, we can replace the current
menu bar at the top of the DocShell
with our own.

We have also programmed a response
to the WM_CONTEXTMENU message.
The only action we need to take is to dis­
play the pop-up menu that we built earli­
er. OpenDoc will take care of the rest,
including dismissing the pop-up when
appropriate. Finally, the example contains
the code that we included to respond to
the Properties menu selection.

Though we created our customized menu
bar once in the initialization logic, we
may require runtime modifications.
Adj ustMenus is invoked after we call
ODMenu's Display method to allow
adding check marks or graying out text.

Our last section of code, shown in
Figure 11 , shows our metaclass imple­
mentation that will support registration
and binding. When the container calls
the draft's CreatePart method, the
ODBinding object will search for a compo­
nent capable of handling the content.

OpenDoc uses information from several
sources to make this decision.

First, OpenDoc uses the structure returned
from cl sGetODPa rt Kinds to update the
part registration database. The results of
this registration record the part kinds we
can edit and can be viewed using the part
preferences application provided with
OpenDoc. The notebook control displayed
by that application was shown in Figure 3.

Second, the part will externalize its data
in one or more formats when it is stored.
When a user reopens the document, the
OpenDoc runtime examines the types
stored under the kODPropContents
property and evaluates which editor is
capable of rendering the content with the
highest fidelity. The order of preference is:

User interface

___. Single reference

-{ One or more references

Figure 7. The ODSession Object

SOM_Scope void SOMLINK HelloDisplayFrameAdded(HelloPart *somSelf,
Environment *ev, ODFrame* frame)

HelloPartData *somThis - HelloPartGetData(somSelfl:
HelloPartMethodDebug("HelloPart","HelloDisplayFrameAdded"l:

new FrameinfoRec(ev, frame);
)
SOM_Scope void SOMLINK HelloDisplayFrameRemoved(HelloPart *somSelf,

Environment *ev, ODFrame* frame)

HelloPartData *somThis - HelloPartGetData(somSelfl:
HelloPartMethodDebug("HelloPart","HelloDisplayFrameRemoved"l

if (frame !- kODNULLl {
delete C(FrameinfoRec *) frame->GetPartinfo(ev)):
_fSession->GetArbitrator(ev)->RelinquishFocusSet(ev, _fFocusSet,frame);
ODReleaseObject(ev, frame):

SOM_Scope ODinfoType SOMLINK HelloReadPartlnfo(HelloPart *somSelf,
Environment *ev. ODFrame* frame,
ODStorageUnitView* storageUnitViewl

HelloPartData *somThis - HelloPartGetData(somSelfl:
HelloPartMethodDebug("HelloPart","HelloReadPartlnfo");

return (ODinfoType) new FramelnfoRec(ev. frame. storageUnitViewl:

SOM_Scope void SOMLINK HelloWritePartlnfo(HelloPart *somSelf, Environment *ev,
ODinfoType partlnfo,
ODStorageUnitView* storageUnitViewl

HelloPartData *somThis - HelloPartGetData(somSelfl:
HelloPartMethodDebug("HelloPart","HelloWritePartlnfo"l:

((FramelnfoRec *l partlnfol->Externalize(storageUnitView):

Figure 8. Adding a Display Frame

■ The user-specified preferred editor for
the part kind

■ The editor that created the part

■ Any editor that supports the part kind

■ Any editor that supports the part
category

■ Any editor that can handle translated
versions

■ The editor of last resort

PERSONAL SYSTEMS • MARCH/APRIL 1996 47

48

SOM_Scope void SOMLINK HelloOraw(HelloPart *somSelf, Environment *ev,
ODFacet* facet, ODShape* invalidShape)

HelloPartData *somThis - HelloPartGetData(somSelf);
HelloPartMethodDebug(•HelloPart","HelloDraw");

HPS hpsDraw;
ODRect rect;

facet->GetFrame(ev)->AcquireFrameShape(ev, kDDNULL)->GetBoundingBox(ev,
&rect);

ODRECTL frameRect(rect);

CFocus f(ev, facet, i nval i dShape, &hpsDraw);

GpiSetColor(hpsDraw, CLR_WHITE);
POINTL ptl - {frameRect.xRight, frameRect.yTop};
GpiBox(hpsDraw, DRO_FILL, &ptl. 0, O);

GpiSetColor(hpsDraw, CLR_BLACK);
POINTL ptlString - {frameRect.xleft + 20. frameRect.yBottom + 20};
GpiCharStringAt(hpsDraw, &ptlString, _ get data(ev)->_length,

(char*) _ get_data(ev)->_buffer);

Figure 9. Drawing the Contents

SOH_Scope OOBool ean SOML!NK Hell oHandl eEvent(Hell oPart *somSel f. Environment *ev.
OOEventData* event.
OOFrame* frame.
OOFacet* facet.
OOEvent Info* event Info)

Hel 1 oPartOata *somThi s - He 110Pa rtGetData (somSe 1 fl:
Hel 1 oPartMethodOebug("Hel 1 oPart". "Hel 1 oHandl eEvent"):

OOBoolean handled - kOOFalse:

switch (event->msg)
(

)

case WM_BUTTONlCL!CK:
(

)

if ((_ fArb->AcquireFocusOwner(ev, _ fSession·>Tokenize(ev,
kODSelectionFocus))) !- frame) (

)

if (_fArb·>RequestFocusSet(ev . _ fFocusSet. frame) - kODTrue)
_fMenuBar->Oi sp 1 ay (ev):

handled - kOOTrue:
break:

case WM_CONTEXTMENU:
(

)

f Popup· >Oi sp 1 ay(ev):
handled - kOOTrue:
break:

case WM COMMAND:
(

OOCommandIO conwnand - LONGFROMMP(event->mpl):
switch (command)
(
case SEL_PROPERT!ES:
case VI EW_PROPERT! ES:
(

OOFrameFacetiterator* facets - frame->CreateFacetlterator(ev):
facets·> I ni tFrameFacet Iterator(ev. frame):
_ fSess ion· >Get Info(ev) • >ShowPartFrame Info(ev. facets·> First (ev).

kOOFal se):
de 1 ete facets:
handled - kODTrue:
break:

)
default:

break:
)

break:
)
default:

handled - kOOFalse:

return handled:

SOM_Scope void SOMLINK HelloAdjustMenus(HelloPart *somSelf, Environment *ev,
OOFrame* frame)

HelloPartData *somThis - HelloPartGetData(somSelf):
He 110Pa rtMethodOebug("He 110Pa rt", "He 11 oAdj ustMenus"):

if (_fHenuBar) (
fMenuBar • >Enab 1 eMenul tern(ev.
fMenuBar • >Enab 1 eMenu I tern(ev.

_ fMenuBa r- >Enab 1 eMenu Item(ev.
fMenuBa r->Enabl eMenu Item(ev.
fMenuBa r->Enab 1 eMenu I tern(ev.

_ fMenuBar->Enabl eMenu Item(ev,

Figure 10. Event Handling Code

PERSONAL SYSTEMS • MARCH/APRIL 1996

JOMS SELECTED ,
I OMS_SELECTED .
IOMS SELECTED ,
JOMS .. SELECTED,
IOMS_SELECTED .
JOMS_SELECTED,

SEL. OAICON , kODFalse):
SEL OATREE, kODFalse):
SEL. OADETAILS. kODFalse):
SEL_SALARGEICON, kODFalse):
SEL SASMALLICON. kODFalse):
SEL SATHUMBNAIL, kODFalse):

Product Availability
OpenDoc will be packaged with a new
release of OS/ 2 during the third quarter
of 1996. Currently, Version 1 of the devel­
opment and runtime environments for
OS/ 2 are provided on the Developer
Connection for OS/2, Release 9 Special
Edition and on the Club OpenDoc Web
site. The required compiler levels are
OS/2 VisualAge 3.0 with CSD 1 or C/Set
2.01 with CSD 9. OS/2 Warp requires
FixPak XR-W0l 7.

There will be a beta release of the
Windows version of OpenDoc in the sec­
ond quarter of 1996, with a projected
availability date of third quarter 1996.
Apple has already shipped their general
availability version and AlX currently has
a beta version.

The Club OpenDoc Web site is an excel­
lent source for more information about
OpenDoc, including educational material,
sample code, and links to other OpenDoc
sites. The address is http: I /www.
software.ibm.com/clubopendoc.

John Pape is an

advisory develop­

ment programmer

in the IBM Personal

Systems Compe­

tency Center,

Roanoke, Texas.

He supports object

technologies, pri­

marily OpenDoc.

Since joining IBM in 1978, John has

worked in OS/2 application programming

services and in marketing and technical

support for mid-range IBM systems. He

has a BS degree from Indiana University.

SOM_Scope ISOString SOMLINK M_HelloclsGetODPartHandlerName(M_HelloPart
*somSelf, Environment *ev)

M_HelloPartMethodDebug("M_HelloPart","M_HelloclsGetODPartHandlerName");

return (ISOString) "Hello";

SOM_Scope string SOMLINK M_HelloclsGetODPartHandlerDisplayName(M_HelloPart
*somSelf, Environment *ev)

M_HelloPartMethodDebug("M_HelloPart","M_HelloclsGetODPartHandle rDisplayName");

return (string) "Hello World!";

SOM_Scope _ IDL_SEOUENCE_PartKindlnfo SOMLINK M_HelloclsGetODPartKinds(M_HelloPart
*somSelf, Environment *ev)

M HelloPartMethodDebug("M_HelloPart","M_HelloclsGetODPartKinds");

const char* kHelloPartKindDisplayName("Intl Text");
const char* kHelloPartCategory("HelloCategory");

_ IDL_SEQUENCE_PartKindlnfo HelloPartlnfo;

II Create structure PartKindlnfo and allocate memory for variable
PartKindlnfo * info - (PartKindlnfo *) SOMMalloc(sizeof(PartKindlnfo));

info->partKindName - (ISOString) SOMMalloc(strlen(kODintlText)+l);
strcpy(info->partKindName, kODintlText);
info->partKindDisplayName -

(string)SOMMalloc(strlen(kHelloPartKindDisplayName)+l);
strcpy(info->partKindDisplayName, kHelloPartKindDisplayName);
info->filenameFilters = (string)SOMMalloc(strlen("")+l);
strcpy(info->filenameFilters, "");
info ->filenameTypes = (string)SOMMalloc(strlen(" ..)+l);
st rcpy (info- >fi l enameTypes,) ;
info->categories - (string) SOMMalloc(2*strlen(kHelloPartCategory)+2);
strcpy(info->categories, kHelloPartCategory);
strcat(info->categories. ",");
strcat(info->categories, kHelloPartCategory);
info->objectID - (string)SOMMalloc(strlen("·)+l);
strcpy(info->objectID, ··):

II copy the information into the structure
HelloPartlnfo. _maximum - l;
HelloPartlnfo. _length = l;
HelloPartlnfo. buffer= info;

return HelloPartlnfo;

SOM_Scope string SOMLINK M_HelloclsGetOLE2Classld(M_HelloPart *somSelf,
Environment *ev)

M_HelloPartMethodDebug(•M_HelloPart•.•M_HelloclsGetOLE2Class Id.);

return (string) "·:

SOM_Scope string SOMLINK M_HelloclsGetWindowslconFileName(M_HelloPart
*somSelf, Environment *ev)

M_HelloPartMethodDebug("M_HelloPart",·M_HelloclsGetWindowslconFileName·):

return (string)

Figure 11. Metaclass Definition Used to Register Part

PERSONAL SYSTEMS • MARCH/APRIL 1996 4 9

50

Enabling Industrial-Strength
00 Applications with SOM
and CORBAservices
This article discusses the central role that IBM's System Object Model

(SOM) and Object Management Group's (OMG's) CORBAservices specifi­
cations play in developing robust, reusable, distributed applications.

The first part of this article focuses on a straw man process, detailing
a distributed development environment's roles, responsibilities, and
contracts with each other. The article then discusses the need for a
standard set of object services, such as those OMG provides. The article

concludes with an architectural overview showing the primary inter­
faces that the various roles use, implement, install, and configure. After
-reading this article, you should have a good idea of what you can do today
to prepare for tomorrow's distribut,ed development environments.

0 bject technology has yet to fully deliver on its promises of increased
productivity, large-scale reuse, and easy maintenance in developing
industrial-strength software applications. The delay is not due to a limi­

tation of the technology itself, but rather how it is used by mainstream practi­
tioners. In short, few of us exploit the additional encapsulation afforded by
objects. Luckily, the rising popularity of three-tier software architectures,
with their dependency upon distributed object services, has forced us to start
moving in the right direction.

Why Distributed Objects?
The notion of a distributed application goes beyond simple client/server
separation to encompass the idea of distributed development, separating the

Geoff Hambrick
IBM Corporation
Austin , Texas

concerns of the individuals
involved in software develop­
ment and their various roles, so
that each can work in parallel
(or incrementally /iteratively
over time). The practical impli­
cation for either interpretation

PERSONAL SYSTEMS • MARCH/APRIL 1996

is the same-there have to be two things:
a development process and a mechanism
that allows separately developed (i.e.,
binary) objects to be integrated at run­
time. IBM's System Object Model (SOM)
provides the mechanism, while the Object
Management Group's (OMG's) CORBAser­
vices specifications provide a standard
platform of object services around which
a development process can be built.

Defining the Contracts
Figure 1 shows a straw man development
process for distributed applications, show­
ing at a high level the roles, their primary
areas of expertise (i.e., concerns), and the
work products that they are responsible
for developing.

Roles and Responsibilities
In Figure 1, the end-user (EU) role is
included for completeness. End users are
primarily concerned with their own job
responsibilities, and they use distributed
objects to help manage job-related tasks.

B ~
~

The three primary roles taken on by those
responsible for software development
include:

■ Object Providers (OPs) build new class­
es of objects, capture the business logic
of a domain (e.g., insurance, banking,
or travel), and use a standard set of
object services (to be described in
detail later in this article).

■ Service Providers (SPs) build classes of
objects that implement these standard
services on a particular set of platforms
and technologies (such as D82 or Lotus
Notes).

■ Application Assemblers (AAs) create
distributed application objects by
installing and configuring business
objects with object services to meet
the operational requirements of the
customer environment.

The most important idea here is that a
set of standard object services serves
as the basic contract between the roles.
Although the straw man process proposed
here is abstract enough to allow for any
object services standards to be used, I will
focus on the object services defined by
the Object Management Group as part of
its CORBAservices architecture.'

Object Services
For this discussion, it is useful to divide
object services into the following three
categories: explicit services, implicit
services, and enabling services.

Explicit services are used by an OP in
developing business objects, implemented
by an SP, and configured by an AA. This
category includes services already adopt­
ed by OMG, such as naming, query,
events, and properties, as well as those
not yet adopted, such as collections. These
explicit services form the basis of the con­
tracts between the three roles.

Implicit services are those that the OP
can assume to exist when developing
business objects, such as persistence,
transactions, concurrency, and security.
(Security has yet to be formally adopted
by OMG but was recently recommended
for adoption by the OMG Technical
Committee.) Although these services are

' Object Management Group, CORBAservices:
Common Object Services Specification. , Revised
Edition, March 31 , 1995, OMG Document
Number 95-3-3 I.

9, ••

Object
Provider

<t,·t~

Business
Object

End
User

too
Application
Assembler

........ --~~ Service
Provider

KEY: -+ responsibility -- uses O contains 6. inherits from • zero or more

Figure 1. Distributed Development Roles , Responsibilities, and Work Products

T ransodions
Security

Debug

Trace
Profiling Licensing

Monitoring
User Interface Others Work Row

Fi gure 2. The Distributed Object Iceberg

only indirectly used by an OP during
development, they are implemented by
the SP and configured by the AA.

Enabling services are a class of explicit
services implemented by an OP, config­
ured by an AA, and used by an SP to tie
implicit object services to business objects
in a domain-independent manner. These
services, such as lifecycle and externaliza­
tion, are the only ones requiring the OP
to implement specific interfaces.

The Distributed Object Iceberg
An interesting way to visualize the rela­
tionship among these three categories of
services is to imagine a distributed object
as an iceberg (see Figure 2). A distributed
object combines one or more business
objects (implemented through services in
the tip of the iceberg) with one or more

object services (implemented through the
massive, invisible part underneath the
surface). Enabling services (which serve
as the waterline and are visible to and
implemented in part by all) are used
when required to tie both domains
together.

Distributed Application
Framework Architecture
The previous discussion provided a con­
ceptual background to understand the
CORBAservices at a high level; however,
you will need specific details (such as a
class hierarchy and relevant interfaces) to
really begin developing distributed appli­
cations. Figure 3 is a straw man for the
rest of this article. The objects in Figure 3
show the more important COREA-compli­
ant interfaces they use and/or expose
(for others, see the CORBAservices

PERSONAL SYSTEMS • MARCH/APRIL 1996 51

52

Business Object
Object:

duplicate(), release()
Lifecycle:

move(), copy(), remove()

Streamable:
externalize_to_stream(),
internalize_from_stream()

,6,.

I I I
Distributed Object Object Service Cursor

Identifiable Object: Query Evaluator: - _ Iterator:
is_identical(l, evaluate() I'/ - next(), reset(), more()
constant random id StreamlO:

externalize_key() - read_xxx(), write_xxx()

., u

6 4-
I I

Base Collection Reference Collection Named Collection
Generic Factory: Collection: Naming Context:

create_ object() add_element(), bind(), resolve(),
remove_ element_ at() unbind(), rebind()

I ~
KEY: -- uses [=::::J qualifier <> contains I:::, inherits from • zero or mare

Figure 3. CORRA-Centric Distributed Application Framework

[create]

remove()

KEY: C::> state ___. transition

Figure 4. Business Object Lifecycle

specifications), as well as some fundamen­
tal relationships among these objects. I'll
briefly describe each.

Business Object
In general, Business Objects (BOs) will be
created by the OP; however, as the frame­
work shows, a Distributed Object (DO) is a
subclass serving as the first "real" manifesta­
tion of a BO in a distributed application,
using the various types of Object Services.
The primary reason for this arrangement
is to allow the AA to "insert" implicit ser­
vices (such as identity, reference counting,
persistence, and/or transactions) into a
BO, transparent to the OP. In practice,
whenever an OP thinks that he or she is

PERSONAL SYSTEMS • MARCH/APRIL 1996

[] condition () action

working with a BO, he or she is actually
dealing with a DO. (I'll discuss DOs and
their relationship to BOs and Object
Services in more detail in the next
section.) The rest of this section describes the
services that are associated with each BO.

■ dupli cate() is used by "good-citizen"
BOs (i.e., those that are coded by the
OP according to good programming
practices) when handing out references
to other BOs, so that the Base Collec­
tion can reference-count the associated
DO if desired.

■ release() is used by good-citizen BOs
when they are done with a reference to

other BOs, so that the Base Collection
can garbage-collect the DO if desired.
This should not be confused with the
remove() method.

■ move() is used to transfer a BO's "own­
ership" (and identity) and associated
DO from one Base Collection to another.

■ copy () is used to create a new BO and
DO initialized from the BO called. Note:
The new object's identity depends upon
the Base Collection in which it is created.

■ remove () is used at the end of an
object's logical lifecycle to completely
destroy the BO and associated DO.

■ external i ze_ to_ stream() is used to
export the essential internal state of a
BO so that it can be made persistent,
passed by value, cached, moved, copied,
or, in general, used by any services
needing access to the BO's state.

■ internal i ze_ from_ stream() is used
to import the essential internal state of
a BO as a consequence of restoring its
persistent state or otherwise initializing
it from a move, copy, cache, etc.

You will notice that these are enabling
services-that is, OPs will implement and
use them to help move the various BOs of
their domain through a stylized lifecycle
(see Figure 4).

A given Distributed Object extends most
of these methods to add implementation­
specific behaviors that are used with
various Object Services.

Distributed Object
An AA configures Distributed Objects by
mixing together a Business Object provid­
ed by an OP and a Distributed Object
implementation provided by an SP. For
example, an OP may provide an Employee
Business Object, while an SP may provide
a DB2 Distributed Object. The AA may
configure them into a DB2 Employee
Distributed Object.

As mentioned before, a DO is used to
transparently add services to a BO, espe­
cially identity, which the SP provides
with a Base Collection (a kind of Object
Service described in the "Base Collection"
section further in this article). The addi­
tional services associated with a DO to
be described here are usually implicit and
not often used directly by an OP, although
there are exceptions. Instead, an SP uses
them in implementing Object Services,

such as Reference and Named Collections
(described later in the "Reference Collec­
tion" and "Named Collection" sections).

A good way to visualize this relationship
is by imagining a Base Collection as a cir­
cuit board, with the DO as an intelligent
socket (in that it holds identity and other
states) and the BO as the chip that plugs
into the socket (see Figure 5).

Messages first must pass through the sys­
tem backplane into the circuit board and
through the socket before they are propa­
gated to the chip itself; therefore, any
number of additional implementation­
dependent relationships and behaviors,
such as the following, can be inserted
without involving the chip designer (in
this case, the OP):

■ is_ i dent i cal () is used to determine
if two references refer to the same logi­
cal DO (even though they may be physi­
cally replicated).

■ constant_random_i dis a read-only
attribute used to quickly determine if
references are different, because this
ID can be cached with local replicas
(or proxies as they are commonly
known); however, having two identical
values is no guarantee that the refer­
ences are to the same logical DO (use
is_ i dent i cal () to be sure that two
references are equal when two
constant_ random_ids are equal).

■ external i ze_key () is used to write
an external form of its key into a
stream, usually during a wri te_obj ect
call on a Stream IO or Cursor . '

Object Service
The SP creates Object Services, whose
main purpose in this level of the hierar­
chy is to serve as a common base class for
the concrete types (such as Base Collec­
tion, Reference Collection, and Named
Collection) in order to take advantage of
any implementation details, yet allow for
federation. In general, an Object Service's
purpose is to provide access to one or
more associated Distributed Objects via
the following interface: evaluate() takes
a query string (of various syntaxes3

) and
returns a CORBA "any" type.

However, for purposes of this straw man
architecture, I recommend that a Cursor
be returned.

0B2 Employee DO
Base Collection

Figure 5. Base Collection Circuit Board

Cursor
Object Services and Cursors are meant to
be developed in pairs (to take advantage
of any underlying implementation for
query evaluation), just as a Distributed
Object is meant to be developed in con­
junction with a Base Collection (so that
the key can be implemented efficiently).

Regardless of what you call it, you need
an object to be returned that is flexible
enough to handle the wide variety of
information that can be "selected" in an
SQL-like query string:

■ Object references only (e.g., se lect &

to make an associated Reference
Collection)

■ A subset of data from the matching
entries (e.g., select name phone for a
report or view)

■ A copy of the matching entries (e.g.,
select* for an archival snapshot)

The following methods on Cursor are
designed to support this flexibility:

■ next () is used to position the cursor at
the next entry of selected data

■ reset C) is used to position the cursor
back to the first entry

■ mo re C) is used to check the cursor for
more entries that can be processed

■ re a d_xxx C) is used to read the

"hardwired" implicit
service

next data item from the entry, where
xxx is an IDL data type or an object
reference (the latter is read via
read_obj ect ())

■ wr i te_xxx () is used, when a cursor
supports update or insert, to write the
next data item to the entry

The StreamIO functions (read_xxx()
and write_xxx (l) eliminate the need for
"any" processing, since the type is explicit
in the function name.4 They also allow
use of internal i ze_from_stream() or
external i ze_to_stream() with the
cursor as the source of the data in the
copy scenario described.

In this manner, a Cursor can be viewed as
a "window" over the result data set of a
query, with the Iterator functions provid­
ing sequential access to entire entries
and the StreamIO functions providing
sequential access to the individual data
items within the entries.

Base Collection
An SP provides a Base Collection primari­
ly for identity; however, it is also the
means by which other implicit services
(such as persistence, transactions, con­
currency, and security) are added to
Distributed Objects. For example, an SP
who is an expert in DB2 databases may
develop a DB2 Base Collection that not
only provides identity (through the
database table name and key fields) but
also transactions, persistence, and security.

' The external i ze_key() is not part of the OMG services but was deemed necessary to enable identity
within the business object lifecycle described in Figure 4 without explicitly architecting a key format. In
particular, activating an object entails using a previously externalized key during the
create_object() operation of the containing Base Collection.

' Object Management Group, Object Query Service joint Submission, OMG Document Number 95· l · l.

• An "any" type returns a type code and an associated value. In practice, the type code is interpreted via a
"case" statement unless the type is explicitly known (as in this example). The use of streams is more effi­
cient when the type is known because no "any" structure is created and passed.

PERSONAL SYSTEMS • MARCH/APRIL 1996 53

54

In general, an OP will select a Base
Collection wherever a BO needs a "by­
value" collection. For example, a Trip
object in a travel reservation system
needs a collection of Reservations and
uses create_object() to create (or
activate) an entry directly in the Base
Collection using a set of name-value pairs
to initialize the state and/or specify the key.

Reference Collection
The SP provides a Reference Collection
when a BO needs only a collection of ref­
erences to other BOs. For example, a
Travel Service might only need a list of
references to Reservations. The following
methods are needed:

■ add_e l ement () is used to add a refer­
ence to an existing object to the collec­
tion of references.

■ remove_element_at() is used with
a Cursor to take elements out of the
collection.

The ramification is that the objects main­
tained in a Reference Collection must
already exist in a Base Collection (already
described), although they might have
been located through a Named Collection
(described next). It also means that a
given object can appear in any number of
Reference Collections, or even multiple
times within the same Reference Collection
(which is why the remove_el ement_at()
method needs to use a Cursor to point to
the specific entry). In any event, the
object references become part of the
essential state of the Reference Collection
itself (see the streamable functions in the
previous BO description).

Named Collection
The SP provides a Named Collection
when a BO needs to have a uniquely qual­
ified (named) list of references to other
BOs. For example, a Trip might only sup­
port one Reservation of each type, such as
Car Rentals, Airlines, Hotels, etc. Named
Collections support the following methods:

■ bind<) is used to associate a unique
(within this collection), human-under­
standable name to an existing object
and, in effect, add to the collection of
named references.

■ resol ve() is used to look up a name
and return the associated object
reference (if the name is found within
this context) .

PERSONAL SYSTEMS • MARCH/APRIL 1996

■ unbind() is used to remove the name
and associated object reference, leaving
the object itself unaffected.

■ rebind () is used to associate a differ­
ent object reference to a name that
already exists within the context, effec­
tively "unbinding" and "binding" in
one step.

Like Reference Collections, a given object
reference can appear in many Named
Collections and even appear multiple
times in the same one (if different names
are used to bind it). Further, both the
name and the object reference to the
bound objects are part of the Named
Collection's essential state.

The Development Process
Now that we have defined an imple­
mentable architecture, the next step is to
understand the dynamics of how to use it
to develop a distributed application. Space
limits me from taking an example through
the entire process; however, I will
overview the major paradigm shifts.

The Role of SOM and Binary Reuse
SOM is an excellent mechanism to develop
objects in the language and compiler of
your choice (currently C and C++) and
integrate them at runtime. If your shop
does all development with a single com­
patible set of compilers, then this feature
may not seem useful to you; however,
over time and with future releases, even
compilers within the same family can
become incompatible. Using SOM now can
help keep you from having to "recompile
the world" later. Also, if your shop cannot
afford (or lacks the expertise) to develop
some of the more complicated object ser­
vices (such as transactions and concurren­
cy), then you will appreciate the ability to
use the objects you develop with binary
objects developed outside of your control.

To use SOM with this architecture, simply
make S0M0bj ect the "top" of your inheri­
tance hierarchy by adding to the list of
Business Object "parent classes." This
subtle movement away from language­
centric programming represents the first
paradigm shift.

The Need for IDL
The second paradigm shift you must make
when developing distributed applications
is to start with the interfaces to Business

Objects, that is, start with CORBA inter­
face definition language (IDL). Of course,
you can use a tool to help you graphically
draw your Business Objects and their rela­
tionships, methods, and attributes, then
automatically generate the IDL.

IDL is necessary for your local compiler to
link, load, and execute the binary objects
supporting the interfaces described.
Usually IDL is run through an "emitter"
(i.e., a code generator) to generate head­
ers in your development language, so that
your Distributed Objects can "naturally"
invoke methods on objects developed by
others (down the hall, across the world,
or even by you from an earlier point in
time). Thus, even though a Business
Object or an Object Service may be devel­
oped in C, your C++ Distributed Objects
can treat them as if they were implemented
inC++.

Coding Enabling Services in All BOs
The third major paradigm shift you'll
make concerns how you develop your
Business Objects (even if they are Distri­
buted Objects, Object Services, or
Cursors). You should override the en­
abling services associated with BOs in the
previous section:

■ duplicate() is usually not overridden
in a BO, while DOs that reference-count
will often increment the count prior to
calling the parent BO.

■ release () is implemented in the BO
by propagating a release () to all
other BOs to which it maintains refer­
ences. A DO that reference-counts will
often decrement the count and only
propagate the call to the parent BO
when the count reaches zero.

■ move() is often implemented by default
in the BO to externalize itself to a
stream, use the stream to initialize a
newly created DO in the Base Collec­
tion, then remove itself. Some DOs will
keep a forwarding reference to the new
entry for a period of time.

■ copy () is similar to move, except that
the DO need not worry about forward­
ing, because the state of the object does
not change.

■ remove() is implemented in the BO by
propagating a remove () to all "sub­
objects" (i.e., those owned by this BO),
and a rel ease() to all others. A DO
will often set a state indicating that the

object has been deleted, so that the key
does not get reused.

■ external ize_to_stream() is imple­
mented in a BO by writing to the
stream passed in all the non-derivable
internal states in a form that is not like­
ly to change. Primitive attributes are
written using their corresponding IDL
types (float, long, string); object references
are written using wri te_obj ect (); sub­
objects are written recursively using
externalize_to_s tream(); and
sequences (although for maximum con­
figurability by an AA, writing a refer­
ence to one of the collections described
above should be used instead) are writ­
ten sequentially with a wri te_end (l
after the last entry. DOs only have to
externalize a state, according to these
rules, that isn't already maintained in
the Base Collection's underlying data­
store (the externa 1 i ze_key () method
follows these rules as well).

■ internal i ze_from_s tream() is
implemented the same way as the exter­
nalize, except that the reads must exact­
ly match the writes (and a read_end (l
should be checked prior to reading data
entries in the sequence).

Providing an Essential Data Schema
The fourth paradigm shift is that you
should provide an attribute-only "map"
(or schema) of the data written during
externalization. This map, which is called
the essential data schema (EDS), enables
the AA to transform the stream data into
other forms such as existing database
schemas. If this data is not provided, then
the AA is limited in the following ways:

■ Persistence mechanisms must support
"opaque" fields (uninterpreted strings
of binary data).

■ All queries are required to activate each
object during evaluation.

■ No indexing on given fields can be
supported.

■ User-interface panels must get their data
from active objects.

Unfortunately, IDL does not support a
"schema" section, so a naming convention
is required. I recommend that the IDL for
a given BO have _BO appended, with the
associated essential data schema having
_EDS appended. For example, the two IDL
interface definitions provided for an

empF - (BaseCollection *)DNC -> resolve("Employee");
emp - (Employee_DO *)empF->create_object();
emp ->name - "John Jones";

Figure 6. Factory-Centric Sample'

Employee class should be Emp 1 oyee_BO
and Emp 1 oyee_ EDS.

For a DO, a convention such as _DO and
_KOS (for key data schema) should be fol­
lowed so that the AA can use the schema
of the key to map to underlying databases
and user interfaces.

OPs and SPs who want to maintain some
proprietary data while exposing other,
more open fields can lump all the propri­
etary data together into one attribute
(such as other _data) or simply give the
individual fields meaningless attribute
names that are not explained in the user
documentation. The former allows for
more opacity (since the types are not
known) and the latter for more efficiency
(because there is no need to first buffer
the fields, which can still be indexed,
queried, and so on).

Coding Domain-Specific
Methods Using a Factory-Centric
Programming Model
The basic paradigm shift here is that, by
using the explicit interfaces of object ser­
vices and enabling interfaces of other
business objects, your object will not only
be a good citizen in a distributed environ­
ment, but it will also be far more config­
urable than if it were to directly imple­
ment dependencies upon specific implicit
services.

Beyond using these services, you should
no longer use the create operation of your
favorite development language to create
new business objects. Instead, you must
adopt afactory-centric programming
model using the following steps:

1. Find a "factory" (Base Collection) that
can create/activate the type of BO you
require.

2. Send this factory the create_object()
method as described in the Base
Collection section.

3. Use and/or store this reference as part
of your BO's essential data.

Specifically, each server process will have
access to a Named Collection called the
Distinguished Name Context (DNC). It will
have various Base Collections bound to it
by the AA. Therefore, the steps above can
be as simple as writing the few lines of
code shown in Figure 6.

By using this factory-centric programming
model, the AA can insert the implicit ser­
vices that you as a BO programmer need
not worry about. This does not mean that
you cannot use a native create operator to
manage sub-objects that you do not want
the AA to know about; however, you
would then be responsible for maintain­
ing their integrity (usually by simply
externalizing their essential state as part
of your own).

Once your BO references another BO
(with associated DO), its programming
model described in the architecture
section applies as-is. It is not repeated here.

Indicating Dependencies
The final paradigm shift is the way that
BO dependencies are communicated to
the AA in the absence of a formal IDL sec­
tion to show dependencies betweeen
classes. As in the previous subsection, the
OP determines the name and the expected
class managed by the Base Collection that
is to be bound into the DNC by the AA.

Again, I recommend using a naming con­
vention and a special dependencies file
(<module>. dep). This file contains a list

' Technically speaking, the resolve() interface does not directly take a string as the "name" input
parameter; it takes a sequence of structures of name/extent strings instead. (See the CORBAservices
specifications for exact details.) Also, the DNC could be replaced with a "Factoryfinder" (from the
CORBAservices Lifecycle specification). Choosing a NameContext was more consistent with the notion
that the OP would define the name used, the SP would implement a service for finding it, and the AA
would bind the appropriate "factory" (i.e. , BaseCollection) into it.

PERSONAL SYSTEMS • MARCH/APRIL 1996 55

Have you used
the reader service
card to request
fast, free
information
about the products
and services
advertised in
Personal Systems?

Caution.

With the heavy traffic of
new technology to choose
from in the personal
computer market, you need
to know about all the most
recent developments.

Use the advertiser•'s index
to get the 1•eade1• ser•vice
numbers of the pr•oducts
and ser•vices for which you
want to r•eceive literature.

Circle the same number•s
on the 1•eade1• ser•vice car•d
and fill out the necessar•y
infor•mation.

Drop it in the mail (at no
charge!), and we'll give
your r•equest the green
light!

5 6 PERSONAL SYSTEMS • MARCH/APRIL 1996

Personal Systems

Product Information
Index

Reader
Service
Number Company Page#

8 BT& T Consumer Tecnology 14
3 Brooktrout Technology 10

18 ChipChat Technology Group 3
5 Cirrus Technology 8 & 12
1 Conner Tape Products Group 6

13 Coriolis Group 17
23 DFI 11
22 Hilbert Computing 8
12 IDG Books 16
21 Indelible Blue 10
14 John Wiley & Sons 17
4 Lexmark 10

24 Micro Channel Developers Assn . 13
20 Microrim 9
11 Percussion Software 16
17 Pinnacle Technology
2 Polygon Wire

Management Systems 8
7 Rhintek Computer Engineering 12 & 14

19 Softmart 7
15 SofTouch Systems Cover 2
16 Stardock Systems Cover 4
10 Sybase, Inc. 15
6 SYNTEGRATION 14
9 Volant Corporation 15

of names and classes and, if the class is
one of the Object Services types such as
Base Collection, Reference Collection, or
Named Collection, it contains the class of
entry maintained, referred to, or bound
(see Figure 7 for an example).

You should note that many BOs will main­
tain references to entire Base Collections,
Reference Collections, or Name Collec­
tions. Not only does this reduce the
amount of code that the OP has to write
(to query, insert, delete, and externalize/
internalize), but it also permits the AA a
high degree of configurability, since an
AA can bind the same collections into the
DNC under many names (as long as the
returned class is the same).

For example, the AA could bind the facto­
ry for both planned and completed trips
to the same Base Collection or two differ­
ent ones with radically different qualities
of service (one stored in flat files, another
in a DB2 database) without change to the
Member or Base Collection class.

More About Services
Hopefully, this overview helps to illus­
trate the kind of flexibility a distributed
application development environment
offers. Following are some important
points to remember about the services
discussed:

■ The word "implicit" in object services
refers only to their use by the OP when
developing business objects-not
whether the service is visible to an SP
or AA. For this reason, services such as
user interface and persistence are con­
sidered to be implicit.

■ Object services are considered a sub­
class of Business Object, to allow the AA
to flexibly manage them without archi­
tecting how their keys should be imple­
mented. In general, all Business Objects
should be written to be independent of
identity so that they can be used in
many different contexts. This philoso­
phy extends to Object Services and
Cursors (although the latter are often
implemented without identity).

■ There are many other implementation
choices, even within a single service
such as security (e.g., two- versus three­
party authentication, public versus

TRS::Membe r: :pl anned_trips Ba seCol l ecti on TRS::T r ip
TRS: :Member : :completed_tr i ps BaseCollect i on TRS : :T r i p
TRS :: Member::profiles ReferenceCol l ecti on TRS::Profi l e
TRS: :Trip::reservat i on s NamedCol l ect i on TRS::Reservation
TRS::Reservation::tr i p TRS::Trip

Figure 7. Example of Contents of the TRS.dep File Indicating Dependencies

private key encryption, capability ver­
sus ACL-based authorization). Therefore,
object services should be thought of as
relatively open-ended categories.

■ The list of services, especially the
implicit ones, will continue to grow as
technology evolves. Therefore, you need
to consider such non-standard services
as Trace and Debug, which are sure to
become widely available as part of a
distributed application development
framework.

■ There is no absolute requirement that
the SP implement these services using
object technology nor that these ser­
vices must expose "standard" interfaces
beyond those described. This point is
made not only to reinforce the idea that
objects are encapsulated but also to urge
you not to wait for an outside company to
provide these object services for you.

What Can You Do Now?
Without waiting for another company to
provide you with a set of object services,
what can you do today to enable robust,
reusable distributed applications?

1. Follow the cookbook described here to
separate the concerns of OPs, SPs, and
AAs for code you develop.

2. Expect those who deliver code to you
to recognize these separate concerns.

3. Look for code in your shop that pro­
vides similar function to the object
services described above and "wrapper"
(i.e., build object layers around) them
using SOM to support the interfaces
defined.

In the end, you will find that having a
well-defined, distributed architecture
will save you development time and
effort, even if you must code everything
yourself, because the work of defining the
interfaces has already been done for you
by OMG, and the mechanism for making
binary objects "distributable" is already
provided by IBM's SOM technology.

For more details about the exact signa­
tures and other methods associated with
the CORBAservices specification, so that
you can extend this straw man architec­
ture or develop your own, see Object
Management Group's CORBAservices:
Common Object Services Specification. 1

Acknowledgments
I want to especially thank the following
people for their efforts during the past
year to help me understand the role of
object services in a robust, reusable, dis­
tributed application: George Copeland,
Randy Fox, Jim Sides, Rob High, Don
Ferguson, Jim Rayfield, Eric Herness,
Charlie Redlin, Frank Malin, Rimas
Rekasius, and Tony Wells.

Geoff Hambrick is

an advisory pro­

grammer within the

IBM Software Group
Technology Center

in Austin , Texas. He

is currently the tech­

nical lead on
advanced software

development pro-
jects that identify, select, and/or create

key software technologies and architec­

tural frameworks that support the Open
Blueprint strategy. Previously, Geoff was

technical lead in developing reference

implementations of CORBA-compliant

Object Services and making their transi­
tion into product development groups.

He earned an outstanding technical
achievement award for his work as a

consultant helping first-time users of
object technology.

Geoff has presented object technology

at several major conferences, and, in
an upcoming book, he has co-authored

a chapter about practical applications of

end-to-end 00 development methodolo­

gies. Before joining IBM in 1989, Geoff

worked for Texas Instruments. He
earned a BA degree in Computing

Science from the University of Texas in
1981 . His Internet userid is
geoff@au stin.ibm . com.

PERSONAL SYSTEMS • MARCH/APRIL 1996 5 7

58

SOM Language Neutr~lity:
A VisualAge for Smalltalk
Perspective 1

:::~::­

VisualAge for Smalltalk (VAST) is a premier workstation application
development tool. This article addresses the use of VAST to provide
a graphical user interface front end to the valet parking system (VPS)
application described in Rick Weaver's "The IBM System Object Model­
The Wave of the Future (and Now!)" article. The simplicity of the over­
all implementation, the speed with which such an exten-sion can be
developed, and the strength of the VAST technology to support this effort
should be apparent to most application development professionals.

S malltalk provides one of the most productive application development
environments available. Its productivity is extended even further by
adding Visua!Age's visual development enhancements. Visua!Age for

Smalltalk supports IBM's OS/2 and AIX operating systems, as well as Micro­
soft Windows as primary Visua!Age application execution environments. It
also provides a variety of additional product support, including special con­
nection features for AS/400 and IMS.

Visua!Age's SOMsupport feature provides an interface for using objects imple­
mented with SOM in a Visua!Age application. With this interface, Visua!Age
applications can create instances of SOM objects and send them messages.
SOM objects can be developed in any language that has SOM implementation
bindings.

The Valet Parking System
The valet parking system (VPS) application is implemented in C++. This sam­
ple application is designed to support a customer bringing in a car to be
parked by a valet in a garage or having a parked car retrieved by the valet.
The classes implemented within VPS are Valet, Ticket, Car, Garage, and
TktBookS.

Tom New
IBM Corporation
Roanoke, Texas

The VPS user interface was developed
using VAST. Shown in Figure 1, the VAST
front end uses the attributes (data) and
methods (functions) associated with the
C++ VPS, which are shown in Figure 2.

The other objects (Garage and TktBookS)
are hidden from the VAST front end application by the Valet object. These VPS
C++ objects are accessed through the SOMsupport feature of Visua!Age for
Smalltalk, Version 3.0.

PERSONAL SYSTEMS • MARCH/APRIL 1996

t
VAST SOMsupport
IBM Smalltalk and Visua!Age for Smalltalk
provide usage bindings for SOM and
Distributed SOM (DSOM). Visua!Age for
Smalltalk, Version 3.0 for OS/ 2, is used
for the sample application interfacing
to the C++ valet parking system SOM
application. The Visua!Age for Smalltalk
SOMsupport feature used to interface to
VPS is available in both OS/ 2 and AIX.

SOMsupport provides facilities for a
developer to easily build and use SOM
Smalltalk wrapper classes visually in the
VAST Composition Editor. When you add a
wrapper object to the Composition Editor,
it appears as a non-visual part. Attributes
and actions on the Visua!Age part's public
interface represent the SOM object's
attributes and methods.

SOMsupport for Visua!Age requires either
the SOMobjects Base Toolkit, Version 2.1 ,
or the SOMobjects Developer Toolkit for
OS/2, AIX, and Windows, Version 2.1 , on
your workstation. Visua!Age provides the
SOMobjects Base Toolkit along with the

Car

Ticket
-=====

Valet Donna Bieber

Figure 1. Valet Parking System

Visua!Age SOMsupport feature. This Base
Toolkit is a subset of the SOMobjects
Developer Toolkit. The SOMobjects
Developer Toolkit should be used when
collection, persistence, or replication
framework support is required. This
Toolkit is also needed to provide all
required files to develop your own SOM
classes in C, C++, or COBOL.

SOMsupport enables you to use the SOM
and DSOM classes described in the inter­
face repository (IR) in an application by
allowing you to generate Smalltalk code
to access them. If your SOM or DSOM
classes point to a DLL, the generated code
(called a wrapper) enables your applica­
tion to use programming logic in the DLL,
letting the application create and send
messages to local or remote SOM objects.

SOMsupport consists of Smalltalk classes,
some of which are actually wrappers for
SOM objects, and comprises the following
areas:

■ SOM runtime library

■ SOM frameworks (DSOM, interface
repository, metaclass)

■ SOM Smalltalk constructor

■ SOM samples

■ SOMsupport migration facility (where
VAST Version 2.0 SOMsupport was
used)

VAST VPS Environment
Now let's begin building the GUI front
end to the valet parking system. I used
the following hardware and software for
this process:

■ OS/2 Warp Version 3.0

■ Visua!Age for Smalltalk, Version 3.0 for
OS/ 2

■ Visua!Age for Smalltalk, Version 3.0
SOMsupport feature

■ SOMobjects Developer Toolkit, Version
2.10, CSD level SM21002

■ SOMobjects Collection Classes, Version
2.01.5, CSD level SM20012

■ SOMobjects Interface Repository,
Version 2.01.5, CSD level SM20012

■ PS/2 Model 90 XP486 with 32 MB of
RAM

- Attributes

Valet valetName

Car color, make, model

Ticket ticketNum

Figure 2. VPS Attributes and Methods

Loading SOMsupport
First, install the SOMsupport feature and
have a SOMobjects toolkit on your system.
(The VPS sample application requires the
SOMobjects Developer Toolkit because it
uses SOM collection classes.) You must
also set environment variables for SOM
and DSOM. Note: A VAST application using
SOM requires SOM CSD 212 .

To install SOMsupport, follow the prod­
uct's installation instructions. After you
install SOMsupport, set the environment
variables and reboot, then load the
SOMsupport feature into your VAST
image. From the "Smalltalk tools" menu
in the System Transcript window, select
"Load Features." Then select "SOMsupport,
Base Feature." Although it's not specifical­
ly required for this sample application,
you can select "SOMsupport Samples."
After loading the features, select "Yes" at
the "Save image" prompt.

Setting Up the Interface Repository
To wrapper a class, SOMsupport must be
able to access its SOM interface definition
language (IDL) description. These SOM
IDL class descriptions must be available
in a SOM IR (interface repository), which
you define by editing the CONFIG.SYS
file or by issuing the SET SOM IR
command.

To set up the VPS IR requirements, follow
these steps:

1. Load val et. i r onto a hard drive. (I
loaded it into E: \val et. i r.)

2. Enter SET SOMIR-e:\valet. i r; at an
OS/ 2 command-line prompt, or add it
to the SET SOM IR~ statement in the
CON FIG. SYS file. If changing SET
SOM IR in the CON FIG. SYS file, you'll
need to reboot OS/2.

3. Ensure that the val et . i d l , ca r . i d l ,

and ti ck et . i d l files can be accessed
by entering i rd ump Val et , i rdump

Methods

parkCar, retrieveCar, the getter and setter
for valetName

getters and setters for the attributes

getter and setter for ticketNum

Car , and i rd ump Ticket respectively
at the command prompt (Valet, Car,
and Ticket are case sensitive here).

VPS DLL Setup
Visua!Age for Smalltalk must be able to
access the VPS DLLs, as well as other
DLLs used by the VPS; therefore, you
need to copy the following DLLs to the
VISUALAG\DLL directory where the
SOMsupport samples are also loaded:

■ car.dll

■ dde4mbs .dl l (a SOM DLL)

■ garage.dl l

■ ticket.dll

■ tktbooks.dll

■ valet.dll

Additionally, since the SOMobjects
Collection Framework uses somuc . dl l

within the VPS application, it needs to
be accessible through a directory in the
CONFIG.SYS LIBPATH statement.

VAST Valet Application
Development
Start Visua!Age for Smalltalk by double­
clicking on the VAST icon. If you know
you're going to work with SOM or DSOM
objects, start VAST from an OS/2 com­
mand prompt to redirect your standard
output (stdout) to a file. Change to the
VISUALAG directory, and enter abt

somstdo. txt (or whatever filename you
desire). Then, if your development image
ends processing due to a SOM fatal error,
you can examine the file for information
about the error.

Wrappering SOM Classes
Visua!Age Quick Start was the starting
place for developing the Valet applica­
tion-it shows up after you double-click
on the Visua!Age for Smalltalk icon
(see Figure 3). As previously noted, to
use a SOM or DSOM object in a VAST

PERSONAL SYSTEMS • MARCH/APRIL 1996 59

60

" V1suatA9.e Quick Start

What would you like to do?

DB ✓ 1sualA e Or arnzer a D
Eile AJ>plicationa earta Ioola Qptiona y,tindow

!ii Create a new part

".) Go to the VisualAge Organizer

JI) Show this window al startup

!:!elp

OK Cancel 1 __ H_el.,_p ___.

Figure 3. VisualAge Quick Start

C tagorias

parkCar:
somDefaultlnit:
somDestruct:ctrl:
valetlD
valetlD:
valetName
valetName:

instance public

SOHObject subclass: #Valet
instanceVariableHames: ''
classVariableNames: 11

poolDictionaries: 11

• D
!:!•!hods

Figure 4. Generated Method Wrappers for
Valet Part

application, you need to generate
Smalltalk code known as a wrapper.
When you installed SOMsupport, VAST
added the "SOM Wrappers" sub-menu
choice to the Visua!Age Organizer. Select
"Parts -> Generate -> SOM Wrappers . . . " to
open the Create SOM Wrappers window.

Now you need to wrapper the required
SOM classes. For the VPS application pur­
poses, the SOM Collection class for

t-'arts

• s omf _M Linkable is identified in the
Car class, so that the Car class can be con­
tained in a collection. This requires that
you wrapper · s omf _M Li n ka bl e prior to
wrappering the VPS classes. To do this:

1. Create an application to wrapper the
s omf _ML in ka bl e class and name it,
for example, MySOMCollection.

2. Next, select your application and open
the Create SOM Wrappers window.

3. The Create SOM Wrappers window will
list many classes. Scroll to the
s omf _ML in ka bl e class and select it by
clicking mouse button 1 (usually the
left mouse button).

4. Press Enter to generate a wrapper for
that class.

To more effectively manage the VPS appli­
cation, you should wrapper the valet park­
ing system SOM classes in a different
application. Again, at the Visua!Age Quick
Start window, enter the name of the
application (for example,
MySOMValetApp). Then do the following:

1. Select your application and open the
Create SOM Wrappers window. The
valet application uses Car, Ticket, and

" v,sualAge Cuick St.:-rt D B ✓ rs,.,;.L')g~ Qrganrzer • D

What would you like to do?

C!i Create a new part

A plication name

MySOMValetApp •

Part class

MySOMValetView

".J Go to the VisualAge Organizer

,(} Show this window al startup

OK ! ~~ J ~ Help _ j

Eile AJ>plicationa earta Iools Qptiona
Help

~ [()j !Blf ..i; ['P I florir.:17 (I) :

Applications Part!

.ltl nAbtExamplesHelpA~
~Car

[jAbtExamplesHelpAr

[JAbtSOMDSamplesA ~ MySOMVaJetApp

rlAbtSOMISamplesAp ~ MySOMVeJet.AppAbtPackage

[JAbtSOMKSamplesAi
~Ticket

rlMySOMCollec:bon

E ii&ii@i# ID•
> 1---

Oefo.ultApplicotion MySOMVole!Ap~

Figure 5. VisualAge Quick Start and Valet SOM Wrappers

PERSONAL SYSTEMS • MARCH/APRIL 1996

y,tindow

~

>

Valet, which can be generated separate­
ly or as a group.

2. Select "Car" by clicking mouse
button 1.

3. Scroll to "Ticket," then press and hold
Ctr!+ mouse button 1.

4. Repeat step 3 for Valet.

5. Press Enter to generate the wrappers.

By double-clicking mouse button 1 on one
of the generated parts, you'll activate the
part Script Editor, which shows the details
of the generated wrapper, as Figure 4
illustrates for the Valet part. Note how the
SOMsupport wrappering process adjusted
the method names to Smalltalk syntax for
getter and setter methods (e.g., val et Id

and valetid:).

Because Car includes s omf _ML in ka bl e,

SOMsupport will automatically list
MySOMCo 11 ect ion as a prerequisite for
MySOMVa l etApp. If you don't wrapper
somf _ML i nkabl e prior to wrappering
Car, an error occurs in wrappering the
Car class.

Because SOM wrapper classes must fit into
an existing class hierarchy within VAST,
class naming conflicts might occur. You
can resolve these conflicts by renaming
the SOM wrapper class or method; how­
ever, because of the way that the SOM
Smalltalk Constructor maps IDL identifiers
to Smalltalk identifiers, method names
that do not conflict in SOM might conflict
in Smalltalk. When method names con­
flict, the first method is overwritten by
the second. Refer to the VAST Features
Class Reference Guide (on the CD-ROM) for
details on avoiding this situation.

Building the UserView
The next step in the process is to use the
VAST Composition Editor to build the
valet user interface and connect it to the
underlying SOM parts. This is one of
Visua!Age for Smalltalk's significant fea­
tures-the ability to interactively develop
objects that are visual (displayed on a
user 's screen) and link them to non-visual
parts to provide the underlying applica­
tion logic.

The Visua!Age Quick Start window in
Figure 5 contains the application name,
MySOMVa l etApp and the Part class
MySOMVa let View. It also shows the SOM

parts generated for Car, Ticket, and Valet
in the VisualAge Organizer window, which
we will use from the Composition Editor
window. Click on OK to continue.

The VAST Composition Editor provides a
tool bar under the menu bar and a parts
palette (containing various categories of
pre-built parts) on the left side of the
screen. A window part serves as the
default option in the free-form space. You
can select visual parts from the parts
palette and drop them in the window
part, but non-visual parts are restricted to
the free-form surface (see Figure 6).

Your next task is to lay out the screen for­
mat. You can either lay it out on paper
and then transfer it to the VAST Compo­
sition Editor window, or you can interac­
tively lay it out by using the categories,
parts, and tools provided with VAST.

The valet parking system application has
a basic user interface implementation. Use
the following steps to create it:

1. With the cursor over the Window part,
press and hold Alt while clicking
mouse button 1 to edit the title, mak­
ing it "Valet Parking System."

2. Select the Data Entry category and the
Label part from the Parts palette to
add the label for Car.

3. Hold down Ctrl, move the cursor over
the label, click mouse button 2 (usual­
ly the right mouse button) and drag
the label to create label subheadings
of Color, Make, and Model, plus labels
for Ticket and Valet.

4. Select the Text part (for data entry)
and add one next to Color, Make,
Model, Ticket, and Valet.

5. Alter the names on the labels by press­
ing Alt and clicking mouse button 1 at
each label.

6. Using the tool bar's alignment tools,
align the labels, subheadings, and text
fields both vertically and horizontally.

7. Double-click mouse button 1 on the
Color text field, select String as its
type, and click mouse button 1 twice
on the page forward (>) symbol to
change the name to Color. Click on
OK.

8. Repeat step 7 for the Make, Model, and
Valet text fields.

9. For Ticket, select "Integer" as its type,
and at page 2, select "right-justify"
before changing its name. Click on OK.

Buttons
10. Switch to the Buttons category to add

four pushbuttons to the bottom of the
Window part. Change the names on
the buttons by using the Alt + mouse
button 1 method described in step 5.

11. Use the tools on the tool bar to align
the buttons horizontally and vertically,
then distribute them horizontally, and
make them the same size.

12. Click mouse button 2 on each pushbut­
ton to select Open Settings and set the
mnemonic as its first letter (this will
cause each of the first letters to be
underlined).

13. Make "Park Car" the default pushbut-
ton when you adjust its settings.

To summarize the process of adding a
part: Select the category, then select the
part from the parts palette, and place the
part somewhere in the free-form surface
or in another part. Figure 7 shows the
result of these steps.

Adding SOM Parts
Add the SOM wrappers to the free-form
surface by doing the following:

1. From the Options menu, select "Add
Part ... "

2. Type Car in the "Class name" field of
the displayed window.

3. Click on OK.

4. Click mouse button 1 on the free-form
surface.

5. Repeat for Ticket and Valet.

Figure 7 shows the Composition Editor for
MySOMValetView at this point.

Connections
Now add the connections between the
parts. To see a part's connections, move
the cursor to the part and click mouse
button 2. Then select "Connect ... " with
mouse button 1. Figure 8 shows the con­
nection options for Car. The somFree

actions are the first connections made,
since they ensure that a SOM Car, Ticket,
or Valet object created when you test the
part will be destroyed and the memory
released when it's no longer needed. To
add connections:

Figure 6. VisualAge Composition Editor for
MySOMValetView

Figure 7. Valet Parking System with SOM
Wrappers

1. Double-click mouse button 1 on
somFree for Car.

2. Move the cursor over the Valet Park­
ing System title bar and click mouse
button 2.

3. Click mouse button 1 on the Window's
cl osedWi ndow event.

Repeat these steps for the Ticket and Valet
SOM parts. Next, you'll add the attribute
connections.

4. Press and hold Alt while clicking
mouse button 2 on the Color text field
to display the field attributes.

5. Click mouse button 1 on object.

6. Move the cursor over "Car" and click
mouse button 1 to show all available
connections (see Figure 8).

7. Click mouse button 1 on the color
attribute to create an attribute-to­
attribute connection, shown as a blue
line between the Color text field and
the Car SOM part.

Repeat these steps for the Make and
Model text fields . For the Ticket and Valet

PERSONAL SYSTEMS • MARCH/APRIL 1996 61

62

p;_ ~HH cornecrm,1no-,, ,,,.,.

action attributa
somDafaultVCopyl " color
somDestruct:ctrl: make
somDispatch:meth model
somDispatchA:des self
somDispatchD:des
somDispatchl. :desc
somDispatchV:des
r1omDumpSelf:
somDumpSelflnt:
somfGetNext
somfGetPrevious
somfMLinkablelnit:

somrsetNext:
somfSetPrevious :
somGetCtass
somGatClassName
somGetSize .
~ ea.-1 ~

r-co.,..to,~ •vont

destroyedPart
make
model
self

Figure 8. Available Connections for the SOM
Car Wrapper

Figure 9. Connections Between VPS
VisualAge Parts

car

Color :;:B::lu::e =::=::=::=::~
Hake Porsche

Hodel 911 Carrera

Ticket ,__ ____ _.

Valet Donna Bieber

Figure 10. Valet Parking System User
Interface

• D

text fields, connect the appropriate
attributes to their respective SOM parts.

1. Connect the VPS title event
openedWi dget to the Color actions
set Focus and se l ectA l l. These con­
nections result in the cursor being posi­
tioned in the Color text field with any
data in that field selected when the
VPS application is started.

Now connect the pushbuttons. The first
pushbutton to connect is Quit, so you
can test what you've built thus far.

2. Select the Quit "clicked" event using Alt
+ mouse button 1.

PERSONAL SYSTEMS • MARCH/APRIL 1996

3. Move the mouse to the VPS title bar
and select the cl oseWi dget action,
which appears as a green line.

4. Click mouse button 1 on the tool bar's
Test icon to validate your user interface
layout and ensure that the Quit button
works.

Connect the Park Car button "clicked"
event to the Valet SOM part pa rkCa r:
action, which results in a dotted green
line indicating that an object needs to be
added as the parameter on this method
invocation. The missing object is the Car
that is to be parked. The Car doesn't actu­
ally exist in the VAST, but a reference to it
is available as "self" of the Car SOM part.
Connecting Car "self" to the line between
Park Car and Valet Car results in a blue
line, indicating an attribute-to-attribute
connection.

When making this connection, notice the
"result" attribute on this "Park Car - Valet"
line. Now, connect the "result" attribute
between "Park Car - Valet" and the Ticket
SOM part "self" attribute, since pa rkCa r:
returns a Ticket. Again, test the function
to ensure it works.

Connect the Get Car pushbutton to the
ret ri eveCa r: method on Valet, similar
to the description above, with its result,
a Car object, connected back to the Car
SOM part. Also connect the Set Name
pushbutton to the Valet val etName.
Figure 9 shows the results of these
connections.

Test your application by using the tool
bar's Test button. Figure 10 shows the
VPS's user interface.

Once you've completed development, close
the MySOMValetView Composition Editor
and save the application. You might also
save the image at this time to prevent any
corruption or loss of your work.

Packaging the Application
Now that you've developed the applica­
tion, you package it.

1. Select "Smalltalk tools ->Manage
Applications" to open the Application
Manager window.

2. Scroll to "MySOMValetApp" and click
mouse button 1 to select it. Then,
under the Applications pull-down
menu, select "Package ... " and choose

"Yes" from the Package dialog box. The
"Packaging Applications MySOM­
ValetApp ... " window appears and dis­
plays messages associated with the
packaging process.

3. In the Selection Required dialog box,
double-click mouse button 1 on
"MySOMValetView."

Robust Solutions with
Maximum Return
SOM provides significant benefits for
enabling applications developed in one
object-oriented language to interact with
those written in a different language or
a language from a different vendor. SOM
also offers significant maintenance advan­
tages when new versions of one of those
applications are distributed, helping to
minimize the effort to keep versions
synchronized.

IBM's VisualAge for Smalltalk, a Smalltalk­
based tool that provides support for
SOM, can help your company implement
object-oriented solutions by maximizing
your ability to reuse existing code. VAST
provides usage bindings and, through
the SOMsupport feature, provides a sim­
plified environment for developing SOM­
enabled applications that can connect to
C, C++, or COBOL SOM applications. IBM
is developing implementation bindings
for Smalltalk to allow applications written
in other languages to reuse Smalltalk
applications.

Tom New is an
information technol­

ogy architect within

the IBM Personal
Systems Compe­

tency Center in
Roanoke, Texas.

He is the advanced

object technology

team lead and has

worked on distributed systems solutions

as an application designer, developer,

systems programmer, systems analyst,

and lead architect. He was also a sys­

tems engineering and an applications
developmen) solutions manager, in addi­
tion to an IT architect, for the IBM
Consulting Group, as well as a national
technical support representative. Tom

started in object-oriented technology in
1989 as a member of the Common User
Access Architecture Review Board. He
joined IBM in 1977 after graduating from
Cornell University. Tom's Internet ID is
tnew@vnet.ibm.com.

SOM Language Neutrality:
An 00 COBOL Perspective
This article describes an object-oriented COBOL program using SOM­
enabled classes written in C++. It illustrates the language neutrality
of SOMobjects and introduces many of COBOL's new object-oriented
language extensions.

The introduction of object-oriented (00) language extensions to the
syntax of the COBOL programming language is an exciting development
in object-oriented programming and design. With object-oriented

COBOL, enterprises can adopt a phased approach to object technology and
migrate to this new technology in a staged, orderly fashion.

Programmers with a sound foundation in COBOL can write object-oriented
programs with minimal training. Indeed, the greatest obstacle programmers
face is not learning new verbs and data types, but acquiring an 00 mindset.

In the new IBM family of COBOL products, syntax is compatible across work­
station, midrange, and host plat-
forms. SOMobjects are also
portable across these platforms,
meaning that you can develop
a COBOL program using SOM
on a workstation and port it
unchanged to a host or
midrange environment.

Robert A. Pittman, Jr.
IBM Corporation
Dallas, Texas

SOM also adds the benefit of
language independence; a SOM­
enabled class can be developed
in SOM's IDL (interface defini­
tion language), C++, Smalltalk, 1

or COBOL. And SOM-enabled

' Smalltalk supports only usage
bindings, not implementation bind­
ings. Hence, classes cannot be
invoked from outside the Small­
talk environment, and Smalltalk
classes must be exported before
they are usable by other languages.

classes can be used by programs coded in
different languages. This assertion pro­
vides the basis for the program in this
article.

00 COBOL Background
The language extensions introduced in
IBM's family of COBOL products are based
upon the proposed ANSI 1997 standards.
Although a number of issues regarding
these proposed standards (such as object
persistence and exception) have yet to be
resolved, there is a consensus about the
proposed 00 language extensions. This
consensus is the basis of the new genre of
object-oriented COBOL compilers intro­
duced by IBM and others. As more of the

PERSONAL SYSTEMS • MARCH/APRIL 1996 6 3

64

REPOSITORY.
CLASS Car IS "Car"
CLASS Ticket IS "Ticket"
CLASS Valet IS "Valet".

Figure 1. Configuration Section Repository

* Define the object handles. *

01 car0bj USAGE OBJECT REFERENCE Car.
01 ticket0bj USAGE OBJECT REFERENCE Ticket.
01 valet0bj USAGE OBJECT REFERENCE Valet.

Figure 2. Object Handles

proposed standards achieve consensus
compiler vendors will incorporate the~e
standards into their products.

SOM and the IBM
COBOL Family
IBM supports the Object Management
Group's Common Object Request Broker
Architecture (CORBA) for object interoper­
ability. Backing up that support is IBM's
SOM, an implementation of CORBA mak­
ing objects portable across development
languages. Both the OS/ 2 and MYS COBOL
compilers feature Direct-to-SOM technolo­
gy, so you can create language-neutral
objects without extensive object-oriented
programming experience.

By utilizing a compiler option, you can
generate SOM IDL directly from a class
definition coded in COBOL. You can then
compile this IDL using the SOM compiler,
which places it into a SOM interface
repository (IR). This process is easy and
requires no knowledge of IDL coding.

Development Environment
The COBOL code in this article was
written using Visua!Age for COBOL for
OS/2 with the latest Corrective Service
Diskette (CSD) installed on a system run­
ning OS/2 Warp. Visua!Age for COBOL
for OS/2 includes excellent visual pro­
gramming tools, an interactive debugger,
and advanced data utility functions.
It also uses the WorkFrame program
management tool.

Relevant compiler options used were
TYPECHK, which performs typechecking of
parameters against method interfaces, and

PERSONAL SYSTEMS • MARCH/APRIL 1996

PGMNAMECMIXED), which allows the use of
mixed-case program, class, and method
names.

The development machine was a personal
computer with a 90 MHz Intel Pentium
processor and 32 MB of RAM. For a full
installation, Visua!Age for COBOL for OS/2
requires 170 MB of disk space, a 486-class
processor, and 24 MB of RAM.

Readers familiar with
traditional COBOL

programming should notice
some differences

in the code presented in
this article.

Class Overview
The sample program in this article uses
the valet parking application (see Rick
Weaver's "IBM System Object Model-The
Wave of the Future [and Now!]" article
earlier in this issue). This application con­
sists of Valet, Ticket, and Car classes.
Other classes (Garage and TktBookS) are
used "under the covers" by the aforemen­
tioned classes.

Note: This article's figures show just
the specific lines of code being dis­
cussed. The complete program is avail­
able on the World-Wide Web at
http://pscc.dfw.ibm.com/psmag/.

Application Summary
As described in Weaver's article, this
application reads an input file that
instructs the program to either retrieve a
car from the garage or park a car in it.

To park a car, you instantiate a car object
and set its attributes to those specified on
the input record. Next, pass the car object
to the pa rkCa r method of the valet
object, which returns a ticket object. You
can query this ticket object to determine
in which slot the car was parked, then
display an appropriate message to the
system user.

To retrieve a car, you create a ticket
object and set its slot number attribute
to the value on the input record. Next,
invoke the retri eveCar method of the
valet object, passing it the ticket object
just created. The retrieveCar method
returns a car object (or an invalid object
if there is no car in the slot). Then obtain
the attributes of the returned car object
and write a message to the system user.

Implementing in 00 COBOL
Readers familiar with traditional COBOL
programming should notice some differ­
ences in the code presented in this
article. These differences arise due to
the proposed ANSI 1997 standards on
object-oriented extensions to the COBOL
language.

One of the first things you will code in
this exercise is the configuration section
repository. The repository, shown in
Figure 1, identifies the classes that the
program will need from the interface
repository. The client program includes
the Car, Ticket, and Valet classes. The sub­
ject of a class statement indicates the
name of the class as it will be referenced
within the program. For example, the Car
class in the repository will be referenced
as Car in the program.

In the program's working-storage section,
object references (a data type introduced
in the proposed ANSI 1997 standard)
specify the objects' handles and the class­
es they reference. Essentially, object refer­
ences are pointers to the area of memory
that has been allocated to an object.

Figure 2 lists the object handles defined
in the working-storage section. Notice
how they relate to the classes defined in
the repository.

Notice in Figure 3 that pointers are coded
for each text attribute within the objects.
These are needed to satisfy typechecking
at compilation, when the parameters
passed to methods are verified to be com­
patible with the methods' interfaces.

The valet, ticket, and car objects' attributes
are strings. To set one of these attributes, the
attribute's value is modified in working­
storage, and the appropriate pointer's val­
ues are set to the attribute's address. The
pointer is then passed as a parameter to
the _set method. When retrieving an
attribute value, the _get method returns
a pointer, the handling of which will be
discussed later.

Figure 3 represents a definition of a
string attribute in the working-storage
section, with the associated pointer for
the string. COMP- 5 denotes a binary data
item, in this case a halfword in length,
and indicates that the native binary for­
mat of the environment platform is to
represent internal data. Alternately, COMP
means that the little-endian format is
applied in the PC architecture, while the
big-endian format is used on the AIX and
MYS platforms.

In the procedure division in Figure 4, a call is
made to somGetGl oba 1 Environment,
which returns a pointer to SOM's global
environment variable. This pointer must
be passed to the methods of the objects
used, except when instantiating or
destroying an object.

To create an object, invoke the somNew
method (a new verb-introduced in the
ANSI 1997 standard-which is inherited
from SOMobjects) on the class name of
the object specified in the repository. This
method returns the object handle and
allocates memory for it.

In Figure 5, note the use of somNew on
the Valet class, which returns a valet
object. Refer to the repository (Figure 1)
and the object reference (Figure 2) in the
working-storage section, and observe their
relationships. Subsequently, when you
invoke the object, you invoke methods on
its handle and not its class name.

Notice in Figure 6 that you pass the point­
er to the global environment variable as
the first parameter when invoking meth­
ods on the objects. This parameter, as
well as all others used for this exercise,

* Work areas for the valet object's attributes. *

01 WS-VN-P0INTER USAGE POINTER.
01 WS-VALET-NAME.

05 WS-VN-LL PIC S9(4)
05 WS-VN-NAME PIC X(40).

Figure 3. Work Areas for Valet Object's Attributes

C0MP-5.

* SOM global environment variable. *

01 WS-ev USAGE POINTER.

* Obtain pointer to S0M's global environment variable. *

CALL "somGetGlobalEnvironment" RETURNING WS-ev.

Figure 4. SOM Global Environment Variable

* Create a valet object. *

INVOKE Valet "somNew" RETURNING valet0bj.

Figure 5. Creating an Object

*
*
*

Initialize fields and work areas. Valet name is
padded with low values for C++'s null character for
string termination_

*
*
*

MOVE Z"Fritz von Hochsmeier" TO WS-VN-NAME.

SET WS -VN-P0INTER TO ADDRESS OF WS-VN-NAME.

*
*

Set the valet object's name attribute, pass a
pointer to the name work area.

*
*

INVOKE valet0bj · _set_valetName"

USING BY VALUE WS-ev
WS-VN-POINTER.

Figure 6. Valet Object's Name Attribute

is passed "by value" rather than "by refer­
ence" (the default). By value eliminates a
level of indirection and is expected by
the classes you are using, whereas by ref
erence passes a pointer to the parameter,

which is typically used in COBOL
programming.

For compatibility, string attributes are
null-terminated by moving a low-value
(binary zero, X"OO") to the position

PERSONAL SYSTEMS • MARCH/APRIL 1996 65

* Work areas for car object's color attribute. *

01 WS-CC-POINTER USAGE POINTER.
01 WS-CAR-COLOR.

05 WS -CC-LL PIC 9(4) COMP-5 .
05 WS-COLOR PIC X(20).
05 WS -COLOR -R REDEFINES WS-COLOR.

10 WS -CCR-BYTE PIC X
OCCURS 20
INDEXED BY WS-CCR-INDEX.

Figure 7. Car Object's Color Attribute

LINKAGE SECTION.

* Define a general work area. *

01 LS -WORK -AREA PIC X(100).

Figure 8. Obta ining the Value of a String Attribute

* Get the color attribute of the car. *

INVOKE carObj "_get_color"

USING BY VALUE
RETURNING

PERFORM GET -COLOR

WS-ev
WS-CC-POINTER

Figure 9. Obtaining the Car Object's Color Attribute

GET -COLOR .
**
* Gets the color work area from the value pointed to by
* the pointer returned by the car object's get color
* method.

*
*
*

**
SET ADDRESS OF LS-WORK-AREA TOWS-CC-POINTER.
MOVE LS-WORK-AREA TOWS -COLOR.
PERFORM VARYING WS -CCR - INDEX

FROM 1 BY 1
UNTIL WS -CCR -BYTE (WS -CCR - INDEX) < SPACE

OR WS-CCR-INDEX > 20
SET WS-CC-LL TOWS-CCR-INDEX

END- PERFORM.

Figure 10. Getting the Color Work Area

**
* See if a car was returned. *
**
CALL "somisObj" USING BY VALUE carObj

RETURNING theValidflag

Figure 11. Determining Whether a Car was Returned

* The valet clocks out and closes the garage. *

INVOKE valetObj "somFree".

Fi gure 12. Destroying an Object

6 6 PERSONAL SYSTEMS • MARCH/APRIL 1996

immediately following the last character.
Figure 6 sets the valet object's name
attribute. The prefix z before the literal
indicates that it will be null-terminated.
Figure 6 also sets up a pointer to the
attribute's address, to be passed to the
method. The object's handle is invoked,
rather than the class name, which was
invoked during object creation.

Because the _get methods return point­
ers to the attributes they are getting,
and because COBOL does not not allow
altering the address of an item defined in
working-storage, I coded a variable in the
linkage section that is used as a work
area. The address of this variable is set to
the pointer value returned by the _get
method. The contents are then copied to
the attribute defined in working-storage,
and the length up to the null-termination
character is determined. For simplicity's
sake, I arbitrarily assigned a length of 100
bytes to the variable, allowing me to use
it for all string attributes referenced in
the program.

It may seem odd to set up a linkage sec­
tion in a program that is executed directly
and never called, but it is necessary to
obtain the values of the objects' string
attributes. Figure 7 gives the working-stor­
age definition of the car object's color
attribute. Figure 8 shows the generic work
field to be used to obtain the value of a
string attribute. Figure 9 determines the
car object's color attribute. Notice how a
pointer is returned.

The code in Figure 10 uses the returned
pointer to address the variable defined in
the program's linkage section and copies
the attribute to the working-storage vari­
able. The length of the attribute up to its
null-termination character is also found.

General agreement on exception handling
has not yet been reached in the proposed
ANSI 1997 standards, so the C++ tech­
niques of "throwing" and "catching"
exceptions can not be emulated. To verify
that a valid car object was returned by
the valet object's retrieveCar method,
you call somI sObj, passing the handle of
the car object. somI sObj returns a flag
indicating whether the object is valid or
invalid.

In Figure 11, somlsObj is called to see if
an object returned by another method is
valid. Val id Fl a g is subsequently tested

to determine the outcome of the call to
somis0bj.

To destroy an object, use somFree, a
method inherited from SOMobject, as
shown in Figure 12. It frees the memory
allocated to the object, because (as in
C++) there is no automatic garbage collec­
tion in object-oriented COBOL. somFree
is invoked on the object's handle, rather
than the class name Valet.

Developing the Client Program
To develop the client program with
VisualAge for COBOL for OS/2, first create
. LIB files for the DLLs supplied for the
classes used by executing the following
command from an OS/ 2 command line:

IMPLIB valet.lib valet.dll

-~ tlmpglll ■ 1nformatloo Notebook

~ strlnggu ♦ Task ~per

@ How to St•t [j REAOtE

Figure 13. VisualAge COBOL-Icon View

.. C

• C

[) dlenlobJ CJ GARAGE.OLL CJ n
[) OOE4143S.OLL CJ GARAGE.LIB CJ fli

D GARAGE.llff D TICl<ET.DEF Cl TO

Figure 14. Valet-Icon View

Actl- Vll!lalllea !!PIii .l{I- Halli __

1a1c a 11ac,11111•1111■
Actions

Ii Message Compiler

Ii] CICS Map Translation

+ lfil Make

+~Build

+~link

+ l1J Run

+ igg Debug

+ lil Analyze

Figure 15. Valet-Tools Setup

• 0

1

1£j COBOL Compiler : File scope · IBM COBOL Compiler Opti • D

Enter output file name:

Enter map file name:

Syntactical

Output

Enter library/object file name(s): isomtk.lib ticket.lib valet.lib car.II

Enter module def file:

Processing

Semantic

Debug

Enter linker options:

Figure 16. Compiler Options

Next, open up the VisualAge COBOL Icon
View and select the "Create New Project"
icon (Figure 13). -

From the "Create New Project" window,
select "Create a default COBOL project"
with a project name of valet and a target
name of client. exe. Next, select the
"Create New Text File with the COBOL
Editor" button on the toolbar and enter
the source code for the client program.

Then copy the VALET. IR file, all the . DLL
and . LIB files, and the test file CAR. SCR
into the valet project's subdirectory. You
need the . LIB files to build the project
and the . DLLs and test file for execution.
You also need the VALET. IR file to satisfy
class typechecking during compilation.

Next, open the "Tools Setup" option from
the toolbar (Figure 14). From here, select
"COBOL Compiler" from the Actions list
(Figure 15), which presents a notebook of
compiler options (Figure 16).

In this notebook, select the "Link" tab and
enter the names of the TIC KET. LIB,
VALET. LIB, and CAR. LIB files in the
library/object file name(s) entry box. You
also need the S0MTK. LIB file; this file is
supplied with VisualAge for COBOL for
OS/ 2. Then close the compiler options
notebook.

In the "Tools setup" menu, select the vari­
ables pull-down menu (Figure 1 7) and add
a CARS variable with an associated string
of car . s c r, the name of the file contain­
ing your test data.

System

nk

Prep

Other

After closing "Tools setup," you build the
executable file by selecting one of the
"Build" options on the toolbar. When the
project is built successfully, execute it by
selecting the "Run Target" option on the
toolbar (Figure 18).

If you want, you can package the project's
executables and requisite runtime files by
selecting the "package" option in the

jieMi&MrnflMjln
Actions Vl!lables !ypes .l{lew !::!elP

IDl~l:l lijijri,i li!l■!HII IUI -
Variable String ..

~

I

bl

Figure 17. Valet-Tools Setup

PitiMMl■ ·'!lii4 --"""'•Ylow!!Pt-""' !libiiil.
I) CAROLL CJ c•.scy [) ctlenlcbl CJ dlenlobj

['.J CAR.LIB ['.J CAR.SC, • t!lllilmll ['.J OOE4MBS.DLL

[) c•.Kr LI ctlent.adt Cl Q.IEHT.LST l_j GARAGE.DLL

Figure 18. Valet-Icon View

PERSONAL SYSTEMS • MARCH/APRIL 1996

I

67

"Project" pull-down menu. This process
creates an installable copy of the project
that you can move to a target machine.

An Exciting New Dimension for
COBOL
The code presented in this article (part of
a complete 00 COBOL client program you
can find on the World-Wide Web at
http://pscc.dfw.ibm.com/psmag/)
illustrates some of the techniques used in
developing a COBOL client program with
VisualAge for COBOL for OS/2. In this
example, the client program used SOM­
enabled classes. I used only minimal
VisualAge COBOL functionality. Coding a
class definition in object-oriented COBOL
is another exercise beyond the scope of
the topic at hand.

When comparing this COBOL client pro­
gram to a functionally identical C++ client

6 8 PERSONAL SYSTEMS • MARCH/APRIL 1996

program, note that COBOL has main­
tained its verbosity. A comparable C++
client program was developed for
Weaver's article, "IBM System Object
Model-The Wave of the Future (and
Now!)." Although the COBOL source code
is verbose, the executable file is not.
When dynamically linking the referenced
classes as DLLs, the executable file was
around 17 KB, with no testing logic. This
size is certainly reasonable for the func­
tionality provided.

The introduction of object-oriented exten­
sions to the COBOL language adds an
exciting dimension to the world's most
widely used programming language.
These extensions ensure the survival of
its widespread usage, paving its way
into the new generation of application
development.

Robert A. Pittman,

Jr. works in the
Object Technology

University within
IBM Education and

Training, Dallas,

Texas. He provides

instruction and

develops courses in

object orientation,

and he is a co-author of IBM Visua/Age

for COBOL for OS/2: Object-Oriented

Programming (SG24-4606), an IBM
Redbook. Rob's prior IBM jobs were in

Availability Services. He has been

involved in the computer industry since

1976. Before joining IBM in 1988, he

worked in application development,

database administration, and systems

programming. Rob has a BBA
degree in Accounting from the University

of Texas and an MBA in Information

Systems from the University of North

Texas, and he is a Certified Public

Accountant licensed in Texas. His Internet

ID is robert_pittman@vnet.ibm. com.

Corrective Service Information
Figure 1 shows maintenance release
levels for the listed products. This
information is effective as of February 1,
1996. CSDs may have been updated since
press time.

To order all service packages-except for
the OS/ 2 2.0, OS/ 2 2.1 , OS/2 2.1 for
Windows, and OS/2 2.0 Toolkit
ServicePaks-call IBM Software Solution
Services at (800) 992-4777. For the OS/2
2.0 ServicePak (XR06100), OS/ 2 2.1
ServicePak (XR06200), OS/ 2 2.1 for
Windows ServicePak (XR06300), or the

Product/Component

OS/2 Standard Edition

OS/2 Extended Edition

OS/2

OS/2 2.10 ServicePak

OS/2 2.11 for Windows ServicePak

OS/2 Toolkit

OS/2 LAN Server/Requester ServicePak

OS/2 LAN Server/Requester ServicePak

IBM LAN Server/Requester
OS/2 Warp Connect LS 4.0 ServicePak

OS/2 Extended Services
Database Manager ServicePak

DB2/2 ServicePak

DB2/2 ServicePak

DDCS/2 ServicePak

Database Manager DB2/2

DDCS/2

Client Application Enabler/2 (CAE/2)

Software Developers Kit/2 (SDK/2)

SOK/Windows ServicePak

Extended Services Comm Mgr ServicePak

IBM Developer's Toolkit for OS/2 2.0
ServicePak (XR06110) on diskettes or CD­
ROM, call (800) 494-3044. Most OS/ 2 ser­
vice packages are also available electroni­
cally from the following sources:

■ OS/ 2 Bulletin Board Service (BBS):
In Software Library, select Option 2.
(Corrective services are also listed
under the General category on the
IBMLink BBS.) To subscribe to the
OS/2 BBS, call (800) 547-1283.

■ IBM Personal Computer Company
(PCC) BBS: Call (919) 517-0001.

..... I . I • •

1.3 XR05150 XR05150 02-10-93

1.3 WR05200 WR05200 05-12-93

2.0 XR06100 XR06100 09-01-93

2.1 XR06200 XR06200 03-01-94

2.11 XR06300 XR06300 05-24-94

2.0 XR06110 XR06110 09-01-93

1.3 XR05053 XR05053 03-23-92

2.0 IP06030 IP06030 04-25-93

3.0 IP07060 IP07060 05-10-95

4.00 IP08152 IP08152 11-28-95

1.0 WR06035 WR06035 11-18-93

1.0 WR07042 WR07042 06-08-95

2.1 WR08049 WR08049 10-12-95

2.0 WR07031 WR07031 02-06-95

1.2 WR07047 WR07047 06-06-95

2.0 WR07046 WR07046 06-06-95

1.2 WR07043 WR07043 06-06-95

1.2 WR07048 WR07048 06-06-95

2.1 WR08050 WR08050 10-12-95

1.0 WR06025 WR06025 11-29-93

Figure 1. Maintenance Release Levels (continued on next page)

Service packages are located in
Directory 4.

■ CompuServe: Download service
packages from the IBM OS2 FORUM
library (GO IBMOS2 IBM DF2).

■ Internet: Do an anonymous FTP
from ps. boulder. i bm. com at
fps/products/. TCP/IP packages are
located at software. watson. i bm. com
at pub/tcpi p/os2.

-Arnie Johnson, IBM Corporation,
Austin, Texas

Comments

WR05200 replaces WR05050, which can no
longer be ordered on diskette

XR06100 replaces XR06055.

This package is not for OS/2 2.1 for Windows.

Supersedes IP07045.

Supersedes IP08150.

Supersedes WR06001 , WR06002, WR06003,
WR06004, WR06014, and WR06015.

PERSONAL SYSTEMS • MARCH/APRIL 1996 6 9

Product/Component

System Performance Monitor (SPM/2)
ServicePak

LAN Distance ServicePak

OS/2 Network Transport Services/2
SelectPak

LAN Server 4.0 MPTS

LS 4.0 MPTS Warp Connect

Communications Manager /2
Version 1.01 ServicePak

CM/2 Version 1. 11 ServicePak

DOS

C Set/2 Compiler

C Set C++ Compiler

C Set C++ Compiler

C Set C++ Utilities

C Set C ++ Utilities

TCP/ IP for OS/ 2 Base and Application Kit

TCP / IP for OS/ 2 DOS Access

TCP/ IP for OS/2 Extended Networking

TCP/ IP for OS/ 2 Programmer's Toolkit

TCP/IP for OS/2 Domain Name Server

TCP/ IP for OS/2 Network File System

TCP/ IP for OS/2 X-Windows Server

TCP/ IP for OS/2 X-Windows Client

Figure 1. Maintenance Release Levels

Trademarks

----2.0 WR06075 WR06075 12-10-93

1.1/ 1.11 IP08175 IP08175 12-21-95

2.11/2.20.l WR07060 WR07060 05-10-95
2.20.2

4.0 WR08150 WR08150 10-18-95

1.0 WR08152 WR08152 11-06-95

1.01 WR06050 WR06050 06-11-93

1.11 WR06150 WR06150 05-31-94

4.0/4.01 UR35284 UR35284 09-26-91

5.0 UR37387 UR37387 09-22-92

1.0 CS00050 XR06150 06-29-93

2.0/2.01 CTC0002 XR06102 12-15-93

2.0/2.01 CTC00lO XR06190 09-15-94

2.01 CTM0006 XR06196 09-15-94

2.00 CTL0007 XR06197 09-15-94

2.0 UN64092 UN64092 08-24-94

2.0 UN57546 UN57546 08-24-94

2.0 UN60005 UN60005 06-21-94

2.0 UN57887 UN57887 06-21-94

2.0 UN60004 UN60004 08-24-94

2.0 UN57064 UN57064 06-21-94

2.0 UN68122 UN68122 01-20-95

2.0 UN59374 UN59374 08-24-94

The following terms are trademarks of the IBM Corporation in the United States or other countries or both:

Comments

Supersedes IP07050.

Must be LAPS 2.11 or above. If not, order
WR07045 first.

Available only on diskette.

Available on diskette and CD-ROM.

Advanced Peer-to-Peer Networking, AD(, AIX/6000, APPN, Aptiva, AS/400, BookManager, BookMaster, Common User Access, Communications Manager, C Set++, CUA,

DATABASE 2, DATABASE 2 OS/400, DB2, DBZ/ 2, DBZ/400, DBZ/6000, Distributed Database Connection Services/ 2, DProp, DRDA, DSOM, Dua!Stor, IBM, IBMLlnk, UN,
LAN Distance, LANStreamer, Micro Channel, MYS, MYS/OE, NetFinity, NetYiew, OS/ 2, OS/400, Person to Person, PowerPC, Presentation Manager, PS/ 2, RISC
System/6000, ServicePak, SOM, SOMohjects, System/390, TalkLink, ThinkPad, Ultimedia, YaluePoint, YisualAge, Yisua!Gen, YM, YoiceType, WebExplorer, WIN-OS2,
Workplace Shell, XGA

Windows is a trademark of Microsoft Corporation.

UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Limited.

Other company, product, and service names may be trademarks or service marks of others.

7 0 PERSONAL SYSTEMS • MARCH/APRIL 1996

BACK ISSUE INDEX

These back issues of Personal Systems are available to provide valuable information. Indicate the desired quantity for the issues you

want to order and complete the information on the following page.

January/Februa ry 1996
What's New?
Tape Backup Products for OS/ 2
Fault Tolerance for LAN Server
Getting Together with cc:Mail
Sales Force Automation: Building the Intelligence-Driven

Sales Organization
The New Mercantilism
Designing Lotus Notes Applications That Perform
Designing a Scalable Lotus Notes Workflow Application
Lotus Notes for ADC in a Personal Systems Environment
New Administrative Features and Enhancements in Lotus Notes

Release 4
MQSeries link for Lotus Notes
Getting Warped and Connected Tool-Part Two

November/December 1995
What's New?
Road Trip! Shopping the Internet
Command-Line Commando
Getting Warped and Connected Too!
Infrared: LANs Without Wires
Security and Auditing in IBM LAN Server
Multi-User Performance Testing in a Client/Server Environment
DCE Cell Performance: High Water Marks
Plug and Play in PC DOS 7

September/October 1995
What's New for OS/ 2?
Mesa 2 for OS/ 2
Manage Your Files with FileStar/ 2 for OS/ 2
PartitionMagic for OS/ 2
Managing LAN Server Home Directories
IBM DualStor for OS/ 2
Human-Computer Interaction Overview
User Interface 2000
IBM's Strategy for OS/ 2 Platform Products Fix Support
Road Trip! Back to School
TalkLink Gets a Facelift
OpenDoc and Human-Computer Interaction
Supporting HCI Technologies in Applications
An Introduction to Speech Recognition with OS/ 2
Intelligent Agents: A Primer
CID Installation of OS/ 2 and Its Platform Applications
Creating Your Own INF Hyperlinked Files

July/ August 1995
What's New for OS/ 2?
The Soap Box Derby
Easily Load and Lock Desktops
Road Trip! Cruisin' to the Olympics
DB2 for OS/ 2 V2. l: The Next Generation
OS/ 2 Victories from the Data Management Front Lines
Voting Kiosks: The Future of Electronic Elections
Performance Enhancements in DB2 for OS/ 2 V2.l
DB2 for OS/ 2 Administrative Tools
Database Recovery with DB2 for OS/ 2
Getting Object-Oriented with DB2 for OS/ 2 V2_ I
Enhanced SQL in DB2 for OS/ 2 V2. l
Enterprisewide Connectivity Using DB2
Visualizer Development

Performance: DCE RPC as a DB2 for OS/ 2 and DB2 for ADC Transport
Remote Program Load of OS/ 2 Warp from NetWare 3.12

May/June 1995
What's New for OS/2?
Thanks for the Memory
Road Trip! Disney on the Internet
Apache Students Use the Power of the Pen (Light Pen)
Visualizer: The Conversion Continues
The Internet: A New Dimension?
IBM LAN Doctor Services
Borland C++ 2.0 Brings OWL to the OS/2 Presentation Manager
LAN Server Logon Internals
LAN Server 4.0 Performance, Capacity Enhancements, and

Tuning Tips
OS/ 2 Warp for Developing PC Games
Controlling the OS/2 Desktop From a File Server
Jump-Start Your PC with Component Upgrades

March/April 1995
What's New for OS/2?
Mesa 2: Gaining the Competitive Edge with OS/ 2
Managing the Workplace Shell with DeskMan/ 2
Circus du COMDEX: The Running of the Geeks
Road Trip! Touring the Side Roads of the Internet
What's New in PC DOS 7
OS/2 Boot and Recovery Options
TCP/ IP: How It Works
A Guide to OS/ 2 Warp's Internet Access Kit
CID Installation of OS/ 2 Warp and LAPS
Wrapping Up an 00 Experience

January/February 1995
Technical Connection Personal Software Is the Answer!

Visualizer, DB2, and You-An End-User's Perspective
Insiders' Software Unveiled
Need a Specialist for Your LAN Server 4.0?
One-Stop Shopping
OS/ 2 Warp
OS/ 2 for SMP
Multimedia File 1/0 Services
Need a Fix?
IBM LAN Server 4.0: New Features and Comparisons with

NetWare
IBM DCE Hetrogeneous Enterprise Performance

November/December 1994
Evolution, Not Revolution-Pen Computing Comes of Age
Handwriting Recognition: The State of the Art
Pen Digitizing Hardware
It's HapPENing!
Bill Carr: Fastest Draw in the West
Work Management in the Field
Communicating Without Wires: IBM's Mobile

Communications Module
Tomorrow's Networking Today-from IBM's

Personal Systems Competency Center
Customers Speak Out About Consult Line
New Describe 5.0-Leader of the Pack
Super-Fast PenDOS
Pen for OS/2
A Development Environment for Pen-Centric Applications
Writing DOS Installation Programs for Selective Boot Systems

OS/ 2 for PowerPC: Transforming Architecture into Implementation

PERSONAL SYSTEMS • MARCH/APRIL 1996 7 1

72

September/October 1994
"Sneaker Net" or Systems Management?
Like Father, Like Son
The Book Shelf

Software Compatibility: Good Relationship or One Night
Stand?

Migrating Windows Applications to OS/ 2: Easing the Migration
Path

Cajun Electric Cooks Up OS/ 2 GUI with VisPro/REXX!
Application Development by Program Integration

OS/ 2 Conference Draws Praise
DCE: An Application Primer

IBM REXX for NetWare

GamrnaTech REXX SuperSet/ 2-Give Your REXX Programs the
Distributed Performance Characteristics of IBM DCE for OS/ 2

Architecture Soup: Understanding Modern IBM PC Architecture

Power of C
BranchCard: A Viable Option to Stand-Alone Hubs
A Hands-On Primer for REXX

TSHELL: A Text-Based Alternate Shell for OS/ 2
Extended Attribu tes for Files
Developing Lotus Notes Applications

Visual REXX Development Environments
CID Installation of OS/ 2 2.11 and LAPS

Conserving Power with Personal System Power Management
Superstor/DS Data Compression in PC DOS 6.x

Upgrading from Microsoft LAN Manager to IBM LAN Server 3.0
Stretching Your LAN with LAN Distance

LAN NetView Object Registration Services

DB2/ 2-More Than Ever Before! May/June 1994
NeLBIOS, SNA, and NetWare IPX Coexistence Under OS/ 2 "Wrightsizing" at USAir

July/August 1994
IBM's Personal Systems Support Family-Customer-Influenced

Design
OS/ 2 Times and Scores the 1 ~94 Indianapolis 500

Getting the Word Out at Chemical Banking Corporation
Back Up for the Future
Lost in Cyberspace
The Book Shelf
Threads
Redirected Installation of OS/ 2 2.x

Send this form with a check or money order, payable to NCM Enterprise, to: NCM Enterprise, P.O. Box 165447, Irving, TX 75016-9939. You can also

fax both pages of this form to (214) 518-2507 (please include VlSA / MasterCard /AmEx/Diners number and expiration date), or call (800) 678-8014.

All orders must be prepaid. Checks must be in US. dollars.

BACK ISSUE ORDER FORM

NAME _____________________ _ Price is $12.00 per issue, plus $3.95 shipping & handling
per copy. Overseas orders add $9.95 shipping & handling
per copy. COMPANY ___________________ _

ADDRESS ___________________ _ Texas residents add applicable sales tax.

I have enclosed a: 0 Check O Money order
Charge to: 0 VISA O MasterCard O AmEx O Diners

CITY ____________ STATE ___ ZIP ___ _ CREDIT CARD NUMBER _____________ _

TELEPHONE(___________________ _ SIGNATURE ____________ EXPIRES, ___ _

IBM believes the statements contained herein are
accurate as of the date of publication of this docu­
ment. However, IBM hereby disclaims all warranties
as to materials and workmanship, either expressed or
implied, including without limitation any implied
warranty of merchantability or fitness for a particu­
lar purpose. In no event will IBM be liable to you for
any damages, including any lost profits, lost savings,
or other incidental or consequential damage arising
out of the use or inability to use any information
provided through this service even if IBM has been
advised of the possibility of such damages, or for any
claim by any other party.

Some states do not allow the limitation or exclu­
sion of liability for incidental or consequential dam­
ages, so the above limitation or exclusion may not
apply to you.

This publication could contain technical inaccura­
cies or typographical errors. Also, illustrations con­
tained herein may show prototype equipment. Your
system configuration may differ slightly.

IBM has tested the programs contained in this pub­
lication. However, IBM does not guarantee that the
progran1s contain no errors.

PERSONAL SYSTEMS • MARCH/APRIL 1996

This information is not intended to be a statement of
direction or an assertion of future action. IBM expressly
reserves the right to change or withdraw current prod­
ucts that may or may not have the san1e characteristics
or codes listed in this publication. Should IBM modify its
products in a way that may affect the information con­
tained in this publication, IBM assumes no
obligation whatever to inform any user of the modifica·
tion.

Some of the information in this magazine concerns
future products or future releases of products currently
commercially available. The description and discussion of
IBM's future products, performance, functions, and avail•
ability are based upon IBM's current intent and are sub­
ject to change.

IBM may have patents or pending patent applications
covering subject matter in this document. The furnishing
of this document does not imply giving license to these
patents.

It is possible that this material may contain
reference to, or information about, IBM products
(machines and programs), programming, or
services that are not announced in your country. Such

references or information must not be construed to
mean that lBM intends to announce such products,
programming, or services in your country.

IBM may use or distribute any of the information
you supply in any way it believes appropriate without
incurring any obligation whatever.

The articles in this publication represent the views
of their authors and do not necessarily represent the
views of IBM. This publication may contain articles
by non-IBM authors. IBM does not endorse any non­
IBM products that may be mentioned. Questions
should be directed to the authors.

Publication of advertising material in this maga­
zine does not constitute an expressed or implied rec­
ommendation of endorsement of IBM of any particu­
lar product, service, company, or technology. IBM
takes no responsibility whatsoever with regard to the
selection, performance, or use of any advertised prod­
ucts. All understandings, agreements, or warranties
must take place directly between the vendor and
prospective users.

/4~
TECHNICAL

INTERCHANGE

~

Come to the 1996 IBM International Technical
Interchange, April 22-26 in Nashville, TN.
There's a lot to experience : Insights into IBM's
latest software strategies. Over 300 unique elective

sessions, including App Development, Network-Centric and
Client/Server Computing. Tips and techniques for building
a competitive advantage. More than 200 exhibitors. Free
Developer Connection software. And, of course, some nifty

The IBM home page 1s localed at httpJ/WWW.ibm.COITl IBM. AS/400, AIX, osa and S/390 are registered trademarks and Solutions for
a small planet is a trademark of International Business Machines Corporation. ©1995 IBM Corp. All rights reserved.

T-shirts. For enrollment information and program brochure,
call l 800 872-7109 (U.S. & Canada) or 1 617 893-2056
(Outside N. America). Or visit our Web site at http://www.
austin.ibm.com/developer/conferences/ti_96 for details.

--------- - - --- ---- - ---- - - ---==--= '!' =•
Solutions for a small planet"

• • • • • • • • • • • • • • • • •

The Two Best Ways to get the most out of 0S/2
••

Object Navigator, OS/2's first obj ect oriented
file manager can see long file names on FAT
partitions, shadows, and program-objects

Obj ect Archives treats ZIP files as standa rd
OS/2 folders

Control Center mon itors resources, organ izes
folders, and provides virtua l desktops

Tab LaunchPad organ izes programs

View and edit data right from the zip files

Plus!
Hypercache, OS/2's first third party cache .
Browse Mode, enter sub-folders quickly and seamlessly.
HyperDrives, speeds up the opening of folders.
Keyboard LaunchPad, assign hot keys to programs.
Text View, makes editing and viewing data easier than ever .
Global settings for full drag, sorting, folder views and more.
And a lot more!

WPIMfiM
1!:10-C :S: fostPGft

Object Desktop is the next generation
desktop environment designed exclu­
sively for OS/2. It will make your OS/2 sys­
tem more powerful , easier to use, and just
plain nicer to look at.

~---========:

242:0K. --­G·tO CIIIII
f':n:J• i::::::111
E-~• -
0: 1n,,, c::::J
c- c:::1111

TM

•
•

IC a

3 &22M [; 3) ""' 24 35M
2 9.89M ... • • 201 &ii
0 "' n00;

.QlrMaster frompts Dir !Df1 I09!Jles . -,, 11M 1()5 - 8202 11Bt 10.41

hit
cforinst.zip
dataser-v, zip
dsinst . exe
fr-mor-131 .exe
inatal l, exe­
pkunzip2,exe
xvtpi318 d\t

c: \FORUM

(lj(

Mtei#!
317,832
561,443
132, 58-4

1, 169, 68&
1S9, 551

23, ◄ 52
196,784

BATTLE
CALCS •
OATA, B
ENDING

--•
125 253M ~;; 151 115M

5027 291 M 2793
436 61M 5.8"

0 "' noo
107 15M 14'

~~r·_'.':::- - --==-------------..,-
- -----.~c'.;;,',,•.~l~MG l~(~~~~iSl~.IUSMavaiable

lnvae,ion. dl \ 39,792
tietwork . dll 19,168
ne-st. zip 873,683

,.. SCEHES.OlL 815,487

' ' <]< > /9: \Ga\Civ2

I i:q = I a: p:" I .:a~ j = j ~ l
Os2 J = f''7~ T:; j = 1 A~ ~ = 1

Sw,e,pf'ile: 3872kt, free RAH: 3 ◄ 928tc;D 18:56 19 January 1996

• Tasks Cmd lcwtlons

(0) ~/~ Stardock

EssentialsM
OS/2 Essentials is a powerful yet af­
fordable utility suite for OS/2. It pro­
vides a comprehensive of "essen­
tial " uti lities to complete your OS/2
system. You can now find it almost
everywhere for less than $30.00!

Screen Saver Pro secures unattended ma­
chines while providing green monitor support .

FileGraph/PM Pro maps out how much disk
space each directory is using up on the sys­
tem .

DirMaster Pro provides one of the fastest and
most powerful file managers for OS/2 makes
maintaining an OS/2 system a snap.

WPS Trashcan provides the ultimate in dele­
tion protection .

FileBar makes getting to your programs easier
while providing a scheduler to launch programs.

Stardock Systems, Inc .
Phone: 313-453-0328

Email , stardock95@aol.com.

WEB: http://oeonline.com/-stardock

•

Now available at a reseller near you
Micro Center CompUSA Indelible Blue Kiyo Design OS+Resource Cosmos/2

Visit Stardock Systf(!ms at the IBM Technical Interchange at Booth #508!
Circle #16 on reader service card.

