IILEI PERFORMANGE DATA BOIX

High Performance

 Data Book
How To Use This Book

Overall Organization

This book has been organized by product type, beginning with Product Information. The products are next, starting with SRAMs, then PROMs, EPLDs, FIFOs, Logic, RISC, Modules, ECL, and bus interface products. A section containing military information is next, followed by the Design and Programming Tools section. Quality and Reliability aspects are next, then Thermal Data and Packages. Within each section, data sheets are arranged in order of part number.

Recommended Search Paths

To search by: Use:

Product line

Size

Numeric part number
Table of Contents or flip through the book using the tabs on the right-hand pages.

The Product Selector Guide in section 1.

Numeric Device Index in section 1. The book is also arranged in order of part number.

Other manufacturer's The Cross Reference Guide part number in section 1.
Military part number The Military Selector Guide in section 11.

Key to Waveform Diagrams

$=$
Falling edge of signal will occur during this time.

$=$ during this time (don't care condition).

Signal changes from high-
$=$ impedance state to valid logic level during this time.

Signal changes from valid
$=$ logic level to high-impedance state during this time.

Abbreviations

$$
\mathrm{TBD}=\mathrm{To} \mathrm{Be} \text { Determined }
$$ N/A $=$ Not Applicable

[^0]General Product Information
Cypress Semiconductor Background and Technology ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． $1-1$
Ordering Information
1－1
Datasheets Available Upon Request ．．． 1 ． 6
Cypress Semiconductor Bulletin Board System ．． $1-8$
Application Notes Listing ．． $1-9$
Product Selector Guide ．．． 1 ． 11
Product Line Cross Reference ．．． 1 ． 19

Static RAMs（Random Access Memory）

Device Number

CY7C101A
CY7C102A
CY7C106A
CY7C107A
CY7C109A
CY7C123
CY7C128A
CY7C130
CY7C131
CY7C140
CY7C141
CY7C132
CY7C136
CY7C142
CY7C146
CY7B134
CY7B135
CY7B1342
CY7B138
こY7B139
こY7B144
2Y7B145
こY7C148
2Y7C149
こY7C150
2Y7B161
こY7B162
2Y7C161
2Y7C162
2Y7C161A
2Y7C162A
こY7B164
2Y7B166
2Y7C164
2Y7C166
2Y7C164A
2Y7C166A
2Y7C167A
2Y7C168A
－Y7C169A
－Y7C170A
こY7C171A

Description

256K x 4 Static RAM with Separate I／O ．．2－1
256K x 4 Static RAM with Separate I／O ．．2－1
256K x 4 Static RAM ．．2－9
1Mx 1 Static RAM ．．． $2-17$
128K x 8 Static RAM ．．．2－24
256K x 4 Static R／W RAM ．． 2 2－32
2K x 8 Static R／W RAM ．．．2－38
1K x 8 Dual－Port Static RAM ．．2－45
1K x 8 Dual－Port Static RAM ．．2－45
1K x 8 Dual－Port Static RAM ．．．2－45
1K x 8 Dual－Port Static RAM ．．2－45
2K x 8 Dual－Port Static RAM ．．2－58
2K x 8 Dual－Port Static RAM ．．2－58
2K x 8 Dual－Port Static RAM ．．．2－58
2K x 8 Dual－Port Static RAM ．．2－58
4K x 8 Dual－Port Static RAM ．．．2－71
4K x 8 Dual－Port Static RAM ．．2－71
$4 \mathrm{~K} \times 8$ Dual－Port Static RAM with Semaphores ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．2－71

8K x 9 Dual－Port Static RAM with Semaphores，INT，and BUSY ．．．．．．．．．．．．．．．．．．．．．2－99
1Kx 4 Static RAM ．．． $2-115$
1Kx4 Static RAM ．．2－115
1K x 4 Static R／W RAM ．．2－122
16K x 4 Static RAM Separate I／O ．．2－130
16K x 4 Static RAM Separate I／O ．．2－130
16K x 4 Static RAM Separate I／O ．．．2－137
16K x 4 Static RAM Separate I／O ．．．2－137
16K x 4 Static RAM Separate I／O ．．．2－145
16K x 4 Static RAM Separate I／O ．．2－145
16K x 4 Static R／W RAM ．．．2－154
16K x 4 Static R／W RAM ．．2－154
16K x 4 Static RAM ．．．2－160
16K x 4 Static RAM with Output Enable ．．2－160
16Kx 4 Static RAM ．．2－167
16K x 4 Static RAM with Output Enable ．．2－167
16K x 1 Static RAM ．．2－175
4Kx 4 R／W RAM ．． $2-182$
4Kx4 R／W RAM ．．2－182
4K x 4 Static R／W RAM ．．．2－190
4Kx 4 Static R／W RAM Separate I／O ．．2－195

Static RAMs (Random Access Memory) (continued)

Device Number

CY7C172A
CY7B173
CY7B174
CY7B173A
CY7B174A
CY7B175
CY7C178
CY7C179
CY7B180
CY7B181
CY7C182
CY7B185
CY7C185
CY7C185A
CY7C187
CY7C187A
CY7C188
CY7B191
CY7B192
CY7C191
CY7C192
CY7B194
CY7B195
CY7B196
CY7C194
CY7C195
CY7C196
CY7C197
CY7B199
CY7C199
CY7C1001
CY7C1002
CY7C1006
CY7C1007
CY7C1009
CY7C1031
CY7C1032
CY7B1051
CY7B1061
CY7B1055
CY7B1065
CY7B1094
CY7B1095
CY7B1096
CY7B1099
CY7C1331
CY7C1332
CY7C1378
CY7C1379
CY7C1388
CY7C1399

Description

4K x 4 Static R/W RAM Separate I/O . 2-195
32K x 9 Synchronous Cache R/W RAM . 2-203
32K x 9 Synchronous Cache R/W RAM . 2-203
32K x 9 Synchronous Cache R/W RAM . 2-212
32K x 9 Synchronous Cache R/W RAM . 2-212
32K x 9 Synchronous Pentium CPU Cache R/W RAM 2-224
32K x 18 Synchronous Cache RAM . 2-236
32K x 18 Synchronous Cache RAM . 2-236
4K x 18 Cache Tag . 2-248
4Kx 18 Cache Tag . 2-248
8K x 9 Static R/W RAM . 2-268

8Kx 8 Static RAM . 2-278
8K x 8 Static RAM . .. 2-287
64K x 1 Static RAM . 2-295
64K x 1 Static R/W RAM . 2-302
32K x 9 Static RAM . 2-310
64Kx 4 Static R/W RAM with Separate I/O . 2-317
64K x 4 Static R/W RAM with Separate I/O 2-317
64K x 4 Static RAM with Separate I/O . 2-323
64K x 4 Static RAM with Separate I/O . 2-323
64K x 4 Static R/W RAM . 2-331
64K x 4 Static R/W RAM with Output Enable . 2-331
64K x 4 Static R/W RAM with Output Enable .. 2-331
64K x 4 Static RAM . 2-339
64K x 4 Static R/W RAM with Output Enable ... 2-339
64K x 4 Static R/W RAM with Output Enable . 2-339
256K x 1 Static R/W RAM . 2-348
32K x 8 Static RAM . 2-356
32K x 8 Static RAM . 2-362
256K x 4 Static RAM with Separate I/O . 2-371
256K x 4 Static RAM with Separate I/O . 2-371
256K x 4 Static RAM . $2-378$
1M x 1 Static RAM . 2 2-385
128K x 8 Static RAM . 2-391
64K x 18 Synchronous Cache RAM . 2-398
64K x 18 Synchronous Cache RAM . 2-398
64Kx 18 Synchronous Pipelined Cache R/W RAM . 2-410
$128 \mathrm{~K} \times 18$ Synchronous Pipelined Cache R/W RAM . 2-410
32K x 36 Synchronous Pipelined Cache R/W RAM . 2-411
64K x 36 Synchronous Pipelined Cache R/W RAM . 2-411
64K x 4 Static R/W RAM . 2-412
64K x 4 Static R/W RAM . 2-412
64K x 4 Static R/W RAM . 2-412
32K x 8 Static R/W RAM . 2-419
64K x 18 Synchronous Cache 3.3V RAM . 2-425
$64 \mathrm{~K} \times 18$ Synchronous Cache 3.3V RAM . 2-425
32K x 18 Synchronous Cache 3.3V RAM . 2-437
32K x 18 Synchronous Cache 3.3V RAM . 2-437
3.3V 32K x 9 Static RAM . 2-438
3.3V 32K x 8 Static RAM . 2-444
PROMs (Programmable Read Only Memory) Page Number
Introduction to CMOS PROMs 3-1
Device Number Description
512×8 Registered PROM 3-3
CY7C225A 512×8 Registered PROM 3-10
CY7C235 $1 \mathrm{~K} \times 8$ Registered PROM 3-17
CY7C235A 1K x 8 Registered PROM 3-24
CY7C245 2K x 8 Reprogrammable Registered PROM 3-31
CY7C245A 2K x 8 Reprogrammable Registered PROM 3-32
CY7C251 16K x 8 Power-Switched and Reprogrammable PROM 3-40
CY7C254 16K x 8 Reprogrammable PROM 3-40
CY7C256 32K x 8 Power-Switched and Reprogrammable PROM 3-47
CY7C258 $2 \mathrm{~K} \times 16$ Reprogrammable State Machine PROM 3-52
CY7C259 $2 \mathrm{~K} \times 16$ Reprogrammable State Machine PROM 3-52
CY7C261 $8 \mathrm{~K} \times 8$ Power-Switched and Reprogrammable PROM 3-64
CY7C263 8 K x 8 Reprogrammable PROM 3-64
CY7C264 8K x 8 Reprogrammable PROM 3-64
CY7C265 8K x 8 Registered PROM 3-74
CY7C266 $8 \mathrm{~K} x 8$ Power-Switched and Reprogrammable PROM 3-82
CY7C269 $8 \mathrm{~K} \times 8$ Registered Diagnostic PROM 3-89
CY7C270 $16 \mathrm{~K} \times 16$ Reprogrammable Processor-Intelligent PROM 3-100
CY7C271 $32 \mathrm{~K} \times 8$ Power Switched and Reprogrammable PROM 3-111
CY7C274 32K x 8 Reprogrammable PROM 3-111
CY7C276 16K x 16 Reprogrammable PROM 3-120
CY7C277 32K x 8 Reprogrammable Registered PROM 3-126
CY7C279 32K x 8 Reprogrammable Registered PROM 3-133
CY7C281 $1 \mathrm{~K} \times 8$ PROM 3-140
CY7C282 $1 \mathrm{~K} \times 8$ PROM 3-140
CY7C281A 1K x 8 PROM 3-146
CY7C282A 1K x 8 PROM 3-146
CY7C285 64K x 8 Reprogrammable Fast Column Access PROM 3-152
CY7C286 64K x 8 Reprogrammable, Asynchronous/Registered PROM 3-157
CY7C287 64K x 8 Reprogrammable, Asynchronous/Registered PROM 3-157
CY7C291 2K x 8 Reprogrammable PROM 3-165
CY7C292 $2 \mathrm{~K} \times 8$ Reprogrammable PROM 3-165
CY7C291A $2 \mathrm{~K} \times 8$ Reprogrammable PROM 3-166
CY7C292A $2 \mathrm{~K} \times 8$ Reprogrammable PROM 3-166
CY7C293A 2K x 8 Reprogrammable PROM 3-166
PROM Programming Information 3-175
PLDs (Programmable Logic Devices)
Introduction to Cypress PLDs4-1
Device Number Description
2K x 16 Reprogrammable State Machine PROM
2K x 16 Reprogrammable State Machine PROM 4-6 4-6
CY7C259 2K x 16 Reprogrammable State Machine PROM 4-6
PLDC18G8 CMOS Generic 20-Pin Programmable Logic Device 4-7
PALC20 Series Reprogrammable CMOS PALC 16L8, 16R8, 16R6, 16R4 4-14
PAL20 Series $4.5-\mathrm{ns}$, Industry-Standard, PLDs 4-18
PLDC20G10 CMOS Generic 24-Pin Reprogrammable Logic Device 4-28
PLDC20G10B CMOS Generic 24-Pin Reprogrammable Logic Device 4-28
PLDC20G10C Generic 24-Pin PAL Device 4-36

PLDs (Programmable Logic Devices) (continued)
Device Number
PLDC20RA10
PALC22V10
PALC22V10B
PAL22V10C
PAL22VP10C
PAL22V10CF
PAL22VP10CF
PALC22V10D
PAL22V10G
PAL22VP10G
CY7C330
CY7C331
CY7C332
CY7C335
CY7C340 EPLD Family
CY7C341
CY7C341B
CY7C342
CY7C342B
CY7C343
CY7C344
CY7C361
FLASH370 PLD Family
CY7C371
CY7C372
CY7C373
CY7C374
CY7C375
CY7C376
CY7C377
pASIC380 Family
CY7C381
CY7C382
CY7C383
CY7C384
CY7C385A
CY7C386A
PLD Programming Information

FIFOs

Device Number
 CY7C401

CY7C402
CY7C403
CY7C404
CY7C408A
CY7C409A
CY7C420
CY7C421
CY7C424
CY7C425

Description

Description

Reprogrammable Asynchronous CMOS Logic Device 4-46
Reprogrammable CMOS PAL Device 4-57
Reprogrammable CMOS PAL Device 4-67
Universal PAL Device 4-76
Universal PAL Device 4-76
Universal PAL Device 4-87
Universal PAL Device .. . 4-87
Flash Erasable, Reprogrammable CMOS PAL Device . 4-97
Universal PAL Device 4-105
Universal PAL Device 4-105
CMOS Programmable Synchronous State Machine . 4-114
Asynchronous Registered EPLD . 4-115
Registered Combinatorial EPLD . 4-129
Universal Synchronous EPLD . 4-130
Multiple Array Matrix High-Density EPLDs . 4-145
192-Macrocell MAX EPLD . 4- 150
192-Macrocell MAX EPLD . $4-150$
128-Macrocell MAX EPLD . 4-166
128-Macrocell MAX EPLD . 4-166
64-Macrocell MAX EPLD . 4-182
32-Macrocell MAX EPLD . 4-194
Ultra High Speed State Machine EPLD . 4-204
High-Density Flash PLDs . 4-217
32-Macrocell Flash PLD . 4-224
64-Macrocell Flash PLD . 4-232
64-Macrocell Flash PLD 4-240
128-Macrocell Flash PLD . 4-248
128-Macrocell Flash PLD . 4-256
256-Macrocell Flash PLD . 4-265
256-Macrocell Flash PLD . 4-266
Very High Speed CMOS FPGAs . 4-267
Very High Speed 1K (3K) Gate CMOS FPGA . 4-274
Very High Speed 1K (3K) Gate CMOS FPGA . 4-274
Very High Speed 2K (6K) Gate CMOS FPGA . 4-281
Very High Speed 2K (6K) Gate CMOS FPGA . 4-281
Very High Speed 4K (12K) Gate CMOS FPGA . 4-288
Very High Speed 4K (12K) Gate CMOS FPGA . 4-288

64×4 Cascadable FIFO . 5-1
64×5 Cascadable FIFO . 5-1
64×4 Cascadable FIFO with Output Enable . .. 5-1
64×5 Cascadable FIFO with Output Enable ... 5-1
64×8 Cascadable FIFO . 5-12
64 x 9 Cascadable FIFO . 5-12
512×9 Cascadable FIFO $5-26$
512×9 Cascadable FIFO 5-26
1Kx 9 Cascadable FIFO . 5-26
1Kx 9 Cascadable FIFO .. . 5-26 Table of Contents

FIFOs (continued)

Page Number

Device Number

CY7C428
CY7C429
CY7C421A
CY7C425A
CY7C429A
CY7C433A
CY7C432
CY7C433
CY7C439
CY7C441
CY7C443
CY7C445
CY7C446
CY7C447
CY7C455
CY7C456
CY7C457
CY7C451
CY7C453
CY7C460
CY7C462
CY7C464
CY7C470
CY7C472
CY7C474

Description

2K x 9 High-Speed Cascadable FIFO . 5-26
2K x 9 High-Speed Cascadable FIFO . 5-26
512×9 High-Speed Cascadable FIFO . 5-44
1K x 9 High-Speed Cascadable FIFO . 5-44
2K x 9 High-Speed Cascadable FIFO . 5-53
4K x 9 High-Speed Cascadable FIFO . 5-53
4K x 9 Cascadable FIFO . 5-62
4K x 9 Cascadable FIFO . 5-62
2K x 9 Bidirectional FIFO . 5-76
512×9 Clocked FIFO . 5-89
2K x 9 Clocked FIFO . 5-89
Cascadable Clocked 512×18 FIFO w/ Programmiable Flags . 5-105
Cascadable Clocked 1Kx 18 FIFO w/ Programmable Flags . 5-105
Cascadable Clocked 2K x 18 FIFO w/ Programmable Flags . 5-105
Cascadable Clocked 512×18 FIFO w/ Programmable Flags . 5-105
Cascadable Clocked 1K x 18 FIFO w/ Programmable Flags 5-105
Cascadable Clocked 2K x 18 FIFO w/ Programmable Flags . 5-105
512×9 Cascadable Clocked FIFO w/ Programmable Flags . 5-127
2K x 9 Cascadable Clocked FIFO w/ Programmable Flags . 5-127
8K x 9 Cascadable FIFO . 5-150
16K x 9 Cascadable FIFO . 5-150
32K x 9 Cascadable FIFO 5-150
8K x 9 FIFO w/ Programmable Flags . 5-163
16K x 9 FIFO w/ Programmable Flags . 5-163
32K x 9 FIFO w/ Programmable Flags . 5-163

Logic

Device Number

Description
CY7C611A
32-Bit RISC Controller 6-1
CY7C915
1Kx 42 SmartCAM 6-8
CY7B991
Programmable Skew Clock Buffer (PSCB)
6-11
CY7B992
Programmable Skew Clock Buffer (PSCB) .. . 6-11
CY7C9101
CMOS 16-Bit Slice 6-22

Data Communications Products

Device Number	Description	
CY7B923	HOTLink Transmitter/Receiver	7-1
CY7B933	HOTLink Transmitter/Receiver	7-1
CY9266-C	HOTLink Evaluation Board	7-26
CY9266-F	HOTLink Evaluation Board	7-26
Modules		
Custom Module Capabilities . 8 . 1		
Device Number	Description	
CYM1420	$128 \mathrm{~K} \times 8$ Static RAM Module	8-5
CYM1441	$256 \mathrm{~K} \times 8$ Static RAM Module	8-11
CYM1464	$512 \mathrm{~K} \times 8$ Static RAM Module	8-16
CYM1465	$512 \mathrm{~K} \times 8$ Static RAM Module	8-22
CYM1471	1024K x 8 Static RAM Module	8-28

Modules (continued)

Device Number

CYM1481
CYM1560
CYM1622
CYM1720
CYM1730
CYM1821
CYM1828
CYM1831
CYM1832
CYM1836
CYM1838
CYM1840
CYM1841
CYM1851
CYM4208
CYM4209
CYM7232
CYM7264
CYM7485
CYM7490
CYM7491
CYM7492

ECL

Device Number

CY10E383
CY101E383
CY10E384L
CY10E422
CY100E422
CY10E470
CY100E470
CY10E474
CY100E474
CY10E484
CY100E484
CY101E484

Description

2048K x 8 Static RAM Module . 8-28
1024K x 9 Buffered Static RAM Module with Separate I/O 8-34
64K x 16 Static RAM Module . 8-39
32K x 24 Static RAM Module . 8-44
64K x 24 Static RAM Module . 8-49
16K x 32 Static RAM Module . 8-54
32K x 32 Static RAM Module . 8-61
$64 \mathrm{~K} \times 32$ Static RAM Module . 8-68
64K x 32 Static RAM Module . 8-73
128K x 32 Static RAM Module . 8-78
$128 \mathrm{~K} \times 32$ Static RAM Module . 8-83
256K x 32 Static RAM Module . 8-88
256K x 32 Static RAM Module . 8-84
1024K x 32 Static RAM Module . 8-100
Cascadable 64K x 9 FIFO 8-105
Cascadable 128K x 9 FIFO . 8-105
DRAM Accelerator Module . 8-114
DRAM Accelerator Module . 8-114
128K Write-Through Secondary Cache Module . 8-194
i486 Level II Cache Module Family . 8-211
i486 Level II Cache Module Family . 8-211
i486 Level II Cache Module Family . 8-211

Description

ECL/TTL/ECL Translator and High-Speed Bus Driver . 9-1
ECL/TTL/ECL Translator and High-Speed Bus Driver . 9-1
ECL/TTL/ECL Translator . 9-8
256 x 4 ECL Static RAM . 9-13
256×4 ECL Static RAM . 9-13
4K x 1 ECL Static RAM . 9-20
4K x 1 ECL Static RAM . 9-20
1Kx 4 ECL Static RAM . 9-25
1K x 4 ECL Static RAM . 9-25
4K x 4 ECL Static RAM . 9-32
4K x 4 ECL Static RAM . 9-32
4K x 4 ECL Static RAM . 9-32

Bus Interface Products

Device Number	Description	
VIC64	VMEbus Interface Controller with D64 Functionality	10-1
VIC068A	VMEbus Interface Controller	10-6
VAC068A	VMEbus Address Controller	10-14
CY7C964	Bus Interface Logic Circuit	10-20
Military Information		
Military Overview		11-1
Military Product Selector Guide		11-2
Military Ordering Information		11-7

Design and Programming Tools

Device Number CY3120
Description
Warp2 VHDL Compiler for PLDs 12-1
CY3130 Warp3 VHDL Development System for PLDs and FPGAs 12-6
CY3200 PLDS-MAX + PLUS Design System 12-7
CY3210 PLS-EDIF Bidirectional Netlist Interface 12-12
CY3220 MAX+PLUS II Design System 12-19
CY3300 QuickPro II 12-24
Quality and Reliability
Quality, Reliability, and Process Flows 13-1
Tape and Reel Specifications 13-16
Packages
Thermal Management and Component Reliability 14-1
Package Diagrams 14-11
Module Package Diagrams 14-66
Sales Representatives and DistributorsDirect Sales Offices
North American Sales Representatives
International Sales Representatives
Distributors

Device Number

Description

Page Number

10E383
ECL/TTL/ECL Translator and High-Speed Bus Driver
9-1

10E384L
ECL/TTL/ECL Translator 9-8
10E422
256×4 ECL Static RAM 9-13
10E470
$4 \mathrm{~K} \times 1$ ECL Static RAM 9-20
10E474
$1 \mathrm{~K} \times 4$ ECL Static RAM 9-25
10E484
$4 \mathrm{~K} \times 4$ ECL Static RAM 9-32
100E422
256×4 ECL Static RAM 9-13
100E470
$4 \mathrm{~K} \times 1$ ECL Static RAM 9-20
100E474
$1 \mathrm{~K} \times 4$ ECL Static RAM 9-25
100E484
$4 \mathrm{~K} \times 4$ ECL Static RAM 9-32

101 E 383

ECL/TTL/ECL Translator and High-Speed Bus Driver 9-1
101E484
$4 \mathrm{~K} \times 4$ ECL Static RAM 9-32
3120
Warp 2 VHDL Compiler for PLDs 12-1
3130
3200
3210
3220
3300
7B134
7B135
Warp3 VHDL Development System for PLDs and FPGAs 12-6
PLDS-MAX+PLUS Design System 12-7
PLS-EDIF Bidirectional Netlist Interface . 12-12
MAX + PLUS II Design System .
QuickPro II . 12-24
4K x 8 Dual-Port Static RAM . 2-71
4K x 8 Dual-Port Static RAM . 2-71
7B138
$4 \mathrm{~K} \times 8$ Dual-Port Static RAM with Semaphores, INT, and BUSY
2-83
7B139
$4 \mathrm{~K} \times 9$ Dual-Port Static RAM with Semaphores, $\overline{\mathrm{INT}}$, and $\overline{\mathrm{BUSY}}$ 2-83
7B144
$8 \mathrm{~K} \times 8$ Dual-Port Static RAM with Semaphores, $\overline{\text { INT }}$, and BUSY 2-99
7B145
$8 \mathrm{~K} \times 9$ Dual-Port Static RAM with Semaphores, $\overline{\mathrm{INT}}$, and $\overline{\text { BUSY }}$ 2-99
16K x 4 Static RAM Separate I/O
2-130
7B162
16K x 4 Static RAM Separate I/O
2-130
7B164
16K x 4 Static R/W RAM
2-154
7B166
16K x 4 Static R/W RAM
2-154
7B173
32K x 9 Synchronous Cache R/W RAM
2-203
7B173A
32K x 9 Synchronous Cache R/W RAM
2-212
32K x 9 Synchronous Cache R/W RAM
2-203
7B174A
32K x 9 Synchronous Cache R/W RAM
2-212
7 B 175
32K x 9 Synchronous Pentium CPU Cache R/W RAM
2-224
7B180
4K x 18 Cache Tag 2-248
4K x 18 Cache Tag 2-248
$8 \mathrm{~K} \times 8$ Static RAM
2-273
64K x 4 Static R/W RAM with Separate I/O
2-317
$64 \mathrm{~K} \times 4$ Static R/W RAM with Separate I/O
2-317
$64 \mathrm{~K} \times 4$ Static R/W RAM
2-331
64K x 4 Static R/W RAM with Output Enable
2-331
64K x 4 Static R/W RAM with Output Enable
2-331

7B923
$32 \mathrm{~K} \times 8$ Static RAM
2-356

7B933
HOTLink Transmitter/Receiver
7-1
HOTLink Transmitter/Receiver 7-1

7B992
Programmable Skew Clock Buffer (PSCB)
6-11
Programmable Skew Clock Buffer (PSCB) 6-11

Device Number

Description

Page Number

7B1051
7B1055
7B1061
7B1065
7B1094
7B1095
7B1096
7B1099
7B1342
7C101A
7C102A
7C106A
7C107A
7C109A
7 C 123
7C128A
7 C 130
7 C 131
7 C 132
7 C 136
7 C 140
7 C 141
7 C142
7 C146
7 C148
7 C 149
7 C 150
7C161
7C161A
7C162
7C162A
7C164
7C164A
7C166
7C166A
7C167A
7C168A
7C169A
7C170A
7C171A
7C172A
7 C 178
7 C 179
7 C 182
7C185
7C185A
$64 \mathrm{~K} \times 18$ Synchronous Pipelined Cache R/W RAM . 2-410
32K x 36 Synchronous Pipelined Cache R/W RAM . 2-411
$128 \mathrm{~K} \times 18$ Synchronous Pipelined Cache R/W RAM . 2-410
$64 \mathrm{~K} \times 36$ Synchronous Pipelined Cache R/W RAM . 2-411
64K x 4 Static R/W RAM . 2-412
64K x 4 Static R/W RAM . 2-412
64K x 4 Static R/W RAM . 2-412
32K x 8 Static R/W RAM . 2-419
$4 \mathrm{~K} \times 8$ Dual-Port Static RAM with Semaphores .. 2-71
256K x 4 Static RAM with Separate I/O . 2-1
256K x 4 Static RAM with Separate I/O . 2-1
256K x 4 Static RAM 2-9
1M x 1 Static RAM . 2-17
128K x 8 Static RAM . 2-24
256K x 4 Static R/W RAM . 2- 32
2Kx 8 Static R/W RAM . 2-38
1Kx 8 Dual-Port Static RAM . 2-45
1Kx 8 Dual-Port Static RAM . 2-45
2Kx 8 Dual-Port Static RAM . 2-58
2Kx 8 Dual-Port Static RAM . 2-58
1Kx 8 Dual-Port Static RAM . 2-45
1K x 8 Dual-Port Static RAM . 2-45
2K x 8 Dual-Port Static RAM . 2-58
2Kx 8 Dual-Port Static RAM .. 2-58
1Kx 4 Static RAM $2-115$
1Kx 4 Static RAM . 2-115
1Kx 4 Static R/W RAM . 2-122
16K x 4 Static RAM Separate I/O . 2-137
16K x 4 Static RAM Separate I/O . 2-145
16K x 4 Static RAM Separate I/O . 2-137
16K x 4 Static RAM Separate I/O . 2-145
16K x 4 Static RAM . 2-160
16Kx 4 Static RAM . $2-167$
16K x 4 Static RAM with Output Enable . 2-160
16K x 4 Static RAM with Output Enable . 2-167
16K x 1 Static RAM . 2-175
4Kx4R/W RAM . 2-182
4Kx 4 R/W RAM . 2-182
4K x 4 Static R/W RAM . 2-190
4Kx 4 Static R/W RAM Separate I/O . 2-195
4Kx 4 Static R/W RAM Separate I/O 2-195
32K x 18 Synchronous Cache RAM ... 2-236
32K x 18 Synchronous Cache RAM . 2-236
8K x 9 Static R/W RAM . 2-268
8K x 8 Static RAM ... 2-278
8Kx 8 Static RAM . 2-287

Device Number

7 C 187
7C187A
7 C 188
7 C 191
7C192
7C194
7C195
7 C 196
7 C 197
7C199
7 C 225
7C225A
7 C 235
7C235A
7 C 245
7C245A
7 C 251
7C254
7C256
7C258
7 C 259
7C261
7C263
7 C 264
7C265
7C266
7 C 269
7 C 270
7C271
7C274
7C276
7C277
7 C 279
7 C 281
7C281A
7 C 282
7C282A
7C285
7C286
7C287
7C291
7C291A
7C292
7C292A
7C293A

Description

$64 \mathrm{~K} \times 1$ Static RAM

2-295
$64 \mathrm{~K} \times 1$ Static R/W RAM 2-302
$32 \mathrm{~K} \times 9$ Static RAM 2-310
64K x 4 Static RAM with Separate I/O 2-323
$64 \mathrm{~K} \times 4$ Static RAM with Separate I/O 2-323
64K x 4 Static RAM 2-339
64K x 4 Static R/W RAM with Output Enable 2-339
64K x 4 Static R/W RAM with Output Enable 2-339
256K x 1 Static R/W RAM 2-348
$32 \mathrm{~K} \times 8$ Static RAM 2-362
512×8 Registered PROM 3-3
512×8 Registered PROM 3-10
1K x 8 Registered PROM 3-17
1K x 8 Registered PROM 3-24
2K x 8 Reprogrammable Registered PROM 3-31
2K x 8 Reprogrammable Registered PROM 3-32
16K x 8 Power-Switched and Reprogrammable PROM 3-40
16K x 8 Reprogrammable PROM 3-40
32K x 8 Power-Switched and Reprogrammable PROM 3-47
2K x 16 Reprogrammable State Machine PROM 3-52, 4-6
2K x 16 Reprogrammable State Machine PROM 3-52, 4-6
$8 \mathrm{~K} \times 8$ Power-Switched and Reprogrammable PROM 3-64
$8 \mathrm{~K} \times 8$ Reprogrammable PROM 3-64
8K x 8 Reprogrammable PROM 3-64
$8 \mathrm{~K} \times 8$ Registered PROM 3-74
8K x 8 Power-Switched and Reprogrammable PROM 3-82
8K x 8 Registered Diagnostic PROM 3-89
16K x 16 Reprogrammable Processor-Intelligent PROM 3-100
32K x 8 Power Switched and Reprogrammable PROM 3-111
32K x 8 Reprogrammable PROM 3-111
16K x 16 Reprogrammable PROM 3-120
32K x 8 Reprogrammable Registered PROM 3-126
32K x 8 Reprogrammable Registered PROM 3-133
$1 \mathrm{~K} \times 8$ PROM 3-140
$1 \mathrm{~K} \times 8$ PROM 3-146
1K x 8 PROM 3-140
1K x 8 PROM 3-146
64K x 8 Reprogrammable Fast Column Access PROM 3-152
64K x 8 Reprogrammable, Asynchronous/Registered PROM 3-157
64K x 8 Reprogrammable, Asynchronous/Registered PROM 3-157
2K x 8 Reprogrammable PROM 3-165
$2 \mathrm{~K} \times 8$ Reprogrammable PROM 3-166
$2 K_{x} 8$ Reprogrammable PROM 3-165
2K x 8 Reprogrammable PROM 3-166
2K x 8 Reprogrammable PROM 3-166

Device Number

7C330

7 C 331
7 C 332
$7 C 335$
7C340 EPLD Family
7 C 341
7C341B
7 C342
7C342B
7 C 343
7C344
7C361
7C371
7 C 372
7 C 373
7 C 374
7C375
7 C376
7C377
7 C 381
7C382
7 C 383
7 C 384
7C385A
7C386A
7 C 401
7 C 402
7 C 403
7 C 404
7C408A
7C409A
7C420
7 C 421
7C421A
7C424
7 C 425
7C425A
7 C 428
7 C 429
7C429A
7 C 432
7C433
7C433A
7C439
7C441

Description

Page Number

CMOS Programmable Synchronous State Machine 4-114
Asynchronous Registered EPLD . 4-115
Registered Combinatorial EPLD . 4-129
Universal Synchronous EPLD . 4-130
Multiple Array Matrix High-Density EPLDs . 4-145
192-Macrocell MAX EPLD . 4-150
192-Macrocell MAX EPLD . 4-150
128-Macrocell MAX EPLD . 4-166
128-Macrocell MAX EPLD . 4-166
64-Macrocell MAX EPLD . 4-182
32-Macrocell MAX EPLD . 4-194
Ultra High Speed State Machine EPLD . 4-204
32-Macrocell Flash PLD . 4-224
64-Macrocell Flash PLD . 4-232
64-Macrocell Flash PLD . 4-240
128-Macrocell Flash PLD . 4- 248
128-Macrocell Flash PLD . 4-256
256-Macrocell Flash PLD . 4-265
256-Macrocell Flash PLD . 4-266
Very High Speed 1K (3K) Gate CMOS FPGA . 4-274
Very High Speed 1K (3K) Gate CMOS FPGA . 4-274
Very High Speed 2K (6K) Gate CMOS FPGA . 4-281
Very High Speed 2K (6K) Gate CMOS FPGA . 4-281
Very High Speed 4K (12K) Gate CMOS FPGA . 4-288
Very High Speed 4K (12K) Gate CMOS FPGA . 4-288
64×4 Cascadable FIFO . 5-1
64×5 Cascadable FIFO . 5-1
64×4 Cascadable FIFO with Output Enable 5-1
64×5 Cascadable FIFO with Output Enable ... 5-1
64×8 Cascadable FIFO . 5-12
64×9 Cascadable FIFO . 5-12
512×9 Cascadable FIFO . 5-26
512×9 Cascadable FIFO 5-26
512×9 High-Speed Cascadable FIFO 5-44
1K x 9 Cascadable FIFO 5-26
1K x 9 Cascadable FIFO 5-26
1K x 9 High-Speed Cascadable FIFO . 5-44
2K x 9 High-Speed Cascadable FIFO . 5-26
2K x 9 High-Speed Cascadable FIFO . 5-26
2K x 9 High-Speed Cascadable FIFO . 5-53
4K x 9 Cascadable FIFO . 5-62
4K x 9 Cascadable FIFO . 5-62
4K x 9 High-Speed Cascadable FIFO . 5-53
2K x 9 Bidirectional FIFO . 5-76
512×9 Clocked FIFO . 5-89

Device Number

7C443

Description

Page Number

7 C 445

7 C 446
7 C 447
7C451
7C453
7 C 455
7C456
7 C 457
7C460
7C462
7 C464
2K x 9 Clocked FIFO ... 5-89
Cascadable Clocked 512×18 FIFO w/ Programmable Flags 5-105
Cascadable Clocked $1 \mathrm{~K} \times 18$ FIFO w/ Programmable Flags 5-105
Cascadable Clocked $2 \mathrm{~K} \times 18$ FIFO w/ Programmable Flags 5-105
512×9 Cascadable Clocked FIFO w/ Programmable Flags 5-127
$2 \mathrm{~K} \times 9$ Cascadable Clocked FIFO w/ Programmable Flags 5-127
Cascadable Clocked 512×18 FIFO w/ Programmable Flags 5-105
Cascadable Clocked $1 \mathrm{~K} \times 18$ FIFO w/ Programmable Flags 5-105
Cascadable Clocked 2K x 18 FIFO w/ Programmable Flags 5-105
8K x 9 Cascadable FIFO ... 5-150
16K x 9 Cascadable FIFO ... 5-150

7C470
$8 \mathrm{~K} \times 9$ FIFO w/ Programmable Flags .. 5-163
16K x 9 FIFO w/Programmable Flags ... 5-163
32 K 9 FIFO w/ Programmable Flags .. . 5-163
32-Bit RISC Controller .. 6-1
1K x 42 SmartCAM .. 6-8
Bus Interface Logic Circuit $10-20$
256K x 4 Static RAM with Separate I/O . 2-371
256K x 4 Static RAM with Separate I/O . 2-371
256K x 4 Static RAM 2-378

128K x 8 Static RAM .. $2-391$
64 K x 18 Synchronous Cache RAM .. 2-398
$64 \mathrm{~K} x 18$ Synchronous Cache RAM 2-398
$64 \mathrm{~K} \times 18$ Synchronous Cache 3.3V RAM 2-425
$64 \mathrm{~K} x 18$ Synchronous Cache 3.3V RAM 2-425
32K x 18 Synchronous Cache 3.3V RAM 2-437
32K x 18 Synchronous Cache 3.3V RAM . 2-437
3.3V 32K x 9 Static RAM . 2-438
3.3V 32K x 8 Static RAM . 2-444

CMOS 16-Bit Slice .. 6-22
HOTLink Evaluation Board 7-26

High-Density Flash PLDs ... 4-217
128K x 8 Static RAM Module 8-5
256K x 8 Static RAM Module 8-11
512K x 8 Static RAM Module 8 -16

1024K x 8 Static RAM Module $8-28$
2048K x 8 Static RAM Module . $8-28$
1024K x 9 Buffered Static RAM Module with Separate I/O 8-34

$32 \mathrm{~K} \times 24$ Static RAM Module $8-44$
$64 \mathrm{~K} \times 24$ Static RAM Module 8 -49
M1730
$16 \mathrm{~K} \times 32$ Static RAM Module
8-54

Device Number

Description

Page Number

M1828
M1831
M1832
M1836
M1838
M1840
M1841
M1851
M4208
M4209
M7232
M7264
M7485
M7490
M7491
M7492
PAL20 Series
PALC20 Series
PAL22V10C
PAL22VP10C
PAL22V10CF
PAL22VP10CF
PAL22V10G
PAL22VP10G
PALC22V10
PALC22V10B
PALC22V10D
pASIC380 Family
PLDC18G8
PLDC20G10
PLDC20G10B
PLDC20G10C
PLDC20RA10
VAC068A
VIC64
VIC068A

32K x 32 Static RAM Module . 8-61
$64 \mathrm{~K} \times 32$ Static RAM Module . 8-68
$64 \mathrm{~K} \times 32$ Static RAM Module . 8-73
$128 \mathrm{~K} \times 32$ Static RAM Module . 8-78
128K x 32 Static RAM Module . 8-83
256K x 32 Static RAM Module . 8-88
256K x 32 Static RAM Module . 8-94
1024K x 32 Static RAM Module . 8-100
Cascadable 64K x 9 FIFO 8-105
Cascadable 128K x 9 FIFO . 8-105
DRAM Accelerator Module . 8-114
DRAM Accelerator Module 8-114
128K Write-Through Secondary Cache Module 8-194
i486 Level II Cache Module Family . 8-211
i486 Level II Cache Module Family . 8-211
i486 Level II Cache Module Family . 8-211
4.5-ns, Industry-Standard, PLDs . 4-18

Reprogrammable CMOS PALC 16L8, 16R8, 16R6, 16R4 . 4-14
Universal PAL Device 4-76
Universal PAL Device 4-76
Universal PAL Device 4-87
Universal PAL Device .. . 4-87
Universal PAL Device .. . 4-105
Universal PAL Device 4-105
Reprogrammable CMOS PAL Device . 4-57
Reprogrammable CMOS PAL Device . 4-67
Flash Erasable, Reprogrammable CMOS PAL Device . 4-97
Very High Speed CMOS FPGAs . 4-267
CMOS Generic 20-Pin Programmable Logic Device . 4-7
CMOS Generic 24-Pin Reprogrammable Logic Device . 4-28
CMOS Generic 24-Pin Reprogrammable Logic Device . 4-28
Generic 24-Pin PAL Device . 4-36
Reprogrammable Asynchronous CMOS Logic Device 4-46
VMEbus Address Controller . 10-14
VMEbus Interface Controller with D64 Functionality . 10-1
VMEbus Interface Controller . 10-6

PROMs
3

PLDs

4

LOGIC
DATACOM 7
MODULES 8
ECL 9
BUS 10
MILITARY 11
TOOLS 12
QUALITY 13
PACKAGES 14
Section Contents
General Product InformationPage Number
Cypress Semiconductor Background and Technology 1-1
Ordering Information 1-4
Datasheets Available Upon Request 1-6
Cypress Semiconductor Bulletin Board System 1-8
Application Notes Listing 1-9
Product Selector Guide 1-11
Product Line Cross Reference 1-19

Cypress Semiconductor Background

Cypress Semiconductor was founded in April 1983 with the stated goal of serving the high-performance semiconductor market. This market is served by producing the highest-performance integrated circuits using state-of-the-art processes and circuit design. Cypress is a complete semiconductor manufacturer, performing its own process development, circuit design, wafer fabrication, assembly, and test. The company went public in May 1986 and was listed on the New York Stock Exchange in October 1988.

The initial semiconductor process, a CMOS process employing 1.2 -micron geometries, was introduced in March 1984. This process is used in the manufacturing of Static RAMs and Logic circuits. In the third quarter of 1984, a 1.2-micron CMOS EPROM process was introduced for the production of programmable products. At the time of introduction, these processes were the most advanced production processes in the industry. Following the 1.2 -micron processes, a 0.8 -micron CMOS SRAM process was implemented in the first quarter of 1986 , and a 0.8 -micron EPROM process in the third quarter of 1987.
In keeping with the strategy of serving the high-performance markets with state-of-the-art integrated circuits, Cypress introduced two new processes in 1989. These were a bipolar submicron process, targeted for ECL circuits, and a BiCMOS process to be used for most types of TTL and ECL circuits.
The circuit design technology used by Cypress is also state of the art. This design technology, along with advanced process technology, allows Cypress to introduce the fastest, highest-performance circuits in the industry. Cypress's products fall into six families: high-speed Static RAMs, PROMS, Programmable Logic Devices, Logic, ECL SRAMs and PLDs, and module products. Members of the CMOS Static RAM family include devices in densities of 64 bits to 256 K , and performance from 7 ns to 35 ns . The various organizations- $\mathrm{x} 1, \mathrm{x} 4, \mathrm{x} 8$, and x 9 -provide optimal solutions for applications such as large mainframes, high-speed controllers, communications, and graphics display. Cypress's BiCMOS family of 64 K and 256 K SRAMs in $x 4$ and x 8 configurations offers speeds as fast as 6 ns . Cypress's cache RAMs include a $4 \mathrm{~K} \times 18$ cache tag RAM at 10 -ns match, a 32 K x 9 cache RAM with a $14-\mathrm{ns}$ access time, and an $64 \mathrm{~K} \times 18$ cache RAM with a $10-\mathrm{ns}$ access time.
Cypress's programmable products consist of high-speed CMOS PROMs employing an EPROM programming element and Programmable Logic Devices (PLDs) based on CMOS EPROM, CMOS FLASH, and BiCMOS Fuse technology. Like the highspeed Static RAM family, these products are the natural choice to replace older devices because they provide superior performance at one half of the power consumption. PROM densities range from 4 kilobits to 512 K in byte-wide and x 16 organizations. PLD products range from 20 pins to 84 pins with performance as fast as $5-\mathrm{ns}$ propagation delay and $156-\mathrm{MHz}$ operational frequency. To provide immediate support for new programmable products, Cypress offers our QuickPro II^{\aleph} programmer (CY3300). QuickPro II is capable of programming all of Cypress's PLDs and PROMs. It uses an IBM PC's ${ }^{\circledR}$ CPU to implement the silicon programming algorithms and interfaces to the PC via the parallel port. The use of an IBM PC as a host allows updating of the programming software using either floppy disk or modem, thereby providing instantaneous support of all new devices. Cypress also offers Warp $2^{\text {®0 }}$ (CY3120), a powerful de-
sign entry synthesis and simulation tool for PLDs and state machine PROMs. Warp 2 uses the IEEE-standard (1076) VHDL design language, which is rapidly emerging as the standard language of choice for behavioral design description. Use of the VHDL language allows users the freedom to also use tools from other vendors for design simulation and synthesis. Cypress is the only programmable logic vendor offering VHDL-based design tools.
Logic products include circuits such as 4-bit and 16-bit slices, 16 x 16 multipliers and 16 -bit microprogrammable ALUs, a family of $1 \mathrm{~K} / 2 \mathrm{~K} \times 8$ and $4 \mathrm{~K} / 8 \mathrm{~K} \times 8$ dual-port SRAMs, as well as a family of FIFOs that range from 64×4 to $32 \mathrm{~K} \times 9$. Cypress also offers application-specific FIFOs such as the $2 \mathrm{~K} \times 9$ bidirectional FIFO and the $512 / 2 \mathrm{~K} \times 9$ clocked FIFO. FIFOs provide the interface between digital information paths of widely varying speeds. This allows the information source to operate at its own intrinsic speed, while the results may be processed or distributed at a speed commensurate with need.
Cypress's Datacom group has developed a family of $300-\mathrm{MHz}$ point-to-point transmitter/receivers. HOTLink ${ }^{(\boxed{0})}$ is compliant with the IBM ESCON ${ }^{凶}$ and Fibre Channel computer network standards, and will also have applications in military, graphics, and instrumentation systems. The Datacom group is also responsible for the Programmable Skew Clock Buffer, which allows designers to compensate for trace delays and load capacitance in high performance systems.
As a result of the acquisition of VTC's manufacturing facility in Minnesota, Cypress has created a VME Bus Interface Products group. Cypress will continue to manufacture VTC's VIC and VAC VME devices on the 0.8 -micron CMOS process.
Until 1988, all Cypress products were TTL I/O-compatible. In 1989, Cypress introduced ECL products having access times (propagation delays) of less than 3.5 ns in either of the popular I/O configurations, 100 K or $10 \mathrm{~K} / 10 \mathrm{KH}$. ECL RAMs include 256 $\mathrm{x} 4,1 \mathrm{~K} \times 4$, and $4 \mathrm{~K} \times 4$ families with balanced read/write cycles. The ECL PLDs are combinatorial 16P8 and 16P4 devices that can be programmed on QuickPro and other commercially available programming tools. Both the RAMs and PLDs are offered in low-power versions, reducing operating power by 30 percent while achieving 5 -ns access times (RAM) and $4-\mathrm{ns}$ tpD (PLD).
The module family consists of both standard and custom modules incorporating circuits from the other six product families. This capability provides a fast, low-risk solution for designs requiring the ultimate in system performance and density. SRAM and FIFO module configurations are available depending on height and board real estate constraints. Modules include Single-In-Line, Dual-In-Line, Dual Single-In-line, Vertical Dual-InLine, Quad-In-Line, and (Staggered) Zig-Zag-In-Line packages.
Situated in California's Silicon Valley (San Jose), Round Rock (Austin), Texas, and Bloomington, Minnesota, Cypress houses R\&D, design, wafer fabrication, and administration. The facilities are designed to the most demanding technical and environmental specifications in the industry. At the Texas and Minnesota facilities, the entire wafer fabrication area is specified to be a Class 1 environment. This means that the ambient air has less than 1 particle of greater than 0.2 microns in diameter per cubic foot of air. Other environmental considerations are carefully insured: temperature is controlled to a ± 0.1 degree Fahrenheit
tolerance; filtered air is completely exchanged more than 10 times each minute throughout the fab; and critical equipment is situated on isolated slabs to minimize vibration.
Attention to assembly is equally critical. Cypress manufactures 100 percent of our wafers in the United States, at our front-end fabrication sites in California (San Jose), Minnesota (Bloomington), and Texas (Round Rock). Cypress Texas, our largest fab, and Cypress Minnesota, our newest fab, are both Class 1 facilities.
To improve our global competitiveness, we chose to move most of our back-end assembly, test, and mark operations to a facility in Thailand. Be assured that Cypress's total quality commitment extends to the new site-Cypress Bangkok.
The move to Bangkok consummated an intense search by Cypress for a world-class, environmentally sophisticated facility that we could bring on line quickly. The Cypress search team scrutinized fifteen manufacturing facilities in five countries and chose a site managed by Alphatec Electronics Co., Ltd., a privately owned, entrepreneurial company promoted by the Thailand Board of Investment. Cypress Bangkok occupies almost 25,000 square feet-a significant portion of the manufacturing floor space available within the facility. The full facility at Bangkok occupies more than 85,000 square feet on a site that encompasses 25 acres-sufficient room for expansion to a number of buildings in a campus-like setting.
Manufacturing at the site since 1990 with a charter to specialize in IC packaging, the Alphatec facility has almost a century of person-years experience working for U.S. semiconductor suppliers. Thoroughly modern, MIL 883-certified, and with fully developed administrative, logistic, and manufacturing systems in place, the facility has earned an exceptional reputation for hermetic assembly and out-going quality.
Cypress San Jose maintains complete management control of Cypress Bangkok's assembly, test, mark, and ship operations within the facility, thus assuring complete continuity of San Jose's back-end operations and quality.
Cypress has added Tape Automated Bonding (TAB) to it package offering. TAB, a surface-mount packaging technology, provides the densest lead and package footprint available for fully tested die.
As a result of the acquisition of VTC's manufacturing facility in Minnesota, Cypress has created a VME Bus Interface Products group. Cypress will continue to manufacture VTC's VIC and VAC VME devices on the 0.8 micron CMOS process.
The Cypress motto has always been "only the best-the best facilities, the best equipment, the best employees . . . all striving to make the best CMOS, BiCMOS, and bipolar products.

Cypress Process Technology

In the last decade, there has been a tremendous need for highperformance semiconductor products manufactured with a balance of SPEED, RELIABILITY, and POWER. Cypress Semiconductor overcame the classically held perceptions that CMOS was a moderate-performance technology.
Cypress initially introduced a 1.2 -micron " N " well technology with double-layer poly and a single-layer metal. The process employed lightly doped extensions of the heavily doped source and drain regions for both " N " and " P " channel transistors for significant improvement in gate delays. Further improvements in performance, through the use of substrate bias techniques, have added the benefit of eliminating the input and output latch-up characteristics associated with older CMOS technologies.

Cypress pushed process development to new limits in the areas of PROMs (Programmable Read Only Memory) and EPLDs (Eraseable Programmable Logic Devices). Both PROMs and EPLDs have existed since the early 1970s in a bipolar process that employed various fuse technologies and was the only viable high-speed nonvolatile process available. Cypress PROMs and EPLDs use EPROM technology, which has been in use in MOS (Metal Oxide Silicon) since the early 1970s. EPROM technology has traditionally emphasized density while forsaking performance. Through improved technology, Cypress produced the first high-performance CMOS PROMs and EPLDs, replacing their bipolar counterparts.
To maintain our leadership position in CMOS technology, Cypress introduced a sub-micron technology in 1987. This $0.8 \mathrm{mi}-$ cron breakthrough made Cypress's CMOS one of the most advanced production processes in the world. The drive to maintain leadership in process technology has not stopped with the 0.8 -micron devices. Cypress introduced a 0.65 -micron process in 1991. A 0.5 -micron process is currently in the works.

Although not a requirement in the high-performance arena, CMOS technology substantially reduces the power consumption for any device. This improves reliability by allowing the device to operate at a lower die temperature. Now higher levels of integration are possible without trading performance for power. For instance, devices may now be delivered in plastic packages without any impact on reliability.
While addressing the performance issues of CMOS technology, Cypress has not ignored the quality and reliability aspects of technology development. Rather, the traditional failure mechanisms of electrostatic discharge (ESD) and latch-up have been addressed and solved through process and design technology innovation.
ESD-induced failure has been a generic problem for many highperformance MOS and bipolar products. Although in its earliest years, MOS technology experienced oxide reliability failures, this problem has largely been eliminated through improved oxide growth techniques and a better understanding of the ESD problem. The effort to adequately protect against ESD failures is perturbed by circuit delays associated with ESD protection circuits. Focusing on these constraints, Cypress has developed ESD protection circuitry specific to $1.2-, 0.8-, 0.65$-, and 0.5 -micron CMOS process technology. Cypress products are designed to withstand voltage and energy levels in excess of 2001 volts and 0.4 milli-joules.

Latch-up, a traditional problem with CMOS technologies, has been eliminated through the use of substrate bias generation techniques, the elimination of the "P" MOS pull-ups in the output drivers, the use of guardring structures and care in the physical layout of the products.
Cypress has also developed additional process innovations and enhancements: multilayer metal interconnections, advanced metal deposition techniques, silicides, exclusive use of plasma for etching, and 100 -percent stepper technology with the world's most advanced equipment.
A wholly owned subsidiary of Cypress, Aspen Semiconductor, has developed a BiCMOS technology to augment the capabilities of the Cypress CMOS processes. The new BiCMOS technology is based on the Cypress 0.8 -micron CMOS process for enhanced manufacturability. Like CMOS, the process is scalable, to take advantage of finer line lithography. Where speed is critical, Cypress BiCMOS allows increased transistor performance. It also allows reduced power in the non-speed critical sections of the design to optimize the speed/power balance. The BiCMOS
process makes memories and logic operating up to 400 MHz possible.

Cypress technologies have been carefully designed, creating products that are "only the best" in high-speed, excellent reliability, and low power.

IBM PC and IBM ESCON are registered trademarks of International Business Corporation. QuickPro II, HOTLink, and Warp2 are trademarks of Cypress Semiconductor Corporation.

Ordering Information

In general, the valid ordering codes for all products (except modules and VMEbus products) follow the format below; e.g., CY7C128-45DMB, PALC16R8L-35PC

PAL \& PLD

PREFIX	DEVICE	SUFFIX
\bigcirc	16R8	-25
PALC	16R8	L-35 P C
PALC	22V10	-25 W C
PLD C	$20 \mathrm{G10}$	-25 W C
CY	7 C 33	-33

FAMILY
PAL 20
LOW POWER PAL 20
PAL 24 VARIABLE PRODUCT TERMS
GENERIC PLD 24
PLD SYNCHRONOUS STATE MACHINE

RAM, PROM, FIFO, $\mu \mathrm{P}$, ECL

PREFIX	DEVICE
CY	$\longdiv { 7 C 1 2 8 }$
CY	-7B185
CY	-7C245
CY	7 C 404
CY	7 C 9101
CY	10E422
CY	100E422
	$\mathrm{C}=\mathrm{CMOS}$

SUFFIX	FAMILY
-45 D M B	CMOS SRAM
-15 V C	BiCMOS SRAM
L-35 P C	PROM
$\left.\right\|_{-25 \mathrm{D} \mathrm{M} \mathrm{B}}$	${ }_{\text {FIFO }}$
-30 P C -3 K	$\begin{aligned} & \mu \mathrm{P} \\ & 10 \mathrm{~K} \text { ECL SRAM } \end{aligned}$
-3 K C	100 K ECLSRAM
1	PROCESSING

B = MIL-STD-883C FOR MILITARY PRODUCT
= LEVEL 2 PROCESSING FOR COMMERCIAL PRODUCT
T = SURFACE-MOUNTED DEVICES TO BE TAPE AND REELED
$\mathrm{R}=$ LEVEL 2 PROCESSING ON TAPE AND REELED DEVICES
TEMPERATURE RANGE
$\mathrm{C}=$ COMMERCIAL $\left(0^{\circ} \mathrm{C} T \mathrm{O}+70^{\circ} \mathrm{C}\right)$
$\mathrm{I}=$ INDUSTRIAL $\left(-40^{\circ} \mathrm{CTO}+85^{\circ} \mathrm{C}\right)$
$\mathrm{M}=\mathrm{MILITARY}\left(-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}\right)$
PACKAGE
B = PLASTIC PIN GRID ARRAY (PPGA)
D = CERAMIC DUAL IN-LINE PACKAGE (CERDIP)/BRAZED DIP
$\mathrm{E}=\mathrm{TAPE}$ AUTOMATED BONDING (TAB)
F = FLATPACK (SOLDER-SEALED FLAT PACKAGE)
$\mathrm{G}=\mathrm{PIN}$ GRID ARRAY (PGA)
$\mathrm{H}=$ WINDOWED LEADED CHIP CARRIER
J = PLASTIC LEADED CHIP CARRIER (PLCC)
$K=$ CERPACK (GLASS-SEALED FLAT PACKAGE)
$\mathrm{L}=$ LEADLESS CHIP CARRIER (LCC)
$\mathrm{N}=$ PLASTIC QUAD FLATPACK (PQFP)
P = PLASTIC DUAL IN-LINE (PDIP)
Q = WINDOWED LEADLESS CHIP CARRIER (LCC)
R = WINDOWED PIN GRID ARRAY (PGA)
$\mathrm{S}=$ SOIC (GULL WING)
T = WINDOWED CERPACK
$\mathrm{U}=$ CERAMIC QUAD FLATPACK (CQFP)
$\mathrm{V}=\mathrm{SOIC}(\mathrm{J}$ LEAD)
W = WINDOWED CERAMIC DUAL IN-LINE PACKAGE (CERDIP)
$\mathrm{X}=\mathrm{DICE}$ (WAFFLE PACK)
$\mathrm{Y}=\mathrm{CERAMIC}$ LEADED CHIP CARRIER
SPEED (ns or MHz)
L = LOW-POWER OPTION
A, B, C $=$ REVISION LEVEL

The codes for module and VMEbus products follow the the formats below.

Modules

$\begin{array}{cc}\text { PREFIX } & \text { DEVICE } \\ \sqrt{\text { CYM }} & \sqrt{1420}{ }_{\text {L H D }-30 \mathrm{MB}}\end{array}$

PROCESSING
B $=$ MIL-STD-883C
= STANDARD
TEMPERATURE RANGE
$\mathrm{C}=0^{\circ} \mathrm{C} \mathrm{TO}+70^{\circ} \mathrm{C}$
$\mathrm{I}=-40^{\circ} \mathrm{C} \mathrm{TO}+85^{\circ} \mathrm{C}$
$\mathrm{M}=-55^{\circ} \mathrm{C} \mathrm{TO}+125^{\circ} \mathrm{C}$
SPEED
CONFIGURATION
$\mathrm{D}=\mathrm{DUAL}-$ IN-LINE
F $=$ FLAT SINGLE-IN-LINE
G = PIN GRID ARRAY
$\mathrm{M}=$ SINGLE-IN-LINE MEMORY MODULE (SIMM)
$\mathrm{N}=$ SIMM FOR ANGLED SOCKETS
S = SINGLE-IN-LINE
$\mathrm{V}=$ VERTICAL DIP
Z $=$ ZIGZAG-IN-LINE
TYPE
H = HERMETIC
P = PLASTIC
DATA RETENTION
$\mathrm{L}=2.0 \mathrm{~V}$ DATA RETENTION GUARANTEED
$=2.0 \mathrm{~V}$ DATA RETENTION NOT GUARANTEED

VMEbus Products

Datasheets Available Upon Request

Datasheets listed here are not in this catalog but can be obtained from a Cypress representative.

Static RAMs (Random Access Memory)
\section*{Description}
4096×1 Static R/W RAM
1024×4 Static R/W RAM
2048×8 Static R/W RAM
2048×8 Static R/W RAM
256×4 Static R/W RAM Separate I/O
2048×8 Static R/W RAM
4096×1 Static RAM
16,384 $\times 1$ Static R/W RAM
4096×4 Static RAM
4096×4 Static R/W RAM
4096×4 Static R/W RAM Separate I/O
$2 \times 4096 \times 16$ Cache RAM
$8 \mathrm{~K} \times 8$ Static RAM
16×4 Static R/W RAM
$32 \mathrm{~K} \times 8$ Static R/W RAM
16×4 Static R/W RAM
256×4 Static R/W RAM

Device Number
CY2147
CY2148/CY21L48/CY2149/CY21L49
CY6116
CY6116A/CY6117A
CY7C122
CY7C128
CY7C147
CY7C167
CY7C168/CY7C169
CY7C170
CY7C171/CY7C172
CY7C183/CY7C184
CY7C186
CY7C189/CY7C190
CY7C198
CY74S189/CY27LS03/CY27S03/CY27S07
CY93L422A/CY93422/CY93L422
FIFOs
Device Number
CY3341

Logic

Device Number
CY2901C
CY2909/11
CY2910
CY7C510
CY7C516/7
CY7C901
CY7C909/11
CY7C910

Description

64×4 Serial Memory FIFO

Description

CMOS 4-Bit Slice
CMOS Microprogram Sequencers
CMOS Microprogram Controller
16×16 Multiplier Accumulator
16×16 Multiplier
CMOS 4-Bit Slice
CMOS Microprogram Sequencers
CMOS Microprogram Controller

Description

256K x 4 Static RAM Module $128 \mathrm{~K} \times 8$ Static RAM Module $128 \mathrm{~K} \times 8$ Static RAM Module $512 \mathrm{~K} \times 8$ Static RAM Module $512 \mathrm{~K} \times 8$ Static RAM Module $512 \mathrm{~K} \times 8$ Static RAM Module
256K x 9 Buffered Static RAM Module with Separate I/O
$16 \mathrm{~K} \times 16$ Static RAM Module
$16 \mathrm{~K} \times 16$ Static RAM Module
$64 \mathrm{~K} \times 16$ Static RAM Module
$64 \mathrm{~K} \times 16$ Static RAM Module
$64 \mathrm{~K} \times 16$ Static RAM Module
$256 \mathrm{~K} \times 16$ Static RAM Module
$16 \mathrm{~K} \times 32$ Static RAM Module with Separate I/O

Datasheets Available Upon Request

Modules (continued)
Device Number
CYM1830
CYM1841
CYM1843
CYM1910
CYM1911
CYM4210/CYM4220
CYM4241
CY7M194
CY7M199

Description

$64 \mathrm{~K} \times 32$ Static RAM Module
$256 \mathrm{~K} \times 32$ Static RAM Module
$256 \mathrm{~K} \times 32$ Static RAM Module
$16 \mathrm{~K} \times 68$ Static RAM Module
$16 \mathrm{~K} \times 68$ Static RAM Module
Cascadeable $8 \mathrm{~K} \times 9$ FIFO
$64 \mathrm{~K} \times 9$ FIFO
64K x 4 Static RAM Module
32K x 8 Static RAM Module

Cypress Semiconductor Bulletin Board System (BBS)

Cypress Semiconductor supports a 24 -hour electronic Bulletin Board System (BBS) that allows Cypress Applications to better serve our customers by allowing them to transfer files to and from the BBS.
The BBS is set up to serve in multiple ways. One of its purposes is to allow customers to receive the most recent versions of the QuickPro programming software. Another is to allow the customers to send PLD programming files that they are having trouble with to the BBS. Cypress Applications can then find the errors in the files, correct them, and place them back on the BBS for the customer to download. The customer may also ask questions in our open forum message area. The sysop (system operator) will forward these questions to the appropriate applications engineer for an answer. The answers then get posted back into the forum. The BBS also allows the customer to communicate with their local FAE electronically, and to download both application notes and the latest versions of selected datasheets.

Communications Set-Up

The BBS is attached to a USRobotics HST Dual Standard modem capable of 14.4-Kbaud rates without compression and rates upwards of 19.2-Kbaud with compression. It is compatible with CCITT V. 32 bis, V.32, V. 22 (2400-baud), Bell 212A (1200-baud), CCITT V.42, and CCITT V. 42 bis. It also handles MNP levels 2, 3, 4, and 5.

To call the BBS, set your communication package parameters as follows:

Baud Rate:	1200 baud to 19.2 Kbaud. Max. is determined by your modem.
	Data Bits: 8
Parity: None (N)	
	Stop Bits: 1

In the U.S. the phone number for the BBS is (408) 943-2954. In Japan the BBS number is $81-423-69-8220$. In Europe the BBS number is $49-810-62-2675$. These numbers are for transmitting data only.
If the line is busy, please retry at a later time. When you access the BBS, an initial screen with the following statement will appear:

```
Rybbs Bulletin Board
```

After you choose the graphics format you want to use, the system will ask for your first and last name. If you are a first-time user, you will be asked a few questions for the purposes of registration. Otherwise you will be asked for your password, and then you will be logged onto the BBS, which is menu driven.

Downloading Application Notes and Datasheets

A complete listing of files that may be downloaded is included on the BBS. Application notes and selected datasheets are available for downloading in two formats, PCL and Postscript. An "hp" in front of the file name indicates it is a PCL file and can be downloaded to Hewlett-Packard LaserJets. Files without the hp preceding them are in Postscript and can be downloaded to any Postscript printer.
If you have any problems or questions regarding the BBS, please contact Cypress Applications at (408) 943-2821 (voice).

Contact a Cypress representative or use the Cypress Bulletin Board System to get copies of the application notes listed here.

General Information

I/O Characteristics of Cypress Products
Power Characteristics of Cypress Products
Protection and Decoupling of Cypress CMOS Circuits
System Design Considerations when Using Cypress CMOS Circuits
Tips for High-Speed Logic Design

Modules

Multichip Family of JEDEC ZIP/SIMM Modules Packages in High-Density Module Designs

ECL and TTL BiCMOS

A New Generation of BiCMOS High-Speed TTL SRAMs Access Time vs. Load Capacitance for High-Speed TTL SRAMS
BiCMOS TTL \& ECL SRAMs Improve High-Performance Systems
BiCMOS TTL SRAMs Improve R3000 and R3000A Systems Combining SRAMs Without an External Decoder Memory and Support for Next-Generation ECL Systems Noise Considerations in High-Speed Logic Systems PLCC/CLCC Packaging for High-Speed Parts Using ECL in Single +5 V TTL Systems

SRAMs

Cypress RAM I/O Characteristics
Second-Level Cache and Main Memory Systems for the 80486 Understanding Dual-Port RAMS
Using Dual-Port RAMS Without Arbitration
Using Cypress SRAMs to Implement 386 Cache
Using the CY7C180/181 Cache Tag RAM

PROMs

Generating PROM Programming Files
Interfacing the CY7C289 to the AM29000
Interfacing the CY7C289 to the CY7C601
Introduction to Diagnostic PROMs
Introduction to the Processor-Intelligent PROM
Introduction to the State Machine PROM
Pinout Compatibility Considerations of SRAMs and PROMs
Using C to Design with the CY7C258/9 State Machine PROM

CMOS PAL Basics
Creating AHDL Text Design Files for MAX EPLDs
CY7C330 as a Multi-Channel Mbus Arbiter
CY7C331 Asynchronous Self-Timed VMEbus Requestor
CY7C344 as a Second-Level Cache Controller for the 80486
Design Tips for Advanced Max Users
Designing a Multiprocessor Interrupt Distribution Unit with MAX
Designing Counters with the CY7C361 EPLD
DMA Control Using the CY7C342 MAX EPLD
Dual-Port Memory Design Using SRAMs and the CY7C361
FDDI Physical Connection Management Using the CY7C330 FIFO RAM Controller with Programmable Flags
IEEE-488 to RS-232 Converter in a CY7C361 Using Warp
Interfacing PROMs and RAMs to DSP Using Cypress MAX Products
Introduction to Programmable Logic
PAL Design Example: A GCR Encoder/Decoder
pASIC380 Power vs. Operating Frequency
PLD-Based Data Path For SCSI-2
State Machine Design Considerations and Methodologies T2 Framing Circuitry
TMS320C30/VME Signal Conditioner Using the CY7C361
Understanding the CY7C330 Synchronous EPLD
Understanding the CY7C361
Using ABEL to Program the Cypress 22V10
Using ABEL to Program the CY7C330
Using ABEL 3.2 to Program the CY7C331
Using CUPL with Cypress PLDs
Using Log/IC to Program the CY7C330
Using One-Hot-State Coding to Accelerate a MAX
State Machine
Using the CY7C330 in Closed-Loop Servo Control
Using the CY7C331 as a Waveform Generator
Using the CY7C344 with the PLD ToolKit
Using the CY7C361 as a High-Performance DRAM Controller
Using the CY7C361 as a VMEbus Arbiter
Using the CY7C361 as an Mbus Arbiter
Using the CY7C361 with the PLD ToolKit
VHDL Techniques for Optimal Design
Describing State Machines with Warp2 SEMICONDUCTOR

Logic

CY10E383/101383 Translator
Designing with the CY7C439 BIFO
Microcoded System Performance
Systems with CMOS 16-Bit uP ALUs
Understanding Large FIFOs
Understanding Small FIFOs
Understanding Clocked FIFOs
Interfacing HOTLink to Clocked FIFOs
Interfacing HOTLink to Wide Data FIFOs
The CY7C42X/46X Interface to HOTLink
Everything You Always Wanted to Know About RoboClock
Using CY7C991 with the 80486 Cache Module and the $40-\mathrm{MHz}$ R3000
Robo Clock Test Mode
CY7C611A Design for High-Performance Embedded Control
Discrete Cache System Design for the CY7C611A Embedded RISC Processor
Getting Started with Real-Time Embedded-System Development
Memory Protection and Address Exception Logic for the CY7C611
Memory System Design for CY7C601 SPARC
Memory System Design for the CY7C611A

Bus Products

Interfacing the CY7C611A to the VIC64
Interfacing the VIC068 to the MC68020
Software Considerations for the VIC64
Using the CY7C361 and VIC068 to Interface a T801 Processor to the VMEbus
Using VIC Without a Processor
VIC068 Special Features and Tips
Glossary - '91
Glossary - '93
tatic RAMs

iize	Organization	Pins	Part Number	Speed (ns)	$\begin{gathered} \mathbf{I C C}_{\mathrm{CC}} \mathrm{I}_{\mathrm{SB}} \\ (\mathrm{~mA} @ \mathbf{n s}) \end{gathered}$	Packages	Availability
4	16x4-Inverting	16	CY7C189	$\mathrm{t}_{\mathrm{AA}}=15,25$	$55 @ 25$	D, P	Now
14	16x4-Non-Inverting	16	CY7C190	$\mathrm{t}_{\mathrm{AA}}=15,25$	55@25	L, P	Now
14	16×4-Inverting	16	CY74S189	$\mathrm{t}_{\mathrm{AA}}=35$	90@35	D, P	Now
14	16x4-Inverting	16	CY27S03A	$\mathrm{t}_{\mathrm{AA}}=25,35$	90@ 25	D, P	Now
14	16x4-Non-Inverting	16	CY27S07A	$\mathrm{t}_{\mathrm{AA}}=25,35$	90@ 25	D, P	Now
14	16x4-Inverting Low Power	16	CY27LS03M	$\mathrm{t}_{\mathrm{AA}}=65$	38@65	D,	Now
K	256x4	22	CY7C122	$\mathrm{t}_{\mathrm{AA}}=15,25,35$	60@25	D,L,P,S	Now
K	256x4	24S	CY7C123	$\mathrm{t}_{\mathrm{AA}}=7,9,10,12,15$	120@7	D,L,P, V	Now
K	256x 4	22	CY9122/91L22	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	$120 @ 25$	D, P	Now
K	256x4	22	CY93422A/93L422A	$\mathrm{t}_{\mathrm{AA}}=35,45,60$	80 @ 45	D, L, P	Now
K	4Kx1-CS Power-Down	18	CY7C147	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	80/10@35	D, P	Now
K	4 Kx 1 -CS Power-Down	18	CY2147/21L47	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	125/25@35	D, P	Now
K	1Kx4-CS Power-Down	18	CY7C148	$\mathrm{t}_{\text {AA }}=25,35,45$	80/10@35	D, P	Now
K	1Kx4-CS Power-Down	18	CY2148/21L48	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/20@35	D, P	Now
K	1Kx4	18	CY7C149	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	80 @ 35	D,L, P	Now
K	1Kx4	18	CY2149/21L49	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	$120 @ 35$	D, P	Now
K	1Kx 4-Separate I/O, Reset	24 S	CY7C150	$\mathrm{t}_{\mathrm{AA}}=10,12,15,25,35$	90@12	D, P, S	Now
K	1 Kx 8 --Dual Port Master	48	CY7C130	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45,55$	170 @ 25	D, L, P	Now
K	1Kx8--Dual PortSlave	48	CY7C140	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45,55$	170 @ 25	D,L, P	Now
K	1Kx8-Dual Port Master	52	CY7C131	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45,55$	$170 @ 25$	J,L,N	Now
K	1 Kx 8 -Dual Port Slave	52	CY7C141	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45,55$	$170 @ 25$	J,L,N	Now
6 K	2Kx8-CS Power-Down	24	CY7C128A	$\mathrm{t}_{\text {AA }}=15,20,25,35,45,55$	90/20@55	D,L,P,V	Now
6 K	2Kx8-CS Power-Down	24	CY6116A	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45,55$	80/20@55	D,L	Now
6 K	2Kx8-CS Power-Down	32	CY6117A	$\mathrm{t}_{\text {AA }}=20,25,35,45,55$	80/20@55	L	Now
6 K	16Kx1-CSPower-Down	20	CY7C167A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	50/15@45	D, P, V	Now
6 K	4Kx4-CS Power-Down	20	CY7C168A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	70/15@45	D, P, V	Now
6 K	4Kx4	20	CY7C169A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	$70 @ 45$	P, V	Now
6 K	4Kx4-Output Enable	22 S	CY7C170A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	$90 @ 45$	D, P, V	Now
6 K	4Kx4-Separate I/O	24 S	CY7C171A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	90@45	D,L, P, V	Now
6 K	4Kx4-Separate I/O	24 S	CY7C172A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	90@45	D,L,P, V	Now
6 K	2 Kx 8 -Dual Port Master	48	CY7C132	$\mathrm{t}_{\text {AA }}=25,30,35,45,55$	170 @ 25	D,L,P	Now
6K	2 Kx 8 --Dual PortSlave	48	CY7C142	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45,55$	170 @ 25	D,L, P	Now
6 K	2Kx8-Dual Port Master	52	CY7C136	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45,55$	170 @ 25	J,L,N	Now
6 K	2 Kx 8 -Dual PortSlave	52	CY7C146	$\mathrm{t}_{\text {AA }}=25,30,35,45,55$	170 @ 25	J,L,N	Now
2K	4Kx8-DualPort, No Arbitration	48	CY7B134	$\mathrm{t}_{\mathrm{AA}}=20,25,35$	240	D,L, P	Now
2K	4Kx8-DualPort,w/Semaph	52	CY7B1342	$\mathrm{t}_{\mathrm{AA}}=20,25,35$	240	J, L	Now
2K	4 Kx 8 -Dual Port, No Arbitration	52	CY7B135	$\mathrm{t}_{\mathrm{AA}}=20,25,35$	240	J, L	Now
2K	4Kx8-Dual Port,w/Semaph, Busy, Int	68	CY7B138	$\mathrm{t}_{\mathrm{AA}}=15,25,35$	260	G,J,L	Now
2K	4Kx9-DualPort,w/Semaph, Busy, Int	68	CY7B139	$\mathrm{t}_{\mathrm{AA}}=15,25,35$	260	G,J,L	Now
4 K	$8 \mathrm{~K} \times 8$--Dual Port,w/Semaph, Busy, Int	68	CY7B144	$\mathrm{t}_{\mathrm{AA}}=15,25,35$	260	G, J, L	Now
4 K	8Kx9-Dual Port,w/Semaph, Busy, Int	68	CY7B145	$\mathrm{t}_{\mathrm{AA}}=15,25,35$	260	G,J,L	Now
4 K	8Kx8-CSPower-Down	285	CY7B185	$\mathrm{t}_{\text {AA }}=9,10,12,15$	150/50@9	D, P, V	Now
4 K	8Kx8-CS Power-Down	28 S	CY7C185	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	120/20@15	P, V	Now
4 K	8Kx8-CS Power-Down	28 S	CY7C185A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	125/40@ 25	D,L	Now
4K	8Kx8-CS Power-Down	28	CY7C186A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	125/40@ 25	D, L	Now
4 K	8Kx8-CSPower-Down	28	CY7C186	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	120/20@15	P	Now
4K	64Kx1-CSPower-Down	22 S	CY7C187A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	80/40@25	D,L	Now
4 K	64Kx1-CSPower-Down	22 S	CY7C187	$\mathrm{t}_{\text {AA }}=15,20,25,35,45$	90/40@15	P, V	Now
4 K	16Kx4-CSPower-Down	22 S	CY7B164	$\mathrm{t}_{\mathrm{AA}}=8,10,12$	140/50@8	D, P, V	Now
4 K	16Kx4-CSPower-Down	22 S	CY7C164	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	115/40@15	P, V	Now
4K	16Kx4-OutputEnable	24 S	CY7B166	$\mathrm{t}_{\mathrm{AA}}=8,10,12$	140/50@8	D, P, V	Now
4K	16Kx4-Output Enable	24 S	CY7C166	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	115/40@15	P, V	Now
4K	16Kx4-Separate I/O, Transparent Write	285	CY7B161	$\mathrm{t}_{\text {AA }}=8,10,12$	140/50@8	D, P, V	Now
4K	16Kx4-Separate I/O	285	CY7B162	$\mathrm{t}_{\mathrm{AA}}=8,10,12$	140/50@8	D, P, V	Now
4 K	16Kx4-Separate I/O, Transparent Write	285	CY7C161	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	115/40@15	P, V	Now

Static RAMs (continued)

Size	Organization	Pins	Part Number	Speed (ns)	$\underset{(\mathbf{m A} @ \mathbf{n s})}{\mathbf{I}_{\mathbf{C C}} / \mathrm{I}_{\mathbf{S B}}}$	Packages	Availability
64K	16Kx4-Separate I/O	28S	CY7C162	$\mathrm{t}_{\text {AA }}=15,20,25,35,45$	115/40@15	P, V	Now
64K	16Kx4-Separate I/O, Transparent Write	28S	CY7C161A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	100/40@ 20	D, L	Now
64K	16Kx4-Separate I/O	28 S	CY7C162A	$\mathrm{t}_{\mathrm{AA}}=15,20,25,35,45$	100/40@20	D, L	Now
64 K	16Kx4-CSPower-Down	22S	CY7C164A	$\mathrm{t}_{\text {AA }}=15,20,25,35,45$	100/40@ 20	D, L	Now
64K	16Kx4-Output Enable	24S	CY7C166A	$\mathrm{t}_{\text {AA }}=15,20,25,35,45$	100/40@ 20	D, L	Now
72K	8 Kx 9	28 S	CY7C182	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	140/35@25	P, V	Now
72 K	4Kx18-Cache Tag, Multiprocessing	68	CY7B180	$\mathrm{t}_{\mathrm{MATCH}}=10,12,15,20$	340@10	J,N	Now
72K	$4 \mathrm{~K} \times 18$-Cache Tag, Uniprocessing	68	CY7B181	$\mathrm{t}_{\mathrm{MATCH}}=10,12,15,20$	340@10	J, N	Now
128K	8Kx 16-Addresses Latched except A12	52	CY7C183	$\mathrm{t}_{\text {AA }}=25,35,45$	$220 @ 25$	J	Now
128K	8 Kx 16 -Addresses Latched	52	CY7C184	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	220@ 25	J	Now
256K	16Kx16-SPARCCache RAM	52	CY7C157	$\mathrm{t}_{\text {AA }}=18,20,24,33$	250	J	Now
256K	32Kx8-CS Power-Down	28	CY7C198	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	160/35@25	D,L, P	Now
256K	32Kx8-CS Power-Down	285	CY7C199	$\mathrm{t}_{\mathrm{AA}}=12,15,20,25,35,45,55$	170/30@ 25	D,L,P, V	Now
256K	32Kx8-CS Power-Down	28S	CY7B199	$\mathrm{t}_{\text {AA }}=10,12$	185/30@ 10	D, P, V	Now
256K	32Kx 8-CS Power-Down (3.3V)	28 S	CY7C1399	$\mathrm{t}_{\mathrm{AA}}=20,25,35$	60/25@20	P, V	Q393
256K	64Kx4-CS Power-Down	24S	CY7C194	$\mathrm{t}_{\mathrm{AA}}=12,15,20,25,35,45$	160/30@ 25	D,L,P,V	Now
256K	64Kx4-CS Power Down with OE	28 S	CY7C196	$\mathrm{t}_{\text {AA }}=12,15,20,25,35,45$	160/30@ 25	D,L,P, V	Now
256K	64Kx4-Separate I/O, Transparent Write	28S	CY7C191	$\mathrm{t}_{\mathrm{AA}}=12,15,20,25,35,45$	120/30@ 25	D, P, V	Now
256K	64Kx4-Separate I/O	28S	CY7C192	$\mathrm{t}_{\mathrm{AA}}=12,15,20,25,35,45$	120/30@ 25	D, L, P, V	Now
256K	64Kx4-Separate I/O, Transparent Write	28S	CY7B191	$\mathrm{t}_{\mathrm{AA}}=10,12$	170/30@ 10	D, P, V	Now
256K	64Kx4-Separate I/O	28 S	CY7B192	$\mathrm{t}_{\mathrm{AA}}=10,12$	170/30@ 10	D, P, V	Now
256K	64Kx4-CS Power-Down	24S	CY7B194	$\mathrm{t}_{\mathrm{AA}}=10,12$	170/30@ 10	D, P, V	Now
256K	64Kx4-CS Power-Downw/OE	28 S	CY7B195	$\mathrm{t}_{\mathrm{AA}}=10,12$	170/30@ 10	D, P, V	Now
256K	64Kx4-CSPower-Downw/OE,Second CS	28 S	CY7B196	$\mathrm{t}_{\mathrm{AA}}=10,12$	170/30@10	D, P, V	Now
256K	64Kx4-CS Power-Downw/OE	28 S	CY7C195	$\mathrm{t}_{\text {AA }}=12,15,20,25,35$	160/30@ 25	D, L, P, V	Now
256K	256 Kx 1 -CS Power-Down	24S	CY7B197	$\mathrm{t}_{\mathrm{AA}}=10,12$	140/30@ 10	D, P, V	Now
256K	256 Kx 1 -CS Power-Down	24S	CY7C197	$\mathrm{t}_{\text {AA }}=12,15,20,25,35,45$	105/30@ 25	D, P, V	Now
288K	32Kx9-CS Power-Down	32S	CY7C188	$\mathrm{t}_{\mathrm{AA}}=12,15,20,25,35$	160/40@ 12	P, V	Q194
288K	32Kx9-CS Power-Down (3.3V)	32S	CY7C1388	$\mathrm{t}_{\text {AA }}=20,25,35$	60/40@20	P, V	Q194
1M	$64 \mathrm{~K} \times 18$-Burst	52	CY7C1031	$\mathrm{t}_{\text {AA }}=10,12,14(@ 85 \mathrm{pF})$	265@10	J	Q393
1M	64Kx 18-Burst	52	CY7C1032	$\mathrm{t}_{\mathrm{AA}}=10,12,14$ (@85pF)	265@10	J	Q393
1M	$64 \mathrm{Kx1} 18$-Burst (3.3V)	52	CY7C1331	$\mathrm{t}_{\mathrm{AA}}=14,18,21(@ 85 \mathrm{pF})$	180@14	J	Q493
1M	$64 \mathrm{Kx18}$-Burst (3.3V)	52	CY7C1332	$\mathrm{t}_{\mathrm{AA}}=14,18,21$ (@85pF)	180@14	J	Q493
1M	128Kx8-CS Power-Down	32	CY7C1009	$\mathrm{t}_{\mathrm{AA}}=12,15,20,25$	185@12	D,L,P, V	Q493
1M	128Kx 8-CS Power-Down	32	CY7C109A	$\mathrm{t}_{\mathrm{AA}}=12,15,20,25,35$	185@12	D,L, P, V	Q194
1M	256Kx 4-CS Power-Down	28	CY7C1006	$\mathrm{t}_{\text {AA }}=12,15,20,25$	165@12	D, P, V	Q493
1M	256Kx4-CS Power-Downw/OE	28	CY7C106A	$\mathrm{t}_{\mathrm{AA}}=12,15,20,25,35$	165@12	D, P, V	Q493
1M	256K $\times 4$-Separate I/O, Transparent Write	32	CY7C1001	$\mathrm{t}_{\mathrm{AA}}=12,15,20,25$	165@12	D, P, V	Q493
1M	256Kx4-Separate I/O, Transparent Write	32	CY7C101A	$\mathrm{t}_{\mathrm{AA}}=12,15,20,25,35$	165@12	D, L, P, V	Q493
1M	256Kx 4-Separate I/O	32	CY7C1002	$\mathrm{t}_{\text {AA }}=12,15,20,25$	165@12	D,L,P, V	Q493
1M	256Kx 4-Separate I/O	32	CY7C102A	$\mathrm{t}_{\mathrm{AA}}=12,15,20,25,35$	165@12	D,L, P, V	Q493
1M	1Mx1-CS Power-Down	28	CY7C1007	$\mathrm{t}_{\text {AA }}=12,15,20,25$	150@12	D, L, P, V	Q493
1M	1Mx1-CS Power-Down	28	CY7C107A	$\mathrm{t}_{\mathrm{AA}}=12,15,20,25,35$	$150 @ 12$	D,L,P, V	Q493

ECL SRAMs

Size	Organization	Pins	Part Number	Speed (ns)	I_{EE}	Packages	Availability
1 K	$256 \times 4-10 \mathrm{~K} / 10 \mathrm{KH}$	24.4	CY10E422	$\mathrm{t}_{\mathrm{AA}}=4,5$	220	$\mathrm{D}, \mathrm{K}, \mathrm{L}$	Now
1 K	$256 \times 4-10 \mathrm{~K} / 10 \mathrm{KH}$	24.4	CYY0E422L	$\mathrm{t}_{\mathrm{AA}}=5,7$	150	$\mathrm{D}, \mathrm{J}, \mathrm{K}, \mathrm{L}$	Now
1 K	$256 \times 4-100 \mathrm{~K}$	24.4	CY100E422	$\mathrm{t}_{\mathrm{AA}}=3.5,5$	220	$\mathrm{D}, \mathrm{K}, \mathrm{L}$	Now
1 K	$256 \times 4-100 \mathrm{~K}$	24.4	CY100E422L	$\mathrm{t}_{\mathrm{AA}}=5,7$	150	$\mathrm{D}, \mathrm{J}, \mathrm{K}, \mathrm{L}$	Now

CL SRAMs (continued)

Size	Organization	Pins	Part Number	Speed (ns)	$\mathrm{I}_{\text {EE }}$	Packages	Availability
/K	4 Kx 1 -10K	18.3	CY10E470	$\mathrm{t}_{\mathrm{AA}}=5,7$	200	D	Now
H/	$4 \mathrm{~K} \times 1-100 \mathrm{~K}$	18.3	CY100E470	$\mathrm{t}_{\mathrm{AA}}=5,7$	200	D	Now
H	$1024 \times 4-10 \mathrm{~K} / 10 \mathrm{KH}$	24.4	CY10E474	$\mathrm{t}_{\mathrm{AA}}=4,5$	275	D, K, L	Now
K	$1024 \times 4-10 \mathrm{~K} / 10 \mathrm{KH}$	24.4	CY10E474L	$\mathrm{t}_{\mathrm{AA}}=5,7$	190	D, J, K, L	Now
K	1024x 4-100K	24.4	CY100E474	$\mathrm{t}_{\mathrm{AA}}=3.5,5$	275	D, K, L	Now
.K	1024x 4-100K	24.4	CY100E474L	$\mathrm{t}_{\mathrm{AA}}=5,7$	190	D, J, K, L	Now
6K	$4 \mathrm{Kx} 4-10 \mathrm{~K} / 10 \mathrm{KH}$	28.4	CY10E484	$\mathrm{t}_{\mathrm{AA}}=4,5$	320	D, K, Y	Now
6K	$4 \mathrm{Kx} 4-10 \mathrm{~K} / 10 \mathrm{KH}$	28.4	CY10E484L	$\mathrm{t}_{\mathrm{AA}}=7,10$	200	D, J, K, V	Now
6K	4Kx4-100K	28.4	CY100E484	$\mathrm{t}_{\mathrm{AA}}=4,5$	320	D, K, V, Y	Now
6K	$4 \mathrm{Kx} 4-100 \mathrm{~K}$	28.4	CY100E484L	$\mathrm{t}_{\mathrm{AA}}=7,10$	200	D, J, K, V	Now
6K	$4 \mathrm{Kx} 4-100 \mathrm{~K}$	28.4	CY101E484	$\mathrm{t}_{\mathrm{AA}}=4,5$	320	D, K, Y	Now
6K	$4 \mathrm{Kx} 4-100 \mathrm{~K}$	28.4	CY101E484L	$\mathrm{t}_{\mathrm{AA}}=7,10$	200	D, J, K, V	Now

RAM Modules

Size	Organization	Pins	Part Number	Speed (ns)	$\mathbf{I}_{\mathbf{C C}} / \mathbf{I}_{\mathbf{S B}} / \mathbf{I}_{\mathbf{C C D R}}$ (mA@ns)	Packages	Availability
12K	16K×32-JEDEC	64	CYM1821	$\begin{aligned} & \mathrm{t}_{\mathrm{AA}}=12,15 \\ & \mathrm{t}_{\mathrm{AA}}=20,25,30,35,45 \end{aligned}$	$\begin{aligned} & 960 @ 12 \\ & 720 @ 25 \end{aligned}$	PM, PZ PM, PZ	Now Now
68 K	$32 \mathrm{~K} \times 24$	56	CYM1720	$\mathrm{t}_{\mathrm{AA}}=15,20,25,30,35$	330@25	PZ	Now
M	$32 \mathrm{~K} \times 32$	66	CYM1828	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45,55,70$	400@45	HG	Now
M	$64 \mathrm{~K} \times 16$	40	CYM1622	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45$	400@25	PV	Now
M	i486 Secondary Cache	128	CYM7485	$\mathrm{t}_{\text {freq }}=33 \mathrm{MHz}$	1500	PM	Now
. 5 M	$64 \mathrm{~K} \times 24$	56	CYM1730	$\mathrm{t}_{\mathrm{AA}}=25,30,35$	510@ 25	PZ	Now
M	256Kx8-JEDEC	60	CYM1441	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	960@ 25	PZ	Now
M	$64 \mathrm{~K} \times 32$	60	CYM1830	$\mathrm{t}_{\text {AA }}=25,30,35,45,55$	880@25	HD	Now
M	64Kx32-JEDEC	64	CYM1831	$\mathrm{t}_{\mathrm{AA}}=20,25,30,35,45$	720 @ 20	PM, PN, PZ	Now
M	$64 \mathrm{~K} \times 32$	60	CYM1832	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	980@25	PZ	Now
M	512Kx 8-JEDEC	32	CYM1464	$\mathrm{t}_{\mathrm{AA}}=20,25,30,35,45,55,70$	300@35	PD	Now
M	512Kx8-JEDEC	32	CYM1465	$\mathrm{t}_{\mathrm{AA}}=70,85,100,120,150$	110@85	PD	Now
M	128 Kx 32	64	CYM1836	$\mathrm{t}_{\mathrm{AA}}=20,25,30,35,45$	480@ 20	PM, PZ	Now
M	$128 \mathrm{~K} \times 32$	66	CYM1838	$\mathrm{t}_{\mathrm{AA}}=25,30,35$	$720 @ 25$	HG	Now
M	$256 \mathrm{~K} \times 32$	60	CYM1840	$\mathrm{t}_{\mathrm{AA}}=20,25,30,35,45,55$	1120@25	PD	Now
M	$256 \mathrm{~K} \times 32$-JEDEC	64	CYM1841	$\mathrm{t}_{\mathrm{AA}}=20,25,30,35,45,55$	960@25	PM, PN, PZ	Now
M	1 Mx 8	36	CYM1471	$\mathrm{t}_{\mathrm{AA}}=85,100,120$	110@85	PS	Now
M	1Mx9	44	CYM1560	$\mathrm{t}_{\mathrm{AA}}=30,35,45$	1200@30	PS	Now
6M	2 Mx 8	36	CYM1481	$\mathrm{t}_{\mathrm{AA}}=85,100,120$	110 @ 85	PF, PS	Now
2M	1 Mx 32	72	CYM1851	$\mathrm{t}_{\mathrm{AA}}=25,30,35$	1250@30	PM, PN, PZ	Now

20Ms

ize	Organization	Pins	Part Number	Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathrm{CC}} / \mathbf{I}_{\mathbf{S B}} \\ (\mathbf{m A} @ \mathbf{n s}) \end{gathered}$	Packages	Availability
K	512x8-Registered	24S	CY7C225	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=25 / 12,30 / 15,35 / 20,40 / 25$	90	D, J,L, P	Now
K	512×8-Registered	24S	CY7C225A	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=25 / 12,30 / 15,35 / 20,40 / 25$	90	D, J, L, P	Q393
K	1024×8-Registered	24S	CY7C235	$\mathrm{t}_{\text {SA/CO }}=25 / 12,30 / 15,40 / 20$	90	D, J, K, L, P	Now
K	1024x8-Registered	24S	CY7C235A	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=25 / 12,30 / 15,40 / 20$	90	D, J,K, L, P	Q393
K	1 Kx 8	24S	CY7C281	$\mathrm{t}_{\mathrm{AA}}=30,45$	$\begin{aligned} & 90 @ 45, \\ & 100 @ 30 \end{aligned}$	D, J, K, P	Now
K	1Kx8	24S	CY7C281A	$\mathrm{t}_{\mathrm{AA}}=30,45$	$\begin{aligned} & 90 @ 45, \\ & 100 @ 30 \end{aligned}$	D, J, K, P	Q393
K	1 Kx 8	24	CY7C282	$\mathrm{t}_{\mathrm{AA}}=30,45$	$\begin{aligned} & 90 @ 45, \\ & 100 @ 30 \end{aligned}$	D, P	Now
K	1Kx8	24	CY7C282A	$\mathrm{t}_{\mathrm{AA}}=30,45$	$\begin{aligned} & 90 @ 45, \\ & 100 @ 30 \end{aligned}$	D, P	Q393
6 K	2Kx8-Registered	24S	CY7C245/L	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=25 / 12,35 / 15,45 / 25$	90,60	D,J,L, P, Q, S, T, W	Now
6 K	2Kx8-Registered	24S	CY7C245A/L	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=15 / 10,25 / 12,35 / 15$	$\begin{aligned} & 120 @ 15, \\ & 90,60 @ 25 \end{aligned}$	D, J,L,P, Q, S, T, W	Now
6 K	2Kx 8	24S	CY7C291/L	$\mathrm{t}_{\mathrm{AA}}=35,50$	90,60	D, J,L, P, Q, S, T, W	Now

PROMs (continued)

Size	Organization	Pins	Part Number	Speed (ns)	$\underset{(\mathbf{m A} @ \mathbf{n s})}{\mathbf{I}_{\mathbf{C C}} \mathbf{I}_{\mathbf{S B}}}$	Packages	Availabilit
16K	2Kx8	24S	CY7C291A/L	$\mathrm{t}_{\mathrm{AA}}=20,25,35,50$	$\begin{aligned} & 120 @ 20, \\ & 90,60 @ 25 \end{aligned}$	D, J,L, P, Q, S, T, W	Now
16K	2 Kx 8	24	CY7C292/L	$\mathrm{t}_{\mathrm{AA}}=35,50$	90,60	D, P	Now
16K	2 Kx 8	24	CY7C292A/L	$\mathrm{t}_{\mathrm{AA}}=20,25,35,50$	$\begin{aligned} & 120 @ 20, \\ & 90 @ 25, \\ & 90,60 @ 35 \end{aligned}$	D, P	Now
16K	2Kx8-CSPower-Down	24S	CY7C293A/L	$\mathrm{t}_{\mathrm{AA}}=20,25,35,50$	$\begin{aligned} & \text { 120/40@20, } \\ & 90 / 30 @ 25 \\ & 60 / 15 @ 35 \end{aligned}$	D, L, Q, P, W	Now
32K	2K $\times 16$ 16-Reprogrammable State Machine Prom	28S	CY7C258	$\mathrm{t}_{\mathrm{AA}}=10,12,15$	170	H, J, L, P, Q, W	Now
32K	$2 \mathrm{~K} \times 16$-Reprogrammable	44	CY7C259	$\mathrm{t}_{\mathrm{AA}}=10,12,15$	170	H, J, L, Q	Now
64K	8Kx8-CS Power-Down	24S	CY7C261	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45,55$	$\begin{aligned} & 120 / 40 \text { Q } 20, \\ & 100 / 30 \text { O } \end{aligned}$	D, J, L, P, Q, T, W	Now
64K	8 Kx 8	24S	CY7C263	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45,55$	$\begin{aligned} & 120 @ 20, \\ & 100 @ 35 \end{aligned}$	D, J, L, P, Q, T, W	Now
64K	8 Kx 8	24	CY7C264	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45,55$	$\begin{aligned} & 120 @ 20, \\ & 100 @ 35 \end{aligned}$	D, P, W	Now
64K	8Kx8-Registered	28 S	CY7C265	$\begin{gathered} \mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=15 / 12,25 / 15,40 / 20 \\ 50 / 25 \end{gathered}$	$\begin{aligned} & 120 @ 15, \\ & 100 @ 40 \\ & 80 @ 50 \end{aligned}$	D, J, L, P, Q, W	Now
64K	8Kx 8-EPROM Pinout	28	CY7C266	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	$\begin{aligned} & \text { 120/15@20, } \\ & \text { 100/15@35 } \end{aligned}$	D, L, P, Q, W	Now
64K	8Kx8-Registered, Diagnostic	28 S	CY7C269	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=15 / 12,25 / 15,$	$\begin{aligned} & 120 @ 15, \\ & 100 @ 40, \\ & 80 @ 50 \end{aligned}$	D, J, L, P, Q, W	Now
128K	16Kx8-CSPower-Down	28 S	CY7C251	$\mathrm{t}_{\text {AA }}=45,55,65$	100/30	D, L, P, Q, W	Now
128K	16Kx8	28	CY7C254	$\mathrm{t}_{\mathrm{AA}}=45,55,65$	100/30	D, P, Q, W	Now
256K	32Kx8-Asynchronous	28	CY7C256	$\mathrm{t}_{\text {AA }}=45,55$	95	D, J, P, W	Q493
256K	Processor-Intelligent PROM	44	CY7C270	$\mathrm{t}_{\text {AA/CKB }}=25 / 11,28 / 12,35 / 15$	175	H, J, Q	Now
256K	32Kx8-CSPower-Down	28S	CY7C271	$\mathrm{t}_{\mathrm{AA}}=30,35,45,55$	120/30	D, J, K, L, P, Q, T, W	Now
256K	32 Kx 8 -EPROMPinout	28	CY7C274	$\mathrm{t}_{\mathrm{AA}}=30,35,45,55$	120/30	D, J, KL, P, Q, T, W	Now
256K	32Kx8-Registered	28S	CY7C277	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=30 / 15,40 / 20,50 / 25$	120	D, J, KL, P, Q, T, W	Now
256K	16Kx16	44	CY7C276	$\mathrm{t}_{\text {AA }}=25,30,35$	175	H, J, Q	Now
256K	32Kx8-Register/Latch	28S	CY7C279	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120	J, W	Now
512K	64 Kx 8	28	CY7C286	$\mathrm{t}_{\mathrm{AA}}=50,60,70,80$	$\begin{aligned} & \text { 120/40@50, } \\ & 90 / 30 @ 70 \end{aligned}$	D,L,P,Q,W	Now
512K	64Kx8-Registered	28S	CY7C287	$\mathrm{t}_{\text {AS/CO }}=45 / 15,55 / 20,65 / 25$	120	D,L,P,Q,W	Now
512K	64 Kx 8 with ALE	28S	CY7C285	$\mathrm{t}_{\text {AA }}=65 / 20,75 / 25,85 / 35$	180	D,L,P,Q,W	Now

PLDs

Size	Organization	Pins	Part Number	Speed (ns)	$\underset{(\mathbf{m A} @ \mathbf{n s})}{\mathbf{I}_{\mathbf{C C}} / \mathbf{I}_{\mathbf{S B}}}$	Packages	Availabilit
PAL20	16L8	20	PAL16L8	$\mathrm{t}_{\text {PD }}=4.5 / 5 / 7$	180	D, J, P	Now
PAL20	16R8	20	PAL16R8	$\mathrm{t}_{\text {S/CO }}=2.5 / 4.5,2.5 / 5,3.5 / 6$	180	D, J, P	Now
PAL20	16R6	20	PAL16R6	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}^{7 / 3.5 / 6}=4.5 / 2.5 / 4.5,5 / 2.5 / 5$	180	D, J, P	Now
PAL20	16R4	20	PAL16R4	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=4.3 .5 / 6$	180	D, J, P	Now
PAL20	16L8	20	PALC16L8/L	$\mathrm{t}_{\mathrm{PD}}=20$	70,45	D,L,P, Q, V, W	Now
PAL20	16R8	20	PALC16R8/L	$\mathrm{t}_{\mathrm{S} / \mathrm{CO}}=15 / 12$	70,45	D,L, P, Q, V, W	Now
PAL20	16R6	20	PALC16R6/L	$\mathrm{t}_{\text {PD/ } / \text { /CO }}=20 / 20 / 15$	70,45	D,L,P,Q,V,W	Now
PAL20	16R4	20	PALC16R4/L	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=20 / 20 / 15$	70,45	D,L, P, Q, V, W	Now
PLD20	18G8-Generic	20	PLDC18G8	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=12 / 8 / 10$	90/70	D, J, L, P, Q, V, W	Now

LDs (continued)

Size	Organization	Pins	Part Number	Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathrm{CA}}^{\mathrm{Cd}} \mathrm{I}_{\mathrm{SB}} \\ \mathrm{nAs}) \end{gathered}$	Packages	Availability
'LD24	22V10-Macrocell	24S	PALC22V10/L	$\mathrm{t}_{\text {PD/S/CO }}=25 / 15 / 15,20 / 12 / 12$	90,55	D, J, K, L, P, Q, W	Now
'LD24	22V10-Macrocell	24S	PALC22V10B	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=15 / 10 / 10$	90	$\left\lvert\, \begin{aligned} & \mathrm{D}, \mathrm{H}, \mathrm{~J}, \mathrm{~K}, \mathrm{~L}, \\ & \mathrm{P}, \mathrm{Q}, \mathrm{~W} \end{aligned}\right.$	Now
LD24	22V10-Macrocell	24S	PAL22V10C	$\begin{gathered} \mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=6 / 3 / 5.5,7.5 / 3 / 6 \\ 10 / 3.6 / 7.5 \end{gathered}$	190	D, J, L, P	Now
LD24	22VP10-Macrocell	24S	PAL22VP10C	$\begin{gathered} \mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=6 / 3 / 5.5,7.5 / 3 / 6, \\ 10 / 3.6 / 7.5 \end{gathered}$	190	D, J, L, P	Now
'AL24	22V10-Macrocell	24	PALC22V10D	$\mathrm{t}_{\mathrm{PD}}=7.5,10,15$	130/90/90	D, J, L, P	Now
LD24	20G10-Generic	24S	PLDC20G10	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=25 / 15 / 15$	55	D, J, L, P, Q, W	Now
LD24	20G10-Generic	24S	PLDC20G10B	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=15 / 12 / 10$	70	D, H, J, L, P, Q, W	Now
LDB24	20G10-Generic	24S	PLD20G10C	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=7.5 / 3 / 6.5,10 / 3.6 / 7.5$	190	D, J, L, P	Now
LD24	20RA10-Asynchronous	24S	PLD20RA10	$\mathrm{t}_{\text {PD/S/CO }}=15 / 10 / 15$	80	D, H, J, L, P, Q, W	Now
LD24	7B326-16 Macrocell	24S	PLD610	$\mathrm{t}_{\mathrm{PD}}=10$	130	D, J, K, L, P, Y	Now
LD28	7C330-State Machine	28S	CY7C330	$\mathrm{f}_{\text {MAX }}, \mathrm{t}_{\text {IS }}, \mathrm{t}_{\mathrm{CO}}=66 \mathrm{MHz} / 3 \mathrm{~ns} / 12 \mathrm{~ns}$	$\begin{aligned} & 130 @ 50 \\ & \mathrm{MHz} \end{aligned}$	D, H, J, L, P, Q, W	Now
LD28	7C331-Asynchronous, Registered	28S	CY7C331	${ }^{\text {PDD/S/CO }}$ = $20 / 12 / 20$	120@25 ns	D, H, J, L, P, Q, W	Now
LD28	7C332-Input Registered, Combinatorial	28S	CY7C332	$t_{\text {PD }}=15$	120@20ns	D, H, J, L, P, Q, W	Now
LD28	7B333B-16 Macrocell	28S	CY7B333B	$\mathrm{t}_{\text {PD/S/CO }}=10 / 8 / 8$	130	D, J, K, L, P, Y	Now
LD28	7C335-Universal Synchronous	28S	CY7C335	$\begin{gathered} \mathrm{f}_{\mathrm{MAX}} / \mathrm{t}_{\mathrm{IS}}=100 \mathrm{MHz} / 2 \mathrm{~ns}, \\ 83 \mathrm{MHz} / 2 \mathrm{~ns} \end{gathered}$	140	D, H, J, L, P, Q, W	Now
LD28	$\begin{gathered} \text { 7C361-32-Macrocell State } \\ \text { Machine } \end{gathered}$	28S	CY7C361	$\mathrm{f}_{\mathrm{MAX}}=125 \mathrm{MHz}$	140	D, H, J, L, P, Q, W	Now
1AX28	7C344-32 Macrocell	$28 S$	CY7C344	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=20 / 12 / 12$	200/150	D, H, J, L, P, Q, W	Now
LAX44	7C343-64 Macrocell	44	CY7C343	$\mathrm{t}_{\text {PD/S/CO }}=20 / 12 / 12$	135/125	H, J	Now
LAX68	7C342-128 Macrocell	68	CY7C342/B	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=25 / 15 / 14,15 / 10 / 10$	250/225	G, H, J, L, R	Now
LAX84	7C341-192 Macrocell	84	CY7C341/B	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=25 / 20 / 16,15 / 10 / 10$	380/360	H, J	Now
7X-44	$\begin{aligned} & \text { 7C371-32-Macrocell } \\ & \text { FlashCPLD } \end{aligned}$	44S	CY7C371	$\mathrm{f}_{\mathrm{MAX}} / \mathrm{ts}_{\mathrm{s}} \mathrm{t}_{\mathrm{CO}}=100 \mathrm{MHz} / 7.5 \mathrm{~ns} / 7.5 \mathrm{~ns}$	150/TBD	J	Q393
7X-44	7C372-64-Macrocell Flash CPLD	445	CY7C372	$\mathrm{f}_{\mathrm{MAX}} / \mathrm{t}_{\mathrm{S}} / \mathrm{t}_{\mathrm{CO}}=100 \mathrm{MHz} / 9 \mathrm{~ns} / 9 \mathrm{~ns}$	180/TBD	J	Q493
7X-84	7C373-64-Macrocell Flash CPLD	84S	CY7C373	$\mathrm{f}_{\mathrm{MAX}} / \mathrm{t}_{5} / \mathrm{t}_{\mathrm{CO}}=100 \mathrm{MHz} / 9 \mathrm{~ns} / 9 \mathrm{~ns}$	180/TBD	J	Q493
7X-84	$\begin{aligned} & \text { 7C374-128-Macrocell } \\ & \text { FlashCPLD } \end{aligned}$	84S	CY7C374	$\mathrm{f}_{\mathrm{MAX}} / \mathrm{t}_{\mathbf{S}} / \mathrm{t}_{\mathrm{CO}}=100 \mathrm{MHz} / 9 \mathrm{~ns} / 9 \mathrm{~ns}$	300/TBD	J	Q393
7X-164	7C375-128-Macrocell Flash CPLD	164S	CY7C375	$\mathrm{f}_{\mathrm{MAX}} / \mathrm{t}_{\mathrm{S}} / \mathrm{t}_{\mathrm{CO}}=100 \mathrm{MHz} / 9 \mathrm{~ns} / 9 \mathrm{~ns}$	300/TBD	N	Q393
ASIC-1	CMOS 1K Gate FPGA	68S	CY7C382	-0, -1, -2	$\mathrm{I}_{S B}=10$	J	Q293
ASIC-2	CMOS 2K Gate FPGA	84S	CY7C384	-0, -1, -2	$\mathrm{I}_{S B}=10$	J	Q293
ASIC-4	CMOS 4K Gate FPGA	84S	CY7C385	-0, -1, -2	$\mathrm{I}_{\mathrm{SB}}=10$	J	Q493
ASIC-4	CMOS 4K Gate FPGA	144S	CY7C386	-0, -1, -2	$\mathrm{I}_{\mathrm{SB}}=10$	N	Q293

CL PLDs

Organization	Pins	Part Number	Speed (ns)	$\mathrm{I}_{(\mathrm{mA}}^{\mathrm{I}_{\mathrm{E}}}$	Packages	Availability
6P8-10 KH	24	CY10E301	$\mathrm{tPD}=4$	240	D, Y	Now
6P8-10 KH	24	CY10E301L	$\mathrm{t}_{\text {PD }}=6$	170	J, P	Now
6P8-100K	24	CY100E301	$\mathrm{t}_{\mathrm{PD}}=4$	240	D, Y	Now
6P8-100K	24	CY100E301L	$\mathrm{t}_{\mathrm{PD}}=6$	170	J, P	Now
$6 \mathrm{P} 4-10 \mathrm{KH}$	24	CY10E302	$\mathrm{t}_{\text {PD }}=3,4$	220	D, Y	Now
6P4-10 KH	24	CY10E302L	$\mathrm{t}_{\mathrm{PD}}=4$	170	J, P	Now
6P4-100K	24	CY100E302	$\mathrm{t}_{\mathrm{PD}}=3,4$	220	D, Y	Now
$6 \mathrm{P} 4-100 \mathrm{~K}$	24	CY100E302L	$\mathrm{t}_{\mathrm{PD}}=4$	170	J, P	Now

FIFOs

Organization	Pins	Part Number	Speed	$\begin{gathered} \mathbf{I}_{\mathrm{CC}} \mathbf{I I S B}_{\mathrm{SA}} \\ (\mathrm{~mA}) \end{gathered}$	Packages	Availability
64×4	16	CY3341	1.2, 2 MHz	45	D, P	Now
64×4	16	CY7C401	$5,10,15,25 \mathrm{MHz}$	75	D, L, P	Now
64×4-w/OE	16	CY7C403	10, $15,25 \mathrm{MHz}$	75	D,L,P	Now
64×5	18	CY7C402	$5,10,15,25 \mathrm{MHz}$	75	D,L,P	Now
64x5-w/OE	18	CY7C404	$10,15,25 \mathrm{MHz}$	75	D,L,P	Now
64×8-w/OE and Almost Flags	28 S	CY7C408A	$15,25,35 \mathrm{MHz}$	120	D, L, P, V	Now
64×9-w/Almost Flags	28 S	CY7C409A	15,25, 35 MHz	120	D, L, P, V	Now
512×9-w/Half Full Flag	28	CY7C420	20, 25,30,40,65	142/30	D, P	Now
512x9-w/Half Full Flag	28 S	CY7C421	20, 25,30, 40,65	142/30	D, J, L, P, V	Now
512x9-w/Half Full Flag	28 S	CY7C421A	10,15	180	J, P	Now
512×9-Clocked	28 S	CY7C441	14,20,30*	180	D, J, L, P, V	Now
512×9-Clockedw/Prog. Flags	32	CY7C451	14,20,30**	180	D, J, L	Now
512 $\times 18$-Clockedw/Prog. Flags	48	CY7C445	14, 20, 30 *	120	P, D	Q194
512×18-Clockedw/Prog. Flags	52	CY7C455	14, 20,30*	120	J, L	Now
1Kx9-w/Half Full Flag	28	CY7C424	20, 25,30,40,65	142/30	D, P	Now
1Kx9-w/Half Full Flag	28 S	CY7C425	20, 25,30,40,65	142/30	D, J,L, P	Now
1Kx9-w/Half Full Flag	28 S	CY7C425A	10,15	180	J, P	Now
$1 \mathrm{~K} \times 18$-Clockedw/Prog. Flags	48	CY7C446	14, 20, 30*	120	D, P	Q194
$1 \mathrm{~K} \times 18$-Clockedw/Prog. Flags	52	CY7C456	14,20,30*	120	J,L	Now
2Kx9-w/Half Full Flag	28	CY7C428	20, 25, 30, 40, 65	142/30	D, P	Now
2Kx9-w/Half Full Flag	28S	CY7C429	20, 25, 30, 40,65	142/30	D, J, L, P, V	Now
2Kx9-w/Half Full Flag	28 S	CY7C429A	10,15	180	J, P	Now
2 Kx 9 -Bidirectional	28S	CY7C439	30,40,65	140/40	D, J, L, P, V	Now
2K x 9-Clocked	28S	CY7C443	14,20,30*	180	D, J;L, P, V	Now
2K x 9—Clockedw/Prog. Flags	32	CY7C453	14, 20, 30*	180	D, J, L	Now
2Kx18-Clockedw/Prog. Flags	48	CY7C447	14,20,30*	120	D, P	Q194
2Kx18-Clockedw/Prog. Flags	52	CY7C457	14,20,30*	120	J,L	Now
4Kx9-w/Half Full Flag	28	CY7C432	25,30,40,65	142/25	D, P	Now
4Kx9-w/Half Full Flag	28 S	CY7C433	25,30,40,65	142/25	D, J, L, P, V	Now
4Kx9-w/Half Full Flag	28 S	CY7C433A	10,15	180	J, P	Now
8K x 9-Module	28	CYM4210	30, 40, 50, 65	540/120	HD	Now
8K $\times 9$-w/Half Full Flag	28	CY7C460	15,25,40	180	D, J, L, P	Now
8K x 9-w/Prog. Flags	28	CY7C470	15,25,40	180	D, J, L, P	Now
16K x 9-w/Half Full Flag	28	CY7C462	15,25,40	180	D, J, L, P	Now
16K x 9-w/Prog. Flags	28	CY7C472	15,25,40	180	D, J,L,P	Now
$16 \mathrm{~K} \times 9$-Module	28	CYM4220	30, 40, 50, 65	540/120	HD	Now
32K x 9-w/Half Full Flag	28	CY7C464	15,25,40	180	D, J, L, P	Now
32K x 9-w/Prog. Flags	28	CY7C474	15,25,40	180	D, J,L, P	Now
$64 \mathrm{~K} \times 9$-Module	28	CYM4208	25,30,40	640/120	HD	Now
128 Kx 9 -Module	28	CYM4209	25,30,40	640/120	HD	Now

* Clocked FIFO [CY7C44x/45x] times are cycle times.

Logic

Organization	Pins	Part Number	Speed	$\underset{\substack{\left.\mathrm{I}_{\mathrm{CCO}} \\ \mathrm{I}_{\mathrm{SB}} \\ \mathrm{~ns}\right)}}{ }$	Packages	Availability
Programmable Skew Clock Buffer (TTLOutput)	32	CY7B991	$15-80 \mathrm{MHz}$	65	J,L	Now
Programmable Skew Clock Buffer (CMOSOutput)	32	CY7B992	$15-80 \mathrm{MHz}$	65	J, L	Now
2901-4-BitSlice	40	CY7C901	$\mathrm{t}_{\text {CLK }}=23,31 \mathrm{~ns}$	70	D, J, L, P	Now
2901-4-BitSlice	40	CY2901	C	140	D, P	Now
4x2901-16-BitSlice	64	CY7C9101	$\mathrm{t}_{\mathrm{CLK}}=30,40 \mathrm{~ns}$	60	D, J, L, P	Now
2909-Sequencer	28	CY7C909	$\mathrm{t}_{\text {CLK }}=30,40 \mathrm{~ns}$	55	D, J, L, P	Now
2911-Sequencer	20	CY7C911	$\mathrm{t}_{\mathrm{CLK}}=30,40 \mathrm{~ns}$	55	D, J, L, P	Now
ECL/TTL Translator-10KH	84	CY10E383	$\mathrm{t}_{\mathrm{PD}}=2.5 / 3 \mathrm{~ns}$	270	J,N	Now
ECL/TTL Translator-100K	84	CY101E383	$\mathrm{t}_{\mathrm{PD}}=2.5 / 3 \mathrm{~ns}$	270	J,N	Now
ECL/TTL Translator-10KH	28S	CY10E384L	$\mathrm{t}_{\mathrm{PD}}=3 \mathrm{~ns}$	110	V	Now
2909-Sequencer	28	CY2909	A	70	D, P	Now

Logic (continued)

Organization	Pins	Part Number	Speed	$\begin{gathered} \mathrm{I}_{\mathrm{CCC}} / \mathrm{ISB}_{n} \\ (\mathrm{~mA} @ \mathbf{n s}) \end{gathered}$	Packages	Availability
2911-Sequencer	20	CY2911	A	70	D, P	Now
2910-Controller (17-wordStack)	40	CY7C910	$\mathrm{t}_{\mathrm{CLK}}=40,50,93 \mathrm{~ns}$	100	D, J,L, P	Now
2910-Controller (9-word Stack)	40	CY2910	A	170	D, J, L, P	Now
16x 16 Multiplier	64	CY7C516	$\mathrm{t}_{\mathrm{MC}}=38,45,55,75 \mathrm{~ns}$	$100 @ 10 \mathrm{MHz}$	D, G, J, L, P	Now
16x 16 Multiplier	64	CY7C517	$\mathrm{t}_{\mathrm{MC}}=38,45,55,75 \mathrm{~ns}$	$100 @ 10 \mathrm{MHz}$	D, G, J, L, P	Now
16x16Multiplier/Accumulator	64	CY7C510	$\mathrm{t}_{\mathrm{MC}}=45,55,65,75 \mathrm{~ns}$	$100 @ 10 \mathrm{MHz}$	D, G, J, L, P	Now

Design and Programming Tools

Part Name	Type	PartNumber
QuickProII	Programmer	CY3300
MAX+PLUS	Design Tool	CY3201
QP2-MAX	PLDProgrammer	Programmer
MAX+PLUSPLS-EDIF	Designtool	CY3202
Warp2	VHDLCompiler	CY3210

2ISC

Desc.	Organization	Pins	Part Number	Freq. (MHz)	$\underset{(\mathrm{mA} @ 40 \mathrm{MHz})}{\mathbf{I}_{\mathrm{CC}} \mathrm{I}_{\mathrm{SB}}}$	Packages	Availability
IU	SPARC 32-bit Integer Unit	207	CY7C601A	40,33,25	675	G	Now
FPU	Floating-Point Unit (Controller and Processor)	143	CY7C602A	40, 33, 25	350	G	Now
CMU	Cache-Controlled Memory Management Unit	243	CY7C604A	40,33,25	750	G	Now
CMU-MP	Cache Controller and Multiprocessing Memory Management Unit	243	CY7C605A	40,33,25	850	G	Now
IU	SPARC32-bit Integer Unit for Embedded Control	160	CY7C611A	25	600	U	Now
CSU	SPARCCache Storage Unit	52	CY7C157A	40	250	J	Now
CPU	Complete Uniprocessor SPARCCPU	MBus 100	CYM6001K	40	2600		Now
CPU	Complete Multiprocessor SPARC Dual CPU	MBus 100	CYM6002K	40	5200		Now
CPU	Complete Multiprocessor SPARC Single CPU	MBus 100	CYM6003K	40	2800		Now
M2MC	MBus Memory Controller	160	CY7C613	40	280	N	Now
M2SX	MBus Peripheral I/O Controller	208	CY7C614	40	280	N	Now
INT/T	Interrupt Controller/Timer	100	CY7C615	40	230	N	Now
M2S	MBus-to-SBus Interface Controller	208	CY7C616	40	280	N	Now
M2V	MBus Graphics Controller	208	CY7C617	40	280	N	Now
SBus-DMA	Sbus DMA Controller	120	CY7C618	40	280	N	Now
CPU	Complete Multiprocessing SPARC SingleCPU 128K Cache	MBus 100	CYM6221K	55,66	3200		Now
CPU	Complete Multiprocessing SPARC SingleCPU256K Cache	MBus 100	CYM6224K	55,66	3300		Now
CPU	Complete Multiprocessing SPARCDualCPU 256 K Cache	MBus 100	CYM6226K	55,66	6400		Now
CPU	Complete Uniprocessor SPARCCPU	256	CYM6111	40	2600	MCM	Now

VMEbus Interface Products

Organization	Pins	Part Number	Speed (MHz)	I CC $^{\text {(mA) }}$	Packages	Availability
VME Interface Controller	$144 / 160$	VIC068A	64	250	B, G,N,U	Now
VME Address Controller	$144 / 160$	VAC068A	50	150	B,G,N,U	Now
64-Bit VIC	$144 / 160$	VIC64	64	300	B,G,N,U	Now
Bus Interface LogicCircuit	64	CY7C964	N/A	120	N,U	Now

Jommunication Products

Organization	Pins	Part Number	Speed (MHz)	$\mathrm{I}_{\mathbf{C C}}(\mathrm{mA})$	Packages	Availability
HOTLink Transmitter	28	CY7B923	160-330	70	D, J, L, P	1 Q 93
HOTLink Receiver	28	CY7B933	160-330	100	D, J, L, P	1Q93

Product Selector Guide

Notes:

The above specifications are for the commercial temperature range of $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$. Military temperature range $\left(-55^{\circ} \mathrm{C}\right.$ to $\left.+125^{\circ} \mathrm{C}\right)$ product processed to MIL-STD-883 Revision C is also available for most products. Speed and power selections may vary from those above. Contact your local sales office for more information.
Commercial grade product is available in plastic, cerDIP, or LCC. Military grade product is available in cerDIP, LCC, or PGA. F, K, and T packages are special order only.
All power supplies are $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} \pm 10 \%$ (VCC $=5 \mathrm{~V} \pm 5 \%$ for RISC).
$22 \mathrm{~S}, 24 \mathrm{~S}, 28 \mathrm{~S}$ stands for 300 mil . 22 -pin, 24 -pin, 28 -pin, respectively. 28.4 stands for 28 -pin $400 \mathrm{mil}, 24.4$ stands for 24 -pin 400 mil.
PLCC, SOJ, and SOIC packages are available on some products.
F, K, and T packages are special order only.
MAX and MAX+PLUS are registered trademarks of Altera Corporation.

Package Code:

B = Plastic Pin Grid Array
D = CerDIP
E = Tape Automated Bond

(TAB)

$F=$ Flatpack
$\mathbf{G}=$ Pin Grid Array (PGA)
$\mathrm{H}=$ Windowed Hermetic LCC
$\mathrm{J}=\mathrm{PLCC}$
$K=$ Cerpack
$\mathbf{L}=$ Leadless Chip Carrier (LCC)
$\mathbf{N}=$ Plastic Quad Flatpack
$\mathbf{P}=$ Plastic
Q = Windowed LCC

R $=$ Windowed PGA
$\mathrm{S}=\mathrm{SOIC}$
T = Windowed Cerpack
$\mathbf{U}=$ Ceramic Quad Flatpack
$\mathrm{V}=\mathrm{SOJ}$
W = Windowed CerDIP
$\mathrm{X}=\mathrm{DICE}$
HD = Hermetic DIP
HV $=$ Hermetic Vertical DIP
PF = Plastic Flat SIP
$\mathrm{PS}=\mathrm{Plastic} \mathrm{SIP}$
PZ $=$ Plastic ZIP
$\mathrm{Y}=$ Ceramic LCC

Document \#: 38-00237-B

CYPRESS	CYPRESS
2147-35C	7C147-35C
2147-45C	2147-35C
2147-45C	7C147-45C
2147-45M+	7C147-45M+
2147-55C	2147-45C
2147-55M	2147-45M
2148-35C	21L48-35C
2148-35C	7C148-35C
2148-35M	7C148-35M
:148-45C	2148-35C
2148-45C	21L48-45C
!148-45M	2148-35M
:148-45M+	7C148-45M+
:148-55C	2148-45C
! 148 -55C	21L48-55C
:148-55M	2148-45M
:149-35C	21L49-35C
:149-35C	7C149-35C
:149-35M	7C149-35M
:149-45C	21L49-45C
.149-45M	2149-35M
149-45M	7C149-45M
149-55C	2149-45C
149-55C	21L49-55C
149-55M	2149-45M
1L48-35C	7C148-35C
1L48-45C	21L-48-35C
1L48-45C	7 C 148 -45C
1L48-55C	21L48-45C
1L49-35C	7C149-25C
1L49-45C	21L49-35C
1L49-45C	7C149-45C
1L49-55C	21L49-45C
$7 \mathrm{SO3AC}$	7C189-25C
7S03AM	7C189-25M
7S03C	27S03AC
7S03C	74S189C
7S03M	27S03AM
7S03M	54S189M
7S07AC	7C190-25C
7S07AM	7C190-25M
7S07C	27S07AC
7S07M	27S07AM
7S07M	7C190-25M
901CC	7C901-31C
901CM	7C901-32M
909AC	7C909-40C
909AM	7C909-40M
910AC	$7 \mathrm{C} 910-50 \mathrm{C}$
910AM	7C910-51M
910 C	2910AC
910 M	2910AM
911 AC	7C911-40C
911AM	7C911-40M
341-2C	7C401-5C+
341-2M	7C401-10M
341C	3341-2C
341M	3341-2M
4S189M	27S03M
116A-45C	6116A-35C
116A-55C	6116A-45C
116A-55M	6116A-45M

CYPRESS	CYPRESS
74S189C	$27 \mathrm{SO3C}$
7C122-25C	7C122-15C+
7C122-35C	7C122-25C
7C122-35M	7C122-25M
7C123-12C	7C123-7C
7C128A-35C	7C128A-25C
7C128A-45C	7C128A-35C
$7 \mathrm{C} 128 \mathrm{~A}-45 \mathrm{M}$	7C128A-35M+
7C128A-55C	7C128A-45C+
7C128A-55M	7C128A-45M+
7C130-45C	$7 \mathrm{C} 130-35 \mathrm{C}$
7C130-55C	$7 \mathrm{Cl130-45C}$
7C130-55M	7C130-45M
7C131-45C	7C131-35C
7C131-55C	7C131-45C
7C131-55M	7C131-45M
7C132-45C	7C132-35C
7C132-55C	7C132-45C
7C132-55M	7C132-45M
7C136-45C	7C136-35C
7C136-55C	7C136-45C
7C136-55M	7C136-45M
7C140-35C	$7 \mathrm{C} 140-25 \mathrm{C}$
7C140-45C	7C140-35C
7C140-55C	7C140-45C
7C141-35C	7C141-25C
7C141-45C	7C141-35C
7C141-55C	7C141-45C
7C147-35C	7C147-25C+
7C147-45C	7C147-35C
7C148-35C	7C148-25C+
7C148-45C	$7 \mathrm{C} 148-35 \mathrm{C}$
7C149-35C	7C149-25C+
7C149-45C	7C149-35C
7C149-45M	7C149-35M
7C150-25C	7C150-15C
7C150-35C	7C150-25C
7C150-35M	7C150-25M
7C167A-35C	7C167A-25C
7C167A-45M	7C167A-35M+
7C168A-35C	7C168A-25C
7C168A-45M	7C168A-35M +
7C169A-35C	7C169A-25C
7C169A-40M	7C169A-35M +
7C170A-35C	7C170A-25C
7C170A-45C	$7 \mathrm{C} 170 \mathrm{~A}-35 \mathrm{C}$
7C170A-45M	$7 \mathrm{C} 170 \mathrm{~A}-35 \mathrm{M}$
7C171A-35C	7C171A-25C
7C171A-45M	7C171A-35M+
7C172A-35C	7C172A-25C
7C172A-45M	7C172A-35M+
7C186L-45M	7C186-45M
7C189-25C	7C189-15C+
7C190-25C	7C190-15C+
7C191-45M	7C191-35M
7C192-45M	7C192-35M
7C194-35C	7C194-25C
7C194-45C	7C194-35C+
7C194-45M	7C194-35M
7C196-35C	7C196-25C
7C196-45C	7C196-35C+
7C197-35C	7C197-25C

CYPRESS	CYPRESS
7C197-45C	7C197-35C+
7C197-45M	7C197-35M
7C198-45C	7C198-35C
7C198-55C	7C198-45C+
7C198-55M	7C198-45M
7C199-45C	7C199-35C
7C199-55C	7C199-45C+
7C199-55M	7C199-45M
7C225-30C	7C225-25C
7C225-30M	7C225-25M
7C225-40C	7C225-30C
7C225-40M	7C225-35M
7C235-40C	7C235-30C
7C245-35C	7C245-25C
7C245-45C	7C245-35C
7C245-45M	7C245-35M
7C245A-25C	7C245A-18C
7C245A-35C	7C245AL-35C
7C245A-35M	7C245A-25M
7C245AL-35C	7C245A-25C+
7C245L-35C	7C245-35C+
7C245L-45C	7C245L-35C
7C251-55C	7C251-45C
7C251-65C	7C251-55C
7C251-65C	7C251-55C
7C251-65M	7C251-55M
7C253-65M	7C253-55M
7C254-55C	7C254-45C
7C254-65C	7C254-55C
7C254-65M	7C254-55M
7C261-45C	7C261-35C
7C261-55C	7C261-45C
7C261-55M	7C261-45M
7C263-45C	7C263-35C
7C263-55C	7C263-45C
7C263-55M	7C263-45M
7C264-45C	7C264-35C
7C264-55C	7C264-45C
7C264-55M	7C264-45M
7C269-50C	7C269-40C+
7C269-60C	7C269-50C
7C269-60M	7C269-50M+
7C281-45C	$7 \mathrm{C} 281-30 \mathrm{C}$
7C282-45C	7C282-30C+
7C291-35C	7C291-25C+
7C291-50C	7C291-35C
7C291-50M	7C291-35M
7C291A-35C	7C291AL-35C
7C291A-35M	7C291A-30M
7C291A-50C	7C291AL-50C
7C291A-50M	7C291A-35M
7C291AL-35C	7C291A-25C+
7C291AL-50C	7C291AL-35C
7C291L-35C	7C291-35C+
7C291L-50C	7C291L-35C
7C292-35C	7C292-25C+
7C292-50C	7C292-35C
7C292L-35C	7C292-35C+
7C292L-50C	7C292L-35C
7C293A-35C	7C293AL-35C
7C293A-35M	7C293A-30M
7C293A-50C	7C293AL-50C

CXPRESS	CYPRESS
7C293A-50M	7C293A-35M
7C293AL-35C	7C293A-20C+
7C293AL-50C	7C293AL-35C
7C401-10C	7C401-15C
7C401-10M	7C401-15M
7C401-5C	7C401-10C
7C402-10C	7C402-15C
7C402-10M	7C402-15M
7C402-5C	$7 \mathrm{C} 402-10 \mathrm{C}$
7C403-10C	7C403-15C
7C403-10M	7C403-15M
7C403-15C	7C403-25C
7C403-15M	7C403-25M
7C404-10C	7C404-15C
7C404-10M	7C404-15M
7C404-15C	7C404-25C
7C404-15M	7C404-25M
7C408-15C	7C408-25C
7C408-15M	7C408-25M
7C408-25C	7C408-35C
7C409-15C	7C409-25C
7C409-15M	7C409-25M
7C409-25C	7C409-35C
7C420-40C	$7 \mathrm{C} 420-30 \mathrm{C}$
7C420-40M	7C420-30M
7C420-65C	7C420-40C
7C420-65M	7C420-40M
7C421-40C	7C421-30C
7C421-40M	7C421-30M
7C421-65C	7C421-40C
7C421-65M	7C421-40M
7C424-40C	7C424-30C
7C424-40M	7C424-30M
7C424-65C	7C424-40C
7C424-65M	7C424-40M
7C425-40C	7C425-30C
7C425-40M	7C425-30M
7425-65C	7C425-40C
7C425-65M	7C425-40M
7C428-40C	7C428-30C
7C428-40M	7C428-30M
7C428-65C	7C428-40C
7C428-65M	7C428-40M
7C429-40C	7C429-30C
7C429-40M	7C429-30M
7C429-65C	7C429-40C
7C429-65M	7C429-40M
7C510-55C	7C510-45C
7C510-65C	7C510-55C
7C510-65M	7C510-55M
7C510-75C	7C510-65C
7C510-75M	7C510-65M
7C516-45C	7C516-38C
7C516-55C	7C516-45C
7C516-55M	7C516-42M
7C516-75C	7C516-55C
7C516-75M	7C516-55M
7C517-45C	7C517-38C
7C517-55C	7C517-45C
7C517-55M	7C517-42M
7C517-75C	7C517-55C
7C517-75M	7C517-55M

CYPRESS	CYPRESS
7C901-31C	7C901-23C+
7C901-32M	7C901-27M
7C909-40C	7C909-30C
7C909-40M	7C909-30M
7C910-50C	7C910-40C
7C910-51M	7C910-46M
7C910-93C	7C910-50C
7C910-99M	7C910-51M
7C9101-40C	7C9101-30C
7C9101-45M	7C9101-35M
7C911-40C	7C911-30C
7C911-40M	7C911-30M
9122-25C	7C122-15C
9122-25C	91L22-25C
9122-35C	9122-25C
9122-35C	91L22-35C
9122-45C	93L422C
91L22-25C	7 C 122 -25C
91L22-35C	7C122-35C
91L22-45C	93L422AC
93422AC	7C122-35C
93422AC	9122-35C
93422AM	7C122-35M
93422C	93L422AC
93422M	93422AM
93422M	93L422AM
93L422AC	7C122-35C
93L422AC	91L22-45C
93L422AM	7C122-35M
93L422C	93L422AC
93L422M	93L422AM
PALC16L8-25C	PALC16L8L-25C
PALC16L8-30M	PALC16L8-20M
PALC16L8-35C	PALC16L8-25C
PALC16L8-40M	PALC16L8-30M
PALC16L8L-35C	PALC16L8L-25C
PALC16R4-25C	PALC16R4L-25C
PALC16R4-30M	PALC16R4-20M
PALC16R4-35C	PALC16R4-25C
PALC16R4-40M	PALC16R4-30M
PALC16R4L-35C	PALC16R4L-25C
PALC16R6-25C	PALC16R6L-25C
PALC16R6-30M	PALC16R6-20M
PALC16R6-35C	PALC16R6-25C
PALC16R6-40M	PALC16R6-30M
PALC16R6L-35C	PALC16R6L-25C
PALC16R8-25C	PALC16R8L-25C
PALC16R8-30M	PALC16R8-20M
PALC16R8-35C	PALC16R8-25C
PALC16R8-40M	PALC16R8-30M
PALC16R8L-35C	PALC16R8L-25C
PALC22V10-35C	PALC22V10-25C
PALC22V10-40M	PALC22V10-30M
PALC22V10L-25C	PALC22V10-25C
PALC22V10L-35C	PALC22V10L-25C
PLDC20G10-35C	PLDC20G10-25C
PLDC20G10-40M	PLDC20G10-30M
ALTERA	CYPRESS
PREFIX:EPM	PREFIX:CY
PREFIX:EP	PREFIX:PLD
5032DC	7C344-25WC

ALTERA	CYPRESS
5032DC-2	7C344-20WC
5032DC-15	Call Factory
5032DC-17	Call Factory
5032DC-20	7C344-20WC
5032DC-25	7C344-25WC
5032DM	7C344-25WMB
5032DM-25	7C344-25WMB
5032JC	7C344-25HC
5032JC-2	7-344-20HC
5032JC-15	Call Factory
5032JC-17	Call Factory
5032JC-20	7C344-20HC
5032JC-25	7C344-25HC
5032JI-20	7C344-20HI
5032JM	7C344-25HMB
$5032 \mathrm{JM}-25$	7C344-25HMB
5032LC	7C344-25JC
5032LC-2	7C344-20JC
5032LC-15	Call Factory
5032LC-17	Call Factory
5032LC-20	7C344-20JC
5032LC-25	7C344-25JC
5032PC	7C344-25PC
5032PC-2	7C344-20PC
5032PC-15	Call Factory
$5032 \mathrm{PC}-17$	Call Factory
5032PC-20	7C344-20PC
$5032 \mathrm{PC}-25$	7C344-25PC
5064JC	7C343-35HC
5064JC-1	7C343-25HC
5064JC-2	7C343-30HC
5064JI	7C343-35HI
5064JM	7C343-35HMB
5064LC	7C343-35JC
5064LC-1	7C343-25JC
5064LC-2	7C343-30JC
5128 GC	7C342-35RC
$5128 \mathrm{GC}-1$	7C342-25RC
5128GC-2	7C342-30RC
5128GM	7C342-35RMB
5128JC	7C342-35HC
5128JC-1	7C342-25HC
5128JC-2	7C342-30HC
5128JI-2	7C342-30HI
5128JM	7C342-35HMB
5128LC	7C342-35JC
5128LC-1	7C342-25JC
5128LC-2	7C342-30JC
5128LI-2	$7 \mathrm{C} 342-30 \mathrm{HI}$
5192 GC	7C341-35RC
5192GC-1	7C341-25RC
5192GC-2	7C341-30RC
5192JC	7C341-35HC
5192JC-1	7C341-25HC
5192JC-2	7C341-30HC
5192JI	7C341-35HI
610A-15C	610-15C
AMD	CYPRESS
PREFIX:Am	PREFIX:CY
PREFIX:SN	PREFIX:CY
SUFFIX:B	SUFFIX:B

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on $I_{C C}$ and 5 mA on I_{SB}
$+=$ meets all performance specs but may not meet \mathbf{I}_{CC} or I_{SB}

* $=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or $\mathbf{I}_{\text {SB }}$
$-=$ functionally equivalent
$\dagger=$ SOIC only
$\ddagger=32$-pin LCC crosses to the 7 C 198 M

Product Line Cross Reference

AMD	CYPRESS	AMD	CYPRESS	AMD	CYPRESS
SUFFIX:D	SUFFIX:D	27S191M	7C292A-50M	29517AC	7C517-38C
SUFFIX:F	SUFFIX:F	27S191SAC	7C292A-25C	29517C	7C517-55C
SUFFIX:L	SUFFIX:L	27S191SAM	7C292A-30M	29517M	7C517-55M
SUFFIX:P	SUFFIX:P	27S25AC	7C225-30C	29701C	27S07C
$2130-100 \mathrm{C}$	7C130-55C	27S25AM	7C225-35M	29701M	27S07M
2130-120C	$7 \mathrm{C} 130-55 \mathrm{C}$	27S25SAM	7C225-30M	29C01-1C	7C901-23C+
$2130-55 \mathrm{C}$	$7 \mathrm{C} 130-45 \mathrm{C}$	27S25C	7C225-40C	29 C 01 BA	7C901-32M
2130-55C	$7 \mathrm{C} 130-55 \mathrm{C}$	27S25M	7C225-40M	29C01BC	7C901-31C
2130-70C	$7 \mathrm{C} 130-55 \mathrm{C}$	27S25SAC	$7 \mathrm{C} 225-25 \mathrm{C}$	29 C 01 C	7C901-31C
2130-70/BC	$7 \mathrm{C} 130-55 \mathrm{MB}$	27S281AC	7C281-30C	29C01CC	7C901-31C
2140-55C	7C140-45C	27S281AM	7C281-45M	$29 \mathrm{C} 10-1 \mathrm{C}$	$7 \mathrm{C} 910-40 \mathrm{C}$
2140-55C	7C140-55C	27S281C	7C281-45C	29 Cl 101 C	7C9101-40C
2140-70C	$7 \mathrm{C} 140-55 \mathrm{C}$	27S281M	7C281-45M	29C101M	7C9101-35M
2140-70/BC	7C140-55MB	27S291AC	$7 \mathrm{C} 291 \mathrm{~A}-35 \mathrm{C}$	29C10ABA	7C910-51M
2147-35C	2147-35C	27S291AM	7C291A-50M	29 Cl 10 AC	$7 \mathrm{C} 910-50 \mathrm{C}$
2147-45C	2147-45C	27S291C	$7 \mathrm{C} 291 \mathrm{~A}-50 \mathrm{C}$	29 C 10 AC	7C910-93C
2147-45M	2147-45M	27S291M	7C291A-50M	29L510C	7C510-75C
2148-35C	2148-35C	27S291SAC	7C291A-25C	29L510M	7C510-75M
2148-35M	2148-35M	27S291SAM	7C291A-30M	29L516C	7C516-75C
2148-45C	2148-45C	27S35AC	7C235-30C	29L516M	7C516-75M
2148-45M	2148-45M	27S35AM	7C235-40M	29L517C	7C517-75C
2149-35C	2149-35C	27S35C	7C235-40C	29L517M	7C517-75M
2149-45C	2149-45C	27S35M	7C235-40M	3341C	3341 C
2149-45M	2149-45M	27S45AC	7C245-35C	3341M	3341M
21L47-55C	7C147-45C	27S45AM	7C245-45M	67C401-10	7C401-10
21L49-45C	21L49-45C	27S45C	7C245-45C	67C401-15	7C401-15
27C256-55C	7C274-55C	27S45M	7C245-45M	67C401-25	7C401-25
27C256-70C	7C274-55C	27S45SAC	7C245-25C	67C402-10	7C402-10
27C64-55C	7C266-55C	27S45SAM	$7 \mathrm{C} 245 \mathrm{~A}-25 \mathrm{M}-$	67C402-15	7C402-15
27C64-70C	7C266-55C	27S49A	7C263/4-40C	67C402-25	7C402-25
27H256-35C	7C274-35C	27S49AM	7C263/4-55M	67C4023-10	7C404-10
$27 \mathrm{H} 256-45 \mathrm{C}$	7C274-45C	27S49C	7C263/4-55C	67C4023-15	7C404-15
27H256-45M	7C274-45M	27S49M	7C263/4-55M	67C403-10	7C403-10
27H256-55C	7C274-55C	27S49SAC	7C263/4-25C	67C403-15	7C403-15
:7H256-55M	7C274-55M	27S49SAM	7C263/4-25M	67C403-25	7C403-25
:7H256-70C	7C274-55M	2841AC	3341C	7201-25	7C420-25
27C512-75C	7C286-70C	2841AM	3341M	7201-35	7C420-30
77C512L-75C	7C286-70C	2841C	3341 C	7201-50	7C420-40
:7LS291M	7C291-35M	2841M	3341M	7201-65	7C420-65
:7PS191AC	7C292-50C	2901BC	2901CC	7201-80	7C420-65
17PS191AM	7C292-50M+	2901BM	2901CM	7201-25R	7C421-25
17PS191C	7C292-50C	2901CC	2901CC	7201-35R	7C421-30
:7PS191M	7C292-50M+	2901CM	2901CM	7201-50R	7C421-40
:7PS291AC	7C293-50C	2909AC	2909AC	7201-65R	7C421-65
:7PS291AM	7C293-50M +	2909AM	2909AM	$7201-80 \mathrm{R}$	7C421-65
:7PS291C	7C293-50C	2909C	2909AC	$7202 \mathrm{~A}-15$	7 C 425 A -15
:7PS291M	7C293-50M+	2909M	2909M	7202A-25	7C424-25
:7S03AC	27S03AC	2910-1C	2910C	7202A-35	7C424-30
7503AM	27S03AM	2910-1M	2910M	$7202 \mathrm{~A}-50$	7C424-40
:7503C	$27 \mathrm{S03C}$	2910AC	2910AC	7202A-65	7C424-65
:7S03M	27S03M	2910AM	2910AM	7202A-80	7C424-65
17S07AC	27S07AC	2910C	2910C	$7202 \mathrm{~A}-25 \mathrm{R}$	7C425-25
'7S07AM	27S07AM	2910M	2910M	7202A-35R	7C425-30
7507C	27S07C	2911AC	2911AC	7202A-50R	7C425-40
7S07M	27S07M,	2911AM	2911AM	7202A-65R	7C425-65
7 7S181AC	7C282-30C	2911C	2911AC	$7202 \mathrm{~A}-80 \mathrm{R}$	7C425-65
7S181AM	7C282-45M	2911M	2911M	$7203 \mathrm{~A}-15$	$7 \mathrm{C} 429 \mathrm{~A}-15$
785181C	7C282-45C	29510C	7C510-75C	7203A-25	7C428-25
7S181M	7C282-45M	29510M	7C510-75M	7203A-35	7C428-30
:7S191AC	$7 \mathrm{C} 292 \mathrm{~A}-35 \mathrm{C}$	29516AM	7C516-55M	7203A-50	7C428-40
:7S191AM	$7 \mathrm{C} 292 \mathrm{~A}-50 \mathrm{M}$	29516C	7C516-55C	7203A-65	7C428-65
7S191C	7C292A-50C	29516M	7C516-55M	7203A-80	7C428-65

AMD	CYPRESS	AMD	CYPRESS
7203A-25R	7C429-25	PAL16R4BM	PALC16R4-20M
7203A-35R	7C429-30	PAL16R4C	PALC16R4-35C
7203A-50R	7C429-40	PAL16R4LC	PALC16R4-35C
7203A-65R	7C429-65	PAL16R4LM	PALC16R4-40M
7203A-80R	7C429-65	PAL16R4M	PALC16R4-40M
7204A-15	$7 \mathrm{C} 433 \mathrm{~A}-15$	PAL16R4QC	PALC16R4L-35C
7204A-25	7C432-25	PAL16R4QM	PALC16R4-40M
7204A-35	7C432-30	PAL16R6A-4C	PALC16R6L-35C
7204A-50	7C432-40	PAL16R6A-4M	PALC16R6-40M
7204A-65	7C432-65	PAL16R6AC	PALC16R6-25C
7204A-80	7C432-65	PAL16R6ALC	PALC16R6-25C
7205A-15	7C460-15	PAL16R6ALM	PALC16R6-30M
7205A-25	7C460-25	PAL16R6AM	PALC16R6-30M
$74 \mathrm{S189C}$	$74 \mathrm{S189}$ C	PAL16R6BM	PALC16R6-20M
9122-25C	9122-25C	PAL16R6C	PALC16R6-35C
9122-35C	9122-35C	PAL16R6LC	PALC16R6-35C
9122-35M	7C122-35M	PAL16R6LM	PALC16R6-40M
9128-100C	6116A-55C	PAL16R6M	PALC16R6-40M
9128-120M	6116A-55M	PAL16R6QC	PALC16R6L-35C
9128-150C	6116A-55C	PAL16R6QM	PALC16R6-40M
9128-150M	6116A-55M	PAL16R8A-4C	PALC16R8L-35
9128-200C	6116A-55C	PAL16R8A-4M	PALC16R8-40M
9128-200M	$6116 \mathrm{~A}-55 \mathrm{M}$	PAL16R8AC	PALC16R8-25C
9128-70C	6116A-55C	PAL16R8ALC	PALC16R8-25C
9128-90M	6116A-55M	PAL16R8ALM	PALC16R8-30M
9150-20C	7C150-15C	PAL16R8AM	PALC16R8-30M
9150-25C	7C150-25C	PAL16R8BM	PALC16R8-20M
9150-25M	7C150-25M	PAL16R8C	PALC16R8-35C
9150-35C	7C150-35C	PAL16R8LC	PALC16R8-35C
9150-35M	$7 \mathrm{C} 150-35 \mathrm{M}$	PAL16R8LM	PALC16R8-40M
9150-45C	7C150-35C	PAL16R8M	PALC16R8-40M
9150-45M	$7 \mathrm{C} 150-35 \mathrm{M}$	PAL16R8QC	PALC16R8L-35
91L22-35C	91L22-35C	PAL16R8QM	PALC16R8-40M
91L22-35M	7C122-35M	PAL22V10-7JC	PALC22V10D-7JC
91L50-25C	7C150-25C	PAL22V10-7PC	PALC22V10D-7PC
91L50-35C	$7 \mathrm{C} 150-35 \mathrm{C}$	PAL22V10-10DC	PALC22V10D-10DC
93422AC	93422AC	PAL22V10-10JC	PALC22V10D-10JC
93422AM	93422AM	PAL22V10-10PC	PALC22V10D-10PC
93422C	93422C	PAL22V10-12/B3A	PALC22V10B
93422M	93422M		-10LMB
93L422AC	93L422AC	PAL22V10-12/BLA	PALC22V10B
93L422AM	93LA22AM		-10DMB
93L422C	93L422C	PAL22V10-15DC	PALC22V10B-15DC
93L422M	93L422M	PAL22V10-15JC	PALC22V10B-15JC
PAL16L8A-4C	PALC16L8L-35C	PAL22V10-15PC	PALC22V10B-15PC
PAL16L8A-4M	PALC16L8-40M	PAL22V10-20/B3A	PALC22V10B
PAL16L8AC	PALC16L8-25C		-20LMB
PAL16L8ALC	PALC16L8-25C	PAL22V10-20/BLA	$\begin{aligned} & \text { PALC22V10B } \\ & -\rightarrow \text { ODMB } \end{aligned}$
PAL16L8ALM	PALC16L8-30M		
PAL16L8AM	PALC16L8-30M	PAL22V10/B3A PAL22V10/BLA	PALC22V10-35DMB
PAL16L8BM	PALC16L8-20M		
PAL16L8C	PALC16L8-35C	PAL22V10A/B3A	PALC22V10-25LMB
PAL16L8LC	PALC16L8-35C	PAL22V10A/BLA	PALC22V10-25DMB
PAL16L8LM	PALC16L8-40M	PAL22V10ADC	PALC22V10-25DC
PAL16L8M	PALC16L8-40M	PAL22V10AJC	PALC22V10-25JC
PAL16L8QC	PALC16L8L-35C	PAL22V10APC	PALC22V10-25PC
PAL16L8QM	PALC16L8-40M	PAL22V10DC	PALC22V10-35DC
PAL16R4A-4C	PALC16R4L-35C	PAL22V10JC	PALC22V10-35JC
PAL16R4A-4M	PALC16R4-40M	PAL22V10PC	PALC22V10-35PC
PAL16R4ALC	PALC16R4-25C	PALCE16V8H-15C	PLDC18G8-12C
PAL16R4ALM	PALC16R4-30M	PALCE16V8H-15C	PLDC18G8-15C
PAL16R4AM	PALC16R4-30M	PALCE16V8H-20/B	PLDC18G8-15MB
		PALCE16V8H-20/B	PLDC18G8-20MB

AMD	CYPRESS
PALCE16V8H-25/B	PLDC18G8-20MB
PALCE16V8H-25C	PLDC18G8-20C
PALCE22V10H-10JC	PALC22V10D-10JC
PALCE22V10H-10PC	PALC22V10D-10PC
PALCE22V10H	PALC22V10D
-15/B3A	-15LMB
$\underset{-15 / \mathrm{BLA}}{\text { PALCE22V10H }}$	$\begin{aligned} & \text { PALC22V10D } \\ & \text {-15DMB } \end{aligned}$
PALCE22V10H-15JC	PALC22V10D-15JC
PALCE22V10H-15PC	PALC22V10D-15PC
$\left.\right\|_{-20 / B 3 A} ^{\text {PALCE } 22 V 10 H ~}$	PALC22V10D
$\underset{-20 / \mathrm{BLA}}{\text { PALCE22V10H }}$	$\begin{aligned} & \text { PALC22V10D } \\ & \text {-20DMB } \end{aligned}$
${\underset{-25 / B 3 A}{\text { PALCE22V10H }}}^{2}$	$\begin{aligned} & \text { PALC22V10D } \\ & -25 \mathrm{LMB} \end{aligned}$
${\underset{-25 / B L A}{\text { PALCE22V10H }}}^{2}$	$\begin{aligned} & \text { PALC22V10D } \\ & \text {-25DMB } \end{aligned}$
PALCE22V10H-25JC	PALC22V10D-25JC
PALCE22V10H-25PC	PALC22V10D-25PC
PALCE22V10H	PALC22V10D
-30/B3A	-25LMB
PALCE22V10H	PALC22V10D
-30/BLA	-25DMB
ANALOGDEV	CYPRESS
PREFIX:ADSP	PREFIX:CY
SUFFIX:883B	SUFFIX:B
SUFFIX:D	SUFFIX:D
SUFFIX:E	SUFFIX:L
SUFFIX:F	SUFFIX:F
SUFFIX:G	SUFFIX:G
1010A	7C510-65C+
1010J	7C510-75C+
1010K	7C510-75C+
1010S	7C510-75M+
1010T	7C510-75M+
7C901-27M	7C910-32M
7C901-32M	2901CM
AT\&T	CYPRESS
7C116-20	6116A-20C
7C116-25	6116A-25C
7C166-10	7B166-10C
7C166-12	7B166-12C
7C166-15	7C166-15C
7C166-20	7C166-20C
7C166-25	7C166-25C
7C185-10	7B185-10C
7C185-12	7C185-12C
7C185-15	7C185-15C
7C185-20	7C185-20C
7C185-25	7C185-25C
7C194-15	7C194-12C
7C194-15	7C194-15C
7C194-20	7C194-20C
7C194-25	7C194-25C
7C199-12	7C199-12C
7C199-15	7C199-15C
7C199-20	7C199-20C
7C199-25	7C199-25C

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I_{CC} and 5 mA on $\mathrm{I}_{\text {SB }}$
$+=$ meets all performance specs but may not meet $I_{C C}$ or $I_{S B}$

* $=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or I_{SB}
- = functionally equivalent
$\dagger=$ SOIC only
末 $=32$-pin LCC crosses to the 7 C 198 M

ATMEL	CYPRESS
PREFIX:AT	PREFIX:CY
27HC256R-55C	7C274-55C
27HC256R-70C	7C274-55C
27HC256R-70M	7C274-55M
27HC642-35C	7C261-35C
27HC642-45C	7C261-45C
27-HC642-45M	7C261-45M
27HC642-55C	7C261-55C
27HC642-55M	7C261-55M
27HC642-70C	7C261-55C
22V10	PALC22V10
22V10-15	PALC22V10B
CATALYST	CYPRESS
SAT27HC256L/LI-55	CY7C274-55C/I
こAT27HC256L/LI-70	CY7C274-55C/I
DALLAS	CYPRESS
?REFIX:DS	PREFIX:CY
2009	7C421-25C
\bigcirc	7C425-2C
:011	7C429-25C
JENSEPAK	CYPRESS
'REFIX:DPS	PREFIX:CYM
.6X17-25C	1611HV-25C
6X17-25C	1611HV-25C
.6X17-35C	1611HV-35C
.6X17-35C	1611HV-35C
6X17-45C	1611HV-45C
$6 \mathrm{X} 17-45 \mathrm{C}$	1611HV-45C
6X17-55C	1611HV-55C
1432-45C	1830HD-45C
;432-55C	1830HD-55C
432-55C	1830HD-55C
:M624-100C	1623HD-85C
[M624-85C	$1623 \mathrm{HD}-100 \mathrm{C}$
DI	CYPRESS
'REFIX:ED	PREFIX:CYM
16H16C-25	1611HV-25C
16H16C-35	1611HV-35C
16H16C-45	1611HV-45C
464C-45	7C194-45
F32256CXXMZC	M1841PZ-XXC
F3264CXXMZC	M1831PZ-XXC
F8512CXXBC	1465PC-XXC
F8512LPXXB6C	1465LPD-XXC
F8512PXXB6C	1465LPD-XXC
M16256C-25C9C	1641HD-25C
M16256C-30C9C	1641HD-30C
M16256C-35C9C	1641HD-35C
M16256C-45C9C	1641HD-45C
M16256C-55C9C	1641HD-55C
M16256C-70C9C	1641HD-55C
M16256C-30C9MB	1641HD-30MB
M16256C-35C9MB	1641HD-35MB
M16256C-45C9MB	1641HD-45MB
M16256C-55C9MB	1641HD-55MB
M16256C-70C9MB	$1641 \mathrm{HD}-55 \mathrm{MB}$
M32256CXXC6B	M1840HD-XXMB
M32256CXXC6B	M1840HD-XXC

EDI	CYPRESS
8M3264CXXC6B	M1830HD-XXMB
8M3264CXXC6C	M1830HD-XXC
8M8128C-100	1421HD-85C
8M8128C-100CB	1420HD-55MB
$8 \mathrm{M} 8128 \mathrm{C}-60 \mathrm{CB}$	$1420 \mathrm{HD}-55 \mathrm{MB}$
$8 \mathrm{M} 8128 \mathrm{C}-60 \mathrm{CC}$	1420HD-55C
$8 \mathrm{M} 8128 \mathrm{C}-70$	1421HD-70C
8M8512CXXC6B	1466HD-XXMB
8M8512CXXC6C	1466HD-XXC
8M8512CXXM6C	1464PD-XXC
8M8512LPXXC6B	1466LHD-XXMB
8M8512PXXC6B	1466LHD-XXMB
H816H16C-25CC-	1611HV-25C
H816H16C-35CC-	1611HV-35C
H816H16C-45CC-	1611HV-45C
H816H16C-55CC-	1611HV-45C
FUJITSU	CYPRESS
PREFIX:MB	PREFIX:CY
PREFIX:MBM	PREFIX:CY
SUFFIX:F	SUFFIX:F
SUFFIX:M	SUFFIX:P
SUFFIX:Z	SUFFIX:D
100422A-5C	100E422-5C
100422A-7C	100E422L-7C
100422AC	100E422L-7C
100470A-7	100E470-7C
100470A-10	100E470-7C
100470A-15	100E470-7C
100474A-3C	100E474-3.5C
100474A-5C	100E474-5C
100474A-7C	100E474L-7C
100474AC	100E474L-7C
100484A-10	100E484L-7C
100484A-8	100E484L-7C
100484-15	100E484L-7C
101A484-5	101E484-5C
10422A-5C	10E422-5C
10422A-7C	10E422L-7C
10422AC	10E422L-7C
10470A-7	10E470-7C
10470A-10C	10E470-7C
10470A-15C	10E470-7C
10470A-20C	10E470-7C
10474A-3C	10E474-4C
10474A-5C	10E474-5C
10474A-7C	10E474L-7C
10474AC	10E474L-7C
10484-15	10E484L-7C
10484A-8	10E484L-7C
10484A-10	10E484L-7C
10484A-5	10E484-5C
$2147 \mathrm{H}-35$	2147-35C
$2147 \mathrm{H}-45$	2147-45C
$2147 \mathrm{H}-55$	2147-55C
2148-55L	21L48-55C
2149-45	2149-45C
2149-55L	21L49-55C
7132 E	7C282-45C
7132E-SK	7C281-45C
$7132 \mathrm{E}-\mathrm{W}$	7C282-45M
7132 H	7C282-45C

FUJTISU	CYPRESS
7132H-SK	7C281-45C
7132L-70	7C281/2-45C
7132 Y	7C282-30C
7132Y-SK	7C281-30C
7138Y-35	7C291/2A-35C
$7138 \mathrm{H}-45$	7C291/2A-35C
7138E-55	7C291/2A-50C
$7138 \mathrm{E}-\mathrm{W}$	7C291/2A-50M
7144E	7C264-55C
$7144 \mathrm{E}-\mathrm{W}$	7C264-55M
7144H	7C264-55C
71A38-25	7C291/2A-25C
71A38-35	7C291/2A-35C
71C44-35	7C264-35C
71C44-45	$7 \mathrm{C} 264-45 \mathrm{C}$
71C46-45	7C254-45C
7226RA/S-25	7C225-25C
7232RA-25	$7 \mathrm{C} 235-25 \mathrm{C}$
7238RA-20	$7 \mathrm{C} 245 \mathrm{~A}-18 \mathrm{C}$
7238RA-20-W	7C245A-18M
7238RA-25	7C245A-25C
7238RA-25-W	$7 \mathrm{C} 245 \mathrm{~A}-25 \mathrm{M}$
8128-10	7C128A-55C
8128-15	$7 \mathrm{C} 128 \mathrm{~A}-55 \mathrm{C}$
8167-70W	7C167A-45M
8167A-55	7C167A-45C
8167A-70	7C167A-45C
8168-55	7C168A-45C
8171-55	7C187-45C
8171-70	$7 \mathrm{C} 187-45 \mathrm{C}$
81C67-35	$7 \mathrm{C} 167 \mathrm{~A}-35 \mathrm{C}$
81C67-45	$7 \mathrm{C} 167 \mathrm{~A}-45 \mathrm{C}$
81-67-55W	7C167A-45M
81C68-45	7C168A-45C
81-68-55W	7C168A-45M+
81C71-45	$7 \mathrm{C} 187-45 \mathrm{C}$
81C71-55	7C187-45C
81C74-25	7C164-25C
81C74-35	7C164-35C+
81C74-45	7C164-45C
81C75-25	7C166-25C
81C75-35	7C166-35C
81C78-45	$7 \mathrm{C} 186-45 \mathrm{C}$
81C78-55	7C186-55C
$81 \mathrm{C} 81 \mathrm{~A}-35$	7C197-35
$81 \mathrm{C} 81 \mathrm{~A}-45$	7C197-45
81C84A-35	7C194-35
81C84A-45	7C194-45
81C86-70	7C192-45C+
8287-35	7C199-35
8299	7 C 188
8287-45	7C199-45
8464L-100	7C185-55C+
8464L-70	7C185-45C+
HARRIS	CYPRESS
PREFIX:HM	PREFIX:CY
PREFIX:HPL	PREFIX:CY
SUFFIX:8	SUFFIX:B
PREFIX:1	SUFFIX:D
PREFIX:9	SUFFIX:F
PREFIX:4	SUFFIX:L

HARRIS	CYPRESS
PREFIX:3	SUFFIX:P
16LC8-5	PALC16L8L-35C
16LC8-8	PALC16L8-40M
16LC8-9	PALC16L8-40M
16RC4-5	PALC16R4L, -35C
16RC4-8	PALC16R4-40M
16RC4-9	PALC16R4-40M
16RC6-5	PALC16R6L-35C
16RC6-8	PALC16R6-40M
16RC6-9	PALC16R6-40M
16RC8-5	PALC16R8L-35C
16RC8-8	PALC16R8-40M
16RC8-9	PALC16R8-40M
6-76161-2	7C291-50M
6-76161-5	7C291-50C
6-76161A-2	7C291-50M
6-76161A-5	7C291-50C
6-76161B-5	7C291-35C
6-7681-5	7C281-45C
6-7681A-5	7C281-45C
76161-2	7C292-50M
76161A-2	7C292-50M
76161A-5	7C292-50C
$76161 \mathrm{~B}-5$	7C292-35C
76641-2	7C264-55M
76641-5	7C264-55C
76641A-5	7C264-45C
7681-2	7C282-45M
7681-5	7C282-45C
$7681 \mathrm{~A}-5$	7C282-45C
HITACHI	CYPRESS
PREFIX:HM	PREFIX:CY
PREFIX:HN	PREFIX:CY
SUFFIX:CG	SUFFIX:L
SUFFIX:G	SUFFIX:D
SUFFIX:P	SUFFIX:P
100422C	100E422L-7C
100474-10C	100E474L-7C
100474-8C	100E474L-7C
100474C	100E474L-7C
10422C	10E422L-7C
10474-10C	100E474L-7C
10474-8C	10E474L-7C
10474C	10E474L-7C
25089	7C282-45C
25089S	7C282-45C
25169S	7C292-50C
$27 \mathrm{C} 256 \mathrm{GHG}-70 \mathrm{C}$	7С274-55C
27C256GHG-85C	7C274-55C
4847	2147-55C
4847-2	2147-45C
4847-3	2147-55C
6116ALS-12	6116A-55C*
6116ALS-15	6116A-55C*
6116ALS-20	6116A-55C*
6116AS-12	6116A-55C+
6116AS-15	6116A-55C+
6116AS-20	6116A-55C+
6147	7C147-45C**
6147-3	7C147-45C*
6147H-35	7C147-35C+

HITACHI	CYPRESS
$6147 \mathrm{H}-45$	7C147-45C+
$6147 \mathrm{H}-55$	7C147-45C+
$6147 \mathrm{HL}-35$	7C147-35C*
6147HL-45	7C147-45C*
$6147 \mathrm{HL}-55$	7C147-55C*
6148	7C148-45C
6148H-35	21L48-35C
$6148 \mathrm{H}-45$	7C148-45C+
6148H-55	7C14845C+
6148HL-35	21L48-35C*
6148HL-45	7C148-45C*
6148HL-55	7C148-45C*
6148L	7 C 148 -45C*
6167-6	7C167A-45C+
6167-8	7C167A-45C+
$6167 \mathrm{H}-55$	7C167A-45C
$6167 \mathrm{H}-70$	7C167A-45C
6167HL-55	7C167A-45C*
6167HL-70	7C167A-45C*
6167L-6	7C167A-45C*
6167L-8	7C167A-45C*
6168H-45	7C168A-45C+
6168H-55	7C168A-45C+
6168H-70	7C168A-45C+
6168HL-45	$7 \mathrm{C} 168 \mathrm{~A}-45 \mathrm{C}^{*}$
6168HL-55	7C168A-45C*
6168HL-70	$7 \mathrm{C} 168 \mathrm{~A}-45 \mathrm{C}^{*}$
6207P-35	7C197-35
6207P-45	7C197-45
6208P-35	7C194-35
6208P-45	7C194-45
62256	7C198*
6264-10	7C186-55C+
6264-12	7C186-55C+
6264-15	7C186-55C+
6267-35	7C167A-35C+
6267-45	7C167A-45C
6268-25	7C168A-25C
6268-35	7C168A-35C
62832H	7C199+
62832	7 C 199
6287-45	7C187-45C
6287-55	7C187-45C
6287-70	7C187-45C
6288-35	7C164-35C
6288-45	7C164-45C
6288-55	7C164-45C
62932	7 C 188
6707-20	7C197-20C
6707-25	7C197-25C
6707A-15	7C197-15C
6707A-20	7C197-20C
6707A-25	7C197-25C
6708-20	7C194-20C
6708-25	7C194-25C
6708A-15	7C194-15C
6708A-20	7C194-20C
6708A-25	7C194-25C
6709-20	7C195-20C
6709-25	7C195-25C
6709A-15	7C195-15C
6709A-20	7C195-20C

HITACHI	CYPRESS
6709A-25	7C195-25C
6716-25	7C128A-25C
6716-30	7C128A-25C
6787-30	7C187-25C
6788-25	7C164-25C
6788-30	7C164-25C
6788HA-12	7B164-12C
6789HA-12	7B166-12C
ICT	CYPRESS
27CX256-35C	CY7C274-35C
27CX256-45C	CY7C274-45C
27CX256-55C	CY7C274-55C
IDT	CYPRESS
PREFIX:IDT	PREFIX:CY
PREFIX:IDT	PREFIX:CYM
SUFFIX:B	SUFFIX:B
SUFFIX:D	SUFFIX:D
SUFFIX:F	SUFFIX:F
SUFFIX:L	SUFFIX:L
SUFFIX:P	SUFFIXP
100484S7	100E484L-7C
101484S7	100E484L-7C
10484S7.	10E484L-7C
39C01CB	7C901-32M+
39C01CC	2901CC+
39C01CM	2901CM+
39C01DB	7C901-27M+
39C01DC	7C901-23C+
39C09A	7C909-40C+
39C09AB	7C909-40M+
39C10B	7C910-50C-
39C10BB	7C910-51M
39C11A	7C911-40C+
39C11AB	7C911-40M+
6116SA120B	7C128A-55MB
6116SA25	7C128A-25C
616SA35	7C128A-35C
6116SA35	6116A-35C
6116SA35B	7C128A-35MB
6116SA35B	6116A-35MB
6116SA45	7C128A-45C
6116SA45	616A-45C
6116SA45B	7C128A-45MB
6116SA45B	6116A-45MB
6116SA55B	7C128A-55MB
6116SA55B	6116A-55MB
6116SA70B	7C128A-55MB
61298SA25	7C196-25C
61298SA25B	7C196-25MB
61298SA35	7C196-35C
61298SA35B	7C196-35MB
61298SA45	7C196-45C
61298SA45B	7C196-45MB
61298SA55	7C196-45
61298SA55B	7C196-45MB
61298SA70B	7C196-45MB
6167SA100B	7C167A-45MB
6167SA25	7C167A-25C
6167SA35	7C167A-35C
6167SA35B	7C167A-35MB

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I_{CC} and 5 mA on $\mathrm{I}_{\text {SB }}$
$+=$ meets all performance specs but may not meet $I_{C C}$ or $I_{S B}$

* $=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or $\mathrm{I}_{\text {SB }}$
- = functionally equivalent
$\dagger=$ SOIC only
\# = 32-pin LCC crosses to the 7C198M

[DT	CYPRESS
5167SA45B	7C167A-45MB
5167SA55B	$7 \mathrm{C} 167 \mathrm{~A}-45 \mathrm{MB}$
5167 SA 70 B	7C167A-45MB
5167SA85B	7C167A-45MB
;168SA100B	7C168A-45MB
;168SA15	$7 \mathrm{C} 168 \mathrm{~A}-15 \mathrm{C}$
3168SA20	7C168A-20C
-168SA25	7C168A-25C
168SA25B	$7 \mathrm{C} 168 \mathrm{~A}-25 \mathrm{MB}$
168SA35	7C168A-35C
168SA35B	$7 \mathrm{C} 168 \mathrm{~A}-35 \mathrm{MB}$
;168SA45B	7C168A-45MB
168SA55B	$7 \mathrm{C} 168 \mathrm{~A}-45 \mathrm{MB}$
168SA70B	$7 \mathrm{C} 168 \mathrm{~A}-45 \mathrm{MB}$
168SA90B	7C168A-45MB
197SA25	$7 \mathrm{C} 170 \mathrm{~A}-25 \mathrm{C}$
197SA35	7C170A-35C
197SA35B	7C170A-35MB
197SA45B	$7 \mathrm{C} 170 \mathrm{~A}-45 \mathrm{MB}$
197SA55	7C170A-45C
197SA55B	$7 \mathrm{C170A}-45 \mathrm{MB}$
198SA15	7C166-15C
198SA19	7C166-15C
198SA20	7C166-20C
198SA20B	7C166-A20MB
198SA25	7C166-25C
198SA25B	7C166-A25MB
198SA30	7C166-25C
198SA30B	7C166-A25MB
198SA45	7C166-45C
198SA45B	7C166-A45MB
198SA55B	7C166-A45MB
198SA70B	7C166-A45MB
198SA85B	7C166-A45MB
1B298S12	7C195-12C
1B298S15	7C195-15C
1B298S20	$7 \mathrm{C} 195-20 \mathrm{C}$
1B298S15B	7C195-15MB
1B298S20B	7C195-20MB
305S35	7B144-25C
205S35	7B144-35C
J05S45B	7B144-35MB
1256SA100B	7C198-55MB
1256SA15	$7 \mathrm{C} 199-15 \mathrm{C}$
1256SA20	$7 \mathrm{C} 199-20 \mathrm{C}$
1256SA20B	7C199-20MB
1256SA25	7C198-25C
1256SA30	7C198-25C
1256SA30B	7C198-25MB
1256SA35	7C198-35C
1256SA35B	7C198-35MB
1256SA45	7C198-45C
1256SA45B	$7 \mathrm{C} 198-45 \mathrm{MB}$
1256SA55	7C198-55C
1256SA55B	7C198-55MB
1256SA70	$7 \mathrm{C} 198-55 \mathrm{C}$
1256SA70B	7C198-55MB
1256SA85B	7 C 198 -55MB
1257SA25	7C197-25C
1257SA25B	7C197-25MB
1257SA35	7C197-35C
1257SA35B	7C197-35MB

IDT	CYPRESS	IDT	CYPRESS
71257SA45	7C197-45C	7130SA35B	7C130-35MB
71257SA45B	7C197-45MB	7130SA35J	7C131-35JC
71257SA55	7C197-45C	7130SA35LB	7C131-35LMB
71257SA55B	7C197-45MB	7130SA45	7C130-45C
71257SA70B	7C197-45MB	7130SA45B	7C130-45MB
71258SA25	7C194-25C	7130SA45J	7C131-45JC
71258SA25B	7C194-25MB	7130SA45LB	7C131-45LMB
71258 SA 35	7C194-35C	7130SA55	7C130-55C
71258SA35B	7C194-35MB	7130SA55B	7C130-55M
71258 SA 45	7C194-45C	7130SA55J	7C131-55JC
71258SA45B	7C194-45MB	7130SA55LB	7C131-55LMB
71258 SA55	7C194-45C	7130SA70	7C130-55C
71258SA55B	7C194-45MB	7130SA70B	$7 \mathrm{C} 130-55 \mathrm{MB}$
71258SA70B	7C194-45MB	7130SA70J	7C131-55JC
71259	7 C 188	7130SA70LB	7C131-55LMB
71281SA25	7C191-25C	7130SA90	7C130-55C
71281SA25B	7C191-25MB	7130SA90B	$7 \mathrm{C} 130-55 \mathrm{MB}$
71281SA35	7C191-35C	7130SA90J	7C131-55JC
71281SA35B	7C191-35MB	7130SA90LB	7C131-55LMB
71281SA45	7C191-45C	71321LA25	7C136-25C
71281SA45B	7C191-45MB	71321LA30	7C136-30C
71281SA55	7C191-45C	71321LA35	7C136-35C
71281SA55B	7C191-45MB	71321LA35B	7C136-35MB
71281SA70B	7C191-45MB	71321LA45	7C136-45C
71282SA	$7 \mathrm{C} 192-25 \mathrm{C}$	71321LA45B	$7 \mathrm{C} 136-45 \mathrm{MB}$
71282SA	7C192-25MB	71321LA55	7C136-55C
71282SA	7C192-35C	71321LA55B	7C136-55MB
71282SA	7C192-35MB	71321LA70	7C136-55C
71282SA	7C192-45C	71321LA70B	7C136-55MB
71282SA	7C192-45MB	71321LA90	7C136-55C
71282SA	$7 \mathrm{C} 192-45 \mathrm{C}$	71321LA90B	7C136-55MB
71282SA	7C192-45MB	71321SA25	7C136-25C
71282SA	7C192-45MB	71321SA30	7C136-30C
7130LA25	7C130-25C	71321SA35	$7 \mathrm{C} 136-35 \mathrm{C}$
7130LA25J	7C131-25JC	71321SA35B	7C136-35MB
7130LA30	7C130-30C	71321SA45	7C136-45C
7130LA30J	7C131-30JC	71321SA45B	7C136-45MB
7130LA35	7C130-35C	71321SA55	7C136-55C
7130LA35B	7C130-35MB	71321SA55B	7C136-55MB
7130LA35J	7C131-35JC	71321SA70	7C136-55C
7130LA35LB	7C130-35LMB	71321SA70B	7C136-55MB
7130LA45	$7 \mathrm{C} 130-45 \mathrm{C}$	71321SA90	7C136-55C
7130LA45B	$7 \mathrm{C} 131-45 \mathrm{MB}$	71321SA90B	7C136-55MB
7130LA45J	7C131-45JC	7132LA25	7C132-25C
7130LA45LB	7C130-45LMB	7132LA30	$7 \mathrm{C} 132-30 \mathrm{C}$
7130LA55	7C130-55C	7132LA35	7C132-35C
7130LA55B	7C131-55MB	7132LA35B	7C132-35MB
7130LA55J	7C131-55JC	7132LA45	7C132-45C
7130LA55L52B	7C130-55LMB	7132LA45B	7C132-45MB
7130LA70	7C130-55C	7132LA55	$7 \mathrm{Cl32-55C*}$
7130LA70B	7C131-55MB	7132LA55B	7C132-55MB
7130LA70J	7C131-55JC	7132LA70	7C132-55C*
7130LA70LB	7C130-55LMB	7132LA70B	7C132-55M*
7130LA90LB	7C131-55LMB	7132LA90	7C132-55C*
7130SA100	$7 \mathrm{C} 130-55 \mathrm{C}$	7132LA90B	7C132-55M*
7130SA100B	7C130-55MB	7132LA100	7C132-55C*
7130 SA100LB	7C131-55LMB	7132LA100B	7C132-55M*
7130SA25	7C130-25C	7132LA120B	7C132-55M*
7130SA30	7C130-25C	7132SA100	7C132-55C+
7130SA25J	7C131-25JC	7132SA100B	7C132-55M+
7130SA30J	7C131-30JC	7132SA120B	7C132-55M+
7130SA35	$7 \mathrm{C} 130-35 \mathrm{C}$	7132SA25	$7 \mathrm{C} 132-25 \mathrm{C}$

Product Line Cross Reference

IDT	CYPRESS
7132SA30	7C132-30C
7132SA35	7C132-35C
7132SA35B	7C132-35MB
7132SA45	7C132-45C
7132SA45B	7C132-45MB
7132SA55B	7C132-55MB
7132SA55	7C132-55C+
7132SA70	7C132-55C+
7132SA70B	7C132-55M+
7132SA90	7C132-55C+
7132SA90B	7C132-55M+
71342S35	7C132-25C
71342355	7C1342-35C
71342S45B	7C1342-35MB
7134S35	7B134-25C
7134S35	7B134-35C
7134S35J52	7B135-25JC
7134S35J52	7B135-35JC
7134S35L52	7B135-25LC
7134S55L52	7B135-35LC
7134S45B	7B134-35MB
7134S45L52B	7B135-35LMB
7140LA25	7C140-25C
7140LA25J	7C141-25JC
7140LA30	7C140-30C
7140LA30J	7C141-30JC
7140LA30L52	7C141-30LC
7140LA35	7C140-35C
7140LA35B	7C140-35MB
7140LA35J	7C141-35JC
7140LA35LB	7C141-35LMB
7140LA45	7C140-45C
7140LA45B	7C140-45MB
7140LA45J	7C141-45JC
7140LA45LB	7C141-45LMB
7140LA55	7C140-55C
7140LA55B	7C140-55MB
7140LA55J52	7C141-55JC
7140LA55LB	7C141-55LMB
7140LA70	7C140-55C
7140LA70B	7C140-55MB
7140LA70J	7C141-55JC
7140LA70LB	7C141-55LMB
7140LA90J	7C141-55JC
7140LA90LB	7C141-55LMB
7140SA100	7C140-55C
7140SA100B	7C140-55MB
7140SA100L	7C141-55C
7140SA100LB	7C141-55MB
7140SA25	7C140-25C
7140SA25J	7C141-25JC
7140SA30	7C140-30C
7140SA30J	7C141-30JC
7140SA35	7C140-35C
7140SA35B	7C140-35MB
7140SA35J	7C141-35JC
7140SA35LB	7C141-35LMB
7140SA45	7C140-45C
7140SA45BB	7C140-45MBB
7140SA55LB	7C141-45JC
	7C141-45LMB
7C140-55C	

IDT	CYPRESS
7140SA55B	7C140-55MB
7140SA55J	7C141-55JC
7140SA55LB	7C141-55LMB
7140SA70	7C140-55C
7140SA70B	7C140-55MB
7140SA703	7C141-55JC
7140SA70LB	7C141-55LMB
7140SA90.	7C140-55C
7140SA90B	$7 \mathrm{C} 140-55 \mathrm{MB}$
7140SA90J	7C141-55JC
7140SA90LB	7C141-55LMB
71421LA25	7C146-25C
71421LA30	7C146-30C
71421LA35	7C146-35C
71421LA35B	7C146-35MB
71421LA45	7C146-45C
71421LA45B	$7 \mathrm{C} 146-45 \mathrm{MB}$
71421LA55	7C146-55C
71421LA55B	7C146-55MB
71421LA70	7C146-55C
71421LA70B	7C146-55MB
71421LA90	7C146-55C
71421LA90B	7C146-55MB
71421SA25	7C146-25C
71421SA30	7C146-30C
71421 SA35	7C146-35C
71421SA35B	7C146-35MB
71421SA45	7C146-45C
71421SA45B	7C146-45MB
71421SA55	7C146-55C
71421SA55B	7C146-55MB
71421SA70	7C146-55C
71421SA70B	7C146-55MB
71421SA90	7C146-55C
71421SA90B	7C146-55MB
7142LA25	7C142-25C
7142LA30	7C142-30C
7142LA35	7C142-35C
7142LA35B	$7 \mathrm{C} 142-35 \mathrm{MB}$
7142LA45	7C142-45C
7142LA45B	7C142-45MB
7142LA55	7 C 142 -55C
7142LA55B	7C142-55MB
7142LA70	7C142-55C
7142LA70B	7C142-55MB
7142SA25	7 C 142 -25C
7142SA30	7C142-30C
7142SA35	7C142-35C
7142SA35B	$7 \mathrm{C} 142-35 \mathrm{MB}$
7142SA45	7C142-45C
7142SA45B	7C142-45MB
7142SA55	7C142-55C
7142SA55B	$7 \mathrm{C} 142-55 \mathrm{MB}$
7142SA70	7C142-55C
7142SA70B	7C142-55MB
7164SA20	7C185-20C
7164SA20P	7C186-20C
7164SA25	7C185-25C
7164SA25B	7C185A-25MB
7164SA25P	7C186-25C
7164SA25PB	$7 \mathrm{C} 186 \mathrm{~A}-25 \mathrm{MB}$
7164SA30	7C185-25C

IDT	CYPRESS
7164SA30B	7C185A-25MB
7164SA30P	7C186-25C
7164SA30PB	7C186A-25MB
7164SA35	7C185-35C
7164SA35B	$7 \mathrm{C} 185 \mathrm{~A}-35 \mathrm{MB}$
7164SA35P	7 C 186 -35C
7164SA35PB	7C186A-35MB
7164SA45	7C185-45C
7164SA45B	7C185A-45MB
7164SA45P	7C186-45C
7164SA45PB	7C186A-45MB
7164SA55B	7C185A-55MB
7164SA55BP	7C185A-55MB
7164SA70B	7C186A-55MB
7164SA70BP	7C186A-55MB
7164SA85B	7C185A-55MB
7164SA85BP	7C185A-55MB
71681SA100B	7C171A-45MB
71681SA25	$7 \mathrm{C} 171 \mathrm{~A}-25 \mathrm{C}$
71681SA25B	7C171A-25MB
71681SA35	7C171A-35C
71681SA35B	$7 \mathrm{C} 171 \mathrm{~A}-35 \mathrm{MB}$
71681SA45	7C171A-45C
71681SA45B	$7 \mathrm{C} 171 \mathrm{~A}-45 \mathrm{MB}$
71681SA55B	$7 \mathrm{C} 171 \mathrm{~A}-45 \mathrm{MB}$
71681SA70B	$7 \mathrm{C} 171 \mathrm{~A}-45 \mathrm{MB}$
71681SA85B	7C171A-45MB
71682SA100B	$7 \mathrm{C} 172 \mathrm{~A}-45 \mathrm{MB}$
71682SA25	7C172A-25C
71682SA25B	7C172A-25MB
71682SA35	7C172A-35C
71682SA35B	7C172A-35MB
71682SA45	7C172A-45C
71682SA45B	7C172A-45MB
71682SA55B	7C172A-45MB
71682SA70B	7C172A-45MB
71682SA85B	7C172A-45MB
7187SA15	$7 \mathrm{C} 187-15 \mathrm{C}$
7187SA20	$7 \mathrm{C} 187-20 \mathrm{C}$
7187SA25	7C187-25C
7187SA25B	7C187A-25MB
7187SA30	7C187-25C
7187SA30B	$7 \mathrm{C} 187 \mathrm{~A}-25 \mathrm{MB}$
7187SA35	7C187-35C
7187SA35B	7C187A-35MB
7187SA45	7C187-45C
7187SA45B	7C187A-45MB
7187SA55B	$7 \mathrm{C} 187 \mathrm{~A}-45 \mathrm{MB}$
7187SA70B	$7 \mathrm{C} 187 \mathrm{~A}-45 \mathrm{MB}$
7187SA85B	$7 \mathrm{C} 187 \mathrm{~A}-45 \mathrm{MB}$
7188SA15	7C164-15C
7188SA20	$7 \mathrm{C} 164-20 \mathrm{C}$
7188SA20B	$7 \mathrm{C} 164 \mathrm{~A}-20 \mathrm{MB}$
7188SA25	7C164-25C
7188SA25B	7C164A-25MB
7188SA30	7C164-25C
7188SA35	$7 \mathrm{C} 164-35 \mathrm{C}$
7188SA35B	$7 \mathrm{C} 164 \mathrm{~A}-35 \mathrm{MB}$
7188SA45	7C164-45C
7188SA45B	$7 \mathrm{C} 164 \mathrm{~A}-45 \mathrm{MB}$
7188SA55B	7C164A-45MB
7188SA70B	$7 \mathrm{C} 164 \mathrm{~A}-45 \mathrm{MB}$

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I_{CC} and 5 mA on $\mathrm{I}_{\text {SB }}$
$+=$ meets all performance specs but may not meet I_{CC} or I_{SB}

* $=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or $\mathrm{I}_{\text {SB }}$
- = functionally equivalent
$\dagger=$ SOIC only
末=32-pin LCC crosses to the 7C198M

iDT	CYPRESS	IDT	CYPRESS
7188SA85B	7C164A-45MB	7201SA120B	7C420-65MB
71981 S35	$7 \mathrm{C} 161-35 \mathrm{C}$	7201SA15	$7 \mathrm{C} 421 \mathrm{~A}-15$
71981S35B	$7 \mathrm{C} 161 \mathrm{~A}-35 \mathrm{M}$	7201SA20	$7 \mathrm{C} 420-20 \mathrm{C}$
71981 S45	7C161-45C	7201SA20T	7C421-20C
71981S45B	7C161A-45M	7201SA25	7C420-25C
71981S55	7 C 161 -45C	7201SA25T	7C421-25C
71981S55B	7C161A-45M	7201SA30B	7C420-30MB
1981 S 70	7 C 161 -45C	7201SA30TB	7C421-30MB
1981S70B	7C161A-45M	7201SA35	$7 \mathrm{C} 420-30 \mathrm{C}$
'1981S85B	7C161A-45M	7201SA35T	7C421-30C
! 1982S35	7C162-35C	7201SA40B	7C420-40MB
'1982S35B	7C162A-35M	7201SA40TB	7C421-40MB
'1982S45	7C162-45C	7201SA50	$7 \mathrm{C} 420-40 \mathrm{C}$
'1982S45B	$7 \mathrm{C} 162 \mathrm{~A}-45 \mathrm{M}$	7201SA50B	$7 \mathrm{C} 420-40 \mathrm{MB}$.
'1982S55	7C162-45C	7201SA50T	7C421-40C
'1982S55B	7C162A-45M	7201SA50TB	7C421-40MB
'1982S70	7C162-45C	7201SA65	7C420-65C
'1982S70B	7C162A-45M	7201SA65B	7C420-65MB
'1982S85B	7C162A-45M	7201SA65T	7C421-65C
'198S35	7C166-35C	7201SA65TB	7C421-65MB
198S35B	7C166A-35M	7201SA80	7C420-65C
198S45	7C166-45C	7201SA80B	7C420-65MB
198S45B	7C166A-45M	7202LA120	7C424-65C+
198S55	7C166-45C	7202LA120B	7C424-65MB+
198S55B	7C166A-45M	7202LA15	$7 \mathrm{C} 425 \mathrm{~A}-15$
198570	7C166-45C	7202LA20	7C424-20C
198S70B	7C166A-45M	7202LA20T	7C425-20C
198S85B	7C166A-45M	7202LA25	7C424-25C
1B256A12	7C199-12C	7202LA25T	7C425-25C
1B256S12	7B199-12C	7202LA30B	7C424-30MB
1B256S15	7B199-15C	7202LA30TB	7C425-30MB
1B256S20	7C199-20C	7202LA35	7C424-30C+
1B256S20B	7B199-20MB	7202LA35T	7C425-30C
1B258S12	7B194-12C	7202LA40B	7C424-40MB+
1B258S15	7B194-15C	7202LA40TB	$7 \mathrm{C} 425-40 \mathrm{MB}$
1B258S20	7C194-20C	7202 LA 50	7C424-40C+
1B258S15B	7B194-15MB	7202LA50B	$7 \mathrm{C} 424-40 \mathrm{MB}+$
1B258S20B	7B194-20MB	7202LA50T	7C425-40C
$201 \mathrm{LA120}$	7C420-65C+	7202LA50TB	7C425-40MB
201LA120B	7C420-65MB+	7202LA65	7C424-65C+
201 LA 15	$7 \mathrm{C} 421 \mathrm{~A}-15$	7202LA65B	7C424-65MB+
201LA20	7C420-20C	7202LA65T	7C425-65C
201LA20T	7C421-20C	7202LA65TB	7C425-65MB
201LA25	7C420-25C	7202LA80	7C424-65C+
201LA25T	7C421-25C	7202LA80B	7C424-65MB+
201LA30B	7C420-30MB	7202SA120	7C424-65C
201LA30TB	7C421-30MB	7202SA120B	7C424-65MB
201LA35	7C420-30C+	7202SA15	$7 \mathrm{C} 425 \mathrm{~A}-15$
201LA35T	7C421-30C	7202SA20	7C424-20C
201LA40B	7C420-40MB+	7202SA20T	7C425-20C
201LA40TB	7C421-40MB	7202SA25	7C424-25C
201LA50	7C420-40C+	7202SA25T	7C425-25C
201LA50B	$7 \mathrm{C} 420-40 \mathrm{MB}+$	7202SA30B	7C424-30MB
201LA50T	7C421-40C	7202SA30TB	7C425-30MB
201LA50TB	7C421-40MB	7202SA35	7C424-30C
201LA65	7C420-65C+	7202SA35T	7C425-30C
201LA65B	7C420-65MB+	7202SA40B	7C424-40MB
201LA65T	7C421-65C	7202SA40TB	7C425-40MB
201LA65TB	7C421-65MB	7202SA50	7С424-40C
201LA80	7C420-65C+	7202SA50B	$7 \mathrm{C} 424-40 \mathrm{MB}$
201LA80B	7C420-65MB+	7202SA50T	7C425-40C
201SA120	$7 \mathrm{C} 420-65 \mathrm{C}$	7202SA50TB	$7 \mathrm{C} 425-40 \mathrm{MB}$

IDT	CYPRESS
7202SA65	7C424-65C
7202SA65B	7C424-65MB
7202SA65T	7C425-65C
7202SA65TB	7C425-65MB
7202SA80	7C424-65C
7202SA80B	7C424-65MB
7203L20	7C428-20C
7203L20T	7C429-20C
7203L25	7C428-25C
7203L25B	7C428-25MB
7203 L 25 T	7C429-25C
7203L25TB	7C429-25MB
7203 L 30	7C428-30C
7203L30T	7C429-30C
7203L35B	7C428-30MB
7203L35TB	7C429-30MB
7203L40	7C428-40C
7203L40T	7C429-40C
7203L55B	7C428-40MB
7203L55TB	$7 \mathrm{C} 429-40 \mathrm{MB}$
7203L65	7C428-65C
7203L65B	7C428-65MB
7203L65T	7C429-65C
7203L65TB	7C429-65MB
7203L80	7C428-65C
7203L80B	7C428-65MB
7203L80T	7C429-65C
7203L80TB	7C429-65MB
7203 S 20	7C428-20C
7203S20T	7C429-20C
7203 S 25	7C428-25C
7203S25B	7C428-25MB
7203S25T	7C429-25C
7203 S 25 TB	7C429-25MB
7203530	7C428-30C
7203S30T	7C429-30C
7203S35B	7C428-30MB
7203S35TB	7C429-30MB
7203 S 40	7C428-40C
7203 S 40 T	7C429-40C
7203S55B	7C428-40MB
7203S55TB	7C429-40MB
7203565	7C428-65C
7203S65B	7C428-65MB
7203S65T	7C429-65C
7203S65TB	7C429-65MB
7203880	7C428-65C
7203 S 80 B	7C428-65MB
7203 S 80 T	7C429-65C
7203S80TB	7C429-65MB
7204S25	7C432-25C
7204S25T	7C433-25C
7204S30	7C432-30C
7204S30T	7C433-30C
7204S35B	7C432-30MB
7204S35TB	7C433-30MB
7204540	7C432-40C
7204S40T	7C433-40C
7204S55B	7C432-40MB
7204S55TB	7C433-40MB
7204 S 65	7C432-65C
7204S65B	7C432-65MB

IDT	CYPRESS	IDT	CYPRESS	IDT	CYPRESS
7204S65T	7C433-65C	72402 L 25	7C402-25C	7MP4008S35S	1460PS-35C
7204 S 65 TB	7C433-65MB	72402L25B	$7 \mathrm{C} 402-25 \mathrm{MB}$	7MP4008S45S	1460PS-45C
7204S80B	7C432-65MB	72402 L 35	7C402-25C	7MP4008S55S	1460PS-55C
7204 S 80 TB	$7 \mathrm{C} 433-65 \mathrm{MB}$	72402L35B	7C402-25MB	7MP4008S70S	1460PS-70C
7205L20	$7 \mathrm{C} 460-15 \mathrm{C}$	72402L45	7C402-25C	7MP4031SXX	M1821PZ-XXC
7205L25	$7 \mathrm{C} 460-25 \mathrm{C}$	72403 L 10	7C403-10C	7MP4036SXX	M1831PZ-XXC
7205L30B	$7 \mathrm{C} 460-15 \mathrm{MB}$	72403L10B	7C403-10MB	7MP4045SXX	M1841PZ-XXC
7205L30B	$7 \mathrm{C} 460-25 \mathrm{MB}$	72403 L 15	7C403-15C	7N4017S45C	1830HD-45C
7205L35	$7 \mathrm{C} 460-25 \mathrm{C}$	72403L15B	7C403-15MB	8M624S100CB	$1620 \mathrm{HD}-55 \mathrm{MB}$
7205L50	$7 \mathrm{C} 460-40 \mathrm{C}$	72403 L 25	7C403-25C	8M624S35C	$1620 \mathrm{HD}-35 \mathrm{C}$
7205L50B	7C460-40MB	72403L25B	7C403-25MB	8M624S40C	1620HD-35C
7206-20	7C462-20	72403L35	7C403-25C	8M624S45C	1620HD-45C
7206-25	7C462-25	72403L35B	7C403-25MB	8M624S50C	1620HD-45C
7210-120B	7C510-75M	72403LA5	7C403-25C	8M624S50CB	1620HD-45MB
$7210-200 \mathrm{~B}$	7C510-75M+	72404 L 10	7C404-10C	8M624S60C	1620HD-55C
$7210-55 \mathrm{~B}$	7C510-55M	72404L10B	7C404-10MB	8M624S60CB	$1620 \mathrm{HD}-55 \mathrm{MB}$
7210-65B	7C510-65M	72404 L 15	7C404-15C	8M624S70C	1620HD-55C
7210-75B	7C510-75M	72404L15B	$7 \mathrm{C} 404-15 \mathrm{MB}$	8M824L100C	1421HD-85C
7210-85B	7C510-75M	72404L25	7C404-25C	8M824L100N	1421HD-85C
7210L-45	7C510-45C+	72404L25B	7C404-25MB	8M824S100CB	$1420 \mathrm{HD}-55 \mathrm{MB}$
7210 L 100	7C510-75C+	72404 L 35	7C404-25C	8M824S35C	1420HD-35C
7210 L 165	7C510-75C+	72404L35B	7C404-25MB	8M824S40C	1420HD-35C
7210L55	7C510-55C+	72404L45	7C404-25C	8M824S45C	1420HD-45C
7210L65	7C510-65C+	7M4016S25C	1641HD-25C	8M824S45CB	1420HD-45MB
7210L75	7C510-75C+	7M4016S35C	1641HD-35C	8M824S45N	1423PD-45C
7216L120B	7C516-75M+	7M4016S35CB	1641HD-35MB	8M824S50C	1420HD-45C
7216L140	7C516-75C+	7M4016S45C	1641HD-45C	8M824S50CB	1420HD-45MB
7216L185B	7C516-75M+	7M4016S45CB	1641HD-45MB	8M824S50N	1423PD-45C
7216 L 55	7C516-55C+	7M4016S55C	1641HD-55C	$8 \mathrm{M} 824 \mathrm{S60C}$	1420HD-55C
7216L55B	7C516-55M+	7M4016S55CB	1641HD-55MB	8 M 824 S 60 CB	$1420 \mathrm{HD}-55 \mathrm{MB}$
7216L65	7C516-65C+	7M4016S70CB	1641HD-55MB	8M824S60N	1423PD-55C
7216L65B	7C516-65M	7M4017S40C	1830HD-35C	8 M 824 S 70 CB	$1420 \mathrm{HD}-55 \mathrm{MB}$
7216 L 75	7C516-75C+	7M4017S50C	1830HD-45C	8M824S70N	$1423 \mathrm{PD}-70 \mathrm{C}$
7216L75B	7C516-75M	7M4017S50CB	$1830 \mathrm{HD}-45 \mathrm{MB}$	8M824S85CB	$1420 \mathrm{HD}-55 \mathrm{MB}$
7216L90	7C516-75C+	7M4017S55C	1830HD-55C	8M824S85N	1421HD-85C
7216L90B	7C516-75M+	7M4017S60C	1830HD-55C	8MP824S40S	1422PS-35C
7217L120B	7C517-75M+	7M4017S60CB	$1830 \mathrm{HD}-55 \mathrm{MB}$	8MP824S45S	1422PS-45C
7217L140	7C517-75C+	7M4017S70C	1830HD-55C	8MP824S50S	1422PS-45C
7217L185B	7C517-75M+	7M4017S70CB	1830HD-55MB	8MP824S60S	1422PS-55C
7217 L 45	7C517-45C+	7M4048SXXC	M1466HD-XXC	8MP824S70S	1422PS-55C
7217L55	7C517-55C+	7M4048SXXCB	M1466HD-XXMB	8N624S70CB	$1620 \mathrm{HD}-55 \mathrm{MB}$
7217 L 55	$7 \mathrm{C} 17-55 \mathrm{C}+$	7M4048SXXP	M1464PD-XXC	8N624S85CB	$1620 \mathrm{HD}-55 \mathrm{MB}$
7217L55B	7C517-55M	7MB4048SXXP	M1464PD-XXC		
7217 L 65	7C517-65C+	$7 \mathrm{MC4005S20CV}$	1611HV-20C	INTEL	CYPRESS
7217L65B	7C517-65M	7 MC 4005 S 25 CV	$1611 \mathrm{HV}-25 \mathrm{C}$	PREFIX:85C	PREFIX:CY
7217L75	7C517-75C+	$7 \mathrm{MC4005S} 25 \mathrm{CVB}$	1611HV-25MB	PREFIX:85C	PREFIX:PLD
7217L75B	7C517-75M	7MC4005S30CV	1611HV-30C	PREFIX:D	SUFFIX:D
7217L90	7C517-75C+	7MC4005S30CVB	1611HV-30MB	PREFIX:L	SUFFIX:L
7217L90B	7C517-75M+	7 MC 4005 S 35 CV	1611HV-35C	PREFIX:P	SUFFIX:P
72401 L 10	7C401-10C	7MC4005S35CVB	1611HV-35MB	SUFFIX:/B	SUFFIX:B
$72401 \mathrm{L10B}$	7C401-10MB	7 MC 4005 S 45 CV	1611HV-45C	060-10	610-10C
72401 L 15	7C401-15C	7 MC 4005 S 45 CVB	$1611 \mathrm{HV}-45 \mathrm{MB}$	1223-35	7C148-35C
72401L15B	7C401-15MB	$7 \mathrm{MC4005S55CV}$	1611HV-45C	1223-45	7C148-45C
72401 L 25	7C401-25C	7 MC 4005 S 55 CVB	1611HV-45MB	1223M-35	7C148-25M+
72401L25B	$7 \mathrm{C} 401-25 \mathrm{MB}$	$7 \mathrm{MC4032S20CV}$	$1822 \mathrm{HV}-20 \mathrm{C}$	1223M-45	7C148-45M+
72401 L 35	7C401-25C	7 MC 4032 S 25 CV	$1822 \mathrm{HV}-25 \mathrm{C}$	1400-35	7C167A-35C
72401L35B	7C401-25MB	7 MC 4032 S 30 CV	1822HV-30C	1400-45	7C167A-45C
$72401 \mathrm{LA5}$	7C401-25C	7 MC 4032 S 40 CV	1822HV-35C	1400-55	7C167A-45C
72402 L 10	$7 \mathrm{C} 402-10 \mathrm{C}$	$7 \mathrm{MC4032S50CV}$	1822HV-45C	1400M-45	7C167A-45M
72402L10B	$7 \mathrm{C} 402-10 \mathrm{MB}$	7MP4008L100S	1461PS-100C	1400M-55	7C167A-45M
72402 L 15	7C402-15C	7MP4008L70S	1461PS-70C	1400M-70	7C167A-45M
72402L15B	$7 \mathrm{C} 402-15 \mathrm{MB}$	7MP4008L85S	1461PS-85C	1403-25	7C167A-25C

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on $I_{C C}$ and 5 mA on $I_{S B}$
$+=$ meets all performance specs but may not meet I_{CC} or I_{SB}
$*=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or I_{SB}
$-=$ functionally equivalent
$\dagger=$ SOIC only
$\ddagger=$ 32-pin LCC crosses to the 7C198M

Product Line Cross Reference

INTEL

1403-35
1403-45
1403-55
1403LM-35
1403M-35
1403M-45
1403M-55
1403M-70
1420-45
1420-55
1420M-55
1420M-70
$1421 \mathrm{C}-40$
1423-25
1423-35
1423-40
1423M-35
1423M-45
1423M-55
1433-30
1433-35
1433-45
1433-55
1433M-35
1433M-45
1433M-55
!2V10-10C
22V10-10C
2VV10-10C
:2V10-10C
!2V10-15C
:2V10-15C

ATTICE	CYPRESS
'REFIX:EE	PREFIX:CY
'REFIX:GAL	PREFIX:CY
'REFIX:ST	PREFIX:CY
;UFFIX:B	SUFFIX:B
;UFFIX:D	SUFFIX:D
;UFFIX:L	SUFFIX:L
;UFFIX:P	SUFFIX:P
3AL22V10-25LJ	PALC22V10D-25JC
3̇AL22V10-25LP	PALC22V10D-25PC
jAL22V10B-7LJ	PALC22V10D-7JC
3AL22V10B-7LP	PALC22V10D-7PC
3AL22V10B-10LJ	PALC22V10D-10JC
3AL22V10B-10LP	PALC22V10D-10PC
3AL22V10B-15LD	${ }_{15 \mathrm{DLC}}^{\text {PaL }}$ (22V10D-
883	15DMB
3AL22V10B-15LJ	PALC22V10D-15JC
3AL22V10B-15LJI	PALC22V10D-15JI
3AL22V10B-15LP	PALC22V10D-15PC
3AL22V10B-15LPI	PALC22V10D-15PI
883	$\begin{aligned} & \text { PALC22V10D- } \\ & 15 \mathrm{LMB} \end{aligned}$
3AL22V10B-20LJI	PALC22V10D-15JI
3AL22V10B-20LD 883	$\begin{aligned} & \text { PALC22V10D- } \\ & \text { 15DMB } \end{aligned}$
3AL22V10B-20LPI	PALC22V10D-15PI
3AL22V10B-20LR 883	$\begin{aligned} & \text { PALC22V10D- } \\ & \text { 15LMB } \end{aligned}$
$\begin{aligned} & 3 \mathrm{JLL} 22 \mathrm{~V} 10 \mathrm{~B}-25 \mathrm{LD} \\ & 883 \end{aligned}$	$\begin{aligned} & \text { PALC22V10D- } \\ & \text { 25DMB } \end{aligned}$

CYPRESS
7C167A-35C +
$7 \mathrm{C} 167 \mathrm{~A}-45 \mathrm{C}+$
7C167A-45C+ 7C167A-35M* 7C167A-35M + 7C167A-45M+ 7C167A-45M + 7C167A-45M + 7C168A-35C
7C168A-45C
7C168A-45M +
7C168A-45M
7C169A-40C
7C168A-25C +
7C168A-35C +
7C168A-45C+
7C168A-35M ${ }^{*}$
$7 \mathrm{C} 168 \mathrm{~A}-45 \mathrm{M}^{*}$
$7 \mathrm{C} 168 \mathrm{~A}-45 \mathrm{M}^{*}$
7C128A-25C +
7C128A-35C +
$7 \mathrm{C} 128 \mathrm{~A}-45 \mathrm{C}+$
7C128A-55C+ $7 \mathrm{C} 128 \mathrm{~A}-35 \mathrm{M}+$ 7C128A-45M+ 7C128A-55M + PALC22V10D-7C PALC22V10D-10C PAL22V10C-7C + PAL22V10C-10C+ PALC22V10B-15C PALC22V10D-15C

PREFIX:CY
左

FIX: PALC22V10D-25PC
 PALC22V10D-10JC PALC22V10D-10PC 10D-PALC22V10D-15JC PALC22V10D-15JI PALC22V10D-15PC ALC22V10D-15 15LMB

PALC22V10D-15J V10D-

PALC22V10D-15PI 15LMB 25DMB

LATTICE	CYPRESS
GAL22V10B-25LJ	PALC22V10D-25JC
GAL22V10B-25LJI	PALC22V10D-25JI
GAL22V10B-25LP	PALC22V10D-25PC
GAL22V10B-25LPI	PALC22V10D-25PI
$\begin{aligned} & \text { GAL22V10B-25LR } \\ & / 883 \end{aligned}$	$\begin{aligned} & \text { PALC22V10D- } \\ & 25 \mathrm{LMB} \end{aligned}$
$\begin{aligned} & \text { GAL22V10B-30LD } \\ & / 883 \end{aligned}$	$\begin{aligned} & \text { PALC22V10D- } \\ & \text { 25DMB } \end{aligned}$
$\begin{aligned} & \text { GAL22V10B-30LR } \\ & / 883 \end{aligned}$	$\begin{aligned} & \text { PALC22V10D- } \\ & 25 \mathrm{LMB} \end{aligned}$
MICROCHIP	CYPRESS
27HC64-40C	CY7C266-35C
27HC64-45C	CY7C266-45C
27HC64-55C	CY7C266-55C
27HC64-70C	CY7C266-55C
27HC191-35C	CY7C292A-35C
27HC191-40C	CY7C292A-35C
27HC191-45C	CY7C292A-35C
27HC191-55C	CY7C292A-50C
27HC291-35C	CY7C291A-35C
27HC291-40C	CY7C291A-35C
27HC291-45C	CY7C291A-35C
27HC291-55C	CY7C291A-50C
27HC256-55C	CY7C274-55
27HC256-70C	CY7C274-55C
27HC641-40C	CY7C261-40C
27HC641-45C	CY7C261-45C
27HC641-55C	CY7C261-55C
27HC641-70C	CY7C261-55C
MICRON	CYPRESS
PREFIX:MT	PREFIX:CY
52C4K9A1-15	7C433A-15
52C4K9A1-25	7C433-25
52C4K9A1-35	7C433-35
52C9005-15	$7 \mathrm{C} 421 \mathrm{~A}-15$
52C9005-20	7C421-20
52C9005-25	7C421-25
52C9010-15	7C425A-15
52C9010-20	7C425-20
52C9010-25	7C425-25
52C9020-15	$7 \mathrm{C} 429 \mathrm{~A}-15$
52C9020-20	7C429-20
52C9020-25	7C429-25
56C0816-25C	7C183-25C
56C0816-35C	7C183-35C
56C3816-25C	7C184-25C
56C3816-35C	7C184-35C
5C1001-25C	7C107A-25C
5C1601-15	7C167A-15C
5C1601-20C	7C167A-20C
5C1601-25C	7C167A-25C
5C1601-30	7C167A-25C
5C1601-35C	7C167A-35C
5C1604-15	7C168A-15C
5C1604-20C	7C168A-20C
5C1604-25C	7C168A-25C
5C1604-30	7C168A-25C
5C1604-35C	7C168A-35C
5C1605-15	7C170A-15C
5C1605-20C	7C170A-20C
5C1605-25C	7C170A-25C

MICRON	CYPRESS
5C1605-30	7C170A-25C
5C1605-35C	7C170A-35C
5C1606-15	7C171A-15C
5C1606-20C	7C171A-20C
5C1606-25C	7C171A-25C
5C1606-30	$7 \mathrm{C} 171 \mathrm{~A}-25 \mathrm{C}$
5C1606-35C	7C171A-35C
5C1607-15	$7 \mathrm{C} 172 \mathrm{~A}-15 \mathrm{C}$
5C1607-20C	7C172A-20C
5C1607-25C	7C172A-25C
5C1607-30	7C172A-25C
5C1607-35C	7C172A-35C
5C1608-15	7C128A-15C
5C1608-20C	7C128A-20C
5C1608-30	7C128A-25C
5C1608-30M	7C128A-25M
5C1608-25C	7C128A-25C
5C1608-25M	7C128A-25M
5C1608-35C	7C128A-35C
5C1608-35M	7C128A-35M
5C2561-12	7C197-12
5C2561-15	7C197-15
5C2561-20	7C197-20
5C2561-25	7C197-25C
5C2561-25M	7C197-25MB
5C2561-30	7C197-25C
5C2561-35	7C197-35C
5C2561-35M	7C197-35MB
5C2561-45	7C197-45C
5C2561-45M	7C197-45MB
5C2564-12	7C194-12
5C2564-15	7C194-15
5C2564-20	7C194-20
5C2564-25	7C194-25C
5C2564-25M	7C194-25MB
5C2564-30	7C194-25C
5C2564-35	$7 \mathrm{C} 194-35 \mathrm{C}$
5C2564-35M	7C194-35MB
5C2564-45	7C194-45C
5C2564-45M	7C194-45MB
5C2565-12	7C195-12
5C2565-15	7C195-15
5C2565-20	7C195-20
5C2565-25	7C195-25C
5C2565-30	7C195-25C
5C2565-35	7C195-35C
5C2565-45	$7 \mathrm{C} 195-45 \mathrm{C}$
5C2568-12	7C199-12
5C2568-15	7C199-15
5C2568-20	7C199-20
5C2568-25	7C199-25C
5C2568-25M	7C199-25MB
5C2568-30	7C199-25C
5C2568-35	7C199-35C
5C2568-35M	7C199-35MB
5C2568-45	7C199-45C
5C2568-45B	7C199-45MB
5C2568CW-25	7C198-25C
5C2568CW-25M	7C198-25MB
5C2568CW-30	7C198-25C
5C2568CW-35	7C198-35C
5C2568CW-35M	7C198-35MB

MICRON	CYPRESS
5C2568CW-45	7C198-45C
5C2568CW-45B	7C198-45MB
5C2568W-25	7C198-25C
5C2568W-25M	7C198-25MB
5C2568W-30	7C198-25C
5C2568W-35	7C198-35C
5C2568W-35M	7C198-35MB
5C2568W-45	7C198-45C
5C2568W-45B	7C198-45MB
5C2889	7 C 188
5C6401-15	7C187-15C
5C6401-20	7C187-20C
5C6401-20C	7C187-20C
5C6401-20M	7C187A-20MB
5C6401-25	7C187-25C
5C6401-25C	7C187-25C
5C6401-25M	7C187A-25MB
5C6401-30	7C187-25C
5C6401-30M	7C187A-25MB
5C6401-35	7C187-35C
5C6401-35C	7C187-35C
5C6401-35M	7C187A-35MB
5C6401-45C	7C187-45C
5C6404-12C	7B164-12C
5C6404-15	7C164-15C
5C6404-20	7C164-20C
5C6404-20M	7C164A-20MB
5C6404-25	7C164-25C
5C6404-25M	7C164A-25MB
5C6404-30	7C164-25C
5C6404-30M	$7 \mathrm{C} 164 \mathrm{~A}-25 \mathrm{MB}$
5C6404-35	7C164-35C
5C6404-35M	7C164A-35MB
5C6405-12C	7B166-12C
5C6405-15	7C166-15C
5C6405-20C	7C166-20C
5C6405-25C	7C166-25C
5C6405-30	7C166-25C
5C6405-35C	7C166-35C
5C6406-12C	7B161-12C
5C6406-15	7C161-15C
5C6406-20	7C161-20C
5C6406-25	7C161-25C
5C6406-30	7C161-25C
5C6406-35	7C161-35C
5C6407-12C	7B162-12C
5C6407-15	7C162-15C
5C6407-20	$7 \mathrm{C} 162-20 \mathrm{C}$
5C6407-25	7C162-25C
5C6407-30	7C162-25C
5C6407-35	7 C 162 -35C
5C6408-12	7B185-12C
5C6408-15	7C185-15C
5C6408-20C	7C185-20C
5C6408-20M	$7 \mathrm{C} 185 \mathrm{~A}-20 \mathrm{MB}$
5C6408-25C	7C185-25C
5C6408-25M	7C185A-25M
5C6408-30	7C185-25C
5C6408-30M	$7 \mathrm{C185A}-25 \mathrm{MB}$
5C6408-35C	7C185-35C
5C6408-35M	$7 \mathrm{C} 185 \mathrm{~A}-35 \mathrm{MB}$
85C1664-30C	$1620 \mathrm{HD}-30 \mathrm{C}$

MICRON	CYPRESS
85C1664-35C	1620HD-35C
85C1664-45C	$1620 \mathrm{HD}-45 \mathrm{C}$
85C3216-20	M1821PZ-20C
85C3216-25	M1821PZ-25C
85C3216-35	M1821PZ-35C
85C3264-20	M1831PZ-20C
85C3264-25	M1831PZ-25C
85C3264-35	M1831PZ-35C
85C8128-25	M1420PD-25C
85C8128-35	M1420PD-35C
85C8128-30C	1420HD-30C
85C8128-35C	$1420 \mathrm{HD}-35 \mathrm{C}$
85C8128-45C	$1420 \mathrm{HD}-45 \mathrm{C}$
85C8128-45C	1423PD-45C
8S1632Z-20	M1821PZ-20C
8S1632Z-25	M1821PZ-25C
8S1632Z-35	M1821PZ-35C
8S6432Z-20	M1831PZ-20C
8S6432Z-25	M1831PZ-25C
8S6432Z-35	M1831PZ-35C
MITSUBISHI	CYPRESS
PREFIX:M5L	PREFIX:CY
PREFIX:M5M	PREFIX:CY
SUFFIX:AP	SUFFIX:L
SUFFIX:FP	SUFFIX:F
SUFFIX:K	SUFFIX:D
SUFFIX:P	SUFFIX:P
21C67P-35	7C167A-35C
21C67P-45	7C167A-45C
21C67P-55	7C167A-45C
$21 \mathrm{C} 68 \mathrm{P}-35$	7C168A-35C
$21 \mathrm{C} 68 \mathrm{P}-45$	7C168A-45C
21C68P-55	7C168A-45C
5165L-100	7C186-55C+
5165L-120	7C186-55C+
5165L-70	7C186-55C+
5165P-100	7C186-55C+
5165P-120	7C186-55C+
5165P-70	7C186-55C+
5178P-45	7C186-45C+
5178P-55	7C186-55C+
5187P-25	7C187-25C
5187P-35	7C187-35C
5187P-45	7C187-45C
5187P-55	7C187-45C
5188P-25	7C164-25C
5188P-35	7C164-35C
5188P-45	7C164-45C
5188P-55	7C164-45C
5257J-35	7C197-35C
5257J-45	7C197-45C
5257P-35	7C197-35C
5257P-45	7C197-45C
5258J-45	7C194-45C
5258P-35	7C194-35C
5258P-45	7C194-45C
52B79P/J	7 C 188
MMI/AMD	CYPRESS
SUFFIX:883B	SUFFIX:B
SUFFIX:F	SUFFIX:F

MMI/AMD	CYPRESS
SUFFIX:J	SUFFIX:D
SUFFIX:L	SUFFIX:L
SUFFIX:N	SUFFIX:P
SUFFIX:SHRP	SUFFIX:B
PAL12L10C	PLDC20G10-35C
PAL12L10M	PLDC20G10-40M
PAL14L8C	PLDC20G10-35C
PAL14L8M	PLD20G10-40M
PAL16L6C	PLD20G10-35C
PAL16L6M	PLDC20G10-40M
PAL16L8A-2C	PALC16L8-35C
PAL16L8A-2M	PALC16L8-40M
PAL16L8A-4C	PALC16L8L-35C
PAL16L8A-4M	PALC16L8-40M
PAL16L8AC	PALC16L8-25C
PAL16L8AM	PALC16L8-30M
PAL16L8B-2C	PALC16L8-35C
PAL16L8B-2M	PALC16L8-30M
PAL16L8B-4C	PALC16L8L-35C
PAL16L8B-4M	PALC16L8-40M
PAL16L8BM	PALC16L8-20M
PAL16L8C	PALC16L8-35C
PAL16L8D-4C	PALC16L8L-25C
PAL16L8D-4M	PALC16L8-30M
PAL16L8M	PALC16L8-40M
PAL16R4A-2C	PALC16R4-35C
PAL16R4A-2M	PALC16R4-40M
PAL16R4A-4C	PALC16R4L-35C
PAL16R4A-4M	PALC16R4-40M
PAL16R4AC	PALC16R4-25C
PAL16R4AM	PALC16R4-30M
PAL16R4B-2C	PALC16R4-25C
PAL16R4B-2M	PALC16R4-30M
PAL16R4B-4C	PALC16R4L-35C
PAL16R4B-4M	PALC16R4-40M
PAL16R4BM	PALC16R4-20M
PAL16R4C	PALC16R4-35C
PAL16R4D-4C	PALC16R4L-25C
PAL16R4M	PALC16R4-40M
PAL16R6A-2C	PALC16R6-35C
PAL16R6A-2M	PALC16R6-40M
PAL16R6A-4C	PALC16R6L-35C
PAL16R6A-4M	PALC16R6-40M
PAL16R6AC	PALC16R6-25C
PAL16R6AM	PALC16R6-30M
PAL16R6B-2C	PALC16R6-25C
PAL16R6B-2M	PALC16R6-30M
PAL16R6B-4C	PALC16R6L-35C
PAL16R6B-4M	PALC16R6-40M
PAL16R6BM	PALC16R6-20M
PAL16R6C	PALC16R6-35C
PAL16R6D-4C	PALC16R6L-25C
PAL16R6M	PALC16R6-40M
PAL16R8A-2C	PALC16R8-35C
PAL16R8A-2M	PALC16R8-40M
PAL16R8A-4C	PALC16R8L-35C
PAL16R8A-4M	PALC16R8-40M
PAL16R8AC	PALC16R8-25C
PAL16R8AM	PALC16R8-30M
PAL16R8B-2C	PALC16R8-25C
PAL16R8B-2M	PALC16R8-30M
PAL16R8B-4C	PALC16R8L-35C

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I_{CC} and 5 mA on $\mathrm{I}_{\text {SB }}$
$+=$ meets all performance specs but may not meet $I_{C C}$ or $I_{S B}$

* $=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or I_{SB}
- = functionally equivalent
$\dagger=$ SOIC only
$\ddagger=32$-pin LCC crosses to the 7 C 198 M

Product Line Cross Reference

SEMICONDUCTOR

MMI/AMD	CYPRESS
PAL16R8B-4M	PALC16R8-40M
PAL16R8BM	PALC16R8-20M
PAL16R8C	PALC16R8-35C
PAL16R8D-4C	PALC1648L-25C
PAL16R8M	PALC16R8-40M
PAL18L4C	PLDC20G10-35C
PAL18L4M	PLDC20G10-40M
PAL20L10AC	PLDC20G10-35C
3AL20L10AM	PLDC20G10-30M
3AL20L10C	PLDC20G10-35C
?AL20L10M	PLDC20G10-40M
3AL20L2C	PLDC20G10-35C
'AL20L2M	PLDC20G10-40M
'AL20L8A-2C	PLDC20G10-35C
'AL20L8A-2M	PLDC20G10-40M
'AL20L8AC	PLDC20G10-25C
'AL20L8AM	PLDC20G10-30M
'AL20L8C	PLDC20G10-35C
'AL20L8M	PLDC20G10-40M
'AL20R4A-2C	PLDC20G10-35C
'AL20R4A-2M	PLDC20G10-40M
'AL20R4AC	PLDC20G10-25C
'AL20R4AM	PLDC20G10-30M
AL20R4C	PLDC20G10-35C
ALL20R4M	PLDC20G10-40M
'AL20R6A-2C	PLDC20G10-35C
'AL20R6A-2M	PLDC20G10-40M
'AL20R6AC	PLDC20G10-25C
AL20R6AM	PLDC20G10-30M
AL20R6C	PLDC20G10-35C
'AL20R6M	PLDC20G10-40M
AL20R8A-2C	PLDC20G10-35C
AL20R8A-2M	PLDC20G10-40M
AL20R8AC	PLDC20G10-25C
AL20R8AM	PLDC20G10-30M
'AL20R8C	PLDC20G10-35C
AL20R8M	PLDC20G10-40M
ALC22V10/A	PALC22V10-35C
fosalc	CYPRESS
REFIX:MS	PREFIX:SYM
128SC-100	1420HD-85C
$128 \mathrm{SC}-100$	1421HD-85C
128SC-45	1420HD-45C
128SC-55	1420HD-55C
$128 \mathrm{SC}-70$	1420HD-70C
128SC-70	1421HD-70C
fotorola	CYPRESS
REFIX:MCM	PREFIX:CY
UFFIX:BXAJC	SUFFIX:MB
UFFIX:P	SUFFIX:P
UFFIX:S	SUFFIX:D
UFFIX:Z	SUFFIX:L
0422-10C	10E422-7C
423-45	7C168A-45C+
016H-45	6116A-45C
016H-55	6116A-55C
016H-70	6116A-55C
018-35	7C128A-35C
918-45	7C128A-45C
$167 \mathrm{H}-35$	7C167A-35C

MOTOROLA	CYPRESS
2167H-45	7C167A-45C
$2167 \mathrm{H}-55$	7C167A-45C
6164-45	7C186-45C
6168-35	7C168A-35C+
6168-45	$7 \mathrm{C} 168 \mathrm{~A}-45 \mathrm{C}+$
61L64-45	7C186-45C
6205C	7 C 188
$6206 \mathrm{C}-15$	7C199-15
6206C-20	7C199-20
$6206 \mathrm{C}-25$	7C199-25
6206C-35	7C199-35C
6207C-15	7C197-15
6207C-20	7C197-20
$6207 \mathrm{C}-25$	7C197-25
$6207 \mathrm{C}-35$	7C197-35
6208C-20	7C194-20
6208C-25	7C194-25
$6208 \mathrm{C}-25$	$7 \mathrm{C} 194-25 \mathrm{C}$
6208C-35	7C194-35
62486FN14	7B173-14C
62486FN19	7B173-18C
62486FN24	7B173-21C
6264-15C	7B185-15C
6264-25	7C185-25C
6264-25	7C186-25C
6264-30	7C185-25C
6264-30	7C186-25C
6264-35	7C185-35C
6264-35	7C186-35C
6264-45	7C185-45C
6264-45	7C186-45C
6268P20	7C168A-20C
6268P25	7C168A-25C
6268P35	7C168A-35C
6268 P 40	7C168A-40C
6268 P45	7C168A-45
6268 P 45	7C168A-45C
6269 P 20	$7 \mathrm{C} 169 \mathrm{~A}-20 \mathrm{C}$
6269P25	7C169A-25C
6269P35	7C169A-35C
6270-20	7C170A-20C
6270-25	$7 \mathrm{C} 170 \mathrm{~A}-25 \mathrm{C}$
6270-35	7C170A-35C
6270-45	$7 \mathrm{C} 170 \mathrm{~A}-45 \mathrm{C}$
6287-15	7C187-15C
6287-20	7C187-20C
6287-25	7C187-25C
6287-35	7C187-35C
6288-12	7B164-12C
6288-15	7C164-15C
6288-25	7C164-25C
6288-30	7C164-25C
6288-35	7C164-35C
6290-12	7B166-12C
6290-15	7C166-15C
6290-20	7C166-20C
6290-25	7C166-25C
6290-35	7C166-35C
62940FN14	7B174-14C
62940FN19	7B174-18C
62940 FN 24	7B174-21C
$62 \mathrm{~V} 06 \mathrm{D}-20$	7C1399-20C

MOTOROLA	CYPRESS
6706C-12	7C199-12C
6708C-12	7C194-12C
$6709 \mathrm{C}-12$	7C195-12C
NATIONAL	CYPRESS
PREFIX:DM	PREFIX:CY
PREFIX:GAL	PREFIX:None
PREIFX:IDM	PREFIX:CY
PREFIX:NM	PREFIX:CY
PREFIX:NMC	PREFIX:CY
SUFFIX:J	SUFFIX:D
SUFFIX:N	SUFFIX:P
100422-10C	100E422L-7C
100422-5C	100E422-5C
100422A-7C	100E422L-7C
100422AC	100E422L-7C
100474A-10C	100E474L-7C
100474A-8C	100E474L-7C
10422-10C	10E422L-7C
10422-5C	10E422-5C
10422A-7C	10E422L-7C
10422AC	10E422L-7C
10474A-8C	10E474L-7C
1047A-10C	10E474L-7C
12L10C	PLDC20G10-35C
14L8C	PLDC20G10-35C
14L8M	PLDC20G10-40M
16L6C	PLDC20G10-35C
16L6M	PLDC20G10-40M
16V8A-12LC	PLDC18G8-12C
16V8A-12C	PLDC18G8-12C
16V8A-15LC	PLDC18G8-15C
16V8A-15C	PLDC18G8-15C
16V8A-15LM	PLDC18G8-15MB
$16 \mathrm{~V} 8 \mathrm{~A}-15 \mathrm{M}$	PLDC18G8-15MB
16V8A-20LM	PLDC18G8-20MB
16V8A-20M	PLDC18G8-20MB
18L4C	PLDC20G10-35C
18L4M	PLDC20G10-40M
20L2M	PLDC20G10-40M
2147H	2147-55C
2147H	2147-55M
$2147 \mathrm{H}-1$	2147-35C
$2147 \mathrm{H}-2$	2147-45C
$2147 \mathrm{H}-3$	2147-55C
$2147 \mathrm{H}-3$	2147-55M
$2147 \mathrm{H}-3 \mathrm{~L}$	7C147-45C
2148H	2148-55C
2148H	7C148-C
2148H	2148-C
2148H	21L48-C
$2148 \mathrm{H}-2$	2148-45C
$2148 \mathrm{H}-3$	2148-55C
$2148 \mathrm{H}-3 \mathrm{~L}$	21L48-55C
2148HL	21L48-55C
2901A-1C	7C901-31C
2901A-1M	7C901-32M
2901A-2C	7C901-31C
$2901 \mathrm{~A}-2 \mathrm{M}$	7C901-32M
2901AC	7C901-31C
2901AM	7C901-32M
2909AC	2909 AC

NATIONAL	CYPRESS
2909AM	2909M
2911AC	2911AC
2911AM	2911M
54S189	74S189M
54S189	7C189-M
54S189	27S03A-M
54S189	27LS03A-M
54S189A	74S189M
54S189A	7C189-25M
54S189A	7C189-M
74 S 189	7C189-C
74S189A	7C189-C
74S289A	7C189-C
75S07	7C190-25M
77LS181	7C282-45M
77S181	7C282-45M
77S181A	7C282-45M
77S281	7C281-45M
77S281A	7C281-45M
77S401	7C401-10M
77S401A	7C401-10M
77S402	7C402-10M
77S402A	7C402-10M
77 SR 181	7C235-40M
77SR476B	7C225-40M-
77SR476	7C225-40M-
85S07A	7C128-45C+
87LS181	7C282-45C
87S181	7C282-45C
87S281	7C281-45C
87S281A	7C281-45C
87S401	7C401-10C
87S401A	7C401-15C
87S402	7C402-10C
87S402A	7C402-15C
87SR181	7C235-40C
87SR476	7C225-40C
87SR476B	7C225-30C
93L422A	7C122-C
NMF512X9-15	$7 \mathrm{C} 421 \mathrm{~A}-15$
NMF512X9-25	7C421-25
NMF2048X9-20	7C429-20
NMF4096X9A-25	7C433-25
PAL10016P4-4C	100E302L-4C
PAL10016P4-6C	100E302L-4C
PAL10016P8-4C	100E301-4C
PAL10016P8-6C	100E301L-6C
PAL1016P4-4C	10E302L-4C
PAL1016P4-6C	10E302L-4C
PAL1016P8-4C	10E301-4C
PAL1016P8-6C	10E301L-6C
PAL164A2M	PALC16R4-40M
PAL16L8A2C	PALC16L8-35C
PAL16L8A2M	PALC16L8-40M
PAL16L8AC	PALC16L8-25C
PAL16L8AM	PALC16L8-30M
PAL16L8B2C	PALC16L8-25C
PAL16L8B2M	PALC16L8-30M
PAL16L8B4C	PALC16L8L-35C
PAL16L8B4M	PALC16L8-40M
PAL16L8BM	PALC16L8-20M
PAL16L8C	PALC16L8-35C

NATIONAL	CYPRESS
PAL16L8M	PALC16L8-40M
PAL16R4A2C	PALC16R4-35C
PAL16R4AC	PALC16R4-25C
PAL16R4AM	PALC16R4-30M
PAL16R4B2C	PALC16R4-25C
PAL16R4B2M	PALC16R4-30M
PAL16R4B4C	PALC16R4L-35C
PAL16R4B4M	PALC16R4-40M
PAL16R4BM	PALC16R4-20M
PAL16R4C	PALC16R4-35C
PAL16R4M	PALC16R4-40M
PAL16R6A2C	PALC16R6-35C
PAL16R6A2M	PALC16R6-40M
PAL16R6AC	PALC16R6-25C
PAL16R6AM	PALC16R6-30M
PAL16R6B2C	PALC16R6-25C
PAL16R6B2M	PALC16R6-30M
PAL16R6B4C	PALC16R6L-35C
PAL16R6B4M	PALC16R6-40M
PAL16R6BM	PALC16R6-20M
PAL16R6C	PALC16R6-35C
PAL16R6M	PALC16R6-40M
PAL16R8A2C	PALC16R8-35C
PAL16R8A2M	PALC16R8-40M
PAL16R8AC	PALC16R8-25C
PAL16R8AM	PALC16R8-30M
PAL16R8B2C	PALC16R8-25C
PAL16R8B2M	PALC16R8-30M
PAL16R8B4C	PALC16R8L-35C
PAL16R8B4M	PALC16R8-40M
PAL16R8BM	PALC16R8-20M
PAL16R8C	PALC16R8-35C
PAL16R8M	PALC16R8-40M
PAL20L10B2C	PLDC20G10-25C
PAL20L10B2M	PLDC20G10-30M
PAL20L10C	PLDC20G10-35C
PAL20L10M	PLDC20G10-40M
PAL20L2C	PLDC20G10-35C
PAL20L8AC	PLDC20G10-25C
PAL20L8AM	PLDC20G10-30M
PAL20L8BC	PLDC20G10-25C
PAL20L8BM	PLDC20G10-30M
PAL20L8C	PLDC20G10-35C
PAL20L8M	PLDC20G10-40M
PAL20R4AC	PLDC20G10-25C
PAL20R4AM	PLDC20G10-30M
PAL20R4BC	PLDC20G10-25C
PAL20R4BM	PLDC20G10-30M
PAL20R4C	PLDC20G10-35C
PAL20R4M	PLDC20G10-40M
PAL20R6AC	PLDC20G10-25C
PAL20R6AM	PLDC20G10-30M
PAL20R6BC	PLDC20G10-25C
PAL20R6BM	PLDC20G10-30M
PAL20R6C	PLDC20G10-35C
PAL20R6M	PLDC20G10-40M
PAL20R8AC	PLDC20G10-25C
PAL20R8AM	PLDC20G10-30M
PAL20R8BC	PLDC20G10-25C
PAL20R8BM	PLDC20G10-30M
PAL20R8C	PLDC20G10-35C
PAL20R8M	PLDC20G10-40M

NEC	CYPRESS
PREFIX:uPD	PREFIX:CY
SUFFIX:C	SUFFIX:P
SUFFIX:D	SUFFIX:D
SUFFIX:K	SUFFIX:L
SUFFIX:L	SUFFIX:F
100422-10C	100E422L-7C
100422-7C	100E422L-7C
100470-10C	100E470-7C
100470-15C	100E470-7C
100474-10C	100E474L-7C
100474-4.5	100E474-3.5C
100474-6	100E474-5C
100474-8C	100E474L-7C
100474A-5	100E474L-5C
100474A-6	100E474L-5C
100474E-4	100E474-3.5C
100484-10	100E484L-7C
100484-15	100E484L-7C
100A484-5	100E484-5C
100A484-7	100E484L-7C
10422-10C	10E422L-7C
10422-7C	10E422L-7C
10470-10C	10E470-7C
10470-15C	10E470-7C
10474-10C	10E474L-7C
10474-8C	10E474L-7C
10474A-5	10E474L-5C
10474A-6	10E474L-5C
10474E-4	10E474-4C
10484-10	10E484L-7C
10484-15	10E484L-7C
10A484-5	10E484-5C
10A484-7	10E484L-7C
2147-2	2147-55C
2147-3	2147-55C
2147A-25	7C147-25C
2147A-35	2147-35C
2147A-45	2147-45C
2149	2149-55C
2149-1	2149-45C
2149-2	2149-35C
2167-2	7C167A-45C
2167-3	7C167A-45C
27HC65-25	7C263/4-25C
27HC65-35	7C263/4-35C
27HC65-45	7C263/4-45C
4311-45	7C167A-45C
4311-55	7C167A-45C
43254C-35	7C194-35
43254C-45	7C194-45
4361-40	7C187-35C
4361-45	7C187-45C
4361-55	7C187-45C
4361-70	7C187-45C
4362-45	7C164-45C
4362-55	7C164-45C
4362-70	7C164-45C
4363-45	7C166-45C
4363-55	7C166-45C
4363-70	7C166-45C

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on $I_{C C}$ and 5 mA on $I_{S B}$ $+=$ meets all performance specs but may not meet I_{CC} or I_{SB}

* $=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or I_{SB}
$-=$ functionally equivalent
$\dagger=$ SOIC only
$\ddagger=32$-pin LCC crosses to the 7C198M

PARADIGM	CYPRESS
PREFIX:PDM	PREFIX:CY
41251L	7C191-C
41251LB	7C191-MB*
41251 S	7C191-C
+1251SB	7 C 191 -MB
+1252L	7C192-C
1252LB	$7 \mathrm{Cl} 192-\mathrm{MB}^{*}$
11252S	7C192-C
11252SB	$7 \mathrm{C} 192-\mathrm{MB}$
11256L	7C199/8-C*
! 1256 LB	$7 \mathrm{C} 199 / 8$ - MB*
.1256S	7C199/8-C
[1256SB	7C199/8-MB
. 1258 L	$7 \mathrm{C} 194-\mathrm{C}^{*}$
.1258LB	7 C 194 - ${ }^{*}$
. 1258 S	7C194-C
.1258SB	7C194-B
'ERFORMANCE	CYPRESS
'REFIX:P	PREFIX:CY
:UFFIX:L	SUFFIX:L
:UFFIX:S	SUFFIX:S
1256-35	7C199-35
1256-45	7C199-45
C1256-25	7C199-25
C1256-35	7C199-35
C1256-45	7C198-45
C1257-25	7C197-25
C1257-35	7C197-35
C1257-45	7C197-45
C1258-25	7C194-25
C1258-35	7C194-35
C1258-45	7C194-45
C150-12C	7C150-12C
C150-15C	$7 \mathrm{C} 150-15 \mathrm{C}$
C150-15M	7C150-15M
C150-20C	7C150-15C
C150-20M	$7 \mathrm{C} 150-15 \mathrm{M}$
C150-25C	$7 \mathrm{C} 150-25 \mathrm{C}$
C150-25M	7C150-25M
C150-35M	7C150-35M
C164DW-20C	7C186-20C
C164DW-25C	7 C 186 -25C
C164DW-25M	7C186A-25M
C164DW-35C	7C186-35C
C164DW-35M	7C186A-35M
C164DW-45C	7C186-45C
C164DW-45M	7C186A-45M
C164DW-55C	7C186-55C
C164DW-55M	$7 \mathrm{C} 186 \mathrm{~A}-55 \mathrm{M}$
C164P-20C	7C185-20C
C164P-25C	$7 \mathrm{C} 185-25 \mathrm{C}$
C164P-25M	$7 \mathrm{C} 185 \mathrm{~A}-25 \mathrm{M}$
C164P-35C	7C185-35C
C164P-35M	7C185A-35M
C164P-45C	7C185-45C
C164P-45M	7C185A-45M
C164P-55C	7C185-55C
C164P-55M	$7 \mathrm{C} 185 \mathrm{~A}-55 \mathrm{M}$
C1681-25C	$7 \mathrm{C} 171 \mathrm{~A}-25 \mathrm{C}$
C1681-35C	7C171A-35C
C1681-35M	7C171A-35M

PERFORMANCE	CYPRESS
4C1681-45C	7C171A-45C
4C1681-45M	7C171A-45M
4C1682-25C	7C172A-25C
4C1682-35C	7C172A-35C
4C1682-35M	7C172A-35M
4C1682-45C	7C122A-45C
4C1682-45M	7C172A-45M
4C169-25C	7C169A-25C
4C169-30C	7C169A-25C
4C169-35C	7C169A-35C
4C169-35M	7C169A-35M
4C169-45M	7C169A-45M
4C187-20C	7C18-20C
4C187-25C	7C187-25C
4C187-25M	7C187A-25M
4C187-35M	7C187A-35M
4C188-20C	7C164-20C
4C188-25C	7C164-25C
4C188-25M	7C164A-25M
4C188-35C	7C164-35C
4C188-35M	7C164A-35M
4C188-45M	7C164A-45M
4C198-20C	7C166-20C
4C198-25C	7C166-25C
4C198-25M	7C166A-25M
4C198-35C	7C166-35C
4C198-35M	7C166A-35M
4C198-45M	7C166A-45M
4C1981-20C	7C161-20C
4C1981-25C	7C161-25C
4C1981-25M	7C161A-25M
4C1981-35C	7C161-35C
4C1981-35M	7C161A-35M
4C1981-45M	7C161A-45M
4C1981-55M	7C161A-55M
4C1982-20C	7C162-20C
4C1982-25C	7C162-25C
4C1982-25M	7C162A-25M
4C1982-35C	7C162-35C
4C1982-35M	7C162A-35M
4C1982-45M	7C162A-45M
4C1982-55M	7C162A-55M
93U422-35C	7C122-15C
93U422-35C	7C122-25C
93U422-35C	7C122-35C
93U422-35M	7C122-25M
93U422-35M	7C122-35M
QUICKLOGIC	CYPRESS
PREFIX:QL	PREFIX:CY
12X16-0XX68C	7C383-0C
12X16-0XX68I	7C383-0I
12X16-0XX84C	7C384-0C
12X16-0XX84I	7C384-0I
12X16-1XX68C	7C383-1C
12X16-1XX68I	7C383-1I
12X16-1XX84C	7C384-1C
12X16-1XX84I	7C38-1I
12X16-2XX68C	7C383-2C
8X12-0XX44C	7C384-2C
8X12-0XX44I	7C381-0C
7C381-0I	

QUICKLOGIC	CYPRESS
8X12-0XX68C	7-382-0C
8X12-0XX681	7C382-0I
$8 \mathrm{X} 12-1 \mathrm{XX} 44 \mathrm{C}$	7C381-1C
8X12-1XX44I	7C381-11
8X12-1XX68C	7C382-1C
$8 \mathrm{X} 12-1 \mathrm{XX} 68 \mathrm{I}$	7C382-1I
8X12-2XX44C	7C381-2C
8X12-2XX68C	7C382-2C
SAMSUNG	CYPRESS
PREFIX:KM	PREFIX:CY
61257A-25	7C197-25C
61257A-35	7C197-35C
61257A-45	7C197-45C
64257A-25	7C194-25C
64257A-35	7C194-35C
64257A-45	7C194-45C
$75 \mathrm{C} 01 \mathrm{~A}-15$	$7 \mathrm{C} 421 \mathrm{~A}-15$
$75 \mathrm{C} 01 \mathrm{~A}-20$	7C421-20C
$75 \mathrm{C} 01 \mathrm{~A}-25$	7C421-25C
$75 \mathrm{C} 01 \mathrm{~A}-35$	7C421-30C
$75 \mathrm{C} 01 \mathrm{~A}-50$	$7 \mathrm{C} 421-40 \mathrm{C}$
$75 \mathrm{C} 01 \mathrm{~A}-80$	7C421-65C
$75 \mathrm{C} 01 \mathrm{AP}-20$	7C420-20C
$75 \mathrm{C} 01 \mathrm{AP}-25$	7C420-25C
75C01AP-35	7C420-35C
75 C 01 AP -50	$7 \mathrm{C} 420-50 \mathrm{C}$
$75 \mathrm{C} 01 \mathrm{AP}-80$	7C420-80C
$75 \mathrm{C} 02 \mathrm{~A}-15$	$7 \mathrm{C} 425 \mathrm{~A}-15$
75C02A-20	7C425-20C
$75 \mathrm{C} 02 \mathrm{~A}-25$	7C425-25C
75C02A-35	7C425-30C
$75 \mathrm{C} 02 \mathrm{~A}-50$	7C425-40C
$75 \mathrm{C} 02 \mathrm{~A}-80$	7C425-65C
$75 \mathrm{C} 02 \mathrm{AP}-20$	7C424-20C
$75 \mathrm{C} 02 \mathrm{AP}-25$	$7 \mathrm{C} 424-25 \mathrm{C}$
$75 \mathrm{C} 02 \mathrm{AP}-35$	7C424-30C
$75 \mathrm{C} 02 \mathrm{AP}-50$	7C424-40C
$75 \mathrm{C} 02 \mathrm{AP}-80$	7C424-65C
$75 \mathrm{C} 03 \mathrm{~A}-15$	$7 \mathrm{C} 429 \mathrm{~A}-15$
75C03A-20	7C429-20C
75C03A-25	7C429-25C
$75 \mathrm{C} 03 \mathrm{~A}-35$	$7 \mathrm{C} 429-30 \mathrm{C}$
75C03A-50	7C429-40C
$75 \mathrm{C} 03 \mathrm{~A}-80$	7C429-65C
$75 \mathrm{C} 03 \mathrm{AP}-20$	7C428-20C
$75 \mathrm{C03AP}-25$	7C428-25C
75C03AP-35	7C428-30C
$75 \mathrm{C} 03 \mathrm{AP}-50$	7C428-40C
$75 \mathrm{C} 03 \mathrm{AP}-80$	7C428-65C
75C102A-20	$7 \mathrm{C425-20C}$
$75 \mathrm{C} 102 \mathrm{~A}-25$	7C425-25C
75C102A-35	7C425-25C
$75 \mathrm{C} 102 \mathrm{~A}-80$	7C425-65C
SHARP	CYPRESS
PREFIX:LH	PREFIX:CY
52251-35	7C197-35C
52251-45	7C197-45C
52252-35	7C194-35C
52252-45	7C194-45C
52254D-25	7C199-25C

SHARP	CYPRESS	SIGNETICS	CYPRESS
52254D-35	7C199-35C	N82S191A-3	7C291A-50C
52254D-45	7C199-45C	N82S191A-6	7C292A-50C
52259	7 C 188	N82S191C-3	7C291A-35C
5481-15	$7 \mathrm{C} 408 \mathrm{~A}-15 \mathrm{C}$	N82S191C-6	7C292A-35C
5481-25	7C408A-25C	S82HS641	7C263/4-55M
5481-35	7C408A-35C	S82LS181	7C282-45M
5491-15	7C409A-15C	S82S181	7C282-45M
5491-25	$7 \mathrm{C} 409 \mathrm{~A}-25 \mathrm{C}$	S82S181A	7C282-45M
5491-35	$7 \mathrm{C} 409 \mathrm{~A}-35 \mathrm{C}$	S82S191-3	7C291A-50M
5496-20	7C420-20C	S82S191-6	7C292A-50M
5496-35	7C420-30C	S82S191A-3	7C291A-50M
5496-50	7C420-40C	S82S191A-6	7C292A-50M
5496D-15	7C421A-15	S82S191B-3	7C291A-50M
5496D-20	7C421-20C	S82S191B-6	7C292A-50M
5496D-35	7C421-30C		
5496D-50	7C421-40C	SONY	CYPRESS
5497-20	7C424-20C	PREFIX:CXK	PREFIX:CY
5497-35	7C424-30C	51256P-35	7C197-35
5497-50	7C424-40C	51256P-45	7C197-45
5497D-15	7C425A-15	54256P-35	7C194-35
5497D-20	7C425-20C	54256P-45	7C194-45
5497D-35	7C425-30C	58255AJ-25	7C199-25
5497D-50	7C425-40C	58255AP-25	7C199-25
5498-20	7C428-20C	58258P-35	7C198-35
5498-35	7C428-30C	58258P-45	7C198-45
5498-50	7C428-40C	58258SP-35	7C199-35
5498D-15	7C429A-15	58258SP-45	7C199-45
5498D-20	7C429-20C		
5498D-35	7C429-30C	TI	CYPRESS
5498D-50	7C429-40C	PREFIX:JBP	PREFIX:CY
5499-35	7C432-30C	PREFIX:PAL	SUFFIX:P
5499-50	7C432-40C	PREFIX:SM	PREFIX:CY
5499D-15	7C433A-15	PREFIX:SMJ	PREFIX:CY
5499D-35	7C433-30C	PREFIX:SN	PREFIX:CY
5499D-50	7C433-40C	PREFIX:TBP	PREFIX:CY
5749/J-55	7C263/4-55C	PREFIX:TIB	PREFIX:CY
5749/J-70	7C263/4-55C	PREFIX:TMS	PREFIX:CY
		SUFFIX:F	SUFFIX:F
SIGNETICS	CYPRESS	SUFFIX:J	SUFFIX:L
SUFFIX:G	SUFFIX:L	SUFFIX:N	SUFFIX:D
SUFFIX:N	SUFFIX:P	10016P8-6C	100E301L-6C
SUFFIX:R	SUFFIX:F	10H16P8-6C	10E301L-6C
100422BC	100E422-7C	22V10AC	PALC22V10-25C
100422CC	100E422-7C	22V10AM	PALC22V10-30M
100474AC	100E474-7C	$54 \mathrm{HC189}$	7C189-25M
10422BC	10E422-7C	54HCT189	7C189-25M
10422CC	10E422-7C	54LS189A	27LS03M
10474AC	10E474-7C	54LS219A	7C190-25M+
27HC641-45C	7C263/4-45C	54S189A	74S189M
27HC641-55C	7C263/4-55C	61CD256-35	7C197-35M
N74S189	74S189C	61CD256-45	7C197-45M
N82HS641	7C263/4-55C	64C256-35	7C194-35M
N82HS641A	7C263/4-45C	64C256-45	7C194-45M
N82HS641B	7C263/4-35C	68CE256-35	7C198-35M
N82HS641C	7C263/4-25C	68CE256-45	7C198-45M
N82LHS191-3	7C291A-35C	7489	7C189-25C
N82LHS191-6.	7C292A-35C	74ACT29116	7C9116AC
N82S181	7C281/2-45C	74ACT29116-1	7 C 9116 AC
N82S181A	7C281/2-45C	$74 \mathrm{HC189}$	7C189-25C
N82S181C	$7 \mathrm{C} 281 / 2-30 \mathrm{C}$	74 HC 219	7C190-25C
N82S191-3	7C291A-50C	74HCT189	7C189-25C
N82S191-6	7C292A-50C	74LS189A	27LS03C

TI	CYPRESS
74LS219A	27S07C+
74S189A	74S189C
74S189B	7C189-25C
HCT9510E	7C510-75C+
HCT9510E-10	7C510-75C+
HCT9510M	7C510-75M+
PAL16L8-20M	PALC16L8-20M
PAL16L8-25C	PALC16L8-25C
PAL16L8-30M	PALC16L8-30M
PAL16L8A-2C	PALC16L8-35C
PAL16L8A-2M	PALC16L8-40M
PAL16L8AC	PALC16L8-25C
PAL16L8AM	PALC16L8-30M
PAL16R4-20M	PALC16R4-20M
PAL16R4-25C	PALC16R4-25C
PAL16R4-30M	PALC16R4-30M
PAL16R4A-2C	PALC16R4-25C
PAL16R4A-2M	PALC16R4-40M
PAL16R4AC	PALC16R4-25C
PAL16R4AM	PALC16R4-30M
PAL16R6-20M	PALC16R6-20M
PAL16R6-25C	PALC16R6-25C
PAL16R6-30M	PALC16R6-30M
PAL16R6A-2C	PALC16R6-25C
PAL16R6A-2M	PALC16R6-40M
PAL16R6AC	PALC16R6-25C
PAL16R6AM	PALC16R6-30M
PAL16R8-20M	PALC16R8-20M
PAL16R8-25C	PALC16R8-25C
PAL16R8-30M	PALC16R8-30M
PAL16R8A-2C	PALC16R8-25C
PAL16R8A-2M	PALC16R8-40M
PAL16R8AC	PALC16R8-25C
PAL16R8AM	PALC16R8-30M
PAL20L10A-2C	PLDC20G10-25C
PAL20L10A-2M	PLDC20G10-30M
PAL20L10AC	PLDC20G10-35C
PAL20L10AM	PLDC20G10-30M
PAL20L8A-2C	PLDC20G10-25C
PAL20L8A-2M	PLDC20G10-30M
PAL20L8AC	PLDC20G10-25C
PAL20L8AM	PLDC20G10-30M
PAL20R4A-2C	PLDC20G10-25C
PAL20R4A-2M	PLDC20G10-30M
PAL20R4AC	PLDC20G10-25C
PAL20R4AM	PLDC20G10-30M
PAL20R6A-2C	PLDC20G10-25C
PAL20R6A-2M	PLDC20G10-30M
PAL20R6AC	PLDC20G10-25C
PAL20R6AM	PLDC20G10-30M
PAL20R8A-2C	PLDC20G10-25C
PAL20R8A-2M	PLDC20G10-30M
PAL20R8AC	PLDC20G10-25C
PAL20R8AM	PLDC20G10-30M
PAL22V10-7C	PALC22V10D-7C
PAL22V10-7C	PAL22V10C-7C
PAL22V10-15C	PALC22V10B-15C
PAL22V10-20M	PALC22V10B-20N
PAL22V10AC	PALC22V10-25C
PAL22V10AC	PALC22V10L-25C.
PAL22V10AM	PALC22V10-25M]
PAL22V10AM	PALC22V10-30M]

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on I_{CC} and 5 mA on ISB

[^1]| TI | CYPRESS | TOSHIBA | CYPRESS | VTI (VLSI) | CYPRESS |
| :---: | :---: | :---: | :---: | :---: | :---: |
| PAL22V10C | PALC22V10-35C | 55417P/J-35 | 7C166-35C | 7142-55C | 7C142-55C |
| PAL22V10C | PALC22V10L-35C | 55464-17 | 7B194-15C | 7142-70 | 7C142-55C |
| SN74ACT7201LA15 | $7 \mathrm{C} 421 \mathrm{~A}-15$ | 55464-20 | $7 \mathrm{C} 194-20 \mathrm{C}$ | $7142-70 \mathrm{C}$ | 7C142-55C |
| SN74ACT7201LA25 | 7C421-25 | 55464-25 | $7 \mathrm{C} 194-25 \mathrm{C}$ | 7142-90C | 7C142-55C |
| SN74ACT7202LA15 | 7C425A-15 | 55464-35 | $7 \mathrm{C} 194-35 \mathrm{C}$ | $7142 \mathrm{~A}-25 \mathrm{C}$ | 7C142-25C |
| SN74ACT7202LA25 | 7C425-25 | 55464P/J-25 | $7 \mathrm{C} 194-25 \mathrm{C}$ | 7142A-30C | 7C142-25C |
| SN74ACT7203L15 | $7 \mathrm{C} 429 \mathrm{~A}-15$ | 55464P/J-35 | 7C194-35C | 7142A-35 | 7C142-35C |
| SN74ACT7203L25 | 7C429-25 | 55465-17 | 7B196-15C | 7142A-35C | 7C142-35C |
| SN74ACT7204L15 | $7 \mathrm{C} 433 \mathrm{~A}-15$ | 55465-20 | 7C196-20C | 7142A-45 | 7C142-45C |
| SN74ACT7204L25 | 7C433-25 | -55465-25 | 7C196-25C | 7142A-45C | 7 C 142 - 45 C |
| TOSHIBA | CYPRESS | 55465P/J-25 | $7 \mathrm{C} 195-25 \mathrm{C}$ | WSI | CYPRESS |
| PREFIX:P | SUFFIX:P | 55465P/J-35 | 7C195-35C | PREFIX:WS | PREFIX:CY |
| PREFIX:TC | PREFIX:CY | 5561-45 | 7C187-45C+ | SUFFIX:C | PREFIX:CY |
| PREFIX:TMM | PREFIX:CY | 5561-55 | 7C187-45C+ | SUFFIX:D | PREFIX:CY |
| SUFFIX:D | SUFFIX:D | 5561-70 | 7C187-45C+ | SUFFIX:M | SUFFIX:P |
| 2015A-10 | 7C128A-55C+ | 5561P/J-45 | 7C187-45C | SUFFIX:P | PREFIX:CY |
| 2015A-12 | 7C128A-55C+ | 5561P/J-55 | 7C187-35C | 29C01C | 7C901-31C |
| 2015A-15 | 7C128A-55C+ | 5561P/J-70 | $7 \mathrm{C} 187-45 \mathrm{C}$ | 57C45-25C | $7 \mathrm{C} 245 \mathrm{~A}-25 \mathrm{C}$ |
| 2015A-90 | 7C128A-55C+ | 5562-35 | 7C187-35C | 57C45-25M | 7C245A-25M |
| 3018-25 | $7 \mathrm{C} 128 \mathrm{~A}-25 \mathrm{C}$ | 5562-45 | 7C187-45C | 57C45-35C | 7C245A-35C |
| 2018-35 | 7C128A-35C | 5562-55 | 7C187-45C | 57C45-35M | 7C245A-35M |
| 2018-45 | $7 \mathrm{C} 128 \mathrm{~A}-45 \mathrm{C}$ | 5562P/J-35 | 7C187-45C | 57C45-45C | 7C245A-45C |
| 2018-55 | $7 \mathrm{C} 128 \mathrm{~A}-55 \mathrm{C}+$ | 5562P/J-45 | 7C187-45C | 57C45-45M | 7C245A-45M |
| 2018AP-35 | 7C128A-35C | 5562P/J-55 | 7C187-45C | 57C49B-35C | 7C263/4-35C |
| :018AP-45 | 7C128A-45C | 5563-10 | 7C185-55C | 57C49B-45C | 7C263/4-45C |
| :068-25 | $7 \mathrm{C} 168 \mathrm{~A}-25 \mathrm{C}$ | 5563-12 | 7C185-55C | 57C49B-45M | 7C263/4-45C |
| :068-35 | 7C168A-35C | 5563-15 | 7C185-55C | 57C49B-55C | 7C263/4-55C |
| :068-45 | 7C168A-45C | 5565-10 | 7C186-55C | 57C49B-55M | 7C263/4-55C |
| :068-55 | 7C168A-45C | 5565-12 | 7C186-55C | 57C49B-70C | 7C263/4-55C |
| !069-35 | $7 \mathrm{C} 169 \mathrm{~A}-35 \mathrm{C}$ | 5565-15 | 7C186-55C | 57C49B-70M | 7C263/4-55C |
| !078-35 | $7 \mathrm{C} 170 \mathrm{~A}-35 \mathrm{C}$ | 5588P/J-20 | $7 \mathrm{C} 185-20 \mathrm{C}$ | 57C49C-25C | 7C263/4-25C |
| !078-45 | $7 \mathrm{C} 170 \mathrm{~A}-45 \mathrm{C}$ | 5588P/J-25 | 7C185-25C | $57 \mathrm{C} 49 \mathrm{C}-35 \mathrm{C}$ | 7C263/4-35C |
| !078-55 | $7 \mathrm{C} 170 \mathrm{~A}-45 \mathrm{C}$ | 5589P/J-25 | $7 \mathrm{C} 182-25 \mathrm{C}$ | $57 \mathrm{C} 49 \mathrm{C}-45 \mathrm{C}$ | 7C263/4-45C |
| :088-35 | 7C186-35C | 55B328-12 | 7B199-12C | 57C49C-45M | 7C263/4-45C |
| :088-45 | 7C186-45C | 55B328-15 | 7B199-15C | 57C49C-55C | 7C263/4-55C |
| :088-55 | 7C186-55C | 55B464-12 | 7B194-12C | $57 \mathrm{C} 49 \mathrm{C}-55 \mathrm{M}$ | 7C263/4-55C |
| [15 | 2147-55C | 55B464-15 | 7B194-15C | $57 \mathrm{C} 49 \mathrm{C}-70 \mathrm{C}$ | 7C263/4-55C |
| 115-1 | 2147-55C | 55B465-12 | 7B196-12C | $57 \mathrm{C} 49 \mathrm{C}-70 \mathrm{M}$ | 7C263/4-55C |
| [5187T-25 | 7C183-25C | 55B465-15 | 7B196-15C | 57C51C-45C | 7C251/4-45C |
| i5187T-30 | $7 \mathrm{C} 183-25 \mathrm{C}$ | | | 57C51C-45M | 7C251/4-45M |
| [5188T-25 | $7 \mathrm{C} 184-25 \mathrm{C}$ | VTI (VLSI) | CYPRESS | 57C51C-55C | 7C251/4-55C |
| 5188T-30 | 7C184-25C | PREFIX:VL | PREFIX:CY | 57C51C-55M | 7C251/4-55M |
| [5257-10 | 7C199-55C | PREFIX:VT | PREFIX:CY | 57C51C-70C | 7C251/4-55M |
| [5257-12 | 7C199-55C | 2010-65 | 7C510-65C | 57C51C-70M | 7C251/4-55M |
| -5257-70 | 7C199-55C | 2010-70 | 7C510-65C | 57C71C-35C | 7C271-35C |
| -5257-85 | 7C199-55C | 2010-90 | 7C510-75C | 57C71C-45C | 7C271-45C |
| [5328-17 | 7C199-15C | 2130-10C | 7C130-55C | $57 \mathrm{C} 71 \mathrm{C}-55 \mathrm{C}$ | 7C271-55C |
| -5328-20 | 7C199-20C | 2130-12C | 7C130-55C | 57C71C-55M | 7C271-55M |
| [5328-25 | 7C199-25C | 2130-15C | 7C130-55C | $57 \mathrm{C} 71 \mathrm{C}-70 \mathrm{C}$ | 7C271-55M |
| [5328-35 | $7 \mathrm{C} 199-35 \mathrm{C}$ | 7132-55 | 7C132-55C | $57 \mathrm{C} 71 \mathrm{C}-70 \mathrm{M}$ | 7C271-55M |
| [5328P/J-25 | 7C199-25C | 7132-55C | $7 \mathrm{C} 132-55 \mathrm{C}$ | 57C191B-35C | 7C292-35C |
| [5328P/J-35 | 7C199-35C | 7132-70 | 7C132-55C | 57C191B-35M | 7C292-35M |
| [5329P/J | 7 Cl 88 | 7132-70C | 7C132-55C | 57C191B-45C | 7C292-35C |
| [5416-35 | 7C164-35C | 7132-90C | $7 \mathrm{C} 132-55 \mathrm{C}$ | 57C191B-45M | 7C292-35M |
| [5416-45 | 7C164-45C | 7132A-25C | $7 \mathrm{C} 132-25 \mathrm{C}$ | 57C191B-50M | $7 \mathrm{C} 292 \mathrm{~A}-50 \mathrm{M}$ |
| 5417-25 | 7C166-25C | 7132A-30C | 7C132-25C | 57C191B-55C | 7C292A-50C |
| [5417-35 | 7C166-35C | 7132A-35 | 7C132-35C | 57C191B-55M | $7 \mathrm{C} 292 \mathrm{~A}-50 \mathrm{M}$ |
| [5417-45 | 7C166-45C | 7132A-35C | 7C132-35C | 57C191C-25C | 7C292A-25C |
| [5417P/J-15 | 7C166-15C | 7132A-45 | 7C132-45C | 57C191C-35C | 7C292A-35C |
| 5417P/J-20 | 7C166-20C | 7132A-45C | 7C132-45C | 57C191C-45C | 7C292-35C |
| 5417P/J-25 | 7C166-25C | 7142-55 | 7C142-55C | 57C191C-45M | 7C292-35M |

WSI	CYPRESS
$57 \mathrm{C} 191 \mathrm{C}-55 \mathrm{C}$	$7 \mathrm{C} 292-50 \mathrm{C}$
$57 \mathrm{C} 191 \mathrm{C}-55 \mathrm{M}$	$7 \mathrm{C} 292-50 \mathrm{M}$
$57 \mathrm{C} 256 \mathrm{~F}-35 \mathrm{C}$	$7 \mathrm{C} 274-35 \mathrm{C}$
$57 \mathrm{C} 256 \mathrm{~F}-45 \mathrm{C}$	$7 \mathrm{C} 274-45 \mathrm{C}$
$57 \mathrm{C} 256 \mathrm{~F}-55 \mathrm{C}$	$7 \mathrm{C} 274-55 \mathrm{C}$
$57 \mathrm{C} 256 \mathrm{~F}-55 \mathrm{M}$	$7 \mathrm{C} 274-55 \mathrm{M}$
$57 \mathrm{C} 291 \mathrm{~B}-35 \mathrm{C}$	$7 \mathrm{C} 291-35 \mathrm{C}$
$57 \mathrm{C} 291 \mathrm{~B}-35 \mathrm{M}$	$7 \mathrm{C} 291-35 \mathrm{M}$
$57 \mathrm{C} 291 \mathrm{~B}-45 \mathrm{C}$	$7 \mathrm{C} 291-35 \mathrm{C}$
$57 \mathrm{C} 291 \mathrm{~B}-45 \mathrm{M}$	$7 \mathrm{C} 291-35 \mathrm{M}$
$57 \mathrm{C} 291 \mathrm{~B}-50 \mathrm{M}$	$7 \mathrm{C} 291-50 \mathrm{M}$
$57 \mathrm{C} 291 \mathrm{~B}-55 \mathrm{C}$	$7 \mathrm{C} 291-50 \mathrm{C}$
$57 \mathrm{C} 291 \mathrm{~B}-55 \mathrm{M}$	$7 \mathrm{C} 291-50 \mathrm{M}$
$57 \mathrm{C} 291 \mathrm{C}-25 \mathrm{C}$	$7 \mathrm{C} 291 \mathrm{~A}-25 \mathrm{C}$
$57 \mathrm{C} 291 \mathrm{C}-35 \mathrm{C}$	$7 \mathrm{C} 291 \mathrm{~A}-35 \mathrm{C}$
$57 \mathrm{C} 291 \mathrm{C}-45 \mathrm{C}$	$7 \mathrm{C} 291-35 \mathrm{C}$
$57 \mathrm{C} 291 \mathrm{C}-45 \mathrm{M}$	$7 \mathrm{C} 291-35 \mathrm{M}$
$57 \mathrm{C} 291 \mathrm{C}-55 \mathrm{C}$	$7 \mathrm{C} 291-50 \mathrm{C}$
$57 \mathrm{C} 291 \mathrm{C}-55 \mathrm{M}$	$7 \mathrm{C} 291-50 \mathrm{M}$
$57 \mathrm{C} 64 \mathrm{~F}-55 \mathrm{C}$	$7 \mathrm{C} 266-55 \mathrm{C}$
5901 C	$2901 \mathrm{CC}+$
5901 M	$2901 \mathrm{CM}+$
5910 AC	$7 \mathrm{C} 910-40 \mathrm{C}$
5910 AM	$7 \mathrm{C} 910-46 \mathrm{M}$
59510	7 C 510
59516	$7 \mathrm{C} 516-45 \mathrm{C}$
59517	$7 \mathrm{C} 517-45 \mathrm{C}$

Document \# 38-00238

Note: Unless otherwise noted, product meets all performance specs and is within 10 mA on $I_{C C}$ and 5 mA on I_{SB}
$+=$ meets all performance specs but may not meet I_{CC} or I_{SB}

* $=$ meets all performance specs except 2 V data retention-may not meet I_{CC} or I_{SB}
- = functionally equivalent
$\dagger=$ SOIC only
$\ddagger=32$-pin LCC crosses to the 7 C 198 M
INFO 1
SRAMs2
PROMs 3
PLDs 4
FIFOs 5
LOGIC 6
DATACOM 7
MODULES 8
ECL 9
BUS 10
MILITARY 11
TOOLS 12
QUALITY 13
PACKAGES 14

Static RAMs (Random Access Memory)

Page Number

Device Number
CY7C101A
CY7C102A
CY7C106A
CY7C107A
CY7C109A
CY7C123
CY7C128A
CY7C130
CY7C131
CY7C140
CY7C141
CY7C132
CY7C136
CY7C142
CY7C146
CY7B134
CY7B135
CY7B1342
CY7B138
CY7B139
CY7B144
CY7B145
CY7C148
CY7C149
CY7C150
CY7B161
CY7B162
CY7C161
CY7C162
CY7C161A
CY7C162A
CY7B164
CY7B166
CY7C164
CY7C166
CY7C164A
CY7C166A
CY7C167A
CY7C168A
CY7C169A
CY7C170A
CY7C171A
CY7C172A
CY7B173
CY7B174
CY7B173A
CY7B174A
CY7B175
CY7C178
CY7C179
CY7B180

Description

256K x 4 Static RAM with Separate I/O . 2-1
256K x 4 Static RAM with Separate I/O . 2-1
256K x 4 Static RAM . 2-9
1M x 1 Static RAM . 2-17
128K x 8 Static RAM . $2-24$
256K x 4 Static R/W RAM . 2-32
2K x 8 Static R/W RAM . 2-38
1Kx 8 Dual-Port Static RAM . 2-45
1K x 8 Dual-Port Static RAM . 2-45
1K x 8 Dual-Port Static RAM . 2-45
1Kx 8 Dual-Port Static RAM . 2-45
2K x 8 Dual-Port Static RAM . 2-58
2K x 8 Dual-Port Static RAM . 2-58
2K x 8 Dual-Port Static RAM . 2-58
2K x 8 Dual-Port Static RAM . 2-58
4K x 8 Dual-Port Static RAM . 2-71
4K x 8 Dual-Port Static RAM . 2-71
4K x 8 Dual-Port Static RAM with Semaphores .. . 2-71

4K x 9 Dual-Port Static RAM with Semaphores, $\overline{\text { INT, }}$, and $\overline{\text { BUSY }} \ldots \ldots \ldots \ldots \ldots . . \ldots$. 83
8K x 8 Dual-Port Static RAM with Semaphores, $\overline{\text { INTT, }}$ and $\overline{\text { BUSY }} . ~ 2-99$
8K x 9 Dual-Port Static RAM with Semaphores, $\overline{\text { INTT, and } \overline{\text { BUSY }} . ~ . ~ . ~ 2-99 ~}$

1K x 4 Static RAM . 2-115
1Kx 4 Static R/W RAM . 2-122
16K x 4 Static RAM Separate I/O . 2-130
16K x 4 Static RAM Separate I/O . 2-130
16K x 4 Static RAM Separate I/O . 2-137
16K x 4 Static RAM Separate I/O . 2-137
16K x 4 Static RAM Separate I/O . 2-145
16K x 4 Static RAM Separate I/O . 2-145
16K x 4 Static R/W RAM . $2-154$
16K x 4 Static R/W RAM . 2-154
16K x 4 Static RAM . 2-160
16K x 4 Static RAM with Output Enable . 2-160
16K x 4 Static RAM $2-167$
16K x 4 Static RAM with Output Enable . 2-167
16K x 1 Static RAM . 2-175
4Kx 4 R/W RAM . $2-182$
4K x 4 R/W RAM . 2 2-182
4K x 4 Static R/W RAM . 2-190
4K x 4 Static R/W RAM Separate I/O . 2-195
4Kx 4 Static R/W RAM Separate I/O . 2-195
32K x 9 Synchronous Cache R/W RAM . 2-203
32K x 9 Synchronous Cache R/W RAM . 2-203
32K x 9 Synchronous Cache R/W RAM . 2-212
32K x 9 Synchronous Cache R/W RAM . 2-212
32K x 9 Synchronous Pentium CPU Cache R/W RAM . 2-224
32K x 18 Synchronous Cache RAM . 2-236
32K x 18 Synchronous Cache RAM . 2-236
4K x 18 Cache Tag . 2-248

Static RAMs (Random Access Memory) (continued)
Page Number
Device Number Description
CY7B181 $4 \mathrm{~K} \times 18$ Cache Tag 2-248
CY7C182 8K x 9 Static R/W RAM 2-268
CY7B185 $8 \mathrm{~K} \times 8$ Static RAM 2-273
CY7C185 $8 \mathrm{~K} \times 8$ Static RAM 2-278
CY7C185A
CY7C187
CY7C187A
$8 \mathrm{~K} \times 8$ Static RAM 2-287
$64 \mathrm{~K} \times 1$ Static RAM 2-295
CY7C188
$64 \mathrm{~K} \times 1$ Static R/W RAM 2-302
CY7B19132K x 9 Static RAM2-310
64K x 4 Static R/W RAM with Separate I/O 2-317CY7B192
64K x 4 Static R/W RAM with Separate I/O 2-317
CY7C191 $64 \mathrm{~K} \times 4$ Static RAM with Separate I/O 2-323
CY7C192 64K x 4 Static RAM with Separate I/O 2-323
CY7B194 $64 \mathrm{~K} \times 4$ Static R/W RAM 2-331
CY7B195 $64 \mathrm{~K} \times 4$ Static R/W RAM with Output Enable 2-331
CY7B196 64K x 4 Static R/W RAM with Output Enable 2-331
CY7C194 64K x 4 Static RAM 2-339
CY7C195 $64 \mathrm{~K} \times 4$ Static R/W RAM with Output Enable 2-339
CY7C196 64K x 4 Static R/W RAM with Output Enable 2-339
CY7C197 256K x 1 Static R/W RAM 2-348
CY7B199
$32 \mathrm{~K} \times 8$ Static RAM 2-356
CY7C199
CY7C1001
$32 \mathrm{~K} x 8$ Static RAM 2-362CY7C1002256K x 4 Static RAM with Separate I/O2-371CY7C1006256K x 4 Static RAM with Separate I/O2-371CY7C1007$256 \mathrm{~K} \times 4$ Static RAM2-378
1M x 1 Static RAM 2-385
CY7C1009 $128 \mathrm{~K} \times 8$ Static RAM 2-391
CY7C1031 64K x 18 Synchronous Cache RAM 2-398
$64 \mathrm{~K} \times 18$ Synchronous Cache RAM 2-398
64K x 18 Synchronous Pipelined Cache R/W RAM 2-410
CY7B1051
128K x 18 Synchronous Pipelined Cache R/W RAM 2-410
CY7B1061
32K x 36 Synchronous Pipelined Cache R/W RAM 2-411
CY7B1055
2-411
CY7B1065 64K x 36 Synchronous Pipelined Cache R/W RAM
2-412
CY7B1094 64K x 4 Static R/W RAM
CY7B1095
2-412
64K x 4 Static R/W RAM
2-412
64 K x 4 Static R/W RAM
CY7B1099
2-419
32K x 8 Static R/W RAM
CY7C1331
2-425
$64 \mathrm{~K} \times 18$ Synchronous Cache 3.3V RAM
2-425
CY7C1332 64K x 18 Synchronous Cache 3.3V RAM
2-437
CY7C1378 32K x 18 Synchronous Cache 3.3V RAM
2-437
CY7C1379 32K x 18 Synchronous Cache 3.3V RAM
CY7C1388
2-438
3.3V 32K x 9 Static RAM 2-444
$3.3 \mathrm{~V} 32 \mathrm{~K} x 8$ Static RAM

SEMICONDUCTOR

Features

- High speed
$-\mathbf{t}_{\mathrm{AA}}=12 \mathrm{~ns}$
- Transparent write (7C101A)
- CMOS for optimum speed/power
- Low active power
- 910 mW
- Low standby power
- 275 mW
- 2.0 V data retention
- $\mathbf{1 0 0} \mu \mathrm{W}$
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7C101A and CY7C102A are highperformance CMOS static RAMs organized as $262,144 \times 4$ bits with separate I/O. Easy memory expansion is provided by active LOW chip enable ($\overline{\mathrm{CE}}$) and threestate drivers. Both devices have an automatic power-down feature, reducing the power consumption by more than 65% when deselected.
Writing to the device is accomplished by taking both chip enable ($\overline{\mathrm{CE}}$) and write enable (WE) inputs LOW. Data on the four input pins (I_{0} through I_{3}) is written into the memory location specified on the address pins (A_{0} through A_{17}).
Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW while write en-

$256 \mathrm{~K} \times 4$ Static RAM with Separate I/O

able ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the four data output pins $\left(\mathrm{O}_{0}\right.$ through O_{3}).

The data output pins on the CY7C101A and the CY7C102A are placed in a highimpedance state when the device is deselected ($\overline{\mathrm{CE}} \mathrm{HIGH}$). The CY7C102A's outputs are also placed in a high-impedance state during a write operation ($\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ LOW). In a write operation on the CY7C101A, the output pins will carry the same data as the inputs after a specified delay.
The CY7C101A and CY7C102A are available in standard 400-mil-wide DIPs and SOJs.

Logic Block Diagram

Pin Configuration

C101A-2

Selection Guide

		$\begin{aligned} & \hline \text { 7C101A-12 } \\ & \text { 7C102A-12 } \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 101 \mathrm{~A}-15 \\ & 7 \mathrm{C} 102 \mathrm{~A}-15 \end{aligned}$	$\begin{aligned} & \hline \text { 7C101A-20 } \\ & \text { 7C102A-20 } \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 101 \mathrm{~A}-25 \\ & \text { 7C102A-25 } \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{C} 101 \mathrm{~A}-35 \\ & 7 \mathrm{C} 102 \mathrm{~A}-35 \end{aligned}$
Maximum Access Time (ns)		12	15	20	25	35
Maximum Operating	Commercial	165	155	140	130	125
Current (mA)	Military		165	150	140	135
Maximum Standby	Commercial	50	40	30	30	25
Current (mA)	Military		40	30	30	25

CYPMESS

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]}-0.5 \mathrm{~V}$ to +7.0 V DC Voltage Applied to Outputs in High Z State ${ }^{11]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Current into Outputs (LOW) 20 mA

Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

CY7C101A
 CY7C102A

PRELIMINARY
CYPRESS
SEMICONDUCTOR
Electrical Characteristics Over the Operating Range ${ }^{[3]}$ (continued)

Parameter	Description	Test Conditions		$\begin{aligned} & \hline \text { 7C101A-25 } \\ & \text { 7C102A-25 } \end{aligned}$		$\begin{aligned} & \text { 7C101A-35 } \\ & \text { 7C102A-35 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.3	0.8	-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled		-5	+5	-5	+5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		130		125	mA
			Mil		140		135	
$\mathrm{I}_{\text {SB1 }}$	Automatic CE PowerDown Current - TTL Inputs	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \\ & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Com'l		30		25	mA
			Mil		30		25	
$\mathrm{I}_{\text {SB2 }}$	Automatic CE PowerDown Current - CMOS Inputs	$\begin{aligned} & \text { Max. } V_{C C} \\ & \overline{C E} \geq V_{C C}-0.3 V \\ & V_{\text {IN }} \geq V_{C C}-0.3 V \\ & \text { or } V_{\text {IN }} \leq 0.3 V, f=0 \end{aligned}$	Com'		2		2	mA
			Mil		2		2	

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$: Addresses	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	7	pF
$\mathrm{C}_{\text {IN }}$: Controls			10	pF
Cout	Output Capacitance		10	pF

Notes:

1. $V_{\mathrm{IL}}(\mathrm{min})=.-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

PRELIMINARY
CYPRESS
SEMICONDUCTOR
Switching Characteristics Over the Operating Range ${ }^{[3,6]}$

Parameter	Description	$\begin{aligned} & \hline \text { 7C101A-12 } \\ & \text { 7C102A-12 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C101A}-15 \\ & \text { 7C102A-15 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C101A-20 } \\ & \text { 7C102A-20 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C101A-25 } \\ & \text { 7C102A-25 } \end{aligned}$		$\begin{array}{r} \hline 7 \mathrm{C} 101 \mathrm{~A}-35 \\ \text { 7C102A-35 } \\ \hline \end{array}$		Unit
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	12		15		20		25		35		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		12		15		20		25		35	ns
toha	Data Hold from Address Change	3		3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE }}$ LOW to Data Valid		12		15		20		25		35	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		6		7		8		10		10	ns
t_{PU}	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		0		0		ns
t_{PD}	$\overline{\text { CE }}$ HIGH to Power-Down		12		15		20		25		35	ns
WRITE CYCLE ${ }^{[9]}$												
t_{WC}	Write Cycle Time	12		15		20		25		35		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	10		12		15		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		12		15		20		25		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
${ }^{\text {S }}$ A	Address Set-Up to Write Start	0		0		0		0		0		ns
tpwe	WE Pulse Width	10		12		15		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		10		15		20		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	3		3		3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$		6		7		8		10		10	ns
$t_{\text {DWE }}$	WE LOW to Data Valid (7C101A)		12		15		20		25		35	ns
$t_{\text {DCE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid (7C101A)		12		15		20		25		35	ns
$\mathrm{t}_{\text {ADV }}$	Data Valid to Output Valid (7C101A)		12		15		20		25		35	ns

Notes:

6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\text {LZCE }}$ and $\mathrm{t}_{\text {HZWE }}$ is less than $\mathrm{t}_{\text {LZWE }}$ for any given device.
8. t_{HZCE}, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ and $\overline{W E}$ LOW. $\overline{C E}$ and $\overline{W E}$ must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Data Retention Characteristics Over the Operating Range

	Description	Conditions ${ }^{[10]}$	Commercial		Military		Unit	2
Parameter			Min.	Max.	Min.	Max.		
$V_{\text {DR }}$	V_{CC} for Retention Data		2.0		2.0		V	
I CCDR	Data Retention Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}, \\ & \mathrm{CE} \geq \mathrm{V}_{C C}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		50		70	$\mu \mathrm{A}$	
$\mathrm{t}_{\mathrm{CDR}{ }^{[5]}}$	Chip Deselect to Data Retention Time		0		0		ns	
$\mathrm{t}^{\text {[}}{ }^{[5]}$	Operation Recovery Time		t_{RC}		t_{RC}		ns	

Note:
10. No input may exceed $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.

Data Retention Waveform

Switching Waveforms

Read Cycle No. $1^{[11,12]}$

Read Cycle No. 2 ${ }^{[12,13]}$

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[9,14]}$

Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[9]}$

Notes:

11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ going HIGH, the output remains in a high-impedance state (7 C 102 A only).

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	$\mathrm{O}_{0}-\mathrm{O}_{3}$	Mode	Power
H	X	High Z	Power-Down	Standby (I_{SB})
L	H	Data Out	Read	Active (I_{CC})
L	L	High Z	7C102A: Standard Write	Active (I_{CC})
L	L	Input Tracking	7C101A: Transparent Write ${ }^{[15]}$	Active (I_{CC})

Note:
15. Outputs track inputs after specified delay.

Ordering Information

Speed (ns)	Ordering Code	Package Name	Operating Range	
12	CY7C101A-12PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C101A-12VC	V33	32-Lead (400-Mil) Molded SOJ	
	CY7C101A-15PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C101A-15VC	V33	32-Lead (400-Mil) Molded SOJ	
	CY7C101A-15DMB	D44	32-Lead (400-Mil) CerDIP	Military
20	CY7C101A-20PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C101A-20VC	V33	32-Lead (400-Mil) Molded SOJ	
	CY7C101A-20DMB	D44	32-Lead (400-Mil) CerDIP	Military
25	CY7C101A-25PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C101A-25VC	V33	32-Lead (400-Mil) Molded SOJ	
	CY7C101A-25DMB	D44	32-Lead (400-Mil) CerDIP	Military
	CY7C101A-35PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C101A-35VC	V33	32-Lead (400-Mil) Molded SOJ	
	CY7C101A-35DMB	D44	32-Lead (400-Mil) CerDIP	Military

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C102A-12PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C102A-12VC	V33	32-Lead (400-Mil) Molded SOJ	
15	CY7C102A-15PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C102A-15VC	V33	32-Lead (400-Mil) Molded SOJ	
	CY7C102A-15DMB	D44	32-Lead (400-Mil) CerDIP	Military
20	CY7C102A-20PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C102A-20VC	V33	32-Lead (400-Mil) Molded SOJ	
	CY7C102A-20DMB	D44	32-Lead (400-Mil) CerDIP	Military
25	CY7C102A-25PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C102A-25VC	V33	32-Lead (400-Mil) Molded SOJ	
	CY7C102A-25DMB	D44	32-Lead (400-Mil) CerDIP	Military
35	CY7C102A-35PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C102A-35VC	V33	32-Lead ($400-\mathrm{Mil}$) Molded SOJ	
	CY7C102A-35DMB	D44	32-Lead (400-Mil) CerDIP	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DWE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}[16]$	$7,8,9,10,11$

Note:
16. 7C101A only.

Document \#: 38-00231

SEMICONDUCTOR

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=12 \mathrm{~ns}$
- CMOS for optimum speed/power
- Low active power
- 910 mW
- Low standby power
- 275 mW
- 2.0 V data retention
- $100 \mu \mathrm{~W}$
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7C106A is a high-performance CMOS static RAM organized as 262,144 words by 4 bits. Easy memory expansion is provided by an active LOW chip enable $(\overline{\mathrm{CE}})$, an active LOW output enable ($\overline{\mathrm{OE}}$), and three-state drivers. The device has an automatic power-down feature that reduces power consumption by more than 65% when deselected.
Writing to the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs LOW. Data on the four I/O pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is then written into the location specified on the address pins (A_{0} through A_{17}).

256K x 4 Static RAM

Reading from the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and output enable (OE) LOW while forcing write enable ($\overline{\mathrm{WE}})$ HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the four I/O pins.

The four input/outputpins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} /$ O_{3}) are placed in a high-impedance state when the device is deselected ($\overline{\mathrm{CE}}$ HIGH), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), or during a write operation ($\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ LOW).

The CY7C106A is available in standard 400 -mil-wide DIPs and SOJs.

Selection Guide

		7C106A-12	7C106A-15	7C106A-20	7C106A-25	7C106A-35
Maximum Access Time (ns)	12	15	20	25	35	
Maximum Operating Current (mA)	Commercial	165	155	140	130	125
	Military		165	150	140	135
	Commercial	50	40	30	30	25
	Military		40	30	30	25

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad
Ambient Temperature with
Power Applied . $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]}-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]} \ldots \ldots \ldots \ldots . .$.
Current into Outputs (LOW) \qquad

Static Discharge Voltage . > $\mathbf{~} 2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Ambient Range	Temperature${ }^{[2]}$	V CC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		7C106A-12		7C106A-15		7C106A-20		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \end{gathered}$	2.2	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
IIX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled		-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
IOS	$\begin{array}{\|l\|} \hline \text { Output Short } \\ \text { Circuit Current } \end{array}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300		-300	mA
I_{CC}	V_{CC} Operating SupplyCurrent	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \\ & \hline \end{aligned}$	Com'l		165		155		140	mA
			Mil				165		150	
$\mathrm{I}_{\text {SB1 }}$	Automatic CEPower-Down Current- TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH},} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Com'l		50		40		30	mA
			Mil				40		30	
$\mathrm{I}_{\mathrm{SB} 2}$	Automatic CEPower-Down Current- CMOS Inputs	$\begin{aligned} & \mathrm{Max} . \mathrm{V}_{\mathrm{CC}} \\ & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Com'l		2		2		2	mA
			Mil				2		2	

Notes:

1. $\mathrm{V}_{\mathrm{IL}}(\min)=.-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		7C106A-25		7C106A-35		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.3	0.8	-0.3	0.8	V
IIX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$		-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300	mA
I_{CC}	V_{CC} Operating SupplyCurrent	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{I}_{\mathrm{OUOT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		130		125	mA
			Mil		140		135	
$\mathrm{I}_{\text {SB1 }}$	Automatic CEPower-Down Current- TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Com'l		30		25	mA
			Mil		30		25	
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current - CMOS Inputs	$\begin{aligned} & \text { Max. } V_{C C} \\ & \overline{C E} \geq V_{C C}-0.3 V, \\ & V_{\text {IN }} \geq V_{C C}-0.3 V \\ & \text { or } V_{\text {IN }} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Com'l		2		2	mA
			Mil		2		2	

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$: Addresses	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	7	pF
$\mathrm{C}_{\text {IN }}$: Controls			10	pF
Cout	Output Capacitance		10	pF

Note:
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3,6]}$

Parameter	Description	7C106A-12		7C106A-15		7C106A-20		7C106A-25		7C106A-35		Unit
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	12		15		20		25		35		ns
t_{AA}	Address to Data Valid		12		15	\cdots	20		25		35	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$		12		15		20		25		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		6		7		8		10		10	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		0		0		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\text { OE }} \mathrm{HIGH}$ to High $\mathrm{Z}^{[7,8]}$		6		7		8		10		10	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	3		3		3		3		3		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[7,8]}$		6		7		8		10		10	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE }}$ HIGH to Power-Down		12		15		20		25		35	ns
WRITE CYCLE ${ }^{[9,10]}$												
${ }^{\text {twC }}$	Write Cycle Time	12		15		20		25		35		ns
${ }_{\text {tSCE }}$	$\overline{\text { CE }}$ LOW to Write End	10		12		15		20		25		ns
${ }^{\text {taw }}$	Address Set-Up to Write End	10		12		15		20		25		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
${ }_{\text {t }}$ A	Address Set-Up to Write Start	0		0		0		0		0		ns
tPWE	$\overline{\text { WE Pulse Width }}$	10		12		15		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		10		15		20		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[8]}$	2		3		3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$		6		7		8		10		10	ns

Notes:

6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\text {LZCE }}, \mathrm{t}_{\mathrm{HZOE}}$ is less than $\mathrm{t}_{\text {LZOE }}$, and $\mathrm{t}_{\mathrm{HZWE}}$ is less than $\mathrm{t}_{\text {LZWE }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ and $\bar{W} E L O W$. $\overline{C E}$ and $\overline{W E}$ must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
10. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ controlled, $\overline{O E} L O W)$ is the sum of $t_{H Z W E}$ and $t_{S D}$.

Data Retention Characteristics Over the Operating Range

Parameter	Description	Conditions ${ }^{[11]}$	Commercial		Military		Unit
			Min.	Max.	Min.	Max.	
V_{DR}	V_{CC} for Data Retention		2.0		2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		50		70	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[5]}$	Chip Deselect to Data Retention Time		0		0		ns
$\mathrm{t}{ }^{[5]}$	Operation Recovery Time		t_{RC}		t_{RC}		ns

Note:
11. No input may exceed $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.

Data Retention Waveform

 C106A-5

Switching Waveforms

Read Cycle No. ${ }^{[12,13]}$

Read Cycle No. 2 ($\overline{\mathbf{O E}}$ Controlled) ${ }^{[13,14]}$

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[15,16]}$

Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[15,16]}$

Notes:

Notes:
12. Device is continuously selected, $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
13. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
14. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
15. If $\overline{\mathrm{CE}}$ goes HIGH simultaneouslywith $\overline{\mathrm{WE}}$ going HIGH, the output remains in a high-impedance state.
16. Data I / O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.

Switching Waveforms

Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[10,16]}$

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{W E}}$	Input/Output	Mode	Power
H	X	X	High Z	Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
L	L	H	Data Out	Read	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	X	L	Data In	Write	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$
L	H	H	High Z	Selected, Outputs Disabled	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C106A-12PC	P41	28-Lead (400-Mil) Molded DIP	Commercial
	CY7C106A-12VC	V28	28 -Lead (400-Mil) Molded SOJ	
15	CY7C106A-15PC	P41	28-Lead (400-Mil) Molded DIP	Commercial
	CY7C106A-15VC	V28	28-Lead (400-Mil) Molded SOJ	
	CY7C106A-15DMB	D42	28-Lead (400-Mil) CerDIP	Military
20	CY7C106A-20PC	P41	28-Lead (400-Mil) Molded DIP	Commercial
	CY7C106A-20VC	V28	28-Lead (400-Mil) Molded SOJ	
	CY7C106A - 20DMB	D42	28-Lead (400-Mil) CerDIP	Military
25	CY7C106A-25PC	P41	28-Lead (400-Mil) Molded DIP	Commercial
	CY7C106A-25VC	V28	28-Lead (400-Mil) Molded SOJ	
	CY7C106A-25DMB	D42	28-Lead (400-Mil) CerDIP	Military
35	CY7C106A-35PC	P41	28-Lead (400-Mil) Molded DIP	Commercial
	CY7C106A-35VC	V28	28-Lead (400-Mil) Molded SOJ	
	CY7C106A-35DMB	D42	28-Lead (400-Mil) CerDIP	Military

MILITARY SPECIFICATIONS
Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00230

SEMICONDUCTOR

Features

- High speed
$-\mathbf{t}_{\mathrm{AA}}=12 \mathrm{~ns}$
- CMOS for optimum speed/power
- Low active power
- $\mathbf{8 2 5} \mathrm{mW}$
- Low standby power
- 275 mW
- 2.0 V data retention - $\mathbf{1 0 0} \mu \mathrm{W}$
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7C107A is a high-performance CMOS static RAM organized as $1,048,576$ words by 1 bit. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. The device has an automatic power-down feature that reduces power consumption by more than 65% when deselected.
Writing to the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs LOW. Data on the input pin $\left(\mathrm{D}_{\text {IN }}\right)$ is written into the memory location specified on the address pins (A_{0} through A19).

1M x 1 Static RAM

Selection Guide

		7C107A-12	7C107A-15	7C107A-20	7C107A-25	7C107A-35
Maximum Access Time (ns)	12	15	20	25	35	
Maximum Operating Current (mA)	Commercial	150	135	125	120	110
	Military		145	135	130	120
	Commercial	50	40	30	30	25
	Military		40	30	30	25

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots \ldots \ldots \ldots . .$.
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]}-0.5 \mathrm{~V}$ to +7.0 V DC Voltage Applied to Outputs
in High Z State ${ }^{11]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Current into Outputs (LOW) 20 mA

Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics ${ }^{[3]}$ Over the Operating Range

Electrical Characteristics ${ }^{[3]}$ Over the Operating Range (continued)

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}:$ Addresses	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	7	pF
$\mathrm{C}_{\mathrm{IN}}:$ Controls			10	pF
$\mathrm{C}_{\mathrm{CO}}=5.0 \mathrm{~V}$			10	pF

Notes:

1. $V_{\text {IL }}$ (min.) $=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics ${ }^{[3,6]}$ Over the Operating Range

Parameter	Description	7C107A-12		7C107A-15		7C107A-20		7C107A-25		7C107A-35		Unit
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	12		15		20		25		35		ns
t_{AA}	Address to Data Valid		12		15		20		25		35	ns
${ }^{\text {toha }}$	Data Hold from Address Change	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\text { CE }}$ LOW to Data Valid		12		15		20		25		35	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\text { CE }}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\overline{C E}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		6		7		8		10		10	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\overline{C E}} \mathrm{HIGH}$ to Power-Down		12		15		20		25		35	ns
WRITE CYCLE ${ }^{[9]}$												
t_{WC}	Write Cycle Time	12		15		20		25		35		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE LOW }}$ to Write End	10		12		15		20		25		ns
${ }^{\text {taw }}$	Address Set-Up to Write End	10		12		15		20		25		ns
${ }^{\text {tha }}$	Address Hold from Write End	0		0		0		0		0		ns
${ }^{\text {tSA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
tPWE	$\overline{\text { WE Pulse Width }}$	10		12		15		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		10		15		20		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	3		3		3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$		6		7		8		10		10	ns

Notes:

6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
8. t_{HZCE} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and $\overline{W E}$ LOW. $\overline{C E}$ and $\overline{W E}$ must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Data Retention Characteristics Over the Operating Range

Parameter	Description	Conditions ${ }^{[10]}$	Commercial		Military		Unit
			Min.	Max.	Min.	Max.	
V_{DR}	V_{CC} for Data Retention		2.0		2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		50		70	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[5]}$	Chip Deselect to Data Retention Time		0		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[5]}$	Operation Recovery Time		t_{RC}		t_{RC}		ns

Note:
10. No input may exceed $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.

Data Retention Waveform

Switching Waveforms

Read Cycle No. $1^{[11,12]}$

Read Cycle No. $2^{[12,13]}$

[^2]13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[14]}$

Write Cycle No. 2 (WE Controlled) ${ }^{[14]}$

107A-9

Note:

14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneouslywith $\overline{\mathrm{WE}}$ going HIGH, the outputremains in a high-impedance state.
Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	DouT	Mode	Power
H	X	High Z	Power-Down	Standby (I I_{SB})
L	H	Data Out	Read	Active (I I_{CC})
L	L	High Z	Write	Active (I I_{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	$\begin{aligned} & \hline \text { Operating } \\ & \text { Range } \end{aligned}$
12	CY7C107A-12PC	P41	28-Lead (400-Mil) MoldedDIP	Commercial
	CY7C107A-12VC	V28	28-Lead (400-Mil) MoldedSOJ	
15	CY7C107A-15PC	P41	28-Lead (400-Mil) Molded DIP	Commercial
	CY7C107A-15VC	V28	28-Lead (400-Mil) Molded SOJ	
	CY7C107A-15DMB	D42	28-Lead (400-Mil) CerDIP	Military Commercial
20	CY7C107A-20PC	P41	28-Lead (400-Mil) MoldedDIP	
	CY7C107A-20VC	V28	28-Lead (400-Mil) Molded SOJ	
	CY7C107A-20DMB	D42	28-Lead (400-Mil) CerDIP	Military
25	CY7C107A-25PC	P41	28-Lead (400-Mil) MoldedDIP	Commercial
	CY7C107A-25VC	V28	28-Lead (400-Mil) Molded SOJ	
	CY7C107A-25DMB	D42	28-Lead (400-Mil) CerDIP	Military
35	CY7C107A-35PC	P41	28-Lead (400-Mil) Molded DIP	Commercial
	CY7C107A-35VC	V28	28-Lead (400-Mil) Molded SOJ	
	CY7C107A-35DMB	D42	28-Lead (400-Mil) CerDIP	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Document \#: 38-00232

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
$\mathrm{t}_{\text {AA }}$	$7,8,9,10,11$
$\mathrm{tOHA}^{\text {O}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE	
twC	$7,8,9,10,11$
$\mathrm{t}_{\text {SCE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AW }}$	7, 8, 9, 10, 11
t_{HA}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SA }}$	$7,8,9,10,11$
tPWE	$7,8,9,10,11$
${ }_{\text {t }}$ D	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Features

- High speed
$-t_{A A}=12 \mathrm{~ns}$
- CMOS for optimum speed/power
- Low active power
- $\mathbf{1 0 2 0} \mathrm{mW}$
- Low standby power
- 250 mW
- 2.0 V data retention
- $\mathbf{1 0 0} \mu \mathrm{W}$
- Automatic power-down when deselected
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\mathbf{C E}}_{1}$, CE_{2}, and $\overline{\mathrm{OE}}$ options

Functional Description

The CY7C109A is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}_{1}$), an active HIGH chip enable (CE_{2}), an active LOW output enable ($\overline{\mathrm{OE}}$), and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.
Writing to the device is accomplished by taking chip enable one ($\overline{\mathrm{CE}}_{1}$) and write enable (WE) inputs LOW and chip enable two $\left(\mathrm{CE}_{2}\right)$ input HIGH. Data on the eight $\mathrm{I} / \mathrm{Opins}\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\mathrm{I} / \mathrm{O}_{7}$) is then written into the location specified on the address pins (A_{0} through A_{16}).

Reading from the device is accomplished by taking chip enable one ($\overline{\mathrm{CE}}_{1}$) and output enable ($\overline{\mathrm{OE}}$) LOW while forcing write enable ($\overline{\mathrm{WE}}$) and chip enable two $\left(\mathrm{CE}_{2}\right)$ HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) are placed in a high-impedance state when the device is deselected ($\mathrm{CE}_{1} \mathrm{HIGH}$ or CE_{2} LOW), the outputs are disabled (OE HIGH), or during a write operation $\left(\overline{\mathrm{CE}}_{1}\right.$ LOW, CE_{2} HIGH, and $\overline{\mathrm{WE}}$ LOW).

The CY7C109 is available in standard 400 -mil-wide DIPs and SOJs and a leadless chip carrier.

Logic Block Diagram

Pin Configurations

Selection Guide

		7C109A-12	7C109A-15	7C109A-20	7C109A-25	7C109A-35
Maximum Access Time (ns)	12	15	20	25	35	
MaximumOperating Current (mA)	Commercial	185	170	155	145	140
	Military		180	170	160	150
Maximum Standby Current (mA)	Commercial	45	40	30	30	25
	Military		40	30	30	25

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current > 200 mA
Operating Range

| Range | $\begin{array}{c}\text { Ambient } \\ \text { Temperature }\end{array}{ }^{[2]}$ |
| :--- | :---: | :---: |$)$

Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} to Relative $\mathrm{GND}^{[1]} .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[1]}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Current into Outputs (LOW) 20 mA
Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		7C109A-12		7C109A-15		7C109A-20		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	$\begin{array}{\|c} \hline \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \end{array}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \end{gathered}$	2.2	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \hline \mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \\ & \hline \end{aligned}$		-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		185		170		155	mA
			Mil				180		170	
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current — TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{CE}_{2} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$			45		40		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current - CMOS Inputs	$\begin{array}{\|l} \hline \text { Max. }^{\mathrm{V}_{\mathrm{CC}},} \\ \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ \text { or } \mathrm{CE}_{2} \leq 0.3 \mathrm{~V}, \\ \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ \text { or } \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \\ \hline \end{array}$	Com'l Mil		2		2 2		2 2	mA

Electrical Characteristics Over the Operating Range ${ }^{[3]}$ (continued)

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$: Addresses	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	7	pF
C ${ }_{\text {IN }}$: Controls			10	pF
Cout	Output Capacitance		10	pF

Notes:

1. V_{IL} (min.) $=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics ${ }^{[3,6]}$ Over the Operating Range

Parameter	Description	7C109A-12		7C109A-15		7C109A-20		7C109A-25		7C109A-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Min.	
READ CYCLE												
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	12		15		20		25		35		ns
t_{AA}	Address to Data Valid		12		15		20		25		35	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}_{1}$ LOW toData Valid, $\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid		12		15		20		25		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		6		7		8		10		10	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE HIGH to High } \mathrm{Z}^{[7,8]}}$		6		7		8		10		10	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Low Z, $\mathrm{CE}_{2} \mathrm{HIGH}$ to Low $\mathrm{Z}^{[8]}$	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\begin{aligned} & \overline{\mathrm{CE}}_{1} \text { HIGH to High } \mathrm{Z}, \mathrm{CE}_{2} \text { LOW to } \\ & \text { High } \mathrm{Z}^{[7,8]} \end{aligned}$		6		7		8		10		10	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}_{1} \text { LOW to Power-Up, } \mathrm{CE}_{2} \mathrm{HIGH}$ to Power-Up	0		0		0		0		0		ns
t_{PD}	$\overline{\mathrm{CE}}_{1}$ HIGH to Power-Down, CE_{2} LOW to PowerDown		12		15		20		25		35	ns
WRITE CYCLE ${ }^{[9,10]}$												
t_{WC}	Write Cycle Time	12		15		20		25		35		ns
${ }^{\text {t SCE }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Write End, $\mathrm{CE}_{2} \mathrm{HIGH}$ to Write End	10		12		15		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		12		15		20		25		ns
${ }^{\text {tha }}$	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
tPWE	$\overline{\text { WE Pulse Width }}$	10		12		15		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		10		15		20		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
${ }_{\text {t }}$	$\overline{\text { WE HIGH to Low } \mathrm{Z}^{[8]}}$	3		3		3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$		6		7		8		10		10	ns

Notes:
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. $t_{H Z O E}, t_{H Z C E}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\text {LZCE }}, \mathrm{t}_{\text {HZOE }}$ is less than $\mathrm{t}_{\text {LZOE }}$, and $\mathrm{t}_{\mathrm{HZWE}}$ is less than $\mathrm{t}_{\text {LZWE }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, CE 2 HIGH, and $\overline{W E}$ LOW. $\overline{C E}_{1}$ and WE must be LOW and $\mathrm{CE}_{2} \mathrm{HIGH}$ to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
10. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ controlled, $\overline{\mathrm{OE}} \mathrm{LOW}$) is the sum of $\mathrm{t}_{\mathrm{HZWE}}$ and $\mathrm{t}_{\text {SD }}$.

Data Retention Characteristics Over the Operating Range

Parameter	Description	Conditions ${ }^{[11]}$	Commercial		Military		Unit
			Min.	Max.	Min.	Max.	
V ${ }_{\text {DR }}$	V_{CC} for Retention Data		2.0		2.0		V
$\mathrm{I}_{\mathrm{CCDR}}$	Data Retention Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}, \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{CE}_{2} \leq 0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		50		70	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[5]}$	Chip Deselect to Data Retention Time		0		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[5]}$	Operation Recovery Time		t_{RC}		t_{RC}		ns

Note:
11. No input may exceed $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.

Switching Waveforms
Read Cycle No. $1^{[12,13]}$

Read Cycle No. 2 ($\overline{\mathrm{OE}}$ Controlled) ${ }^{[13,14]}$

Notes:

12. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}$.
13. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
14. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1}$ transition LOW and CE_{2} transition HIGH.

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\mathbf{C E}}_{1}$ or CE_{2} Controlled) ${ }^{[15,16]}$

Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[15,16]}$

Notes:
15. Data I / O is high impedance if $\overline{O E}=V_{I H}$.
16. If $\overline{\mathrm{CE}}_{1}$ goes HIGH or CE_{2} goes LOW simultaneously with $\overline{\mathrm{WE}}$ going HIGH, the output remains in a high-impedance state.

Write Cycle No. 3 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathbf{O E}}$ LOW) ${ }^{[10,16]}$

109A-11
Truth Table

CE_{1}	CE_{2}	OE	$\overline{\text { WE }}$	Input/Output	Mode	Power
H	X	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
X	L	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	H	L	H	Data Out	Read	Active (I_{CC})
L	H	X	L	Data In	Write	Active (I_{CC})
L	H	H	H	High Z	Selected, Outputs Disabled	Active (I_{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C109A-12PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C109A-12VC	V33	32-Lead (400-Mil) Molded SOJ	
15	CY7C109A-15PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C109A-15VC	V33	32-Lead (400-Mil) Molded SOJ	
	CY7C109A-15DMB	D44	32-Lead (400-Mil) CerDIP	Military
	CY7C109A-15LMB	L75	32-Pin Leadless Chip Carrier	
20	CY7C109A-20PC	P43	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C109A-20VC	V33	32-Lead (400-Mil) Molded SOJ	
	CY7C109A-20DMB	D44	32-Lead (400-Mil) CerDIP	Military
	CY7C109A-20LMB	L75	32-Pin Leadless Chip Carrier	

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C109A-25PC	P43	32-Lead(400-Mil) MoldedDIP	Commercial
	CY7C109A-25VC	V33	32-Lead (400-Mil) MoldedSOJ	
	CY7C109A-25DMB	D44	32-Lead (400-Mil) CerDIP	Military
	CY7C109A-25LMB	L75	32-Pin Leadless Chip Carrier	
	CY7C109A-35PC	P43	32-Lead (400-Mil) MoldedDIP	Commercial
	CY7C109A-35VC	V33	32-Lead (400-Mil)Molded SOJ	
	CY7C109A-35DMB	D44	32-Lead (400-Mil) CerDIP	Military
	CY7C109A-35LMB	L75	32-Pin Leadless Chip Carrier	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
\mathbf{t}_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00233

Features

- 256×4 static RAM for control store in high-speed computers
- CMOS for optimum speed/power
- High speed
-7 ns (commercial)
-10 ns (military)
- Low power
-660 mW (commercial)
-825 mW (military)
- Separate inputs and outputs
- 5-volt power supply $\pm \mathbf{1 0 \%}$ tolerance both commercial and military
- TTL-compatible inputs and outputs
- 24 pins
- 300-mil package

Functional Description

The CY7C123 is a high-performance CMOSstatic RAM organized as 256 words by 4 bits. Easy memory expansion is provided by an active LOW chip select one $\left(\overline{\mathrm{CS}}_{1}\right)$ input, an active HIGH chip select two $\left(\mathrm{CS}_{2}\right)$ input, and three-state outputs. Writing to the device is accomplished when the chip select one ($\overline{\mathrm{CS}}_{1}$) and write enable (WE) inputs are both LOW and the chip select two input is HIGH. Data on the four data inputs (D_{0} through D_{3}) is written into the memory location specified on the address pins (A_{0} through A_{7}). The outputs are preconditioned so that the write data is present at the outputs when the write cycle is complete. This precondition operation ensures minimum write recovery times by eliminating the "write recovery glitch."

Reading the device is accomplished by taking the chip select one ($\overline{\mathrm{CS}}_{1}$) and output enable ($(\overline{\mathrm{OE}})$ inputs LOW, while the write enable ($\overline{\mathrm{WE}}$) and chip select two $\left(\overline{\mathrm{CS}}_{2}\right)$ inputs remain HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the four output pins $\left(\mathrm{O}_{0}\right.$ through $\left.\mathrm{O}_{3}\right)$. The output pins remain in high-impedance state whenchip select one $\left(\overline{\mathrm{CS}}_{1}\right)$ or output enable ($\overline{\mathrm{OE}}$) is HIGH, or write enable ($\overline{\mathrm{WE}}$) or chip select two $\left(\overline{\mathrm{CS}}_{2}\right)$ is LOW.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configuration

C123-2

Selection Guide

		7C123-7	7C123-9	7C123-10	7C123-12	7C123-15
Maximum Access Time (ns)	Commercial	7	9		12	
	Military			10	12	15
Maximum Operating Current(mA)	Commercial	120	120		120	
	Military			150	150	150

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Output Current into Outputs (LOW) 20 mA
Latch-Up Current
$>200 \mathrm{~mA}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pins 24 and 18 to Pins 7 and 12) ${ }^{[1]}$
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{1]}$
-0.5 V to +7.0 V
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $\left.{ }^{2}\right]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC Input Voltage ${ }^{[1]}$
-0.5 V to +7.0 V
Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
CoUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		8

Logic Table ${ }^{[5]}$

Input					Outputs	Mode
$\overline{\text { OE }}$	$\overline{\mathbf{C S}}_{1}$	CS_{2}	$\overline{\text { WE }}$	$\mathrm{D}_{0}-\mathrm{D}_{3}$		
X	H	X	X	X	High Z	Not Selected
X	X	L	X	X	High Z	Not Selected
L	L	H	H	X	$\mathrm{O}_{0}-\mathrm{O}_{3}$	Read Stored Data
X	L	H	L	L	High Z	Write "0"
X	L	H	L	H	High Z	Write "1"
H	L	H	H	X	High Z	Output Disabled

Notes:

1. $\quad \mathrm{V}_{\mathrm{IL}}(\mathrm{min})=.-3.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Tested initially and after any design or process changes that may affect these parameters.
5. $\mathrm{H}=$ High Voltage, $\mathrm{L}=$ Low Voitage, $\mathrm{X}=$ Don't Care, and High $Z=$ High Impedance.

CY7C123

AC Test Loads and Waveforms

ALL INPUT PULSES

C123-4
Equivalent to: THEVENIN EQUIVALENT
OUTPUT $0 \longrightarrow 1.62 \Omega$
Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	7C123-7		7C123-9		7C123-10		7C123-12		7C123-15		Unit
		Min.	Max.									
READ CYCLE												
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	7		9		10		12		15		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		7		9		10		12		15	ns
$\mathrm{t}_{\text {ACS }}$	Chip Select to Data Valid		7		8		8		8		10	ns
$t_{\text {doe }}$	$\overline{O E}$ LOW to Data Valid		7		8		8		8		10	ns
$\mathrm{t}_{\mathrm{HZCS}}$	Chip Select to High $\mathrm{Z}^{[6,7]}$		5		6		6		6.5		8	ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[6]}$		5		6		6		6.5		8	ns
$\mathrm{t}_{\text {LZCS }}$	Chip Select to Low $\mathbf{Z}^{[7]}$	2		2		2		2		2		ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	2		2		2		2		2		ns
WRITE CYCLE												
t_{WC}	Write Cycle Time	7		9		10		12		15		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE LOW }}$ to High $\mathrm{Z}^{[6]}$		5.5		6		6		7		8	ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z	2		2		2		2		2		ns
tPWE	$\overline{\text { WE Pulse Width }}$	5		6.5		7		8		11		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	5		6		7		8		11		ns
t_{HD}	Data Hold from Write End	1		1		1		1		1		ns
${ }_{\text {t }}$ A	Address Set-Up to Write Start	0.5		1		1		2		2		ns
t_{HA}	Address Hold from Write End	1.5		1.5		2		2		2		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	5		6.5		7		8		11		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	5.5		7.5		8		10		13		ns

Notes:
6. Transition is measured at steady-state HIGH level - 500 mV or steady-state LOW level +500 mV on the output from 1.5 V level on the input with load shown in part (b) of AC Test Loads.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than ${ }^{\text {t LZCS }}$ for any given device.

Switching Waveforms

Read Cycle ${ }^{[8,9]}$

Write Cycle ${ }^{[7,8]}$

Notes:

8. Measurements are referenced to 1.5 V unless otherwise stated.
9. Timing diagram represents one solution that results in an optimum cycle time. Timing may be changed in varous applications as long as the worst case limits are not violated.

Typical DC and AC Characteristics

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
7	CY7C123-7PC	P13A	24-Lead (300-Mil) MoldedDIP	Commercial
	CY7C123-7VC	V13	24-Lead Molded SOJ	
9	CY7C123-9PC	P13A	24-Lead (300-Mil)MoldedDIP	Commercial
	CY7C123-9VC	V13	24-Lead Molded SOJ	
10	CY7C123-10DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C123-12PC	P13A	24-Lead (300-Mil)MoldedDIP	Commercial
	CY7C123-12DMB	D14	24-Lead (300-Mil) CerDIP	Military
15	CY7C123-15DMB	D14	24-Lead (300-Mil) CerDIP	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCS}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$

Document \#: 38-00060-F

CY7C128A

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
$-15 \mathrm{~ns}$
- Low active power
- 440 mW (commercial)
-550 mW (military)
- Low standby power
$-110 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge
- $\mathbf{V}_{\text {IH }}$ of $\mathbf{2 . 2 V}$

Functional Description

The CY7C128A is a high-performance CMOS static RAM organized as 2048 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$), and active LOW output enable ($\overline{\mathrm{OE})}$ and three-state drivers. The CY7C128A has an automatic power-down feature, reducing the power consumption by 83% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW.

2K x 8 Static R/W RAM

Data on the eight I / O pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into the memory location specified on the address pins (A_{0} through A_{10}).
Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and output enable ($\overline{\mathrm{OE}}$) LOW while write enable (产E) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the eight I / O pins. The I/O pins remain in high-impedance state when chip enable ($\overline{\mathrm{CE}}$) or output enable ($\overline{\mathrm{OE}})$ is HIGH or write enable ($\overline{\mathrm{WE}}$) is LOW. The 7C128A utilizes a die coat to insure alpha immunity.

Logic Block Diagram

Pin Configurations

C128A-2

Selection Guide

		7C128A-15	7C128A-20	7C128A-25	7C128A-35	7C128A-45
Maximum Access Time (ns)	15	20	25	35	45	
Maximum Operating Current (mA)	Commercial	120	100	100	100	
	Military		125	125	100	100
Maximum Standby Current (mA)	Commercial	$40 / 40$	$40 / 20$	20	20	
	Military		$40 / 20$	40	20	20

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
Supply Voltage to Ground Potential

DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage \qquad -3.0 V to +7.0 V
Output Current into Outputs (LOW) \qquad 20 mA

Static Discharge Voltage >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		7C128A-15		7C128A-20		7C128A-25		7C128A-35, 45		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$		2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
V_{IL}	Input LOW Voltage ${ }^{[3]}$			-0.5	0.8	-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[4]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND} \end{aligned}$			-300		-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		120		100		100		100	mA
			Mil				125		125		100	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{C C}, \\ & \hline \mathrm{CE} \geq V_{\mathrm{II},} \\ & \text { Min. Duty Cycle } \\ & =100 \% \end{aligned}$	Com'l		40		40		20		20	mA
			Mil				40		40		20	
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \text { Max. }^{V_{\mathrm{CC}}} \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V} \end{aligned}$	Com'l Mil		40		20		20		20	mA

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{CUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\quad \mathrm{V}_{\mathrm{IL}}(\min)=.-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

SCOPE (a)

C128A-4
SCOPE (b)

ALL INPUT PULSES

Equivalent to:
THÉVENIN EQUIVALENT

$$
\text { OUTPUT } 0-1.73 \mathrm{~V}
$$

Switching Characteristics Over the Operating Rangel ${ }^{[2,6]}$

Parameter	Description	7C128A-15		7C128A-20		7C128A-25		7C128A-35		7C128A-45		Unit
		Min.	Max.									
READ CYCLE												
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	15		20		25		35		45		ns
t_{AA}	Address to Data Valid		15		20		25		35		45	ns
toha	Data Hold from Address Change	5		5		5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$		15		20		25		35		45	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		10		10		12		15		20	ns
tlzoe	$\overline{\mathrm{OE}}$ LOW to Low Z	3		3		3		3		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[7]}$		8		8		10		12		15	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	5		5		5		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		8		8		10		15		15	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		0		0		ns
tPD	$\overline{\text { CE HIGH to Power-Down }}$		15		20		20		20		25	ns

WRITE CYCLE ${ }^{[9]}$

$t_{\text {wC }}$	Write Cycle Time	15		20		20		25		40		ns
tsCE	$\overline{\text { CE }}$ LOW to Write End	12		15		20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		15		20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
tpwe	$\overline{\text { WE Pulse Width }}$	12		15		15		20		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		10		10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7]}$		7		7		7		10		15	ns
tlZWE	$\overline{\text { WE HIGH }}$ to Low Z	5		5		5		5		5		ns

Note:
6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

CY7C128A
SEMICONDUCTOR

Switching Waveforms

Read Cycle No. $1^{[10,11]}$

Read Cycle No. ${ }^{[10,12]}$

C128A-7

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[9,13]}$

Notes:
10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. Data I/O pins enter high-impedance state, as shown, when $\overline{\mathrm{OE}}$ is held LOW during write.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\text { CE }}$ Controlled) ${ }^{[9,12,14]}$

C128A-9

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

NORMALIZED ICC vs. CYCLE TIME

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C128A-15PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C128A-15VC	V13	24-Lead Molded SOJ	
20	CY7C128A-20PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C128A-20VC	V13	24-Lead Molded SOJ	
	CY7C128A-20DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C128A-20LMB	L53	24-Pin Rectangular Leadless Chip Carrier	
25	CY7C128A-25PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C128A-25VC	V13	24-Lead Molded SOJ	
	CY7C128A-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C128A-25LMB	L53	24-Pin Rectangular Leadless Chip Carrier	
35	CY7C128A-35PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C128A-35VC	V13	24-Lead Molded SOJ	
	CY7C128A-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C128A-35LMB	L53	24-Pin Rectangular Leadless Chip Carrier	
45	CY7C128A-45DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C128A-45LMB	L53	24-Pin Rectangular Leadless Chip Carrier	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00094-B

Features

- 0.8-micron CMOS for optimum speed/power
- Automatic power-down
- TTL compatible
- Capable of withstanding greater than 2001V electrostatic discharge
- Fully asynchronous operation
- Master CY7C130/CY7C131 easily expands data bus width to 16 or more bits using SLAVE CY7C140/
CY7C141
- BUSY output flag on CY7C130/ CY7C131; BUSY input on CY7C140/CY7C141

Functional Description

The CY7C130/CY7C131/CY7C140/ CY7C141 are high-speed CMOS 1 K by 8 dual-port static RAMs. Two ports are provided permitting independent access to any location in memory. The CY7C130/ CY7C131 can be utilized as either a standalone 8-bit dual-port static RAM or as a master dual-port RAM in conjunction with the CY7C140/CY7C141 slave dualport device in systems requiring 16-bit or greater word widths. It is the solution to applications requiring shared or buffered data, such as cache memory for DSP, bitslice, or multiprocessor designs.

1K x 8 Dual-Port Static RAM

Each port has independent control pins; chip enable ($\overline{\mathrm{CE}}$), write enable ($\mathrm{R} / \overline{\mathrm{W}}$), and output enable $(\overline{\mathrm{OE}})$. Two flags are provided on each port, BUSY and INT. BUSY signals that the port is trying to access the same location currently being accessed by the other port. INT is an interrupt flag indicating that data has been placed in a unique location (3FF for the left port and 3FE for the right port). An automatic power-down feature is controlled independently on each port by the chip enable ($\overline{\mathrm{CE}}$) pins.
The CY7C130 and CY7C140 are available in both 48 -pin DIP and 48 -pin LCC. The CY7C131 and CY7C141 are available in both 52-pin LCC and PLCC.

- $\overline{\text { INT }}$ flag for port-to-port communication

Pin Configurations

Notes:

1. CY7C130/CY7C131 (Master): $\overline{\mathrm{BUSY}}$ is open drain output and requires pull-up resistor. CY7C140/CY7C141 (Slave): BUSY is input.
2. Open drain outputs: pull-up resistor required.
cypres
SEMICONDUCTOR

Pin Configurations (continued)

Selection Guide

		7C130-25[3] 7C131-25 7C10-25 7C141-25	7C130-30 7C131-30 7C140-30 7C141-30	7C130-35 7C131-35 7C140-35 7C141-35	$\begin{aligned} & \text { 7C130-45 } \\ & \text { 7C131-45 } \\ & \text { 7C140-45 } \\ & \text { 7C141-45 } \end{aligned}$	$\begin{aligned} & \text { 7C130-55 } \\ & 7 \mathbf{C 1 3 1 - 5 5} 55 \\ & \text { 7C140-55 } \\ & \text { 7C141-55 } \end{aligned}$
Maximum Access Time (ns)		25	30	35	45	55
Maximum Operating Current (mA)	Com'//Ind	170	170	120	90	90
	Military			170	120	120
Maximum Standby Current (mA)	Com'//Ind	65	65	45	35	35
	Military			65	45	45

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature...............$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 48 to Pin 24) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V
DC Input Voltage . -3.5 V to +7.0 V
Output Current into Outputs (LOW)
20 mA

Static Discharge Voltage >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[4]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Notes:

3. 25 -ns version available only in PLCC/LCC packages.
4. T_{A} is the "instant on" case temperature

Electrical Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	Test Conditions		7C130-25,30[3] 7C131-25,30 7C140-25,30 7C141-25,30		7C130-357C131-357C140-357C141-35		$\begin{aligned} & \text { 7C130-45,55 } \\ & \text { 7C131-45,55 } \\ & \text { 7C140-45,55 } \\ & \text { 7C141-45,55 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0$	mA	2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$			0.4		0.4		0.4	V
		$\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}^{[6]}$			0.5		0.5		0.5	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2		2.2		2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	InputLeakageCurrent	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled		-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current${ }^{7,8]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND} \end{aligned}$			-350		- 350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}, \\ & \text { Outputs Open, } \\ & \mathrm{f}=\mathrm{f}_{\text {MAX }}{ }^{[9]} \end{aligned}$	Com'l		170		120		90	mA
			Mil				170		120	
$\mathrm{I}_{\text {SB1 }}$	Standby Current Both Ports, TTL Inputs	$\begin{aligned} & \overline{\mathrm{CE}}_{\mathrm{L}} \text { and } \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}{ }^{9]} \end{aligned}$	Com'l		65		45		35	mA
			Mil				65		45	
$\mathrm{I}_{\text {SB2 }}$	Standby Current One Port, TTL Inputs	$\begin{aligned} & \overline{\mathrm{CE}}_{\mathrm{L}} \text { or } \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Active PortOutputsopen, } \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}^{[9]}}{ }^{[9]} \end{aligned}$	Com'l		115		90		75	mA
			Mil				115		90	
$\mathrm{I}_{\text {SB3 }}$	Standby Current Both Ports, CMOS Inputs	$\begin{aligned} & \text { Both Ports } \overline{\mathrm{CE}}_{\mathrm{L}} \text { and } \\ & \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Com'l		15		15		15	mA
			Mil				15		15	
$\mathrm{I}_{\text {SB4 }}$	Standby Current One Port, CMOS Inputs	$\begin{aligned} & \text { One Port } \overline{\mathrm{CE}}_{\mathrm{L}} \text { or } \\ & \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V}, \\ & \text { Active Port Outputs Open, } \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}{ }^{[9]} \end{aligned}$	Com'l Mil		105		85 105		70 85	mA

Capacitance ${ }^{[8]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	15	pF
CouT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:
5. See the last page of this specification for Group A subgroup testing information.
6. $\overline{\text { BUSY }}$ and $\overline{\text { INT pins only. }}$
7. Duration of the short circuit should not exceed 30 seconds.
8. Tested initially and after any design or process changes that may affect these parameters.
9. At $\mathrm{f}=\mathrm{f}_{\text {MAX }}$, address and data inputs are cycling at the maximum frequency of read cycle of $1 / \mathrm{t}_{\mathrm{RC}}$ and using AC Test Waveforms input levels of GND to 3 V .
10. AC Test conditions use $\mathrm{V}_{\mathrm{OH}}=1.6 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}=1.4 \mathrm{~V}$.
11. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} I_{\mathrm{OH}}$, and $30-\mathrm{pF}$ load capacitance.
12. AC Test Conditions use $\mathrm{V}_{\mathrm{OH}}=1.6 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}=1.4 \mathrm{~V}$.
13. At any given temperature and voltage condition for any given device, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$ -
14. $\mathrm{t}_{\text {LZCE }}, \mathrm{t}_{\text {LZWE }}, \mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\text {LZOE }}, \mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=$ 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
15. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and R//W LOW. Both signals must be low to initiate a write and either signal can terminate a write by going high. The data input set-up and hold timing should be referencd to the rising edge of the signal that terminates the write.

CYPRESS

AC Test Loads and Waveforms

BUSY Output Load (CY7C130/CY7C131 ONLY)

Equivalent to:

Switching Characteristics Over the Operating Range ${ }^{[5,11]}$

Parameter	Description	$7 \mathrm{C130-25}$ 7C131-25 7C140-25 7C141-25		$\begin{aligned} & \hline \text { 7C130-30 } \\ & \text { 7C131-30 } \\ & \text { 7C140-30 } \\ & 7 \mathrm{C} 141-30 \end{aligned}$		7C130-357C131-357C140-357C141-35		$\begin{aligned} & 7 \mathrm{C} 130-45 \\ & \text { 7C131-45 } \\ & \text { 7C140-45 } \\ & \text { 7C141-45 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C130-55 } \\ & 7 \mathrm{C} 131-55 \\ & 7 \mathrm{C} 140-55 \\ & 7 \mathrm{C} 141-55 \end{aligned}$		Unit
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	25		30		35		45		55		ns
t_{AA}	Address to Data Valid ${ }^{[12]}$		25		30		35		45		55	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	0		0		0		0		0		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\mathrm{CE}}$ LOW to Data Valid ${ }^{12]}$		25		30		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid ${ }^{[12]}$		15		20		20		25		25	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[13]}$	3		3		3		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\overline{\text { OE HIGH to High } Z^{[13,14]}}$		15		15		20		20		25	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\text { CE }}$ LOW to Low $\mathrm{Z}^{[13,14]}$	5		5		5		5		5		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\text { CE }}$ HIGH to High Z ${ }^{[13,14]}$		15		15		20		20		25	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE }}$ HIGH to Power-Down		25		25		35		35		35	ns
WRITE CYCLE ${ }^{[15]}$												
t_{WC}	Write Cycle Time	25		30		35		45		55		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	20		25		30		35		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		30		35		40		ns
t_{HA}	Address Hold from Write End	2		2		2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	R/్̄W Pulse Width	15		25		25		30		30		ns
t_{SD}	Data Set-Up to Write End	15		15		15		20		20		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	R/ \bar{W} LOW to High Z		15		15	.	20		20		25	ns
$\mathrm{t}_{\text {LZWE }}$	R/ $\overline{\text { W }}$ HIGH to Low Z	0		0		0		0		0		ns

SEMICONDUCTOR

CY7C130/CY7C131 CY7C140/CY7C141

Switching Characteristics Over the Operating Range ${ }^{[5,11]}$ (continued)

Parameter	Description	$7 \mathrm{C130-25}$ 7C131-25 7C140-25 7C141-25 $\mathbf{7}$		$\begin{aligned} & \hline \text { 7C130-30 } \\ & \text { 7C131-30 } \\ & \text { 7C140-30 } \\ & \text { 7C141-30 } \end{aligned}$		$\begin{aligned} & \text { 7C130-35 } \\ & \text { 7C131-35 } \\ & \text { 7C140-35 } \\ & 7 \mathrm{C} 141-35 \end{aligned}$		$\begin{aligned} & \text { 7C130-45 } \\ & \text { 7C131-45 } \\ & \text { 7C140-45 } \\ & 7 \mathrm{C} 141-45 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 130-55 \\ & 7 \mathrm{C} 131-55 \\ & 7 \mathrm{C} 140-55 \\ & 7 \mathrm{C} 141-55 \end{aligned}$		Unit
		Min.	Max.									
BUSY/INTERRUPT TIMING												
$\mathrm{t}_{\text {BLA }}$	$\overline{\text { BUSY }}$ LOW from Address Match		20		20		20		25		30	ns
${ }^{\text {t }}$ BHA	BUSY HIGH from Address Mismatch ${ }^{[16]}$		20		20		20		25		30	ns
$\mathrm{t}_{\text {BLC }}$	$\overline{\text { BUSY LOW from } \overline{\text { CE }} \text { LOW }}$		20		20		20		25		30	ns
$\mathrm{t}_{\mathrm{BHC}}$	$\overline{\text { BUSY HIGH from } \overline{\text { CE HIGH }}{ }^{16]}}$		20		20		20		25		30	ns
$\mathrm{t}_{\text {PS }}$	Port Set Up for Priority	5		5		5		5		5		ns
$\mathrm{t}_{\mathrm{WB}}{ }^{[17]}$	R/్̄W LOW after $\overline{\text { BUSY }}$ LOW	0		0		0		0		0		ns
t_{WH}	R//̄ HIGH after $\overline{\text { BUSY }}$ HIGH	20		30		30		35		35		ns
t ${ }^{\text {bDD }}$	BUSY HIGH to Valid Data		25		30		35		45		45	ns
$\mathrm{t}_{\mathrm{DDD}}$	Write Data Valid to Read Data Valid		$\begin{array}{\|c} \hline \text { Note } \\ 18 \end{array}$		$\begin{array}{c\|} \hline \text { Note } \\ 18 \end{array}$		Note 18		Note 18		$\begin{array}{\|c\|} \hline \text { Note } \\ 18 \end{array}$	ns
${ }^{\text {W }}$ WDD	Write Pulse to Data Delay		$\begin{array}{\|c} \hline \text { Note } \\ 18 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline \text { Note } \\ 18 \\ \hline \end{array}$		Note 18		Note 18		Note	ns
INTERRUPT TIMING												
twins	R//్̄ to INTERRUPT Set Time		25		25		25		35		45	ns
teins	$\overline{\mathrm{CE}}$ to INTERRUPT Set Time		25		25		25		35		45	ns
tins	Address to $\overline{\text { INTERRUPT }}$ Set Time		25		25		25		35		45	ns
toinr	$\overline{\mathrm{OE}}$ to INTERRUPT Reset Time ${ }^{[16]}$		25		25		25		35		45	ns
$\mathrm{t}_{\text {EINR }}$	$\begin{aligned} & \overline{\overline{C E}} \text { to } \overline{\text { INTERRUPT }} \\ & \text { Reset Time } \end{aligned}$		25		25		25		35		45	ns
$\mathrm{t}_{\text {INR }}$	$\begin{array}{\|l\|} \hline \text { Address to INTERRUPT } \\ \text { Reset Time }{ }^{[16]} \\ \hline \end{array}$		25		25		25		35		45	ns

Notes:

16. These parameters are measured from the input signal changing, until the output pin goes to a high-impedance state.
17. CY7C140/CY7C141 only.
18. A write operation on Port A , where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following:
A. $\overline{\text { BUSY }}$ on Port B goes HIGH.
B. Port B's address is toggled.
C. $\overline{\mathrm{CE}}$ for Port B is toggled.
D. R / \bar{W} for Port B is toggled during valid read.
19. $\mathrm{R} / \overline{\mathrm{W}}$ is HIGH for read cycle.
20. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
21. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
22. If $\overline{\mathrm{OE}}$ is LOW during a $\mathrm{R} / \overline{\mathrm{W}}$ controlled write cycle, the write pulse width must be the larger of $t_{P W E}$ or $t_{H Z W E}+t_{S D}$ to allow the data I/O pins to enter high impedance and for data to be placed on the bus for the required t_{SD}.
23. If the $\overline{\mathrm{CE}}$ LOW transition occurs simultaneously with or after the R / W LOW transition, the outputs remain in the high-impedance state.

Switching Waveforms

Read Cycle No. $1{ }^{[19,20]}$
Either Port Address Access

ADDRESS

DATA OUT

Switching Waveforms (continued)

Read Cycle No. $2^{[19,21]}$

Read Cycle No. $3{ }^{[20]}$
Read with $\overline{\text { BUSY, Master: CY7C130 and CY7C131 }}$

Write Cycle No. $1\left(\overline{\mathrm{OE}}\right.$ Tri-States Data I/Os - Either Port) ${ }^{[15,22]}$

Switching Waveforms (continued)
Write Cycle No. 2 (R/ $\overline{\mathbf{W}}$ Tri-States Data I/Os - Either Port) ${ }^{[15,23]}$

Busy Timing Diagram No. 1 ($\overline{\mathbf{C E}}$ Arbitration)

$\overline{\mathbf{C E}}_{\mathbf{L}}$ Valid First:

C130-12
$\overline{\mathbf{C E}}_{\mathrm{R}}$ Valid First:

Switching Waveforms (continued)

Busy Timing Diagram No. 2 (Address Arbitration)

Right Address Valid First:

Busy Timing Diagram No. 3

Write with $\overline{\text { BUSY }}$ (Slave: CY7C140/CY7C141)

Switching Waveforms (continued)

Interrupt Timing Diagrams

Left Side Sets $\overline{\mathbf{I N T}}_{\mathrm{R}}$

Right Side Sets $\overline{\mathbf{I N T}}_{\mathbf{L}}$

Typical DC and AC Characteristics

NORMALIZED SUPPLY CURRENT

SUPPLY VOLTAGE (V)

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

OUTPUT SOURCE CURRENT
vs. OUTPUT VOLTAGE

TYPICAL POWER-ON CURRENT vs. SUPPLY VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

NORMALIZED ICC vs. CYCLE TIME

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating
30	CY7C130-30PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C130-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
35	CY7C130-35PC	P25	48-Lead (600-Mil) Molded DIP	
	CY7C130-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-35DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
	CY7C130-35FMB	F78	48-Lead Quad Flatpack	
	CY7C130-35LMB	L68	48-Square Leadless Chip Carrier	
45	CY7C130-45PC	P25	48-Lead (600-Mil) Molded DIP	
	CY7C130-45PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-45DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
	CY7C130-45FMB	F78	48-Lead Quad Flatpack	
	CY7C130-45LMB	L68	48-Square Leadless Chip Carrier	
55	CY7C130-55PC	P25	48-Lead (600-Mil) Molded DIP	
	CY7C130-55PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C130-55DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
	CY7C130-55FMB	F78	48-Lead Quad Flatpack	
	CY7C130-55LMB	L68	48-Square Leadless Chip Carrier	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C131-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
30	CY7C131-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
35	CY7C131-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-35FMB	F78	48-Lead Quad Flatpack	Military
	CY7C131-35LMB	L69	52-Square Leadless Chip Carrier	
	CY7C131-45JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-45JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-45FMB	F78	48-Lead Quad Flatpack	Military
	CY7C131-45LMB	L69	52-Square Leadless Chip Carrier	
	CY7C131-55JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C131-55JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C131-55FMB	F78	48-Lead Quad Flatpack	Military
	CY7C131-55MB	L69	52-Square Leadless Chip Carrier	

CY7C130/CY7C131
CY7C140/CY7C141
Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
30	CY7C140-30PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial Commercial
35	CY7C140-35PC	P25	48-Lead (600-Mil) Molded DIP	
	CY7C140-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C140-35DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
	CY7C140-35FMB	F78	48-Lead Quad Flatpack	
	CY7C140-35LMB	L68	48-Square Leadless Chip Carrier	
45	CY7C140-45PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-45PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C140-45DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
	CY7C140-45FMB	F78	48-Lead Quad Flatpack	
	CY7C140-45LMB	L68	48-Square Leadless Chip Carrier	
55	CY7C140-55PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C140-55PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C140-55DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
	CY7C140-55FMB	F78	48-Lead Quad Flatpack	
	CY7C140-55LMB	L68	48-Square Leadless Chip Carrier	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C141-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
30	CY7C141-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-35FMB	F78	48-Lead Quad Flatpack	Military
	CY7C141-35LMB	L69	52-Square Leadless Chip Carrier	
55	CY7C141-45JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-45JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-45FMB	F78	48-Lead Quad Flatpack	Military
	CY7C141-45LMB	L69	52-Square Leadless Chip Carrier	
	CY7C141-55JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C141-55JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C141-55FMB	F78	48-Lead Quad Flatpack	Military
	CY7C141-55LMB	L69	52-Square Leadless Chip Carrier	

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 3}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 4}$	$1,2,3$

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
$t_{\text {RC }}$	$7,8,9,10,11$
$t_{\text {AA }}$	$7,8,9,10,11$
$t_{\text {ACE }}$	$7,8,9,10,11$
$t_{\text {DOE }}$	$7,8,9,10,11$
WRITE CYCLE	
$t_{\text {WC }}$	$7,8,9,10,11$
$t_{\text {SCE }}$	$7,8,9,10,11$
$t_{\text {AW }}$	$7,8,9,10,11$
$t_{\text {HA }}$	$7,8,9,10,11$
$t_{\text {SA }}$	$7,8,9,10,11$
$t_{\text {PWE }}$	$7,8,9,10,11$
$t_{\text {SD }}$	$7,8,9,10,11$
$t_{\text {HD }}$	$7,8,9,10,11$

Parameter	Subgroups
BUSY/INTERRUPT TIMING	
t $_{\text {BLA }}$	$7,8,9,10,11$
t $_{\text {BHA }}$	$7,8,9,10,11$
t $_{\text {BLC }}$	$7,8,9,10,11$
t $_{\text {BHC }}$	$7,8,9,10,11$
$t_{\text {PS }}$	$7,8,9,10,11$
$t_{\text {WINS }}$	$7,8,9,10,11$
$t_{\text {EINS }}$	$7,8,9,10,11$
$t_{\text {INS }}$	$7,8,9,10,11$
$t_{\text {OINR }}$	$7,8,9,10,11$
$t_{\text {EINR }}$	$7,8,9,10,11$
$t_{\text {INR }}$	$7,8,9,10,11$
BUSY TIMING	
$t_{\text {WB }}[24]$	
$t_{\text {WH }}$	$7,8,9,10,11$
$t_{\text {BDD }}$	$7,8,9,10,11$

Note:
24. CY7C140/CY7C141 only.

Document \#: 38-00027-I

Features

- 0.8-micron CMOS for optimum speed/power
- Automatic power-down
- TTL compatible
- Capable of withstanding greater than 2001V electrostatic discharge
- Fully asynchronous operation
- Master CY7C132/CY7C136 easily expands data bus width to 16 or more bits using slave CY7C142/CY7C146
- BUSȲ output flag on CY7C132/ CY7C136; BUSY input on CY7C142/CY7C146
- INT flag for port-to-port communication (52-pin LCC/PLCC versions)

Functional Description

The CY7C132/CY7C136/CY7C142/ CY7C146 are high-speed CMOS 2 K by 8 dual-port static RAMS. Two ports are provided to permit independent access to any location in memory. The CY7C132/ CY7C136 can be utilized as either a standalone 8 -bit dual-port static RAM or as a MASTER dual-port RAM in conjunction with the CY7C142/CY7C146SLAVE dualport device in systems requiring 16-bit or greater word widths. It is the solution to applications requiring shared or buffered data such as cache memory for DSP, bitslice, or multiprocessor designs.
Each port has independent control pins; chip enable ($\overline{C E}$), write enable ($\mathrm{R} / \overline{\mathrm{W}}$), and

2K x 8 Dual-Port Static RAM
output enable ($\overline{\mathrm{OE}}$). $\overline{\text { BUSY }}$ flags are provided on each port. In addition, an interrupt flag (INT) is provided on each port of the 52-pin LCC and PLCC versions. BUSY signals that the port is trying to access the same location currently being accessed by the other port. On the LCC/PLCC versions, $\overline{\text { INT }}$ is an interrupt flag indicating that data has been placed in a unique location (7 FF for the left port and 7 FE for the right port).
An automatic power-down feature is controlled independently on each port by the chip enable ($\overline{\mathrm{CE}}$) pins.
The CY7C132/CY7C142 are available in both 48 -pin DIP and 48 -pin LCC. The CY7C136/CY7C146 are available in both 52 -pin LCC and 52-pin PLCC.

Logic Block Diagram

Notes:

1. CY7C132/CY7C136 (Master): $\overline{\mathrm{BUSY}}$ is open drain output and requires pull-up resistor. CY7C142/CY7C146 (Slave): BUSY is input.
2. Open drain outputs; pull-up resistor required.

Pin Configuration

	DIP Top View	
CE_{L}	1 48	$V_{\text {cc }}$
R/W ${ }_{\text {L }}$	$2 \quad 47$	CE_{F}
	$3 \quad 46$	$\mathrm{R} / \mathrm{W}_{\mathrm{R}}$
$\mathrm{A}_{10 \mathrm{~L}}$	4 45	BUSY_{R}
OEL	54	$\mathrm{A}_{10 \mathrm{R}}$
$\mathrm{A}_{\text {OL }} \square^{\text {d }}$	6 43	OE_{R}
$A_{1 L}$ L	$7 \quad 42$	$\mathrm{A}_{0} \mathrm{R}$
$A_{2 L} 5$	$8 \quad 41$	$A_{1 R}$
$A_{3 L}{ }^{\text {c }}$	$9 \quad 40$	$A_{2 R}$
$A_{4 L}{ }^{\text {d }}$	$10 \quad 39$	$A_{3 R}$
$A_{5 L}$ C	$11 \quad 38$	$\mathrm{A}_{4} \mathrm{R}$
$A_{6 L 6}{ }^{5}$	127 C 13237	$A_{5 R}$
$\mathrm{A}_{7 \mathrm{~L}} \mathrm{C}^{\text {a }}$	13 7C142 36	$A_{6 R}$
ABL^{\square}	$14 \quad 35$	$\mathrm{A}_{7 R}$
$A_{9 L}$ L	$15 \quad 34$	$\mathrm{A}_{8 \mathrm{~B}}$
$1 / \mathrm{O}_{\text {OL }} \square$	16 33	$\mathrm{A}_{9 R}$
$1 / O_{1 L}$	$17 \quad 32$	$1 / O_{7 R}$
$1 / \mathrm{O}_{2 \mathrm{LL}}$	$18 \quad 31$	$1 / O_{6 R}$
$1 / O_{3 L}$	1930	$1 / O_{5 R}$
$1 / O_{4 L}$ -	$20 \quad 29$	$1 / O_{4 R}$
$1 / O_{5 L}$	$21 \quad 28$	$1 / \mathrm{O}_{3 \mathrm{R}}$
$1 / 0_{6 L}$	$22 \quad 27$	$1 / \mathrm{O}_{2 R}$
$1 / O_{7 L}$	$23-26$	$1 / O_{1 R}$
GND \square	$24 \quad 25$	$1 / O_{0 R}$

Pin Configurations (continued)

Selection Guide

		$\begin{gathered} 7 \mathrm{C} 132-25[3] \\ 7 \mathrm{C} 136-25 \\ 7 \mathrm{C} 142-25 \\ 7 \mathrm{C} 146-25 \end{gathered}$	$\begin{aligned} & \hline \text { 7C132-30 } \\ & \text { 7C136-30 } \\ & \text { 7C142-30 } \\ & \text { 7C146-30 } \end{aligned}$	$\begin{aligned} & \hline \text { 7C132-35 } \\ & \text { 7C136-35 } \\ & \text { 7C142-35 } \\ & \text { 7C146-35 } \end{aligned}$	$\begin{aligned} & \hline \text { 7C132-45 } \\ & 7 \mathrm{C} 136-45 \\ & 7 \mathrm{C} 142-45 \\ & 7 \mathrm{C} 146-45 \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{C} 132-55 \\ & 7 \mathrm{C} 136-55 \\ & 7 \mathrm{C} 142-55 \\ & 7 \mathrm{C} 146-55 \end{aligned}$
Maximum Access Time (ns)		25	30	35	45	55
Maximum Operating Current (mA)	Com'//Ind	170	170	120	90	90
	Military			170	120	120
Maximum Standby Current (mA)	Com'l/Ind	65	65	45	35	35
	Military			65	45	45

Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots$.
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 48 to Pin 24)
DC Voltage Applied to Outputs
in High Z State $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .0 .5 \mathrm{~F}$ to +7.0 V
DC Input Voltage . -3.5 V to +7.0 V
Output Current into Outputs (LOW)
20 mA

Notes:

3. 25-ns version available in LCC and PLCC packages only.

Static Discharge Voltage >2001V (per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[4]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

4. T_{A} is the "instant on" case temperature

Electrical Characteristics Over the Operating Range ${ }^{[5]}$

Capacitance ${ }^{[9]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	15	pF
C OUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

5. See the last page of this specification for Group A subgroup testing information.
6. $\overline{\text { BUSY }}$ and $\overline{\text { INT }}$ pins only.
7. Duration of the short circuit should not exceed 30 seconds.
8. At $f=f_{\text {MAX }}$, address and data inputs are cycling at the maximum frequency of read cycle of $1 / \mathrm{t}_{\mathrm{rc}}$ and using AC Test Waveforms input levels of GND to 3 V .
9. Tested initially and after any design or process changes that may affect these parameters.
10. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and $30-\mathrm{pF}$ load capacitance.
11. $A C$ test conditions use $\mathrm{V}_{\mathrm{OH}}=1.6 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{OL}}=1.4 \mathrm{~V}$.
12. At any given temperature and voltage condition for any given device, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$.
13. $\mathrm{t}_{\mathrm{LZCE}}, \mathrm{t}_{\mathrm{LZWE}}, \mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{LZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=$ 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
14. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and R/W LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referencd to the rising edge of the signal that terminates the write.

BUSY Output Load (CY7C132/CY7C136 ONLY)

Equivalent to: THÉVENIN EQUIVALENT

(a)

ALL INPUT PULSES

Switching Characteristics Over the Operating Range ${ }^{[5,10]}$

Parameter	Description	$\begin{array}{\|c\|} \hline \text { 7C132-2523] } \\ \text { 7C136-25 } \\ \text { 7C142-25 } \\ \text { 7C146-25 } \end{array}$		$\begin{aligned} & \hline \text { 7C132-30 } \\ & \text { 7C136-30 } \\ & \text { 7C142-30 } \\ & \text { 7C146-30 } \end{aligned}$		$\begin{aligned} & \text { 7C132-35 } \\ & \text { 7C136-35 } \\ & \text { 7C142-35 } \\ & \text { 7C146-35 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{Cl32-45} \\ & 7 \mathrm{C} 136-45 \\ & 7 \mathrm{C} 142-45 \\ & 7 \mathrm{C} 146-45 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 132-55 \\ & 7 \mathrm{C} 136-55 \\ & 7 \mathrm{C} 142-55 \\ & 7 \mathrm{C} 146-55 \end{aligned}$		Unit
		Min.	Max.									
READ CYCLE												
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	25		30		35		45		55		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid ${ }^{111]}$		25		30		35		45		55	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	0		0		0		0		0		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid ${ }^{[11]}$		25		30		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid ${ }^{[11]}$		15		20		20		25		25	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low }{ }^{[12]}}$	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[12,13]}$		15		15		20		20		25	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[12]}$	5		5		5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}$ HIGH to High Z ${ }^{\text {[12, 13] }}$		15		15		20		20		25	ns
t_{PU}	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		0		0		ns
t_{PD}	$\overline{\mathrm{CE}}$ HIGH to Power-Down		25		25		35		35		35	ns
WRITE CYCLE ${ }^{[14]}$												
$\mathrm{t}_{\text {WC }}$	Write Cycle Time	25		30		35		45		55		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	20		25		30		35		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		30		35		40		ns
t_{HA}	Address Hold from Write End	2		2		2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	R/W Pulse Width	15		25		25		30		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		15		15		20		20		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	R/ $\overline{\mathbf{W}}$ LOW to High Z		15		15		20		20		25	ns
$\mathrm{t}_{\text {LZWE }}$	R/ \bar{W} HIGH to Low Z	0		0		0		0		0		ns

Switching Characteristics Over the Operating Range ${ }^{[5,10]}$ (continued)

Parameter	Description	$7 \mathrm{C132-25}$ 7C136-25 7C142-25 7C146-25		$\begin{aligned} & \text { 7C132-30 } \\ & \text { 7C136-30 } \\ & 7 \mathrm{C} 142-30 \\ & 7 \mathrm{C} 146-30 \end{aligned}$		$\begin{array}{\|l\|} \hline \text { 7C132-35 } \\ \text { 7C136-35 } \\ \text { 7C142-35 } \\ \text { 7C146-35 } \\ \hline \end{array}$		$\begin{aligned} & \text { 7C132-45 } \\ & \text { 7C136-45 } \\ & \text { 7C142-45 } \\ & \text { 7C146-45 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 132-55 \\ & 7 \mathrm{C} 136-55 \\ & 7 \mathrm{C} 142-55 \\ & 7 \mathrm{C} 146-55 \end{aligned}$		Unit
		Min.	Max.									
BUSY/INTERRUPT TIMING												
$\mathrm{t}_{\text {BLA }}$	BUSY LOW from Address Match		20		20		20		25		30	ns
$\mathrm{t}_{\mathrm{BHA}}$	BUSY HIGH from Address Mismatch ${ }^{[15]}$		20		20		20		25		30	ns
$\mathrm{t}_{\text {BLC }}$	$\overline{\text { BUSY }}$ LOW from $\overline{\text { CE }}$ LOW		20		20		20		25		30	ns
$\mathrm{t}_{\text {BHC }}$	$\overline{\text { BUSY }}$ HIGH from $\overline{\text { CE HIGH }}{ }^{15]}$		20		20		20		25		30	ns
tes	Port Set Up for Priority	5		5		5		5		5		ns
$\mathrm{t}_{\mathrm{WB}}{ }^{[16]}$	R/W LOW after BUSY LOW	0		0		0		0		0		ns
$\mathrm{t}_{\text {WH }}$	R//̄ HIGH after $\overline{\text { BUSY }}$ HIGH	20		30		30		35		35		ns
$\mathrm{t}_{\text {BDD }}$	$\overline{\text { BUSY HIGH to Valid Data }}$		25		30		35		45		45	ns
${ }^{\text {DDD }}$	Write Data Valid to Read Data Valid		$\begin{array}{\|c} \hline \text { Note } \\ 17 \end{array}$		$\begin{array}{\|c} \hline \text { Note } \\ 17 \end{array}$		$\begin{array}{\|c} \hline \text { Note } \\ 17 \end{array}$		Note 17		Note 17	ns
$\mathrm{t}_{\text {WDD }}$	Write Pulse to Data Delay		$\begin{array}{\|c} \hline \text { Note } \\ 17 \end{array}$		$\begin{array}{\|c} \hline \text { Note } \\ 17 \\ \hline \end{array}$		$\begin{array}{\|c} \hline \text { Note } \\ 17 \end{array}$		Note 17		Note 17	ns
INTERRUPT TIMING ${ }^{[18]}$												
$\mathrm{t}_{\text {WINS }}$	R/V/ to INTERRUPT Set Time		25		25		25		35		45	ns
teins	$\overline{\text { CE }}$ to INTERRUPT Set Time		25		25		25		35		45	ns
$\mathrm{t}_{\text {INS }}$	$\begin{aligned} & \hline \text { Address to } \overline{\text { INTERRUPT }} \\ & \text { Set Time } \end{aligned}$		25		25		25		35		45	ns
$\mathrm{t}_{\text {OINR }}$	$\begin{aligned} & \overline{\text { OE to } \overline{\text { INTERRUPT }}} \\ & \text { Reset Time } \end{aligned}$		25		25		25		35		45	ns
teInR	$\begin{aligned} & \overline{\overline{\mathrm{CE}} \text { to } \overline{\text { INTERRUPT }}} \overline{\text { Reset Time[15] }} \end{aligned}$		25		25		25		35		45	ns
$\mathrm{t}_{\text {INR }}$	Address to INTERRUPT Reset Time		25		25		25		35		45	ns

Notes:
15. These parameters are measured from the input signal changing, until the output pin goes to a high-impedance state.
16. CY7C142/CY7C146 only.
17. A write operation on Port A, where Port A has priority, leaves the data on Port B's outputs undisturbed until one access time after one of the following:
A. BUSYं on Port B goes HIGH.
B. Port B's address toggled.
C. $\overline{\mathrm{CE}}$ for Port B is toggled.
D. R / \bar{W} for Port B is toggled during valid read.
18. 52-pin LCC/PLCC versions only.
19. $\mathrm{R} / \overline{\mathrm{W}}$ is HIGH for read cycle.
20. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
21. Address valid prior to or coincident with $\overline{C E}$ transition LOW.
22. If $\overline{O E}$ is LOW during a R / \bar{W} controlled write cycle, the write pulse width must be the larger of $t_{\text {PWE }}$ or $t_{\text {HZWE }}+t_{\text {SD }}$ to allow the data I/O pins to enter high impedance and for data to be placed on the bus for the required t_{SD}.
23. If the $\overline{C E}$ LOW transition occurs simultaneously with or after the R / \bar{W} LOW transition, the outputs remain in a high-impedance state.

Switching Waveforms

Read Cycle No. 1 (Either Port—Address Access) ${ }^{[19,20]}$

ADDRESS

DATA OUT

Switching Waveforms (continued)
Read Cycle No. 2 (Either Port- $\overline{\mathbf{C E}} / \overline{\mathrm{OE}}$ Access) ${ }^{[19,21]}$

Read Cycle No. 3 (Read with $\overline{\text { BUSY }}$ Master: CY7C132 and 7C136) ${ }^{[20]}$

Write Cycle No. 1 ($\overline{\mathbf{O E}}$ Three-States Data I/Os-Either Port) ${ }^{[14,22]}$

Switching Waveforms (continued)
Write Cycle No. 2 (R/ $\overline{\mathbf{W}}$ Three-States Data I/Os—Either Port) ${ }^{[14,23]}$

Busy Timing Diagram No. 1 ($\overline{\mathbf{C E}}$ Arbitration)
$\overline{\mathbf{C E}}_{\mathrm{L}}$ Valid First:

C132-12
$\overline{\mathrm{CE}}_{\mathrm{R}}$ Valid First:

Switching Waveforms (continued)

Busy Timing Diagram No. 2 (Address Arbitration)
Left Address Valid First:
Right Address Valid First:

Busy Timing Diagram No. 3 (Write with BUSY, Slave: CY7C142/CY7C146)

Interrupt Timing Diagrams ${ }^{[18]}$

C132-19

Typical DC and AC Characteristics

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
30	CY7C132-30PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C132-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
35	CY7C132-35PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C132-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C132-35DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
	CY7C132-35FMB	F78	48-Lead Quad Flatpack	
	CY7C132-35LMB	L68	48-Square Leadless Chip Carrier	
45	CY7C132-45PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C132-45PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C132-45DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
	CY7C132-45FMB	F78	48-Lead Quad Flatpack	
	CY7C132-45LMB	L68	48-Square Leadless Chip Carrier	
55	CY7C132-55PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C132-55PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C132-55DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
	CY7C132-55FMB	F78	48-Lead Quad Flatpack	
	CY7C132-55LMB	L68	48-Square Leadless Chip Carrier	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C136-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
30	CY7C136-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C136-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C136-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C136-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C136-35LMB	L69	52-Square Leadless Chip Carrier	Military
45	CY7C136-45JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C136-45JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C136-45LMB	L69	52-Square Leadless Chip Carrier	Military
	CY7C136-55JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C136-55JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C136-55LMB	L69	52-Square Leadless Chip Carrier	Military

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating
30	CY7C142-30PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C142-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
35	CY7C142-35PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C142-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C142-35DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
	CY7C142-35FMB	F78	48-Lead Quad Flatpack	
	CY7C142-35LMB	L68	48-Square Leadless Chip Carrier	
45	CY7C142-45PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C142-45PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C142-45DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
	CY7C142-45FMB	F78	48-Lead Quad Flatpack	
	CY7C142-45LMB	L68	48-Square Leadless Chip Carrier	
55	CY7C142-55PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7C142-55PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C142-55DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
	CY7C142-55FMB	F78	48-Lead Quad Flatpack	
	CY7C142-55LMB	L68	48-Square Leadless Chip Carrier	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C146-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
30	CY7C146-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C146-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C146-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C146-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C146-35LMB	L69	52-Square Leadless Chip Carrier	Military
35	CY7C146-45JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C146-45JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C146-45LMB	L69	52-Square Leadless Chip Carrier	Military
	CY7C146-55JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C146-55JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C146-55LMB	L69	52-Square Leadless Chip Carrier	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 3}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 4}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Parameter	Subgroups
BUSY/INTERRUPT TIMING	
$\mathrm{t}_{\text {BLA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {BHA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {BLC }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{BHC}}$	7, 8, 9, 10, 11
$t_{\text {PS }}$	7, 8, 9, 10, 11
twins	7, 8, 9, 10, 11
teins	7, 8, 9, 10, 11
$\mathrm{t}_{\text {INS }}$	7, 8, 9, 10, 11
toin	7, 8, 9, 10, 11
teinr	7, 8, 9, 10, 11
$\mathrm{t}_{\text {INR }}$	7, 8, 9, 10, 11
BUSY TIMING	
$\mathrm{twB}^{\text {[}}{ }^{[24]}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {WH }}$	7, 8, 9, 10, 11
$t_{\text {BDD }}$	7, 8, 9, 10, 11

Note:
24. CY7C142/CY7C146 only.

Document \#: 38-00061-H

Features

- 0.8-micron BiCMOS for high performance
- High-speed access
- 20 ns (commercial)
- 25 ns (military)
- Automatic power-down
- Fully asynchronous operation
- 7B1342 includes semaphores
- 7B134 available in 48-pin DIP, 48-pin LCC
- 7B135/7B1342 available in 52-pin LCC/PLCC

Functional Description

The CY7B134, CY7B135, and CY7B1342 are high-speed BiCMOS 4K x 8 dual-port static RAMs. The CY7B1342 includes semaphores that provide a means to allocate portions of the dualport RAM or any shared resource. Two ports are provided permitting independent, asynchronous access for reads and writes to any location in memory. Application areas include interprocessor/multiprocessor designs, communications status buffering, and dual-port video/graphics memory.
Each port has independent control pins: chip enable ($\overline{\mathrm{CE}})$, read or write enable ($\overline{\mathrm{R}} /$ $\overline{\mathrm{W}}$), and output enable ($\overline{\mathrm{OE}})$. The CY7B134/135 are suited for those systems
that do not require on-chip arbitration or are intolerant of waitstates. Therefore, the user must be aware that simultaneous access to a location is possible. Semaphores are offered on the CY7B1342 to assist in arbitrating between ports. The semaphore logic is comprised of eight shared latches. Only one side can control the latch (semaphore) at any time. Control of a semaphore indicates that a shared resource is in use. An automatic power-down feature is controlled independently on each port by a chip enable ($\overline{\mathrm{CE}}$) pin or $\overline{\mathrm{SEM}}$ pin (CY7B1342 only).
The CY7B134 is available in 48-pin DIP and 48-pin LCC. The CY7B135 and CY7B1342 are available in 52-pin LCC/ PLCC.

Logic Block Diagram

Selection Guide

\checkmark		$\begin{array}{r} 7 \mathrm{BB} 134-20 \\ \text { 7B135-20 } \\ \text { 7B1342-20 } \end{array}$	$\begin{array}{r} 7 \mathrm{~B} 134-25 \\ \text { 7B135-25 } \\ \text { 7B1342-25 } \end{array}$	$\begin{array}{r} 7 \mathrm{~B} 134-35 \\ \text { 7B135-35 } \\ \text { 7B1342-35 } \end{array}$
Maximum Access Time (ns)		20	25	35
Maximum Operating Current (mA)	Commercial	240	220	210
	Military		260	250
Maximum Standby Current (mA)	Commercial	80	75	70
	Military		80	75

Pin Configurations

1342-4

Pin Definitions

Left Port	Right Port	Description
$\mathrm{A}_{0 \mathrm{~L}-11 \mathrm{~L}}$	A0R-11R	Address Lines
$\overline{\mathrm{CE}}_{\mathrm{L}}$	$\overline{\mathrm{CE}}_{\mathrm{R}}$	Chip Enable
$\overline{\mathrm{OE}}_{\mathrm{L}}$	$\overline{\mathrm{OE}}_{\mathrm{R}}$	Output Enable
$\mathrm{R} / \overline{\mathrm{W}}_{\mathrm{L}}$	$\mathrm{R} / \bar{W}_{\mathrm{R}}$	Read/Write Enable
$\overline{\text { SEM }}_{\mathrm{L}}$ (CY7B1342 only)	$\begin{aligned} & \overline{\mathrm{SEM}}_{\mathrm{R}} \\ & \text { (CY7B1342 } \\ & \text { only) } \end{aligned}$	Semaphore Enable. When asserted LOW, allows access to eight semaphores. The threeleast significant bits of the address lines will determine which semaphore to write or read. The $\mathrm{I} / \mathrm{O}_{0}$ pin is used when writing to a semaphore. Semaphores are requested by writing a 0 into the respective location.

Static Discharge Voltage > 2001 V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 48 to Pin 24) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$
-3.0 V to +7.0 V

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)	
Storage Temperature	C
Ambient Temperature with Power Applied	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential (Pin 48 to Pin 24)	-0.5 V to +7.0 V
DC Voltage Applied to Outputs in High Z State	-0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$	-3.0 V to +7.0 V

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max. ${ }^{[6]}$	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. Pulse width $<20 \mathrm{~ns}$.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. $f_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}}=$ All inputs cycling at $\mathrm{f}=1 / \mathrm{t}_{\mathrm{RC}}$ (except output enable). $\mathrm{f}=0$ meas no address or control lines change. This applies only to inputs at CMOS level standby $\mathrm{I}_{\mathrm{SB} 3}$.
5. Tested initially and after any design or process changes that may affect these parameters.
6. For all packages except DIP and cerDIP (D26, P25), which have maximums of $\mathrm{C}_{\mathrm{IN}}=15 \mathrm{pF}, \mathrm{C}_{\text {OUT }}=15 \mathrm{pF}$.

AC Test Loads and Waveforms

(a) Normal Load (Load 1)

(b) Thevenin Equivalent (Load 1)

(c) Three-State Delay (Load 3)

ALL INPUT PULSES

1342-9
Switching Characteristics Over the Operating Rangel ${ }^{[7,8]}$

Parameter	Description	$\begin{gathered} 7 \mathrm{~B} 134-20 \\ \text { 7B135-20 } \\ \text { 7B1342-20 } \end{gathered}$		$\begin{gathered} 7 \mathrm{BB} 134-25 \\ 7 \mathrm{~B} 135-25 \\ 7 \mathrm{~B} 1342-25 \end{gathered}$		$\begin{gathered} 7 \mathbf{B 1 3 4 - 3 5} \\ \text { 7B135-35 } \\ \text { 7B1342-35 } \end{gathered}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	20		25		35		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		20		25		35	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold From Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW }}$ to Data Valid		20		25		35	ns
$t_{\text {doe }}$	$\overline{\text { OE LOW to Data Valid }}$		13		15		20	ns
$\mathrm{t}_{\mathrm{LZOE}}{ }^{[9,10]}$	$\overline{\mathrm{OE}}$ Low to Low \mathbf{Z}	3		3		3		ns
$\mathrm{t}_{\mathrm{HZOE}}{ }^{[9,10]}$	$\overline{\text { OE HIGH to High } \mathrm{Z}}$		13		15		20	ns
$\mathrm{t}_{\text {LZCE }}{ }^{[9,10]}$	$\overline{\text { CE }}$ LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}{ }^{[9,10]}$	$\overline{\mathrm{CE}}$ HIGH to High Z		13		15		20	ns
t_{PU}	$\overline{\text { CE }}$ LOW to Power Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE HIGH to Power Down }}$		20		25		35	ns
WRITE CYCLE								
$t_{\text {WC }}$	Write Cycle Time	20		25		35		ns
$t_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	15		20		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	15		20		30		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
tPWE	Write Pulse Width	15		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	13		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\mathrm{HZWE}}{ }^{[10]}$	R/产 LOW to High Z		13		15		20	ns
$\mathrm{t}_{\text {LZWE }}{ }^{[10]}$	R/W HIGH to Low Z	3		3		3		ns

Switching Characteristics Over the Operating Range ${ }^{[7,8]}$ (continued)

Parameter	Description	$\begin{gathered} 7 \mathrm{BB} 134-20 \\ 7 \mathrm{~B} 135-20 \\ 7 \mathrm{~B} 1342-20 \end{gathered}$		$\begin{gathered} 7 \mathrm{BB134-25} \\ 7 \mathrm{~B} 135-25 \\ 7 \mathrm{~B} 1342-25 \end{gathered}$		$\begin{gathered} \text { 7B134-35 } \\ \text { 7B135-35 } \\ 7 \mathbf{B 1 3 4 2 - 3 5} \end{gathered}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
WRITE CYCLE (continued)								
$\mathrm{t}_{\text {WDD }}{ }^{[11]}$	Write Pulse to Data Delay		40		50		60	ns
$\mathrm{t}_{\text {DDD }}{ }^{[11]}$	Write Data Valid to Read Data Valid		30		30		35	ns
SEMAPHORE TIMING ${ }^{[12]}$								
${ }_{\text {t }}$ SOP	SEM Flag Update Pulse ($\overline{\mathrm{OE}}$ or $\overline{\text { SEM }}$)	10		10		15		ns
${ }^{\text {tSWRD }}$	SEM Flag Write to Read Time	5		5		5		ns
$\mathrm{t}_{\text {SPS }}$	SEM Flag Contention Window	5		5		5		ns

Switching Waveforms

Read Cycle No. $1^{[13,14]}$
Either Port Address Access

Read Cycle No. $2^{[13,15]}$

Notes:

7. See the last page of this specification for Group A subgroup testing information.
8. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance
9. At any given temperature and voltage condition for any given device, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$
10. Test conditions used are Load 3 .
11. For information on port-to-port delay through RAM cells from writing port to reading port, refer to Read Timing with Port-toPort Delay waveform.
12. Semaphore timing applies only to CY7B1342.
13. $\mathrm{R} / \overline{\mathrm{W}}$ is HIGH for read cycle.
14. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
15. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms

Write Cycle No. 1: $\overline{\mathbf{O E}}$ Three-States Data I/Os (Either Port) ${ }^{[17,18,19]}$

Notes:
16. $\overline{\mathrm{CE}}_{\mathrm{L}}=\overline{\mathrm{CE}}_{\mathrm{R}}=\mathrm{LOW} ; \mathrm{R} / \overline{\mathrm{W}}_{\mathrm{L}}=\mathrm{HIGH}$
17. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ or SEM LOW and R/W LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
18. $\mathrm{R} / \overline{\mathrm{W}}$ must be HIGH during all address transactions.
19. If $\overline{O E}$ is LOW during a R / \bar{W} controlled write cycle, the write pulse width must be the larger of tPWE or $\left(\mathrm{t}_{\mathrm{HZWE}}+\mathrm{t}_{\mathrm{SD}}\right)$ to allow the I/O drivers to turn off and data to be placed on the bus for the required t_{SD}. If $\overline{\mathrm{OE}}$ is HIGH during a $\mathrm{R} / \overline{\mathrm{W}}$ controlled write cycle (as in this example), this requirement does not apply and the write pulse can be as short as the specified tPWE.
20. $\overline{\text { SEM }}$ only applies to CY7B1342.

Switching Waveforms (continued)

Write Cycle No. 2: R/ $\overline{\mathbf{W}}$ Three-States Data I/Os (Either Port) ${ }^{[18,21]}$

Semaphore Read After Write Timing, Either Side (CY7B1342 only) ${ }^{[22]}$

Notes:
21. Data I/O pins enter high-impedance when $\overline{\mathrm{OE}}$ is held LOW during write.
22. $\overline{\mathrm{CE}}=\mathrm{HIGH}$ for the duration of the above timing (both write and read cycle).

Switching Waveforms (continued)

Timing Diagram of Semaphore Contention (CY7B1342 only) ${ }^{[23,24,25]}$

Notes:
23. $\mathrm{I} / \mathrm{O}_{0 \mathrm{R}}=\mathrm{I} / \mathrm{O}_{0 \mathrm{~L}}=$ LOW (request semaphore); $\overline{\mathrm{CE}}_{\mathrm{R}}=\overline{\mathrm{CE}}_{\mathrm{L}}=\mathrm{HIGH}$
24. Semaphores are reset (available to both ports) at cycle start.
25. If tsPs is violated, it is gauranteed that only one side will gain access to the semaphore.

Architecture

The CY7B134 and CY7B135 consist of an array of 4 K words of 8 bits each of dual-port RAM cells, I/O and address lines, and control signals ($\overline{\mathrm{CE}}, \overline{\mathrm{OE}, \mathrm{R} / \mathrm{W}) \text {. Two semaphore control pins exist for the }}$ CY7B1342 ($\left.\overline{\mathrm{SEM}}_{\mathrm{L} / \mathrm{R}}\right)$.

Functional Description

Write Operation

Data must be set up for a duration of $t_{S D}$ before the rising edge of $\mathrm{R} / \overline{\mathrm{W}}$ in order to guarantee a valid write. Since there is no on-chip arbitration, the user must be sure that a specific location will not be accessed simultaneously by both ports or erroneous data could result. A write operation is controlled by either the OE pin (see Write Cycle No. 1 timing diagram) or the $\mathrm{R} / \overline{\mathrm{W}}$ pin (see Write Cycle No. 2 timing diagram). Data can be written $\mathrm{t}_{\mathrm{HZOE}}$ after the $\overline{\mathrm{OE}}$ is deasserted or $t_{\text {HZWE }}$ after the falling edge of R / W. Required inputs for write operations are summarized in Table 1.
If a location is being written to by one port and the opposite port attempts to read the same location, a port-to-port flowthrough delay is met before the data is valid on the output. Data will be valid on the port wishing to read the location $t_{\text {DDD }}$ after the data is presented on the writing port.

Read Operation

When reading the device, the user must assert both the $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ pins. Data will be available $\mathrm{t}_{\mathrm{ACE}}$ after $\overline{\mathrm{CE}}$ or $\mathrm{t}_{\mathrm{DOE}}$ after $\overline{\mathrm{OE}}$ are asserted. If the user of the CY7B1342 wishes to access a semaphore, the SEM pin must be asserted instead of the $\overline{\mathrm{CE}}$ pin. Required inputs for read operations are summarized in Table 1.

Semaphore Operation

The CY7B1342 provides eight semaphore latches which are separate from the dual port memory locations. Semaphores are used to reserve resources which are shared between the two ports. The state of the semaphore indicates that a resource is in use. For example, if the left port wants to request a given resource, it sets a latch by writing a zero to a semaphore location. The left port then verifies its success in setting the latch by reading it. After writing to the semaphore, $\overline{\text { SEM }}$ or $\overline{O E}$ must be deasserted for $t_{\text {SOP }}$ before attempting to read the semaphore. The semaphore value will be available tsWRD $+t_{\text {DOE }}$ after the rising edge of the semaphore write. If the left port was successful (reads a zero), it assumes control over the shared resource, otherwise (reads a one) it assumes the right port has control and continues to poll the semaphore. When the right side has relinquished control of the semaphore (by writing a one), the left side will succeed in gaining control of the semaphore. If the left side no longer requires the semaphore, a one is written to cancel its request.
Semaphores are accessed by asserting SEM LOW. The $\overline{\text { SEM }}$ pin functions as a chip enable for the semaphore latches. $\overline{\mathrm{CE}}$ must remain HIGH during SEM LOW. A ${ }_{0-2}$ represents the semaphore address. $\overline{\mathrm{OE}}$ and $\mathrm{R} / \overline{\mathrm{W}}$ are used in the same manner as a normal memory access. When writing or reading a semaphore, the other address pins have no effect.
When writing to the semaphore, only $\mathrm{I} / \mathrm{O}_{0}$ is used. If a 0 is written to the left port of an unused semaphore, a one will appear at the same semaphore address on the right port. That semaphore can now only be modified by the side showing a zero (the left port in this case). If the left port now relinquishes control by writing a one to the semaphore, the semaphore will be set to one for both sides. However, if the right port had requested the semaphore (written a zero) while the left port had control, the right port would immediately own the semaphore. Table 2 shows sample semaphore operations.

When reading a semaphore, all eight data lines output the semaphore value. The read value is latched in an output register to prevent the semaphore from changing state during a write from the other port. If both ports request a semaphore control by writing a 0 to a semaphore within ISPS 2 of each other, it is guaranteed that only one side will gain access to the semaphore.

Table 1. Non-contending Read/Write

Inputs				Outputs	
$\overline{\mathbf{C E}}$	$\mathbf{R} / \overline{\mathbf{W}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{S E M}}$	$\mathbf{I} / \mathbf{O}_{\mathbf{0}}-\mathbf{I} / \mathbf{O}_{\mathbf{7}}$	Operation
H	X	X	H	High Z	Power-Down
H	H	L	L	Data Out	Read Data Semaphore
X	X	H	X	High Z	I/O Lines Disabled
H	-	X	L	Data In	Write to Semaphore
L	H	L	H	Data Out	Read
L	L	X	H	Data In	Write
L	X	X	L		Illegal Condition

Table 2. Semaphore Operation Example

Function	$\mathbf{I} / \mathbf{O}_{\mathbf{0}}$ Left	$\mathbf{I} / \mathbf{O}_{\mathbf{0}}$ Right	Status
No Action	1	1	Semaphore free
Left port writes semaphore	0	1	Left port obtains semaphore
Right port writes 0 to semaphore	0	1	Right side is denied access
Left port writes 1 to semaphore	1	0	Right port is granted access to Semaphore
Left port writes 0 to semaphore	1	0	No change. Left port is denied access
Right port writes 1 to semaphore	0	1	Left port obtains semaphore
Left port writes 1 to semaphore	1	1	No port accessing semaphore address
Right port writes 0 to semaphore	1	0	Right port obtains semaphore
Right port writes 1 to semaphore	1	1	No port accessing semaphore
Left port writes 0 to semaphore	0	1	Left port obtains semaphore
Left port writes 1 to semaphore	1	1	No port accessing semaphore

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME
vs. SUPPLY VOLTAGE

TYPICAL POWER-ON CURRENT vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

OUTPUT VOLTAGE (V)

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CY7B134-20PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
25	CY7B134-25PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7B134-25PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7B134-25DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
	CY7B134-25LMB	L68	48-Square Leadless Chip Carrier	
	CY7B134-35PC	P25	48-Lead (600-Mil) Molded DIP	Commercial
	CY7B134-35PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7B134-35DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
	CY7B134-35LMB	L68	48-Square Leadless Chip Carrier	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CY7B135-20JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
25	CY7B135-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B135-25JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7B135-25LMB	L69	52-Square Leadless Chip Carrier	Military
35	CY7B135-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B135-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7B135-35LMB	L69	52-Square Leadless Chip Carrier	Military

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
20	CY7B1342-20JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
25	CY7B1342-25JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B1342-25JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7B1342-25LMB	L69	52-Square Leadless Chip Carrier	Military
	CY7B1342-35JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B1342-35JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7B1342-35LMB	L69	52-Square Leadless Chip Carrier	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 3}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 4}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {OHA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {ACE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DOE }}$	7, 8, 9, 10, 11
WRITE CYCLE	
$\mathrm{t}_{\text {WC }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SCE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AW }}$	7, 8, 9, 10, 11
t_{HA}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SA }}$	7, 8, 9, 10, 11
tpwe	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SD }}$	7, 8, 9, 10, 11
t_{HD}	7, 8, 9, 10, 11
SEMAPHORE CYCLE	
$\mathrm{t}_{\text {SOD }}$	7, 8, 9, 10, 11
tsWRD	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SPS }}$	7, 8, 9, 10, 11

Document \#: 38-00161-B

Features

- 0.8-micron BiCMOS for high performance
- High-speed access
- 15 ns (com'l)
-25 ns (mil)
- Automatic power-down
- Fully asynchronous operation
- Master/Slave select pin allows bus width expansion to $16 / 18$ bits or more
- Busy arbitration scheme provided
- Semaphores included to permit software handshaking between ports
- INT flag for port-to-port communication
- Available in 68-pin LCC/PLCC/PGA
- TTL compatible

Functional Description

The CY7B138 and CY7B139 are highspeed BiCMOS 4K x 8 and $4 \mathrm{~K} \times 9$ dualport static RAMs. Various arbitration schemes are included on the CY7B138/9 to handle situations when multiple processors access the same piece of data. Two ports are provided permitting independent, asynchronous access for reads and writes to any location in memory. The CY7B138/9 can be utilized as a standalone $64-\mathrm{Kbit}$ dual-port static RAM or multiple devices can be combined in order to function as a $16 / 18$-bit or wider master/ slave dual-port static RAM. An M/S pin is provided for implementing $16 / 18$-bit or wider memory applications without the need for separate master and slave devices or additional discrete logic. Application areas include interprocessor/multiprocessor designs, communications status buffering, and dual-port video/graphics memory.

4K x 8/9 Dual-Port Static RAM with Sem, Int, Busy

Each port has independent control pins: chip enable ($\overline{\mathrm{CE}}$), read or write enable $(\mathrm{R} / \overline{\mathrm{W}})$, and output enable $(\overline{\mathrm{OE}})$. Two flags are provided on each port (BUSY and $\overline{\text { INT }}$). $\overline{\text { BUSY }}$ signals that the port is trying to access the same location currently being accessed by the other port. The interrupt flag (INT) permits communication between ports or systems by means of a mail box. The semaphores are used to pass a flag, or token, from one port to the other to indicate that a shared resource is in use. The semaphore logic is comprised of eight shared latches. Only one side can control the latch (semaphore) at any time. Control of a semaphore indicates that a shared resource is in use. An automatic power-down feature is controlled independently on each port by a chip enable ($\overline{\mathrm{CE}}$) pin or SEM pin.
The CY7B138 and CY7B139 are available in 68-pin LCCs, PLCCs, and PGAs.

Logic Block Diagram

Notes:

1. $\bar{B} U S Y$ is an output in master mode and an input in slave mode.
2. Master: push-pull output and requires no pull-up resistor.

Pin Configurations

68-Pin PGA
 Top View

	$\begin{array}{r} 51 \\ A_{5 L} \end{array}$	$\begin{array}{r} 50 \\ A_{4 L} \end{array}$	$\begin{gathered} 48 \\ \mathrm{~A}_{2 \mathrm{~L}} \end{gathered}$	$\begin{gathered} 46 \\ \mathrm{~A}_{\mathrm{ol}} \end{gathered}$	$\begin{array}{r} 44 \\ B U S P_{L} \end{array}$	$\begin{aligned} & 42 \\ & \mathrm{M} / \mathrm{S} \end{aligned}$	$\frac{40}{\operatorname{INT}_{R}}$	$\begin{array}{r} 38 \\ \mathrm{~A}_{1 R} \end{array}$	$\begin{array}{r} 36 \\ \mathrm{~A}_{3 \mathrm{~B}} \end{array}$	
$\begin{array}{r} 53 \\ A_{7 L} \end{array}$	$\begin{array}{r} 52 \\ A_{6 L} \end{array}$	$\begin{array}{r} 49 \\ \mathrm{~A}_{3 \mathrm{~L}} \end{array}$	$\begin{gathered} 47 \\ \mathrm{~A}_{1 L} \end{gathered}$	$\begin{array}{r} 45 \\ \mathbf{I N T}_{L} \end{array}$	$\begin{array}{r} 43 \\ \text { GND } \end{array}$		$\begin{gathered} 39 \\ A_{O R} \end{gathered}$	$\begin{array}{r} 37 \\ \mathrm{~A}_{2 \mathrm{~A}} \end{array}$	$\begin{array}{r} 35 \\ \mathrm{~A}_{4 \mathrm{R}} \end{array}$	$\begin{array}{r}34 \\ \text { A }_{5} \\ \hline\end{array}$
$\begin{array}{r} 55 \\ A_{g L} \end{array}$	$\begin{gathered} 54 \\ A_{\mathrm{BL}} \end{gathered}$								$\begin{array}{r} 32 \\ \mathrm{~A}_{7 \mathrm{R}} \end{array}$	$\begin{gathered} 33 \\ A_{6 R} \end{gathered}$
$\begin{array}{r} 57 \\ A_{11 L} \end{array}$	$\begin{array}{r} 56 \\ \mathrm{~A}_{10 \mathrm{~L}} \end{array}$								$\begin{array}{r} 30 \\ \mathrm{~A}_{\mathrm{gR}} \end{array}$	$\begin{array}{r}31 \\ \text { A }_{8 R} \\ \hline\end{array}$
$\begin{array}{r} 59 \\ v_{c c} \end{array}$	$\begin{gathered} 58 \\ \mathrm{NC} \end{gathered}$								$\begin{array}{r} 28 \\ \mathrm{~A}_{11 \mathrm{R}} \end{array}$	$\begin{array}{r} 29 \\ \mathrm{~A}_{10 \mathrm{R}} \end{array}$
$\begin{aligned} & 61 \\ & \text { NC } \end{aligned}$	$\begin{gathered} 60 \\ \mathrm{NC} \end{gathered}$				78138/				$\begin{array}{r} 26 \\ \text { GND } \end{array}$	27 NC
$\begin{array}{r} 63 \\ \text { SEM } \end{array}$	$\begin{gathered} 62 \\ C E_{L} \end{gathered}$								24 NC	25 NC
$\begin{array}{r} 65 \\ 0 E_{L} \end{array}$	$\begin{array}{r} 64 \\ \mathrm{R} / W_{\mathrm{L}} \end{array}$								$\begin{array}{r} 22 \\ \text { SEM }_{R} \end{array}$	$\begin{array}{r} 23 \\ \mathrm{CE}_{\mathrm{R}} \end{array}$
$\begin{array}{r} 67 \\ \mathrm{I} / \mathrm{O}_{0 \mathrm{~L}} \end{array}$	$\begin{array}{r} 66 \\ \mathrm{NC}(4] \end{array}$								$\begin{array}{r} 20 \\ \delta E_{\mathrm{R}} \end{array}$	$\begin{array}{r} 21 \\ \mathrm{R} / \mathrm{W}_{\mathrm{R}} \end{array}$
$\begin{array}{r} 68 \\ 1 / O_{1 L} \end{array}$	$\begin{array}{r} 1 \\ 1 / O_{2 L} \end{array}$	$\begin{array}{r} 3 \\ 1 / O_{4 L} \end{array}$	$\begin{array}{r} 5 \\ \text { GND } \end{array}$	$\begin{array}{r} 7 \\ 1 / O_{7} \mathrm{~L} \end{array}$	$\begin{array}{r} 9 \\ \text { GND } \end{array}$	$\begin{array}{r} 11 \\ 1 / 0_{1 R} \\ \hline \end{array}$	$\begin{array}{r} 13 \\ \mathrm{v}_{\mathrm{cC}} \end{array}$	$\begin{array}{r} 15 \\ \mathrm{I} / \mathrm{O}_{4 \mathrm{R}} \end{array}$	$\begin{array}{r} 18 \\ 1 / \mathrm{O}_{7 \mathrm{R}} \end{array}$	$\begin{array}{r}19 \\ \mathrm{NC} \\ \\ \\ \\ \hline\end{array}$
	$\begin{array}{r} 2 \\ 1 / O_{3 L} \end{array}$	$\begin{array}{r} 4 \\ 1 / O_{51} \end{array}$	$\begin{array}{r} 6 \\ 1 / O_{6 L} \end{array}$	$\begin{array}{r} 8 \\ v_{c c} \end{array}$	$\begin{array}{r} 10 \\ \mathrm{~V} / \mathrm{O}_{\mathrm{OR}} \end{array}$	$\begin{array}{\|r} 12 \\ 1 / \mathrm{O}_{2 \mathrm{~A}} \\ \hline \end{array}$	$\begin{array}{r} 14 \\ 1 / O_{3 R} \end{array}$	$\begin{array}{r} 16 \\ 1 / O_{5 R} \end{array}$	$\begin{array}{r} 17 \\ 1 / O_{6 R} \end{array}$	

68-Pin LCC/PLCC
Top View

Notes:

3. $\mathrm{I} / \mathrm{O}_{8 \mathrm{R}}$ on the CY7B139.
4. $\mathrm{I} / \mathrm{O}_{8 \mathrm{~L}}$ on the CY7B139.

Pin Definitions

Left Port	Right Port	Description
I/ $\mathrm{O}_{0 \mathrm{~L}-7 \mathrm{~L}(8 \mathrm{~L})}$	$\mathrm{I} / \mathrm{O}_{0 \mathrm{R}-7 \mathrm{R} \text { (8R) }}$	Data Bus Input/Output
$\mathrm{A}_{0 \mathrm{~L}-11 \mathrm{~L}}$	$\mathrm{A}_{0 \mathrm{R}-11 \mathrm{R}}$	Address Lines
$\overline{\mathrm{CE}}_{\mathrm{L}}$	$\overline{\mathrm{CE}}_{\mathrm{R}}$	Chip Enable
$\overline{\mathrm{OE}}_{\underline{L}}$	$\overline{\mathrm{O}}_{\mathrm{E}}$	Output Enable
$\mathrm{R} \overline{\bar{W}}_{\mathrm{L}}$	$\mathrm{R} / \bar{W}_{\mathrm{R}}$	Read/Write Enable
$\overline{\text { SEM }}_{\text {L }}$	$\overline{S E M}_{R}$	Semaphore Enable. When asserted LOW, allows access to eight semaphores. The three least significant bits of the address lines will determine which semaphore to write or read. The $\mathrm{I} / \mathrm{O}_{0}$ pin is used when writing to a semaphore. Semaphores are requested by writing a 0 into the respective location.
$\overline{\mathrm{INT}}_{\mathrm{L}}$	$\overline{\mathrm{INT}}_{\mathrm{R}}$	Interrupt Flag. $\overline{\text { INT }}_{\mathrm{L}}$ is set when right port writes location FFE and is cleared when left port reads location $\mathrm{FFE} . \overline{\mathrm{INT}}_{\mathrm{R}}$ is set when left port writes location FFF and is cleared when right port reads location FFF.
$\overline{\text { BUSY }}_{\text {L }}$	$\overline{\text { BUSY }}_{\text {R }}$	Busy Flag
M/S		Master or Slave Select
V_{CC}		Power
GND		Ground

Selection Guide

		$\mathbf{7 B 1 3 8}-\mathbf{1 5}$ $\mathbf{7 B 1 3 9 - 1 5}$	$\mathbf{7 B 1 3 8 - 2 5}$ $\mathbf{7 B 1 3 9 - 2 5}$	$\mathbf{7 B 1 3 8 - 3 5}$ $\mathbf{7 B 1 3 9 - 3 5}$
Maximum Access Time (ns)	15	25	35	
Maximum Operating Current (mA)	Commercial	260	220	210
	Military		280	250

SEMICONDUCTOR

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ}{ }^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage ${ }^{[5]}$
-0.5 V to +7.0 V
Output Current into Outputs (LOW)
20 mA

Static Discharge Voltage >2001V (per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[6]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[7]}$

Capacitance ${ }^{[9]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
CoUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF

Notes:

5. Pulse width $<20 \mathrm{~ns}$.
6. T_{A} is the "instant on" case temperature.
7. See the last page of this specification for Group A subgroup testing information.
8. $\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}}=$ All inputs cycling at $\mathrm{f}=1 / \mathrm{t}_{\mathrm{RC}}$ (except output enable). $\mathrm{f}=0$ means no address or control lines change. This applies only to inputs at CMOS level standby ISB3.
9. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range ${ }^{[10,11]}$

Parameter	Description	$\begin{aligned} & \hline \text { 7B138-15 } \\ & \text { 7B139-15 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{BB138-25} \\ & 7 \mathrm{~B} 139-25 \end{aligned}$		$\begin{aligned} & \hline \text { 7B138-35 } \\ & 7 \mathrm{~B} 139-35 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	15		25		35		ns
t_{AA}	Address to Data Valid		15		25		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold From Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	CE LOW to Data Valid		15		25		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{O E}$ LOW to Data Valid		10		15		20	ns
$\mathrm{t}_{\text {LZOE }}{ }^{[12.13]}$	$\overline{\text { OE }}$ Low to Low Z	3		3		3		ns
$\mathrm{t}_{\text {HZOE }}{ }^{[12,13]}$	$\overline{\mathrm{OE}}$ HIGH to High Z		10		15		20	ns
$\mathrm{t}_{\text {LZCE }}{ }^{[12,13]}$	CE LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}{ }^{[12,13]}$	$\overline{\text { CE HIGH to High Z }}$		10		15		20	ns
t_{PU}	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE HIGH to Power-Down }}$		15		25		35	ns
WRITE CYCLE								
$\mathrm{t}_{\text {WC }}$	Write Cycle Time	15		25		35		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	12		20		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		20		30		ns
t_{HA}	Address Hold From Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
tpwe	Write Pulse Width	12		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		15		15		ns
t_{HD}	Data Hold From Write End	0		0		0		ns
$\mathrm{t}_{\mathrm{HZWE}}{ }^{[13]}$	R//్̄w LOW to High Z		10		15		20	ns
$\mathrm{t}_{\text {LZWE }}{ }^{[13]}$	R/W HIGH to Low Z	3		3		3		ns
$\mathrm{tWDD}^{[14]}$	Write Pulse to Data Delay		30		50		60	ns
$\mathrm{t}_{\text {DDD }}{ }^{[14]}$	Write Data Valid to Read Data Valid		25		30		35	ns

Switching Characteristics Over the Operating Range ${ }^{[10, ~ 11] ~(c o n t i n u e d) ~}$

Parameter	Description	$\begin{aligned} & \hline 7 \mathrm{~B} 138-15 \\ & 7 \mathrm{~B} 139-15 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{~B} 138-25 \\ & 7 \mathrm{~B} 139-25 \end{aligned}$		$\begin{aligned} & \hline \text { 7B138-35 } \\ & \text { 7B139-35 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
BUSY TIMING ${ }^{[15]}$								
$\mathrm{t}_{\text {BLA }}$	BUSY LOW from Address Match		15		20		20	ns
$\mathrm{t}_{\text {BHA }}$	$\overline{\text { BUSY }}$ HIGH from Address Mismatch		15		20		20	ns
$\mathrm{t}_{\text {BLC }}$	$\overline{\text { BUSY }}$ LOW from $\overline{\text { CE }}$ LOW		15		20		20	ns
$\mathrm{t}_{\mathrm{BHC}}$	$\overline{\text { BUSY HIGH from } \overline{\text { CE }} \text { HIGH }}$		15		20		20	ns
t_{PS}	Port Set-Up for Priority		5		5		5	ns
$\mathrm{t}_{\text {WB }}$	$\overline{\text { WE }}$ LOW after $\overline{\text { BUSY }}$ LOW		0		0		0	ns
twh	$\overline{\text { WE }}$ HIGH after $\overline{\text { BUSY }}$ HIGH		13		20		30	ns
$\mathrm{t}_{\text {BDD }}$	$\overline{\text { BUSY }}$ HIGH to Data Valid		15		25		35	ns
INTERRUPT TIMING ${ }^{[15]}$								
$\mathrm{t}_{\text {INS }}$	$\overline{\overline{\text { INT }}}$ Set Time		15		25		25	ns
tinR	$\overline{\overline{I N T}}$ Reset Time		15		25		25	ns
SEMAPHORE TIMING								
$\mathrm{t}_{\text {SOP }}$	SEM Flag Update Pulse ($\overline{\mathrm{OE}}$ or $\overline{\text { SEM }}$)	10		10		15		ns
$\mathrm{t}_{\text {SWRD }}$	SEM Flag Write to Read Time	5		5		5		ns
$\mathrm{t}_{\text {SPS }}$	SEM Flag Contention Window	5		5		5		ns

Notes:
10. See the last page of this specification for Group A subgroup testing information.
11. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OI}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
12. At any given temperature and voltage condition for any given device, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\mathrm{LZCE}}$ and $\mathrm{t}_{\mathrm{HZOE}}$ is less than $\mathrm{t}_{\mathrm{LZOE}}$.
13. Test conditions used are Load 3.
14. For information on part-to-part delay through RAM cells from writing port to reading port, refer to Read Timing with Port-to-Port Delay waveform.
15. Test conditions used are Load 2. CY7B139

Switching Waveforms

Read Cycle No. 1 (Either Port—Address Access) ${ }^{[16,17]}$

Read Cycle No. 2 (Either Port- $\overline{\mathrm{CE}} / \overline{\mathrm{OE}}$ Access) ${ }^{[16, ~ 18, ~ 19] ~}$

Read Timing with Port-to-Port Delay $(\mathbf{M} / \stackrel{\widetilde{\mathbf{S}}}{ }=\mathbf{L})^{[20,21]}$

Notes:
16. R/W is HIGH for read cycle.
17. Device is continuously selected $\overline{\mathrm{CE}}=\mathrm{LOW}$ and $\overline{\mathrm{OE}}=\mathrm{LOW}$. This waveform cannot be used for semaphore reads.
18. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
19. $\overline{\mathrm{CE}}_{\mathrm{L}}=\mathrm{L}, \overline{\mathrm{SEM}}=\mathrm{H}$ when accessing RAM$\cdot \overline{\mathrm{CE}}=\mathrm{H}, \overline{\mathrm{SEM}}=\mathrm{L}$ when accessing semaphores.
20. $\overline{\mathrm{BUSY}}=\mathrm{HIGH}$ for the writing port.
21. $\overline{\mathrm{CE}}_{\mathrm{L}}=\overline{\mathrm{CE}}_{\mathrm{R}}=\mathrm{LOW}$.

Switching Waveforms (continued)

Write Cycle No. 1: $\overline{\mathbf{O E}}$ Three-States Data I/Os (Either Port) ${ }^{[22,23,24]}$

Write Cycle No. 2: R/W Three-States Data I/Os (Either Port) ${ }^{[22, ~ 24, ~ 25] ~}$

B138-13

Notes:

22. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ or SEM LOW and R/W LOW. Both signals must be LOW to initiate a write, and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
23. If $\overline{O E}$ is LOW during a R / \bar{W} controlled write cycle, the write pulse width must be the larger of $t_{\text {PWE }}$ or ($t_{H Z W E}+t_{S D}$) to allow the I/O
drivers to turn off and data to be placed on the bus for the required ${ }^{\text {t }}$. If $\overline{\mathrm{OE}}$ is HIGH during a $\mathrm{R} / \overline{\mathrm{W}}$ controlled write cycle (as in this example), this requirement does not apply and the write pulse can be as short as the specified $t_{\text {PWE }}$.
24. $\mathrm{R} / \overline{\mathrm{W}}$ must be HIGH during all address transitions.
25. Data I/O pins enter high impedance when $\overline{\mathrm{OE}}$ is held LOW during write.

Switching Waveforms (continued)

Semaphore Read After Write Timing, Either Side ${ }^{[26]}$

Timing Diagram of Semaphore Contention ${ }^{[27, ~ 28, ~ 29] ~}$

Notes:

26. $\overline{\mathrm{CE}}=\mathrm{HIGH}$ for the duration of the above timing (both write and read cycle).
27. $I / O_{0 R}=I / O_{0 L}=$ LOW (request semaphore); $\overline{C E}_{R}=\overline{C E}_{L}=H I G H$
28. Semaphores are reset (available to both ports) at cycle start.
29. If tSPS is violated, the semaphore will definitely be obtained by one side or the other, but there is no guarantee which side will control the semaphore.

Switching Waveforms (continued)

Timing Diagram of Read with $\overline{\text { BUSY }}$ (M/S $=\mathbf{H I G H}$) ${ }^{[21]}$

Write Timing with Busy Input (M/S=LOW)

Switching Waveforms (continued)
Busy Timing Diagram No. 1 ($\overline{\text { CE }}$ Arbitration) ${ }^{[30]}$
$\overline{\mathbf{C E}}_{\mathbf{L}}$ Valid First:

$\overline{C E}_{\mathbf{R}}$ Valid First:

Busy Timing Diagram No. 2 (Address Arbitration) ${ }^{[30]}$

Left Address Valid First:

Right Address Valid First:

Note:

30. If $t_{P S}$ is violated, the busy signal will be asserted on one side or the other, but there is no guarantee on which side BUSY will be asserted.

Switching Waveforms (continued)
Interrupt Timing Diagrams
Left Side Sets $\overline{\mathrm{INT}}_{\mathrm{R}}$

Right Side Sets $\overline{\text { INT }}_{\mathbf{L}}$:

Notes:
31. ${ }_{\mathrm{t}}^{\mathrm{HA}}$ depends on which enable pin $\left(\overline{\mathrm{CE}}_{\mathrm{L}}\right.$ or $\left.\mathrm{R} / \bar{W}_{L}\right)$ is deasserted first. 32 . $\mathrm{t}_{\mathrm{INS}}$ or $\mathrm{t}_{\mathrm{INR}}$ depends on which enable pin $\left(\overline{C E}_{L}\right.$ or $\left.R / \bar{W}_{L}\right)$ is asserted last.

Architecture

The CY7B138/9 consists of an array of 4 K words of $8 / 9$ bits each of dual-port RAM cells, I/O and address lines, and control signals ($\overline{C E}, \overline{O E}, \mathrm{R} / \overline{\mathrm{W}}$). These control pins permit independent access for reads or writes to any location in memory. To handle simultaneous writes/reads to the same location, a $\overline{\mathrm{BUSY}} \mathrm{pin}$ is provided on each port. Two interrupt ($\overline{\mathrm{INT}}$) pins can be utilized for port-to-port communication. Two semaphore ($\overline{\mathrm{SEM}}$) control pins are used for allocating shared resources. With the M/S pin, the CY7B138/9 can function as a master (BUSY pins are outputs) or as a slave (BUSY pins are inputs). The CY7B138/9 has an automatic power-down feature controlled by $\overline{\mathrm{CE}}$. Each port is provided with its own output enable control ($\overline{\mathrm{OE}}$), which allows data to be read from the device.

Functional Description

Write Operation

Data must be set up for a duration of tsp before the rising edge of R / \bar{W} in order to guarantee a valid write. A write operation is controlled by either the $\overline{\mathrm{OE}}$ pin (see Write Cycle No. 1 waveform) or the R/W pin (see Write Cycle No. 2 waveform). Data can be written to the device $\mathrm{t}_{\mathrm{HZOE}}$ after the $\overline{\mathrm{OE}}$ is deasserted or $\mathrm{t}_{\mathrm{HZWE}}$ after the falling edge of R / W. Required inputs for non-contention operations are summarized in Table 1.
If a location is being written to by one port and the opposite port attempts to read that location, a port-to-port flowthrough delay must be met before the data is read on the output; otherwise the data read is not deterministic. Data will be valid on the port wishing to read the location t DDD $^{\text {after the data is presented on the other }}$ port.

Read Operation

When reading the device, the user must assert both the $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ pins. Data will be available $t_{A C E}$ after $\overline{C E}$ or $t_{D O E}$ after $\overline{O E}$ is asserted. If the user of the CY7B138/9 wishes to access a semaphore flag, then the $\overline{\text { SEM }}$ pin must be asserted instead of the $\overline{\mathrm{CE}}$ pin.

Interrupts

The interrupt flag ($\overline{\mathrm{INT}}$) permits communications between ports. When the left port writes to location FFF , the right port's interrupt flag $\left(\overline{\mathrm{INT}}_{\mathrm{R}}\right)$ is set. This flag is cleared when the right port reads that same location. Setting the left port's interrupt flag ($\left.\mathbf{I N T}_{\mathrm{L}}\right)$ is accomplished when the right port writes to location FFE. This flag is cleared when the left port reads location FFE. The message at FFF or FFE is user-defined. See Table 2 for input requirements for $\overline{\mathrm{INT}} \overline{\mathrm{INT}}_{\mathrm{R}}$ and $\overline{\mathrm{INT}}_{\mathrm{L}}$ are push-pull outputs and do not require pullup resistors to operate. $\overline{B U S Y}_{\mathbf{L}}$ and $\overline{B U S Y}_{\mathrm{R}}$ in master mode are push-pull outputs and do not require pull-up resistors to operate.

Busy

The CY7B138/9 provides on-chip arbitration to alleviate simultaneous memory location access (contention). If both ports' $\overline{\text { CEs }}$ are asserted and an address match occurs within tPS of each other the Busy logic will determine which port has access. If t_{PS} is violated, one port will definitely gain permission to the location, but it is not guaranteed which one. $\overline{B U S Y}$ will be asserted t BLA $^{\text {after an ad- }}$ dress match or $\mathrm{t}_{\mathrm{BLC}}$ after $\overline{\mathrm{CE}}$ is taken LOW.

Master/Slave

$\mathrm{A} M / \overline{\mathrm{S}}$ pin is provided in order to expand the word width by configuring the device as either a master or a slave. The BUSY output of the master is connected to the BUSY input of the slave. This will allow the device to interface to a master device with no external components. Writing of slave devices must be delayed until after the BUSY input has settled. Otherwise, the slave chip may begin a write cycle during a contention situation. When presented as a

HIGH input, the $\mathbf{M} / \overline{\mathrm{S}}$ pin allows the device to be used as a master and therefore the $\overline{\text { BUSY }}$ line is an output. BUSY can then be used to send the arbitration outcome to a slave.

Semaphore Operation

The CY7B138/9 provides eight semaphore latches, which areseparate from the dual-port memorylocations. Semaphores are used to reserve resources that are shared between the two ports.The state of the semaphore indicates that a resource is in use. For example, if the left port wants to request a given resource, it sets a latch by writing a zero to a semaphore location. The left port then verifies its success in setting the latch by reading it. After writing to the semaphore, $\overline{\mathrm{SEM}}$ or $\overline{\mathrm{OE}}$ must be deasserted for $\mathrm{t}_{\mathrm{SOP}}$ before attempting to read the semaphore. The semaphore value will be available $t_{S W R D}+t_{\text {DOE }}$ after the rising edge of the semaphore write. If the left port was successful (reads a zero), it assumes control over the shared resource, otherwise (reads a one) it assumes the right port has control and continues to poll the semaphore. When the right side has relinquished control of the semaphore (by writing a one), the left side will succeed in gaining control of the a semaphore.If the left side no longer requires the semaphore, a one is written to cancel its request.
Semaphores are accessed by asserting $\overline{\text { SEM }}$ LOW. The $\overline{\text { SEM }}$ pin functions as a chip enable for the semaphore latches ($\overline{\mathrm{CE}}$ must remain HIGH during $\overline{\text { SEM }}$ LOW). A_{0-2} represents the semaphore address. $\overline{O E}$ and R / \bar{W} are used in the same manner as a normal memory access. When writing or reading a semaphore, the other address pins have no effect.
When writing to the semaphore, only $\mathrm{I} / \mathrm{O}_{0}$ is used. If a zero is written to the left port of an unused semaphore, a one will appear at the same semaphore address on the right port. That semaphore can now only be modified by the side showing zero (the left port in this case). If the left port now relinquishes control by writing a one to the semaphore, the semaphore will be set to one for both sides. However, if the right port had requested the semaphore (written a zero) while the left port had control, the right port would immediately own the semaphore as soon as the left port released it. Table 3 shows sample semaphore operations.
When reading a semaphore, all eight data lines output the semaphore value. The read value is latched in an output register to prevent the semaphore from changing state during a write from the other port. If both ports attempt to access the semaphore within $\mathrm{t}_{\text {SPS }}$ of each other, the semaphore will definitely be obtained by one side or the other, but there is no guarantee which side will control the semaphore.

Table 1. Non-Contending Read/Write

Inputs				Outputs	Operation
$\overline{\mathbf{C E}}$	R/V]	$\overline{\mathrm{OE}}$	$\overline{\text { SEM }}$	I/O \mathbf{O}_{0-7}	
H	X	X	H	High Z	Power-Down
H	H	L	L	Data Out	Read Data in Semaphore
X	X	H	X	High Z	I/O Lines Disabled
H	-	X	L	Data In	Write to Semaphore
L	H	L	H	Data Out	Read
L	L	X	H	Data In	Write
L	X	X	L		Illegal Condition

Table 2. Interrupt Operation Example (assumes $\overline{\mathbf{B U S Y}}_{\mathbf{L}}=\overline{\mathbf{B U S Y}}_{\mathbf{R}}=\mathbf{H I G H}$)

| | Left Port | | | | | Right Port | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Function | $\mathbf{R} / \overline{\mathbf{W}}$ | $\overline{\mathbf{C E}}$ | $\overline{\mathbf{O E}}$ | $\mathbf{A}_{\mathbf{0}-\mathbf{1 1}}$ | $\overline{\mathrm{INT}}$ | $\mathbf{R} / \overline{\bar{W}}$ | $\overline{\mathbf{C E}}$ | $\overline{\mathbf{O E}}$ | $\mathbf{A}_{\mathbf{0}-\mathbf{1 1}}$ | $\overline{\mathrm{INT}}$ |
| Set Left $\overline{\mathrm{INT}}$ | X | X | X | X | L | L | L | X | FFE | X |
| Reset Left $\overline{\mathrm{INT}}$ | X | L | L | FFE | H | X | X | X | X | X |
| Set Right $\overline{\mathrm{INT}}$ | L | L | X | FFF | X | X | X | X | X | L |
| Reset Right $\overline{\mathrm{INT}}$ | X | X | X | X | X | X | L | L | FFF | H |

Table 3. Semaphore Operation Example

Function	I/O 0 Left	I/O 0 Right	Status
No action	1	1	Semaphore free
Left port writes semaphore	0	1	Left port obtains semaphore
Right port writes 0 to semaphore	0	1	Right side is denied access
Left port writes 1 to semaphore	1	0	Right port is granted access to semaphore
Left port writes 0 to semaphore	1	0	No change. Left port is denied access
Right port writes 1 to semaphore	0	1	Left port obtains semaphore
Left port writes 1 to semaphore	1	1	No port accessing semaphore address
Right port writes 0 to semaphore	1	0	Right port obtains semaphore
Right port writes 1 to semaphore	1	1	No port accessing semaphore
Left port writes 0 to semaphore	0	1	Left port obtains semaphore
Left port writes 1 to semaphore	1	1	No port accessing semaphore

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

TYPICAL POWER-ON CURRENT vs. SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT
vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

NORMALIZED ICC vs. CYCLE TIME

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7B138-15GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7B138-15JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7B138-25GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7B138-25JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7B138-25JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial
	CY7B138-25LMB	L81	68-Square Leadless Chip Carrier	Military
35	CY7B138-35GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7B138-35JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7B138-35JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial
	CY7B138-35LMB	L81	68-Square Leadless Chip Carrier	Military

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
15	CY7B139-15GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7B139-15JC	J81	68-Lead Plastic Leaded Chip Carrier	
25	CY7B139-25GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7B139-25JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7B139-25JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial
	CY7B139-25LMB	L81	68-Square Leadless Chip Carrier	Military
35	CY7B139-35GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7B139-35JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7B139-35JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial
	CY7B139-35LMB	L81	68-Square Leadless Chip Carrier	Military

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 3}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 4}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
$\mathrm{t}_{\text {AA }}$	$7,8,9,10,11$
toha	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{ACE}}$	7, 8, 9, 10, 11
$t_{\text {doE }}$	7, 8, 9, 10, 11
WRITE CYCLE	
twC	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SCE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AW }}$	7, 8, 9, 10, 11
t_{HA}	$7,8,9,10,11$
$\mathrm{t}_{\text {SA }}$	7, 8, 9, 10, 11
$t_{\text {PWE }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {SD }}$	7, 8, 9, 10, 11
t_{HD}	$7,8,9,10,11$
BUSY/INTERRUPT TIMING	
$\mathrm{t}_{\text {BLA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {BHA }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {BLC }}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{BHC}}$	$7,8,9,10,11$
$t_{\text {PS }}$	$7,8,9,10,11$
tins	7, 8, 9, 10, 11
$\mathrm{t}_{\text {INR }}$	7, 8, 9, 10, 11
BUSY TIMING	
$t_{\text {WB }}$	7, 8, 9, 10, 11
${ }^{\text {twH }}$	7, 8, 9, 10, 11
$t_{\text {BDD }}$	7, 8, 9, 10, 11
$t_{\text {DDD }}$	7, 8, 9, 10, 11
$t_{\text {WDD }}$	7, 8, 9, 10, 11

Document \#: 38-00162-E

Features

- 0.8-micron BiCMOS for high performance
- High-speed access
-15 ns (commercial)
- 25 ns (military)
- Automatic power-down
- Fully asynchronous operation
- Master/Slave select pin allows bus width expansion to $16 / 18$ bits or more
- Busy arbitration scheme provided
- Semaphores included to permit software handshaking between ports
- INT flag for port-to-port communication
- Available in 68-pin LCC/PLCC/PGA
- TTL compatible

Functional Description

The CY7B144 and CY7B145 are highspeed BiCMOS $8 \mathrm{~K} \times 8$ and $8 \mathrm{~K} \times 9$ dualport static RAMs. Various arbitration schemes are included on the CY7B144/5 tohandlesituationswhenmultipleprocessors access the same piece of data. Two ports are provided permitting independent, asynchronous access for reads and writes to any location in memory. The CY7B144/5 can be utilized as a standalone 64-Kbit dual-port static RAM or multiple devices can be combined in order to function as a $16 / 18$-bit or wider master/slave dual-port static RAM. An M/S pin is provided for implementing $16 / 18$-bit or wider memory applications without the need for separate master and slave devices or additional discrete logic. Application areas include interprocessor/multiprocessor designs, communications status buffering, and dual-port video/graphics memory.

Logic Block Diagram

Notes:

1. $\overline{B U S Y}$ is an output in master mode and an input in slave mode.
2. Master: push-pull output and requires no pull-up resistor.

CYPRESS

Pin Configurations

68-Pin PGA
Top View

	$\begin{array}{r} 51 \\ A_{5 L} \end{array}$	${ }_{A_{4}}^{50}$	$\begin{gathered} 48 \\ A_{2 L} \end{gathered}$	$\begin{gathered} 46 \\ A_{O L} \end{gathered}$	$\begin{array}{r} 44 \\ B U S P_{4} \end{array}$	$\begin{array}{r} 42 \\ \mathrm{M} / \mathrm{S} \end{array}$	$\begin{array}{r} 40 \\ \mathbb{N T}_{\mathrm{R}} \end{array}$	$\begin{array}{r} 38 \\ \mathrm{~A}_{1 \mathrm{R}} \end{array}$	$\begin{array}{r} 36 \\ A_{3 R} \end{array}$	
$\begin{gathered} 53 \\ A_{7 L} \end{gathered}$	${ }_{A_{6 L}}^{52}$	$\begin{gathered} 49 \\ \mathrm{~A}_{3 \mathrm{~L}} \end{gathered}$	$\begin{gathered} 47 \\ \mathrm{~A}_{1 \mathrm{~L}} \end{gathered}$	$\begin{array}{r} 45 \\ \mathbb{I N T}_{\mathrm{L}} \end{array}$		$\begin{array}{\|c\|} \hline 41 \\ \text { BUSP } \\ \hline \end{array}$	$\begin{gathered} 39 \\ \mathrm{~A}_{\mathrm{oR}} \end{gathered}$	$\begin{gathered} 37 \\ \mathrm{~A}_{2 \mathrm{R}} \end{gathered}$	$\begin{array}{r} 35 \\ \mathrm{~A}_{4 \mathrm{R}} \end{array}$	$\begin{gathered} 34 \\ A_{5 R} \end{gathered}$
$\begin{gathered} 55 \\ A_{9 L} \end{gathered}$	$\begin{array}{r} 54 \\ \mathrm{~A}_{\mathrm{BL}} \end{array}$								32 $\mathrm{~A}_{7 \mathrm{R}}$	${ }_{\text {A }}^{48}{ }^{33}$
$\begin{array}{r} 57 \\ A_{11 L} \end{array}$	$\begin{array}{r} 56 \\ \mathrm{~A}_{10 \mathrm{~L}} \end{array}$								$\begin{array}{r} 30 \\ \mathrm{~A}_{9 R} \end{array}$	$\begin{gathered} 31 \\ A_{8 R} \end{gathered}$
$\begin{array}{r} 59 \\ v_{C C} \end{array}$	$\begin{array}{r} 58 \\ A_{12 L} \end{array}$								[28	29 $\mathrm{~A}_{10 \mathrm{R}}$
$\begin{gathered} 61 \\ \mathrm{NC} \end{gathered}$	$\begin{gathered} 60 \\ \mathrm{NC} \end{gathered}$				7B144				$\begin{array}{r} 26 \\ \text { GND } \end{array}$	$\begin{array}{r}27 \\ \mathrm{~A}_{12} \mathrm{R} \\ \hline\end{array}$
$\begin{array}{r} 63 \\ \operatorname{SEM}_{\mathrm{L}} \end{array}$	$\begin{gathered} 62 \\ C E_{\mathrm{L}} \end{gathered}$								${ }^{24}$	$\begin{aligned} & 25 \\ & \mathrm{NC} \end{aligned}$
$\begin{array}{r} 65 \\ \delta E_{\mathrm{L}} \end{array}$	$\begin{array}{r} 64 \\ \mathrm{R} / \mathrm{W}_{\mathrm{L}} \end{array}$								$\begin{array}{r} 22 \\ \text { SEM }_{R} \end{array}$	$\begin{array}{r} 23 \\ C E_{\mathrm{R}} \end{array}$
$\begin{array}{r} 67 \\ 1 / O_{0 \mathrm{~L}} \end{array}$	$\begin{array}{r} 66 \\ \mathrm{NC}[4] \end{array}$								$\begin{array}{r} 20 \\ \delta E_{R} \end{array}$	$\begin{array}{r} 21 \\ \mathrm{R} / \mathcal{W}_{\mathrm{R}} \end{array}$
$\begin{array}{r} 68 \\ 1 / O_{1 L} \end{array}$	$1 / O_{2 \mathrm{~L}}^{1}$	$\begin{array}{r} 3 \\ \mathrm{~V} / \mathrm{O}_{4 \mathrm{~L}} \end{array}$	$\begin{array}{r} 5 \\ \text { GND } \end{array}$	$\begin{array}{r} { }^{7} \\ 1 / O_{7} \end{array}$		$\begin{array}{r} 11 \\ \mathrm{I} / \mathrm{O}_{1 \mathrm{R}} \end{array}$	$\begin{array}{r} 13 \\ v_{c c} \end{array}$	$\begin{array}{r} 15 \\ \mathrm{~V} / \mathrm{O}_{4 \mathrm{R}} \end{array}$	$\begin{array}{\|r} 18 \\ 1 / O_{7 R} \end{array}$	$\begin{array}{r} 19 \\ \mathrm{NC}^{[3]} \end{array}$
	$\begin{array}{r} { }^{2} \\ 1 / \mathrm{O}_{3 \mathrm{~L}} \end{array}$	$\begin{array}{r} 4 \\ \mathrm{~V} / \mathrm{O}_{5} \mathrm{~L} \end{array}$	$1 / O_{6 L}^{6}$	$\begin{array}{r} 8 \\ v_{C C} \end{array}$	[10 ${ }^{10}$	12 $1 / O_{2 R}$	$1 /{ }^{14}$		17 $1 / O_{6 R}$	

68-Pin LCC/PLCC
 Top View

Notes:
3. $\mathrm{I} / \mathrm{O}_{8 \mathrm{R}}$ on the CY7B145.
4. $\mathrm{I} / \mathrm{O}_{8 \mathrm{~L}}$ on the CY7B145.

Pin Definitions

Left Port	Right Port	Description
I/O $\mathrm{OL}_{\text {L-7L(8L) }}$	I/ $\mathrm{O}_{0 \mathrm{R}-7 \mathrm{R} \text { (8R) }}$	Data bus Input/Output
$\mathrm{A}_{0 \mathrm{~L}-12 \mathrm{~L}}$	$\mathrm{A}_{0 \mathrm{R}-12 \mathrm{R}}$	Address Lines
$\overline{\mathrm{CE}}_{\mathrm{L}}$	$\overline{\mathrm{CE}}_{\mathrm{R}}$	Chip Enable
$\overline{\mathrm{OE}_{L}}$	$\overline{\mathrm{OE}}_{\mathrm{R}}$	Output Enable
$\mathrm{R} / \bar{W}_{\mathrm{L}}$	$\mathrm{R} / \overline{\bar{W}}_{\mathrm{R}}$	Read/Write Enable
$\overline{\text { SEM }}_{\text {L }}$	$\overline{\text { SEM }}^{\text {R }}$	SemaphoreEnable. WhenassertedLOW,allowsaccesstoeightsemaphores. The three least significant bits of the address lines will determine which semaphore to write or read. The I / O_{0} pin is used when writing to a semaphore.Semaphores are requested bywriting a 0 into the respective location.
$\overline{\mathrm{INT}}_{\mathrm{L}}$	$\overline{\mathrm{INT}}_{\mathrm{R}}$	Interrupt Flag. $\overline{\mathrm{INT}}_{\mathrm{L}}$ is set when right port writes location 1FFE and is cleared when left port reads location 1 FFE . $\overline{I N T}_{\mathrm{R}}$ is set when left port writes location 1FFF and is cleared when right port reads location 1FFF.
$\overline{\text { BUSY }}_{\text {L }}$	$\overline{\text { BuSY }}_{\text {R }}$	Busy Flag
M/S		Master or Slave Select
V_{CC}		Power
GND		Ground

Selection Guide

		$\mathbf{7 B 1 4 4 \sim 1 5}$ $\mathbf{7 B 1 4 5 - 1 5}$	$\mathbf{7 B 1 4 4 - 2 5}$ $\mathbf{7 B 1 4 5 - 2 5}$	$\mathbf{7 B 1 4 4 - 3 5}$ $\mathbf{7 B 1 4 5 - 3 5}$
Maximum Access Time (ns)	15	25	35	
Maximum Operating Current (mA)	Commercial	260	220	210
	Military		280	250

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage ${ }^{[5]}$ \qquad -0.5 V to +7.0 V
Output Current into Outputs (LOW) 20 mA

Static Discharge Voltage . $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[6]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[7]}$

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7B144-15 } \\ & \text { 7B145-15 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{~B} 144-25 \\ & \text { 7B145-25 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{BB} 144-35 \\ & \text { 7B145-35 } \\ & \hline \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~m}$		2.4		$2 . .4$		$2 . .4$		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2		2.2		2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\text {I }} \leq \mathrm{V}_{\text {CC }}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	Outputs Disabled, GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ \text { Outputs Disabled } \end{array}$	Com'l		260		220		210	mA
			Mil/Ind				280		250	
$\mathrm{I}_{\text {SB1 }}$	$\begin{array}{\|l\|} \hline \text { Standby Current } \\ \text { (Both Ports TTL Levels) } \end{array}$	$\begin{aligned} & \overline{\mathrm{CE}}_{\mathrm{L}} \text { and } \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}{ }^{[8]} \end{aligned}$	Com'l		90		75		70	mA
			Mil/Ind				80		75	
$\mathrm{I}_{\text {SB2 }}$	$\begin{aligned} & \text { Standby Current } \\ & \text { (One Port TTL Level) } \end{aligned}$	$\begin{aligned} & \overline{\mathrm{CE}}_{\mathrm{L}} \text { or } \overline{\mathrm{CE}}_{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}{ }^{[8]} \end{aligned}$	Com'l		160		140		130	mA
			Mil/Ind				180		160	
$\mathrm{I}_{\text {SB3 }}$	Standby Current(Both PortsCMOSLevels)	$\begin{aligned} & \text { Both Ports } \\ & \overline{C E} \text { and } \overline{C E}_{R} \geq V_{C C}-0.2 \mathrm{~V}, \\ & V_{\text {IN }} \geq V_{C C}-0.2 \mathrm{~V} \\ & \text { or } V_{\text {IN }} \leq 0.2 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Com'1		25		25		25	mA
			Mil/Ind				30		30	
$\mathrm{I}_{\text {SB4 }}$	Standby Current (One Port CMOS Level)	$\begin{aligned} & \text { One Port } \\ & \overline{C E}_{L} \text { or } \overline{C E}_{R} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}, \text { Active } \\ & \text { Port Outputs, } \mathrm{f}=\mathrm{f}_{\mathrm{MAX}^{[8]}} \end{aligned}$	Com'1		140		120		110	mA
			Mil/Ind				150		130	

Capacitance ${ }^{[9]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF

Notes:

5. Pulse width $<20 \mathrm{~ns}$.
6. T_{A} is the "instant on" case temperature.
7. See the last page of this specification for Group A subgroup testing information.
8. $f_{M A X}=1 / \mathrm{t}_{\mathrm{RC}}=$ All inputs cycling at $\mathrm{f}=1 / \mathrm{t}_{\mathrm{RC}}$ (except output enable). $\mathrm{f}=0$ means no address or control lines change. This applies only to inputs at CMOS level standby ISB3.
9. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a) Normal Load (Load 1)

(b) Thévenin Equivalent (Load 1)

B144-5

(c) Three-State Delay (Load 3)

B144-6
ALL INPUT PULSES

Load (Load 2)
B144-7
B144-8

Switching Characteristics Over the Operating Range ${ }^{[10,11]}$

Parameter	Description	$\begin{aligned} & 78144-15 \\ & 78145-15 \end{aligned}$		$\begin{aligned} & 7 \mathrm{~B} 144-25 \\ & 7 \mathrm{~B} 145-25 \end{aligned}$		$\begin{aligned} & \text { 7B144-35 } \\ & \text { 7B145-35 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	15		25		35		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		15		25		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold From Address Change	3		3		3		ns
$t_{\text {ACE }}$	$\overline{\text { CE }}$ LOW to Data Valid		15		25		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10		15		20	ns
$\mathrm{t}_{\text {LZOE }}{ }^{[12,13]}$	$\overline{\mathrm{OE}}$ Low to Low Z	3		3		3		ns
$\mathrm{t}_{\text {HZOE }}{ }^{[12,13]}$	$\overline{\mathrm{OE}}$ HIGH to High Z		10		15		20	ns
$\mathrm{t}_{\mathrm{LZCE}}{ }^{[12,13]}$	$\overline{\text { CE }}$ LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}{ }^{[12,13]}$	$\overline{\text { CE }}$ HIGH to High Z		10		15		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		15		25		35	ns
WRITE CYCLE								
t_{WC}	Write Cycle Time	15		25		35		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	12		20		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		20		30		ns
t_{HA}	Address Hold From Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	Write Pulse Width	12		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		15		15		ns
t_{HD}	Data Hold From Write End	0		0		0		ns
$\mathrm{t}_{\mathrm{HZWE}}{ }^{[13]}$	R/ \bar{W} LOW to High Z		10		15		20	ns
$\mathrm{t}_{\text {LZWE }}{ }^{[13]}$	R/ $\overline{\mathrm{W}}$ HIGH to Low Z	3		3		3		ns
$\mathrm{t}_{\text {WDD }}{ }^{[14]}$	Write Pulse to Data Delay	30			50		60	ns
$\mathrm{tDDD}^{[144]}$	Write Data Valid to Read Data Valid	25			30		35	ns

Switching Characteristics Over the Operating Range ${ }^{[10,11]}$ (continued)

Parameter	Description	$\begin{aligned} & 7 \mathrm{~B} 144-15 \\ & 7 \mathrm{~B} 145-15 \end{aligned}$		$\begin{aligned} & 7 \mathrm{BB} 144-25 \\ & \text { 7B145-25 } \end{aligned}$		$\begin{aligned} & \text { 7B144-35 } \\ & 7 \mathrm{~B} 145-35 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	

$\mathrm{t}_{\text {BLA }}$	BUSY LOW from Address Match	15	20	20	ns
$\mathrm{t}_{\text {BHA }}$	BUSY HIGH from Address Mismatch	15	20	20	ns
$\mathrm{t}_{\text {BLC }}$	BUSYY LOW from $\overline{\text { CE }}$ LOW	15	20	20	ns
$\mathrm{t}_{\text {BHC }}$	$\overline{\text { BUSY }}$ HIGH from $\overline{\text { CE }} \mathrm{HIGH}$	15	20	20	ns
$\mathrm{t}_{\text {PS }}$	Port Set-Up for Priority	5	5	5	ns
$\mathrm{t}_{\text {WB }}$	$\overline{\text { WE LOW after BUSY LOW }}$	0	0	0	ns
t_{WH}	WE HIGH after BUSY HIGH	13	20	30	ns
$t_{\text {BDD }}$	$\overline{\text { BUSY }}$ HIGH to Data Valid	15	25	35	ns
INTERRUPT TIMING ${ }^{\text {[15] }}$					
$\mathrm{t}_{\text {INS }}$	$\overline{\text { INT }}$ Set Time	15	25	25	ns
$\mathrm{t}_{\text {INR }}$	$\overline{\text { INT Reset Time }}$	15	25	25	ns

SEMAPHORE TIMING

$\mathrm{t}_{\text {SOP }}$	SEM Flag Update Pulse ($\overline{\mathrm{OE}}$ or $\overline{\mathrm{SEM}})$	10		10		15		ns
$\mathrm{t}_{\text {SWRD }}$	SEM Flag Write to Read Time	5		5		5		ns
$\mathrm{t}_{\text {SPS }}$	SEM Flag Contention Window	5		5		5		ns

Notes:

10. See the last page of this specification for Group A subgroup testing information.
11. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OI}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
12. At any given temperature and voltage condition for any given device, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}$ and $t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$.
13. Test conditions used are Load 3.
14. For information on part-to-part delay through RAM cells from writing port to reading port, refer to Read Timing with Port-to-Port Delay waveform.
15. Test conditions used are Load 2.

Switching Waveforms

Read Cycle No. 1 (Either Port-Address Access) ${ }^{[16,17]}$

Read Timing with Port-to-Port Delay $(\mathbf{M} / \overline{\mathbf{S}}=\mathbf{L})^{[20,21]}$

Notes:

16. R / \bar{W} is HIGH for read cycle.
17. Device is continuously selected $\overline{\mathrm{CE}}=$ LOW and $\overline{\mathrm{OE}}=$ LOW. This waveform cannot be used for semaphore reads.
18. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
19. $\overline{\mathrm{CE}}_{\mathrm{L}}=\mathrm{L}, \overline{\mathrm{SEM}}=\mathrm{H}$ when accessing RAM. $\overline{\mathrm{CE}}=\mathrm{H}, \overline{\mathrm{SEM}}=\mathrm{L}$ when accessing semaphores.
20. $\overline{\mathrm{BUSY}}=\mathrm{HIGH}$ for the writing port.
21. $\mathrm{CE}_{\mathrm{L}}=\overline{\mathrm{CE}}_{\mathrm{R}}=$ LOW .

Switching Waveforms (continued)

Write Cycle No. 1: $\overline{\mathbf{O E}}$ Three-State Data I/Os (Either Port) ${ }^{[22,23,24]}$

Write Cycle No. 2: R/ $\overline{\mathbf{W}}$ Three-State Data I/Os (Either Port) ${ }^{[22, ~ 24, ~ 25,] ~}$

Notes:
22. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ or SEM LOW and R/W LOW. Both signals must be LOW to initiate a write, and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
23. If $\overline{\mathrm{OE}}$ is LOW during a $\mathrm{R} / \overline{\mathrm{W}}$ controlled write cycle, the write pulse width must be the larger of $t_{\text {PWE }}$ or ($\left.t_{H Z W E}+t_{S D}\right)$ to allow the I/O
drivers to turn off and data to be placed on the bus for the required $t_{S D}$. If $\overline{O E}$ is HIGH during a R / \bar{W} controlled write cycle (as in this example), this requirement does not apply and the write pulse can be as short as the specified tpwe.
24. $\mathrm{R} / \overline{\mathrm{W}}$ must be HIGH during all address transitions.
25. Data I/O pins enter high impedance when $\overline{\mathrm{OE}}$ is held LOW during write.

Switching Waveforms (continued)

Semaphore Read After Write Timing, Either Side ${ }^{[26]}$

Semaphore Contention ${ }^{[27, ~ 28, ~ 29] ~}$

[^3]
Switching Waveforms (continued)

Read with $\overline{\text { BUSY }}(\mathbf{M} / \overline{\mathbf{S}}=\mathbf{H I G H}){ }^{[21]}$

Write Timing with Busy Input (M/S $=$ LOW)

Switching Waveforms (continued)

Busy Timing Diagram No. 1 ($\overline{\text { CE }}$ Arbitration) ${ }^{[30]}$
$\overline{\mathbf{C E}}_{\mathbf{L}}$ Valid First:

$\overline{\mathbf{C E}}_{\mathrm{R}}$ Valid First:

Busy Timing Diagram No. 2 (Address Arbitration) ${ }^{[30]}$
Left Address Valid First:

Note:
30. If $t_{\text {PS }}$ is violated, the busy signal will be asserted on one side or the other, but there is no guarantee on which side BUSY will be asserted
31. $t_{H A}$ depends on which enable pin $\left(\overline{\mathrm{CE}}_{\mathrm{L}}\right.$ or $\left.\mathrm{R} / \bar{W}_{\mathrm{L}}\right)$ is deasserted first.
32. $\mathrm{t}_{\mathrm{INS}}$ or $\mathrm{t}_{\mathrm{INR}}$ depends on which enable pin $\left(\overline{C E}_{\mathrm{L}}\right.$ or $\left.\mathrm{R} / \bar{W}_{\mathrm{L}}\right)$ is asserted last.

Switching Waveforms (continued)

Interrupt Timing Diagrams
Left Side Sets $\overline{\mathbf{I N T}}_{\mathrm{R}}$

Right Side Sets $\overline{\mathrm{INT}}_{\mathrm{L}}$:

Architecture

The CY7B144/5 consists of a an array of 8 K words of $8 / 9$ bits each of dual-port RAM cells, I/O and address lines, and control signals ($\overline{\mathrm{CE}}, \overline{\mathrm{OE}, \mathrm{R}} / \overline{\mathrm{W}}$). These control pins permit independent access for reads or writes to any location in memory. To handle simultaneous writes/reads to the same location, $\mathrm{a} \overline{\mathrm{BUSY}}$ pin is provided on each port. Two interrupt (INT) pins can be utilized for port-to-port communication. Two semaphore ($\overline{\mathrm{SEM}}$) control pins are used for allocating shared resources. With the M/S pin, the CY7B144/5 can function as a Master ($\overline{\mathrm{BUSY}}$ pins are outputs) or as a slave ($\overline{\mathrm{BUSY}}$ pins are inputs). The CY7B144/5 has an automatic power-down feature controlled by $\overline{\mathrm{CE}}$. Each port is provided with its own output enable control $(\overline{\mathrm{OE}})$, which allows data to be read from the device.

Functional Description

Write Operation

Data must be set up for a duration of $t_{\text {SD }}$ before the rising edge of $\mathrm{R} / \overline{\mathrm{W}}$ in order to guarantee a valid write. A write operation is controlled by either the OE pin (see Write Cycle No. 1 waveform) or the $\mathrm{R} / \overline{\mathrm{W}}$ pin (see Write Cycle No. 2 waveform). Data can be written to the device $t_{H Z O E}$ after the $\overline{O E}$ is deasserted or $t_{H Z W E}$ after the falling edge of R / W. Required inputs for non-contention operations are summarized in Table 1.
If a location is being written to by one port and the opposite port attempts to read that location, a port-to-port flowthrough delay must be met before the data is read on the output; otherwise the data read is not deterministic. Data will be valid on the port wishing to read the location $\mathrm{t}_{\mathrm{DDD}}$ after the data is presented on the other port.

Read Operation

When reading the device, the user must assert both the $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$ pins. Data will be available t_{ACE} after $\overline{\mathrm{CE}}$ or $\mathrm{t}_{\mathrm{DOE}}$ after $\overline{\mathrm{OE}}$ are asserted. If the user of the CY7B144/5 wishes to access a semaphore flag, then the SEM pin must be asserted instead of the $\overline{\mathrm{CE}}$ pin.

Interrupts

The interrupt flag ($\overline{\mathrm{INT}}$) permits communications between ports. When the left port writes to location 1FFF, the right port's interrupt flag ($\overline{\mathrm{INT}}_{\mathrm{R}}$) is set. This flag is cleared when the right port reads that same location. Setting the left port's interrupt flag ($\mathrm{INT}_{\mathrm{L}}$) is accomplished when the right port writes to location 1FFE. This flag is cleared when the left port reads location 1 FFE . The message at 1FFF or 1FFE is user-defined. See Table 2 for input requirements for $\overline{\mathrm{INT}}^{\mathrm{INT}} \overline{\mathrm{I}}_{\mathrm{R}}$ and $\overline{\mathrm{INT}}_{\mathrm{L}}$ are push-pull outputs and do not require pull-up resistors to operate.

Busy

The CY7B144/5 provides on-chip arbitration to alleviate simultaneous memory location access (contention). If both ports' $\overline{\text { CEs }}$ are asserted and an address match occurs within $t_{P S}$ of each other the Busy logic will determine which port has access. If t_{PS} is violated, one port will definitely gain permission to the location, but it is not guaranteed which one. $\overline{\mathrm{BUSY}}$ will be asserted $\mathrm{t}_{\mathrm{BLA}}$ after an address match or $\mathrm{t}_{\mathrm{BLC}}$ after $\overline{\mathrm{CE}}$ is taken LOW. $\overline{\text { BUSY }}_{\mathbf{L}}$ and $\overline{\mathrm{BUSY}}_{\mathrm{R}}$ in master mode are push-pull outputs and do not require pull-up resistors to operate.

Master/Slave

An M/ $\overline{\mathrm{S}}$ pin is provided in order to expand the word width by configuring the device as either a master or a slave. The BUSY output of the master is connected to the $\overline{\mathrm{BUSY}}$ input of the slave. This will allow the device to interface to a master device with no external components. Writing of slave devices must be delayed until after the BUSY input has settled. Otherwise, the slave chip may begin a
write cycle during a contention situation. When presented a HIGH input, the $\mathrm{M} / \overline{\mathbf{S}}$ pin allows the device to be used as a master and therefore the $\overline{\text { BUSY }}$ line is an output. $\overline{\text { BUSY }}$ can then be used to send the arbitration outcome to a slave.

Semaphore Operation

The CY7B144/5 provides eight semaphore latches which are separate from the dual-port memorylocations. Semaphores are used to reserve resources that are sharedbetween the two ports. Thestate of the semaphore indicates that a resource isin use. For example, if the left port wants to request a given resource, it sets a latch by writing a 0 to a semaphore location. The left port then verifies its success in setting the latch by reading it. After writing to the semaphore, $\overline{\mathrm{SEM}}$ or $\overline{\mathrm{OE}}$ must be deasserted for $\mathrm{t}_{\text {sOP }}$ before attempting to read the semaphore. The semaphore value will be available $t_{S W R D}+t_{D O E}$ after the rising edge of the semaphore write. If the left port was successful (reads a 0), it assumes control over the shared resource, otherwise (reads a 1) it assumes the right port has control and continues to poll the semaphore. When the right side has relinquished control of the semaphore (by writing a 1), the left side will succeed in gaining control of the semaphore. If the left side no longer requires the semaphore, a 1 is written to cancel its request.
Semaphores are accessed by asserting $\overline{\text { SEM }}$ LOW. The $\overline{\text { SEM }}$ pin functions as a chip enable for the semaphore latches ($\overline{\mathrm{CE}}$ must remain HIGH during SEM LOW). A_{0-2} represents the semaphore address. $\overline{\mathrm{OE}}$ and $\mathrm{R} / \overline{\mathrm{W}}$ are used in the same manner as a normal memory access. When writing or reading a semaphore, the other address pins have no effect.
When writing to the semaphore, only $\mathrm{I} / \mathrm{O}_{0}$ is used. If a 0 is written to the left port of an unused semaphore, a 1 will appear at the same semaphore address on the right port. That semaphore can nowonly be modified by the side showing 0 (the left port in this case). If the left port now relinquishes control by writing a 1 to the semaphore, the semaphore will be set to 1 for both sides. However, if the right port had requested the semaphore (written a 0) while the left port had control, the right port would immediately own the semaphore as soon as the left port released it. Table 3 shows sample semaphore operations.
When reading a semaphore, all eight data lines output the semaphore value. The read value is latched in an output register to prevent the semaphore from changing state during a write from the other port. If both ports attempt to access the semaphore within $\mathrm{t}_{\text {SPS }}$ of each other, the semaphore will definitely be obtained by one side or the other, but there is no guarantee which side will control the semaphore.

Table 1. Non-Contending Read/Write

Inputs				Outputs	Operation
$\overline{\mathbf{C E}}$	$\mathbf{R} / \overline{\mathbf{W}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{S E M}}$	$\mathbf{I} / \mathbf{O}_{\mathbf{0}-\mathbf{7}}$	
H	X	X	H	High Z	Power-Dow
H	H	L	L	Data Out	Read Data in Semaphore
X	X	H	X	High Z	I/O Lines Disabled
H	-	X	L	Data In	Write toSemaphore
L	H	L	H	Data Out	Read
L	L	X	H	Data In	Write
L	X	X	L		Illegal Condition

Table 2. Interrupt Operation Example (assumes $\overline{\mathbf{B U S Y}}_{\mathbf{L}}=\overline{\mathbf{B U S Y}}_{\mathbf{R}}=\mathbf{H I G H}$)

	Left Port					Right Port				
Function	$\mathbf{R} / \overline{\mathbf{W}}$	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	$\mathbf{A}_{\mathbf{0}-\mathbf{1 2}}$	$\overline{\mathrm{INT}}$	$\mathbf{R} / \overline{\mathbf{W}}$	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	$\mathbf{A}_{\mathbf{0}-\mathbf{1 2}}$	$\overline{\mathrm{INT}}$
Set Left INT	X	X	X	X	L	L	L	X	1 FFE	X
Reset Left $\overline{\mathrm{INT}}$	X	L	L	1 FFE	H	X	L	L	X	X
Set Right $\overline{\mathrm{INT}}$	L	L	X	1 FFF	X	X	X	X	X	L
Reset Right $\overline{\mathrm{INT}}$	X	X	X	X	X	X	L	L	1 FFF	H

Table 3. Semaphore Operation Example

Function	$\mathbf{I} / \mathbf{O}_{\mathbf{0}}$ Left	$\mathbf{I} / \mathbf{O}_{\mathbf{0}}$ Right	Status
No action	1	1	Semaphore free
Left port writes semaphore	0	1	Left port obtains semaphore
Right port writes 0 to semaphore	0	1	Right side is denied access
Left port writes 1 to semaphore	1	0	Right port is granted access to semaphore
Left port writes 0 to semaphore	1	0	No change. Left port is denied access
Right port writes 1 to semaphore	0	1	Left port obtains semaphore
Left port writes 1 to semaphore	1	1	No port accessing semaphore address
Right port writes 0 to semaphore	1	0	Right port obtains semaphore
Right port writes 1 to semaphore	1	1	No port accessing semaphore
Left port writes 0 to semaphore	0	1	Left port obtains semaphore
Left port writes 1 to semaphore	1	1	No port accessing semaphore

Typical DC and AC Characteristics

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

TYPICAL ACCESS TIME CHANGE
vs. OUTPUT LOADING

NORMALIZED ICC vs. CYCLE TIME

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7B144-15GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7B144-15JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7B144-25GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7B144-25JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7B144-25JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial
	CY7B144-25LMB	L81	68-Square Leadless Chip Carrier	Military
35	CY7B144-35GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7B144-35JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7B144-35JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial
	CY7B144-35LMB	L81	68-Square Leadless Chip Carrier	Military

Speed (ns)	Ordering Code	Package Name	Package Type Range	
15	CY7B145-15GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7B145-15JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7B145-25GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7B145-25JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7B145-25JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial
	CY7B145-25LMB	L81	68-Square Leadless Chip Carrier	Military
35	CY7B145-35GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7B145-35JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7B145-35JI	J81	68-Lead Plastic Leaded Chip Carrier	Industrial
	CY7B145-35LMB	L81	68-Square Leadless Chip Carrier	Military

MILITARY SPECIFICATIONS

 Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 3}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 4}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AA }}$	7, 8, 9, 10, 11
toha	7, 8, 9, 10, 11
$\mathrm{t}_{\text {ACE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DOE }}$	7, 8, 9, 10, 11
WRITE CYCLE	
$\mathrm{t}_{\text {WC }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SCE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AW }}$	7, 8, 9, 10, 11
t_{HA}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PWE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SD }}$	7, 8, 9, 10, 11
t_{HD}	7, 8, 9, 10, 11
BUSY/INTERRUPT TIMING	
$t_{\text {bLA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {BHA }}$	7, 8, 9, 10, 11
$t_{\text {BLC }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{BHC}}$	7, 8, 9, 10, 11
t_{PS}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {INS }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {INR }}$	7, 8, 9, 10, 11
BUSY TIMING	
$\mathrm{t}_{\text {WB }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {WH }}$	7, 8, 9, 10, 11
$t_{\text {BDD }}$	7, 8, 9, 10, 11
$t_{\text {DDD }}$	7, 8, 9, 10, 11
tWDD	7, 8, 9, 10, 11

Document \#: 38-00163-E

$1 \mathrm{~K} \times 4$ Static RAM

Features

- Automatic power-down when deselected (7C148)
- CMOS for optimum speed/power
- 25-ns access time
- Low active power
- 440 mW (commercial)
-605 mW (military)
- Low standby power (7C148)
-82.5 mW ($25-\mathrm{ns}$ version)
-55 mW (all others)
- 5-volt power supply $\mathbf{\pm 1 0 \%}$ tolerance, both commercial and military
- TTL-compatible inputs and outputs

Functional Description

The CY7C148 and CY7C149 are high-performance CMOS static RAMs organized as 1024 by 4 bits. Easy memory expansion is provided by an active LOW chip select (CS) input and three-state outputs. The CY7C148 remains in a low-power mode as long as the device remains unselected; i.e., ($\overline{\mathrm{CS}}$) is HIGH, thus reducing the average power requirements of the device. The chip select ($\overline{\mathrm{CS}}$) of the CY7C149 does not affect the power dissipation of the device.
Writing to the device is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}})$ inputs are both LOW. Data on the I/O pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the
memory locations specified on the address pins (A_{0} through A_{9}).
Reading the device is accomplished by taking chip select (CS) LOW while write enable ($\overline{\mathrm{WE}})$ remains HIGH. Under these conditions, the contents of the location specified on the address pins will appear on the four data $1 / O$ pins.
The I/O pins remain in a high-impedance state when chip select (CS) is HIGH or write enable ($\overline{\mathrm{WE}}$) is LOW.

Logic Block Diagram

Pin Configurations

C148-2

Selection Guide

		7C148-25	7C148-35	7C148-45	7C149-25	7C149-35	7C149-45
Maximum Access Time (ns)	25	35	45	25	35	45	
Maximum Operating Current (mA)	Commercial	90	80	80	90	80	80
	Military		110	110		110	110
Maximum Standby Current (mA)	Commercial	15	10	10			
	Military		10	10			

Output Current into Outputs (LOW) 20 mA
Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions			7C148/9-25		7C148/9-35,45		Unit
					Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$			2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$				0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage				2.0	6.0	2.0	6.0	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$			-10	10	-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled			-50	50	-50	50	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \text { Output Open } \end{aligned}$		Com'l		90		80	mA
				Mil				110	
$\mathrm{I}_{\text {SB }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$	$\begin{aligned} & \hline \text { 7C148 } \\ & \text { Only } \end{aligned}$	Com'l		15		10	mA
				Mil				10	
I_{PO}	Peak Power-On Current ${ }^{[3]}$	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$	$\begin{aligned} & \hline 7 \mathrm{C} 148 \\ & \text { Only } \end{aligned}$	Com'l		15		10	mA
				Mil				10	
I_{OS}	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		Com'l		± 275		± 275	mA
				Mil				± 350	

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up. Otherwise current will exceed values given (CY7C148 only).
4. For test purposes, not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.
(a)

Equivalent to:

$$
\begin{aligned}
& \text { THEVENIN EQUIVALENT } \\
& \text { OUTPUT } 0 \text { 1.73V }
\end{aligned}
$$

Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description		$\begin{aligned} & \hline 7 \mathrm{C} 148-25 \\ & \text { 7C149-25 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 148-35 \\ & 7 \mathrm{C} 149-35 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 148-45 \\ & \text { 7C149-45 } \end{aligned}$		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE									
t_{RC}	Address Valid to Address Do Not Care Time (Read Cycle Time)		25		35		45		ns
t_{AA}	Address Valid to Data Out Valid Delay (Address Access Time)			25		35		45	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{ACS}} 1 \\ & \mathrm{t}_{\mathrm{ACS} 2} \end{aligned}$	Chip Select LOW to Data Out Valid (7C148 only)			$25^{[6]}$		35		45	ns
				$30^{[7]}$		35		45	ns
$\mathrm{t}_{\text {ACS }}$	Chip Select LOW to Data Out Valid (7C149 only)			15		15		20	ns
$\mathrm{t}_{\mathrm{L} Z^{[8]}}$	Chip Select LOW to Data Out On	7C148	8		10		10		ns
		7C149	5		5		5		
$\mathrm{t}_{\mathrm{HZ}}{ }^{\text {88] }}$	Chip Select HIGH to Data Out Off		0	15	0	20	0	20	ns
t_{OH}	Address Unknown to Data Out Unknown Time		0		0		5		ns
t_{PD}	Chip Select HIGH to Power-Down Delay	7C148		20		30		30	ns
$t_{\text {PU }}$	Chip Select LOW to Power-Up Delay	7C148	0		0		0		ns
WRITE CYCLE									
twc	Address Valid to Address Do Not Care (Write Cycle Time)		25		35		45		ns
$\mathrm{twp}^{[9]}$	Write Enable LOW to Write Enable HIGH		20		30		35		ns
twR	Address Hold from Write End		5		5		5		ns
$\mathrm{twz}^{\text {[8] }}$	Write Enable to Output in High Z		0	8	0	8	0	8	ns
$\mathrm{t}_{\text {DW }}$	Data in Valid to Write Enable HIGH		12		20		20		ns
t_{DH}	Data Hold Time		0		0		0		ns
$\mathrm{t}_{\text {AS }}$	Address Valid to Write Enable LOW		0		0		0		ns
$\mathrm{t}_{\mathrm{CW}}{ }^{[9]}$	Chip Select LOW to Write Enable HIGH		20		30		40		ns
$\mathrm{tow}^{\text {[}}$ [${ }^{\text {] }}$	Write Enable HIGH to Output in Low Z		0		0		0		ns
$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write		20		30		35		ns

Notes:

6. Chip deselected greater than 25 ns prior to selection.
7. Chip deselected less than 25 ns prior to selection.
8. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for all devices. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage with specified loading in part (b) of AC Test Loads.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WELOW. Both signals must be LOW to intiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1{ }^{[10,11]}$

Read Cycle No. $2^{[10,12]}$

C148-7
Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled)

Notes:
10. WE is HIGH for read cycle.
12. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
11. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[13]}$

Notes:

13. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.
Typical DC and AC Characteristics

Typical DC and AC Characteristics

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C148-25PC	P3	18-Lead (300-Mil) Molded DIP	Commercial
35	CY7C148-35PC	P3	18-Lead (300-Mil) Molded DIP	Commercial
	CY7C148-35DMB	D4	18-Lead (300-Mil) CerDIP	Military
45	CY7C148-45PC	P3	18-Lead (300-Mil) Molded DIP	Commercial
	CY7C148-45DMB	D4	18-Lead (300-Mil) CerDIP	Military

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C149-25PC	P3	18-Lead (300-Mil) Molded DIP	Commercial
35	CY7C149-35PC	P3	18-Lead (300-Mil) Molded DIP	Commercial
	CY7C149-35DMB	D4	18-Lead (300-Mil) CerDIP	Military
	CY7C149-35LMB	L50	18-PinRectangularLeadlessChipCarrier	
45	CY7C149-45PC	P3	18-Lead (300-Mil) Molded DIP	Commercial
	CY7C149-45DMB	D4	18-Lead (300-Mil) CerDIP	Military
	CY7C149-45LMB	L50	18-PinRectangularLeadlessChipCarrier	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
I_{OH}	$1,2,3$
I_{OL}	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB}}{ }^{[14]}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 1}{ }^{[14]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 2}{ }^{[14]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}{ }^{[15]}$	$7,8,9,10,11$
t_{OH}	$7,8,9,10,11$
$\mathbf{W R I T E}$ CYCLE	
t_{WC}	$7,8,9,10,11$
t_{WP}	$7,8,9,10,11$
t_{WR}	$7,8,9,10,11$
t_{DW}	$7,8,9,10,11$
t_{DH}	$7,8,9,10,11$
t_{AS}	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$

Notes:
14. 7C148 only.
15. 7 C 149 only.

Document \#: 38-00031-C

Features

- Memory reset function
- 1024×4 static RAM for control store in high-speed computers
- CMOS for optimum speed/power
- High speed
- 10 ns (commercial)
- 12 ns (military)
- Low power
- 495 mW (commercial)
-550 mW (military)
- Separate inputs and outputs
- 5-volt power supply $\pm 10 \%$ tolerance in both commercial and military
- Capable of withstanding greater than 2001V static discharge
- TTL-compatible inputs and outputs

Functional Description

The CY7C150 is a high-performance CMOS static RAM designed for use in cache memory, high-speed graphics, and data-acquisition applications. The CY7C150 has a memory reset feature that allows the entire memory to be reset in two memory cycles.
Separate I/O paths eliminates the need to multiplex data in and data out, providing for simpler board layout and faster system performance. Outputs are tri-statedduring write, reset, deselect, or when output enable ($\overline{\mathrm{OE}}$) is held HIGH, allowing for easy memory expansion.
Reset is initiated by selecting the device ($\overline{\mathrm{CS}}=\mathrm{LOW}$) and taking the reset ($\overline{\mathrm{RS}}$) input LOW. Within two memory cycles all bits are internally cleared to zero. Since chip select must be LOW for the device to be reset, a global reset signal can be em-
ployed, with only selected devices being cleared at any given time.
Writing to the device is accomplishedwhen the chipselect $(\overline{\mathrm{CS}})$ and write enable $(\overline{\mathrm{WE}})$ inputs are both LOW. Data on the four data inputs $\left(D_{0}-D_{3}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{9}).
Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) and output enable (OE) LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the four output pins $\left(\mathrm{O}_{0}\right.$ through $\left.\mathrm{O}_{3}\right)$.
The output pins remain inhigh-impedance state when chip enable ($\overline{\mathrm{CE}}$) or output enable $(\overline{\mathrm{OE}})$ is HIGH, or write enable ($\overline{\mathrm{WE}}$) or reset ($\overline{\mathrm{RS}}$) is LOW.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configuration

Selection Guide

		7C150-10	7C150-12	7C150-15	7C150-25	7C150-35
Maximum Access Time (ns)	Commercial	10	12	15	25	
	Military		12	15	25	35
Maximum Operating Current (mA)	Commercial	90	90	90	90	90
	Military		100	100	100	100

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage \qquad -3.0 V to +7.0 V
Output Current into Outputs (LOW) \qquad
\qquad 20 mA

Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		$7 \mathrm{C150}$		Unit
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.,	4 mA	2.4		V
V_{OL}	Output LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Min.,			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level			2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Level			-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq$		-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Current (High Z)	$\mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\mathrm{OUT}}$ Output Disabled		-50	+50	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}^{\text {l }}$			-300	mA
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		90	mA
			Military		100	mA

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
C $_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THEVENIN EQUIVALENT
OUTPUT 0 - 1.9 V

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than 1 output should be shorted at a time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

Switching Characteristics Over the Operating Range ${ }^{[2,5]}$

Parameter	Description	7C150-10		7C150-12		7C150-15		7C150-25		7C150-35		Unit
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	10		12		15		25		35		ns
t_{AA}	Address to Data Valid		10		12		15		25		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	OutputHoldfromAddressChange	2		2		2		2		2		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		8		10		12		15		20	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low ${ }^{[6]}$	0		0		0		0		0		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\text { CS }}$ HIGH to High $\mathrm{Z}^{[6,7]}$		6		8		11		20		25	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		6		8		10		15		20	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[6]}$	0		0		0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE }}$ HIGH to High $\mathrm{Z}^{[6,7]}$		6		8		9		20		25	ns

WRITE CYCLE ${ }^{[8]}$

${ }_{\text {tw }}$	Write Cycle Time	10		12		15		25		35		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\text { CS LOW }}$ to Write End	6		8		11		15		20		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	8		10		13		20		30		ns
t_{HA}	Address Hold from Write End	2		2		2		5		5		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	2		2		2		5		5		ns
tPWE	WE Pulse Width	6		8		11		15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	6		8		11		15		20		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	2		2		2		5		5		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[6]}$	0		0		0		0		0		ns
$t_{\text {thZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6,7]}$		6		8		12		20		25	ns

RESET CYCLE

$\mathrm{t}_{\text {RRC }}$	Reset Cycle Time	20		24		30		50		70		ns
$t_{\text {SAR }}$	Address Valid to Beginning of Reset	0		0		0		0		0		ns
tswer	Write Enable HIGH to Beginning of Reset	0		0		0		0		0		ns
$\mathrm{t}_{\text {SCSR }}$	Chip Select LOW to Beginning of Reset	0		0		0		0		0		ns
$\mathrm{t}_{\text {PRS }}$	Reset Pulse Width	10		12		15		20		30		ns
$\mathrm{t}_{\mathrm{HCSR}}$	Chip Select Hold After End of Reset	0		0		0		0		0		ns
$\mathrm{t}_{\text {HWER }}$	Write Enable Hold After End of Reset	8		12		15		30		40		ns
$\mathrm{t}_{\text {HAR }}$	Address Hold After End of Reset	10		12		15		30		40		ns
$\mathrm{t}_{\text {LZRS }}$	Reset HIGH to Output in LowZ ${ }^{[6]}$	0		0		0		0		0		ns
$\mathrm{t}_{\text {HZRS }}$	Reset LOW to Output in High Z ${ }^{[6,7]}$		6		8		12		20		25	ns

Notes:

5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.
7. $t_{H Z C S}, t_{H Z O E}, t_{H Z R}$, and $t_{\text {HZWE }}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steadystate voltage.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be reference to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. ${ }^{[9,10]}$

Read Cycle No. 2[10, 11]

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[8]}$

C150-7

Notes:

9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. Address prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
11. Device is continuously selected, $\overline{\mathrm{CS}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[8,12]}$

Reset Cycle ${ }^{[13]}$

Notes:
12. If $\overline{\mathrm{CS}}$ goes HIGH with $\overline{\mathrm{WE}}$ HIGH, the output remains in a highimpedance state.
13. Reset cycle is defined by the overlap of $\overline{\mathrm{RS}}$ and $\overline{\mathrm{CS}}$ for the minimum reset pulse width.

Typical DC and AC Characteristics

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

Truth Table

Inputs				Outputs	Mode
$\overline{\mathbf{C S}}$	$\overline{\text { WE }}$	$\overline{\mathrm{OE}}$	$\overline{\mathbf{R S}}$		
H	X	X	X	High Z	Not Selected
L	H	X	L	High Z	Reset
L	L	X	H	High Z	Write
L	H	L	H	$\mathrm{O}_{0}-\mathrm{O}_{3}$	Read
L	X	H	H	High Z	Output Disable

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C150-10PC	P13A	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C150-10SC	S13	24-Lead Molded SOIC	
12	CY7C150-12PC	P13A	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C150-12SC	S13	24-Lead Molded SOIC	
	CY7C150-12DMB	D14	24-Lead (300-Mil) CerDIP	Military
15	CY7C150-15PC	P13A	24-Lead (300-Mil) MoldedDIP	Commercial
	CY7C150-15SC	S13	24-Lead Molded SOIC	
	CY7C150-15DMB	D14	24-Lead (300-Mil) CerDIP	Military
25	CY7C150-25PC	P13A	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C150-25SC	S13	24-Lead Molded SOIC	
	CY7C150-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
35	CY7C150-35DMB	D14	24-Lead (300-Mil) CerDIP	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AA }}$	7, 8, 9, 10, 11
toha	7, 8, 9, 10, 11
$\mathrm{t}_{\text {ACS }}$	7, 8, 9, 10, 11
WRITE CYCLE	
$t_{\text {WC }}$	7, 8, 9, 10, 11
${ }_{\text {t }}$ CS	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AW }}$	7, 8, 9, 10, 11
t_{HA}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SA }}$	7, 8, 9, 10, 11
tPWE	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SD }}$	7, 8, 9, 10, 11
t_{HD}	7, 8, 9, 10, 11
RESET CYCLE	
$\mathrm{t}_{\text {RRC }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SAR }}$	7, 8, 9, 10, 11
tswer	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SCSR }}$	7, 8, 9, 10, 11
tPRS	7, 8, 9, 10, 11
$\mathrm{t}_{\text {HCSR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {HWER }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{HAR}}$	7, 8, 9, 10, 11

Document \#: 38-00028-F

16K x 4 Static RAM Separate I/O

Features

- Ultra high speed
$-8 \mathrm{~ns}_{\mathrm{ta}}$
- Low active power
- $\mathbf{7 0 0} \mathbf{~ m W}$
- Low standby power
- 250 mW
- Transparent write (7B161)
- BiCMOS for optimum speed/power
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge.

Functional Description

The CY7B161 and CY7B162 are high-performance BiCMOS static RAMs organized as 16,384 by 4 bits with separate I/O. Easy memory expansion is provided by active LOW chip enables $\left(\overline{C E}_{1}, \overline{\mathrm{CE}}_{2}\right)$ and three-state drivers. They have a $\overline{\mathrm{CE}}$ powerdown feature, reducing the power consumption by 67% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) and write enable ($\overline{\mathrm{WE}}$) inputs are all LOW. Data on the four input pins (I_{0} through I_{3}) is written
into the memory location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) and $\overline{\mathrm{OE}}$ LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the four data output pins (O_{0} through O_{3}).
The output pins remain in high-impedance state when write enable (WE) is LOW (7B162 only), or one of the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) is HIGH, or $\overline{\mathrm{OE}}$ is HIGH.

Logic Block Diagram

Pin Configurations

Selection Guide

[^4]
Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State .
-0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$
-3.0 V to +7.0 V

Output Current into Outputs (Low) 20 mA
Latch-Up Current $>200 \mathrm{~mA}$
Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)

Operating Range

Range	Ambient	$\mathbf{V}_{\mathbf{C C}}$	
	Temperature	$\mathbf{- 8}$	$\mathbf{- 1 0}, \mathbf{- 1 2}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$	

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions			$\begin{aligned} & \hline 7 \mathrm{~B} 161-8 \\ & 7 \mathrm{~B} 162-8 \end{aligned}$		$\begin{aligned} & 7 \mathrm{PB161-10} \\ & 7 \mathrm{~B} 162-10 \end{aligned}$		Unit
					Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$.	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	Com'1	2.4		2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	Mil	2.4		2.4		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$				0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level				2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$				-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$			-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled			-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	$V_{C C}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \mathrm{f}=\mathrm{f}_{\max } . \end{aligned}$		Com'l		140		130	mA
				Mil				145	
$\mathrm{I}_{\text {SB }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \overline{\mathrm{CE}} \geq 3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \text { Other Inputs }=<0.8 \text { or }>3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Max. } \end{aligned}$		Com'l		50		40	mA
				Mil				60	

Shaded area contains preliminary information.

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max. ${ }^{[5]}$	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	6	pF
$\mathrm{C}_{\mathrm{OUT}}$	Vutput Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	6	pF

Notes:

1. V_{IL} (min.) $=-3.0 \mathrm{~V}$ for pulse width $<20 \mathrm{~ns}$.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Tested initially and after any design or process changes that may affect these parameters.
5. For all packages except CerDIP (D22), which has maximums of $\mathrm{C}_{\mathrm{IN}}=9.5 \mathrm{pF}$ and $\mathrm{C}_{\mathrm{OUT}}=9 \mathrm{pF}$.

AC Test Loads and Waveforms

Equivalent to: THEVENIN EQUIVALENT
OUTPUT 0 O 1.73 V
Switching Characteristics Over the Operating Range ${ }^{[3,6,7]}$

Parameter	Description	$\begin{aligned} & \hline 7 \mathrm{B161-8} \\ & 7 \mathrm{B162-8} \end{aligned}$		$\begin{aligned} & 7 \mathrm{~B} 161-10 \\ & 7 \mathrm{~B} 162-10 \end{aligned}$		$\begin{aligned} & \text { 7B161-12 } \\ & \text { 7B162-12 } \end{aligned}$		$\begin{aligned} & \text { 7B161-15 } \\ & 7 \mathrm{~B} 162-15 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	8		10		12		15		ns
t_{AA}	Address to Data Valid		8		10		12		15	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold from Address Change	2.5		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		8		10		12		15	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW }}$ to Data Valid		4.2		5		6		8	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low ${ }^{\text {[8] }}$	1.5		2		2		3		ns
$\mathrm{t}_{\text {HzOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[8,9]}$		4		5		6		7	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	2		2		2		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\text { CE HIGH }}$ to High $\mathrm{Z}^{[8,9]}$		4		5		6		7	ns
WRITE CYCLE ${ }^{[10]}$										
t_{WC}	Write Cycle Time	8		10		12		15		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	7		8		8		10		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	7		8		8		10		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	6.5		8		8		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	4		5		6		7		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
t LZWE	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[8]}$ (7B162)	2		2		2		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE LOW }}$ to High $\mathrm{Z}^{[8,9]}$ (7B162)		4		5		6		7	ns
$\mathrm{t}_{\text {AWE }}$	$\overline{\text { WE LOW to Data Valid (7B161) }}$		8		10		12		15	ns
$\mathrm{t}_{\text {ADV }}$	Data Valid to Output Valid (7B161)		8		10		12		15	ns

Notes:
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$.
7. Both $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are represented by $\overline{\mathrm{CE}}$ in the Switching Characteristics and Waveforms section.
8. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device. This parameter is guaranteed and not 100% tested.
9. $\mathrm{t}_{\mathrm{HZCE}}, \mathrm{t}_{\mathrm{HZOE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage. This parameter is guaranteed and not 100% tested.
10. The internal write time of the memory is defined by the overlap of $\overline{C E}_{1}$ LOW, $\overline{\mathrm{CE}}_{2}$ LOW, and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms ${ }^{[7]}$

Read Cycle No. $2[11,13]$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[10]}$

Notes:

11. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
12. Device is continuously selected, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2} \leq \mathrm{V}_{\mathrm{IL}} . \overline{\mathrm{OE}} \leq \mathrm{V}_{\mathrm{IL}}$ also.
13. Address valid prior to or coincidentwith $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ transition LOW.

Switching Waveforms ${ }^{[7]}$ (continued)
Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[10,14]}$

Note:

14. If CE goes HIGH simultaneously with $\overline{W E}$ HIGH, the output remains in a high-impedance state (7B162 only).

7B161 Truth Table

$\overline{\mathbf{C E}}_{1}$	$\overline{\mathbf{C E}}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Output	Input	Mode
H	X	X	X	High Z	X	Deselect/Power-Down
X	H	X	X	High Z	X	Deselect/Power-Down
L	L	H	L	Data Out	X	Read
L	L	L	L	Data In	Data In	Write
L	L	L	H	High Z	Data In	Write
L	L	H	H	High Z	X	Deselect

7B162 Truth Table

$\mathbf{C E}_{\mathbf{1}}$	$\overline{\mathbf{C E}}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Output	Input	Mode
H	X	X	X	High Z	X	Deselect/Power-Down
X	H	X	X	High Z	X	Deselect/Power-Down
L	L	H	L	Data Out	X	Read
L	L	L	X	High Z	Data In	Write
L	L	H	H	High Z	X	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
8	CY7B161-8VC	V21	28-Lead Molded SOJ	
10	CY7B161-10DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B161-10PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B161-10VC	V21	28-Lead Molded SOJ	
	CY7B161-10DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7B161-10LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
12	CY7B161-12DC	D22	28 -Lead (300-Mil) CerDIP	Commercial
	CY7B161-12PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B161-12VC	V21	28-Lead Molded SOJ	
	CY7B161-12DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7B161-12LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
15	CY7B161-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7B161-15LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

Shaded area contains preliminary information.

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
8	CY7B162-8VC	V21	28-Lead Molded SOJ	
10	CY7B162-10DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B162-10PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B162-10VC	V21	28-Lead Molded SOJ	Military
	CY7B162-10DMB	D22	28-Lead (300-Mil) CerDIP	
	CY7B162-10LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
12	CY7B162-12DC	D22	28-Lead (300-Mil) CerDIP	Military
	CY7B162-12PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B162-12VC	V21	28-Lead Molded SOJ	Military
	CY7B162-12DMB	D22	28-Lead (300-Mil) CerDIP	
	CY7B162-12LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

Shaded area contains preliminary information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
$\mathrm{t}_{\mathrm{SCE}}$	
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AWE}}{ }^{[15]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}{ }^{[15]}$	$7,8,9,10,11$

Note:
15. 7B161 only.

Document \#: 38-A-00014-E

16K x 4 Static RAM Separate I/O

Features

- High speed
- 15-ns
- Transparent write (7C161)
- CMOS for optimum speed/power
- Low active power
$-633 \mathrm{~mW}$
- Low standby power
- 220 mW
- TTL compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C161 and CY7C162 are high-performance CMOS static RAMs organized as 16,384 by 4 bits with separate I/O. Easy memory expansion is provided by active LOW chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) and threestate drivers. They have an automatic pow-er-down feature, reducing the power consumption by 65% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input pins $\left(\mathrm{I}_{0}\right.$ through I_{3}) is written
into the memory location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data output pins.
The output pins stay in a high-impedance state when write enable (WE) is LOW (7C162 only), or one of the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) are HIGH.
A die coat is used to insure alpha immunity.

Selection Guide ${ }^{[1]}$

	7C161-12 7C162-12	7C161-15 7C162-15	7C161-20 7C162-20	7C161-25 7C162-25	7C161-35 7C162-35
Maximum Access Time (ns)	$\mathbf{1 2}$	15	20	25	35
Maximum Operating Current (mA)	160	115	80	70	70
Maximum Standby Current (mA)	$40 / 20$	$40 / 20$	$40 / 20$	$20 / 20$	$20 / 20$

[^5]
Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{2]}$ \qquad

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

DC Input Voltage ${ }^{[2]}$

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Output Current into Outputs (LOW) 20 mA
Static Discharge Voltage . > $>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	$\begin{aligned} & 7 \mathrm{C} 161-12 \\ & 7 \mathrm{C} 162-12 \end{aligned}$		$\begin{aligned} & \hline \text { 7C161-15 } \\ & \text { 7C162-15 } \end{aligned}$		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$	4	0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	$V_{\text {cc }}$	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage[${ }^{2}$]		-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled	-10	$+10$	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[3]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		160		115	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		40		40	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V} \end{aligned}$		20		20	mA

[^6]Electrical Characteristics Over the Operating Range (continued)

Parameter	Description	Test Conditions	$\begin{aligned} & 7 \mathrm{C} 161-20 \\ & 7 \mathrm{C} 162-20 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 161-25,35 \\ & 7 \mathrm{C} 162-25.35 \end{aligned}$		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[2]}$		-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[3]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND} \end{aligned}$		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		80		70	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} \\ & \frac{\mathrm{CE}_{1}}{\geq \mathrm{V}_{\mathrm{IH}}} \\ & \text { Min. } \text { Duty Cycle }=100 \% \end{aligned}$		40		20	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{C C}, \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		20		20	mA

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:
2. Minimum voltage is equal to -3.0 V for pulse durations less than 30 ns .
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

CY7C161

CY7C162

Switching Characteristics Over the Operating Range ${ }^{[5,6]}$

Parameter	Description	$\begin{aligned} & 7 \mathrm{C} 161-12 \\ & 7 \mathrm{C} 162-12 \end{aligned}$		$\begin{aligned} & \text { 7C161-15 } \\ & \text { 7C162-15 } \end{aligned}$		$\begin{aligned} & \text { 7C161-20 } \\ & \text { 7C162-20 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C161-25 } \\ & \text { 7C162-25 } \end{aligned}$		$\begin{aligned} & \text { 7C161-35 } \\ & 7 \mathrm{C} 162-35 \end{aligned}$		Unit
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	12		15		20		25		35		ns
t_{AA}	Address to Data Valid	-	12		15		20		25		35	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	3		3		5		5		5		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\text { CE }}$ LOW to Data Valid		12		15		20		25		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		12		10		10		12		15	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		3		3		3		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High Z		7		8		8		10		12	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		5		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		7		8		8		10		15	ns
$t_{\text {PU }}$	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		12		15		20		20		20	ns
WRITE CYCLE ${ }^{[9]}$												
$\mathrm{t}_{\text {WC }}$	Write Cycle Time	12		15		20		20		25		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	8		12		15		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	8		12		15		20		25		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0	3	0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	WE Pulse Width	8		12		15		15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	6	+ 4	10		10		10		15		ns
t_{HD}	Data Hold from Write End	0	-	0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }} \mathrm{HIGH}$ to Low $\mathrm{Z}^{[7]}$ (7C162)	3		5		5		5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE LOW to High } \mathrm{Z}^{[7,8]} \text { (7C162) }}$		6		7		7		7		10	ns
$\mathrm{t}_{\text {AWE }}$	$\overline{\text { WE LOW to Data Valid (7C161) }}$		12		15		20		25		30	ns
$\mathrm{t}_{\mathrm{ADV}}$	Data Valid to Output Valid (7C161)		12		15		20		20		30	ns
$\mathrm{t}_{\text {DCE }}$	$\overline{\text { CE LOW to Data Valid }}$		12		15		20		25		35	ns

Shaded areas indicate advanced information.

Notes:

5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 -pF load capacitance.
6. Both $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are represented by $\overline{\mathrm{CE}}$ in the Switching Characteristics and Waveforms sections.
7. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.
8. $t_{H Z C E}$ and $t_{\text {HZWE }}$ are specified with $C_{L}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, $\overline{\mathrm{CE}}_{2}$ LOW, and WE LOW. Both signals must be LOW to initiate a write and eithersignal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms ${ }^{[8]}$

Read Cycle No. ${ }^{[10,11]}$

Read Cycle No. $2^{[10,12]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[9]}$

Notes:
10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ transition LOW.
11. Device is continuously selected, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms ${ }^{[8]}$ (continued)
Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[9,13]}$

Note:
13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains
in a high-impedance state (7 C 162 only).

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Address Designators

Address Name	Address Function	Pin Number
A5	X3	1
A6	X4	2
A7	X5	3
A8	X6	4
A9	X7	5
A10	Y0	6
A11	Y1	7
A12	Y5	8
A13	Y4	9
A0	Y3	23
A1	Y2	24
A2	X0	25
A3	X1	26
A4	X2	27

Ordering Information

Speed (ns)	Ordering Code	Package Nsme	Package Type	Operating Range
12	CY7C161-12PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C161-12VC	V21	28-Lead Molded SOJ	
15	CY7C161-15PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C161-15VC	V21	28-Lead Molded SOJ	
20	CY7C161-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C161-20VC	V21	28-Lead Molded SOJ	
25	CY7C161-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C161-25VC	V21	28-Lead Molded SOJ	
35	CY7C161-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C161-35VC	V21	28-Lead Molded SOJ	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C162-12PC	P21	28-Lead (300-Mil)Molded DIP	Commercial
	CY7C162-12VC	V21	28-Lead Molded SOJ	
15	CY7C162-15PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C162-15VC	V21	28-Lead Molded SOJ	
20	CY7C162-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C162-20VC	V21	28-Lead Molded SOJ	
25	CY7C162-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C162-25VC	V21	28-Lead Molded SOJ	
35	CY7C162-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C162-35VC	V21	28-Lead Molded SOJ	

[^7]Document \#: 38-00029-H

Features

- High speed
-20 ns tiA
- CMOS for optimum speed/power
- Transparent write (7C161A)
- Low active power
- $\mathbf{5 5 0} \mathrm{mW}$
- Low standby power
- 220 mW
- TTL-compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C161A and CY7C162A are highperformance CMOS static RAMs organizes as 16,384 by 4 bits with separate I/O. Easy memory expansion is provided by active LOW chip enables $\left(\overline{C E}_{1}, \overline{\mathrm{CE}}_{2}\right)$ and three-state drivers. They have an automatic power-down feature, reducing the power consumption by 60% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input pins $\left(\mathrm{I}_{0}\right.$ through $\left.\mathrm{I}_{3}\right)$ is written

16K x 4 Static RAM Separate I/O

into the memory location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking the chip enables ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$) LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data output pins.
The output pins stay in high-impedance state when write enable (WE) is LOW (7C162A only), or one of the chip enables ($\mathrm{CE}_{1}, \overline{\mathrm{CE}}_{2}$) are HIGH.
A die coat is used to insure alpha immunity.

Selection Guide ${ }^{[1]}$

		$\begin{aligned} & \text { 7C161A-15 } \\ & \text { 7C162A-15 } \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 161 \mathrm{~A}-20 \\ & \text { 7C162A-20 } \end{aligned}$	$\begin{aligned} & \text { 7C161A-25 } \\ & \text { 7C162A-25 } \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{C} 161 \mathrm{~A}-35 \\ & \text { 7C162A-35 } \end{aligned}$
Maximum Access Time (ns)		15	20	25	35
Maximum Operating Current (mA)	Military	160	100	100	100
Maximum Standby Current (mA)	Military	$40 / 20$	40/20	40/20	30/20

Shaded area contains advanced information.
Note:

1. For commercial specifications, see the CY7C161/CY7C162datasheet.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) -0.5 V to +7.0 V
DC Voltage Applied to Outputs

Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Military $[3]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[4]}$

Parameter	Description	Test Conditions		$\begin{aligned} & 7 \mathrm{Cl} 161 \mathrm{~A}-15 \\ & 7 \mathrm{C} 162 \mathrm{~A}-15 \end{aligned}$		$\begin{aligned} & \text { 7C161A-20 } \\ & \text { 7C162A-20 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~m}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	VCC	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[2]}$			-0.5	0.8	-0.5	0.8	V
I_{I}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{G}$			-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Military	\%	160		100	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$	Military		40		40	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}} \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$	Military		20		20	mA

[^8]Notes:
2. Minimum voltage is equal to -3.0 V for pulse durations less than 30 ns .
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.
5. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range ${ }^{[4]}$ (continued)

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C161A-25 } \\ & 7 \mathrm{C} 162 \mathrm{~A}-25 \end{aligned}$		$\begin{aligned} & \hline \text { 7C161A-35 } \\ & \text { 7C162A-35 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
VOL	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[2]}$			-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output	Disabled	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Military		100		100	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$	Military		40		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \mathrm{Max} \mathrm{~V}_{\mathrm{CC}} \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V} \end{aligned}$	Military		20		20	mA

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
CouT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Note:
6. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

 SCOPE (a)

ALL INPUT PULSES

C161A-5

Equivalent to: THEVENIN EQUIVALENT

CYPRESS

Switching Characteristics Over the Operating Range ${ }^{[2,7,8]}$

Parameter	Description	$\begin{aligned} & \text { 7C161A-15 } \\ & \text { 7C162A-15 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C161A-20 } \\ & \text { 7C162A-20 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C161A-25 } \\ & \text { 7C162A-25 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 161 \mathrm{~A}-35 \\ & 7 \mathrm{C} 162 \mathrm{~A}-35 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	15	6	20		25		35		ns
t_{AA}	Address to Data Valid		15		20		25		35	ns
toha	Output Hold from Address Change	3		5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		15		20		25		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE }}$ LOW to Data Valid		7		10		12		15	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to LOW Z }}$	0		3		3		3		ns
$\mathrm{t}_{\mathrm{HZOE}}$	OE HIGH to HIGH Z		8		8		10		12	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[9]}$	- 3		5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{\text {9, }}$, ${ }^{\text {] }}$	3	8		8		10		15	ns
t_{PU}	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		0		ns
t_{PD}	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to Power-Down		15		20		20		20	ns
WRITE CYCLE ${ }^{[11]}$										
$\mathrm{t}_{\text {WC }}$	Write Cycle Time	15		20		20		25		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	10		15		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		15		20		25		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
tpWE	$\overline{\text { WE Pulse Width }}$	10		15		15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7	\%	10		10		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
${ }^{\text {t }}$ LZWE	$\overline{\text { WE }} \mathrm{HIGH}$ to Low $\mathrm{Z}^{9]}$ (7C162A)	3		5		5		5		ns
$\mathrm{t}_{\text {HzWE }}$	WE LOW to High $Z^{[9,10]}$ (7C162A)		$\overline{7}$		7		7		10	ns
towe	$\overline{\text { WE }}$ LOW to Data Valid (7C161A)		15		20		25		30	ns
$\mathrm{t}_{\mathrm{ADV}}$	Data Valid to Output Valid (7C161A)		15		20		20		30	ns
$t_{\text {DCE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid $(7 \mathrm{C} 161 \mathrm{~A})$		15		20		25		35	ns

Shaded area contains advanced information.

Notes:
7. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
8. Both $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ are represented by $\overline{\mathrm{CE}}$ in the Switching Characteristics and Waveforms sections.
9. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.
10. ${ }^{t_{H Z C E}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of ACTest Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steadystate voltage.
11. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, $\overline{\mathrm{CE}}_{2}$ LOW, and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH . The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms ${ }^{[8]}$

Read Cycle No. ${ }^{[12,13]}$

Read Cycle No. ${ }^{[12,14]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[11]}$

[^9]Switching Waveforms (continued)

Note:
15. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains
in a high-impedance state (7C162A only).
Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Address Designators

Address Name	Address Function	Pin Number
A5	X3	1
A6	X4	2
A7	X5	3
A8	X6	4
A9	X7	5
A10	Y0	6
A11	Y1	7
A12	Y5	8
A13	Y4	9
A0	Y3	23
A1	Y2	24
A2	X0	25
A3	X1	26
A4	X2	27

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C161A-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C161A-15LMB	154	28-Fin RectangularLeadless Chip Carrier	
20	CY7C161A-20DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C161A-20LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
25	CY7C161A-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C161A-25LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
35	CY7C161A-35DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C161A-35LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C162A-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C162A-15LMB	L54	28. PinRectangularLeadless Chip Carrier	
20	CY7C162A-20DMB	D22	28-Lead ($300-\mathrm{Mil}$) CerDIP	Military
	CY7C162A-20LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
25	CY7C162A-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C162A-25LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
35	CY7C162A-35DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C162A-35LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

Shaded areas contain advanced information.

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DWE}}{ }^{[16]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}$	$7,8,9,10,11$

Notes:

16. 7C161A only.

Document \#: 38-00116-B
-

SEMICONDUCTOR

Features

- Ultra high speed
$-\mathrm{t}_{\mathrm{AA}}=8 \mathrm{~ns}$
- Low active power
- 700 mW
- Low standby power
$-250 \mathrm{~mW}$
- BiCMOS for optimum speed/power
- Output enable ($\overline{\mathrm{OE}})$ feature (7B166)
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7B164 and CY7B166 are highperformance BiCMOS static RAMs organized as $16,384 \times 4$ bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. The CY7B166 has an active LOW output enable ($\overline{\mathrm{OE}}$) feature. Both devices have an automatic power-down feature, reducing the power consumption by 67% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input/output pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\mathrm{I} / \mathrm{O}_{3}$)
is written into the memory location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW (and $\overline{\mathrm{OE}}$ LOW for 7B166) while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data I/O pins.
The I/O pins stay in high-impedance state when chip enable ($\overline{\mathrm{CE}}$) is HIGH, or write enable ($\overline{\mathrm{WE}}$) is LOW (or output enable ($\overline{\mathrm{OE}}$) is HIGH for 7B166).

Logic Block Diagram

Pin Configurations

Selection Guide

		$\begin{aligned} & \hline 7 B 164-8 \\ & 7 B 166-8 \end{aligned}$	$\begin{aligned} & \hline \text { 7B164-10 } \\ & \text { 7B166-10 } \end{aligned}$	$\begin{aligned} & 7 \mathrm{B164-12} \\ & 7 \mathrm{~B} 166-12 \end{aligned}$	$\begin{aligned} & \text { 7B164-15 } \\ & \text { 7B166-15 } \end{aligned}$
Maximum Access Time (ns)		8	10	12	15
Maximum Operating Current (mA)	Commercial	140	130	120	
	Military		145	140	135
Maximum Operating Current (mA)	Commercial	50	40	40	
	Military		60	55	50

[^10]CYPRESS
CY7B164
CY7B166

Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$
-3.0 V to +7.0 V
Output Current into Outputs (LOW) 20 mA

Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$	
	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	-8	$5 \mathrm{~V} \pm 5 \%$
		$-10,-12$	$5 \mathrm{~V} \pm 10 \%$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$	

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	Test Conditions			$\begin{aligned} & 7 \mathrm{~B} 164-8 \\ & 7 \mathrm{~B} 166-8 \end{aligned}$		$\begin{aligned} & \hline \text { 7B164-10 } \\ & \text { 7B166-10 } \end{aligned}$		Units
					Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$.	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	Com'l	2.4		2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	Mil					
V_{OL}	Output LOW Voltage					0.4		0.4	V
V_{IH}	Input HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			2.2	V_{CC}	2.2	V_{CC}	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$				-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$			-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled			-10	+10	-10	+10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CC }}$	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{IOUT}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f} \text { max. } \end{aligned}$		Com'l		140		130	mA
				Mil				145	
$\mathrm{I}_{\text {SB }}$	$\overline{\text { CEPPwer-Down Current }}$	$\begin{aligned} & \overline{\overline{\mathrm{CE}}} \geq 3 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \text { Other Inputs } \leq 0.8 \mathrm{~V} \text { or }>3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Max. } \end{aligned}$		Com'l		50		40	mA
				Mil				60	

Shaded area contains preliminary information.

Notes:

1. V_{IL} (min.) $=-3.0 \mathrm{~V}$ for puise width $<20 \mathrm{~ns}$.
2. See the last page of this specification for Group A subgroup testing information.

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max. ${ }^{[5]}$	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	6	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	6	pF

AC Test Loads and Waveforms

(b) B164.7
ALL INPUT PULSES

B164-8
(a)

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3,6]}$

Parameters	Description		$\begin{aligned} & \hline 7 \mathrm{~B} 164-8 \\ & 7 \mathrm{~B} 166-8 \end{aligned}$		$\begin{aligned} & \hline \text { 7B164-10 } \\ & \text { 7B166-10 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{~B} 164-12 \\ & \text { 7B166-12 } \end{aligned}$		$\begin{aligned} & \hline \text { 7B164-15 } \\ & 7 \mathrm{~B} 166-15 \end{aligned}$		Units
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE											
t_{RC}	Read Cycle Time		8		10		12		15		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid			8		10		12		15	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Ch		2.5		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$			8		10		12		15	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid	7B166		4.2		5		5		6	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	7B166	1.5		2		2		2		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[7]}$	7B166		4		5		6		7	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$		2		2		2		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\text { CE HIGH }}$ to High $\mathrm{Z}^{[7,8]}$			4		5		6		7	ns
WRITE CYCLE ${ }^{\text {P }}$											
t_{WC}	Write Cycle Time		8		10		12		15		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE LOW to Write End }}$		7		8		8		10		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End		7		8		8		10		ns
t_{HA}	Address Hold from Write End		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start		0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$		6.5		8		8		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End		4		5		6		7		ns
t_{HD}	Data Hold from Write End		0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH to Low Z }}$		2		2		2		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{\text {7] }}$			4	0	5	0	6	0	7	ns

Notes:
4. Tested initially and after any design or process changes that may affect these parameters.
5. For all packages except cerDIP (D10, D14), which has maximums of $\mathrm{C}_{\mathrm{IN}}=9.5 \mathrm{pF}, \mathrm{C}_{\mathrm{OUT}}=8 \mathrm{pF}$.
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$.
7. tHZCE, $\mathrm{t}_{\mathrm{HZWE}}$, and $\mathrm{t}_{\mathrm{HZOE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) in AC Test Loads. Transition is measured $\pm 200 \mathrm{mV}$ from steady state voltage. This parameter is guaranteed and not 100% tested.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\text {LZCE }}$ for any given device. These parameters are guaranteed and not 100% tested.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[10,11]}$

Read Cycle No. $\mathbf{2}^{[10,12]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[9,13,14]}$

Notes:

10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$. (7B166: $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ also).
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. 7 B 166 only: Data I / O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.
15. During this period the I/O pins are in the output state, and input signals should not be applied.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[9,13,14,16]}$

DATA OUT
HIGH IMPEDANCE

Note:
16. If the $\overline{\mathrm{CE}}$ LOW transition occurs after the WE transition, the output remains in a high-impedance state.

7B164 Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

7B166 Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
8	CY7B164-8VC	V13	32-Lead (400-Mil) Molded SOJ	Commercial
10	CY7B164-10DC	D10	22-Lead (300-Mil) CerDIP	Commercial
	CY7B164-10PC	P9	22-Lead (300-Mil) Molded DIP	
	CY7B164-10VC	V13	32-Lead (400-Mil) Molded SOJ	
	CY7B164-10DMB	D10	22-Lead (300-MiI) CerDIP	Military
	CY7B164-10CMB	152	22-Pin Rectangular Leadless Chip Carrier	
12	CY7B164-12DC	D10	22-Lead (300-Mil) CerDIP	Commercial
	CY7B164-12PC	P9	22-Lead (300-Mil) Molded DIP	
	CY7B164-12VC	V13	32-Lead (400-Mil) Molded SOJ	
	CY7B164-12DMB	D10	22-Lead (300-Mil) CerDIP	Military
	CY7B164-12LMB	L52	22-Pin Rectangular Leadless Chip Carrier	
15	CY7B164-15DMB	D10	22-Lead (300-Mil) CerDIP	Military
	CY7B164-15LMB	L52	22-Pin Rectangular Leadless Chip Carrier	

[^11]| Speed
 (ns) | Ordering Code | Package Name | Package Type | $\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: |
| 8 | CY7B166-8VC | V13 | 24-Lead Molded SOJ | Commercial |
| 10 | CY7B166-10DC | D14 | 24-Lead (300-Mil) CerDIP | Commercial |
| | CY7B166-10PC | P13 | 24-Lead (300-Mil) Molded DIP | |
| | CY7B166-10VC | V13 | 24-Lead Molded SOJ | |
| | CY7B166-10DMB | D14 | 24-Lead (300-Mil) CerDIP | Military |
| | CY7B166-10LMB | L54 | 28-Pin Rectangular Leadless Chip Carrier | |
| 12 | CY7B166-12DC | D14 | 24-Lead (300-Mil) CerDIP | Commercial |
| | CY7B166-12PC | P13 | 24-Lead (300-Mil) Molded DIP | |
| | CY7B166-12VC | V13 | 24-Lead Molded SOJ | |
| | CY7B166-12DMB | D14 | 24-Lead (300-Mil) CerDIP | Military |
| | CY7B166-12LMB | L54 | 28-Pin Rectangular Leadless Chip Carrier | |
| 15 | CY7B166-15DMB | D14 | 24-Lead (300-Mil) CerDIP | Military |
| | CY7B166-15LMB | L54 | 28-Pin Rectangular Leadless Chip Carrier | |

Shaded area contains preliminary information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Document \# 38-A-00015-G

Switching Characteristics

Parameters	Subgroups
READ CYCLE	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}{ }^{[17]}$	$7,8,9,10,11$
WRITE CYCLE	
$\mathrm{t}_{\mathrm{SCE}}$	
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Note:
17. 7B166 only.

Features

- High speed
$-15 \mathrm{~ns}$
- Output enable ($\overline{\mathrm{OE}})$ feature (7C166)
- CMOS for optimum speed/power
- Low active power
- 633 mW
- Low standby power
- 220 mW
- TTL-compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C164 and CY7C166 are high-performance CMOS static RAMs organized as 16,384 by 4 bits. Easy memory expansion is provided by an active LOW chip enable (CE) and three-state drivers. The CY7C166 has an active low output enable ($\overline{\mathrm{OE}}$) feature. Both devices have an automatic power-down feature, reducing the power consumption by 65% when deselected.
Writing to the device is accomplished when the chip enable (CE) and write enable (WE) inputs are both LOW (and the output enable ($\overline{\mathrm{OE} \text {) is LOW for the 7C166). }}$

16K x 4 Static RAM

Selection Guide ${ }^{[1]}$

	7C1618	$\begin{aligned} & \hline \text { 7C164-15 } \\ & \text { 7C166-15 } \end{aligned}$	$\begin{aligned} & \hline \text { 7C164-20 } \\ & \text { 7C166-20 } \end{aligned}$	$\begin{aligned} & \text { 7C164-25 } \\ & \text { 7C166-25 } \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 164-35 \\ & 7 \mathrm{C} 166-35 \end{aligned}$
Maximum Access Time (ns)	ね	15	20	25	35
Maximum Operating Current (mA)	4 48	115	80	70	70
Maximum Standby Current (mA)		40/20	40/20	20/20	20/20

Shaded area contains advanced information.
Note:

1. Formilitary specifications, see the CY7C164A/CY7C166A datashect.

CY7C164
CY7C166

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{2]}$
-0.5 V to +7.0 V

Output Current into Outputs (LOW) 20 mA
Static Discharge Voltage $>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	$\begin{aligned} & \text { 7C164-12 } \\ & \text { 7C166-12 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C164-15 } \\ & \text { 7C166-15 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C164-20 } \\ & \text { 7C166-20 } \end{aligned}$		$\begin{array}{\|l\|} \hline 7 \mathrm{C} 164-25,35 \\ 7 \mathrm{C} 166-25,35 \end{array}$		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min. } \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$	2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$		0.4		0.4		0.4		0.4	V
V_{IH}	Input HIGHVoltage		2.2	VCc	2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
V_{IL}	Input LOW Voltage ${ }^{[2]}$		-0.5	0.8	-0.5	0.8	-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled	-10	$+10$	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[3]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND} \end{aligned}$		-350		-350		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		160		115		80		70	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current ${ }^{[4]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty } \mathrm{Cycle}=100 \% \end{aligned}$		40		40		40	-	20	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current ${ }^{[4]}$.	$\begin{aligned} & \text { Max. } V_{C C}, \\ & \overline{C E} \geq V_{C C}-0.3 V, \\ & V_{\text {IN }} \geq V_{C C}-0.3 \mathrm{~V} \\ & \text { or } V_{\text {IN }} \leq 0.3 \mathrm{~V} \end{aligned}$		20		20		20		20	mA

Shaded area contains advanced information.
Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:
2. Minimum voltage is equal to -3.0 V for pulse durations less than 30 ns .
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT $0-1.73 \mathrm{~V}$
Switching Characteristics Over the Operating Range ${ }^{[6]}$

Parameter	Description	$\begin{aligned} & 7 \mathrm{C164-12} \\ & 7 \mathrm{C166-12} \end{aligned}$		$\begin{aligned} & \text { 7C164-15 } \\ & 7 \mathrm{C} 166-15 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 164-20 \\ & 7 \mathrm{C} 166-20 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 164-25 \\ & 7 \mathrm{C} 166-25 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 164-35 \\ & 7 \mathrm{C} 166-35 \end{aligned}$		Unit
		Min.	Max.									
READ CYCLE												
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	12		15		20		25		35		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		12		15		20		25		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold from Address Change	3		3		5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW }}$ to Data Valid		12		15		20		25		35	ns
$\mathrm{t}_{\text {DOE }}$	言		6		10		10		12		15	ns
$\mathrm{t}_{\text {LZOE }}$	OE LOW to Low Z	0	14	3		3		3		3		ns
${ }_{\text {t }}^{\text {HZOE }}$	OE HIGH to High Z $\quad 7 \mathrm{C} 166$		7		8		8		10		12	ns
${ }^{\text {t }}$ LZCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		5		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[7,8]}$		7		8		8		10		15	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		0		0		ns
$t_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		12		15		20		20		20	ns

WRITE CYCLE ${ }^{[9]}$

$t_{\text {wc }}$	Write Cycle Time	12		15		20		20		25		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE LOW }}$ to Write End	8		12		15		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	9		12		15		20		25		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
tpwe	WE Pulse Width	8		12		15		15		20		ns
${ }_{\text {tSD }}$	Data Set-Up to Write End	6	=	10		10		10		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
t ${ }^{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	3		5		5		5		5		ns
$t_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$		6		7		7		7		10	ns

Shaded area contains advanced information.

Notes:
6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OI}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device. These parameters are guaranteed and not 100% tested.
8. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) in AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WELOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. ${ }^{[10,11]}$

Read Cycle No. $2^{[10,12]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[9,13]}$

Notes:

10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$. ($7 \mathrm{C} 166: \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ also $)$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. 7 C 166 only: Data I / O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[9,13,14]}$

C164-10

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

CY7C164 Truth Table

$\overline{\text { CE }}$	$\overline{\mathbf{W E}}$	Input/Output	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

CY7C166 Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Output	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	H	Data In	Write
L	H	H	High Z	Write

Address Designators

Address Name	Address Function	CY 7C164 Pin Number	CY7C166 Pin Number
A5	X3	1	1
A6	X4	2	2
A7	X5	3	3
A8	X6	4	4
A9	X7	5	5
A10	Y5	6	6
A11	Y4	7	7
A12	Y0	8	8
A13	Y1	9	9
A0	Y2	17	19
A1	Y3	18	20
A2	X0	19	21
A3	X1	20	22
A4	X2	21	23

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C164-12PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C164-12VC	V13	24-Lead Molded SOJ	
15	CY7C164-15PC	P9	22-Lead (300-Mil) MoldedDIP	Commercial
	CY7C164-15VC	V13	24-Lead Molded SOJ	
20	CY7C164-20PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C164-20VC	V13	24-Lead Molded SOJ	
25	CY7C164-25PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C164-25VC	V13	24-Lead Molded SOJ	
35	CY7C164-35PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C164-35VC	V13	24-Lead Molded SOJ	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C166-12PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C166-12VC	V13	24-Lead Molded SOJ	
15	CY7C166-15PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C166-15VC	V13	24-Lead Molded SOJ	
20	CY7C166-20PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C166-20VC	V13	24-Lead Molded SOJ	
25	CY7C166-25PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C166-25VC	V13	24-Lead Molded SOJ	
35	CY7C166-35PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C166-35VC	V13	24-Lead Molded SOJ	

Shaded areas contain advanced information.
Document \#: 38-00032-H

Features

- High speed
$-20 \mathrm{~ns}$
- Output enable $(\overline{\mathrm{OE}})$ feature (7 C 166 A)
- CMOS for optimum speed/power
- Low active power
$-550 \mathrm{~mW}$
- Low standby power
$-220 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C164A and CY7C166A are highperformance CMOS static RAMs organized as 16,384 by 4 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. The CY7C166A has an active low output enable (OE) feature. Both devices have an automatic power-down feature, reducing the power consumption by 60% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW (and the output enable ($\overline{\mathrm{OE}}$) is LOW for the 7C166A). Data on the four input/output pins (I / O_{0}

16K x 4 Static RAM

through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location specified on the address pins (A_{0} through A_{13}).
Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW (and OE LOW for 7 C 166 A), while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data I/O pins.
The I/O pins stay in high-impedance state when chip enable ($\overline{\mathrm{CE}})$ is HIGH , or output enable ($\overline{\mathrm{OE}}$) is HIGH for 7C166A).
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations

C164A-3

CC Top View

Selection Guide ${ }^{[1]}$

		7C164A-15 $\mathbf{7 C 1 6 6 A}-15$	7C164A-20 $\mathbf{7 C 1 6 4 A - 2 0}$	7C164A-25 7C166A-25	7C164A-35 7C166A-35
Maximum Access Time (ns)		15	20	25	35
Maximum Operating Current (mA)	Military	160	100	100	100
Maximum Standby Current (mA)	Military	$40 / 20$	$40 / 20$	$40 / 20$	$30 / 20$

Shaded area contains advanced information.
Note:

1. For commercial specifications, see the CY7C164/CY7C166 datasheet.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ}{ }^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad
Supply Voltage to Ground Potential $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DC Voltage Applied to Outputs
in High Z State ${ }^{[2]}$ -0.5 V to +7.0 V

DC Input Voltage ${ }^{[2]}$
-0.5 V to +7.0 V
$\ldots-0.5 \mathrm{~V}$ to +7.0 V

Output Current into Outputs (Low) 20 mA
Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[4]}$

Parameter	Description	Test Conditions		$\begin{aligned} & 7 \mathrm{C164A}-15 \\ & 7 \mathrm{C} 166 \mathrm{~A}-15 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C164A}-20 \\ & \text { 7C166A-20 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~m}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	V_{cc}	2.2	V_{CC}	V
V_{IL}	Input LOW Voltage ${ }^{[2]}$			-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled		-10	$+10$	-10	+10	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\text {OUT }}=\mathrm{GN}$			-350		-350	mA
I_{CC}	$V_{C C}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Military		160		100	mA
$\mathrm{I}_{\text {SB1 }}$	$\begin{aligned} & \text { Automatic } \overline{\mathrm{CE}}[6] \\ & \text { Power Down Current } \end{aligned}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$	Military		40		40	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}{ }^{[6]}$ Power Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \\ & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}-0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$	Military	W	20		20	mA

Shaded area contains advanced information.

Notes:

2. Minimum voltage is equal to -3.0 V for pulse durations less than 30 ns.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.;
5. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
6. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.

Electrical Characteristics Over the Operating Range ${ }^{[4]}$ (continued)

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C164A-25 } \\ & \text { 7C166A-25 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 164 \mathrm{~A}-35 \\ & 7 \mathrm{C} 166 \mathrm{~A}-35 \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~m}$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[2]}$			-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	OutputLeakageCurrent	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Outpu	sabled	-10	+10	-10	+10	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Military		100		100	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}{ }^{[6]}$ Power Down Current	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$	Military		40		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}{ }^{[6]}$ Power Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{IH}}-0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$	Military		20		20	mA

Capacitance ${ }^{[7]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
COUT	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		10	pF

Note:
7. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

C164A-6

C164A-7

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT $0 \longrightarrow 1.73 \mathrm{~V}$

Switching Characteristics Over the Operating Range ${ }^{[4, ~ 8]}$

Parameter	Description	$\begin{aligned} & 7 C 164 A-15 \\ & 7 C 166 A-15 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 164 \mathrm{~A}-20 \\ & 7 \mathrm{CC166A}-20 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C164A}-25 \\ & \text { 7C166A-25 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 164 \mathrm{~A}-35 \\ & \text { 7C166A-35 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	15		20		25		35		ns
t_{AA}	Address to Data Valid	H	15		20		25		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$	-	15		20		25		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid $(7 \mathrm{C} 166 \mathrm{~A})$		7		10		12		15	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW }}$ to Low Z (7C166A)	0		3		3		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High Z (7C166A)	5x	8		8		10		12	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[9]}$	3		5		5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\begin{aligned} & \text { CE HIGH to } \\ & \text { High Z[9, 10] } \end{aligned}$		8		8		10		15	ns
t_{PU}	$\overline{\text { CE LOW }}$ to Power-Up	0		0		0		0		ns
$t_{\text {PD }}$	CE HIGH to Power-Down		15		20		20		20	ns
WRITE CYCLE ${ }^{111]}$										
t_{WC}	Write Cycle Time	15	\%	20		20		25		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	10		15		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		15		20		25		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
tPWE	WE Pulse Width	10	K"	15		15		20		ns
${ }^{\text {tS }}$	Data Set-Up to Write End	7		10		10		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$t_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[9]}$	3		5		5		5		ns
$t_{\text {HZWE }}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[9,10]}$		7		7		7		10	ns

Shaded area contains advanced information.

Notes:

8. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
9. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\text {LZCE }}$ for any given device. These parameters are guaranteed and not 100% tested.
10. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) in AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
11. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and $\overline{W E}$ LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1{ }^{[12,13]}$

Read Cycle No. 2[12, 14]

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[11,15]}$

Notes:

12. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
14. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \cdot\left(7 \mathrm{C} 166 \mathrm{~A} \overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}\right.$ also $)$.
15. 7C166A only: Data I / O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\text { CE }}$ Controlled) ${ }^{[11, ~ 15, ~ 16] ~}$

C164A-11
Note:
16. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Typical DC and AC Characteristics

NORMALIZED SUPPLY CURRENT
vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME
vs. AMBIENT TEMPERATURE

OUTPUT SOURCE CURRENT
vs. OUTPUT VOLTAGE

SEMICONDUCTOR
Typical DC and AC Characteristics (continued)

CY7C164A Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

CY7C166A Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Address Designators

Address Name	Address Function	CY7C164A Pin Number	CY7C166A Pin Number
A5	X3	1	1
A6	X4	2	2
A7	X5	3	3
A8	X6	4	4
A9	X7	5	5
A10	Y5	6	6
A11	Y4	7	7
A12	Y0	8	8
A13	Y1	9	9
A0	Y2	17	19
A1	Y3	18	20
A2	X0	19	21
A3	X1	20	22
A4	X2	21	23

Ordering Information

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
15	CY7C164A-15DMB	D10	22-Lead (300-Mii) CerDIP	Military
	CY7C164A-15LMB	L52	22-Pin Rectangular Leadless Chip Carrier	
	CY7C164A-20DMB	D10	22-Lead (300-Mil) CerDIP	Military
	CY7C164A-20LMB	L52	22-Pin Rectangular Leadless Chip Carrier	
25	CY7C164A-25DMB	D10	22-Lead (300-Mil) CerDIP	Military
	CY7C164A-25LMB	L52	22-Pin Rectangular Leadless Chip Carrier	
	CY7C164A-35DMB	D10	22-Lead (300-Mil) CerDIP	Military
	CY7C164A-35LMB	L52	22-Pin Rectangular Leadless Chip Carrier	

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
15	CY7C166A-15DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C166A-15LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
20	CY7C166A-20DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C166A-20LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
25	CY7C166A-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C166A-25LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
35	CY7C166A-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C166A-35LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

Shaded area contains advanced information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$\mathbf{1 , 2 , 3}$
$\mathrm{I}_{\mathrm{SB} 1}$	$\mathbf{1 , 2 , 3}$

Document \#: 38-00113-C

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}{ }^{[17]}$	$7,8,9,10,11$
WRITE CYCLE $^{\|c\|}$	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Note:
17. 7C166A only.

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
$-15 \mathrm{~ns}$
- Low active power
$-275 \mathrm{~mW}$
- Low standby power
$-83 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001 V electrostatic discharge
- $\mathrm{V}_{\text {IH }}$ of 2.2 V

Functional Description

The CY7C167A is a high-performance CMOS static RAM organized as 16,384 words by 1 bit. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}})$ and three-state drivers. The CY7C167A has an automatic power-down feature, reducing the power consumption by 67% when deselected.
Writing to the device is accomplished when the chip select ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input pin (DI) is written into the memory location specified on the address pins (A_{0} through A_{13}).

Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}$) LOW, while ($\overline{\mathrm{WE}}$) remains HIGH. Under these condintions, the contents of thelocation specified on the address pins will appear on the data output (DO) pin.
The output pin remains in a high-impedance state when chip enable is HIGH , or write enable ($\overline{\mathrm{WE}}$) is LOW.
A die coat is used to insure alpha immunity.

Logic Block Diagram

C167A-1

Selection Guide

		7C167A-15	7C167A-20	7C167A-25	7C167A-35	7C167A-45
Maximum Access Time (ns)	15	20	25	35	45	
Maximum Operating Current (mA)	Commercial	90	80	60	60	
	Military		80	70	60	50

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 20 to Pin 10) \qquad -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State .
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V

Output Current into Outputs (LOW) 20 mA
Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		7C167A-15		7C167A-20		7C167A-25		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2..4		$2 . .4$		2..4		V
VOL	Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \\ & \mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}, 8.0 \mathrm{~mA} \mathrm{Mil} \end{aligned}$			0.4		0.4		0.4	V
V_{IH}	Input High Voltage			2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage ${ }^{[3]}$			-0.5	0.8	-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
IOS	$\begin{aligned} & \text { Output Short } \\ & \text { Circuit Current }{ }^{[4]} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		90		80		60	mA
			Mil				80		70	
$\mathrm{I}_{\text {SB }}$	$\begin{aligned} & \text { Automatic } \overline{\mathrm{CE}} \\ & \text { Power-Down Current }[5] \end{aligned}$	$\begin{aligned} & \mathrm{Max}^{\mathrm{V}_{\mathrm{CC}}}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{IH}} \end{aligned}$	Com'l		40		40		20	mA
			Mil				40		20	

Parameter	Description	Test Conditions		7C167A-35		7C167A-45		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output High Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		$2 . .4$		$2 . .4$		V
$\mathrm{V}_{\text {OL }}$	Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \\ & \mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}, 8.0 \mathrm{~mA} \text { Mil } \end{aligned}$			0.4		0.4	V
V_{IH}	Input High Voltage			2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input Low Voltage ${ }^{[3]}$			-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-10	+10	-10	+10	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		60		50	mA
			Mil		60		50	
ISB	$\begin{aligned} & \text { Automatic } \overline{\mathrm{CE}} \\ & \text { Power-Down Current }{ }^{[5]} \end{aligned}$	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{IH}} \end{aligned}$	Com'l		20			mA
			Mil		20		20	

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $V_{\text {IL }} \min .=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
4. Duration of the short circuit should not exceed 30 seconds.
5. A pull-up resistor to $V_{C C}$ on the $\overline{C E}$ input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$		10
$\mathrm{C}_{\mathrm{OUT}}$	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	pF		
C_{CE}	Output Capacitance		10	pF
			6	pF

AC Test Loads and Waveforms

(b)
(a)

ALL INPUT PULSES

C167A-4
THEVENIN EQUIVALENT
OUTPUT 0 Commercial
OUTPUT $0 \longrightarrow 1.73 \mathrm{~V}$
Military

Switching Characteristics Over the Operating Range ${ }^{[2,7]}$

Parameter	Description	7C167A-15		7C167A-20		7C167A-25		7C167A-35		7C167A-45		Unit
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	15		20		25		30				ns
				20		25		35		40		ns
t_{AA}	Address to Data Valid Com'l Mil Data Hold from Address Change		15		20		25		30			ns
					20		25		35		40	ns
$\mathrm{t}_{\mathrm{OHA}}$		5		5		5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		15		20		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	5		5		5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\text { CE }}$ HIGH to High $\mathbf{Z}^{[8,9]}$		8		8		10		15		15	ns
t_{PU}	$\overline{\overline{C E}}$ LOW to Power-Up	0		0		0		0		0		ns
t_{PD}	$\overline{\text { CE }}$ HIGH to Power-Down		15		20		20		20		25	ns
WRITE CYCLE ${ }^{[10]}$												
t_{WC}	Write Cycle Time	15		20		20		25		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\overline{C E}}$ LOW to Write End	12		15		20		25		30		ns
t_{AW}	Address Set-Up to Write End	12		15		20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
tpWE	WE Pulse Width	12		15		15		20		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		10		10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[8,9]}$		7		7		7		10		15	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\mathrm{WE}} \mathrm{HIGH} \text { to Low } \mathrm{Z}^{[8]}$	5		5		5		5		5		ns

Notes:

6. Tested initially and after any design or process changes that may affect these parameters.
7. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
8. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.
9. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
10. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signal must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

CYPRESS

Switching Waveforms

Read Cycle No. $2^{[11,13]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[10]}$

C167A-7

Notes:
11. $\overline{\mathrm{WE}}$ is high for read cycle.
12. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\text { CE }}$ Controlled) ${ }^{[10, ~ 14]}$

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Ordering Information

Speed (ns)	$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & (\mathbf{m A}) \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
15	80	CY7C167A-15PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C167A-15VC	V5	20-Lead Molded SOJ	
20	80	CY7C167A-20PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C167A-20VC	V5	20-Lead Molded SOJ	
		CY7C167A-20DMB	D6	20-Lead (300-Mil) CerDIP	Military
25	60	CY7C167A-25PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C167A-25VC	V5	20-Lead Molded SOJ	
		CY7C167A-25DMB	D6	20-Lead (300-Mil) CerDIP	Military
35	60	CY7C167A-35PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C167A-35VC	V5	20-Lead Molded SOJ	
		CY7C167A-35DMB	D6	20-Lead (300-Mil) CerDIP	Military
45	50	CY7C167A-45DMB	D6	20-Lead (300-Mil) CerDIP	Military

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Document \#: 38-00093-C

Switching Characteristics

Parameter	Subgroups		
READ CYCLE			
t_{RC}	$7,8,9,10,11$		
t_{AA}	$7,8,9,10,11$		
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$		
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$		
WRITE CYCLE			
t_{WC}			
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$		
t_{AW}	$7,8,9,10,11$		
t_{HA}			
t_{SA}	$7,8,9,10,11$		
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$		
t_{SD}	$7,8,9,10,11$		
t_{HD}	$7,8,9,10,11$		
			$7,8,9,10,11$

Features

- Automatic power-down when deselected (7C168A)
- CMOS for optimum speed/power
- High speed
$-t_{A A}=15 \mathrm{~ns}$
$-\mathbf{t}_{\mathrm{ACE}}=10 \mathrm{~ns}(7 \mathrm{C169A})$
- Low active power
$-385 \mathrm{~mW}$
- Low standby power (7C168)
$-83 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- $\mathbf{V}_{\mathbf{I H}}$ of $\mathbf{2 . 2 V}$
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C168A and CY7C169A are highperformance CMOS static RAMs organized as 4096 by 4 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. The CY7C168A has an automatic power-down feature, reducing the power consumption by 77% when deselected.
Writing to the device is accomplished when the chip select ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE})}$ inputs are both LOW. Data on the four data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$)
is written into the memory location specified on the address pins (A_{0} through A_{11}). Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}$) LOW, while (WE) remains HIGH. Under these conditions, the contents of the location specified on the address pins will appear on the four data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$).
The input/output pins remain in a high-impedance state when chip enable is HIGH or write enable ($\overline{\mathrm{WE}}$) is LOW.
A die coat is used to insure alpha immunity.

Selection Guide

	7C168A-15 7C169A-15	7C168A-20 7C169A-20	7C168A-25 7C169A-25	7C168A-35 7C169A-35	7C168A-45	
	15	20	25	35	45	
Maximum Operating Current (mA)	Commercial	115	90	70	70	
	Military		90	80	70	70

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 20 to Pin 10)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\quad \mathrm{V}_{\mathrm{IL}} \mathrm{min} .=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C168A-25 } \\ & \text { 7C169A-25 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 168 \mathrm{~A}-35 \\ & \text { 7C169A-35 } \end{aligned}$		7C168A-45		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[3]}$			-0.5	0.8	-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	10	-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-10	+10	-50	50	-50	50	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		70		70			mA
			Mil		80		70		70	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{C C}, \\ & \overline{C E} \geq V_{I H} \end{aligned}$	Com'l		20		20			mA
			Mil		20		20		20	
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{C C}, \\ & \mathrm{CE} \geq \mathrm{VCC}-0.3 \mathrm{~V} \end{aligned}$	Com'l		20		20			mA
			Mil		20		20		20	

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
CoUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms

Equivalent to:

Notes:
5. Tested initially and after any design or process changes that may affect these parameters.
6. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.

Switching Characteristics Over the Operating Range ${ }^{[3,6]}$

Parameter	Description	$\begin{aligned} & \hline 7 \mathrm{C} 168 \mathrm{~A}-15 \\ & 7 \mathrm{C} 169 \mathrm{~A}-15 \end{aligned}$		$\begin{aligned} & \text { 7C168A-20 } \\ & \text { 7C169A-20 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 168 \mathrm{~A}-25 \\ & \text { 7C169A-25 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	15		20		25		ns
t_{AA}	Address to Data Valid		15		20		25	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\mathrm{ACE}}$	Power Supply Current		15		20		25	ns
			10		12		15	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7,8]}$	5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\text { CE }}$ HIGH to High $\mathrm{Z}^{[7,9]}$		8		8		10	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}$ LOW to Power Up (7C168)	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down (7C168)		15		20		20	ns
$\mathrm{t}_{\mathrm{RCS}}$	Read Command Set-Up	0		0		0		ns
$\mathrm{t}_{\mathrm{RCH}}$	Read Command Hold	0		0		0		ns

WRITE CYCLE ${ }^{[10]}$

t_{WC}	Write Cycle Time	15		20		20		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE LOW }}$ to Write End	12		15		20		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		15		20		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	12		15		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		10		10		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	7		7		7		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,9]}$		5		5		5	ns

Notes:

7. At any given temperature and voltage condition, $\mathbf{T}_{H Z}$ is less than $t_{L Z}$ for all devices. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage with specified loading in part (b) of AC Test Loads and Waveforms.
8. 3-ns minimum for the CY 7 C 169 A .
9. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (a) of Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
10. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and WE LOW. Both signal must be LOW to initiate a write and either signal can terminate a write by going high. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
11. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
12. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition low.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Characteristics Over the Operating Range ${ }^{[3,6]}$ (continued)

Parameter	Description	$\begin{aligned} & \hline \text { 7C168A-35 } \\ & \text { 7C169A-35 } \end{aligned}$		7C168A-45		Unit
		Min.	Max.	Min.	Max.	
READ CYCLE						
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	35		45		ns
t_{AA}	Address to Data Valid		35		45	ns
toha	Output Hold from Address Change	5		5		ns
$\mathrm{t}_{\text {ACE }}$			35		45	ns
	7C169A		25			ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7,8]}$	5		5		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,9]}$		15		15	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}$ LOW to Power Up (7C168)	0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down (7C168)		20		25	ns
$\mathrm{t}_{\text {RCS }}$	Read Command Set-Up	0		0		ns
$\mathrm{t}_{\mathrm{RCH}}$	Read Command Hold	0		0		ns
WRITE CYCLE ${ }^{[10]}$						
$t_{\text {WC }}$	Write Cycle Time	25		40		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE LOW }}$ to Write End	25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	25		30		ns
t_{HA}	Address Hold from Write End	0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		ns
tPWE	$\overline{\text { WE Pulse Width }}$	20		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		15		ns
t_{HD}	Data Hold from Write End	0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,9]}$		10		15	ns

Switching Waveforms

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[10]}$

Write Cycle No. 2 ($\overline{\mathrm{CS}}$ Controlled) ${ }^{[10,14]}$

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME
vs. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

TYPICAL ACCESS TIME CHANGE
vs. OUTPUT LOADING

OUTPUT SOURCE CURRENT
vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

NORMALIZED ICC vs. CYCLE TIME

Ordering Information

Speed (ns)	$\begin{array}{\|c} \mathbf{I}_{\mathbf{C C}} \\ (\mathrm{mA}) \end{array}$	Ordering Code	Package Name	Package Type	Operating Range
15	115	CY7C168A-15PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C168A-15VC	V5	20-Lead Molded SOJ	
20	90	CY7C168A-20PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C168A-20VC	V5	20-Lead Molded SOJ	
		CY7C168A-20DMB	D6	20-Lead (300-Mil) CerDIP	Military
25	70	CY7C168A-25PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C168A-25VC	V5	20-Lead Molded SOJ	
	80	CY7C168A-25DMB	D6	20-Lead (300-Mil) CerDIP	Military
35	70	CY7C168A-35PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C168A-35VC	V5	20-Lead Molded SOJ	
		CY7C168A-35DMB	D6	20-Lead (300-Mil) CerDIP	Military
45	70	CY7C168A-45DMB	D6	20-Lead (300-Mil) CerDIP	Military

Speed (ns)	$\mathbf{I}_{\mathbf{C C}}$ $(\mathbf{m A})$	Ordering Code	Package Name	Package Type	Operating Range
15	115	CY7C169A-15PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C169A-15VC	V5	20-Lead Molded SOJ	
20	90	CY7C169A-20PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C169A-20VC	V5	20-Lead Molded SOJ	
20	70	CY7C169A-25PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
	CY7C169A-25VC	V5	20-Lead Molded SOJ		
35	70	CY7C169A-35PC	P5	20-Lead (300-Mil) Molded DIP	Commercial
		CY7C169A-35VC	V5	20-Lead Molded SOJ	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}{ }^{[15]}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}{ }^{[15]}$	$1,2,3$

Note:
15. 7C168 only.

Document \#: 38-00095-E

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{RCS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{RCH}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

4K x 4 Static R/W RAM

Features

- CMOS for optimum speed/power
- High speed
$-\mathbf{t}_{\mathrm{AA}}=15 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{ACS}}=10 \mathrm{~ns}$
- Low active power
- 495 mW (commercial)
- 660 mW (military)
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge
- Output enable
- V_{IH} of 2.2 V

Functional Description

The CY7C170A is a high-performance CMOS static RAM organized as 4096 words by 4 bits. Easy memory expansion is provided by an active LOW chip select ($\overline{\mathrm{CS}}$), an active LOW output enable ($\overline{\mathrm{OE}}$) and three-state drivers.
Writing to the device is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input/output pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{3}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{11}).

Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) and output enable ($\overline{\mathrm{OE}}$) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the four data I/O pins.
The I/O pins stay in high-impedance state when chip select $(\overline{\mathrm{CS}})$ or output enable $(\overline{\mathrm{OE}})$ is HIGH, or write enable ($\overline{\mathrm{WE}})$ is LOW.
A die coat is used to insure alpha immunity.

Logic Block Diagram

C170A-1

Pin Configurations

C170A-2
SOJ
Top View

C170A-3

Selection Guide

		7C170A-15	7C170A-20	7C170A-25	7C170A-35
Maximum Access Time (ns)		15	20	25	35
Maximum Operating Current (mA)	Commercial	115	90	90	90
	Military			120	

Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 22 to Pin 21) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State .
-0.5 V to +7.0 V
DC Input Voltage \qquad -3.0 V to +7.0 V
Output Current into Outputs (LOW)
20 mA

Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{V}_{\mathrm{CU}}=5.0 \mathrm{~V}$	Output Capacitance	V_{CC}	10	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.

AC Test Loads and Waveforms

(b)
(a)

THÉVENIN EQUIVALENT
Equivalent to:
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

$$
\text { OUTPUT } 0 \longrightarrow \underbrace{167 \Omega} 01.73 \mathrm{~V}
$$

Switching Characteristics Over the Operating Range ${ }^{[1,5]}$

Parameter	Description	7C170A-15		7C170A-20		7C170A-25		7C170A-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	15		20		25		35		ns
t_{AA}	Address to Data Valid		15		20		25		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	5		5		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\text { CS }}$ LOW to Data Valid		10		15		15		25	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE }}$ LOW to Data Valid		10		10		12		15	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE }}$ LOW to Low Z	3		3		3		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[6]}$		8		8		10		12	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[7]}$	5		5		5		5		ns
$\mathrm{t}_{\text {HZCS }}$	$\overline{\text { CS }}$ HIGH to High $\mathrm{Z}^{[6,7]}$		8		8		10		15	ns
WRITE CYCLE ${ }^{[8]}$										
twC	Write Cycle Time	15		20		20		25		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\text { CS }}$ LOW to Write End	12		15		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		15		20		25		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
tpwe	WE Pulse Width	12		15		15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		10		10		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE HIGH to High Z }}$		7		7		7		10	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH to Low } \mathrm{Z}}$	5		5		5		5		ns

Notes:
5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OI}} / \mathrm{I}_{\mathrm{OH}}$, and $30-\mathrm{pF}$ load capacitance.
6. $t_{H Z C E}$ and $t_{H Z W E}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, thzCs is less than $t_{\text {LZCS }}$ for any given device. These parameters are sampled and not 100% tested.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and $\bar{W} E L O W$. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Data I / O will be high-impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
13. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms

Read Cycle No. ${ }^{[9,10]}$

Switching Waveforms (continued)

Read Cycle No. $2^{[9,11]}$

Write Cycle No. $1^{[8,12]}$

Write Cycle No. $\mathbf{2}^{[8,12,13]}$

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	
15	CY7C170A-15PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C170A-15VC	V13	24-Lead Molded SOJ	
	CY7C170A-20PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C170A-20VC	V13	24-Lead Molded SOJ	
25	CY7C170A-25PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C170A-25VC	V13	24-Lead Molded SOJ	
	CY7C170A-25DMB	D10	22-Lead (300-Mil) CerDIP	Military
35	CY7C170A-35PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C170A-35VC	V13	24-Lead Molded SOJ	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Document \#: 38-00096-C
Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	
$\mathrm{t}_{\mathrm{SCS}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\text {PWE }}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

4K x 4 Static R/W RAM Separate I/O

Features

- Automatic power-down when deselected
- CMOS for optimum speed/power
- High speed
$-\mathbf{t}_{\mathrm{AA}}=\mathbf{1 5} \mathrm{ns}$
- Transparent write (7C171A)
- Low active power
- 375 mW
- Low standby power
$-93 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001V electrostatic discharge

Functional Description

The CY7C171A and CY7C172A are highperformance CMOS static RAMs organized as 4096 by 4 bits with separate I/O. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and threestate drivers. They have an automatic pow-er-down feature, reducing the power consumption by 77% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input/output pins (I_{0} through I_{3}) is written into the memory location specified on the address pins (A_{0} through A_{11}).

Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data output pins.
The output pins remain in a high-impedance state when write enable (WE) is LOW (7C172A only), or chip enable is HIGH.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations

Selection Guide

	7C171A-15 7C172A-15	7C171A-20 7C172A-20	7C171A-25 7C172A-25	7C171A-35 7C172A-35	7C171A-45 7C172A-45		
	Maximum Access Time (ns)		15	20	25	35	45
Maximum Operating Current (mA)	Commercial	115	80	70	70		
	Military		90	80	70	70	

CY7C171A

Maximum Ratings

(Above which the usefullife may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots \ldots \ldots \ldots . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V
DC Input Voltage . -3.0 V to +7.0 V
Output Current into Outputs (LOW) 20 mA

Operating Range

Range	Ambient Temperature	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testinginformation.
3. Notmore than 1 output shouldbe shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
CoUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Note:
4. Tested initially and after any design or process changes that may affect these parameters

AC Test Loads and Waveforms

CYPRESS
SEMICONDUCTOR
Switching Characteristics Over the Operating Range ${ }^{[2,5]}$

Parameter	Description	$\begin{aligned} & \text { 7C171A-15 } \\ & \text { 7C172A-15 } \end{aligned}$		$\begin{aligned} & \text { 7C171A-20 } \\ & \text { 7C172A-20 } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { 7C171A-25 } \\ \text { 7C172A-25 } \end{array}$		$\begin{aligned} & \text { 7C171A-35 } \\ & \text { 7C172A-35 } \end{aligned}$		$\begin{array}{\|l\|} \hline \text { 7C171A-45 } \\ \text { 7C172A-45 } \end{array}$		Unit
		Min.	Max.									
READ CYCLE												
t_{RC}	Read Cycle Time	15		20		25		35		45		ns
t_{AA}	Address to Data Valid		15		20		25		35		45	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	5		5		5		5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		15		20		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\text { CE }}$ LOW to LOW ${ }^{\text {[}}{ }^{(6)}$	5		5		5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}$ HIGH to HIGH $\mathrm{Z}^{[6,7]}$		8		8		10		15		15	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE LOW }}$ to Power Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE HIGH to Power Down }}$		15		20		20		20		25	ns
$\mathrm{t}_{\text {RCS }}$	Read Command Set-Up	0		0		0		0		0		ns
$\mathrm{t}_{\mathrm{RCH}}$	Read Command Hold	0		0		0		0		0		ns
WRITE CYCLE ${ }^{\text {[}]}$												
twC	Write Cycle Time	15		20		20		25		40		ns
${ }^{\text {t }}$ SCE	$\overline{\text { CE }}$ LOW to Write End	12		15		20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		15		20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
tPWE	WE Pulse Width	12		15		15		20		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		10		10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low ${ }^{[6]}$ (7C172A)	5		5		5		5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WELOW toHigh }}{ }^{[6,7]}$ (7C172A)		7		7		7		10		15	ns
$\mathrm{t}_{\text {AWE }}$	$\overline{\text { WE LOW to Data Valid (7C171A) }}$		15		20		25		30		35	ns
$\mathrm{t}_{\mathrm{ADV}}$	Data Valid to Output Valid (7C171A)		15		20		25		30		35	ns

Notes:
5. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OI}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. At any given temperature and voltage condition, t_{HZ} is less than t_{LZ} for any given device.
7. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are tested with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. The internalwrite time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and $\overline{\text { WE }}$ LOW. Both signals must be LOW to initiate a write and
either signal can terminate a write by going HIGH. The data input setup and hold timing should be referencd to the rising edge of the signal that terminates the write.
9. WE is HIGH for read cycle.
10. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
11. Address valid prior to or coincident with $\stackrel{\mathrm{CE}}{\mathrm{C}}$ transition LOW.
12. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state $(7 \mathrm{Cl} 72 \mathrm{~A})$.

Switching Waveforms

Read Cycle No. ${ }^{[9,10]}$

Switching Waveforms
Read Cycle No. ${ }^{[9,11]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[8]}$

Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[8,12]}$

Typical DC and AC Characteristics

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

OUTPUT VOLTAGE (V)

NORMALIZED ACCESS TIME

NORMALIZED ICC vs. CYCLE TIME

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C171A-15PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C171A-15VC	V13	24-Lead Molded SOJ	
20	CY7C171A-20PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C171A-20VC	V13	24-Lead Molded SOJ	
	CY7C171A-DMB	D14	24-Lead (300-Mil) CerDIP	Military
25	CY7C171A-25PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C171A-25VC	V13	24-Lead Molded SOJ	
	CY7C171A-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C171A-25LMB	L64	28-Square Leadless Chip Carrier	
35	CY7C171A-35PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C171A-35VC	V13	24-Lead Molded SOJ	
	CY7C171A-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C171A-35LMB	L64	28-Square Leadless Chip Carrier	
45	CY7C171A-45DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C171A-45LMB	L64	28-Square Leadless Chip Carrier	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C172A-5PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C172A-15VC	V13	24-Lead Molded SOJ	
20	CY7C172A-20PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C172A-20VC	V13	24-Lead Molded SOJ	
	CY7C172A-20DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C172A-20LMB	L64	28-Square Leadless Chip Carrier	
25	CY7C172A-25PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C172A-25VC	V13	24-Lead Molded SOJ	
	CY7C172A-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C172A-25LMB	L64	28-Square Leadless Chip Carrier	
35	CY7C172A-35PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C172A-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C172A-35LMB	L64	28-Square Leadless Chip Carrier	
45	CY7C172A-45DMB	D14	24-Lead (300-Mil) CerDIP	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{RCS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{RCH}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AWE}}[13]$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}[13]$	$7,8,9,10,11$

Note:

13. 7C171A only.

Document \#: 38-00104-C

Features

- Supports $\mathbf{5 0 - M H z}$ cache systems
- 32K by 9 common I/O
- BiCMOS for optimum speed/power
- 14-ns access delay (clock to output)
- Two-bit wraparound counter supporting the 486 burst sequence (7B173)
- Two-bit wraparound counter supporting the linear burst sequence (7B174)
- Separate address strobes from processor and from cache controller
- Synchronous self-timed write
- Direct interface with the processor and external cache controller
- Two complementary synchronous chip selects

- Asynchronous output enable

Functional Description

The CY7B173 and CY7B174 are 32 K by 9 synchronous cache RAMs designed to interface with high-speed microprocessors with minimum glue logic. Maximum access delay from clock rise is 14 ns . A 2-bit onchip counter captures the first address in a burst and increments the address automatically for the rest of the burst access.
The CY7B173 is designed for Intel i486-based systems; its counter follows the burst sequence of the i486. The CY7B174

32K x 9 Synchronous Cache R/W RAM

B173-1

Selector Guide

		7B173-14 $\mathbf{7 B 1 7 4 - 1 4}$	$\mathbf{7 B 1 7 3 - 1 8}$ $\mathbf{7 B 1 7 4 - 1 8}$	$\mathbf{7 B 1 7 3 - 2 1}$ $\mathbf{7 B 1 7 4 - 2 1}$
Maximum Access Time (ns)		14	18	21
Maximum Operating Current (mA)	Commercial	210	210	210
	Military		230	230

CY7B173
CY7B174

Functional Description (continued)

Single Write Accesses Initiated by ADSP
This access is initiated when the following conditions are satisfied at clock rise: (1) $\mathrm{CS}_{0}=1$ and $\overline{\mathrm{CS}}_{1}=0$ and (2) $\overline{\mathrm{ADSP}}$ is LOW. $\overline{\mathrm{ADSP}}$ triggered write cycles are completed in two clock periods. The address at A_{0} through A_{14} is loaded into the address advancement logic and delivered to the RAM core. The write signal is ignored in this cycle because the cache tag or other external logic use this clock period to perform address comparisons or protection checks. If the write is allowed to proceed, the write input to the CY7B173 and CY7B174 will be pulled LOW before the next clock rise.
If $\overline{\mathrm{WE}}$ is LOW at the next clock rise, information presented at D_{0} through D_{8} will be stored into the location specified by the address advancement logic. Because the CY7B173 and CY7B174 are common I/O devices, the output enable signal $(\overline{\mathrm{OE}})$ must be deasserted before data from the CPU is delivered to D_{0} through D_{8}. As a safety precaution, the data lines $\left(D_{0}\right.$ through $\left.D_{8}\right)$ are three-stated in the cycle where $\overline{W E}$ is sampled LOW, regardless of the state of the $\overline{\mathrm{OE}}$ input.

Single Write Accesses Initiated by $\overline{\text { ADSC }}$

This write access is initiated when the following conditions are satisfied at rising edge of the clock: (1) $\mathrm{CS}_{0}=1$ and $\overline{\mathrm{CS}}_{1}=0$, (2) $\overline{\text { ADSC }}$ is LOW, and (3) $\overline{\mathrm{WE}}$ is LOW. $\overline{\text { ADSC }}$ trigger accesses are completed in a single clock cycle.
The address at A_{0} through A_{14} is loaded into the address advancement logic and delivered to the RAM core. Information presented at D_{0} through D_{8} will be stored into the location specified by the address advancement logic. Since the CY7B173 and CY7B174 are common I/O devices, the output enable signal ($\overline{\mathrm{OE}}$) must be deasserted before data from the cache controller is delivered to D_{0} through D_{8}. As a safety precaution, the data lines (D_{0} through D_{8}) are three-stated in the cycle where $\overline{\mathrm{WE}}$ is sampled LOW regardless of the state of the $\overline{\mathrm{OE}}$ input.

Single Read Accesses

A single read access is initiated when the following conditions are satisfied at clock rise: (1) $\mathrm{CS}_{0}=1$ and $\overline{\mathrm{CS}}_{1}=0$, (2) $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW, and (3) $\overline{W E}$ is HIGH. The address at A_{0} through A_{14} is
stored into the address advancement logic and delivered to the RAM core. If the output enable ($\overline{\mathrm{OE}}$) signal is asserted (LOW), data will be available at D_{0} through D_{8} a maximum of 14 ns after clock rise.

Burst Sequences

The CY7B173 provides a 2-bit wraparound counter implementing the Intel 80486 sequence (see Table 1). Note that the burst sequence depends on the location of the first burst address.
Table 1. Counter Implementation for the Intel 80486 Sequence

First Address		Second Address		Third Address		Fourth Address	
$\mathbf{A}_{\mathbf{X}+\mathbf{1}}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A X}_{\mathbf{X}}+\mathbf{1}$	$\mathbf{A}_{\mathbf{x}}$	$\mathbf{A X}_{\mathbf{X}}+\mathbf{1}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A X X}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{X}}$
0	0	0	1	1	0	1	1
0	1	0	0	1	1	1	0
1	0	1	1	0	0	0	1
1	1	1	0	0	1	0	0

The CY7B174 provides a two-bit wraparound counter implementing a linear sequence (see Table 2).

Table 2. Counter Implementation for a Linear Sequence

First Address		Second Address		Third Address		Fourth Address	
$\mathbf{A} \mathbf{X}+\mathbf{1}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A X}_{\mathbf{X}}+\mathbf{1}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}}+\mathbf{1}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A X X}_{\mathbf{1}}+\mathbf{1}$	$\mathbf{A}_{\mathbf{X}}$
0	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0
1	0	1	1	0	0	0	1
1	1	0	0	0	1	1	0

Application Example

Figure 1 shows a 128-Kbyte secondary cache for the 486 using four CY7B173 cache RAMs and a CY7B181 cache tag. Address from the $i 486$ is checked by the cache tag at the beginning of each access. Match reset is delivered to the cache controller after 12 ns .

Figure 1. Cache Using Four CY7B173s

Pin Definitions

Signal Name	I/O	Description
$\mathrm{A}_{0}-\mathrm{A}_{14}$	I	Address Inputs
CLK	I	Clock
$\overline{\mathrm{WE}}$	I	Write Enable
$\overline{\mathrm{OE}}$	I	Output Enable
$\mathrm{CS}_{0}, \overline{\mathrm{CS}}_{1}$	I	Chip Select
$\overline{\mathrm{ADV}}$	I	Address Advance
$\overline{\mathrm{ADSP}}$	I	Processor Address Strobe
$\overline{\mathrm{ADSC}}$	I	Cache Controller Address Strobe
$\mathrm{D}_{0}-\mathrm{D}_{8}$	I / O	Data I/O
V_{CC}	-	+5V Power Supply
V_{SS}	-	Ground
$\mathrm{V}_{\mathrm{CCQ}}$	-	Output Buffer (Driver) Power Supply
$\mathrm{V}_{\mathrm{SSO}}$	-	Output Buffer (Driver) Ground
RESV	-	Reserved

Pin Descriptions

Input Signals	
CLK	Clock signal used as the reference for most on-chip operations.
$\overline{\text { ADSP }}$	Address strobe signal from the processor: $\overline{\mathrm{ADSP}}$ is asserted when the processor address is valid. If $\overline{\mathrm{ADSP}}$ is LOW at clock rise, the address at A_{0} through A_{14} will be loaded into the address register and the address advancement logic. The write signal, $\overline{\mathrm{WE}}$, is ignored in the clock cycle where $\overline{\mathrm{ADSP}}$ is asserted. If both $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ are active at clock rise, only ADSP will be recognized.
$\overline{\text { ADSC }}$	Address strobe signal from the cache controller: $\overline{\text { ADSC }}$ is asserted when a new address generated by the cache controller is ready to be strobed into the CY7B173/4. The write signal, $\overline{\mathrm{WE}, \text { is recognized in the clock cycle where } \overline{\mathrm{ADSC}}}$ is asserted. If both $\overline{\mathrm{ADSP}}$ and $\overline{\mathrm{ADSC}}$ are active at clock rise, only $\overline{\mathrm{ADSP}}$ will be recognized.
$\mathrm{A}_{0}-\mathrm{A}_{14}$	Address lines: These address inputs are loaded into the address register and the address advancement logic at clock rise if ADSP or $\overline{\mathrm{ADSC}}$ is LOW. They are used to select one of the 32 K locations.
$\overline{\text { WE }}$	Write Enable: This signal is sampled at the rising edge of the clock signal. If $\overline{\mathrm{WE}}=0$, a self-timed write operation will be initiated and data on $\mathrm{D}_{0}-\mathrm{D}_{8}$ will be stored into the selected memory location. The only exception occurs if both $\overline{\mathrm{ADSP}}$ and $\overline{\mathrm{WE}}$ are LOW at clock rise. In this case, the write signal is ignored.
$\overline{\text { ADV }}$	Address Advance input: $\overline{\text { ADV }}$ is sampled at the rising edge of the clock. In the case of the CY7B173, LOW at this input will advance the address in the advancement logic according to the Intel 80486 burst sequence. In the case of the CY7B174, the addresses will be advanced linearly. This input is ignored if ADSP or ADSC is active (LOW).
$\mathrm{CS}_{0}-\overline{\mathrm{CS}}_{1}$	Chip Select inputs: CS_{0} is active HIGH and $\overline{\mathrm{CS}}_{1}$ is active LOW. Both inputs are sampled at clock rise if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW. The RAM is selected if $\mathrm{CS}_{0}=1$ and $\mathrm{CS}_{1}=0$.
$\overline{\mathrm{OE}}$	Output Enable: $\overline{\mathrm{OE}}$ is an asynchronous signal that disables all output drivers $\left(\mathrm{D}_{0}-\mathrm{D}_{8}\right)$ when it is deasserted. $\overline{\mathrm{OE}}$ should be deasserted during write cycles because the CY7B173/4 is a common I/O device and three-state conflict may occur at the data pins.
NC	No Connect: This input can be left floating or tied to $\mathrm{V}_{\text {SS }}$ or V_{CC}.
Bidirectional Signals	
$\mathrm{D}_{0}-\mathrm{D}_{8}$	Data I/O lines: During a read cycle, if $\overline{O E}$ is asserted, data in the selected location will appear at these pins. During a write cycle, data presented at these pins is captured at clock rise and stored into the selected RAM location if WE is LOW. All nine outputs will be placed in a three-state condition when OE is deasserted, when the RAM is deselected via the chip select inputs, or during a write cycle.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to GND $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]} \ldots \ldots \ldots \ldots . . .$.
Current into Outputs (LOW)
20 mA

Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature${ }^{[2]}$	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		$\begin{aligned} & \hline 7 \mathrm{B173-14} \\ & 7 \mathrm{~B} 174-14 \end{aligned}$		$\begin{aligned} & \text { 7B173-18,21 } \\ & 7 \mathrm{7B174-18.21} \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-100	+100	-100	+100	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$			-300		-300	mA
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		210		210	mA
			Mil				230	

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$: Addresses	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	4.5	pF
$\mathrm{C}_{\text {IN }}$: Other Inputs			6	pF
Cout	Output Capacitance		13	pF

Notes:

1. $\quad \mathrm{V}_{\mathrm{IL}}(\min)=.-1.5 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters (PLCC package).

AC Test Loads and Waveforms

ALL INPUT PULSES

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } 0 \text { 167 } 1.73 \mathrm{~V}
$$

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	$\begin{aligned} & \hline 7 \mathrm{B173-14} \\ & 7 \mathrm{B174-14} \end{aligned}$		$\begin{aligned} & \hline 7 B 173-18 \\ & \text { 7B174-18 } \end{aligned}$		$\begin{aligned} & \hline 7 B 173-21 \\ & 7 \mathrm{B173-21} \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Clock Cycle Time	20		25		30		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency		50		40		33	MHz
t_{CH}	Clock HIGH	8		10		12		ns
t_{CL}	Clock LOW	8		10		12		ns
t_{AS}	Address Set-Up Before CLK Rise	2		4		5		ns
t_{AH}	Address Hold After CLK Rise	2		3		4		ns
${ }^{\text {t }}$ CDV	Data Output Valid After CLK Rise		14		18		21	ns
$\mathrm{t}_{\mathrm{DOH}}$	Data Output Hold After CLK Rise	3		3		3		ns
$\mathrm{t}_{\text {ADS }}$	$\overline{\text { ADSP, }}$ ADSC Set-Up Before CLK Rise	3		4		5		ns
$\mathrm{t}_{\text {ADH }}$	$\overline{\text { ADSP, }}$ ADSC Hold After CLK Rise	2		3		4		ns
$\mathrm{t}_{\text {WES }}$	W̄ Set-Up Before CLK Rise	3		4		5		ns
$t_{\text {WEH }}$	$\overline{\text { WE Hold After CLK Rise }}$	2		3		4		ns
$\mathrm{t}_{\text {ADVS }}$	$\overline{\text { ADV Set-Up Before CLK Rise }}$	3		4		5		ns
$\mathrm{t}_{\text {ADVH }}$	$\overline{\text { ADV }}$ Hold After CLK Rise	2		3		4		ns
t_{DS}	Data Input Set-Up Before CLK Rise	3		4		5		ns
t_{DH}	Data Input Hold After CLK Rise	2		3		4		ns
$\mathrm{t}_{\mathrm{CSS}}$	Chip Select Set-Up	3		4		5		ns
$\mathrm{t}_{\text {CSH }}$	Chip Select Hold After CLK Rise	2		3		4		ns
$\mathrm{t}_{\mathrm{CSOZ}}$	Chip Select Sampled to Output High Z ${ }^{[6,7]}$		10		12		14	ns
$\mathrm{t}_{\mathrm{CSOV}}$	Chip Select Sampled to Output Valid	3	14	3	18	3	21	ns
${ }^{\text {t }}$ EOZ	$\overline{\mathrm{OE}}$ HIGH to Output High $\mathrm{Z}^{[6]}$		7		9		11	ns
teov	$\overline{\mathrm{OE}}$ LOW to Output Valid		7		9		11	ns
$\mathrm{t}_{\text {WEOZ }}$	$\overline{\text { WE }}$ Sampled LOW to Output High $\mathrm{Z}^{[6]}$		10		12		14	ns
tweov	$\overline{\text { WE Sampled HIGH to Output Valid }}$	3	14	3	18	3	21	ns

Notes:

5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $85-\mathrm{pF}$ load capacitance.
6. $t_{\mathrm{CSOZ}}, \mathrm{t}_{\mathrm{EOZ}}$, and $\mathrm{t}_{\mathrm{WEOZ}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given voltage and temperature, $\mathrm{t}_{\mathrm{CSOZ}}\left(\mathrm{t}_{\mathrm{WEOZ}}\right)$ min. is less than $\mathrm{t}_{\mathrm{CSOV}}$ (tWEOV) min.

Switching Waveforms

Single Read

B173-7

Single 486 Write

Switching Waveforms (continued)
Single Cache Controller Write

Burst Read Sequence with Four Accesses

Switching Waveforms (continued)

Cache Controller Burst Write Sequence with Four Accesses Followed by a Single Read Cycle

Output (Controlled by $\overline{\mathrm{OE}}$)

CY7B173
CY7B174

Switching Waveforms (continued)
Output Timing (Controlled by CS)

ASSERTED
B173-12

Output Timing (Controlled by $\overline{\mathbf{W E}}$)

Ordering Information

Speed (ns)	Ordering Code	Package Name	Operating Range	
14	CY7B173-14JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
18	CY7B173-18JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B173-18LC	L67	44-Square Leadless Chip Carrier	
	CY7B173-18LMB	L67	44-Square Leadless Chip Carrier	Military
	CY7B173-21JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B173-21LC	L67	44-Square Leadless Chip Carrier	
	CY7B173-21LMB	L67	44-Square Leadless Chip Carrier	Military

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
14	CY7B174-14JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
18	CY7B174-18JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B174-18LC	L67	44-Square Leadless Chip Carrier	
	CY7B174-18LMB	L67	44-Square Leadless Chip Carrier	Military
	CY7B174-21JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B174-21LC	L67	44-Square Leadless Chip Carrier	
	CY7B174-21LMB	L67	44-Square Leadless Chip Carrier	Military

Document \#: 38-00154-B

Features

- Supports 66-MHz Pentium ${ }^{\text {m }}$ CPU cache systems
- Available in standard PLCC/LCC
- BiCMOS for optimum speed/power
- 7.5-ns access delay (clock to output) with 0 pF
- 9-ns access delay (clock to output) with 85 pF
- Two-bit wraparound counter supporting the i486/Pentium microprocessor burst sequence (7B173A)
- Two-bit wraparound counter supporting the linear burst sequence (7B174A)
- Separate address strobes from processor and from cache controller
- Synchronous self-timed write
- Internal clamp diodes
- Direct interface with the processor and external cache controller
- Two complementary synchronous chip enables
- Asynchronous output enable
- JEDEC-standard 44-pin PLCC pinout

Functional Description

The CY7B173A and CY7B174A are 32 K by 9 synchronous cache RAMs designed to interface with high-speed microprocessors with minimum glue logic. A two-bit onchip counter captures the first address in a burst and increments the address automatically for the rest of the burst access.
The CY7B173A is designed for Intel 1486 and Pentium microprocessor-based systems; its counter follows the burst sequence of the i486 and Pentium micropro-

32K x 9 Synchronous Cache R/W RAM

cessors. The CY7B174A is architected for other processors with linear burst sequences. Burst accesses can be initiated with the processor address strobe ($\overline{\mathrm{ADSP}}$) or the cache controller address strobe ($\overline{\mathrm{ADSC}}$) inputs. Address advancement is controlled by the address advancement ($\overline{\mathrm{ADV}}$) input.

A synchronous self-timed write mechanism is provided to simplify the write interface. Two complementary synchronous chip select inputs are provided to support two banks of memory (256 Kbytes) with no external logic. These signals, in conjunction with the asynchronous output enable $(\overline{\mathrm{OE}})$ signal, greatly simplify memory bank selection. The I/O and ADDR pins have internal clamp diodes to prevent overshoot and undershoot. The part is available in PLCC/LCC packages.

Selector Guide

		$\mathbf{7 B 1 7 3 A}-9$ $\mathbf{7 B 1 7 4 A}-9$	7B173A-10 $\mathbf{7 B 1 7 4 A}-10$	$\mathbf{7 B 1 7 3 A} \mathbf{7 1 4}$ $\mathbf{7 B 1 7 4 A}-\mathbf{1 4}$
Maximum Access Time (ns)	7.5	8.5	11.5	
Maximum Operating Current (mA)	Commercial	210	210	180
	Military			250

[^12]
Functional Description (continued)

Single-Write Accesses Initiated by ADSP
This access is initiated when the following conditions are satisfied at clock rise: (1) $\mathrm{CE}_{0}=1$ and $\overline{\mathrm{CE}}_{1}=0$ and (2) $\overline{\mathrm{ADSP}}$ is LOW. $\overline{\mathrm{ADSP}}$ triggered write cycles are completed in two clock periods. The address at A_{0} through A_{14} is loaded into the address advancement logic and delivered to the RAM core. The write signal is ignored in this cycle because the cache tag or other external logic use this clock period to perform address comparisons or protection checks. If the write is allowed to proceed, the write input to the CY7B173A and CY7B174A will be pulled LOW before the next clock rise.
If $\overline{W E}$ is LOW at the next clock rise, information presented at D_{0} through D_{8} will be stored into the location specified by the address advancement logic. Because the CY7B173A and CY7B174A are common I/O devices, the output enable signal ($\overline{\mathrm{OE}}$) must be deasserted before data from the CPU is delivered to D_{0} through D_{8}. As a safety precaution, the data lines $\left(\mathrm{D}_{0}\right.$ through $\left.\mathrm{D}_{8}\right)$ are three-stated in the cycle where $\overline{W E}$ is sampled LOW, regardless of the state of the $\overline{\mathrm{OE}}$ input.

Single-Write Accesses Initiated by $\overline{\text { ADSC }}$

This write access is initiated when the following conditions are satisfied at the rising edge of the clock: (1) $\mathrm{CE}_{0}=1$ and $\overline{\mathrm{CE}}_{1}=0$, (2) $\overline{\text { ADSC }}$ is LOW, and (3) $\overline{\mathrm{WE}}$ is LOW. ADSC-triggered accesses are completed in a single clock cycle.
The address at A_{0} through A_{14} is loaded into the address advancement logic and delivered to the RAM core. Information presented at D_{0} through D_{8} will be stored into the location specified by the address advancement logic. Since the CY7B173A and CY7B174A are common I/O devices, the output enable signal ($\overline{\mathrm{OE}})$ must be deasserted before data from the cache controller is delivered to D_{0} through D_{8}. As a safety precaution, the data lines $\left(\mathrm{D}_{0}\right.$ through D_{8}) are three-stated in the cycle where $\overline{\mathrm{WE}}$ is sampled LOW regardless of the state of the $\overline{\mathrm{OE}}$ input.

Single-Read Accesses

A single read access is initiated when the following conditions are satisfied at clock rise: $(1) \mathrm{CE}=1$ and $\overline{\mathrm{CE}}_{1}=0$, (2) $\overline{\mathrm{ADSP}}$ or $\overline{\text { ADSC }}$ is LOW, and (3) $\overline{\mathrm{WE}}$ is HIGH. The address at A_{0} through A_{14} is stored into the address advancement logic and delivered to
the RAM core. If the output enable ($\overline{\mathrm{OE}}$) signal is asserted (LOW), data will be available at D_{0} through D_{8} a maximum of 14 ns after clock rise.

Burst Sequences

The CY7B173A provides a two-bit wraparound counter implementing the Intel $80486 /$ Pentium sequence (see Table 1). Note that the burst sequence depends on the location of the first burst address.

Table 1. Counter Implementation for the Intel 80486/Pentium Sequence

First Address		Second Address		Third Address		Fourth Address	
$\mathbf{A} \mathbf{X}+\mathbf{1}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A X X}_{\mathbf{+ 1}}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A X X}_{\mathbf{+ 1}}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A X X}_{\mathbf{X}} \mathbf{1}$	$\mathbf{A}_{\mathbf{X}}$
0	0	0	1	1	0	1	1
0	1	0	0	1	1	1	0
1	0	1	1	0	0	0	1
1	1	1	0	0	1	0	0

The CY7B174A provides a two-bit wraparound counter implementing a linear sequence (see Table 2).

Table 2. Counter Implementation for a Linear Sequence

First Address		Second Address		Third Address		Fourth Address	
$\mathbf{A X X}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A X}_{\mathbf{X}}+\mathbf{1}$	$\mathbf{A}_{\mathbf{x}}$	$\mathbf{A X}_{\mathbf{X}}+\mathbf{1}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}+\mathbf{1}}$	$\mathbf{A}_{\mathbf{X}}$
0	0	0	1	1	0	1	1
0	1	1	0	1	1	0	0
1	0	1	1	0	0	0	1
1	1	0	0	0	1	1	0

Application Example

Figure 1 shows a 128-Kbyte secondary cache for the $i 486$ using four CY7B173A cache RAMs and a CY7B181 cache tag. Address from the $i 486$ is checked by the cache tag at the beginning of each access. Match reset is delivered to the cache controller after 10 ns . This same arrangement can be used with the Pentium processor.

Figure 1. Cache Using Four CY7B173As

PRELIMINARY

Pin Definitions

Signal Name	I/O	Description
$\mathrm{A}_{0}-\mathrm{A}_{14}$	I	Address Inputs
CLK	I	Clock
$\overline{\mathrm{WE}}$	I	Write Enable
$\overline{\mathrm{OE}}$	I	Output Enable
$\mathrm{CE}_{0}, \overline{\mathrm{CE}}_{1}$	I	Chip Enables
$\overline{\mathrm{ADV}}$	I	Address Advance
$\overline{\mathrm{ADSP}}$	I	Processor Address Strobe
$\overline{\mathrm{ADSC}}$	I	Cache Controller Address Strobe
$\mathrm{D}_{0}-\mathrm{D}_{8}$	I / O	Data I/O
V_{CC}	-	+5V Power Supply
V_{SS}	-	Ground
$\mathrm{V}_{\mathrm{CCQ}}$	-	Output Buffer (Driver) Power Supply
$\mathrm{V}_{\mathrm{SSQ}}$	-	Output Buffer (Driver) Ground
NC	-	Not Connected Internally

Pin Descriptions

Input Signals	
CLK	Clock signal used as the reference for most on-chip operations.
$\overline{\text { ADSP }}$	Address strobe signal from the processor: $\overline{\mathrm{ADSP}}$ is asserted when the processor address is valid. If $\overline{\mathrm{ADSP}}$ is LOW at clock rise, the address at A_{0} through A_{14} will be loaded into the address register and the address advancement logic. The write signal, $\overline{\mathrm{WE}}$, is ignored in the clock cycle where $\overline{\mathrm{ADSP}}$ is asserted. If both $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ are active at clock rise, only $\widehat{\mathrm{ADSP}}$ will be recognized.
$\overline{\text { ADSC }}$	Address strobe signal from the cache controller: $\overline{\mathrm{ADSC}}$ is asserted when a new address generated by the cache controller is ready to be strobed into the CY7B173A/4A. The write signal, $\overline{\mathrm{WE}}$, is recognized in the clock cycle where $\overline{\mathrm{ADSC}}$ is asserted. If both $\overline{\mathrm{ADSP}}$ and $\overline{\mathrm{ADSC}}$ are active at clock rise, only $\overline{\mathrm{ADSP}}$ will be recognized.
$\mathrm{A}_{0}-\mathrm{A}_{14}$	Address lines: These address inputs are loaded into the address register and the address advancement logic at clock rise if $\overline{A D S P}$ or $\overline{\mathrm{ADSC}}$ is LOW. They are used to select one of the 32 K locations.
$\overline{\mathrm{WE}}$	Write Enable: This signal is sampled at the rising edge of the clock signal. If $\overline{\mathrm{WE}}=0$, a self-timed write operation will be initiated and data on $D_{0}-D_{8}$ will be stored into the selected memory location. The only exception occurs if both $\overline{\mathrm{ADSP}}$ and $\overline{\mathrm{WE}}$ are LOW at clock rise. In this case, the write signal is ignored.
$\overline{\text { ADV }}$	Address Advance input: $\overline{\mathrm{ADV}}$ is sampled at the rising edge of the clock. In the case of the CY7B173A, LOW at this input will advance the address in the advancement logic according to the Intel 80486 burst sequence. In the case of the CY7B174A, the addresses will be advanced linearly. This input is ignored if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is active (LOW).
$\mathrm{CE}_{0}-\overline{\mathrm{CE}}_{1}$	Chip Enable inputs: CE_{0} is active HIGH and $\overline{\mathrm{CE}}_{1}$ is active LOW. Both inputs are sampled at clock rise if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW. The RAM is selected if $\mathrm{CE}_{0}=1$ and $\mathrm{CE}_{1}=0$.
$\overline{\mathrm{OE}}$	Output Enable: $\overline{\mathrm{OE}}$ is an asynchronous signal that disables all output drivers $\left(\mathrm{D}_{0}-\mathrm{D}_{8}\right)$ when it is deasserted. $\overline{\mathrm{OE}}$ should be deasserted during write cycles because the CY7B173A/4A is a common I / O device and three-state conflict may occur at the data pins.
NC	Not connected internally: Can be left open or tied to V_{SS} or V_{CC}.
Bidirectional Signals	
$\mathrm{D}_{0}-\mathrm{D}_{8}$	Data I/O lines: During a read cycle, if $\overline{\mathrm{OE}}$ is asserted, data in the selected location will appear at these pins. During a write cycle, data presented at these pins is captured at clock rise and stored into the selected RAM location if WE is LOW. All nine outputs will be placed in a three-state condition when $\overline{\mathrm{OE}}$ is deasserted, when the RAM is deselected via the chip select inputs, or during a write cycle.

SEMICONDUCTOR
PRELIMINARY
CY7B173A

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to GND $\ldots-0.5 \mathrm{~V}$ to +7.0 V DC Voltage Applied to Outputs
in High Z State

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}
$$

DC Input Voltage ${ }^{[1]} \ldots \ldots \ldots \ldots5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Static Discharge Voltage . >2001V (per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature${ }^{[2]}$	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Current into Outputs (LOW) 20 mA
Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		$\begin{array}{\|l\|} \hline 7 \mathrm{~B} 173 \mathrm{~A}-9,10 \\ \text { 7B174A-9, } 10 \\ \hline \end{array}$		$\begin{aligned} & 7 \mathrm{~B} 173 \mathrm{~A}-14 \\ & \text { 7B174A-14 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	$\begin{aligned} & \text { Output HIGH } \\ & \text { Voltage } \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$., $\mathrm{IOH}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I} \mathrm{IOL}=8.0 \mathrm{~mA}$			0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-10	+10	-10	+10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		210		180	mA
			Mil				250	
$\mathrm{I}_{\text {SB1 }}$	AC Standby Current	$\mathrm{CE}_{0}, \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}$, All Inputs $=$ V_{IL} or $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}=0.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geq 3.0 \mathrm{~V}$, Cycle Time $\geq \mathrm{t}_{\mathrm{CYC}}$ Min.			50		40	mA
$\mathrm{I}_{\text {SB2 }}$	CMOS Standby Current	$\begin{aligned} & \mathrm{CE}_{0}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \text { All Inputs }=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \leq 0.2 \mathrm{~V} \text {, Cycle } \\ & \text { Time } \geq \mathrm{t}_{\mathrm{CYC}} \text { Min. } \end{aligned}$			40		30	mA

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$: Addresses	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	3.5	pF
$\mathrm{C}_{\text {IN }}$: Other Inputs			4	pF
Cout	Output Capacitance		5.5	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\min .)}=-1.5 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters (PLCC package).

PRELIMINARY

Equivalent to: THÉVENIN EQUIVALENT
167Ω
OUTPUT 0.1 .73 V
Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	$\begin{aligned} & \text { 7B173A-9 } \\ & 7 \mathrm{~B} 174 \mathrm{~A}-9 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{~B} 173 \mathrm{~A}-10 \\ & \text { 7B174A-10 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{B173A}-14 \\ & \text { 7B173A-14 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Clock Cycle Time	15		16.6		20		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency		66		60		50	MHz
t_{CH}	Clock HIGH	4		5		7		ns
t_{CL}	Clock LOW	4		5		7		ns
t_{AS}	Address Set-Up Before CLK Rise	2.5		2.5		3		ns
t_{AH}	Address Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}_{\mathrm{CDV} 1}$	Data Output Valid After CLK Rise (0-pF Load)		7.5		8.5		11.5	ns
$\mathrm{t}_{\mathrm{CDV} 2}$	Data Output Valid After CLK Rise (85-pF Load)		9		6		13.5	ns
$\mathrm{t}_{\mathrm{DOH}}$	Data Output Hold After CLK Rise	3		3		3		ns
$\mathrm{t}_{\text {ADS }}$	$\overline{\text { ADSP, }}$ ADSC Set-Up Before CLK Rise	2.5		2.5		3		ns
$\mathrm{t}_{\text {ADH }}$	$\overline{\text { ADSP, }} \overline{\text { ADSC }}$ Hold After CLK Rise	0.5		0.5		1		ns
twes	WE Set-Up Before CLK Rise	2.5		2.5		3		ns
$t_{\text {WEH }}$	$\overline{\text { WE }}$ Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}_{\text {ADVS }}$	$\overline{\text { ADV }}$ Set-Up Before CLK Rise	2.5		2.5		3		ns
$\mathrm{t}_{\text {ADVH }}$	$\overline{\text { ADV Hold After CLK Rise }}$	0.5		0.5		1		ns
t_{DS}	Data Input Set-Up Before CLK Rise	2.5		2.5		3		ns
$\mathrm{t}_{\text {DH }}$	Data Input Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}_{\text {CES }}$	Chip Enable Set-Up	2.5		2.5		3		ns
$\mathrm{t}_{\text {CEH }}$	Chip Enable Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}_{\text {CEOZ }}$	Chip Enable Sampled to Output High Z ${ }^{[6,7]}$	2	6	2	6	2	7	ns
$\mathrm{t}_{\mathrm{E} O \mathrm{Z}}$	$\overline{\text { OE HIGH to Output High } \mathrm{Z}^{[6]}}$	2	6	2	6	2	7	ns
teov	$\overline{\text { OE LOW to Output Valid }}$		6		6		7	ns
$\mathrm{t}_{\text {WEOZ }}$	$\overline{\text { WE }}$ Sampled LOW to Output High $\mathrm{Z}^{[6]}$		6		6		7	ns
$\mathrm{t}_{\text {WEOV }}$	$\overline{\text { WE }}$ Sampled HIGH to Output Valid		9		9		13.5	ns

Notes:
5. Unless otherwise noted, test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $85-\mathrm{pF}$ load capacitance.
6. $t_{C S O Z}, t_{E O Z}$, and $t_{W E O Z}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given voltage and temperature, $\mathrm{t}_{\mathrm{CSOZ}}\left(\mathrm{twEOZ}^{(w)} \mathrm{min}\right.$. is less than $\mathrm{t}_{\mathrm{CSOV}}$ (twEOV) min.

Input/Output ESD and Clamp Diode Protection

(a) Input ESD and Clamp Diode

(b) Input/Output ESD and Clamp Diode

B173A-6

Switching Waveforms

Single Read

Switching Waveforms (continued)

Single Cache Controller Write

Switching Waveforms (continued)
Burst Read Sequence with Four Accesses

SEMICONDUCTOR
Switching Waveforms (continued)
Write Burst Timing: Write Initiated by $\overline{\text { ADSC }}$

Output (Controlled by $\overline{\mathbf{O E}}$)

Switching Waveforms (continued)

Write Burst Timing: Write Initiated by $\overline{\text { ADSP }}$
 SEMICONDUCTOR

Switching Waveforms (continued)

Synchronous Truth Table ${ }^{[8,9,10,11]}$

Inputs						Address	Mode
E	$\overline{\text { ADSP }}$	$\overline{\text { ADSC }}$	$\overline{\text { ADV }}$	$\overline{\mathbf{W}}$	K		
F	L	\bar{X}	X	X	L-H	N/A	Deselected
F	X	L	X	X	L-H	N/A	Deselected
T	L	X	X	X	L-H	External Address	Read Cycle, Begin Burst
T	H	L	X	L	L-H	External Address	Write Cycle, Begin Burst
T	H	L	X	H	L-H	External Address	Read Cycle, Begin Burst
X	H	H	L	L	L-H	Next Address	Write Cycle, Continue Burst
X	H	H	L	H	L-H	Next Address	Read Cycle, Continue Burst
X	H	H	H	L	L-H	Current Address	Write Cycle, Suspend Burst
X	H	H	H	H	L-H	Current Address	Read Cycle, Suspend Burst

Asynchronous Truth Table ${ }^{[8,12]}$

$\overline{\bar{E}}$ Input	Input/Output	Mode
\mathbf{L}	Data Out $\left(\mathrm{DQ}_{0}-\mathrm{DQ}_{8}\right)$	Read
\mathbf{H}	High Z	Read
\mathbf{X}	High Z, Data In $\left(\mathrm{DQ}_{0}-\mathrm{DQ}_{8}\right)$	Write
\mathbf{X}	High Z	Deselected

Notes:

8. X means Don't Care.
9. All inputs except $\overline{\mathrm{E}}$ must meet set-up and hold times for the low-to-high transition of ciock (\mathbf{K}).
10. E represents CE_{0} and $\overline{\mathrm{CE}}_{1}$. Tinplies $\overline{\mathrm{CE}}_{1}=\mathrm{L}$ and $\mathrm{CE}_{0}=\mathrm{H}$; Fimplies $\overline{\mathrm{CE}}_{1}=\mathrm{H}$ or $\mathrm{CE}_{0}=\mathrm{L}$.
11. Wait states are inserted by suspending burst.
12. For a write operation following a read operation, $\overline{\mathrm{OE}}$ must be HIGH before the input data required set-up time and heid HilGH through the input data hold time.

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
9	CY7B173A-9JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
10	CY7B173A-10JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
14	CY7B173A-14JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B173A-14LC	L67	44-Square Leadless Chip Carrier	
	CY7B173A-14LMB	L67	44-Square Leadless Chip Carrier	Military

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
9	CY7B174A-9JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
10	CY7B174A-10JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
14	CY7B174A-14JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B174A-14LC	L67	44-Square Leadless Chip Carrier	
	CY7B174A-14LMB	L67	44-Square Leadless Chịp Carrier	Military

Document \#: 38-00042-B

CYPRESS

Pentium ${ }^{(\boxed{10}}$ CPU Cache R/W RAM

Features

- Supports 66-MHz Pentium CPU cache systems
- Supports zero-wait-state performance
- 7.5-ns access delay (clock to output) with 0 pF
- 9-ns access delay (clock to output) with 85 pF
- Allows Pentium CPU address pipelining
- Available in PQFP with 25-Mil lead pitch and standard PLCC/LCC
- BiCMOS for optimum speed/power
- Two-bit wraparound counter supporting the Pentium microprocessor burst sequence
- Separate address strobes from processor and from cache controller
- Synchronous self-timed write
- Internal clamp diodes
- Direct interface with the processor and external cache controller
- Two complementary synchronous chip enables
- Asynchronous output enable
- JEDEC-standard 44-pin PLCC pinout

Functional Description

The CY7B175 is a 32 K by 9 synchronous cache RAM designed to interface with high-speed microprocessors with minimum glue logic. A two-bit on-chip counter captures the first address in a burst and increments the address automatically for the rest of the burst access.
The CY7B175 is designed for Intel Pentium microprocessor-based systems; its
counter follows the burst sequence of the Pentium microprocessor. Burst accesses can be initiated with the processor address strobe ($\overline{\mathrm{ADSP}}$) or the cache controller address strobe ($\overline{\mathrm{ADSC}}$) inputs. Address advancement is controlled by the address advancement ($\overline{\mathrm{ADV}}$) input.
A synchronous self-timed write mechanism is provided to simplify the write interface. Two complementary synchronous chip select inputs are provided to support two banks of memory (256 Kbytes) with no external logic. These signals, in conjunction with the asynchronous output enable (OE) signal, greatly simplify memory bank selection. The I/O and ADDR pins have internal clamp diodes to prevent overshoot and undershoot. The part is available in the very small outline plastic quad flat pack (PQFP) and PLCC/LCC packages.

Selector Guide

		$\mathbf{7 B 1 7 5 - 7}$	$\mathbf{7 B 1 7 5 - 8}$	$\mathbf{7 B 1 7 5 - 1 1}$
Maximum Access Time (ns)		7.5	8.5	11.5
Maximum Operating Current (mA)	Commercial	210	210	210
	Military			250

Pentium is a trademark of Intel Corporation.

Functional Description (continued)
 \section*{Single-Write Accesses Initiated by $\overline{\text { ADSP }}$}

This access is initiated when the following conditions are satisfied at clock rise: (1) $\mathrm{CE}_{0}=1$ and $\overline{\mathrm{CE}}_{1}=0$ and (2) $\overline{\mathrm{ADSP}}$ is LOW. $\overline{\mathrm{ADSP}}-$ triggered write cycles are completed in two clock periods. The address at A_{0} through A_{14} is loaded into the address advancement logic and delivered to the RAM core. The write signal is ignored in this cycle because the cache tag or other external logic use this clock period to perform address comparisons or protection checks. If the write is allowed to proceed, the write input to the CY7B175 will be pulled LOW before the next clock rise. $\overline{\mathrm{ADSP}}$ is ignored if $\mathrm{CE}_{0}=0$ or $\overline{\mathrm{CE}}_{1}$ $=1$.
If $\overline{W E}$ is LOW at the next clock rise, information presented at D_{0} through D_{8} will be stored into the location specified by the address advancement logic. Because the CY7B175 is a common I/O device, the output enable signal $(\overline{\mathrm{OE}})$ must be deasserted before data from the CPU is delivered to D_{0} through D_{8}. As a safety precaution, the data lines $\left(\mathrm{D}_{0}\right.$ through $\left.\mathrm{D}_{8}\right)$ are three-stated in the cycle where $\overline{\mathrm{WE}}$ is sampled LOW, regardless of the state of the OE input.

Single-Write Accesses Initiated by ADSC

This write access is initiated when the following conditions are satisfied at the rising edge of the clock: (1) $\mathrm{CE}_{0}=1$ and $\overline{\mathrm{CE}}_{1}=0$, (2) $\overline{\mathrm{ADSC}}$ is LOW, and (3) $\overline{\mathrm{WE}}$ is LOW. $\overline{\mathrm{ADSC}}-$ triggered accesses are completed in a single clock cycle.
The address at A_{0} through A_{14} is loaded into the address advancement logic and delivered to the RAM core. Information presented at D_{0} through D_{8} will be stored into the location specified by the address advancement logic. Since the CY7B175 is a common I/O devices, the output enable signal ($\overline{\mathrm{OE}}$) must be deasserted before data from the cache controller is delivered to D_{0} through D_{8}. As a safety precaution, the data lines (D_{0} through D_{8}) are threestated in the cycle where $\overline{W E}$ is sampled LOW regardless of the state of the $\overline{\mathrm{OE}}$ input.

Single-Read Accesses

A single read access is initiated when the following conditions are satisfied at clock rise: (1) $\mathrm{CE}_{0}=1$ and $\overline{\mathrm{CE}}_{1}=0$, (2) $\overline{\mathrm{ADSP}}$ or $\overline{\text { ADSC }}$ is LOW, and (3) WE is HIGH. The address at A_{0} through A_{14} is stored into the address advancement logic and delivered to the RAM core. If the output enable ($\overline{\mathrm{OE} \text {) signal is asserted }}$ (LOW), data will be available at D_{0} through D_{8} a maximum of 14 ns after clock rise. $\overline{\mathrm{ADSP}}$ is ignored if $\mathrm{CE}_{0}=0$ or $\overline{\mathrm{CE}}_{1}=1$.

Burst Sequences

The CY7B175 provides a two-bit wraparound counter implementing the Intel Pentium sequence (see Table 1). Note that the burst sequence depends on the location of the first burst address.

Table 1. Counter Implementation for the Intel Pentium Sequence

First Address		Second Address		Third Address		Fourth Address	
$\mathbf{A X X}_{\mathbf{+ 1}}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}}+\mathbf{1}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}}+\mathbf{1}$	$\mathbf{A}_{\mathbf{X}}$	$\mathbf{A X X}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{X}}$
0	0	0	1	1	0	1	1
0	1	0	0	1	1	1	0
$\mathbf{1}$	0	1	1	0	0	0	1
$\mathbf{1}$	1	1	0	0	1	0	0

Application Example

Figure 1 shows a 256 -Kbyte secondary cache for the Pentium microprocessor using eight CY7B175 cache RAMs and a CY7B181 cache tag. Address from the Pentium CPU is checked by the cache tag at the beginning of each access. Match reset is delivered to the cache controller after 10 ns .

Pin Definitions

Signal Name	I/O	Description
$\mathrm{A}_{0}-\mathrm{A}_{14}$	I	Address Inputs
CLK	I	Clock
$\overline{\mathrm{WE}}$	I	Write Enable
$\overline{\mathrm{OE}}$	I	Output Enable
$\mathrm{CE}_{0}, \overline{\mathrm{CE}}_{1}$	I	Chip Enables
$\overline{\mathrm{ADV}}$	I	Address Advance
$\overline{\mathrm{ADSP}}$	I	Processor Address Strobe
$\overline{\mathrm{ADSC}}$	I	Cache Controller Address Strobe
$\mathrm{D}_{0}-\mathrm{D}_{8}$	I / O	Data I/O
V_{CC}	-	+5V Power Supply
V_{SS}	-	Ground
$\mathrm{V}_{\mathrm{CCQ}}$	-	Output Buffer (Driver) Power Supply
$\mathrm{V}_{\mathrm{SSQ}}$	-	Output Buffer (Driver) Ground
NC	-	Not Connected Internally

Pin Descriptions

Input Signals	
CLK	Clock signal used as the reference for most on-chip operations.
$\overline{\mathrm{ADSP}}$	Address strobe signal from the processor: $\overline{\mathrm{ADSP}}$ is asserted when the processor address is valid. If $\overline{\mathrm{ADSP}}$ is LOW at clock rise, the address at A_{0} through A_{14} will be loaded into the address register and the address advancement logic. The write signal, $\overline{W E}$, is ignored in the clock cycle where $\overline{\mathrm{ADSP}}$ is asserted. If both $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ are active at clock rise, only $\overline{\mathrm{ADSP}}$ will be recognized. $\overline{\mathrm{ADSP}}$ is ignored when $\mathrm{CE}_{0}=0$ or $\overline{\mathrm{CE}}_{1}=1$.
$\overline{\text { ADSC }}$	Address strobe signal from the cache controller: $\overline{\mathrm{ADSC}}$ is asserted when a new address generated by the cache controller is ready to be strobed into the CY7B175/4A. The write signal, $\overline{\mathrm{WE}}$, is recognized in the clock cycle where $\overline{\mathrm{ADSC}}$ is asserted. If both $\overline{\mathrm{ADSP}}$ and $\overline{\mathrm{ADSC}}$ are active at clock rise, only $\overline{\mathrm{ADSP}}$ will be recognized.
$\mathrm{A}_{0}-\mathrm{A}_{14}$	Address lines: These address inputs are loaded into the address register and the address advancement logic at clock rise if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW. They are used to select one of the 32 K locations.
$\overline{\mathrm{WE}}$	Write Enable: This signal is sampled at the rising edge of the clock signal. If $\overline{\mathrm{WE}}=0$, a self-timed write operation will be initiated and data on $\mathrm{D}_{0}-\mathrm{D}_{8}$ will be stored into the selected memory location. The only exception occurs if both $\overline{\mathrm{ADSP}}$ and $\overline{\mathrm{WE}}$ are LOW at clock rise. In this case, the write signal is ignored.
$\overline{\text { ADV }}$	Address Advance input: $\overline{\mathrm{ADV}}$ is sampled at the rising edge of the clock. In the case of the CY7B175, LOW at this input will advance the address in the advancement logic according to the Intel 80486 burst sequence. In the case of the CY7B174A, the addresses will be advanced linearly. This input is ignored if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is active (LOW).
$\mathrm{CE}_{0}-\overline{\mathrm{CE}}_{1}$	Chip Enable inputs: CE_{0} is active HIGH and $\overline{\mathrm{CE}}_{1}$ is active LOW. If $\mathrm{CE}_{0}=0, \overline{\mathrm{CE}}_{1}=1$ and $\overline{\mathrm{ADSC}}$ is LOW, the SRAM is deselected. If $\mathrm{CE}_{0}=1, \overline{\mathrm{CE}}_{1}=0$ and $\overline{\mathrm{ADSC}}$ or $\overline{\mathrm{ADSP}}$ is LOW, a new address is captured by the address register. If $\mathrm{CE}_{0}=0$ or $\overline{\mathrm{CE}}_{0}=1, \overline{\mathrm{ADSP}}$ is ignored.
$\overline{\mathrm{OE}}$	Output Enable: $\overline{\mathrm{OE}}$ is an asynchronous signal that disables all output drivers $\left(\mathrm{D}_{0}-\mathrm{D}_{8}\right)$ when it is deasserted. $\overline{\mathrm{OE}}$ should be deasserted during write cycles because the CY7B175/4A is a common I/O device and three-state conflict may occur at the data pins.
NC	Not connected internally: Can be left open or tied to $\mathrm{V}_{\text {SS }}$ or V_{CC}.
Bidirectional Signals	
$\mathrm{D}_{0}-\mathrm{D}_{8}$	Data I/O lines: During a read cycle, if $\overline{\mathrm{OE}}$ is asserted, data in the selected location will appear at these pins. During a write cycle, data presented at these pins is captured at clock rise and stored into the selected RAM location if WE is LOW. All nine outputs will be placed in a three-state condition when $\overline{\mathrm{OE}}$ is deasserted, when the RAM is deselected via the chip select inputs, or during a write cycle.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND} \ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Static Discharge Voltage . $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

| Range | Ambient
 Temperature${ }^{[2]}$ |
| :--- | :---: | :---: |$\quad \mathbf{V}_{\mathbf{C C}}$.

Current into Outputs (LOW) 20 mA
Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		7B175-7, 8		7B175-11		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.5	0.8	-0.5	0.8	V
IIX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-1.0	+1.0	-1.0	+1.0	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-10	+10	-10	+10	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		210		210	mA
			Mil				250	
$\mathrm{I}_{\text {SB1 }}$	AC Standby Current	$\mathrm{CE}_{0}, \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\text {IH }}$, IOUT $=0 \mathrm{~mA}$, All Inputs $=$ V_{IL} or $\mathrm{V}_{\mathrm{IH}}, \mathrm{V}_{\mathrm{IL}}=0.0 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{IH}} \geq 3.0 \mathrm{~V}$, Cycle Time $\geq \mathrm{t}_{\mathrm{CYC}}$ Min.			50		50	mA
$\mathrm{I}_{\text {SB2 }}$	CMOS Standby Current	$\mathrm{CE}_{0}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ All Inputs $=\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$ or $\leq 0.2 \mathrm{~V}$, Cycle Time $\geq t_{\text {CYC }}$ Min.			40		40	mA

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$: Addresses	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	3.5	pF
C_{IN} : Other Inputs			4	pF
Cout	Output Capacitance		5.5	pF

Notes:

1. $\quad \mathrm{V}_{\mathrm{IL}(\text { min. })}=-1.5 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters (PLCC package).

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT
B175-5
OUTPUT $0 \longrightarrow 1.73 \mathrm{~V}$
Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	7B175-7		78175-8		7B175-11		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Clock Cycle Time	15		16.6		20		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency		66		60		50	MHz
${ }^{\text {t }}$ CH	Clock HIGH	4		5		7		ns
t_{CL}	Clock LOW	4		5		7		ns
$\mathrm{t}_{\text {AS }}$	Address Set-Up Before CLK Rise	2.5		2.5		3		ns
$\mathrm{t}_{\text {AH }}$	Address Hold After CLK Rise	0.5		0.5		0.5		ns
$\mathrm{t}_{\text {CDV1 }}$	Data Output Valid After CLK Rise (0-pF Load)		7.5		8.5		11.5	ns
$\mathrm{t}_{\text {CDV2 }}$	Data Output Valid After CLK Rise (85-pF Load)		9		10		13.5	ns
$\mathrm{t}_{\text {DOH }}$	Data Output Hold After CLK Rise	3		3		3		ns
$t_{\text {ADS }}$	$\overline{\mathrm{ADSP}}, \overline{\mathrm{ADSC}}$ Set-Up Before CLK Rise	2.5		2.5		3		ns
$\mathrm{t}_{\text {ADH }}$	$\overline{\text { ADSP, }} \overline{\text { ADSC }}$ Hold After CLK Rise	0.5		0.5		1		ns
$t_{\text {WES }}$	$\overline{\text { WE Set-Up Before CLK Rise }}$	2.5		2.5		3		ns
$\mathrm{t}_{\text {WEH }}$	$\overline{\text { WE }}$ Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}_{\text {ADVS }}$	$\overline{\text { ADV Set-Up Before CLK Rise }}$	2.5		2.5		3		ns
$\mathrm{t}_{\text {ADVH }}$	$\overline{\text { ADV }}$ Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}_{\text {DS }}$	Data Input Set-Up Before CLK Rise	2.5		2.5		3		ns
t_{DH}	Data Input Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}_{\text {CES }}$	Chip Enable Set-Up	2.5		2.5		3		ns
$\mathrm{t}_{\text {CEH }}$	Chip Enable Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}_{\text {CEOZ }}$	Chip Enable Sampled to Output High Z ${ }^{[6,7]}$	2	6	2	6	2	7	ns
$\mathrm{t}_{\mathrm{EOZ}}$	$\overline{\text { OE }}$ HIGH to Output High $\mathrm{Z}^{[6]}$	2	6	2	6	2	7	ns
teov	$\overline{\mathrm{OE}}$ LOW to Output Valid		6		6		6	ns
$\mathrm{t}_{\text {WEOZ }}$	$\overline{\text { WE }}$ Sampled LOW to Output High $\mathrm{Z}^{[6]}$		6		6		7	ns
twEOV	$\overline{\text { WE }}$ Sampled HIGH to Output Valid		9		10		13.5	ns

Notes:

5. Unless otherwise noted, test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $85-\mathrm{pF}$ load capacitance.
6. $\mathrm{t}_{\mathrm{CSOZ}}, \mathrm{t}_{\mathrm{EOZ}}$, and $\mathrm{t}_{\mathrm{WEOZ}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given voltage and temperature, $\mathrm{t}_{\mathrm{CSOZ}}\left(\mathrm{t}_{\mathrm{WEOZ}}\right) \mathrm{min}$. is less than $\mathrm{t}_{\mathrm{CSOV}}$ (tWEOV) min.

Input/Output ESD and Clamp Diode Protection

(a) Input ESD and Clamp Diode

(b) Input/Output ESD and Clamp Diode

Switching Waveforms

Single Read

Note:
8. If $\overline{\mathrm{ADSP}}$ is asserted while $\mathrm{CE}_{0}=0$ or $\overline{\mathrm{CE}}_{0}=1, \overline{\mathrm{ADSP}}$ will be ignored.

Switching Waveforms (continued)

Single Cache Controller Write

Switching Waveforms (continued)

Switching Waveforms (continued)
Write Burst Timing: Write Initiated by $\overline{\text { ADSC }}$

Output (Controlled by $\overline{\mathrm{OE}}$)

Switching Waveforms (continued)
Write Burst Timing: Write Initiated by $\overline{\text { ADSP }}$

B175-13

Output Timing (Controlled by CE_{0} and $\overline{\mathrm{CE}}_{1}$)

Switching Waveforms (continued)

Output Timing (Controlled by WE)

Synchronous Truth Table ${ }^{[9,10,11,12]}$

Inputs						Address	Mode
E	$\overline{\text { ADSP }}$	$\overline{\text { ADSC }}$	$\overline{\mathbf{A D V}}$	$\overline{\mathbf{W}}$	K		
F	X	L	X	X	L-H	N/A	Deselected
F	L	H	H	H	L-H	Same address as previous cycle	Read cycle ($\overline{\text { ADSP ignored) }}$
F	L	H	L	H	L-H	Incremented burst address	Read cycle, in burst sequence ($\overline{\mathrm{ADSP}}$ ignored)
F	L	H	H	L	L-H	Same address as previous cycle	Write cycle ($\overline{\text { ADSP }}$ ignored)
F	L	H	L	L	L-H	Incremented burst address	Write cycle, in burst sequence ($\overline{\mathrm{ADSP}}$ ignored)
T	L	X	X	X	L-H	External address	Read cycle, begin burst
T	H	L	X	L	L-H	External address	Write cycle, begin burst
T	H	L	X	H	L-H	External address	Read cycle, begin burst
X	H	H	L	L	L-H	Next address	Write cycle, continue burst
X	H	H	L	H	L-H	Next address	Read cycle, continue burst
X	H	H	H	L	L-H	Current address	Write cycle, suspend burst
X	H	H	H	H	L-H	Current address	Read cycle, suspend burst

Asynchronous Truth Table ${ }^{[9,11,13]}$

\mathbf{E}	Input/Output	Mode
\mathbf{T}	Data Out $\left(\mathrm{DQ}_{0}-\mathrm{DQ}_{8}\right)$	Read
F	High Z	Read
\mathbf{X}	High Z, Data In $\left(\mathrm{DQ}_{0}-\mathrm{DQ}_{8}\right)$	Write
\mathbf{X}	High Z	Deselected

Notes:
9. X means Don't Care.
10. All inputs except $\overline{\mathrm{E}}$ must meet set-up and hold times for the low-to-high transition of clock (K).
11. Erepresents CE_{0} and $\overline{\mathrm{CE}}_{1}$. Tinplies $\overline{\mathrm{CE}}_{1}=\mathrm{L}$ and $\mathrm{CE}_{0}=\mathrm{H}$; Fimplies $\overline{\mathrm{CE}}_{1}=\mathrm{H}$ or $\mathrm{CE}_{0}=\mathrm{L}$.
12. Wait states are inserted by suspending burst.
13. For a write operation following a read operation, $\overline{\mathrm{OE}}$ must be HIGH before the input data required set-up time and held high through the input data hold time.

Ordering Information

Speed (ns)	Ordering Code	Package Name	Opackage Type Range	
7.5	CY7B175-7JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B175-7NC	N67	TBD	
	CY7B175-8JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B175-8NC	N67	TBD	
	CY7B175-11JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B175-11NC	N67	TBD	
	CY7B175-11LC	L67	44-Square Leadless Chip Carrier	
	CY7B175-11LMB	L67	44-Square Leadless Chip Carrier	Military

[^13]
Features

- Supports $66-\mathrm{MHz}$ Pentium ${ }^{(1)}$ microprocessor cache systems with zero wait states
- 32K by 18 common I/O
- Fast clock-to-output times
- 8.5 ns with $0-\mathrm{pF}$ load
- 10 ns with $85-\mathrm{pF}$ load
- Two-bit wraparound counter supporting Pentium and 486 burst sequence (7C178)
- Two-bit wraparound counter supporting linear burst sequence (7C179)
- Separate processor and controller address strobes
- Direct interface with the processor and external cache controller
- Asynchronous output enable
- I/Os capable of 3.3 V operation
- Industry-standard pinout
- 52-pin PLCC and PQFP Functional Description
The CY7C178 and CY7C179 are 32 K by 18 synchronous cache RAMs designed to interface with high-speed microprocessors with minimum glue logic. Maximum access delay from clock rise is 8.5 ns . A 2-bit onchip counter captures the first address in a burst and increments the address automatically for the rest of the burst access.

32K x 18 Synchronous Cache RAM

The CY7C178 is designed for Intel Pentium and i486 CPU-based systems; its counter follows the burst sequence of the Pentium and the $i 486$ processors. The CY7C179 is architected for processors with linear burst sequences. Burst accesses can be initiated with the processor address strobe ($\overline{\mathrm{ADSP}}$) or the cache controller address strobe ($\overline{\mathrm{ADSC}}$) inputs. Address advancement is controlled by the address advancement ($\overline{\mathrm{ADV}}$) input.
A synchronous self-timed write mechanism is provided to simplify the write interface. A synchronous chip select input and an asynchronous output enable input provide easy control for bank selection and output three-state control.

- Synchronous self-timed write

Logic Block Diagram

Pin Configuration

178-2
Selector Guide

		$\mathbf{7 C 1 7 8 - 8}$ $\mathbf{7 C 1 7 9 - 8}$	$\mathbf{7 C 1 7 8 - 1 0}$ $\mathbf{7 C 1 7 9 - 1 0}$	$\mathbf{7 C 1 7 8 - 1 2}$ $\mathbf{7 C 1 7 9 - 1 2}$
Maximum Access Time (ns) (0-pF Load)		8.5	10.5	12.5
Maximum Operating Current (mA)	Commercial	295	265	215
	Military			220

[^14]1. DP_{0} and DP_{1} are functionally equivalent to DQ_{x}.

Functional Description (continued)
Single Write Accesses Initiated by $\overline{\text { ADSP }}$
This access is initiated when the following conditions are satisfied at clock rise: (1) $\overline{\mathrm{CS}}$ is LOW and (2) $\overline{\mathrm{ADSP}}$ is LOW. $\overline{\mathrm{ADSP}}$-triggered write cycles are completed in two clock periods. The address at A_{0} through A_{14} is loaded into the address register and address advancement logic and delivered to the RAM core. The write signal is ignored in this cycle because the cache tag or other external logic uses this clock period to perform address comparisons or protection checks. If the write is allowed to proceed, the write input to the CY7C178 and CY7C179 will be pulled LOW before the next clock rise. $\overline{\text { ADSP }}$ is ignored if $\overline{\mathrm{CS}}$ is HIGH.
If WH, $\overline{\mathrm{WL}}$, or both are LOW at the next clock rise, information presented at $\mathrm{DQ}_{0}-\mathrm{DQ}_{15}$ and $\mathrm{DP}_{0}-\mathrm{DP}_{1}$ will be written into the location specified by the address advancement logic. $\overline{\mathrm{WL}}$ controls the writing of $\mathrm{DQ}_{0}-\mathrm{DQ}_{7}$ and DP_{0} while $\overline{\mathrm{WH}}$ controls the writing of $\mathrm{DQ}_{8}-\mathrm{DQ}_{15}$ and DP_{1}. Because the CY7C178 and CY7C179 are common-I/O devices, the output enable signal ($\overline{\mathrm{OE}}$) must be deasserted before data from the CPU is delivered to $\mathrm{DQ}_{0}-\mathrm{DQ}_{15}$ and $\mathrm{DP}_{0}-\mathrm{DP}_{1}$. As a safety precaution, the appropriate data lines are three-stated in the cycle where $\overline{\mathrm{WH}}, \overline{\mathrm{WL}}$, or both are sampled LOW, regardless of the state of the $\overline{\mathrm{OE}}$ input.

Single Write Accesses Initiated by ADSC

This write access is initiated when the following conditions are satisfied at rising edge of the clock: (1) $\overline{\mathrm{CS}}$ is LOW, (2) $\overline{\mathrm{ADSC}}$ is LOW, and (3) WH or $\overline{\mathrm{WL}}$ are LOW. $\overline{\text { ADSC }}$ triggered accesses are completed in a single clock cycle.
The address at A_{0} through A_{14} is loaded into the address register and address advancement logic and delivered to the RAM core. Information presented at $\mathrm{DQ}_{0}-\mathrm{DQ}_{15}$ and $\mathrm{DP}_{0}-\mathrm{DP}_{1}$ will be written into the location specified by the address advancement logic. Since the CY7C178 and the CY7C179 are common-I/O devices, the output enable signal $(\overline{\mathrm{OE}})$ must be deasserted before data from the cache controller is delivered to the data and parity lines. As a safety precaution, the appropriate data and parity lines are three-stated in the cycle where WH and WLare sampled LOW regardless of the state of the $\overline{\mathrm{OE}}$ input.

Single Read Accesses

A single read access is initiated when the following conditions are satisfied at clock rise: (1) $\overline{\mathrm{CS}}$ is LOW, (2) $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW,
and (3) $\overline{\mathrm{WH}}$ and $\overline{\mathrm{WL}}$ are HIGH. The address at A_{0} through A_{14} is stored into the address advancement logic and delivered to the RAM core. If the output enable ($\overline{\mathrm{OE}}$) signal is asserted (LOW), data will be available at the data outputs a maximum of 8.5 ns after clock rise. $\overline{\mathrm{ADSP}}$ is ignored if $\overline{\mathrm{CS}}$ is HIGH.

Burst Sequences

The CY7C178 provides a 2-bit wraparound counter, fed by pins A_{0} - A ${ }_{1}$, that implements the Intel 80486 and Pentium processor's address burst sequence (see Table 1). Note that the burst sequence depends on the first burst address.

Table 1. Counter Implementation for the Intel Pentium/80486 Processor's Sequence

First Address	Second Address	Third Address	Fourth Address
$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}}+\mathbf{1}, \mathbf{A}_{\mathbf{X}}$	$\mathbf{A X}_{\mathbf{X}}+\mathbf{1}, \mathbf{A}_{\mathbf{X}}$
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

The CY7C179 provides a two-bit wraparound counter, fed by pins $\mathrm{A}_{0}-\mathrm{A}_{1}$, that implements a linear address burst sequence (see Table 2).

Table 2. Counter Implementation for a Linear Sequence

First Address	Second Address	Third Address	Fourth Address
$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{x}}$	$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{x}}$	$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{x}}$
00	01	10	11
01	10	11	00
10	11	00	01
11	00	01	10

Application Example

Figure 1 shows a 256 -Kbyte secondary cache for the Pentium microprocessor using four CY7C178 cache RAMs.

Figure 1. Cache Using Four CY7C178s

Pin Definitions

Signal Name	Type	\# of Pins	Description
VCC	Input	1	$+5 V$ Power
VCCQ	Input	4	$+5 V$ or 3.3V (Outputs)
GND	Input	1	Ground
VSSQ	Input	4	Ground (Outputs)
CLK	Input	1	Clock
$\mathrm{A}_{14}-\mathrm{A}_{0}$	Input	15	Address
$\overline{\mathrm{ADSP}}$	Input	1	Address Strobe from Processor
$\overline{\mathrm{ADSC}}$	Input	1	Address Strobe from Cache Controller
$\overline{\mathrm{WH}}$	Input	1	Write Enable - High Byte
$\overline{\mathrm{WL}}$	Input	1	Write Enable - Low Byte
$\overline{\mathrm{ADV}}$	Input	1	Advance
$\overline{\mathrm{OE}}$	Input	1	Output Enable
$\overline{\mathrm{CS}}$	Input	1	Chip Select
$\mathrm{DQ}_{15}-\mathrm{DQ}_{0}$	Input/Output	16	Regular Data
$\mathrm{DP}_{1}-\mathrm{DP}_{0}$	Input/Output	2	Parity Data

Pin Descriptions

Signal Name	I/O	Description	Signal Name	I/O	Description
Input Signals			$\overline{\mathrm{WH}}$	I	Write signal for the high-order half of the RAM array. This signal is sampled by the rising edge of CLK. If WH is sampled as LOW, i.e., asserted, the control logic will perform a self-timed write of $\mathrm{DQ}_{15}-\mathrm{DQ}_{8}$ and DP_{1} from the on-chip data register into the selected RAM location. There is one exception to this. If $\overline{\mathrm{ADSP}}, \overline{\mathrm{WH}}$, and $\overline{\mathrm{CS}}$ are asserted (LOW) at the rising edge of CLK, the write signal, $\overline{\mathrm{WH}}$, is ignored. Note that $\overline{\mathrm{ADSP}}$ has no effect on $\overline{W H}$ if $\overline{\mathrm{CS}}$ is HIGH.
CLK	I	Clock signal. It is used to capture the address, the data to be written, and the following control signals: $\overline{\mathrm{ADSP}}, \overline{\mathrm{ADSC}}, \overline{\mathrm{CS}}, \overline{\mathrm{WH}}, \overline{\mathrm{WL}}$, and $\overline{\mathrm{ADV}}$. It is also used to advance the on-chip auto-address-increment logic (when the appropriate control signals have been set).			
$\mathrm{A}_{14}-\mathrm{A}_{0}$	I	Fifteen address lines used to select one of 32 K locations. They are captured in an on-chip register on the rising edge of CLK if $\overline{\text { ADSP }}$ or $\overline{\text { ADSC }}$ is LOW. The rising edge of the clock also loads the lower two address lines, $\mathrm{A}_{1}-\mathrm{A}_{0}$, into the on-chip auto-address-increment logic if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW.	$\overline{\mathrm{W}}$	I	Write signal for the low-order half of the RAM array. This signal is sampled by the rising edge of CLK. If $\overline{W L}$ is sampled as LOW, i.e., asserted, the control logic will perform a self-timed write of $\mathrm{DQ}_{7}-\mathrm{DQ}_{0}$ and DP_{0} from the on-chip data register into the selected RAM location. There is one exception to this. If $\overline{\text { ADSP }}, \overline{\mathrm{WL}}$, and $\overline{\mathrm{CS}}$ are asserted (LOW) at the rising edge of CLK, the write signal, $\overline{\mathrm{WL}}$, is ignored. Note that $\overline{\mathrm{ADSP}}$ has no effect of $\overline{\mathrm{WL}}$ if CS is HIGH.
$\overline{\text { ADSP }}$	I	Address strobe from processor. This signal is sampled at the rising edge of CLK. When this input and/or $\overline{\mathrm{ADSC}}$ is asserted, $\mathrm{A}_{0}-\mathrm{A}_{14}$ will be captured in the on-chip address register. It also allows the lower two address bits to be loaded into the onchip auto-address-increment logic. If both $\overline{\mathrm{ADSP}}$ and $\overline{\text { ADSC }}$ are asserted at the rising edge of CLK, only $\overline{\mathrm{ADSP}}$ will be recognized. The $\overline{\mathrm{ADSP}}$ input should be connected to the $\overline{\mathrm{ADS}}$ output of the processor. $\overline{\mathrm{ADSP}}$ is ignored when $\overline{\mathrm{CS}}$ is HIGH.			
$\overline{\text { ADSC }}$	I	Address strobe from cache controller. This signal is sampled at the rising edge of CLK. When this input and/or $\overline{\mathrm{ADSP}}$ is asserted, $\mathrm{A}_{0}-\mathrm{A}_{14}$ will be captured in the on-chip address register. It also allows the lower two address bits to be loaded into the onchip auto-address-increment logic. The $\overline{\mathrm{ADSC}}$ input should not be connected to the $\overline{\mathrm{ADS}}$ output of the processor.			will be incremented according to the Pentium/486 burst sequence. This signal is ignored if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is asserted concurrently with $\overline{\mathrm{CS}}$.. Note that $\overline{\mathrm{ADSP}}$ has no effect on $\overline{\mathrm{ADV}}$ if $\overline{\mathrm{CS}}$ is HIGH.
			$\overline{\text { CS }}$	I	Chip select. This signal is sampled by the rising edge of CLK. If CS is HIGH and ADSC is LOW, the SRAM is deselected. If $\overline{\mathrm{CS}}$ is LOW and $\overline{\mathrm{ADSC}}$ or $\overline{\text { ADSP }}$ is LOW, a new address is captured by the address register. If $\overline{\mathrm{CS}}$ is $\mathrm{HIGH}, \overline{\mathrm{ADSP}}$ is ignored.

Pin Descriptions (continued)

Signal Name	I/O	Description
$\overline{\mathrm{OE}}$	I	Output enable. This signal is an asynchronous in- put that controls the direction of the data I/O pins. If $\overline{\mathrm{OE}}$ is asserted (LOW), the data pins are outputs, and the SRAM can be read (as long as $\overline{\mathrm{CS}}$ was as- serted when it was sampled at the beginning of the cycle). If $\overline{\mathrm{OE}}$ is deasserted (HIGH), the data I/O pins will be three-stated, functioning as inputs, and the SRAM can be written.

Bidirectional Signals

$\mathrm{DQ}_{15}-\mathrm{DQ}_{0} \quad \mathrm{I} / \mathrm{O} \quad$ Sixteen bidirectional data I / O lines. $\mathrm{DQ}_{15}-\mathrm{DQ}_{8}$ are inputs to and outputs from the high-order half of the $R A M$ array, while $\mathrm{DQ}_{7}-\mathrm{DQ}_{0}$ are inputs to and outputs from the low-order half of the RAM array. As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they carry the data read from the selected location in the RAM array. The direction of the data pins is controlled by $\overline{\mathrm{OE}}$: when $\overline{\mathrm{OE}}$ is high, the data pins are three-stated and can be used as inputs; when $\overline{\mathrm{OE}}$ is low, the data pins are driven by the output buffers and are outputs. $\mathrm{DQ}_{15}-\mathrm{DQ}_{8}$ and $\mathrm{DQ}_{7}-\mathrm{DQ}_{0}$ are also three-stated when $\overline{\mathrm{WH}}$ and $\overline{\mathrm{WL}}$, respectively, is sampled LOW at clock rise.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to GND $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs

DC Input Voltage ${ }^{[2]} \ldots$.

Signal Name	1/O	Description
$\mathrm{DP}_{1}-\mathrm{DP}_{0}$	I/O	Two bidirectional data I/O lines. These operate in exactly the same manner as $\mathrm{DQ}_{15}-\mathrm{DQ}_{0}$, but are named differently because their primary purpose is to store parity bits, while the DQs' primary purpose is to store ordinary data bits. DP_{1} is an input to and an output from the high-order half of the RAM array, while DP_{0} is an input to and an output from the lower-order half of the RAM array.

Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature${ }^{[3]}$	$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{C C Q}}$
Com'l	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$	$3.0 \mathrm{~V}-5.5 \mathrm{~V}$
Mil	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 5 \%$

Current into Outputs (LOW) 20 mA
Electrical Characteristics Over the Operating Range ${ }^{[4]}$

Parameter	Description	Test Conditions	$\begin{aligned} & \text { 7C178-8 } \\ & 7 \mathrm{Cl179-8} \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 178-10 \\ & 7 \mathrm{C} 179-10 \end{aligned}$		$\begin{gathered} 7 \mathrm{C} 178-12 \\ 7 \mathrm{C} 179-12 \end{gathered}$		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4	$\mathrm{V}_{\mathrm{CCQ}}$	2.4	$\mathrm{V}_{\mathrm{CCQ}}$	2.4	$\mathrm{V}_{\mathrm{CCQ}}$	V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \mathrm{~V} \end{aligned}$	2.2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \mathrm{~V} \end{aligned}$	2.2	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \mathrm{~V} \end{aligned}$	V
V_{IL}	Input LOW Voltage ${ }^{[2]}$		-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I_{X}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-1	1	-1	1	-1	1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled	-5	5	-5	5	-5	5	$\mu \mathrm{A}$

Notes:

2. Minimum voltage equals -2.0 V for pulse durations of less than 20 ns .
3. See the last page for Group A subgroup testing information.
4. T_{A} is the "instant on" case temperature.

SEMICONDUCTOR
Electrical Characteristics (continued)

Parameter	Description	Test Conditions		$\begin{aligned} & 7 \mathrm{C178-8} \\ & \text { 7C179-8 } \end{aligned}$		$\begin{array}{r} \text { 7C178-10 } \\ \text { 7C179-10 } \end{array}$		$\begin{aligned} & \text { 7C178-12 } \\ & 7 \mathrm{C179-12} \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
IOS	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{Iout}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		295		265		215	mA
			Mil			W			250	
$\mathrm{I}_{\text {SB1 }}$	Automatic CE PowerDown Current-TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \\ & \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Com'l		60		50		40	mA
			Mil						50	
$\mathrm{I}_{\text {SB2 }}$	Automatic CE PowerDown Current CMOS Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \\ & \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq \\ & \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \\ & \leq 0.3 \mathrm{~V}, \mathrm{f}=00^{[6]} \end{aligned}$	Com'l		20		20		20	mA
			Mil				5		20	

Shaded areas contain advanced information

Capacitance ${ }^{[7]}$

Parameter	Description	Test Conditions		Max	$\frac{\text { Unit }}{\mathrm{pF}}$
$\mathrm{C}_{\text {IN }}$: Addresses	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	Com'l	4	
			Mil	6	
$\mathrm{C}_{\text {IN }}$: Other Inputs			Com'l	6	pF
			Mil	8	
Cout	Output Capacitance		Com'l	6	pF
			Mil	8	

Shaded areas contain advanced information

Notes:

5. Not more than one output should be shortened at one time. Duration of the short circuit should not exceed 30 seconds.
6. Clock signal allowed to run at speed.
7. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

JIG AND SCOPE
(b)

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[8]}$

Parameter	Description	$\begin{aligned} & \hline 7 \mathrm{C178-8} \\ & 7 \mathrm{C} 179-8 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 178-10 \\ & 7 \mathrm{C} 179-10 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C178-12} \\ & \text { 7C179-12 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Clock Cycle Time	12.5		15		20		ns
t_{CH}	Clock HIGH	5		6		8		ns
t_{CL}	Clock LOW	5		6		8		ns
t_{AS}	Address Set-Up Before CLK Rise	2.5		2.5		3		ns
$\mathrm{t}_{\text {AH }}$	Address Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}_{\text {CDV1 }}$	Data Output Valid After CLK Rise, 0-pF Load		8.5		10.5		12.5	ns
$\mathrm{t}_{\text {CDV2 }}$	Data Output Valid After CLK Rise, 85-pF Load		10		12		14	ns
$t_{\text {DOH }}$	Data Output Hold After CLK Rise	3		3		3		ns
$\mathrm{t}_{\text {ADS }}$	$\overline{\text { ADSP, }}$, $\overline{\text { ADSC }}$ Set-Up Before CLK Rise	2.5		2.5		3		ns
$\mathrm{t}_{\text {ADSH }}$	$\overline{\text { ADSP, }}$ ADSC Hold After CLK Rise	0.5		0.5		1		ns
${ }^{\text {twES }}$	$\overline{\text { WH, }}$ WL Set-Up Before CLK Rise	2.5		2.5		3		ns
twEH	$\overline{\mathrm{WH}}, \overline{\mathrm{WL}}$ Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}_{\text {ADVS }}$	$\overline{\text { ADV Set-Up Before CLK Rise }}$	2.5		2.5		3		ns
$\mathrm{t}_{\text {ADVH }}$	$\overline{\text { ADV }}$ Hold After CLK Rise	0.5		0.5		1		ns
t_{DS}	Data Input Set-Up Before CLK Rise	2.5		2.5		3		ns
t_{DH}	Data Input Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}_{\text {CSS }}$	Chip Select Set-Up	2.5		2.5		3		ns
$\mathrm{t}_{\text {CSH }}$	Chip Select Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}^{\text {cSOZ }}$	Chip Select Sampled to Output High $\mathrm{Z}^{[9]}$	2	6	2	6	2	7	ns
teoz	$\overline{\text { OE HIGH to Output High }{ }^{[9]} \text {] }}$	2	6	2	6	2	7	ns
$\mathrm{t}_{\text {EOV }}$	$\overline{\mathrm{OE}}$ LOW to Output Valid		5		5		6	ns
tweoz	$\overline{\text { WHor }} \overline{\text { WLS }}$ Sampled LOW to Output High $\mathrm{Z}^{[9,10]}$		6		6		7	ns
tweov	$\overline{\text { WH }}$ or $\overline{\text { WL }}$ Sampled HIGH to Output Valid ${ }^{[10]}$		10		12		14	ns

Notes:
8. Unless otherwise noted, test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $85-\mathrm{pF}$ load capacitance.
9. ${ }^{\mathrm{t}_{\mathrm{CSOZ}}}{ }^{\mathrm{t}_{\mathrm{EOZ}}}$, and twEOZ^{2} are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
10. At any given voltage and temperature, $\mathrm{t}_{\mathrm{WEOZ}} \mathrm{min}$. is less than $\mathrm{t}_{\mathrm{WEOV}}$ min.

3
CYPRESS
PRELIMINARY

Switching Waveforms

Single Read ${ }^{[11]}$

178-7

Single Write Timing: Write Initiated by $\overline{\text { ADSP }}$

Netes:
11. $\overline{\mathrm{OE}}$ is LOW throughout this operation.
12. If $\overline{\mathrm{ADSP}}$ is asserted while $\overline{\mathrm{CS}}$ is $\mathrm{HIGH}, \overline{\mathrm{ADSP}}$ will be ignored.
13. $\overline{\mathrm{ADSP}}$ has no effect on $\overline{\mathrm{ADV}}, \overline{\mathrm{WH}}$, and $\overline{\mathrm{WL}}$ if $\overline{\mathrm{CS}}$ is HIGH .

Switching Waveforms (continued)

Burst Read Sequence with Four Accesses

Switching Waveforms (continued)

Output (Controlled by $\overline{\mathbf{O E}}$)

Write Burst Timing: Write Initiated by $\overline{\text { ADSC }}$

Switching Waveforms (continued)
Write Burst Timing: Write Initiated by $\overline{\text { ADSP }}$

Switching Waveforms (continued)

$178-13$

Truth Table

Input						Address	Operation
$\overline{\mathrm{CS}}$	$\overline{\text { ADSP }}$	$\overline{\text { ADSC }}$	$\overline{\text { ADV }}$	$\overline{\text { WH }}$ or $\overline{\mathrm{WL}}$	CLK		
H	L	H	H	H	$\mathrm{L} \rightarrow \mathrm{H}$	Same address as previous cycle	$\overline{\mathrm{ADSP}}$ ignored, read cycle
H	L	H	L	H	$\mathrm{L} \rightarrow \mathrm{H}$	Incremented burst address	$\overline{\mathrm{ADSP}}$ ignored, read cycle in burst sequence
H	L	H	H	L	$\mathrm{L} \rightarrow \mathrm{H}$	Same address as previous cycle	$\overline{\mathrm{ADSP}}$ ignored, write cycle
H	L	H	L	L	$\mathrm{L} \rightarrow \mathrm{H}$	Incremented burst address	$\overline{\text { ADSP }}$ ignored, write cycle in burst sequence
H	X	L	X	X	$\mathrm{L} \rightarrow \mathrm{H}$	N/A	Chip deselected
L	L	X	X	X	$\mathrm{L} \rightarrow \mathrm{H}$	External	Read cycle, begin burst
L	H	L	X	H	$\mathrm{L} \rightarrow \mathrm{H}$	External	Read cycle, begin burst
L	H	L	X	L	$\mathrm{L} \rightarrow \mathrm{H}$	External	Write cycle, begin burst
X	H	H	L	L	$\mathrm{L} \rightarrow \mathrm{H}$	Incremented burst address	Write cycle, in burst sequence
X	H	H	L	H	$\mathrm{L} \rightarrow \mathrm{H}$	Incremented burst address	Read cycle, in burst sequence
X	H	H	H	L	$\stackrel{L}{ }+\mathrm{H}$	Same address as previous cycle	Write cycle
X	H	H	H	H	$\mathrm{L} \rightarrow \mathrm{H}$	Same address as previous cycle	Read cycle

Ordering Information

Speed (ns)	Ordering Code	Package Name	Operating Range	
8	CY7C178-8JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C178-8NC	TBD	52-Lead Plastic Quad Flatpack	
	CY7C178-10JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C178-10NC	TBD	52-Lead Plastic Quad Flatpack	
12	CY7C178-12JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C178-10NC	TBD	52-Lead Plastic Quad Flatpack	
	CY7C178-12YMB	Y59	52-Pin Ceramic Leaded Chip Carrier	Military

Speed (ns)	Ordering Code	Package Name	Operating Range	
8	CY7C179-8JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C179-8NC	TBD	52-Lead Plastic Quad Flatpack	
	CY7C179-10JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C179-10NC	TBD	52-Lead Plastic Quad Flatpack	
12	CY7C179-12JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C179-12NC	TBD	52-Lead Plastic Quad Flatpack	
	CY7C179-12YMB	Y59	52-Pin Ceramic Leaded Chip Carrier	Military

Shaded areas contain advanced information.
Document \#: 38-00243

CY7B180 CY7B181

4K x 18 Cache Tag

Features

- Supports $\mathbf{6 6 - M H z}$ cache for all major high-speed processors
- $4 K \times 18$ tag organization
- BiCMOS for optimum speed/power
- High speed
- 10-ns match delay
- 13-ns tag SRAM access
- Selectable clock and latch modes
- Input address and data latches
- Supports multiprocessing (CY7B180) with two cache status bits per entry
- Supports dirty and valid bits (CY7B181)
-Dirty-bit set on write hit
-Two cycles to invalidate entire tag array
- Match qualified by valid bit
- Write output to cache RAM asserted during write hit
- Cascadeable
- up to four cache tags with no external logic

- Can be used as $4 \mathrm{~K} \times 18$ SRAM

Functional Description

The CY7B180 and CY7B181 are high-performance BiCMOS cache tag RAMs organized as 4096 words by 18 bits. Each word contains a 16-bit address tag field and a 2-bit status field. Because the CY7B180 is optimized for multiprocessor applications where cache coherency is important, the two status bits are unassigned and can be used to store multiprocessing cache status information. Uniprocessor applications implementing write-through or copy-back cache policies are best supported by the CY7B181. The two status bits are assigned as the valid bit and the dirty bit. To simplify the cache controller logic, the dirty bit is set automatically during a write hit. The tag field and the status field can be loaded separately via a dedicated I/O data port.
The twelve address lines select one of the 4096 words in the tag RAM. The 16 -bit tag address is matched against data presented at the Compare Data inputs. In the CY7B181, the match output is qualified by the valid bit of the chosen word. Match is
asserted only if the comparison is successful and the valid bit is set. The contents of the tag and status fields in the selected entry are available to external logic as direct output pins.
In many cache systems, generating the write signal to the cache RAMs is a timeconsuming processbecause the write signal must be qualified with the match signal from the cache tag. The CY7B180/ CY7B181 incorporates this function on-chipby asserting the write output ($\overline{\mathrm{WO}}$) whenever a write hit is detected.

Tag invalidation in the CY7B181 is controlled by the INVAL input. Holding this input low for two consecutive cycles will invalidate the entire tag RAM. Individual entries can be invalidated by writing a zero into the valid bit of that entry.
With a match delay of 10 ns and selectable clock or latch mode, the CY7B180 and CY7B181 can be used with all major high-speed microprocessors currently offered. The $13-\mathrm{ns}$ address access of these parts also allows them to be used as 4 K by 18 cache data RAMs.

Logic Block Diagrams

Pin Configurations

LCC \& PLCC
Top View

* The INVAL input is only available on the CY7B181

Pin Configurations (continued)

* Note: $\bar{N} V A L$ not supported in CY7B180.

Selection Guide

		$\begin{aligned} & 7 \mathrm{~B} 180-10 \\ & 7 \mathrm{~B} 181-10 \end{aligned}$	$\begin{aligned} & \text { 7B180-12 } \\ & \text { 7B181-12 } \end{aligned}$	$\begin{aligned} & \text { 7B180-15 } \\ & \text { 7B181-15 } \end{aligned}$	$\begin{aligned} & \text { 7B180-20 } \\ & \text { 7B181-20 } \end{aligned}$
Match Time (ns)		10	12	15	20
Maximum Operating Current (mA)	Commercial	1×340	325	315	
	Military	-		390	390

Shaded area contains preliminary information.

Functional Description (continued)

Clock Mode

The CLOCK mode is selected when the MODE input is LOW. The address, compare data, chip select, and tag select are sampled at the rising edge of CLK. Write data is sampled on the falling edge of CLK. The tag write and status write inputs are different in that they are level sampled by CLK. If CLK is HIGH, the input latches associated with the tag write and status write inputs are transparent, and these inputs are allowed to ripple into the CY7B180/ CY7B181. These inputs are latched when CLK goes LOW.

Latch Mode

The LATCH mode is selected when the MODE input is HIGH. All inputs are level sampled by LE. If $L E$ is high, the input latches are transparent and the inputs are allowed to ripple into the CY7B180/CY7B181. When LE goes LOW, the inputs are latched and are no longer sampled. However, $\overline{\text { LE }}$ must still be strobed low to initiate a self-timed write.

Tag Storage

The CY7B180/CY7B181 provides 4096 cache tag entries. Each 7B181 entry contains a 16-bit cache tag address, a valid (V) bit, and a dirty (D) bit. The same two bits in the CY7B180 are generic status bits, and their meanings must be interpreted and controlled by the external processor.
On the CY7B181, the valid bit specifies the validity of the tagentry. A match is detected only when the 16 -bit tag of the selected entry matches the 16 compare inputs and the valid bit is set. The dirty bit on the CY7B181 indicates whether the cache line associated with the tag entry has been modified and its value is available to external logic as the DIRTY output. The D bit in a selected entry on the CY7B181 is set if the current access is a write and a hit is detected. The valid bit in the selected entry is also available as the VALID output so that external logic can determine the cause of a miss:

- If the V bit is HIGH, then the miss is caused by tag mismatch.
- If the V bit is LOW, then the miss is caused by either a tag mismatch or an invalid, or both.
The cache tag entry format is shown in Figure 1.

Tag Compare

A tag compare cycle is initiated if tag select ($\overline{\mathrm{TS}})$ is HIGH. $\overline{\mathrm{TS}}$ is sampled at the rising edge of CLK (in the clock mode) or captured by the positive level of LE (in the latch mode). Once a tag entry is selected by A_{0} through A_{11}, its 16 -bit tag address is compared against CD_{0} through CD_{15}. The compare result is delivered to the match logic.
The match output of the CY7B180 is driven HIGH if the compare is successful. For the CY7B181, the compare result is qualified by the state of the valid (V) bit in the selected entry. MATCH is driven HIGH only when the compare is successful and the valid bit is set.

7B180-5

Figure 1. Cache Tag Entry Format

In addition, the write output ($\overline{\mathrm{WO}}$) of the CY7B180/CY7B181 is asserted whenever a match is detected in a CPU write cycle ($\overline{\mathrm{TS}}=$ 1 and TWR $=0$). In some applications, this signal may be connected directly to the write input of the cache RAM.

Tag Access

The tag access cycle is initiated by asserting the tag select ($\overline{\mathrm{TS}}$) input. Reading and writing is controlled by the tag write (TWR) and status write (SWR) inputs. In both clock and latch modes, the state of TWR and SWR are captured by the positive level of the CLK/ LE input. The MATCH and WO outputs remain HIGH during tag access cycles.
If TWR is HIGH, the tag address field of the selected entry is driven onto data lines D_{0} through D_{15} provided output enable $(\overline{\mathrm{OE}})$ is LOW. For the CY7B180, the state of the two generic status bits are available at the S_{0} and S_{1} outputs if $\overline{S W R}$ is HIGH. For the CY7B181, the valid and dirty bits of the chosen entry are driven onto the valid and dirty outputs if SWR is HIGH.
Changing the tag content is accomplished by asserting the TWR and SWR inputs. TWR controls the loading of the tag address field while SWR controls the loading of the status field ($\mathrm{S}_{0}, \mathrm{~S}_{1}$ in the CY7B180, valid and dirty in the CY7B181). Because the CY7B180/CY7B181 are common I/O devices, $\overline{\mathrm{OE}}$ must be driven HIGH before data is placed on the data inputs and the status inputs.

Cascade Operation

Up to four CY7B180/CY7B181s can be used in a system by connecting appropriate address lines to the four chip select inputs. A cache tag is selected only if $\overline{\mathrm{CS}}_{0}=\overline{\mathrm{CS}}_{1}=0$ and $\mathrm{CS}_{2}=\mathrm{CS}_{3}=1$. Once selected, the CY7B180/CY7B181 will either execute a tag comparison cycle or a tag access cycle (depending on the state of the TS input). If a cache tag is deselected, it disables the comparison logic and three-states match, valid, dirty, $\overline{\mathrm{WO}}$, and D_{15} through D_{0} outputs.
The four chip selects are sampled at the positive edge of CLK (in clock mode) or sampled by the positive level of LE (in latch mode). By connecting the chip selects to the appropriate address bits or logic levels (see Table 1 and Figure 2), four CY7B180/1s can be cascaded to provide 16,384 tag entries with no external logic.

Pin Descriptions

The cache tag RAM is packaged in a 68 -pin PGA, PLCC, and LCC and in an 80 -pin PQFP. The following sections are brief descriptions of the pin functions:

Supplies

$\mathrm{V}_{\mathrm{CC}}-3$ pins, connected to the +5 V power supply (6 in the PQFP package).
GND- 6 pins, connected to ground (11 in the PQFP package).

Input Signals

$\mathbf{A}_{\mathbf{1 1}}$ - $\mathbf{A}_{\mathbf{0}}$-Address from the processor, 12 pins. These inputs are registered/latched and are controlled by CLK/LE. In the clock mode, the register is positive-edge triggered. In the LATCH mode, the latch is positive-level triggered. While in LATCH mode, if the LE input is HIGH, the latch is transparent and the addresses are allowed to ripple into the CY7B180/CY7B181 to start a new access. These 12 address inputs are used to select one of the 4096 cache tag entries.

CY7B180
CY7B181

Table 1. Chip Select Connections for Cascading Four Cache Tags

Tag 1				Tag 2			
CS_{3}	CS2	$\mathbf{C S}_{1}$	$\mathbf{C S}_{0}$	CS3	CS 2	$\overline{\mathrm{CS}}_{1}$	$\overline{\mathbf{C S}}_{0}$
H	H	$\begin{aligned} & \mathrm{Adr} \\ & \mathrm{X}+1 \end{aligned}$	$\begin{gathered} \text { Adr } \\ \text { X } \end{gathered}$	H	$\overline{\mathrm{Adr}}$	L	$\begin{aligned} & \mathrm{Adr} \\ & \mathrm{X}+1 \end{aligned}$
Tag 3				Tag 4			
CS_{3}	CS ${ }_{2}$	$\overline{\mathbf{C S}}_{1}$	$\overline{\mathbf{C S}}_{\mathbf{0}}$	CS_{3}	CS_{2}	$\overline{\mathbf{C S}}_{1}$	$\overline{\mathbf{C S}}_{\mathbf{0}}$
H	$\begin{aligned} & \mathrm{Adr} \\ & \mathrm{X}+1 \end{aligned}$	L	$\begin{gathered} \mathrm{Adr} \\ \mathrm{X} \end{gathered}$	$\begin{aligned} & \mathrm{Adr} \\ & \mathrm{X}+1 \end{aligned}$	$\begin{gathered} \mathrm{Adr} \\ \mathrm{X} \end{gathered}$	L	L

Tag 1 is selected when $\mathrm{Adr} \mathrm{X}+1, \mathrm{Adr} \mathrm{X}=\mathrm{LL}$
Tag 2 is selected when Adr $\mathrm{X}+1$, Adr $\mathrm{X}=\mathrm{LH}$
Tag 3 is selected when $\mathrm{Adr} \mathrm{X}+1$, $\operatorname{Adr} \mathrm{X}=\mathrm{HL}$
Tag 4 is selected when Adr X+1, Adr X $=\mathrm{HH}$

Figure 2. Cascading the CY7B180 and CY7B181

Pin Summary

Signal	Dir.	\# of Pins	Description
V_{CC}		3	$+5 \mathrm{~V}$
GND		6	Ground
$\mathrm{A}_{11}-\mathrm{A}_{0}$	I	12	Tag Address
CLK/LE	I	1	Clock/Latch
MODE	I	1	Mode Select
$\mathrm{CD}_{15}-\mathrm{CD}_{0}$	I	16	Compare Data
$\overline{\mathrm{CS}}_{1}-\overline{\mathrm{CS}}_{0}$	I	2	Chip Selects 1 \& 0
$\mathrm{CS}_{3}-\mathrm{CS}_{2}$	I	2	Chip Selects 3 \& 2
$\overline{\mathrm{TS}}$	I	1	Tag Select
$\overline{\text { TWR }}$	I	1	Tag Write Signal
SWR	I	1	Status Write Signal
$\overline{\text { INVAL }}$	I	1	Tag Invalidate (CY7B181 only)
MATCH	0	1	Cache Match
$\overline{\text { WO }}$	O	1	Cache Write Match
VALID/S ${ }_{0}$	I/O	1	Valid/Status Bit 0
DIRTY/S ${ }_{1}$	I/O	1	Dirty/Status Bit 1
$\mathrm{D}_{15}-\mathrm{D}_{0}$	I/O	16	Processor Data
$\overline{\mathrm{OE}}$	I	1	Output Enable

Pin Descriptions (continued)
MODE-Mode select, 1 pin. The clock mode is selected by strapping the MODE input LOW. The latch mode is selected by strapping this input HIGH.
CLK/LE—Clock/Latch input, 1 pin. This input controls all input registers and latches.
$\mathbf{C D}_{15}-\mathbf{C D}_{0}$-Compare data, 16 pins. These inputs are registered/ latched by CLK/LE. In the clock mode, the register is positive-edge triggered. In the latch mode, the latch is positive-level triggered. While in the latch mode, if the LE input is HIGH, the latch is transparent and the compare data is allowed to ripple into the CY7B180/CY7B181 to the comparison logic. The contents of the compare register/latch are compared with the 16-bit tag address in the selected tag entry.
$\overline{\mathbf{C S}}_{\mathbf{0}}-\overline{\mathbf{C S}}_{\mathbf{1}}$-Chip select $0-1$, active LOW, 2 pins. These inputs are registered/latched by CLK/LE. In the clock mode, the register is positive-edge triggered. In the LATCH mode, the latch is posi-tive-level triggered. While in the LATCH mode, if the LE input is HIGH, the latch is transparent and the chip select inputs are allowed to ripple into the CY7B180/CY7B181. If $\overline{C S}_{1}, \overline{\mathrm{CS}}_{0}$ are LOW and $\mathrm{CS}_{2}, \mathrm{CS}_{3}$ are HIGH , the comparison logic and output drivers are enabled, otherwise, the comparison logic will be disabled and all output drivers will be three-stated.
$\mathbf{C S}_{2}, \mathbf{C S}_{3}$-Chip select $2-3$, active HIGH, 2 pins. These inputs are registered/latched CLK/LE. In the clock mode, the register is positive-edge triggered. In the latch mode, the latch is positive-level triggered. While in the latch mode, if the LE input is HIGH, the latch is transparent and the chip select inputs are allowed to ripple into the CY7B180/CY7B181. If $\mathrm{CS}_{2}, \mathrm{CS}_{3}$ are HIGH and $\overline{\mathrm{CS}}_{1}, \mathrm{CS}_{0}$
are LOW, the comparison logic and output drivers are enabled, otherwise, the comparison logic will be disabled and all output drivers will be three-stated.
$\overline{\mathbf{T S}}$-Tag select, active LOW, 1 pin. This input is registered/latched by CLK/LE. In the clock mode, the register is positive-edge triggered. In the latch mode, the latch is positive-level triggered. While in the latch mode, if LE is HIGH, the latch is transparent and the $\overline{\mathrm{TS}}$ is allowed to ripple into the CY7B180/CY7B181. If TS is LOW, external logic is allowed to modify (read or write) the tag entries. If $\overline{\mathrm{TS}}$ is HIGH, the tag entries are available only for address comparisons.
TWR-Tag write indicator, active LOW, 1 pin. This input is latched and is controlled by CLK/LE. In both the clock and latch modes, the latch is positive-level triggered. While CLK/LE is HIGH, the latch is transparent and TWR is allowed to ripple into the CY7B180/CY7B181. TWR is handled according to the access mode: tag access mode or tag compare mode. In the tag access mode ($\overline{\mathrm{TS}}=0$), TWR controls the access direction of the tag: a HIGH indicates a read while a LOW indicates a write. Assertion of TWR will store data on D_{15} through D_{0} into the 16-bit tag address field of the selected entry. In the tag compare mode $(\overline{\mathrm{TS}}=1)$ of the CY7B181, TWR determines the setting of the dirty bit in the selected tag entry; the D bit is set if a tag match is detected and TWR is LOW. The TWR input of the CY7B180 is ignored in the tag compare mode; the status bits S_{0} and S_{1} are not modified.
SWR-Status write indicator, active LOW, 1 pin. This input is latched by CLK/LE. In both the clock and latch modes, the latch is positive-level triggered. While CLK/LE isHIGH, the latch is transparent and SWR is allowed to ripple into the CY7B180/CY7B181. SWR is handled according to the access mode: tag access mode or tag compare mode. In the tag access mode ($\overline{\mathrm{TS}}=0$), $\overline{\text { SWR }}$ controls the access direction of the status bits in the selected tag: a HIGH indicates a read while a LOW indicates a write. Assertion of $\overline{\mathrm{SWR}}$ will store the data presented at the status inputs into the status bits of the selected entry. In the tag compare mode ($\overline{\mathrm{TS}}=1$), the state of SWR is ignored.
INVAL-Tag invalidate input, active LOW, 1 pin. This input is only available in the CY7B181. It is registered at the rising edge of CLK/LE. Assertion of INVAL overrides all other operations and clears all of the valid bits in the tag storage. The CY7B181 does not have to be selected to do an invalidation. An invalidation requires two cycles to complete; therefore, the INVAL input must be held for two rising edges of the CLK or LE signal. If the INVAL input is asserted, MATCH is forced LOW, WO is forced HIGH, VALID is forced LOW, DIRTY goes to an unknown state, and the data outputs (D_{0} through D_{15}) go to an unknown state. The INVAL input must be asserted during power-up to ensure that all of the valid bits in the tag are cleared. The contents of the tag may be modified as a result of invalidation.
$\overline{\mathrm{OE}}-$ Output enable, 1 pin . When $\overline{\mathrm{OE}}$ is HIGH , all outputs except match will be placed in a three-state condition. This pin must be asserted before the beginning of a tag write cycle to allow the external processor to drive data into the CY7B180/CY7B181.

Output Signals

MATCH-Cache match signal, active HIGH, 1 pin. A HIGH at this pin indicates a cache hit while a LOW indicates a cache miss.

This output is HIGH during all tag access cycles $(\overline{\mathrm{TS}}=0)$, except on the CY7B181 when the INVAL input is asserted. If the INVAL input on the CY7B181 is asserted, the match output is forced LOW. Match is placed in a three-state condition when the tag is deselected via the chip select signals. $\overline{\mathrm{OE}}$ has no effect on the match output.
WO--Cache write match signal, active LOW, one pin. A LOW at this pin indicates a cache hit during a memory write. A HIGH indicates a cache miss during a memory write. If the INVAL input on the CY7B181 is asserted, the WO output is forced HIGH. This output is HIGH during all tag access cycles ($\mathrm{TS}=0$). WO is placed in a three-state condition when the tag is deselected via the chip select signals or when $\overline{\mathrm{OE}}$ is HIGH .

Input/Output Signals

$\mathbf{D}_{\mathbf{1 5}}-\mathbf{D}_{\mathbf{0}}$-Datalinesto/from the processor, 16 pins. These pins are used during both tag access ($\overline{\mathrm{TS}}=0$) and tag compare ($\overline{\mathrm{TS}}=1$) cycles. During tag reads or tag compares, the tag address field of the selected tag entry is driven onto these lines. If the INVAL input on the CY7B181 is asserted, the data outputs will go to an unknown state. During tag writes, the $\overline{\mathrm{OE}}$ input must be deasserted to three-state the output drivers so that these pins may be driven by the external processor. The data inputs are registered/latched by the CY7B180/CY7B181. In the clock mode, the register is negative edge triggered. In the latch mode, the latch is positive level triggered. While in the latch mode, if LE is HIGH, the latch is transparent and the data is allowed to ripple into the CY7B180/ CY7B181. All 16 outputs will be placed in a three-state condition if the $\overline{\mathrm{OE}}$ input is deasserted (HIGH) or when the cache tag is deselected via the four chip select inputs.
VALID/ S_{0} - Valid bit (active HIGH) in CY7B181, status bit S_{0} in CY7B180, 1 pin. During tag comparison and status read cycles, this pin reflects the state of the Valid bit (in CY7B181) or status bit S_{0} (in CY7B180) of the selected entry. During status write cycles (TS and $\overline{S W R} L O W$), data presentedat thispin is registered/latched. In the clock mode, the register is negative-edge triggered. In the latch mode, the latch is positive-level triggered. This pin can be placed in a three-state condition via the chip select and output enable signals. If the INVAL input of the CY7B181 is asserted, the VALID output is forced LOW.
DIRTY/S \mathbf{S}_{1}-Dirty bit (active HIGH) in CY7B181, status bit S_{1} in CY7B180, 1 pin. During tag comparison and status read cycles, this pin reflects the state of the Dirty bit (in CY7B181) or status bit S_{1} (in CY7B180) of the selected entry. In copy-back caches using the CY7B181, the cache controller can examine this output to determine whether the cache line to be replaced should be copied back to the main memory. During status write cycles ($\overline{T S}$ and $\overline{\text { SWR }}$ LOW), data presented at this pin is registered/latched. In the clock mode, the register is negative-edge triggered. In the latch mode, the latch is positive-level triggered. This pin can be placed in a three-state condition via the chip select and output enable signals. If the INVAL input of the CY7B181 is asserted, the Dirty output will enter an unknown state.

Application Examples

A 128 -Kbyte cache for a single 68040 using four CY7B174 cache RAMs and a CY7B181 cache tag. The complexity of the cache controller is reduced because the CY7B181 generates the write enable signal to the RAM automatically during write hits.

A 128-Kbyte secondary cache for a single $i 486$ using four CY7B173 cache RAMs and a CY7B181 Cache Tag. Address from the $i 486$ is checked by the cache tag at the beginning of each access. Match result is delivered to the cache controller after 10 ns .

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to GND $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ DC Input Voltage ${ }^{[1]} \ldots \ldots \ldots \ldots . .$.
Current into Outputs (LOW) \qquad . 20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

$\left.$	Range	Ambient Temperature
2]		$\quad \mathbf{V}_{\mathbf{C C}} \right\rvert\,$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		$\begin{aligned} & 7 \mathrm{BB} 180-10 \\ & 7 \mathrm{~B} 181-10 \end{aligned}$		$\begin{aligned} & 7 \mathrm{FB} 180-12 \\ & \text { 7B181-12 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{~B} 180-15,20 \\ & 7 \mathrm{~B} 181-15,20 \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2		2.2		2.2		V
V_{IL}	Input LOW Voltage ${ }^{[1]}$			-0.5	0.8	-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OH}	Output HIGH Current	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{OH}}=2.4 \mathrm{~V}$		-2.0		-2.0		-2.0		mA
I_{OL}	Output LOW Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{OL}}=0.4 \mathrm{~V}$		4.0		4.0		4.0		mA
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max, $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300		-300	mA
I_{CC}	V_{CC} OperatingSupply Current ${ }^{4]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \\ & \text { IOUT MATCH }=0 \mathrm{~mA}, \\ & \mathrm{OE} \mathrm{HIGH}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{CYC}} \end{aligned}$	Com'l		340		325		315	mA
			Mil						390	

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	6.5	pF
Cnnt	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	10	pF	

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\min .)}=-1.5 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. Commercial grade is specified as ambient temperature with transverse air flow greater than 500 linear feet per minute. Military grade is specified as case temperature.
3. Not more than one output should be shorted at a time. Duration of the short circuit should not exceed 30 seconds.
4. Assumes 67% read cycles and 33% write cycles (50% cache hit rate).
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT $0-1.73 \mathrm{~V}$
Switching Characteristics Over the Operating Range ${ }^{[6]}$

	Description	78180-10		$\begin{aligned} & \hline 7 \mathrm{~B} 180-12 \\ & 7 \mathrm{~B} 181-12 \end{aligned}$		$\begin{aligned} & 7 \mathrm{BB} 180-15 \\ & 7 \mathrm{~B} 181-15 \end{aligned}$		$\begin{aligned} & \hline \text { 7B180-20 } \\ & 7 \mathrm{~B} 181-20 \end{aligned}$		Unit
Parameter		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Clock Cycle Time	15		20		24		33		ns
t_{CH}	Clock HIGH	7		8		10		13		ns
t_{CL}	Clock LOW	7		8		10		13		ns
toedz	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to Output High $\mathrm{Z}^{[7]}$		6		7		9		12	ns
toedv			8		9		11		13	ns

CLOCK MODE ($\mathrm{RE}=$ Rising Edge, $\mathrm{FE}=$ Falling Edge) .

$\mathrm{t}_{\text {MCH }}$	Match Valid After CLK RE		10		12		15		20	ns
$\mathrm{t}_{\text {M }}$ (${ }^{\text {d }}$	Match Hold After CLK RE	2		2		2		2		ns
$\mathrm{t}_{\text {CSD }}$	Status Valid After CLK RE		10		12		15		20	ns
$\mathrm{t}_{\text {SHLD }}$	Status Hold After CLK RE	2		2		2		2		ns
$\mathrm{t}_{\text {TWRWO }}$	Write Output Valid After TWR LOW		8		9		11		13	ns
two	Write Output Valid After CLK RE		10		12		15		20	ns
$\mathrm{t}_{\text {WOHLD }}$	Write Match Hold After CLK RE	2		2		2		2		ns
t_{AD}	Access Delay from CLK RE	W	13.		15		18		25	ns
$\mathrm{t}_{\mathrm{DOH}}$	Output Data Hold After CLK RE	3		3		3		3		ns
$\mathrm{t}_{\text {DIS }}$	Input Data Set-Up Before CLK FE	4		4		5		6		ns
$\mathrm{t}_{\text {DIH }}$	Input Data Hold After CLK FE	2		2		3		4		ns
${ }^{\text {t }}$ TSS	$\overline{\text { TS Set-Up Before CLK RE }}$	3	48120	3		4		5		ns
$\mathrm{t}_{\text {TSH }}$	TS Hold After CLK RE	3		3		4		5		ns
$\mathrm{t}_{\text {AS }}$	Address Set-Up Before CLK RE	3		3		4		5		ns
$\mathrm{t}_{\text {AH }}$	Address Hold After CLK RE	3		3		4		5		ns
${ }^{\text {t }}$ CDS	Compare Data Set-Up Before CLK RE	3		3		4		5		ns
$\mathrm{t}_{\mathrm{CDH}}$	Compare Data Hold After CLK RE	3	N	3		4		5		ns
$\mathrm{t}_{\text {css }}$	Chip Select Set-Up Before CLK RE	3	\%	3		4		5		ns
${ }^{\text {t }} \mathrm{CSH}$	Chip Select Hold After CLK RE	3	.	3		4		5		ns

[^15]Switching Characteristics Over the Operating Range ${ }^{[6]}$ (continued)

Parameter	Description	$\begin{aligned} & 7 \mathrm{~B} 180-10 \\ & 7 \mathrm{~B} 181-10 \end{aligned}$		$\begin{aligned} & 7 \mathrm{~B} 180-12 \\ & \text { 7B181-12 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{~B} 180-15 \\ & 7 \mathrm{~B} 181-15 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{~B} 180-20 \\ & 7 \mathrm{~B} 181-20 \\ & \hline \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CSHZ}}$	Output High Z After CLK RE (chip deselected via CS inputs) ${ }^{[7,9]}$				9		11		13	ns
$\mathrm{t}_{\text {CSLZ }}$	Output Low Z After CLK RE (chip deselected via CS inputs) ${ }^{[8,9]}$	2		2		2		2		ns
$t_{\text {WRS }}$	$\overline{\text { WR Set-Up Before CLK FE }}$	3		3		4		5		ns
$\mathrm{t}_{\text {WR }}$	$\overline{\text { WR Hold After CLK FE }}$	3		3		4		5		ns
$\mathrm{t}_{\text {INVS }}$	$\overline{\overline{I N V A L}}$ Set-Up Before CLK RE	3		3		4		5		ns
$\mathrm{t}_{\text {INVH1 }}$	INVAL Hold After CLK RE	3		3		4		5		ns
$\mathrm{t}_{\text {MCHL1 }}$	MATCH LOW After CLK RE Due to INVAL LOW		7		9		11		13	ns
$\mathrm{t}_{\text {WOH1 }}$	$\overline{\text { WO HIGH After CLK RE }}$ Due to INVAL LOW		7		9		11		13	ns
$\mathrm{t}_{\text {VALL1 }}$	VALID LOW After CLK RE Due to INVAL LOW		7		9		11		13	ns
LATCH MODE										
$\mathrm{t}_{\text {LRLR }}$	LE Rise to Next LE Rise	15		20		24		33		ns
$\mathrm{t}_{\text {LW }}$	Width of LE Pulse	5		5		6		8		ns
$\mathrm{t}_{\text {LFLR }}$	LE Fall to LE Rise	8		8		10		13		ns
$\mathrm{t}_{\text {ASLC }}$	Address Set-Up Before Latch Close	3		3		4		5		ns
$\mathrm{t}_{\text {AHLC }}$	Address Hold After Latch Close	3		3		4		5		ns
${ }^{\text {t }}$ SSLC	Chip Select Set-Up Before Latch Close	3	를	3		4		5		ns
$\mathrm{t}_{\text {CHLC }}$	Chip Select Hold After Latch Close	3		3		4		5		ns
$\mathbf{t}_{\text {TSLC }}$	Tag Select Set-Up Before Latch Close	3		3		4		5		ns
$\mathrm{t}_{\text {THLC }}$	Tag Select Hold After Latch Close	3	\%	3		4		5		ns
$\mathrm{t}_{\text {WSLC }}$	Write Set-Up Before Latch Close	3		3		4		5		ns
$\mathrm{t}_{\text {WHLC }}$	Write Hold After Latch Close	3	4	3		4		5		ns
${ }^{\text {t }}$ CDSLC	Comp Data Set-Up Before Latch Close	3		3		4		5		ns
$\mathrm{t}_{\text {CDHLC }}$	Comp Data Hold After Latch Close	3		3		4		5		ns
$\mathrm{t}_{\text {DSLC }}$	Data In Set-Up Before Latch Close	4		4		5		6		ns
$\mathrm{t}_{\text {DHLC }}$	Data In Hold After Latch Close	2		2		3		4		ns
$\mathrm{t}_{\mathrm{CDMCH}}$	Comp Data Valid to Match Valid	4	10		12		15		20	ns
$\mathrm{t}_{\text {TSMCH }}$	Tag Select Valid to Match Valid	-	10		12		15		20	ns
$\mathrm{t}_{\text {CSMCH }}$	Chip Select Valid to Match Valid		10		12		15		20	ns
$\mathrm{t}_{\text {AMCH }}$	Address Valid to Match Valid		10		12		15		20	ns
$\mathrm{t}_{\text {LOMCH }}$	Latch Open to Match Valid	4	10		12		15		20	ns
$\mathrm{t}_{\text {LOMX }}$	Latch Open to Match Change	2		2		2		2		ns
$\mathrm{t}_{\text {TSSV }}$	Tag Select Valid to Status Valid	,	10		12		15		20	ns
$\mathrm{t}_{\text {CSSV }}$	Chip Select Valid to Status Valid	=	10		12		15		20	ns
$\mathrm{t}_{\text {ASV }}$	Address Valid to Status Valid		10		12		15		20	ns

Shaded area contains preliminary information.

Switching Characteristics Over the Operating Range ${ }^{[6]}$ (continued)

Parameter	Description	$\begin{aligned} & 7 \mathrm{~B} 180-10 \\ & 7 \mathrm{~B} 181-10 \end{aligned}$		$\begin{aligned} & \hline \text { 7B180-12 } \\ & 7 \mathrm{~B} 181-12 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{~B} 180-15 \\ & 7 \mathrm{~B} 181-15 \end{aligned}$		$\begin{aligned} & 7 \mathrm{7B180}-20 \\ & 7 \mathrm{~B} 181-20 \end{aligned}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
thosv	Latch Open to Status Valid	\cdots	10		12		15		20	ns
$\mathrm{t}_{\text {LOSX }}$	Latch Open to Status Change	2		2		2		2		ns
$\mathrm{t}_{\text {TWRWo }}$	TWR VALID to WO Valid		8		9		11		13	ns
$\mathrm{t}_{\text {CDWO }}$	Comp Data Valid to $\overline{\mathrm{WO}}$ Valid	$=$	10		12		15		20	ns
$\mathrm{t}_{\text {TSWO }}$	Tag Select Valid to WO Valid		10		12		15		20	ns
$\mathrm{t}_{\text {CSWO }}$	Chip Select Valid to WO Valid		10		12		15		20	ns
$\mathrm{t}_{\text {AWO }}$	Address Valid to WO Valid		10		12		15		20	ns
$\mathrm{t}_{\text {Lowo }}$	Latch Open to $\overline{\text { WO }}$ Valid	4	10		12		15		20	ns
towox	Latch Open to WO Change	2	+	2		2		2		ns
$\mathrm{t}_{\text {CSDV }}$	Chip Select Valid to Data Out Valid		13		15		18		25	ns
$\mathrm{t}_{\text {ADV }}$	Address Valid to Data Out Valid		13		15		18		25	ns
$\mathrm{t}_{\text {LODV }}$	Latch Open to Data Out Valid		13		15		18		25	ns
$\mathrm{t}_{\text {LODX }}$	Latch Open to Data Out Change	2		2		2		2		ns
$\mathrm{t}_{\text {TSLM }}$	Tag Select LOW to Match HIGH		8		9		11		13	ns
$\mathrm{t}_{\text {TSLWOH }}$	Tag Select LOW to $\overline{\text { WO }} \mathrm{HIGH}$		8		9		11		13	ns
$\mathrm{t}_{\mathrm{CSHZ}}$	Output High Z After the Tag is Deselected via Chip Select Inputs ${ }^{[7, ~ 9]}$		8		9		11		13	ns
$\mathrm{t}_{\text {CSLZ }}$	Output Low Z After the Tag is Selected via Chip Select Inputs ${ }^{[8,9]}$	2		2		2		2		ns
$\mathrm{t}_{\text {INVS2 }}$	INVAL Set-Up Before LE RE	3	4	3		4		5		ns
$\mathrm{t}_{\text {INVH2 }}$	INVAL Hold After LE RE	3		3		4		5		ns
$\mathrm{t}_{\mathrm{MCHL} 2}$	MATCH LOW After LE RE Due to INVAL LOW		7		8		10		13	ns
$\mathrm{t}_{\text {WOH2 }}$	WO HIGH After LE RE Due to INVAL LOW		7		8		10		13	ns
tVALL2	VALID LOW After LE RE Due to INVAL LOW		7		8		10		13	ns

Shaded area contains preliminary information.

Notes:
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 35-pF load capacitance, as in part (a) of AC Test Loads and Waveforms, unless otherwise specified.
7. t_{OEDZ} and $\mathrm{t}_{\mathrm{CSHZ}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured at $\pm 500 \mathrm{mV}$ from steady-state voltage. This parameter is sampled and not 100% tested.
8. $t_{\text {OEDV }}$ and $\mathrm{t}_{\text {CSLZ }}$ are tested using part (a) of ACTest Loads and Waveforms. This parameter is sampled and not 100% tested.
9. At any voltage and temperature combination, $\mathrm{t}_{\mathrm{CSHZ}}$ max. is guaranteed to be smaller than $\mathrm{t}_{\mathrm{CSLZ}} \mathrm{min}$. for a given device.

Switching Waveforms

Tag Match Timing in Clock Mode (Showing a Hit)

Switching Waveforms (continued)
Tag Read Timing in Clock Mode

$\overline{O E}$
7B180-12

Switching Waveforms (continued)

Tag Write Timing in Clock Mode

Switching Waveforms (continued)
Output Enable Timing

Chip Select Timing in Clock Mode

Chip Deselect Timing in Clock Mode

Switching Waveforms (continued)

Switching Waveforms (continued)

Tag Read Timing in Latch Mode

OE

Switching Waveforms (continued)

Switching Waveforms (continued)
Chip Select Timing in Latch Mode

Chip Deselect Timing in Latch Mode

7B181 Tag Invalidation in Latch Mode

Ordering Information

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
10	CY7B180-10JC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B180-10NC	N80	80-Lead Plastic Ouad Flatpack	
	CY7B180-12JC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B180-12NC	N80	80-Lead Plastic Quad Flatpack	
$\mathbf{1 5}$	CY7B180-15JC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B180-15NC	N80	80-Lead Plastic Quad Flatpack	
	CY7B180-15LMB	L81	68-Square Leadless Chip Carrier	Military
20	CY7B180-20LMB	L81	68-Square Leadless Chip Carrier	Military

Speed (ns)	Ordering Code	Package Type	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
10	CY7B181-10JC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B181-10NC	N80	80-Lead Plastic Ouad Flatpack	
12	CY7B181-12JC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B181-12NC	N80	80-Lead Plastic Quad Flatpack	
15	CY7B181-15JC	J81	68-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B181-15NC	N80	80-Lead Plastic Quad Flatpack	
	CY7B181-15LMB	L81	68-Square Leadless Chip Carrier	Military
20	CY7B181-20LMB	L81	68-Square Leadless Chip Carrier	Military

Shaded area contains preliminary information.
Document \#: 38-00155-D

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=25 \mathrm{~ns}$
- $\mathbf{x} 9$ organization is ideal for cache memory applications
- CMOS for optimum speed/power
- Low active power
$-770 \mathrm{~mW}$
- Low standby power
$-195 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
- Easy memory expansion with $\overline{\mathrm{CE}}_{1}$, $\mathrm{CE}_{2}, \mathbf{O E}$ options

Functional Description

The CY7C182 is a high-speed CMOS static RAM organized as 8,192 by 9 bits and it is manufactured using Cypress's high-performance CMOS technology. Access times as fast as 25 ns are available with maximum power consumption of only 770 mW .
The CY7C182, which is oriented toward cache memory applications, features fully static operation requiring no external clocks or timing strobes. The automatic power-down feature reduces the power consumption by more than 70% when the circuit is deselected. Easy memory expansion is provided by an active-LOW chip enable (CE_{1}), an active HIGH chip enable (CE_{2}), an active-LOW outputenable ($\overline{\mathrm{OE}}$), and three-state drivers.

An active-LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{WE}}$ inputs are both LOW, data on the nine data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{8}$) is written into the memory location addressed by the address present on the address pins (A_{0} through A_{12}). Reading the device is accomplished by selecting the device andenabling the outputs, $\overline{C E}_{1}$ and $\overline{\mathrm{OE}}$ active LOW and CE_{2} active HIGH), while (WE) remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the nine data input/output pins.
The input/outputpins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configuration

$$
\mathrm{C} 182-2
$$

Selection Guide

		7C182-20	7C182-25	7C182-35	7C182-45
Maximum Access Time (ns)	20	25	35	45	
Maximum Operating Current (mA)	Com'l	150	140	140	140
Maximum Standby Current (mA)	35	$\mathbf{3 5}$	35	35	

Shaded area contains advanced information.

CY7C182
SEMICONDUCTOR

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential ${ }^{[1]} \ldots . . .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{11]}$
-0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$
-0.5 V to +7.0 V

Output Current into Outputs (LOW) 20 mA
Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015.2)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	7C182-20		7C182-25, 35, 45		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	V_{CC} Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$.	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	V_{CC} Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	VCC	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\begin{aligned} & \hline \mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { GND }<\mathrm{V}_{\mathrm{OUT}}<\mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \\ & \hline \end{aligned}$	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=$ GND	-10	$+10$	-10	+10	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[2]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-300		-300	mA
I_{CC}	V_{CC} Operating Circuit Current	V_{CC} Max., Output Current $=0 \mathrm{~mA}$, $\mathrm{f}=\mathrm{Max} ., \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND		150		140	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic Power-Down Current - TTL Inputs	$\begin{aligned} & \operatorname{Max}_{\mathrm{VCC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{CE}_{2} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	"	35		35	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic Power-Down Current - CMOS Inputs	$\begin{gathered} \operatorname{Max}_{V_{C C}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \mathrm{CE} \\ \mathrm{~V}_{\mathrm{IN}} \geq 0.3 \mathrm{~V}, \\ \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{gathered}$		20		20	mA

Shaded area contains advanced information.
Capacitance ${ }^{[3]}$

Parameter	Description	Test Conditions	Max.	Unit
C OUT	Output Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. $\quad V_{\mathrm{IL}}$ (min.) $=-3.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. Duration of the short circuit should not exceed 30 seconds. Not more than one output should be shorted at one time.
3. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range

Parameter	Description	7C182-20		7C182-25		7C182-35		7C182-45		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE ${ }^{[4]}$

t_{RC}	Read Cycle Time	20	4	25		35		45		ns
t_{AA}	Address to Data Valid	\%	20		25		35		45	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACE1 }}$	$\overline{\mathrm{CE}}_{1}$ Access Time		20		25		35		45	ns
$\mathrm{t}_{\text {ACE }}$	CE_{2} Access Time	\#	20		25		35		45	ns
$\mathrm{t}_{\text {LZCE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Low Z	5		5		5		5		ns
$\mathrm{t}_{\text {LZCE2 }}$	CE_{2} HIGH to Low Z	5		5		5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}_{1}$ HIGH to High $\mathrm{Z}^{[5]}$		15		18		20		25	ns
$\mathrm{t}_{\text {HZCE2 }}$	CE_{2} LOW to High $\mathrm{Z}^{[5]}$		15		18		20		25	
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Power-Up	0		0		0		0		ns
t_{PD}	$\overline{\mathrm{CE}}_{1}$ HIGH to Power-Down		20		20		20		25	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ Access Time		15		18		20		20	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE }}$ LOW to Low Z	3	4	3		3		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[5]}$		15		18		20		25	ns

WRITE CYCLE ${ }^{[6]}$

$t_{\text {WC }}$	Write Cycle Time	20		25		35		45		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up Time	0	E	0		0		0		ns
$\mathrm{t}_{\text {AW }}$	Address Valid to End of Write	15	=	20		30		40		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up Time	10		15		20		25		ns
$\mathrm{t}_{\text {SCE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Write End	15		20		30		40		ns
$\mathrm{t}_{\text {SCE } 2}$	CE_{2} HIGH to Write End	15		20		30		40		ns
tPWE	$\overline{\text { WE Pulse Width }}$	15		20		25		30		ns
t_{HA}	Address Hold from End of Write	0		0		0		0		ns
t_{HD}	Data Hold Time	0		0		0		0		ns
${ }^{\text {t }}$ LZWE	Write HIGH to Low $\mathrm{Z}^{[7]}$	3		3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	Write LOW to High $\mathrm{Z}^{[5,7,8]}$	=	13		13		15		20	ns

Shaded area contains advanced information.

Notes:

4. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
5. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, CE_{2} HIGH, and $\overline{\mathrm{WE}}$ LOW. All three signals must be asserted to initiate a write and any signal can terminate a write by being deas-
serted. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
7. At any given temperature and voltage condition, $t_{\text {LZWE }}$ is less than $t_{\text {HZWE }}$ for any given device. These parameters are sampled and not 100% tested.
8. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW and CE_{2} transition HIGH.

Switching Waveforms

Read Cycle No. 2[4, 10]

Write Cycle No. 1 (产E Controlled) ${ }^{[6]}$

Notes:

9. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}} . \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}$.
10. If $\overline{\mathrm{CE}}_{1}$ goes HIGH and CE_{2} goes LOW simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[6,10]}$

Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\mathbf{C E}_{\mathbf{2}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{W E}}$	Data In	Data Out	Mode
H	X	X	X	Z	Z	Deselect/Power-Down
L	H	L	H	Z	Valid	Read
L	H	X	L	Valid	Z	Write
L	H	H	H	Z	Z	Output Disable
X	L	X	X	Z	Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CY7C182-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C182-20VC	V21	28-Lead Molded SOJ	
25	CY7C182-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C182-25VC	V21	28-Lead Molded SOJ	
35	CY7C182-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C182-35VC	V21	28-Lead Molded SOJ	
45	CY7C182-45PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C182-45VC	V21	28-Lead Molded SOJ	

[^16]Document \#: 38-00110-E

Features

- BiCMOS for optimum speed/power
- Ultra high speed
$-9 \mathrm{~ns}$
- Low active power
$-750 \mathrm{~mW}$
- Low standby power
$-250 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Capable of withstanding greater than 2001 V electrostatic discharge

Functional Description

The CY7B185 is a high-performance BiCMOS static RAM organized as 8 K words by 8 bits. These RAMs are developed by Aspen Semiconductor Corporation, a subsidiary of Cypress Semiconductor. Easy memory expansion is provided by an active LOW chip enable (CE_{1}), an active HIGH chip enable (CE_{2}), and active LOW output enable ($\overline{\mathrm{OE}}$) and three-state drivers. Both devices have a power-down feature $\left(\overline{C E}_{1}\right)$ that reduces the power consumption by 67% when deselected. The CY7B185 is in the space saving 300 -milwide DIP and SOJ package and leadless chip carrier.

An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{WE}}$ inputs are both LOW, data on the eight data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into the memory location addressed by (A_{0} through A_{12}). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{OE}}$ active LOW, CE_{2} active HIGH, while $\overline{\mathrm{WE}}$ remains HIGH. Under these conditions, the contents of the location addressed by the information on the address pins is present on the eight data input/output pins.
The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.

Selection Guide

		7B185-9	7B185-10	7B185-12	7B185-15
Maximum Access Time (ns)	9	10	12	15	
Maximum Operating Current (mA)	Commercial	150	145	140	135
	Military		155	150	145
Maximum Standby Current (mA)	Commercial	50	45	40	40
	Military		60	55	50

Shaded area contains preliminary information.

CY7B185
SEMICONDUCTOR

Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum rated conditions for extended periods may affect device reliability. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V
Input Voltage ${ }^{[1]}$
-3.0 V to +7.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions			7B185-9		7B185-10		Unit
					Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$.	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	Com'l	2.4		2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	Mil	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$				0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level				2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$				-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$			-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled			-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \\ & \mathrm{f}=\mathrm{f} \text { max. } \end{aligned}$		Com'l		150		145	mA
				Mil				155	mA
$\mathrm{I}_{\text {SB }}$	$\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \overline{\mathrm{CE}}_{1} \geq 3 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \text { Other Inputs }=<0.8 \mathrm{~V} \text { or }>3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Max. } \end{aligned}$		Com'l		50		45	mA
				Mil				60	mA

Parameter	Description	Test Conditions			7B185-12		7B185-15		Unit
					Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	Com'l	2.4		2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	Mil	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$				0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level				2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{11]}$				-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$			-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled			-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	$V_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \\ & \mathrm{f}=\mathrm{f} \text { max. } \end{aligned}$		Com'l		140		135	mA
				Mil		150		145	mA
$I_{\text {SB }}$	$\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \overline{\mathrm{CE}}_{1} \geq 3 \mathrm{~V}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \text { Other Inputs }=<0.8 \mathrm{~V} \text { or }>3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Max } \end{aligned}$		Com'l		40		40	mA
				Mil		55		50	mA

Shaded area contains preliminary information.

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max. ${ }^{[5]}$	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	6	pF

Notes:

1. V_{IL} (min.) $=-3.0 \mathrm{~V}$ for pulse width $<20 \mathrm{~ns}$.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Tested initially and after any design or process changes that may affect these parameters.
5. For all packages except CERDIP (D22), which has maximums of CIN $=9.5 \mathrm{pF}$, COUT $=9 \mathrm{pF}$.

AC Test Loads and Waveforms

THÉVENIN EQUIVALENT
OUTPUT $0 \longrightarrow 1.73 \mathrm{~V}$
Equivalent to:

B185-5

Switching Characteristics Over the Operating Range ${ }^{[3,6]}$

Parameter	Description	7B185-9		7B185-10		7B185-12		7B185-15		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
$t_{R C}$	Read Cycle Time	9		10		12		15		ns
t_{AA}	Address to Data Valid		9		10		12		15	ns
toHA	Data Hold from Address Change	2.5		3		3		3		ns
$\mathrm{t}_{\text {ACE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Data Valid		9		10		12		15	ns
$\mathrm{t}_{\text {ACE2 }}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid		9		10		12		15	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		4.5		5		6		8	ns
${ }_{\text {t }}$ LZOE	$\overline{\mathrm{OE}}$ LOW to Low Z	1.5		2		2		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE HIGH }}$ to High $\mathrm{Z}^{[7]}$		4		5		6		7	ns
t LZCE1	$\overline{\mathrm{CE}}_{1}$ LOW to Low $\mathrm{Z}^{[8]}$	2		2		2		3		ns
$\mathrm{t}_{\text {LZCE2 }}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Low $\mathrm{Z}^{[8]}$	2		2		2		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}_{1}$ HIGH to High $\mathrm{Z}^{[7,8]}$ CE_{2} LOW to High \mathbf{Z}		4		5		6		7	ns
WRITE CYCLE ${ }^{[9]}$										
$\mathrm{t}_{\text {WC }}$	Write Cycle Time	9		10		12		15		ns
$\mathrm{t}_{\text {SCE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Write End	8		8		8		10		ns
$\mathrm{t}_{\text {SCE2 }}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Write End	8		8		8		10		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	8		8		8		10		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
tPWE	$\overline{\text { WE }}$ Pulse Width	7		8		8		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	4.5		5		6		7		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathbf{Z}^{[7]}$	0	4	0	5	0	6	0	7	ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z	2		2		2		3		ns

Notes:

6. Test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V and output loading of the specified $\mathrm{I}_{\mathrm{OU}} / \mathrm{I}_{\mathrm{OH}}$, and $\mathrm{C}_{\mathrm{L}}=20 \mathrm{pF}$.
7. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 200 \mathrm{mV}$ from steady-state voltage. This parameter is guaranteed and not 100% tested.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device. This parameter is guaranteed and not 100% tested.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, CE 2 HIGH, and WE LOW. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write. All three signals must be active to initiate a write, and either signal can terminate a write by going inactive.

Switching Waveforms
Read Cycle No. $1{ }^{[10,11]}$

Read Cycle No. 2 [10, 11, 12]

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{\text {[8, 13, 14] }}$

Notes:
10. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}} \cdot \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}$.
11. $\overline{\text { WE }}$ is HIGH for read cycle.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. Data I/O is HIGH impedañce if $\overline{O E}=V_{I H}$.
14. When data input is applied to the device I / O, the device output should be in the high-impedance state.
15. During this period, the I/Os are in the output state and input signals should not be applied.
16. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[8,12,14,16]}$

Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\mathbf{C E}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	X	X	High Z	Deselect/Power-Down
X	L	X	X	High Z	Deselect
L	H	H	L	Data Out	Read
L	H	L	X	Data In	Write
L	H	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
9	CY7B185-9VC	V21	28-Lead (300-Mil) Molded SOJ	
10	CY7B185-10DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B185-10PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B185-10VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7B185-10DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7B185-10LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
12	CY7B185-12DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B185-12PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B185-12VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7B185-12DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7B185-12LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
15	CY7B185-15DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B185-15PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B185-15VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7B185-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7B185-15LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

Shaded areas contain preliminary information.
Document \#: 38-A-00016-F

CY7C185

SEMICONDUCTOR

Features

- High speed
$-15 \mathrm{~ns}$
- Fast tooe
- Low active power
- 715 mW
- Low standby power
$-220 \mathrm{~mW}$
- CMOS for optimum speed/power
- Easy memory expansion with $\overline{\mathbf{C E}}_{1}$, CE_{2} and $\overline{\mathrm{OE}}$ features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C185 is a high-performance CMOS static RAM organized as 8192 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}_{1}$), an active HIGH chip enable $\left(\mathrm{CE}_{2}\right)$, and active LOW output enable ($\overline{\mathrm{OE}}$) and three-state drivers. This device has an automatic power-down feature $\left(\overline{\mathrm{CE}}_{1}\right)$, reducing the power consumption by 70% when deselected. The CY7C185 is in a standard 300 -mil-wide DIP and SOJ package.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When $\overline{C E}_{1}$ and WE inputs are both LOW and CE_{2} is HIGH , data on

8K x 8 Static RAM

the eight data input/output pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into the memory location addressed by the address present on the address pins (A_{0} through A_{12}). Reading the device is accomplished by selecting the device and enabling the outputs, CE_{1} and $\overline{\mathrm{OE}}$ active LOW, CE_{2} active HIGH, while $\overline{\text { WE }}$ remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the eight data input/output pins.
The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH. A die coat is used to insure alpha immunity.

Logic Block Diagram

Selection Guide ${ }^{[1]}$

	7C185-12	7C185-15	7C185-20	7C185-25	7C185-35
Maximum Access Time (ns)	12	15	20	25	35
Maximum Operating Current (mA)	140	130	110	100	100
Maximum Standby Current (mA)	$40 / 15$	$40 / 15$	$20 / 15$	$20 / 15$	$20 / 15$

Shaded areas contain advanced information.
Note:

1. For military specifications, see the CY7C185A/CY7C186A datasheet.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Ambient Temperature with
Power Applied \qquad $-6{ }^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{2]}$
$\ldots \ldots \ldots \ldots \ldots \ldots . .0 .5 \mathrm{~F}$ to +7.0 V

Output Current into Outputs (LOW) 20 mA
Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	7C185-12		7C185-15		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	15	0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$\mathrm{V}_{\text {ce }}$	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[2]}$		-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-5	$+5$	-5	+5	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[3]}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND} \\ & \hline \end{aligned}$		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		140		130	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$	=	40		40	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		15		15	mA

Shaded areas contain advanced information.

Notes:
2. Minimum voltage is equal to -3.0 V for pulse durations less than 30 ns .
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range (continued)

Parameter	Description	Test Conditions	7C185-20		7C185-25, 35		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[2]}$		-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled	-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[3]}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$		-300		-300	mA
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		110		100	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		20		20	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		15		15	mA

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	7	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	7	pF

Notes:
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

C185-4

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	7C185-12		7C185-15		7C185-20		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	12		15		20		ns
t_{AA}	Address to Data Valid		12		15		20	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		5		ns
$\mathrm{t}_{\mathrm{ACE}} 1$	$\overline{\mathrm{CE}}_{1}$ LOW to Data Valid	4	12		15		20	ns
$\mathrm{t}_{\mathrm{ACE} 2}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid	-	6		8		9	ns
${ }^{\text {t }}$ LZOE	$\overline{\mathrm{OE}}$ LOW to Low Z	2		3		3		ns
${ }^{\text {t }}$ HZOE	$\overline{\text { OE HIGH to High } \mathrm{Z}^{[6]}}$		6		7		8	ns
$\mathrm{t}_{\text {LZCE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		5		ns
$\mathrm{t}_{\text {LZCE2 }}$	CE_{2} HIGH to Low Z	3	$1 i$	3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}_{1}$ HIGH to High $\mathrm{Z}^{[6,7]}$ CE_{2} LOW to High Z		6		7		8	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}_{1}$ HIGH to Power-Down	-	12		15		20	ns

WRITE CYCLE ${ }^{[8]}$

t_{WC}	Write Cycle Time	12		15		20		ns
$\mathrm{t}_{\text {SCE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Write End	8	4	12		15		ns
$\mathrm{t}_{\text {SCE }}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Write End	8		12		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	9	三=	12		15		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
t_{SA}	Address Set-Up to Write Start	0		0		0		ns
tpWE	$\overline{\text { WE }}$ Pulse Width	8	T13	12		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	6		8		10		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6]}$	+	6		7		7	ns
t ${ }_{\text {LZWE }}$	$\overline{\text { WE HIGH to Low Z }}$	3		3		5		ns

Shaded areas contain advanced information.

Notes:
5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
6. $\mathrm{t}_{\mathrm{HZOE}} \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{L Z C E}$ for any given device.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, $\mathrm{CE}_{2} \mathrm{HIGH}$, and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Characteristics Over the Operating Range ${ }^{[5]}$ (continued)

Parameter	Description	7C185-25		7C185-35		Unit
		Min.	Max.	Min.	Max.	
READ CYCLE						
t_{RC}	Read Cycle Time	25		35		ns
t_{AA}	Address to Data Valid		25		35	ns
toris	Data Hold from Address Change	5		5		ns
$\mathrm{t}_{\text {ACE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Data Valid		25		35	ns
$\mathrm{t}_{\text {ACE } 2}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid		25		35	ns
tooe	$\overline{\mathrm{OE}}$ LOW to Data Valid		12		15	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	3		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE HIGH to High } \mathrm{Z}^{[6]}}$		10		10	ns
$\mathrm{t}_{\text {LZCE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Low $\mathrm{Z}^{[7]}$	5		5		ns
$\mathrm{t}_{\text {LZCE2 }}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Low Z	3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}_{1}$ HIGH to High $\mathbf{Z}^{[6,7]}$ CE_{2} LOW to High Z		10		10	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Power-Up	0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}_{1} \mathrm{HIGH}$ to Power-Down		20		20	ns
WRITE CYCLE ${ }^{[8]}$						
twc	Write Cycle Time	25		35		ns
$\mathrm{t}_{\text {SCE } 1}$	$\overline{\mathrm{CE}}_{1}$ LOW to Write End	20		20		ns
$\mathrm{t}_{\text {SCE } 2}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Write End	20		20		ns
${ }^{\text {taw }}$	Address Set-Up to Write End	20		25		ns
${ }^{\text {tha }}$	Address Hold from Write End	0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		ns
tPWE	WE Pulse Width	15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		12		ns
t_{HD}	Data Hold from Write End	0		0		ns
thzwe	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6]}$		7		8	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	5		5		ns

Switching Waveforms

Read Cycle No. 2[11, 12]

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[10,12]}$

Notes:

9. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \cdot \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}$.
10. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
11. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
12. Data I / O is High Z if $\overline{\mathrm{OE}}=V_{\mathrm{IH}}, \overline{\mathrm{CE}}_{1}=V_{\mathrm{IH}}$, or $\overline{\mathrm{WE}}=V_{\mathrm{IL}}$.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) [10, 12, 13]

Note:
13. If $\overline{C E}$ goes HIGH simultaneously with $\overline{\text { WE }}$ HIGH, the output remains
in a high-impedance state.

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

NORMALIZED ICC vs. CYCLE TIME

Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\mathbf{C E}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	$\overline{\mathrm{OE}}$	Input/Output	Mode
H	X	X	X	High Z	Deselect/Power-Down
X	L	X	X	High Z	Deselect
L	H	H	L	Data Out	Read
L	H	L	X	Data In	Write
L	H	H	H	High Z	Deselect

Address Designators

Address Name	Address Function	Pin Number
A4	X 3	2
A5	X 4	3
A6	X 5	4
A7	X 6	5
A8	X 7	6
A9	Y 1	7
A10	Y 4	8
A11	Y 3	9
A 12	Y 0	10
A0	Y 2	21
A 1	X 0	23
A2	X 1	24
A3	X 2	25

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C185-12PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C185-12VC	V21	28-Lead Molded SOJ	
	CY7C185-15PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C185-15VC	V21	28-Lead Molded SOJ	
20	CY7C185-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C185-20VC	V21	28-Lead Molded SOJ	
25	CY7C185-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C185-25VC	V21	28-Lead Molded SOJ	
35	CY7C185-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C185-35VC	V21	28-Lead Molded SOJ	

[^17]Document \#: 38-00037-I

CMPRESS SEMICONDUCTOR

CY7C185A

Features

- High speed $-20 \mathrm{~ns}$
- CMOS for optimum speed/power
- Low active power
- 743 mW
- Low standby Power
- 220 mW
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\mathbf{C E}}_{1}$, CE_{2} and OE features
- Automatic power-down when deselected

Functional Description

The CY7C185A is a high-performance

CMOS static RAM organized as 8192 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}_{1}$), an active HIGH chip enable (CE_{2}), an active LOW output enable ($\overline{\mathrm{OE}})$, and three-state drivers. The device has an automatic power-downfeature $\left(\overline{\mathrm{CE}}_{1}\right)$,reducing the power consumption by over 70% when deselected. The CY7C185A is in the standard 300 -mil-wide DIP package and leadless chip carrier.

Writing to the device is accomplished when the chip enable one ($\overline{\mathrm{CE}}_{1}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW, and the chip enable two $\left(\mathrm{CE}_{2}\right)$ input is HIGH. Data on the eight I / O pins (I / O_{0} through

8K x 8 Static RAM

Selection Guide ${ }^{[1]}$

	7C185A-15	7C185A-20	7C185A-25	7C185A-35	7C185A-45	
Maximum Access Time (ns)	15	20	25	35	45	
Maximum Operating Current (mA)	Military	170	135	125	125	125
Maximum Standby Current (mA)	Military	$40 / 20$	$40 / 20$	$40 / 20$	$30 / 20$	$30 / 20$

Shaded area contains advanced information.
Note:

1. For commercial specifications, see the CY7C185 datasheet.

Output Current into Outputs (LOW) 20 mA
Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings

(Above which the usefullife may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 28 to Pin 14)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{4]}$
-0.5 V to +7.0 V

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		7C185A-15		7C185A-20		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA} \end{aligned}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[4]}$			-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	$+10$	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output	isabled	-10	+10	-10	+10	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max. $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Military		170		135	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$	Military		40		40	mA
$\mathrm{I}_{\text {SB2 }}$	$\begin{aligned} & \text { Automatic } \overline{\mathrm{CE}}_{1} \\ & \text { Power-Down Current } \end{aligned}$	$\begin{aligned} & \text { Max. }^{V_{C C}} \\ & \overline{C E}_{1} \geq V_{C C}-0.3 \mathrm{~V} \\ & V_{\text {IN }} \geq V_{C C}-0.3 \mathrm{~V} \\ & \text { or } V_{\text {IN }} \geq 0.3 \mathrm{~V} \end{aligned}$	Military	ass	20		20	mA

Shaded area contains advanced information.

Notes:

2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. $\quad \mathrm{V}(\mathrm{min})=.-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
5. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range ${ }^{[3]}$ (continued)

Parameter	Description	Test Conditions		7C185A-25		7C185A-35, 45		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~m}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[4]}$			-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\overline{\mathrm{GND}} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\overline{\mathrm{GND}} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output	isabled	-10	+10	-10	+10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Military		125		125	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$	Military		40		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}_{1}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{C C} \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\text {IN }} \geq 0.3 \mathrm{~V} \end{aligned}$	Military		20		20	mA

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{V}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Note:
6. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range $[$ [2,7$]$

Parameter	Description	7C185A-15		7C185A-20		7C185A-25		7C185A-35		7C185A-45		Unit
		Min.	Max.									
READ CYCLE												
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	15	4x4	20		25		35		45		ns
t_{AA}	Address to Data Valid		15		20		25		35		45	ns
toha	Data Hold from Address Change	3		3		3		3		3		ns
$\mathrm{t}_{\text {ACE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Data Valid	\%	15		20		25		35		45	ns
$\mathrm{t}_{\mathrm{ACE}} 2$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid		15		20		25		35		30	ns
tome	$\overline{\mathrm{OE}}$ LOW to Data Valid		7		10		12		15		20	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW }}$ to Low Z	0		3		3		3		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[8]}$		8		8		10		12		15	ns
$t_{\text {LZCE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Low $\mathrm{Z}^{[9]}$	3		5		5		5		5		ns
$\mathrm{t}_{\text {LZCE2 }}$	CE_{2} HIGH to Low Z	3		3		3		3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}_{1}$ HIGH to High Z[8,9] CE_{2} LOW to High Z		8		8		10		15		15	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Power-Up	0		0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}_{1}$ HIGH to Power-Down		15		20		20		20		25	ns
WRITE CYCLE ${ }^{[10]}$												
$t_{\text {wc }}$	Write Cycle Time	15		20		20		25		40		ns
$\mathrm{t}_{\text {SCE1 }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Write End	10		15		20		25		30		ns
$\mathrm{t}_{\text {SCE } 2}$	$\mathrm{CE}_{2} \mathrm{HIGH}$ to Write End	10		15		20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		15		20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
tPWE	$\overline{\text { WE Pulse Width }}$	10		15		15		20		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		10		10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH }}$ to Low Z	3		3		5		5		5		ns
$t_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[8]}$	4	7		7		7		10		15	ns

Shaded area contains advanced information.

Notes:

7. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
8. $t_{H Z O E}, t_{H Z C E}$, and $t_{H Z W E}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
9. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ for any given device.
10. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}} \cdot \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}$.

Switching Waveforms

Read Cycle No. $1{ }^{[9,11]}$

Read Cycle No. 2 [11, 12]

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[13,14]}$

Notes:

11. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
12. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
13. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, CE_{2} HIGH, and $\overline{\mathrm{WE}}$ LOW. Both signals must be LOW to initi-
ate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
14. Data I / O is high impedance if $\overline{\mathrm{OE}}=V_{\mathrm{IH}}$.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\text { CE }}$ Controlled) ${ }^{[13,14,15]}$

Note:
15. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\mathbf{C E}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Output	Mode
H	X	X	X	High Z	Deselect/Power-Down
X	L	X	X	High Z	Deselect
L	H	H	L	Data Out	Read
L	H	L	X	Data In	Write
L	H	H	H	High Z	Deselect

Address Designators

Address Name	Address Function	Pin Number
A4	X 3	2
A5	X 4	3
A6	X 5	4
A7	X 6	5
A8	X 7	6
A9	Y 1	7
A10	Y 4	8
A11	Y 3	9
A 12	Y 0	10
A 0	Y 2	21
A 1	X 0	23
A 2	X 1	24

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C185A-15DMB	D22	28-Lead (300-Mii) CerDIP	Military
	CY7C185A-15LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
20	CY7C185A-20DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C185A-20LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
25	CY7C185A-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C185A-25LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
35	CY7C185A-35DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C185A-35LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
45	CY7C185A-45DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C185A-45LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

Shaded area contains advanced information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{OHA}}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {ACE1 }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{ACE} 2}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DOE }}$	7, 8, 9, 10, 11
WRITE CYCLE	
${ }_{\text {WWC }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SCE1 }}$	7,8, 9, 10, 11
$\mathrm{t}_{\text {SCE } 2}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AW }}$	7, 8, 9, 10, 11
t_{HA}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SA }}$	7, 8, 9, 10, 11
$t_{\text {PWE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SD }}$	7, 8, 9, 10, 11
t_{HD}	7, 8, 9, 10, 11

Document \#: 38-00114-B

SEMICONDUCTOR

Features

- High speed
$-15 \mathrm{~ns}$
- CMOS for optimum speed/power
- Low active power
- 495 mW
- Low standby power
- 220 mW
- TTL compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C187 is a high-performance CMOS static RAM organized as 65,536 words $\times 1$ bit. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}})$ and three-state drivers. The CY7C187 has an automatic power-down feature, reducing the power consumption by 56% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input pin (DI) is written into the memory location specified on the address pins (A_{0} through A_{15}).

Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}}$) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data output (DO) pin.
The output pin stays in high-impedance state when chip enable ($\overline{\mathrm{CE}}$) is HIGH or write enable ($\overline{\mathrm{WE}}$) is LOW.
The 7C187 utilizes a die coat to insure alpha immunity.

Logic Block Diagram

Selection Guide ${ }^{[1]}$

	7C187-12	7C187-15	7C187-20	7C187-25	7C187-35
Maximum Access Time (ns)	12	15	20	25	35
Maximum Operating Current (mA)	160	90	80	70	70
Maximum Standby Current (mA)	$40 / 40$	$40 / 20$	$40 / 20$	$20 / 20$	$20 / 20$

[^18]Note:

1. For military specifications, see the CY7C187A datasheet.

Output Current into Outputs (LOW) 20 mA
Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 22 to Pin 11) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[2]}$.......................... -0.5 V to +7.0 V
DC Input Voltage ${ }^{[2]} \ldots \ldots$.

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	7C187-12		7C187-15		7C187-20		7C187-25, 35		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$	2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA} \end{aligned}$		0.4		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	Vcc	2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[2]}$		-0.5	0.8	-0.5	0.8	-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	- 10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled	-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[3]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$		-350		-350		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$		160		90		80		70	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE PowerDown Current ${ }^{[4]}$	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}$		40		40		40		20	mA
$\mathrm{I}_{\mathrm{SB} 2}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current	$\begin{aligned} & \text { Max. } V_{C C}, \\ & \overline{C E} \geq V_{C C}-0.3 \mathrm{~V}, \\ & V_{\text {IN }} \geq V_{C C}-0.3 \mathrm{~V} \\ & \text { or } V_{\text {IN }} \leq 0.3 \mathrm{~V} \end{aligned}$		20		20		20		20	mA

Shaded area indicates advanced information.
Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
C OUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

2. V_{IL} (min.) $=-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
3. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during V_{CC} power-up, otherwise $\mathrm{I}_{\text {SB }}$ will exceed values given.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

SCOPE
(b)

C187-4

ALL INPUT PULSES

C187-5

Equivalent to: THEVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[6]}$

Parameters	Description	7C187-12		7C187-15		7C187-20		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	12	"	15		20		ns
t_{AA}	Address to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	3	=	3		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$	\%	12		15		20	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[7,8]}$	=	7		8		8	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power Up	0		0		0		ns
t_{PD}	$\overline{\mathrm{CE}}$ HIGH to Power Down		12		15		20	ns
WRITE CYCLE ${ }^{\text {[9] }}$								
$\mathrm{t}_{\text {WC }}$	Write Cycle Time	12		15		20		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	8		12		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to Write End	9		12		15		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-up to Write Start	0		0		0		ns
tpWE	$\overline{\text { WE Pulse Width }}$	8		12		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-up to Write End	6	=	10		10		ns
t_{HD}	Data Hold from Write End	0	\pm	0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH }}$ to Low $\mathrm{Z}^{[9]}$	3	3	5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[9,10]}$		6		7		7	ns

Shaded area indicates advanced information.

Notes:

6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\text {LZCE }}$ for any given device.
8. $\mathrm{t}_{\mathrm{HZCE}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
9. The internal write time of the memory is defined by the overlap of CE LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.

Switching Characteristics Over the Operating Range ${ }^{[6]}$ (continued)

Parameters	Description	7C187-25		7C187-35		Units
		Min.	Max.	Min.	Max.	
READ CYCLE						
t_{RC}	Read Cycle Time	25		35		ns
t_{AA}	Address to Data Valid		25		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold from Address Change	5		5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$		25		35	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	5		5		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[7,8]}$		10		15	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power Up	0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE HIGH to Power Down }}$		20		20	ns

WRITE CYCLE ${ }^{[9]}$

$\mathrm{t}_{\text {WC }}$	Write Cycle Time	20		25		ns
$\mathrm{t}_{\text {SCE }}$	CE LOW to Write End	20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		ns
$\mathrm{t}_{\text {HA }}$	Address Hold from Write End	0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		15		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH to Low }}{ }^{[9]}$	5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE LOW to High Z }}{ }^{[9,10]}$		7		10	ns

Switching Waveforms

Read Cycle No. $1^{[10,11]}$

[^19]
Switching Waveforms

Read Cycle No. 2[10, 12]

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[11]}$

Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) [11, 13]

Note:

Note:
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Typical DC and AC Characteristics

NORMALIZED ACCESS TIME
vs. SUPPLY VOLTAGE

Address Designators

Address Name	Address Function	Pin Number
A0	X3	1
A1	X 4	2
A2	X5	3
A3	X6	4
A4	X7	5
A5	Y7	6
A6	Y6	7
A7	Y2	8
A8	Y3	14
A9	Y1	15
A10	Y0	16
A11	Y4	17
A12	Y5	18
A13	X0	19
A14	X1	20
A15	X2	21

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Input/Output	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information ${ }^{[14]}$

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C187-12PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C187-12VC	V13	24-Lead Molded SOJ	
15	CY7C187-15PC	P9	22-Lead (300-Mil) MoldedDIP	Commercial
	CY7C187-15VC	V13	24-Lead Molded SOJ	
20	CY7C187-20PC	P9	22-Lead (300-Mil) MoldedDIP	Commercial
	CY7C187-20VC	V13	24-Lead Molded SOJ	
25	CY7C187-25PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C187-25VC	V13	24-Lead Molded SOJ	
35	CY7C187-35PC	P9	22-Lead (300-Mil) Molded DIP	Commercial
	CY7C187-35VC	V13	24-Lead Molded SOJ	

Shaded area contains advanced information.

Note:

14. For military variations, see the CY7C187A datasheet.

Document \#: 38-00038-I

Features

- High speed
$-20 \mathrm{~ns}$
- CMOS for optimum speed/power
- Low active power
- 495 mW
- Low standby power
- 220 mW
- TTL-compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C187A is a high-performance CMOS static RAM organized as 65,536 words by 1 bit. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and three-state drivers. The CY7C187A has an automatic power-down feature, reducing the power consumption by 55% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input pin (DI) is written into the memory location specified on the address pins (A_{0} through A_{15}).

Reading the device is accomplished by taking the chip enable ($\overline{\mathrm{CE}})$ LOW, while write enable ($\overline{\mathbf{W E}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pinswill appear on the data output (DO) pin.
The output pin stays in high-impedance state when chip enable ($\overline{\mathrm{CE}})$ is HIGH or write enable (WE) is LOW.
The 7C187A utilizes a die coat to insure alpha immunity.

Logic Block Diagram

Pin Configurations

Selection Guide ${ }^{[1]}$

		7C187A-15	7C187A-20	7C187A-25	7C187A-35
Maximum Access Time (ns)	15	20	25	35	
Maximum Operating Current (mA)	Military	160	90	80	80
Maximum Standby Current (mA)	Military	$40 / 20$	$40 / 20$	$40 / 20$	$30 / 20$

[^20]
Note:

1. For commercial specifications, see CY7C187 datasheet.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 22 to Pin 11)

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

DC Voltage Applied to Outputs
in High Z State ${ }^{[2]}$
DC Input Voltage ${ }^{[2]}$
-0.5 V to +7.0 V
0.5 V to +7.0 V

Electrical Characteristics Over the Operating Rangel ${ }^{[4]}$

Parameter	Description	Test Conditions		7C187A-15		7C187A-20		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$	Mil		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V CC	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[2]}$			$=0.5$	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-10	+10	-10	+10	$\mu \mathrm{A}$
I OS	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			${ }^{-350}$		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Mil		160		90	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\text { CE }}$ PowerDown Current ${ }^{[6]}$	$\overline{\text { Max. }} \overline{\mathrm{V}}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\text {IH }}$	Mil		40		40	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\text { CE }}$ PowerDown Current ${ }^{[6]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V} \end{aligned}$	Mil	=	20		20	mA

Shaded area contains advanced information.

Notes:

2. $\mathrm{V}_{\mathrm{IL}}(\mathrm{min})=.-3.0 \mathrm{~V}$ for pulse durations less than 30 ns .
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.

Output Current into Outputs (LOW) 20 mA
Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

5. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
6. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during V_{CC} power-up, otherwise $\mathrm{I}_{\text {SB }}$ will exceed values given.

Electrical Characteristics Over the Operating Range ${ }^{[4]}$ (continued)

Parameter	Description	Test Conditions		7C187A-25		7C187A-35		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Mil		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	V
V_{IL}	Input LOW Voltage ${ }^{[2]}$			-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{5]}$	$\overline{\mathrm{V}}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-350		-350	mA
I_{CC}	\bar{V}_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Mil		80		80	mA
ISB1	Automatic $\overline{\mathrm{CE}}$ Power Down Current ${ }^{[6]}$	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}$	Mil		40		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power Down Current ${ }^{[6]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$	Mil		20		20	mA

Capacitance ${ }^{[7]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Note:
7. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(b) C187A-4

C187A-5

Equivalent to: THEVENIN EQUIVALENT

SEMICONDUCTOR
Switching Characteristics Over the Operating Rangel ${ }^{[4,8]}$

Shaded area contains advanced information.

Notes:

8. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
9. At any given temperature and voltage condition, t HZCE is less than $\mathrm{t}_{\text {LZCE }}$ for any given device.
10. $\mathrm{t}_{\text {HZCE }}$ and $\mathrm{t}_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
11. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WELOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[12,13]}$

Read Cycle No. $2{ }^{[12,14]}$

Write Cycle No. 1 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[11]}$

Notes:
12. $\overline{W E}$ is HIGH for read cycle.
13. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
14. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[11,15]}$

Note:
15. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Address Designators

Address Name	Address Function	Pin Number
A0	X3	1
A1	X4	2
A2	X5	3
A3	X6	4
A4	X7	5
A5	Y7	6
A6	Y6	7
A7	Y2	8
A8	Y3	14
A9	Y1	15
A10	Y0	16
A11	Y4	17
A12	Y5	18
A13	X0	19
A14	X1	20
A15	X2	21

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Input/Output	Mode
\mathbf{H}	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C187A - 15DMB	D10	24-Lead (300-Mi) CerDIP	Military
	CY7C187A-15LMB	L52	22-Pin Rectangular Leadless Chip Carrier	
20	CY7C187A-20DMB	D10	24-Lead (300-Mil) CerDIP	Military
	CY7C187A-20LMB	L52	22-Pin Rectangular Leadless Chip Carrier	
25	CY7C187A-25DMB	D10	24-Lead (300-Mil) CerDIP	Military
	CY7C187A-25LMB	L52	22-Pin Rectangular Leadless Chip Carrier	
35	CY7C187A-35DMB	D10	24-Lead (300-Mil) CerDIP	Military
	CY7C187A-35LMB	L52	22-Pin Rectangular Leadless Chip Carrier	

Shaded area contains advanced information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}} \mathrm{Max}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,9,10,11$
$\mathrm{t}_{\text {PWE }}$	
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00115-C

Features

- High speed
$-12 \mathrm{~ns}$
- Automatic power-down when deselected
- Low active power
$-965 \mathrm{~mW}$
- Low standby power
$-220 \mathrm{~mW}$
- CMOS for optimum speed/power
- TTL-compatible inputs and outputs
- Easy memory expansion with $\overline{\mathbf{C E}}_{1}$, CE_{2}, and $\overline{\mathrm{OE}}$ features

Functional Description

The CY7C188 is a high-performance

CMOS static RAM organized as 32,768 words by 9 bits. Easy memory expansion is provided by an active-LOW chip enable (CE_{1}), an active-HIGH chip enable (CE_{2}), an active-LOW output enable ($\overline{\mathrm{OE}})$, and three-state drivers. The device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.

Writing to the device is accomplished by taking CE_{1} and write enable ($\overline{\mathrm{WE}}$) inputs LOW and CE_{2} input HIGH. Data on the nine I / O pins $\left(\mathrm{I} / \mathrm{O}_{\mathrm{o}}-\mathrm{I} / \mathrm{O}_{8}\right)$ is then written into the location specified on the address pins $\left(\mathrm{A}_{0}-\mathrm{A}_{14}\right)$.

Reading from the device is accomplished by taking $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{OE}} \mathrm{LOW}$ while forcing WE and $\mathrm{CE}_{2} \mathrm{HIGH}$. Under these conditions, the contents of the memory location specified by the address pinswill appear on the I / O pins.

The nine input/output pins ($\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{8}$) are placed in a high-impedance state when the device is deselected ($\overline{\mathrm{CE}}_{1} \mathrm{HIGH}$ or $\mathrm{CE}_{2} \mathrm{LOW}$), the outputs are disabled ($\overline{\mathrm{OE}}$ HIGH), or during a write operation (CE_{1} LOW, CE_{2} HIGH, and $\overline{\text { WE }}$ LOW).

The CY7C188 is available in standard 300 -mil-wide DIPs and SOJs.

A die coat is used to ensure alpha immunity.

Logic Block Diagram

Pin Configuration

Selection Guide

		7C188-12	7C188-15	7C188-20	7C188-25					
Maximum Access Time (ns)	12	15	20	25						
Maximum Operating Current (mA)	Commercial	175	165	155	$\mathbf{1 4 5}$					
	Military		185	170	165					
Maximum Standby Current (mA)							40	40	40	35

[^21]
Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Supply Voltage on $V_{C C}$ Relative to GND
(Pin 32 to Pin 16) 0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]} \ldots$.
Output Current into Outputs (LOW) \qquad 20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		7C188-12		7C188-15		7C188-20		7C188-25		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		2.4		V
V_{OL}	$\begin{aligned} & \text { Output LOW } \\ & \text { Voltage } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \end{gathered}$	V						
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled		-5	+5	-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OS}	$\begin{array}{\|l\|} \hline \text { Output Short } \\ \text { Circuit } \\ \text { Current }{ }^{[4]} \end{array}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300		-300	-300		mA
I_{CC}	$V_{C C}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		175		165		155		145	mA
			Mil				185	-	170		165	
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current - TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{CE}_{2} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \\ & \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Com'l		40		40		40		35	mA
			$\overline{\mathrm{MiI}}$				40		40		35	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current - CMOS Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{CC}} \\ & -0.3 \mathrm{~V} \text { or } \mathrm{CE}_{2} \leq 0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Com'l		10		10		10		10	mA
			M41	$E=$	\cdots		$\overline{15}$		15		15	mA

[^22]
Notes:

1. Minimum voltage is equal to -2.0 V for pulse durations less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

		PRELIMINARY		CY7C188
Capacitance ${ }^{[5]}$				
Parameter	Description	Test Conditions	Max.	Unit
C_{IN} : Addresses	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	6	pF
$\mathrm{C}_{\text {IN }}$: Controls			8	pF
Cout	Output Capacitance		8	pF

Note:
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms ${ }^{[6,7]}$

(a)

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT $0 \longrightarrow 167 \Omega$

Switching Characteristics Over the Operating Range ${ }^{[3,6]}$

Parameter	Description	7C188-12		7C188-15		7C188-20		7C188-25		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	12		15		20		25		ns
t_{AA}	Address to Data Valid		12		15		20		25	ns
toha	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}_{1}$ LOW or $\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid		12		15		20		25	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		6		7		8		8	ns
${ }^{\text {t }}$ LZOE	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[8]}$	0		0		0		0		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[7,8]}$		6		7		7		7	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}_{1}$ LOW or $\mathrm{CE}_{2} \mathrm{HIGH}$ to Low $\mathrm{Z}^{[8]}$	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}_{1}$ HIGH or CE_{2} LOW to High $\mathrm{Z}^{[7,8]}$		6		7		8		8	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}_{1}$ LOW or CE_{2} HIGH to Power-Up	0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}_{1}$ HIGH or CE_{2} LOW to Power-Down		12		15		20		25	ns
WRITE CYCLE ${ }^{[9,10]}$										
$t_{\text {WC }}$	Write Cycle Time	12		15		20		25		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}_{1}$ LOW or $\mathrm{CE}_{2} \mathrm{HIGH}$ to Write End	9		10		12		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	9		10		12		15		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
$t_{\text {PWE }}$	WE Pulse Width	9		10		12		15		ns
${ }_{\text {t }}$ S	Data Set-Up to Write End	8		9		10		10		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$t_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7]}$		7		7		7		7	ns
tlzWE	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7,8]}$	3		3		3		3		ns

Notes:
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} I_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. $t_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\mathrm{LZCE}}, \mathrm{t}_{\mathrm{HZOE}}$ is less than $\mathrm{t}_{\mathrm{LZOE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ is less than $\mathrm{t}_{\mathrm{LZWE}}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$, LOW, $\mathrm{CE}_{2} \mathrm{HIGH}$, and $\overline{\text { WE LOW. All three signals must be asserted }}$ to initiate a write and any signal can terminate a write by being deasserted. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
10. The minimum write cycle time for write cycle \#3 ($\overline{\mathrm{WE}}$ controlied, $\overline{\mathrm{OE}}$ LOW) is the sum of $\mathrm{t}_{\mathrm{HZWE}}$ and t_{SD}.

Switching Waveforms

Read Cycle No. $1^{[11,12]}$

Read Cycle No. 2 (Chip-Enable Controlled) ${ }^{[12, ~ 13, ~ 14] ~}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[9,14,15,16]}$

Notes:

11. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. WE is HIGH for read cycle.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
14. Timing parameters are the same for all chip enable signals $\left(\overline{\mathrm{CE}}_{1}\right.$ and CE_{2}), so only the timing for $\overline{\mathrm{CE}}_{1}$ is shown.
15. Data I/O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
16. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) [8, 14, 15, 16]

Write Cycle No. 3 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[10,14,16]}$

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Output	Mode	Power
H	X	X	High Z	Deselect/Power-Down	Standby ($\left.\mathrm{I}_{\mathrm{SB}}\right)$
L	H	L	Data Out	Read	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	X	Data In	Write	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	H	H	High Z	Deselect, Output Disabled	Active (I $\left.\mathrm{I}_{\mathrm{CC}}\right)$

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	$\begin{gathered} \hline \text { Operating } \\ \text { Range } \\ \hline \end{gathered}$
12	CY7C188-12PC	P31	32-Lead (300-Mil) Molded DIP	Commercial
	CY7C188-12VC	V32	32-Lead (300-Mil) Molded SOJ	
15	CY7C188-15PC	P31	32-Lead (300-Mil) Molded DIP	Commercial
	CY7C188-15VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C188-15DMB	D32	32-Lead (300-Mil) CerDIP	Military
20	CY7C188-20PC	P31	32-Lead (300-Mil) Molded DIP	Commercial
	CY7C188-20VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C188-20DMB	D32	32-Lead (300-Mil) CerDIP	Military
25	CY7C188-25PC	P31	32-Lead (300-Mil) Molded DIP	Commercial
	CY7C188-25VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C188-25DMB	D32	32-Lead (300-Mil) CerDIP	Military

Shaded areas contain advanced information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
\mathbf{I}_{OZ}	$1,2,3$
\mathbf{I}_{CC}	$1,2,3$
$\mathbf{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AA }}$	7, 8, 9, 10, 11
toha	7, 8, 9, 10, 11
$\mathrm{t}_{\text {ACE }}$	7, 8, 9, 10, 11
$t_{\text {DOE }}$	7, 8, 9, 10, 11
WRITE CYCLE	
$t_{\text {WC }}$	7, 8, 9, 10, 11
$t_{\text {SCE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AW }}$	7, 8, 9, 10, 11
t_{HA}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SA }}$	7, 8, 9, 10, 11
tPWE	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SD }}$	7, 8, 9, 10, 11
t_{HD}	7, 8, 9, 10, 11

Document \#: 38-00220-B

Features

- High speed
$-10 \mathrm{~ns}_{\mathrm{tA}}$
- Automatic power-down when deselected
- Transparent write (7B191)
- BiCMOS for optimum speed/power
- Low active power
$-850 \mathrm{~mW}$
- Low standby power
- 200 mW
- TTL-compatible inputs and outputs

Functional Description

The CY7B191 and CY7B192 are high-performance BiCMOS static RAMs organized as 64 K words by 4 bits with separate I/O. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$) and threestate drivers. Both devices have an automatic power-down feature, reducing the power consumption by more than 60% when deselected.
Writing to the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs LOW. Data on the four input pins (I_{0} through I_{3}) is written into the memory location specified on the address pins (A_{0} through A_{15}).

Logic Block Diagram

Pin Configuration

DIP/SOJ
Top View

Selection Guide

		$\begin{aligned} & \hline \text { 7B191-10 } \\ & \text { 7B192-10 } \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{~B} 191-12 \\ & \text { 7B192-12 } \end{aligned}$	$\begin{aligned} & 7 \mathrm{~B} 191-15 \\ & 7 \mathrm{~B} 192-15 \end{aligned}$	$\begin{aligned} & 7 \mathrm{7B191-20} \\ & \text { 7B192-20 } \end{aligned}$
Maximum Access Time (ns)		10	12	15	20
Maximum Operating Current (mA)	Commercial	170	160	150	
	Military		170	160	160
Maximum Standby Current (mA)	Commercial	40	35	30	
	Military		40	40	40

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]}-0.5 \mathrm{~V}$ to +7.0 V DC Voltage Applied to Outputs in High Z State ${ }^{1]}$
-0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$
-0.5 V to +7.0 V

Static Discharge Voltage
$>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	V $\mathbf{C C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Current into Outputs (LOW) 20 mA

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		$\begin{aligned} & .7 \mathrm{~B} 191-10 \\ & 7 \mathrm{~B} 192-10 \end{aligned}$		$\begin{aligned} & 7 \mathrm{~B} 191-12 \\ & \text { 7B192-12 } \end{aligned}$		$\begin{array}{\|l} 7 \mathrm{BB} 191-15,20 \\ 7 \mathrm{~B} 192-15,20 \end{array}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply	$\mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}$	Com'l		170		160		150	mA
	Current	$\mathrm{f}=\mathrm{f}_{\text {MAX }}=1 / \mathrm{t}_{\text {RC }}$	Mil				170		160	
$\mathrm{I}_{\text {SB }}$	Automatic CE	$\text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V},$	Com'l		40		35		30	mA
	- CMOS Inputs	$\left\{\begin{array}{l} V_{\mathrm{IN}} \geq \mathrm{VCC}-0.3 \\ \mathrm{~V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{array}\right.$	Mil				40		40	

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max. ${ }^{[6]}$	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	6	pF
$\mathrm{C}_{\mathrm{OUT}} \mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\min .)}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.
6. For PDIP (P21) and CDIP (D22), $\mathrm{C}_{\mathrm{IN}}=\mathrm{COUT}_{\mathrm{OUT}}=10_{\mathrm{P}} \mathrm{F}$.

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT $0 \longrightarrow 1.73 \mathrm{~V}$
Switching Characteristics ${ }^{[3,7]}$ Over the Operating Range

Parameter	Description	$\begin{aligned} & \text { 7B191-10 } \\ & 7 \mathrm{~B} 192-10 \end{aligned}$		$\begin{aligned} & \hline 7 B 191-12 \\ & \text { 7B192-12 } \end{aligned}$		$\begin{aligned} & \hline \text { 7B191-15 } \\ & \text { 7B192-15 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{~B} 191-20 \\ & 7 \mathrm{~B} 191-20 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	10		12		15		20		ns
t_{AA}	Address to Data Valid		10		12		15		20	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\overline{\mathrm{CE}}}$ LOW to Data Valid		10		12		15		20	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\text { CE HIGH to High } \mathrm{Z}^{[8,9]}}$		6		7		8		10	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power-Up		0		0		0		0	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE }} \mathrm{HIGH}$ to Power-Down		10		12		15		20	ns
WRITE CYCLE ${ }^{10]}$										
t_{WC}	Write Cycle Time	10		12		15		20		ns
${ }_{\text {t }}^{\text {SCE }}$	$\overline{\text { CE LOW }}$ to Write End	8		9		10		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	8		9		10		15		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
tPWE ,	$\overline{\text { WE Pulse Width }}$	8		9		10		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	6		7		8		10		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[8]}$	2		2		2		2		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[8,9]}$		6		7		7		10	ns
t ${ }_{\text {DWE }}$	$\overline{\text { WE LOW to Data Valid (7B191) }}$		10		12		15		20	ns
$\mathrm{t}_{\text {DCE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid (7B191)		10		12		15		20	ns
$\mathrm{t}_{\text {ADV }}$	Data Valid to Output Valid (7B191)		10		12		15		20	ns

Notes:

7. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $20-\mathrm{pF}$ load capacitance.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{L Z C E}$ and $t_{H Z W E}$ is less than $t_{L Z W E}$ -
9. $t_{H Z C E}$ and $t_{H Z W E}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
10. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and $\overline{W E}$ LOW. Both signals must be LOW to initiate a write and either signal will terminate a write by going HIGH. The input data setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[11,12]}$

Read Cycle No. ${ }^{[12,13]}$

Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[14]}$

Notes:
11. Device is continuously selected. $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

CYPRESS
SEMICONDUCTOR

Switching Waveforms

Write Cycle No. 2 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[14]}$

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\mathbf{O}_{\mathbf{0}}-\mathbf{O}_{\mathbf{3}}$	Mode	Power
H	X	High Z	Power-Down	Standby (I_{SB})
L	H	Data Out	Read	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	High Z	7B192: Standard Write	Active (I_{CC})
L	L	Data In	7B191: Transparent Write ${ }^{[15]}$	Active (I $\left.\mathrm{I}_{\mathrm{CC}}\right)$

Notes:
15. Outputs track inputs after specified delay.

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7B191-10PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7B191-10VC	V21	28-Lead Molded SOJ	
	CY7B191-12DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B191-12PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B191-12VC	V21	28-Lead Molded SOJ	
	CY7B191-12DMB	D22	28-Lead (300-Mil) CerDIP	Military
15	CY7B191-15DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B191-15PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B191-15VC	V21	28-Lead Molded SOJ	
	CY7B191-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
20	CY7B191-20DMB	D22	28-Lead (300-Mil) CerDIP	Military

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7B192-10PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B192-10VC	V21	28-Lead Molded SOJ	
12	CY7B192-12DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B192-12PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B192-12VC	V21	28-Lead Molded SOJ	
	CY7B192-12DMB	D22	28-Lead (300-Mil) CerDIP	Military
15	CY7B192-15DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B192-15PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B192-15VC	V21	28-Lead Molded SOJ	
	CY7B192-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
20	CY7B192-20DMB	D22	28-Lead (300-Mil) CerDIP	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Document \#: 38-00156-C

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AA }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{OHA}}$	7, 8, 9, 10, 11
$t_{\text {ACE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DOE }}$	7, 8, 9, 10, 11
WRITE CYCLE	
${ }^{\text {W }}$ WC	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SCE }}$	7, 8, 9, 10, 11
${ }^{\text {taw }}$	7, 8, 9, 10, 11
t_{HA}	7, 8, 9, 10, 11
t_{SA}	7, 8, 9, 10, 11
$t_{\text {PWE }}$	7, 8, 9, 10, 11
${ }_{\text {t }}$ D	7, 8, 9, 10, 11
t_{HD}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DWE }}{ }^{[16]}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {ADV }}$	7, 8, 9, 10, 11

Note:
16. 7B191 only.

Features

- High speed
- 12 ns
- Transparent write (7C191)
- CMOS for optimum speed/power
- Low active power
$-880 \mathrm{~mW}$
- Low standby power
$-220 \mathrm{~mW}$
- TTL-compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C191 and CY7C192 are highperformance CMOS static RAMs organized as $65,536 \times 4$ bits with separate I/O. Easy memory expansion is provided by active LOW chip enable ($\overline{C E}$) and threestate drivers. They have an automatic pow-er-down feature, reducing the power consumption by 75% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW.
Data on the four input pins (I_{0} through I_{3}) is written into the memory location specified on the address pins (A_{0} through A_{15}).

64K x 4 Static RAM with Separate I/O

Reading the device is accomplished by taking the chip enable (CE) LOW while the write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data output pins.
The output pins stay in high-impedance state when write enable (WE) is LOW (CY7C192 only), or chip enable (CE) is HIGH.
A die coat is used to insure alpha immunity.

Logic Block Diagram

Pin Configurations

C191-2

Selection Guide

		$\begin{aligned} & 7 \mathrm{C} 191-12 \\ & 7 \mathrm{C} 192-12 \end{aligned}$	$\begin{aligned} & \text { 7C191-15 } \\ & 7 \mathrm{C192-15} \end{aligned}$	$\begin{aligned} & \text { 7C191-20 } \\ & \text { 7C192-20 } \end{aligned}$	$\begin{aligned} & \text { 7C191-25 } \\ & 7 \mathrm{C} 192-25 \end{aligned}$	$\begin{aligned} & \text { 7C191-35 } \\ & 7 \mathrm{C} 192-35 \end{aligned}$	$\begin{aligned} & \text { 7C191-45 } \\ & 7 \mathrm{C} 192-45 \end{aligned}$
Maximum Access Tim		12	15	20	25	35	45
Maximum Operating	Commercial	155	145	135	115	115	
Current (mA)	Military		160	150	125	125	125
Maximum Standby Cu	(mA)	30	30	30	30	30	30

[^23]
Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 28 to Pin 14) \qquad -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]} \ldots \ldots$.
Output Current into Outputs (LOW) \qquad

Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		$\begin{aligned} & 7 \mathrm{C} 191-12 \\ & 7 \mathrm{Cl} 192-12 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 191-15 \\ & 7 \mathrm{Cl92-15} \end{aligned}$		Unit
				Min.	Max	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		24		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}$ OL $=8.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\begin{gathered} \mathrm{Vcc} \\ +0.3 \mathrm{~V} \end{gathered}$	2.2	$\begin{aligned} & \text { Vec } \\ & +0.3 V \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{1]}$			-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-5	+5	-5	45	$\mu \mathrm{A}$
I OZ	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled		-5	+5	-5	45	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300	mA
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		160		150	mA
			Mil				160	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current-TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$			30	\%	30	mA
ISB2	Automatic $\overline{\text { CE }}$ Power-Down Current-CMOS Inputs	$\begin{aligned} & \text { Max. } V_{C C}, \overline{C E} \geq V_{C C}-0.3 V \\ & V_{\text {IN }} \geq V_{C C}-0.3 V \text { or } \\ & V_{\text {IN }} \leq 0.3 V, f=0 \end{aligned}$	Com'l		10		10	mA
			Mil		+		15	

Shaded area contains advanced information.

Notes:

1. Minimum voltage is equal to -2.0 V for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range ${ }^{[3]}$ (continued)

Parameter	Description	Test Conditions		$\begin{aligned} & \hline \text { 7C191-20 } \\ & 7 \mathrm{C} 192-20 \end{aligned}$		$\begin{array}{\|l} \hline \text { 7C191-25, 35, } 45 \\ \text { 7C192-25, 35, } 45 \end{array}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	2.2	$\begin{array}{r} \\ \mathrm{V}_{\mathrm{CC}} \\ + \\ +0.3 \mathrm{~V} \end{array}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.5	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled		-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'		135		115	mA
			Mil		150		125	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current-TTL Inputs	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$			30		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\text { CE }}$ Power-Down Current-CMOS Inputs	$\begin{aligned} & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$			15		15	mA

Shaded area contains advanced information.
Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
CouT	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		10	pF

AC Test Loads and Waveforms ${ }^{[6]}$

(b) C191-4
(a)

Notes:

5. Tested initially and after any design or process changes that may affect these parameters.
6. $t_{\mathrm{r}}=\leq 3 \mathrm{~ns}$ for the -12 and -15 speeds. $\mathrm{t}_{\mathrm{r}}=\leq 5 \mathrm{~ns}$ for the -20 and slower speeds.

Switching Characteristics Over the Operating Range ${ }^{[3,7]}$

Parameter	Description	$\begin{aligned} & \text { 7C191-12 } \\ & 7 \mathrm{Cl} 192-12 \end{aligned}$		$\begin{aligned} & 7 \mathrm{Cl191-15} \\ & \text { 7C192-15 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C191-20 } \\ & \text { 7C192-20 } \end{aligned}$		$\begin{aligned} & \text { 7C191-25 } \\ & 7 \mathrm{C} 192-25 \end{aligned}$		$\begin{aligned} & \text { 7C191-35 } \\ & \text { 7C192-35 } \end{aligned}$		7C192-45		Unit
		Min.	Max.	Min.	Max:	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE														
t_{RC}	Read Cycle Time	12		15	+	20		25		35		45		ns
${ }^{\text {taA }}$	Address to Data Valid		12		15		20		25		35		45	ns
toha	Output Hold from Address Change	$\frac{3}{3}$		3		3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to }}$ Data Valid		12		15		20		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\begin{aligned} & \hline \overline{\mathrm{CE}} \text { LOW to } \\ & \text { Low } \mathrm{Z}^{[8]} \end{aligned}$	3		3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\begin{aligned} & \overline{\mathrm{CE}} \text { HIGH to } \\ & \text { High } \mathrm{Z}[8,9] \end{aligned}$		5		7		9		11		15		15	ns
tPu	CE LOW to Power-Up	0		0		0		0		0		0		ns
tPD	CE HIGH to Power-Down		12		15		20		25		35		45	ns
WRITE CYCLE ${ }^{[10]}$														
twC	Write Cycle Time	12		15		20		25		35		45		ns
${ }_{\text {t }}$ SCE	$\overline{\text { CE LOW to }}$ Write End	9		10		15		18		22		22		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	9		10		15		20		25		35		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		0		ns.
tPWE	$\overline{\text { WE Pulse Width }}$	8		9		15		18		22		22		ns
${ }_{\text {t }}$ D	Data Set-Up to Write End	8	1	9		10		10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z (7C192) ${ }^{[8]}$	3		3		3		3		3		3		ns
$\mathrm{t}_{\text {HzWE }}$	$\begin{array}{\|l\|} \hline \overline{\text { WE }} \text { LOW to } \\ \text { High Z (7C192) }{ }^{[8,9]} \\ \hline \end{array}$		7		7		10		11		15		15	ns
towe	WE LOW to Data Valid (7C191)		12		15		20		25		30		35	ns
$\mathrm{t}_{\mathrm{ADV}}$	Data Valid to Output Valid (7C191)		12		$\overline{15}$		20		20		30		35	ns
${ }^{\text {t }}$ DCE	$\begin{array}{\|l\|} \hline \overline{\mathrm{CE}} \text { LOW to } \\ \text { Data Valid (7C191) } \\ \hline \end{array}$		12		15		20		25		35		45	ns

Shaded area contains advanced information.

Notes:

7. Test conditions assume signal transition time of 3 ns or less for -12 and -15 speeds and 5 ns or less for -20 through -45 speeds, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LILCE }}, t_{H Z W E}$ is less than $t_{L Z W E}$ for any given device. These parameters are guaranteed and not 100% tested.
9. $t_{\text {HZCE }}$ and $t_{H Z W E}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
10. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[11,12]}$

Read Cycle No. 2[11, 13]

C191-7
Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[10]}$

Notes:
11. $\overline{\text { WE }}$ is HIGH for read cycle.
12. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$ -
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state (7C192 only).

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathrm{CE}}$ Controlled) ${ }^{[10, ~ 14]}$

Typical DC and AC Characteristics

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

Typical DC and AC Characteristics (continued)

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
12		121		Connumetral
		\%		
\$s		\%		Sammumal
		\%	2\%ukud Mmedea sel	
20	CY7C191-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C191-20VC	V21	28-Lead Molded SOJ	
25	CY7C191-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C191-25VC	V21	28-Lead Molded SOJ	
35	CY7C191-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C191-35VC	V21	28-Lead Molded SOJ	

[^24]Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12		\%		Commercala
		\% 2		
\#1				Cumuretsal
		1/4	\% skead Moudids Sof	
		ग23\%	281	Minkavy
20	CY7C192-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C192-20VC	V21	28-Lead Molded SOJ	
		12\%		Malay
25	CY7C192-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C192-25VC	V21	28-Lead Molded SOJ	
	CY7C192-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C192-25LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
35	CY7C192-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C192-35VC	V21	28-Lead Molded SOJ	
	CY7C192-35DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C192-35LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
45	CY7C192-45DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C192-45LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

Shaded area contains advanced information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Document \#: 38-00076-I

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{HHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AWE}}[15]$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}{ }^{[15]}$	$7,8,9,10,11$

Note:
15. CY7C191 only

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=10 \mathrm{~ns}$
- BiCMOS for optimum speed/power
- Low active power
$-850 \mathrm{~mW}$
- Low standby power
$-\mathbf{1 6 0} \mathrm{mW}$
- Automatic power-down when deselected
- Output enable ($\overline{\mathrm{OE}})$ feature (CY7B195 and CY7B196 only)
- TTL-compatible inputs and outputs

Functional Description

The CY7B194, CY7B195, and CY7B196 are high-performance BiCMOS static

RAMs organized as 65,536 words by 4 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}_{1}$), an active LOW chip enable ($\mathrm{CE}_{2}, \mathrm{CY} 7 \mathrm{~B} 196$ only), an active LOW output enable ($\overline{\mathrm{OE} \text {, }}$ CY7B195 and CY7B196 only), and threestate drivers. Both devices have an automatic power-down feature that reduces power consumption by more than 75% when deselected.
Writing to the device is accomplished by taking chip enable one ($\overline{\mathrm{CE}}_{1}$) and write enable (WE) inputs LOW and chip enable two ($\overline{\mathrm{CE}}_{2}$, CY7B196 only) input LOW. Data on the I / O pin $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{3}\right)$ is then written into the location specified on the address pins (A_{0} through A_{15}).
Reading from the device is accomplished by taking chip enable one $\left(\overline{C E}_{1}\right)$, chip en-
able two ($\overline{\mathrm{CE}}_{2}$, CY7B196only), and output enable (OE) LOW, while forcing write enable ($\overline{\mathrm{WE}}) \mathrm{HIGH}$. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.
The four input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) are placed in a high-impedance state when the device is deselected ($\mathrm{CE}_{1} \mathrm{HIGH}$, or $\overline{\mathrm{CE}}_{2} \mathrm{HIGH}, \mathrm{CY} 7 \mathrm{~B} 196$ only), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), or during a write operation ($\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2} \mathrm{CY} 7 \mathrm{~B} 196$ only, and WE LOW).
The CY7B194, CY7B195, and CY7B196 are available in 300 -mil-wide DIPs and SOJs.

Logic Block Diagram

Pin Configurations

Selection Guide

		$\begin{aligned} & \text { 7B194-10 } \\ & \text { 7B195-10 } \\ & \text { 7B196-10 } \end{aligned}$	$\begin{aligned} & \text { 7B194-12 } \\ & \text { 7B195-12 } \\ & 7 \mathrm{~B} 196-12 \end{aligned}$	$\begin{gathered} 7 \mathrm{~B} 194-15 \\ 7 \mathrm{~B} 195-15 \\ 7 \mathrm{~B} 196-15 \end{gathered}$	$\begin{aligned} & \text { 7B194-20 } \\ & \text { 7B195-20 } \\ & \text { 7B196-20 } \end{aligned}$
Maximum Access Time (ns)		10	12	15	20
Maximum Operating Current (mA)	Commercial	170	160	150	
	Military		170	160	160
Maximum Standby Current (mA)	Commercial	40	35	30	
	Military		40	40	40

Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots \ldots \ldots \ldots . .$.
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]} .-0.5 \mathrm{~V}$ to +7.0 V DC Voltage Applied to Outputs
in High Z State ${ }^{[1]}$
-0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$
-0.5 V to +7.0 V
Current into Outputs (LOW) 20 mA

Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature [2]	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		$\begin{aligned} & \hline \text { 7B194-10 } \\ & \text { 7B195-10 } \\ & \text { 7B196-10 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{~B} 194-12 \\ & \text { 7B195-12 } \\ & \text { 7B196-12 } \end{aligned}$		$\begin{aligned} & \text { 7B194-15,20 } \\ & \text { 7B195-15,20 } \\ & \text { 7B196-15,20 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{1]}$			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'1		170		160		150	mA
			Mil				170		160	
ISB	Automatic CE Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}- \\ & 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Com'l		40		35		30	mA
			Mil				40		40	

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max. ${ }^{[6]}$	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	6	pF
$\mathrm{C}_{\mathrm{OUT}}, \mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Output Capacitance		8	pF
			8	

Notes:

1. $\mathrm{V}_{\mathrm{IL} \text { (min.) }}=-3.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.
6. For PDIP (P13, P21) AND CDIP (D14, D22), $\mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\mathrm{OUT}}=10 \mathrm{pF}$.

AC Test Loads and Waveforms

(a)

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT $\mathrm{O}-\underbrace{167 \Omega}$
1.73 V

Switching Characteristics Over the Operating Range ${ }^{[3,7]}$

Parameter	Description	$\begin{aligned} & \hline 7 B 194-10 \\ & 7 B 195-10 \\ & 7 B 196-10 \end{aligned}$		$\begin{aligned} & \hline 7 B 194-12 \\ & 7 B 195-12 \\ & 7 B 196-12 \end{aligned}$		$\begin{aligned} & \text { 7B194-15 } \\ & \text { 7B195-15 } \\ & 7 \mathrm{~B} 196-15 \end{aligned}$		$\begin{aligned} & 7 \mathrm{7B194-20} \\ & 7 \mathrm{~B} 195-20 \\ & 7 \mathrm{~B} 196-20 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	10		12		15		20		ns
t_{AA}	Address to Data Valid		10		12		15		20	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\mathrm{ACE}}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		10		12		15		20	ns
$\mathrm{t}^{\text {DOE }}$	OE LOW to Data Valid		6		6		7		10	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE }}$ LOW to Low $\mathrm{Z}^{[8]}$	2		2		2		2		ns
$\mathbf{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[8,9]}$		6		7		8		10	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[8,9]}$		6		7		8		10	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power-Up		0		0		0		0	ns
t_{PD}	$\overline{\mathrm{CE}}$ HIGH to Power-Down		10		12		15		20	ns
WRITE CYCLE[10, 11]										
$t_{\text {WC }}$	Write Cycle Time	10		12		15		20		ns
${ }_{\text {tSCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	8		9		10		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	8		9		10		15		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	8		9		10		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	6		7		8		10		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low ${ }^{\text {[8] }}$	2		2		2		2		ns
tHZWE	$\overline{\text { WE }}$ LOW to High $\mathbf{Z}^{[8,9]}$		6		7		7		10	ns

Notes:

7. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $20-\mathrm{pF}$ load capacitance.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\mathrm{LZCE}}, \mathrm{t}_{\mathrm{HZOE}}$ is less than $\mathrm{t}_{\mathrm{LZOE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ is less than $\mathrm{t}_{\mathrm{LZWE}}$ for any given device.
9. $\mathbf{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
10. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, $\overline{\mathrm{CE}}_{2}$ LOW, and WE LOW. Both signals must be LOW to initiate a write and either signal will terminate a write by going HIGH. The input data set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
11. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{O E}$ LOW) is the sum of $t_{H Z W E}$ and $t_{S D}$.

Switching Waveforms
Read Cycle No. $1^{[12,13]}$

Read Cycle No. 2[13, 14]

Write Cycle No. 1 ($\overline{\mathbf{C E}}_{1}$ or $\overline{\mathbf{C E}}_{2}$ Controlled) ${ }^{[15,16]}$

Notes:

12. Device is continuously selected. $\overline{\mathrm{CE}}_{1}$ ($\overline{\mathrm{OE}}$: 7 B 195 and $7 \mathrm{~B} 196, \overline{\mathrm{CE}}_{2}$: 7B196 only) $=\mathrm{V}_{\mathrm{IL}}$.
13. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
14. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ transition LOW.
15. Data I / O is HIGH impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
16. If $\overline{\mathrm{CE}}_{1}\left(\overline{\mathrm{CE}}_{1}\right.$ or $\overline{\mathrm{CE}}_{2}$ on the 7 B 196) goes HIGH simultaneously with $\overline{\text { WE HIGH, the output remains in a high-impedance state. }}$

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\text { OE }}$ HIGH During Write for 7B195 and 7B196 only) ${ }^{[15,16]}$

Write Cycle No. 3 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[11,16]}$

Note:

17. During this period, the I / Os are in the output state and input signals should not be applied.

7B194 Truth Table

$\overline{\mathbf{C E}}_{1}$	$\overline{\text { WE }}$	$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{3}$	Mode	Power
H	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	H	Data Out	Read	Active (I_{CC})
L	L	Data In	Write	Active ($\mathrm{ICC}_{\text {) }}$

7B195 Truth Table

$\overline{\mathbf{C E}}_{1}$	$\overline{\text { WE }}$	$\overline{\mathbf{O E}}$	I/ $\mathrm{O}_{0}-1 / \mathrm{O}_{3}$	Mode	Power
H	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	H	L	Data Out	Read	Active ($\mathrm{ICC}_{\text {C }}$)
L	L	X	Data In	Write	Active ($\mathrm{ICC}^{\text {c }}$)
L	H	H	High Z	Selected, Output Disabled	Active ($\mathrm{ICC}_{\text {C }}$)

7B196 Truth Table

$\overline{\mathbf{C E}}_{1}$	$\overline{\mathbf{C E}}_{2}$	$\overline{\mathbf{W E}}$	$\overline{\mathrm{OE}}$	Input/Output	Mode	Power
H	X	X	X	High Z	Power-Down	Standby ($\mathrm{ISB}^{\text {) }}$
X	H	X	X	High Z	Power-Down	Standby ($\mathrm{ISB}^{\text {) }}$
L	L	H	L	Data Out	Read	Active (I_{CC})
L	L	L	X	Data In	Write	Active (I_{CC})
L	L	H	H	High Z	Selected, Output Disabled	Active (I_{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type Range	
10	CY7B194-10PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7B194-10VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7B194-12DC	D14	24-Lead (300-Mil) CerDIP	Commercial
	CY7B194-12PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7B194-12VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7B194-12DMB	D14	24-Lead (300-Mil) CerDIP	Military
15	CY7B194-15DC	D14	24-Lead (300-Mil) CerDIP	Commercial
	CY7B194-15PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7B194-15VC	V21	28-Lead (300-Mil) Molded SOJ	Military
	CY7B194-15DMB	D14	24-Lead (300-Mil) CerDIP	Military

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7B196-10PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7B196-10VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7B196-12DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B196-12PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B196-12VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7B196-12DMB	D22	28-Lead (300-Mil) CerDIP	Military
15	CY7B196-15DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B196-15PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B196-15VC	V21	28-Lead (300-Mil) Molded SOJ	Military
	CY7B196-15DMB	D22	28-Lead (300-Mil) CerDIP	Military

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7B195-10PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7B195-10VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7B195-12DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B195-12PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B195-12VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7B195-12DMB	D22	28-Lead (300-Mil) CerDIP	Military
15	CY7B195-15DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B195-15PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B195-15VC	V21	28-Lead (300-Mil) Molded SOJ	Military
	CY7B195-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
20	CY7B195-20DMB	D22	28-Lead (300-Mil) CerDIP	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
$\mathrm{t}_{\mathrm{WCC}}$	
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-0015B-D

SEMICONDUCTOR

Functional Description

The CY7C194, CY7C195, and CY7C196 are high-performance CMOS static RAMs organized as 65,536 by 4 bits. Easy memory expansion is provided by active LOW chip enable(s) (CE on the CY7C194 and CY7C195, $\mathrm{CE}_{1}, \overline{\mathrm{CE}}_{2}$ on the CY7C196) and three-state drivers. They have an automatic power-downfeature, reducing the power consumption by 75% when deselected.

Writing to the device is accomplished when the chip enable(s) (CE on the CY7C194 and $\mathrm{CY} 7 \mathrm{C} 195, \mathrm{CE}_{1}, \mathrm{CE}_{2}$ on the CY7C196) and

64K x 4 Static RAM

Features

- High speed
$-12 \mathrm{~ns}$
- Output enable ($\overline{\mathrm{OE}}$) feature (7C195 and 7C196)
- CMOS for optimum speed/power
- Low active power
$-880 \mathrm{~mW}$
- Low standby power
- 220 mW
- TTL-compatible inputs and outputs
- Automatic power-down when deselected
write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the four input pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) is written into the memory location, specified on the address pins (A_{0} through A_{15}).

Reading the device is accomplished by taking the chip enable(s) (CE on the CY 7 C 194 and $\mathrm{CY} 7 \mathrm{C} 195, \overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ on the CY7C196) LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the four data output pins.

A die coat is used to ensure alpha immunity.

Logic Block Diagram

Pin Configurations

C194-2

C194-4

Selection Guide

		$\begin{aligned} & 7 \mathrm{C194-12} \\ & \text { 7C195-12 } \\ & 7 \mathrm{C196-12} \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 194-15 \\ & 7 \mathrm{C} 195-15 \\ & 7 \mathrm{C} 196-15 \end{aligned}$	$\begin{aligned} & \hline \text { 7C194-20 } \\ & \text { 7C195-20 } \\ & \text { 7C196-20 } \end{aligned}$	$\begin{aligned} & \text { 7C194-25 } \\ & 7 \mathrm{C} 195-25 \\ & 7 \mathrm{C} 196-25 \end{aligned}$	$\begin{aligned} & \text { 7C194-35 } \\ & \text { 7C195-35 } \\ & \text { 7C196-35 } \end{aligned}$	$\begin{aligned} & \text { 7C194-45 } \\ & 7 \mathrm{C} 196-45 \end{aligned}$
Maximum Access Time (ns)		12	W 15	20	25	35	45
Maximum Operating Current (mA)	Commercial	155	145	135	115	115	
	Military		160	150	125	125	125
Maximum Standby Current (mA)		30	30	30	30	30	30

[^25]
Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs

DC Input Voltage ${ }^{[1]} \ldots \ldots \ldots \ldots \ldots-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Output Current into Outputs (LOW) 20 mA

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		$\begin{aligned} & 7 \mathrm{C} 194-12 \\ & \text { 7C195-12 } \\ & 7 \mathrm{C} 196-12 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 194-15 \\ & 7 \mathrm{C} 195-15 \\ & 7 \mathrm{C} 196-15 \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		4	0.4	4	0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\begin{gathered} \mathrm{VCC} \\ +0.3 \mathrm{~V} \end{gathered}$	2.2	$\begin{aligned} & \mathrm{VCC} \\ & +0.3 \mathrm{~V} \end{aligned}$	V
$\mathrm{V}_{\mathrm{IL}}{ }^{\text {1] }}$	Input LOW Voltage			-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		5	+5	-5	+5	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled		-5	+5	-5	+5	$\mu \mathrm{A}$
IOS	Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{V}_{\text {OUT }}=\mathrm{GND} \\ & \hline \end{aligned}$			-300		-300	mA
$\mathrm{I}_{\text {CC }}$	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		160		145	mA
			Mil				160	
$\mathrm{I}_{\text {SB1 }}$	$\begin{aligned} & \hline \text { Automatic } \overline{\mathrm{CE}} \\ & \text { Power-Down Current } \\ & \text {-TTL Inputs }{ }^{5]} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1,2} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$			30		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current -CMOS Inputs ${ }^{[5]}$	$\begin{aligned} & \text { Max. }^{V_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1,2} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V},} \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Com'l		10		10	mA
			Mil				15	

[^26]Notes:

1. Minimum voltage is equal to -2.0 V for pulse durations of less than 20 ns.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.

Electrical Characteristics Over the Operating Range ${ }^{[3]}$ (continued)

Shaded area contains preliminary information.
Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms ${ }^{[7]}$

(a)

(b)
3.0 V
GND

C194-7

Notes:

6. Tested initially and after any design or process changes that may affect these parameters.
7. $t_{r}=\leq 3 \mathrm{~ns}$ for the -12 and -15 speeds. $\mathrm{t}_{\mathrm{r}}=\leq 5 \mathrm{~ns}$ for the -20 and slower speeds.

Switching Characteristics Over the Operating Range ${ }^{[3,8]}$

Parameter	Description	$\begin{aligned} & \text { 7C194-12 } \\ & \text { 7C195-12 } \\ & 7 \mathrm{C196-12} \end{aligned}$		$\begin{array}{r} 7 \mathrm{C} 194-15 \\ 7 \mathrm{C} 195-15 \\ 7 \mathrm{C} 196-15 \end{array}$		$\begin{aligned} & \hline \text { 7C194-20 } \\ & 7 \mathrm{C} 195-20 \\ & 7 \mathrm{C} 196-20 \end{aligned}$		$\begin{aligned} & \text { 7C194-25 } \\ & 7 \mathrm{C} 195-25 \\ & 7 \mathrm{C} 196-25 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 194-35 \\ & 7 \mathrm{C} 195-35 \\ & 7 \mathrm{C} 196-35 \end{aligned}$		$\begin{aligned} & \text { 7C194-45 } \\ & 7 \mathrm{C} 196-45 \end{aligned}$		Unit
		Min.	Max.											

t_{RC}	Read Cycle Time		12.		15	${ }^{3}$	20		25		35		45		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		5	12		15		20		25		35		45	ns
toha	Output Hold from Address Change		3		3		3		3		3		3		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{ACE} 1}, \\ & \mathrm{t}_{\mathrm{ACE} 2} \\ & \hline \end{aligned}$	$\overline{\mathrm{CE}}$ LOW to Data Valid			12		15		20		25		35		45	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to }}$ Data Valid	$\begin{aligned} & 7 \mathrm{C} 195, \\ & 7 \mathrm{C} 196 \end{aligned}$		5		7		9		10		16		16	ns
${ }^{\text {t }}$ LZOE	$\overline{\mathrm{OE}}$ LOW to Low Z	$\begin{array}{\|l} \hline 7 \mathrm{C} 195, \\ 7 \mathrm{C} 196 \end{array}$	0		0		0		3		3		3		ns
$\mathrm{t}_{\text {Hzoe }}$	$\begin{aligned} & \overline{\mathrm{OE} \text { HIGH }} \\ & \text { to High Z[10] } \end{aligned}$	$\begin{aligned} & \hline \text { 7C195, } \\ & \text { 7C196 } \end{aligned}$		5	4	7		9		11		15		15	ns
$\mathrm{t}_{\mathrm{LZCE} 1},$ $\mathrm{t}_{\mathrm{LZCE}}$	$\begin{aligned} & \hline \overline{\mathrm{CE}} \text { LOW to } \\ & \text { Low Z[9] } \end{aligned}$		3		3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$, tHZCE2	$\begin{aligned} & \text { CE HIGH to } \\ & \text { High } Z^{[9,10]} \end{aligned}$			5		17		9		11		15		15	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power-Up		0		0		0		0		0		0		ns
${ }^{\text {PD }}$	$\overline{\text { CE HIGH to }}$ Power-Down		$+$			15		20		25		35		45	ns

WRITE CYCLE ${ }^{[11]}$

twc	Write Cycle Time	12		15		20		25		35		45		ns
${ }_{\text {t }}$ SE	$\overline{\text { CE }}$ LOW to Write End	9	2	10		15		18		22		22		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	9		10		15		20		25		35		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		0		ns
${ }^{\text {tsA }}$	Address Set-Up to Write Start	0		0		0		0		0		0		ns
tpwe	WE Pulse Width	8		9	,	15		18		22		22		ns
${ }_{\text {t }}$ D	Data Set-Up to Write End	8		9	ma	10		10		15		15		ns
t_{HD}	Data Hold from Write End	$\overline{0}$		0	4	0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH to }}$ Low $\mathrm{Z}^{[9]}$			3		3		3		3		3		ns
$\mathrm{t}_{\text {HzwE }}$	$\overline{\text { WE LOW to }}$ High $Z^{[9,8]}$		=7		7		10	0	13	0	15	0	20	ns

Shaded area contains preliminary information.

Notes:

8. Test conditions assume signal transition time of 3 ns or less for -12 and -15 speeds and 5 ns or less for -20 and slower speeds, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
9. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ and $t_{H Z W E}$ is less than $t_{L Z W E}$ for any given device.
 of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
10. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, $\overline{\mathrm{CE}}_{2}$ LOW, and $\overline{\mathrm{WE}}$ LOW. All signals must be LOW to initiate a write and any signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. 1 ${ }^{[12,13]}$

Read Cycle No. $2^{[12,14]}$

Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[11,15,16]}$

Notes:

12. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
13. Device is continuously selected: $\overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}}, \overline{\mathrm{CE}}_{2}=\mathrm{V}_{\mathrm{IL}}$ (7C196), and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$ (7C195 and 7C196).
14. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{CE}}_{2}$ transition LOW.
15. Data I / O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$ (7C195 and 7C196).
16. If any CE goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.
17. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ controlled, $\overline{\mathrm{OE}} \mathrm{LOW})$ is the sum of t_{HZWE} and $t_{S D}$.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathbf{O E}}$ HIGH During Write for 7C195 and 7C196 only) ${ }^{[11,15,16]}$

Write Cycle No. 3 ($\overline{\text { WE }}$ Controlled. $\overline{\mathrm{OE}}$ LOW) ${ }^{[16,17]}$

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

7C194 Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Data I/O	Mode	Power
H	X	High Z	Deselect/Power-Down	Standby $\left(\mathrm{I}_{\mathrm{SB}}\right)$
L	H	Data Out	Read	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$
L	L	Data In	Write	Active $\left(\mathrm{I}_{\mathrm{CC}}\right)$

7C195 Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Data I/O	Mode	Power
H	X	X	High Z	Deselect/Power-Down	Standby $\left(\mathbf{I}_{\mathrm{SB}}\right)$
L	H	L	Data Out	Read	Active $\left(\mathbf{I}_{\mathrm{CC}}\right)$
L	L	X	Data In	Write	Active $\left(\mathbf{I}_{\mathrm{CC}}\right)$
L	H	H	High Z	Deselect	Active $\left(\mathbf{I}_{\mathrm{CC}}\right)$

7C196 Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\overline{\mathbf{C E}}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Data I/O		Mode
H	X	X	X	High Z	Peselect/Power-Down	
X	H	X	X			Standby ($\left.\mathbf{I}_{\mathbf{S B}}\right)$
L	L	H	L	Data Out	Read	Active ($\left.\mathbf{I}_{\mathrm{CC}}\right)$
L	L	L	X	Data In	Write	Active $\left(\mathbf{I}_{\mathrm{CC}}\right)$
L	L	H	H	High Z	Deselect	Active $\left(\mathbf{I}_{\mathrm{CC}}\right)$

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
	CY7C194-12PC	P13.	24 -Lead (300-Mil) Molded DIP	Commercial
	CY7C194-12VC	V13	24-Lead Molded SOJ	
$\overline{15}$	CY7C194-15PC	P13	24 -Lead (300-Mil) Molded DIP	Commercial
	CY7C194-15VC	V13	24-Lead Molded SOJ	
	CY7C194-15DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C194-151MB	154	28-Pin Rectangular Leadless Chip Carrier	
20	CY7C194-20PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-20VC	V13	24-Lead Molded SOJ	
	CY7C194-20DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C194-20LMB	154	28-Pin Rectangular Leadless Chip Carrier	
25	CY7C194-25PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-25VC	V13	24-Lead Molded SOJ	
	CY7C194-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C194-25LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
35	CY7C194-35PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C194-35VC	V13	24-Lead Molded SOJ	
	CY7C194-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C194-35LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
45	CY7C194-45DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C194-45LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C195-12PC	P21	28-Lead (300-Mi1) Molded DIP	Commercial
	CY7C195-12VC	V21	28 -Lead Molded SOJ	
15	CY7C195-15PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-15VC	V21	28 -Lead Molded SOI	
20	CY7C195-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-20VC	V21	28-Lead Molded SOJ	
25	CY7C195-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-25VC	V21	28-Lead Molded SOJ	
35	CY7C195-35PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C195-35VC	V21	28-Lead Molded SOJ	

[^27]Ordering Information (continued)

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C196-12PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C196-12VC	V21	28-Lead Molded SOJ	
15	CY7C196-15PC	P21	28-Lead (300-Mil) Molded DIP	1
	CY7C196-15VC	V21	28-Lead Molded SOJ	
	CY7C196-15LMB	154	28-Pin Rectangular Leadless Chip Carrier	
20	CY7C196-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C196-20VC	V21	28-Lead Molded SOJ	
	CY7C196-20LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
25	CY7C196-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C196-25VC	V21	28-Lead Molded SOJ	
	CY7C196-25LMB	L54	28-Pin Rectangular Leadless Chip Carrier	Commercial
35	CY7C196-35PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C196-35VC	V21	28-Lead Molded SOJ	
	CY7C196-35LMB	L54	28-Pin Rectangular Leadless Chip Carrier	Military
45	CY7C196-45LMB	L54	28-Pin Rectangular Leadless Chip Carrier	Military

Shaded area contains preliminary information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	
READ CYCLE	Subgroups
t_{RC}	
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}, \mathrm{ACE} 2$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}{ }^{[18]}$	$7,8,9,10,11$
WRITE 2	$7,8,9,10,11$
t_{WC}	7
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Note:
18. 7C195 and 7C196 only.

Document \#: 38-00081-I

CY7C197

256K x 1 Static R/W RAM

Features

- High speed
$-12 \mathrm{~ns}$
- CMOS for optimum speed/power
- Low active power
- $\mathbf{8 8 0} \mathrm{mW}$
- Low standby power
- 220 mW
- TTL-compatible imputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C197 is a high-performance CMOS static RAM organized as 256 K words by 1 bit. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}})$ and three-state drivers. The CY7C197 has an automatic power-down feature, reducing the power consumption by 75% when deselected.
Writing to the device is accomplished when the chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input pin $\left(\mathrm{D}_{\text {IN }}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{17}).

Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data output ($\mathrm{D}_{\mathrm{OUT}}$) pin.
The output pin stays in a high-impedance state when chip enable ($\overline{\mathrm{CE}}$) is HIGH or write enable ($\overline{\mathrm{WE}})$ is LOW.
The 7C197 utilizes a die coat to insure alpha immunity.

Logic Block Diagram

C197-1

Pin Configurations

Selection Guide

		7C197-12	7C197-15	7C197-20	7C197-25	7C197-35	7C197-45							
Maximum Access Time (ns)	$\mathbf{1 2}$	15	20	25	35	45								
Maximum Operating Current (mA)	Commercial	150	140	135	95	95								
	Military			150	105	105	105							
Maximum Standby Current (mA)									30	30	30	30	30	30

[^28]
Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) \qquad
DC Voltage Applied to Outputs
in High Z State ${ }^{1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]} \ldots \ldots$.
Output Current into Outputs (LOW)
................ 20 mA

Static Discharge Voltage >2001V (per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions			7C197-12		7C197-15		Unit
					Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$			2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.	$\mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$	Com'l		0.4		0.4	V
			$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Mil				0.4	V
V_{IH}	Input HIGH Voltage				2.2	$\begin{aligned} & \hline V_{C C} \\ & +0.3 V \end{aligned}$	2.2	$\begin{array}{r} \text { Vcc } \\ +0.3 \mathrm{~V} \end{array}$	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$				-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$			-5	$+5$	-5	+5	$\mu \mathrm{A}$
I OZ	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled			-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$				-300		-300	mA
I_{CC}	V_{CC} Operating	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$		Com'l		160		150	mA
	Supply Current			Mil				160	
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\text { CE }}$ Power-Down Current-TTL Inputs ${ }^{[5]}$	$\begin{aligned} & \text { Max. } V_{C C}, \overline{C E} \geq V_{I H}, V_{I N} \geq V_{I H} \text { or } \\ & V_{I N} \leq V_{I L}, f=f_{\text {MAX }} \end{aligned}$				30		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current-CMOS Inputs ${ }^{[5]}$	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }}<0.3 \mathrm{~V} \end{aligned}$		Com'1 Mil		10		$\frac{10}{15}$	mA

Shaded area contains preliminary information.

Notes:

1. $\quad \mathrm{V}_{\text {(min.) }}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CE}}$ input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.

Electrical Characteristics Over the Operating Range ${ }^{[3]}$ (continued)

Parameter	Description	Test Conditions			7C197-20		7C197-25, 35, 45		Unit
					Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$			2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min.	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Mil		\% \%		0.4	V
			$\mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$	Com'l		0.4		0.4	V
V_{IH}	Input HIGH Voltage				2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	2.2	$\begin{aligned} & V_{C C} \\ + & 0.3 \mathrm{~V} \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$				-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {LX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$			-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled			-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$				-300		-300	mA
$\mathrm{I}_{\text {CC }}$	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$		Com'l		135		95	mA
				Mil		430\%		105	
ISB1	Automatic $\overline{\text { CE }}$ PowerDown Current-TTL Inputs ${ }^{[5]}$	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$				30		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CE}}$ Power-Down Current-CMOS Inputs ${ }^{[5]}$	$\begin{aligned} & \operatorname{Max.~}_{V_{C C}, \overline{\mathrm{CE}} \geq V_{\mathrm{CC}}-0.3 \mathrm{~V},} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}}<0.3 \mathrm{~V} \end{aligned}$				15		15	mA

Shaded area contains preliminary information.
Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\mathrm{CC}}=5.0 \mathrm{~V}$	Output Capacitance	V_{CC}	10	pF

AC Test Loads and Waveforms ${ }^{[7]}$

(b) C197-4

C197-5

Equivalent to: THEVENIN EQUIVALENT

Notes:

6. Tested initially and after any design or process changes that may affect these parameters.
7. $\mathrm{t}_{\mathrm{r}}=\leq 3 \mathrm{~ns}$ for the -12 and -15 speeds. $\mathrm{t}_{\mathrm{r}}=\leq 5 \mathrm{~ns}$ for the -20 and slower speeds.

Switching Characteristics Over the Operating Range ${ }^{[3,8]}$

Parameter	Description	7C197-12		7C197-15		7C197-20		7C197-25		7C197-35		7C197-45		Unit
		Min.	Max.											
READ CYCLE														
t_{RC}	Read Cycle Time	12		15		20		25		35		45		ns
t_{AA}	Address to Data Valid		12		15		20		25		35		45	ns
${ }^{\text {toha }}$	Output Hold from Address Change	3		3	1	3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		12		15		20		25		35		45	ns
$\mathrm{t}_{\text {LZCE }}$	$\begin{aligned} & \overline{\mathrm{CE}} \text { LOW to } \\ & \text { Low Z }{ }^{[9]} \end{aligned}$	3		3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\begin{aligned} & \overline{\overline{\mathrm{CE}} \text { HIGH to }} \\ & \text { High } \mathrm{Z}^{[9,10]} \end{aligned}$		5		7	0	9	0	11	0	15	0	15	ns
t_{PU}	CE LOW to Power-Up	0		0		0		0		0		0		ns
t_{PD}	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to Power-Down	\cdots	12		15		20		20		25		30	ns

Shaded area contains preliminary information.

Notes:

8. Test conditions assume signal transition time of 3 ns or less for -12 and -15 speeds and 5 ns or less for -20 and slower speeds, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
9. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{L Z C E}$ and $t_{H Z W E}$ is less than $t_{L Z W E}$ for any given device.
10. $t_{H Z C E}$ and $t_{H Z W E}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) in AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
11. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

C197-6

C197-7
Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[12]}$

Notes:

12. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
13. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneousiy with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[12,14]}$

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

TYPICAL ACCESS TIME CHANGE
vs. OUTPUT LOADING

NORMALIZED ICC vs. CYCLE TIME

7C197 Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	Input/Output	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C197-12PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C197-12VC	V13	24 -Lead Molded SOJ	
15	CY7C197-15PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C197-15VC	V13	24 -Lead Molded SOJ	
	CY7C197-15DMB	D14	24-Lead ($300-\mathrm{Mil}$) CerDIP	Military
20	CY7C197-20PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C197-20VC	V13	24-Lead Molded SOJ	
	CY7C197-20DMB	D14	24-Lead (300-Mil) CerDIP	Military
25	CY7C197-25PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C197-25VC	V13	24-Lead Molded SOJ	
	CY7C197-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C197-25LMB	L54	24-Pin Rectangular Leadless Chip Carrier	
35	CY7C197-35PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	CY7C197-35VC	V13	24-Lead Molded SOJ	
	CY7C197-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C197-35LMB	L54	24-Pin Rectangular Leadless Chip Carrier	
45	CY7C197-45DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C197-45LMB	L54	24-Pin Rectangular Leadless Chip Carrier	

Shaded area contains preliminary information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\text {PWE }}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00078-K

32K x 8 Static R/W RAM

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=10 \mathrm{~ns}$
- BiCMOS for optimum speed/power
- Low active power
$-925 \mathrm{~mW}$
- Low standby power
$-60 \mathrm{~mW}$
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7B199 is a high-performance BiCMOS static RAM organized as 32,768 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$), an active LOW output enable ($\overline{\mathrm{OE}}$), and three-state drivers. The device has an automatic power-down feature, reducing the power consumption by more than 75% when deselected.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing operation of the memory. When $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ inputs are both LOW, data on the eight data input/ output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into the memory location specified on the address pins (A_{0} through A_{14}).

Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and output enable (OE) LOW, while WE remains inactive or HIGH. Under these conditions, the contents of the location specified on the address pins is present on the eight data input/output pins.
The eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) are placed in a high-impedance state when the device is deselected (CEHIGH), the outputs are disabled (OE HIGH), or during a write operation (WE LOW).
The CY7B199 is available in space-saving 300 -mil-wide DIPs and SOJs.

Logic Block Diagram

Pin Configuration

DIP/SOJ Top View

B199-2

Selection Guide

		$\mathbf{7 B 1 9 9 - 1 0}$	$\mathbf{7 B 1 9 9 - 1 2}$	7B199-15	7B199-20
Maximum Access Time (ns)		10	12	15	20
Maximum Operating Current (mA)	Commercial	185	170	170	
	Military		170	170	170
Maximum Standby Current (mA)	Commercial	40	35	30	

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]} .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[1]}$ \qquad -0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$ \qquad -0.5 V to +7.0 V
Current into Outputs (LOW) 20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

| Range | Ambient
 Temperature${ }^{[2]}$ |
| :--- | :---: | :---: |$\quad \mathbf{V}_{\mathbf{C C}}$.

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		7B199-10		7B199-12		7B199-15, 20		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage[1]			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			- 300		-300		-300	mA
I_{CC}	V_{CC} Operating	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}$	Com'l		185		170		170	mA
	Supp	$\mathrm{f}=\mathrm{I}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}}$	Mil				170		170	
$\mathrm{I}_{\text {SB }}$	Automatic CE	$\text { Max. } V_{C C}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-$	Com'l		40		35		30	mA
	- CMOS Inputs	$\mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0$	Mil				40		40	

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max. ${ }^{[6]}$	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	6	pF
$\mathrm{C}_{\mathrm{OUT}} \mathrm{C}_{\mathrm{I} / \mathrm{O}}$	Output Capacitance		8.0 V	
		pF		

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\min .)}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or processchanges that may affect these parameters.
6. For PDIP (P21) and CDIP (D22), $\mathrm{C}_{\mathrm{IN}}=\mathrm{C}_{\mathrm{OUT}}=10 \mathrm{pF}$.

AC Test Loads and Waveforms

(a)
(b)
B199-4
Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } 0-\underbrace{167 \Omega} 0 \quad 1.73 \mathrm{~V}
$$

Switching Characteristics Over the Operating Range ${ }^{[3,7]}$

Parameter	Description	7B199-10		7B199-12		7B199-15		78199-20		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	10		12		15		20		ns
t_{AA}	Address to Data Valid		10		12		15		20	ns
toha	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$		10		12		15		20	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		6		6		7		10	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[8]}$	2		2		2		2		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[8,9]}$		6		7		8		10	ns
tizCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HzCE}}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[8,9]}$		6		7		8		10	ns
tPU	$\overline{\text { CE LOW }}$ to Power-Up		0		0		0		0	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CE HIGH to Power-Down }}$		10		12		15		20	ns

WRITE CYCLE ${ }^{[10,11]}$

t_{W}	Write Cycle Time	10		12		15		20		ns
$\mathrm{t}_{\text {SCE }}$	CE LOW to Write End	8		9		10		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	8		9		10		15		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
tpwe	$\overline{\text { WE Pulse Width }}$	8		9		10		15		ns
${ }_{\text {SD }}$	Data Set-Up to Write End	6		7		8		10		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
t LZWE	$\overline{\text { WE HIGH }}$ to Low $\mathrm{Z}^{[8]}$	2		2		2		2		ns
$t_{\text {HzWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[8,9]}$		6		7		7		10	ns

Notes:
7. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 20 -pF load capacitance.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\mathrm{LZCE}}, \mathrm{t}_{\mathrm{HZOE}}$ is less than $\mathrm{t}_{\mathrm{LZOE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ is less than $\mathrm{t}_{\text {LZWE }}$ for any given device.
9. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
10. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal will terminate a write by going HIGH. The input data setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
11. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{O E} L O \bar{W}$) is the sum of thZWE and tSD.

Switching Waveforms

Read Cycle No. 1 ${ }^{[12,13]}$

Read Cycle No. 2 ${ }^{[13,14]}$

Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[15, ~ 16]}$

Notes:

12. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
13. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
14. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
15. Data I / O is HIGH impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
16. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[15,16]}$

Write Cycle No. 3 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[11,16]}$

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\overline{\mathbf{W E}}}$	$\overline{\mathbf{O E}}$	Input/Output	Mode	Power
H	X	X	High Z	Power-Down	Standby (I_{SB})
L	H	L	Data Out	Read	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	X	Data In	Write	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	H	H	High Z	Selected, Output Disabled	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$

Notes:

17. During this period, the I / Os are in the output state and input signals should not be applied.

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7B199-10PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7B199-10VC	V21	28-Lead Molded SOJ	
12	CY7B199-12DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B199-12PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B199-12VC	V21	28-Lead Molded SOJ	
	CY7B199-12DMB	D22	28-Lead (300-Mil) CerDIP	Military
15	CY7B199-15DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7B199-15PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7B199-15VC	V21	28-Lead Molded SOJ	
	CY7B199-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
20	CY7B199 - 20DMB	D22	28-Lead (300-Mil) CerDIP	Military

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE 2	
t_{WC}	7
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00160-D

为
CY7C199

SEMICONDUCTOR

Features

- High speed
- 12 ns
- Fast tome
- CMOS for optimum speed/power
- Low active power
- $\mathbf{8 8 0} \mathrm{mW}$
- Low standby power
- 165 mW
- Easy memory expansion with $\overline{\mathrm{CE}}$ and OE features
- TTL-compatible inputs and outputs
- Automatic power-down when deselected

Functional Description

The CY7C199 is a high-performance CMOS static RAM organized as 32,768 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable $(\overline{\mathrm{CE}})$ and active LOW output enable ($\overline{\mathrm{OE}})$ and three-state drivers. This device has an automatic power-down feature, reducing the power consumption by 81% when deselected. The CY7C199 is in the standard 300 -mil-wide DIP, SOJ and LCC packages.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When CE and WE inputs are both LOW, data on the eight data input/ output pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{7}\right)$ is written

32K x 8 Static RAM

into the memory location addressed by the address present on the address pins (A_{0} through A_{14}). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ active LOW, while $\overline{W E}$ remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the eight data input/output pins.
The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH. A die coat is used to ensure alpha immunity.

Selection Guide

		7C199-12	7C199-15	7C199-20	7C199-25	7C199-35	7C199-45
Maximum Access Time (ns)		H5 12	15	20	25	35	45
Maximum Operating Current (mA)	Commercial	160	155	150	150	140	
	Military		180	170	150	150	150
Maximum Standby Current (mA)		30	30	30	30	25	25

Shaded area contains preliminary information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad
Supply Voltage to Ground Potential
(Pin 28 to Pin 14) \qquad -0.5 V to +7.0 V

DC Voltage Applied to Outputs
in High Z State ${ }^{[1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Output Current into Outputs (LOW) \qquad

Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		7C199-12		7C199-15		7C199-20		Unit
				Min.	Max.11	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~m}$		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\begin{aligned} & \text { VCC } \\ & +0.3 \mathrm{~V} \end{aligned}$	2.2	$\begin{aligned} & \mathrm{V} \mathrm{VCC}^{2} \\ & +0.3 \mathrm{~V} \end{aligned}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.5	0.8	-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-5	+5	-5	$+5$	-5	+5	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled		-5	+5	-5	$+5$	-5	+5	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		160		155		150	mA
			Mil			+	180		170	
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down CurrentTTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$			30	-	30 $=1$ $=1$		30	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down CurrentCMOS Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Com'l		10		10		15	mA
			Mil				15		15	

[^29]
Notes:

1. $\quad \mathrm{V}_{\mathrm{IL}(\min .)}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range ${ }^{[3]}$ (continued)

Parameter	Description	Test Conditions		7C199-25		7C199-35, 45		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-5	+5	-5	+5	$\mu \mathrm{A}$
l OS	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		150		140	mA
			Mil		150		150	
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current- TTL Inputs	$\text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}$			30		25	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down CurrentCMOS Inputs	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$			15		15	mA

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
CouT	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	8	pF	

Note:
5. Tested initiaily and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms ${ }^{[6]}$

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } 0 \text { 1.73V }
$$

Note:

6. $\mathrm{t}_{\mathrm{r}} \leq 3 \mathrm{~ns}$ for the -12 and -15 speeds. $\mathrm{t}_{\mathrm{r}} \leq 5 \mathrm{~ns}$ for the -20 and slower speeds.

Switching Characteristics Over the Operating Range ${ }^{[3,7]}$

Parameter	Description	7C199-12		7C199-15		7C199-20		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	12		15		20		ns
t_{AA}	Address to Data Valid		12		15		20	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		5		7		9	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[8]}$	0		0	\%	0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[8,9]}$		5		7		9	ns
tizCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	3		3		3		ns
$\mathfrak{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[8,9]}$		5		7		9	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE LOW to Power-Up }}$	0		0		0		ns
$t_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		12		15		20	ns

WRITE CYCLE ${ }^{[10,11]}$

twc	Write Cycle Time	12		15		20		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	9		10		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	9		10		15		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	8	$=$	9		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	8		9		10		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[9]}$		7		7		10	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[8]}$	3		3		3		ns

Shaded area contains preliminary information.

Notes

7. Test conditions assume signal transition time of 3 ns or less for -12 and -15 speeds and 5 ns or less for -20 and slower speeds, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OU}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\text {LZCE }}, \mathrm{t}_{\mathrm{HZOE}}$ is less than $\mathrm{t}_{\text {LZOE }}$, and $\mathrm{t}_{\text {HZWE }}$ is less than $\mathrm{t}_{\text {LZWE }}$ for any given device.
9. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
10. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
11. The minimum write cycle time for write cycle \#3 ($\overline{\mathrm{WE}}$ controlled, $\overline{\mathrm{OE}}$ LOW) is the sum of $\mathrm{t}_{\text {HZWE }}$ and $\mathrm{t}_{\text {SD }}$.

SEMICONDUCTOR
Switching Characteristics Over the Operating Range ${ }^{[3,7]}$ (continued)

Parameter	Description	7C199-25		7C199-35		7C199-45		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		25		35		45	ns
toha	Data Hold from Address Change	3		3		3		ns
${ }^{\text {t }}$ ACE	$\overline{\text { CE LOW to Data Valid }}$		25		35		45	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10		16		16	ns
${ }^{\text {L }}$ LZOE	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[8]}$	3		3		3		ns
${ }_{\text {t }}$	$\overline{\text { OE }}$ HIGH to High $\mathrm{Z}^{[8,9]}$		11		15		15	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	3		3		3		ns
${ }^{\text {t }}$ HZCE	$\overline{\overline{C E}}$ HIGH to High $\mathrm{Z}^{[8,9]}$		11		15		15	ns
$t_{P U}$	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		20		20		25	ns
WRITE CYCLE ${ }^{\text {[10, 11] }}$								
$t_{\text {WC }}$	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}$ LOW to Write End	18		22		22		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		30		40		ns
tha	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
tPWE	$\overline{\text { WE Pulse Width }}$	18		22		22		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		15		15		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
thzwe	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[9]}$		11		15		15	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[8]}$	3		3		3		ns

Switching Waveforms

Read Cycle No. 1 ${ }^{[12,13]}$

Notes:
12. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$
13. $\overline{\mathrm{WE}}$ is HIGH for read cycle.

Switching Waveforms (continued)

Read Cycle No. 2 ${ }^{[13,14]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[10, ~ 15, ~ 16] ~}$

Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[10,15,16]}$

Notes:

14. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
15. Data I / O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
16. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\text { WE }}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[11,16]}$

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode	Power
H	X	X	High Z	Deselect/Power-Down	Standby (I_{SB})
L	H	L	Data Out	Read	Active (I $\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	X	Data In	Write	Active (I $\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	H	H	High Z	Deselect, Output Disabled	Active (ICC)

Ordering Information

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	$\begin{gathered} \text { Package } \\ \text { Name } \end{gathered}$	Package Type	$\begin{gathered} \hline \text { Operating } \\ \text { Range } \end{gathered}$
12	CY7C199-12PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C199-12VC	V21	28 -Lead Molded SOI	
15	CY7C199-15PC	P21	28-Lead (300-Mii) Molded DIP	Commercial
	CY7C199-15VC	V21	28-Lead Molded SOJ	
	CY7C199-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C199-15LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
20	CY7C199-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C199-20VC	V21	28-Lead Molded SOJ	
	CY7C199-20DMB	D22	28-Lead (300-Mil) CerDiP	Military
	CY7C199-201MB	LS4	28-Pin Rectangular Leadless Chip Carrier	
25	CY7C199-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C199-25VC	V21	28-Lead Molded SOJ	
	CY7C199-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C199-25LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
35	CY7C199-35PC	P21	28 -Lead (300-Mil) Molded DIP	Commercial
	CY7C199-35VC	V21	28-Lead Molded SOJ	
	CY7C199-35DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C199-35LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
45	CY7C199-45DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C199-45LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

[^30]
MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\text {PWE }}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00239-A

PRELIMINARY

Features

- High speed
$-\mathbf{t}_{\mathrm{AA}}=12 \mathrm{~ns}$
- Transparent write (7C1001)
- CMOS for optimum speed/power
- Low active power
- 910 mW
- Low standby power
- 275 mW
- 2.0 V data retention
- $100 \mu \mathrm{~W}$
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7C1001 and CY7C1002 are highperformance CMOS static RAMs organized as $262,144 \times 4$ bits with separate I/O. Easy memory expansion is provided by active LOW chip enable ($\overline{\mathrm{CE}}$) and threestate drivers. Both devices have an automatic power-down feature, reducing the power consumption by more than 65% when deselected.
Writing to the device is accomplished by taking both chip enable ($\overline{\mathrm{CE}}$) and write enable (WE) inputs LOW. Data on the four input pins $\left(\mathrm{I}_{0}\right.$ through $\left.\mathrm{I}_{3}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{17}).
Reading the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW while write en-

256K x 4 Static RAM with Separate I/O

able ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the four data output pins $\left(\mathrm{O}_{0}\right.$ through O_{3}).
The data output pins on the CY7C1001 and the CY7C1002 are placed in a highimpedance state when the device is deselected ($\overline{\mathrm{CE}} \mathrm{HIGH}$). The CY7C1002's outputs are also placed in a high-impedance state during a write operation ($\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ LOW). In a write operation on the CY7C1001, the output pins will carry the same data as the inputs after a specified delay.

The CY7C1001 and CY7C1002 are available in standard 300 -mil-wide DIPs and SOJs.

Logic Block Diagram

Pin Configuration

$\underset{\substack{\text { DIP/SOJ } \\ \text { Top View }}}{\text { den }}$

NC	1 32		$V_{C C}$
A_{16}	目 31		A_{15}
A_{17}	33		A_{3}
A_{0}	4		A_{4}
A_{1}	5		A_{5}
A_{2}	6 6 27		A_{6}
A_{10}	$770100{ }^{26}$		A_{7}
A_{11}	$8_{8}^{7 C 1001} 725$		A_{8}
A_{12}	$\square 9$		NC
A_{13}	10		10
A_{14}	$11 \quad 22$		
A_{9}	12		O_{0}
	13		O_{1}
	$14 \quad 19$		O_{2}
CE	15		O_{3}
GND	16		WE

C1001-2

Selection Guide

		7C1001-12 7C1002-12	7C1001-15 7C1002-15	7C1001-20 7C1002-20	7C1001-25 7C1002-25
Maximum Access Time (ns)	12	15	20	25	
Maximum Operating Current	Commercial	165	155	140	130
	Military		165	150	140
Maximum Standby Current (mA)	Commercial	50	40	30	30
	Military		40	30	30

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature
Ambient Temperature with
Power Applied \qquad

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

| Range | Ambient
 Temperature |
| :--- | :---: | :---: |
| $]$ | |$\quad \mathbf{V}_{\mathbf{C C}}$.

Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]}-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{1]}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$
$\ldots \ldots \ldots \ldots . .-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Current into Outputs (LOW) \qquad 20 mA

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		$\begin{aligned} & 7 \mathrm{C} 1001-12 \\ & 7 \mathrm{C} 1002-12 \end{aligned}$		$\begin{aligned} & \hline \text { 7C1001-15 } \\ & \text { 7C1002-15 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 1001-20 \\ & 7 \mathrm{C} 1002-20 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 1001-25 \\ & 7 \mathrm{C} 1002-25 \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	$\begin{array}{\|l} \text { Output HIGH } \\ \text { Voltage } \\ \hline \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$		2.4		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	2.2	$\begin{array}{r} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \end{array}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \end{gathered}$	2.2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	InputLoadCurrent	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-5	+5	-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[4]}$	$\begin{array}{\|l} \hline \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND} \\ \hline \end{array}$			-300		-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		165		155		140		130	mA
			Mil				165		150		140	
ISB1	Automatic CE Power-Down Current -TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Com'1		50		40		30		30	mA
			Mil				40		30		30	
ISB2	Automatic CE Power-Down Current - CMOS Inputs	$\begin{aligned} & \text { Max. } V_{C C} \\ & \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Com'l		2		2		2		2	mA
			Mil				2		2		2	

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\mathrm{IN}}:$ Addresses	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	7	pF
$\mathrm{C}_{\mathrm{IN}}:$ Controls				
$\mathrm{C}_{\mathrm{CC}}=5.0 \mathrm{~V}$		10	pF	
			10	pF

Notes:

1. $V_{\text {IL (min.) }}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroun testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

OUTPUT O-
(a)

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT O- $\underbrace{167 \Omega} \longrightarrow 1.73 \mathrm{~V}$

Switching Characteristics Over the Operating Range ${ }^{[3,6]}$

Parameter	Description	$\begin{aligned} & \hline \text { 7C1001-12 } \\ & \text { 7C1002-12 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C1001-15} \\ & \text { 7C1002-15 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 1001-20 \\ & \text { 7C1002-20 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 1001-25 \\ & 7 \mathrm{C} 1002-25 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	12		15		20		25		ns
t_{AA}	Address to Data Valid		12		15		20		25	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$		12		15		20		25	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		6		7		8		10	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		0		0		0		ns
t_{PD}	$\overline{\mathrm{CE}} \mathrm{HIGH}$ to Power-Down		12		15		20		25	ns
WRITE CYCLE ${ }^{[9]}$										
t_{WC}	Write Cycle Time	12		15		20		25		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE LOW to Write End }}$	10		12		15		20		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		12		15		20		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	10		12		15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		10		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	3		3		3		3		ns
$t_{\text {HZWE }}$	$\overline{\text { WE LOW }}$ to High $\mathrm{Z}^{[7,8]}$		6		7		8		10	ns
tDWE	$\overline{\text { WE L L }}$ LOW to Data Valid (7C1001)		12		15		20		25	ns
$t_{\text {DCE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid (7C1001)		12		15		20		25	ns
$\mathrm{t}_{\mathrm{ADV}}$	Data Valid to Output Valid (7C1001)		12		15		20		25	ns

Notes:

6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ and $t_{H Z W E}$ is less than $t_{L Z W E}$ for any given device.
8. t_{HZCE}, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Data Retention Characteristics Over the Operating Range

Parameters	Description	Conditions ${ }^{[10]}$	Commercial		Military		Units
			Min.	Max.	Min.	Max.	
V_{DR}	V_{CC} for Retention Data		2.0		2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		50		70	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[5]}$	Chip Deselect to Data Retention Time		0		0		ns
$\mathrm{t}{ }^{[5]}$	Operation Recovery Time		t_{RC}		t_{RC}		ns

Note:
10. No input may exceed $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.

Data Retention Waveform

Switching Waveforms

Read Cycle No. 1 ${ }^{[11,12]}$

Read Cycle No. 2 ${ }^{[12,13]}$

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[9,14]}$

Write Cycle No. 2 ($\overline{\text { WE }}$ Controlled) ${ }^{[9]}$

Notes:
11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. $\overline{\text { WE }}$ is HIGH for read cycle.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ going HIGH, the output remains in a high-impedance state (7 C 1002 only).

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\mathbf{O}_{\mathbf{0}}-\mathbf{O}_{\mathbf{3}}$	Mode	Power
H	X	High Z	Power-Down	Standby ($\left.\mathrm{I}_{\text {SB }}\right)$
L	H	Data Out	Read	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	High Z	7C1002: Standard Write	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	Input Tracking	7C1001: Transparent Write ${ }^{[15]}$	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$

Note:
15. Outputs track inputs after specified delay.

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
	CY7C1001-12PC	P31	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C1001-12VC	V32	32-Lead (300-Mil) Molded SOJ	
15	CY7C1001-15PC	P31	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C1001-15VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1001-15DMB	D32	32-Lead (300-Mil) CerDIP	Military
	CY7C1001-20PC	P31	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C1001-20VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1001-20DMB	D32	32-Lead (300-Mil) CerDIP	Military
25	CY7C1001-25DC	P31	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C1001-25VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1001-25DMB	D32	32-Lead (300-Mil) CerDIP	Military

Speed (ns)	Ordering Code	Package Name	Operating Range	
12	CY7C1002-12PC	P31	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C1002-12VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1002-15PC	P31	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C1002-15VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1002-15DMB	D32	32-Lead (300-Mil) CerDIP	Military
20	CY7C1002-20PC	P31	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C1002-20VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1002-20DMB	D32	32-Lead (300-Mil) CerDIP	Military
	CY7C1002-25PC	P31	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C1002-25VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1002-25DMB	D32	32-Lead (300-Mil) CerDIP	Military

MILITARY SPECIFICATIONS
Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DWE}}{ }^{[16]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADV}}{ }^{[16]}$	$7,8,9,10,11$

Note:
16. 7C1001 only.

Document \#: 38-00200-A

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=12 \mathrm{~ns}$
- CMOS for optimum speed/power
- Low active power
- 910 mW
- Low standby power
- 275 mW
- 2.0 V data retention
- $100 \mu \mathrm{~W}$
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7C1006 is a high-performance CMOS static RAM organized as 262,144 words by 4 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$), an active LOW output enable ($\overline{\mathrm{OE}}$), and three-state drivers. The device has an automatic power-down feature that reduces power consumption by more than 65% when deselected.
Writing to the device is accomplished by taking chip enable (CE) and write enable (WE) inputs LOW. Data on the four I/O pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{3}\right)$ is then written into the location specified on the address pins (A_{0} through A_{17}).

256K x 4 Static RAM

Reading from the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and output enable ($\widehat{\mathrm{OE}}) \mathrm{LOW}$ while forcing write enable (WE) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the four I/O pins.

The four input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) are placed in a high-impedance state when the device is deselected (टE HIGH), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), or during a write operation ($\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ LOW).

The CY7C1006 is available in standard 300 -mil-wide DIPs and SOJs.

Logic Block Diagram

Pin Configuration

C1006-2

Selection Guide

		7C1006-12	7C1006-15	7C1006-20	7C1006-25
Maximum Access Time (ns)		12	15	20	25
Maximum Operating Current (mA)	Commercial	165	155	140	130
	Military		165	150	140
Maximum Standby Current (mA)	Commercial	50	40	30	30
	Miiitary		40	30	30

R
 -

Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Static Discharge Voltage
. $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]}-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{1]}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Current into Outputs (LOW) . 20 mA

Operating Range

Range	Ambient Temperature R $]$	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Capacitance ${ }^{[5]}$

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\min .)}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT O-C

Switching Characteristics Over the Operating Range ${ }^{[3,6]}$

Parameter	Description	7C1006-12		7C1006-15		7C1006-20		7C1006-25		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	12		15		20		25		ns
$t_{\text {AA }}$	Address to Data Valid		12		15		20		25	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE LOW to Data Valid }}$		12		15		20		25	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		6		7		8		10	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{O E}$ LOW to Low Z	0		0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[7,8]}$		6		7		8		10	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		6		7		8		10	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power-Up	0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		12		15		20		25	ns
WRITE CYCLE ${ }^{[9,10]}$										
$\mathrm{t}_{\text {WC }}$	Write Cycle Time	12		15		20		25		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	10		12		15		20		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		12		15		20		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
tpwe	$\overline{\text { WE Pulse Width }}$	10		12		15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		10		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[8]}$	3		3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[7,8]}$		6		7		8		10	ns

Notes:
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\text {LZCE }}, \mathrm{t}_{\mathrm{HZOE}}$ is less than $\mathrm{t}_{\text {LZOE }}$, and $\mathrm{t}_{\mathrm{HZWE}}$ is less than $\mathrm{t}_{\text {LZWE }}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ and $\overline{W E}$ LOW. $\overline{C E}$ and $\overline{W E}$ must be LOW to initiate a write, and the transition of either of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
10. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ controlled, $\overline{O E}$ LOW) is the sum of $t_{\text {HZWE }}$ and $t_{S D}$.

Data Retention Characteristics Over the Operating Range

Parameter	Description	Conditions ${ }^{[11]}$	Commercial		Military		Unit
			Min.	Max.	Min.	Max.	
$\mathrm{V}_{\text {DR }}$	V_{CC} for Data Retention		2.0		2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V} \end{aligned}$		50		70	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[5]}$	Chip Deselect to Data Retention Time		0		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[5]}$	Operation Recovery Time		t_{RC}		t_{RC}		ns

Notes:
11. No input may exceed $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.

Data Retention Waveform

Switching Waveforms

Read Cycle No. $1^{[12,13]}$

Read Cycle No. 2 ($\overline{\mathrm{OE}}$ Controlled) ${ }^{[13,14]}$

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[15,16]}$

Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[15,16]}$

Notes:
12. Device is continuously selected, $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
13. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
14. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
15. If CEgoesHIGH simultaneouslywith WE going HIGH, the output remains in a high-impedance state.
16. Data I/O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.

Switching Waveforms

Write Cycle No. 3 ($\overline{\text { WE }}$ Controlled, $\overline{\text { OE }}$ LOW) ${ }^{[10,16]}$

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\text { OE }}$	$\overline{\text { WE }}$	I/ $\mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{3}$	Mode	Power
H	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	L	H	Data Out	Read	Active (I_{CC})
L	X	L	Data In	Write	Active (I_{CC})
L	H	H	High Z	Selected, Outputs Disabled	Active (I_{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1006-12PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C1006-12VC	V21	28-Lead Molded SOJ	
	CY7C1006-15PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C1006-15VC	V21	28-Lead Molded SOJ	
	CY7C1006-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
20	CY7C1006-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C1006-20VC	V21	28-Lead Molded SOJ	
	CY7C1006-20DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C1006-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C1006-25VC	V21	28-Lead Molded SOJ	
	CY7C1006-25DMB	D22	28-Lead (300-Mil) CerDIP	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00201-A

Features

- High speed
$-\mathbf{t}_{\mathrm{AA}}=12 \mathrm{~ns}$
- CMOS for optimum speed/power
- Low active power
- $\mathbf{8 2 5} \mathrm{mW}$
- Low standby power
$-275 \mathrm{~mW}$
- 2.0 V data retention - $100 \mu \mathrm{~W}$
- Automatic power-down when deselected
- TTL-compatible inputs and outputs

Functional Description

The CY7C1007 is a high-performance CMOS static RAM organized as $1,048,576$ words by 1 bit. Easy memory expansion is provided by an active LOW chip enable (CE) and three-state drivers. The device has an automatic power-down feature that reduces power consumption by more than 65% when deselected.
Writing to the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs LOW. Data on the input pin $\left(\mathrm{D}_{\text {IN }}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{19}).

1M x 1 Static RAM

Reading from the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the data output (Dout) pin.

The output pin (DouT) is placed in a high-impedance state when the device is deselected ($\overline{\mathrm{CE}} \mathrm{HIGH}$) or during a write operation ($\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ LOW).

The CY7C1007 is available in standard 300 -mil-wide DIPs and SOJs.

Logic Block Diagram

1007-1

Pin Configuration

Selection Guide

		7C1007-12	7C1007-15	7C1007-20	7C1007-25
Maximum Access Time (ns)		12	15	20	25
Maximum Operating Current (mA)	Commercial	150	135	125	120
	Military		145	135	130
Maximum Standby Current (mA)	Commercial	50	40	30	30
	Military		40	30	30

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $. \ldots$.
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]}-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$ -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Current into Outputs (LOW)
20 mA

Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

$\left.$| Range | Ambient
 Temperature${ }^{[2]}$ |
| :--- | :---: | :---: |$\quad \mathbf{V}_{\mathbf{C C}} \right\rvert\,$

Electrical Characteristics ${ }^{[3]}$ Over the Operating Range

Parameter	Description	Test Conditions		7C1007-12		7C1007-15		7C1007-20		7C1007-25		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\begin{array}{r} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \\ \hline \end{array}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \\ \hline \end{gathered}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \\ \hline \end{gathered}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$			-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
$\mathrm{I}_{\mathrm{I} X}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled		-5	+5	-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OS}	Output Short CircuitCurrent ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		- 300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		150		135		125		120	mA
			Mil				145		135		130	
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current - TTL Inputs	$\begin{aligned} & \text { Max.. } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{CE} \geq \mathrm{V}_{\text {IH }}, \\ & \mathrm{V}_{\text {IN }} \geq \mathrm{V}_{\text {IH }} \text { or } \\ & \mathrm{V}_{\text {IN }}^{\leq \mathrm{V}_{\text {IL }},} \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Com'l		50		40		30		30	mA
			Mil				40		30		30	
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current - CMOS Inputs	$\begin{aligned} & \text { Max. } V_{C C}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Com'l		2		2		2		2	mA
			Mil				2		2		2	

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\mathrm{IN}}:$ Addresses	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	7	pF
$\mathrm{C}_{\mathrm{IN}}:$ Controls			10	pF
$\mathrm{C}_{\mathrm{CO}}=5.0 \mathrm{~V}$			10	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\text { min. })}=-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)
 JIG AND SCOPE

Equivalent to: THEVÉNIN EQUIVALENT
OUTPUT $0-1.73 \mathrm{~V}$
Switching Characteristics ${ }^{[3,6]}$ Over the Operating Range

Parameter	Description	7C1007-12		7C1007-15		7C1007-20		7C1007-25		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	12		15		20		25		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		12		15		20		25	ns
toha	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE }}$ LOW to Data Valid		12		15		20		25	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\text { CE }}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[7,8]}$		6		7		8		10	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CE }}$ LOW to Power-Up	0		0		0		0		ns
tpD	$\overline{\text { CE HIGH to Power-Down }}$		12		15		20		25	ns
WRITE CYCLE ${ }^{[9]}$										
twC	Write Cycle Time	12		15		20		25		ns
$t_{\text {SCE }}$	$\overline{\text { CE LOW to Write End }}$	10		12		15		20		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		12		15		20		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
tpwe	WE Pulse Width	10		12		15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		10		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[7]}$	3		3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE LOW }}$ to High $\mathrm{Z}^{[7,8]}$		6		7		8		10	ns

Notes:

6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $t_{\text {LZCE }}$ and $\mathrm{t}_{\text {HZWE }}$ is less than $\mathrm{t}_{\text {LZWE }}$ for any given device.
8. t_{HZCE} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
9. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and WE LOW. CE and WE must be LOW to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.

Data Retention Characteristics Over the Operating Range

Parameter	Description	Conditions ${ }^{[10]}$	Commercial		Military		Unit
			Min.	Max.	Min.	Max.	
V_{DR}	V_{CC} for Data Retention		2.0		2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{VCC}_{C C}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		50		70	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[5]}$	Chip Deselect to Data Retention Time		0		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[5]}$	Operation Recovery Time		t_{RC}		t_{RC}		ns

Note:
10. No input may exceed $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.

Data Retention Waveform

Switching Waveforms

Read Cycle No. 1 ${ }^{[11,12]}$

Read Cycle No. $\mathbf{2}^{[12,13]}$

Notes:

11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.
13. $\overline{\mathrm{WE}}$ is HIGH for read cycle.

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[14]}$

Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[14]}$

Note:

14. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ going HIGH , the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	DouT	Mode	Power
H	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	H	Data Out	Read	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	High Z	Write	Active (I_{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1007-12PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C1007-12VC	V21	28-Lead Molded SOJ	
	CY7C1007-15PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C1007-15VC	V21	28-Lead Molded SOJ	
	CY7C1007-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
20	CY7C1007-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C1007-20VC	V21	28-Lead Molded SOJ	
	CY7C1007-20DMB	D22	28-Lead (300-Mil) CerDIP	Military
25	CY7C1007-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C1007-25VC	V21	28-Lead Molded SOJ	
	CY7C1007-25DMB	D22	28-Lead (300-Mil) CerDIP	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Document \#: 38-00198-A

Switching Characteristics

Parameter	
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

PRELIMINARY

CY7C1009

CYPRESS
 SEMICONDUCTOR

Features

- High speed
$-\mathbf{t}_{\mathrm{AA}}=12 \mathrm{~ns}$
- CMOS for optimum speed/power
- Low active power
- 1020 mW
- Low standby power
- 250 mW
- 2.0 V data retention
- $100 \mu \mathbf{W}$
- Available in 450×550-mil LCC
- Automatic power-down when deselected
- Easy memory expansion with $\overline{\mathbf{C E}}_{1}$, CE_{2}, and $\mathbf{O E}$ options

Functional Description

The CY7C1009 is a high-performance CMOS static RAM organized as 131,072 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable $\left(\overline{\mathrm{CE}}_{1}\right)$, an active HIGH chip enable $\left(\mathrm{CE}_{2}\right)$, an active LOW output enable ($\overline{\mathrm{OE}}$), and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 75% when deselected.
Writing to the device is accomplished by taking chip enable one ($\overline{\mathrm{CE}}_{1}$) and write enable (WE) inputs LOW and chip enable two (CE_{2}) input HIGH. Data on the eight I / O pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{7}\right)$ is then written into the location specified on the address pins (A_{0} through A_{16}).

$128 \mathrm{~K} \times 8$ Static RAM

Reading from the device is accomplished by taking chip enable one ($\overline{\mathrm{CE}}_{1}$) and output enable ($\overline{\mathrm{OE}}$) LOW while forcing write enable ($\overline{\mathrm{WE} \text {) and chip enable two }\left(\mathrm{CE}_{2}\right) ~}$ HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) are placed in a high-impedance state when the device is deselected ($\overline{\mathrm{CE}}_{1} \mathrm{HIGH}$ or CE_{2} LOW), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), or during a write operation ($\overline{\mathrm{CE}}_{1}$ LOW, CE_{2} HIGH, and $\overline{\mathrm{WE}}$ LOW).

The CY7C1009 is available in standard 300 -mil-wide DIPs, SOJs and a small footprint 450×550-mil leadless chip carrier.

Logic Block Diagram

Pin Configurations

Selection Guide

		7C1009-12	7C1009-15	7C1009-20	7C1009-25
Maximum Access Time (ns)	12	15	20	25	
Maximum Operating Current (mA)	Commercial	185	170	155	145
	Military		180	170	160
Maximum Standby Current (mA)	Commercial	45	40	30	30
	Military		40	30	30

PRELIMINARY
CY7C1009

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} to Relative $\mathrm{GND}^{[1]} .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{1]}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
Current into Outputs (LOW) \qquad

Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

| Range | Ambient
 Temperature${ }^{[2]}$ |
| :--- | :---: | :---: |$\quad \mathbf{V}_{\mathbf{C C}}$.

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		7C1009-12		7C1009-15		7C1009-20		7C1009-25		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Output HIGH } \\ \text { Voltage } \end{array} \\ \hline \end{array}$	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \end{gathered}$	2.2	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	2.2	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \end{aligned}$	2.2	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}} \\ & +0.3 \\ & \hline \end{aligned}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{11]}$			-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$		-5	+5	-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OS}	Output Short CircuitCurrent ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'I		185		170		155		145	mA
			Mil				180		170		160	
$I_{\text {SB1 }}$	Automatic CE Power-Down Current - TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { or } \mathrm{CE} \mathrm{E}_{2} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Com'l		45		40		30		30	mA
			Mil				40		30		30	
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current - CMOS Inputs	$\begin{aligned} & \text { Max } \mathrm{V}_{\mathrm{CC}}, \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \text { or } \mathrm{CE}_{2} \leq 0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$	Com'l		2		2		2		2	mA
			Mil				2		2		2	

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\mathrm{IN}}:$ Address	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	7	pF
$\mathrm{C}_{\mathrm{IN}}:$ Controls			10	pF
$\mathrm{C}_{\mathrm{CO}}=5.0 \mathrm{~V}$		10	pF	

Notes:

1. $\mathrm{V}_{\mathrm{IL}}(\min)=.-2.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)
(b) 1009-4

Switching Characteristics ${ }^{[3,6]}$ Over the Operating Range

Parameter	Description	7C1009-12		7C1009-15		7C1009-20		7C1009-25		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	12		15		20		25		ns
t_{AA}	Address to Data Valid		12		15		20		25	ns
toha	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Data Valid, $\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid		12		15		20		25	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{O E}$ LOW to Data Valid		6		7		8		10	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	0		0		0		0		ns
${ }^{\text {thzoE }}$	$\overline{\text { OE }}$ HIGH to High $\mathrm{Z}^{[7,8]}$		6		7		8		10	ns
${ }^{\text {t }}$ LZCE	$\overline{\mathrm{CE}}_{1}$ LOW to Low Z, CE_{2} HIGH to Low $\mathrm{Z}^{[8]}$	3		3		3		3		ns
$\mathrm{t}_{\text {HZCE }}$	$\overline{\mathrm{CE}}_{1}$ HIGH to High Z , CE_{2} LOW to High $\mathrm{Z}^{[7,8]}$		6		7		8		10	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Power-Up, $\mathrm{CE}_{2} \mathrm{HIGH}$ to Power-Up	0		0		0		0		ns
${ }^{\text {t PD }}$	$\overline{\mathrm{CE}}_{1}$ HIGH to Power-Down, CE_{2} LOW to PowerDown		12		15		20		25	ns

WRITE CYCLE ${ }^{[9,10]}$

$\mathrm{t}_{\text {WC }}$	Write Cycle Time	12		15		20		25		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}_{1}$ LOW to Write End, $\mathrm{CE}_{2} \mathrm{HIGH}$ to Write End	10		12		15		20		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		12		15		20		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	10		12		15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		10		15		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[8]}$	3		3		3		3		ns
thZWE	$\overline{\text { WE LOW }}$ to High $\mathrm{Z}^{[7,8]}$		6		7		8		10	ns

Notes:
6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
7. $t_{H Z O E}, t_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\mathrm{LZCE}}, \mathrm{t}_{\mathrm{HZOE}}$ is less than $\mathrm{t}_{\mathrm{LZOE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ is less than $\mathrm{t}_{\mathrm{LZWE}}$ for any given device.
9. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, CE_{2} HIGH, and $\overline{\mathrm{WE}}$ LOW. $\overline{\mathrm{CE}}_{1}$ and $\overline{\mathrm{WE}}$ must be LOW and $\mathrm{CE}_{2} \mathrm{HIGH}$ to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
10. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ controlled, $\overline{\mathrm{OE}} \mathrm{LOW})$ is the sum of $\mathrm{t}_{\mathrm{HZWE}}$ and t_{SD}.

Data Retention Characteristics Over the Operating Range

Parameter	Description	Conditions ${ }^{[11]}$	Commercial		Military		Unit
			Min.	Max.	Min.	Max.	
$\mathrm{V}_{\text {DR }}$	V_{CC} for Data Retention		2.0		2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}, \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{CE}_{2} \leq 0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		50		70	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[5]}$	Chip Deselect to Data Retention Time		0		0		ns
$\mathbf{t r}^{\text {[5] }}$	Operation Recovery Time		t_{RC}		t_{RC}		ns

Note:
11. No input may exceed $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$.

Switching Waveforms

Read Cycle No. $2\left(\overline{\mathrm{OE}}\right.$ Controlled) ${ }^{[13,14]}$

Notes:
12. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}_{1}=\mathrm{V}_{\mathrm{IL}}, \mathrm{CE}_{2}=\mathrm{V}_{\mathrm{IH}}$.
13. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
14. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1}$ transition LOW and CE_{2} transition HIGH.

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\mathrm{CE}}_{1}$ or CE_{2} Controlled) ${ }^{[15,16]}$

Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ HIGH During Write) ${ }^{[15,16]}$

Notes:

15. Data I / O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$
16. If $\overline{\mathrm{CE}}_{1}$ goes HIGH or CE_{2} goes LOW simultaneously with $\overline{\mathrm{WE}}$ going HIGH, the output remains in a high-impedance state.

Switching Waveforms (continued)

Write Cycle No. 3 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathbf{O E}}$ LOW) ${ }^{[10,16]}$

1009-11
Truth Table

$\overline{\mathbf{C E}}_{1}$	CE_{2}	$\overline{\mathbf{O E}}$	$\overline{\text { WE }}$	$\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{7}$	Mode	Power
H	X	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
X	L	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	H	L	H	Data Out	Read	Active (I_{CC})
L	H	X	L	Data In	Write	Active (I_{CC})
L	H	H	H	High Z	Selected, Outputs Disabled	Active ($\mathrm{ICC}^{\text {) }}$

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type Range	
12	CY7C1009-12PC	P31	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C1009-12VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1009-15PC	P31	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C1009-15VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1009-15DMB	D32	32-Lead (300-Mil) CerDIP	Military
	CY7C1009-15LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
20	CY7C1009-20PC	P31	32-Lead (400-Mil) Molded DIP	Commercial
	CY7C1009-20VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1009-20DMB	D32	32-Lead (300-Mil) CerDIP	Military
	CY7C1009-20LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C1009-25PC	P31	32-Lead (400-Mil) Molded DIP	Military
	CY7C1009-25VC	V32	32-Lead (300-Mil) Molded SOJ	
	CY7C1009-25DMB	D32	32-Lead (300-Mil) CerDIP	
	CY7C1009-25LMB	L55	32-Pin Rectangular Leadless Chip Carrier	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	7, 8, 9, 10, 11
t_{AA}	7, 8, 9, 10, 11
toha	7, 8, 9, 10, 11
$\mathrm{t}_{\text {ACE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DOE }}$	7, 8, 9, 10, 11
WRITE CYCLE	
${ }_{\text {twc }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SCE }}$	7, 8, 9, 10, 11
$t_{\text {AW }}$	7, 8, 9, 10, 11
t_{HA}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SA }}$	7, 8, 9, 10, 11
tpwe	7, 8, 9, 10, 11
${ }_{\text {tsD }}$	7, 8, 9, 10, 11
t_{HD}	7, 8, 9, 10, 11

Document \#: 38-00199-A

Features

- Supports 66-MHz Pentium ${ }^{\text {™ }}$ microprocessor cache systems with zero wait states
- 64K by 18 common I/O
- Fast clock-to-output times
-8.5 ns with $0-\mathrm{pF}$ load
- 10 ns with 85-pF load
- Two-bit wraparound counter supporting Pentium microprocessor and 486 burst sequence (7C1031)
- Two-bit wraparound counter supporting linear burst sequence (7C1032)
- Separate processor and controller address strobes
- Synchronous self-timed write
- Direct interface with the processor and external cache controller
- Asynchronous output enable
- I/Os capable of 3.3 V operation
- JEDEC-standard pinout
- 52-pin PLCC and PQFP packaging

Functional Description

The CY7C1031 and CY7C1032 are 64 K by 18 synchronous cache RAMs designed to interface with high-speed microprocessors with minimum glue logic. Maximum access delay from clock rise is 8.5 ns. A 2-bit on-chip counter captures the first address in a burst and increments the address automatically for the rest of the burst access.

64K x 18 Synchronous Cache RAM

The CY7C1031 is designed for Intel Pentium and i486 CPU-based systems; its counter follows the burst sequence of the Pentium and the $i 486$ processors. The CY7C1032 is architected for processors with linearburst sequences. Burst accesses can be initiated with the processor address strobe ($\overline{\mathrm{ADSP}}$) or the cache controller address strobe ($\overline{\mathrm{ADSC}}$) inputs. Address advancement is controlled by the address advancement ($\overline{\mathrm{ADV}}$) input.
A synchronous self-timed write mechanism is provided to simplify the write interface. A synchronous chip select input and an asynchronous output enable input provide easy control for bank selection and output three-state control.

Selection Guide

		$\mathbf{7 C 1 0 3 1 - 8}$ $\mathbf{7 C 1 0 3 2 - 8}$	$\mathbf{7 C 1 0 3 1 - 1 0}$ $\mathbf{7 C 1 0 3 2 - 1 0}$	$\mathbf{7 C 1 0 3 1 - 1 2}$ $\mathbf{7 C 1 0 3 2 - 1 2}$
Maximum Access Time (ns) (0-pF load)		8.5	10.5	12.5
Maximum Operating Current (mA)	Commercial	295	265	215
	Military			$\mathbf{2 2 0}$

[^31]Pentium is a trademark of Intel Cornoration.

Note:

1. DP_{0} and DP_{1} are functionally equivalent to DQ_{x}.

SEMICONDUCTOR

Functional Description (continued)

Single Write Accesses Initiated by ADSP

This access is initiated when the following conditions are satisfied at clock rise: (1) $\overline{\mathrm{CS}}$ is LOW and (2) $\overline{\mathrm{ADSP}}$ is LOW. $\overline{\mathrm{ADSP}}$-triggered write cycles are completed in two clock periods. The address at A_{0} through A_{15} is loaded into the address register and address advancement logic and delivered to the RAM core. The write signal is ignored in this cycle because the cache tag or other external logic uses this clock period to perform address comparisons or protection checks. If the write is allowed to proceed, the write input to the CY7C1031 and CY7C1032 will be pulled LOW before the next clock rise. $\overline{\mathrm{ADSP}}$ is ignored if $\overline{\mathrm{CS}}$ is HIGH .
If $\overline{\mathrm{WH}}, \overline{\mathrm{WL}}$, or both are LOW at the next clock rise, information presented at $\mathrm{DQ}_{0}-\mathrm{DQ}_{15}$ and $\mathrm{DP}_{0}-\mathrm{DP}_{1}$ will be written into the location specified by the address advancement logic. $\overline{\mathrm{WL}}$ controls the writing of $\mathrm{DQ}_{0}-\mathrm{DQ}_{7}$ and DP_{0} while $\overline{\mathrm{WH}}$ controls the writing of $\mathrm{DQ}_{8}-\mathrm{DQ}_{15}$ and DP ${ }_{1}$. Because the CY7C1031 and CY7C1032 are common-I/O devices, the output enable signal ($\overline{\mathrm{OE}})$ must be deasserted before data from the CPU is delivered to $\mathrm{DQ}_{0}-\mathrm{DQ}_{15}$ and $\mathrm{DP}_{0}-\mathrm{DP}_{1}$. As a safety precaution, the appropriate data lines are three-stated in the cycle where $\overline{W H}, \overline{\mathrm{WL}}$, or both are sampled LOW, regardless of the state of the $\overline{\mathrm{OE}}$ input.

Single Write Accesses Initiated by $\overline{\text { ADSC }}$

This write access is initiated when the following conditions are satisfied at rising edge of the clock: (1) $\overline{\mathrm{CS}}$ is LOW, (2) $\overline{\mathrm{ADSC}}$ is LOW, and (3) WH or WL are LOW. ADSC triggered accesses are completed in a single clock cycle.
The address at A_{0} through A_{15} is loaded into the address register and address advancement logic and delivered to the RAM core. Information presented at $\mathrm{DQ}_{0}-\mathrm{DQ}_{15}$ and $\mathrm{DP}_{0}-\mathrm{DP}_{1}$ will be written into the location specified by the address advancement logic. Since the CY7C1031 and the CY7C1032 are common-I/O devices, the outputenable signal $(\overline{\mathrm{OE}})$ must be deasserted before data from the cache controller is delivered to the data and parity lines. As a safety precaution, the appropriate data and parity lines are three-stated in the cycle where $\overline{\mathrm{WH}}$ and WL are sampled LOW regardless of the state of the $\overline{\mathrm{OE}}$ input.

Single Read Accesses

A single read access is initiated when the following conditions are satisfied at clock rise: (1) $\overline{\mathrm{CS}}$ is LOW, (2) $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW,
and (3) $\overline{\mathrm{WH}}$ and $\overline{\mathrm{WL}}$ are HIGH. The address at A_{0} through A_{15} is stored into the address advancement logic and delivered to the RAM core. If the output enable ($\overline{\mathrm{OE}}$) signal is asserted (LOW), data will be available at the data outputs a maximum of 8.5 ns after clock rise. $\overline{\text { ADSP }}$ is ignored if $\overline{\mathrm{CS}}$ is HIGH.

Burst Sequences

The CY7C1031 provides a 2-bit wraparound counter, fed by pins $\mathrm{A}_{0}-\mathrm{A}_{1}$, that implements the Intel 80486 and Pentium processor's address burst sequence (see Table 1). Note that the burst sequence depends on the first burst address.

Table 1. Counter Implementation for the Intel Pentium/80486 Processor's Sequence

First Address	Second Address	Third Address	Fourth Address
$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{X}}$	$\mathbf{A X X}_{\mathbf{X}}, \mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{x}}$	$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{x}}$
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

The CY7C1032 provides a two-bit wraparound counter, fed by pins $\mathrm{A}_{0}-\mathrm{A}_{1}$, that implements a linear addressburst sequence (see Table 2).

Table 2. Counter Implementation for a Linear Sequence

First Address	Second Address	Third Address	Fourth Address
$\mathbf{A d}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{x}}$	$\mathbf{A}_{\mathbf{X}+1 \mathbf{1}}, \mathbf{A}_{\mathbf{x}}$	$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{X}}$
00	01	10	11
01	10	11	00
10	11	00	01
11	00	01	10

Application Example

Figure 1 shows a 512-Kbyte secondary cache for the Pentium microprocessor using four CY7C1031 cache RAMs.

Figure 1. Cache Using Four CY7C1031s

Pin Definitions

Signal Name	Type	\# of Pins	Description
VCC	Input	1	+5 V Power
VCCQ	Input	4	+5 V or 3.3V (Outputs)
GND	Input	1	Ground
VSSQ	Input	4	Ground (Outputs)
CLK	Input	1	Clock
$\mathrm{A}_{15}-\mathrm{A}_{0}$	Input	16	Address
$\overline{\mathrm{ADSP}}$	Input	1	Address Strobe from Processor
$\overline{\mathrm{ADSC}}$	Input	1	Address Strobe from Cache Controller
$\overline{\mathrm{WH}}$	Input	1	Write Enable - High Byte
$\overline{\mathrm{WL}}$	Input	1	Write Enable - Low Byte
$\overline{\mathrm{ADV}}$	Input	1	Advance
$\overline{\mathrm{OE}} \cdot$	Input	1	Output Enable
$\overline{\mathrm{CS}}$	Input	1	Chip Select
$\mathrm{DQ}_{15}-\mathrm{DQ}_{0}$	Input/Output	16	Regular Data
$\mathrm{DP}_{1}-\mathrm{DP}_{0}$	Input/Output	2	Parity Data

Pin Descriptions

Signal Name	I/O	Description
Input Signals		
CLK	I	Clock signal. It is used to capture the address, the data to be written, and the following control signals: $\overline{\mathrm{ADSP}}, \overline{\mathrm{ADSC}}, \overline{\mathrm{CS}}, \overline{\mathrm{WH}}, \overline{\mathrm{WL}}$, and $\overline{\mathrm{ADV}}$. It is also used to advance the on-chip auto-address-increment logic (when the appropriate control signals have been set).
A15-A0	I	Sixteen address lines used to select one of 64 K locations. They are captured in an on-chip register on the rising edge of CLK if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW. The rising edge of the clock also loads the lower two address lines, $\mathrm{A}_{1}-\mathrm{A}_{0}$, into the on-chip auto-address-increment logic if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW.
$\overline{\text { ADSP }}$	I	Address strobe from processor. This signal is sampled at the rising edge of CLK. When this input and/or $\overline{\text { ADSC }}$ is asserted, $\mathrm{A}_{0}-\mathrm{A}_{15}$ will be captured in the on-chip address register. It also allows the lower two address bits to be loaded into the onchip auto-address-increment logic. If both $\overline{\mathrm{ADSP}}$ and $\overline{\text { ADSC }}$ are asserted at the rising edge of CLK, only $\overline{\mathrm{ADSP}}$ will be recognized. The $\overline{\mathrm{ADSP}}$ input should be connected to the $\overline{\mathrm{ADS}}$ output of the processor. $\overline{\mathrm{ADSP}}$ is ignored when $\overline{\mathrm{CS}}$ is HIGH.
$\overline{\text { ADSC }}$	I	Address strobe from cache controller. This signal is sampled at the rising edge of CLK. When this input and/or $\overline{\text { ADSP }}$ is asserted, $\mathrm{A}_{0}-\mathrm{A}_{15}$ will be captured in the on-chip address register. It also allows the lower two address bits to be loaded into the onchip auto-address-increment logic. The $\overline{\mathrm{ADSC}}$ input should not be connected to the $\overline{\mathrm{ADS}}$ output of the processor.

Signal Name	I/O	Description
$\overline{\mathrm{W} H}$	I	Write signal for the high-order half of the RAM array. This signal is sampled by the rising edge of CLK. If $\overline{\mathrm{WH}}$ is sampled as LOW; i.e., asserted, the control logic will perform a self-timed write of $\mathrm{DQ}_{15}-\mathrm{DQ}_{8}$ and DP_{1} from the on-chip data register into the selected RAM location. There is one exception to this. If $\overline{\mathrm{ADSP}}, \overline{\mathrm{WH}}$, and $\overline{\mathrm{CS}}$ are asserted (LOW) at the rising edge of CLK, the write signal, $\overline{\mathrm{WH}}$, is ignored. Note that $\overline{\mathrm{ADSP}}$ has no effect on $\overline{W H}$ if $\overline{\mathrm{CS}}$ is HIGH.
$\overline{\mathrm{WL}}$	I	Write signal for the low-order half of the RAM array. This signal is sampled by the rising edge of CLK. If \bar{W} is sampled as LOW, i.e., asserted, the control logic will perform a self-timed write of $D Q_{7}-\mathrm{DQ}_{0}$ and DP_{0} from the on-chip data register into the selected RAM location. There is one exception to this. If $\overline{\mathrm{ADSP}}, \overline{\mathrm{WL}}$, and $\overline{\mathrm{CS}}$ are asserted (LOW) at the rising edge of CLK, the write signal, $\overline{\mathrm{WL}}$, is ignored. Note that $\overline{\mathrm{ADSP}}$ has no effect on $\overline{\mathrm{WL}}$ if $\overline{\mathrm{CS}}$ is HIGH.
$\overline{\text { ADV }}$	I	Advance. This signal is sampled by the rising edge of CLK. When it is asserted, it automatically increments the 2-bit on-chip auto-address-increment counter. In the CY7C1032, the address will be incremented linearly. In the CY7C1031, the address will be incremented according to the Pentium/486 burst sequence. This signal is ignored if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is asserted concurrently with $\overline{\mathrm{CS}}$. Note that $\overline{\mathrm{ADSP}}$ has no effect on $\overline{\mathrm{ADV}}$ if $\overline{\mathrm{CS}}$ is HIGH.
$\overline{\text { CS }}$	I	Chip select. This signal is sampled by the rising edge of CLK. If CS is HIGH and $\overline{\text { ADSC }}$ is LOW, the SRAM is deselected. If $\overline{\mathrm{CS}}$ is LOW and $\overline{\mathrm{ADSC}}$ or $\overline{\mathrm{ADSP}}$ is LOW, a new address is captured by the address register. If $\overline{\mathrm{CS}}$ is $\mathrm{HIGH}, \overline{\mathrm{ADSP}}$ is ignored.

Name	I/O	Description

Pin Descriptions (continued)

Bidirectional Signals

DQ15-DQ0 I/O Sixteen bidirectional data I/O lines. $\mathrm{DQ}_{15}-\mathrm{DQ}_{8}$ are inputs to and outputs from the high-order half of the RAM array, while $\mathrm{DQ}_{7}-\mathrm{DQ}_{0}$ are inputs to and outputs from the low-order half of the RAM array. As inputs, they feed into an on-chip data register that is triggered by the rising edge of CLK. As outputs, they carry the data read from the selected location in the RAM array. The direction of the data pins is controlled by $\overline{\mathrm{OE}}$: when $\overline{\mathrm{OE}}$ is high, the data pins are three-stated and can be used as inputs; when $\overline{\mathrm{OE}}$ is low, the data pins are driven by the output buffers and are outputs. $\mathrm{DQ}_{15}-\mathrm{DQ}_{8}$ and $D Q_{7}-D Q_{0}$ are also three-stated when $\overline{W H}$ and WL, respectively, is sampled LOW at clock rise.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots \ldots \ldots \ldots . .$.
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to GND $\ldots-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[2]} \ldots$.
DC Input Voltage ${ }^{[2]} \ldots \ldots \ldots \ldots \ldots-0.5 \mathrm{~F}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

Signal Name	I/O	Description

Static Discharge Voltage >2001V (per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature${ }^{[3]}$	$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{C C Q}}$
Com'1	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$	$3.0 \mathrm{~V}-5.5 \mathrm{~V}$
Mil	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 5 \%$

Current into Outputs (LOW) 20 mA

Electrical Characteristics Over the Operating Range ${ }^{[4]}$

Parameter	Description	Test Conditions	$\begin{aligned} & \text { 7C1031-8 } \\ & 7 \mathrm{C} 1032-8 \end{aligned}$		$\begin{gathered} 7 \mathrm{Cl1031}-10 \\ 7010 \end{gathered}$		$\begin{aligned} & 7 \mathrm{C} 1031-12 \\ & \text { 7C1032-12 } \end{aligned}$		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4	$\mathrm{V}_{\mathrm{CCQ}}$	2.4	$\mathrm{V}_{\mathrm{CCQ}}$	2.4	$\mathrm{V}_{\mathrm{CCQ}}$	V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[2]}$		-0.3	0.8	-0.3	0.8	-0.3	0.8	V
I_{X}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-1	1	-1	1	-1	1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled	-5	5	-5	5	-5	5	$\mu \mathrm{A}$

Notes:

2. Minimum voltage equals -2.0 V for pulse durations of less than 20 ns . 4. See the last page for Group A subgroup testing information.
3. T_{A} is the "instant on" case temperature.

Electrical Characteristics (continued)

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C1031-8 } \\ & 7 \mathrm{C} 1032-8 \end{aligned}$		$\begin{aligned} & \text { 7C1031-10 } \\ & \text { 7C1032-10 } \end{aligned}$		$\begin{aligned} & \text { 7C1031-12 } \\ & 7 \mathrm{CC1032-12} \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
Ios	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{Iout}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$	Com'l		295		265		215	mA
			Mil						250	
ISB1	Automatic CE PowerDown Current-TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \\ & \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Com'l		60		50		40	mA
			Mil				Kix		50	
$\mathrm{I}_{\text {SB2 }}$	Automatic CE PowerDown Current CMOS Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \\ & \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq \\ & \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \\ & \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \mathrm{l}^{6]} \end{aligned}$	Com'l		20		20		20	mA
			Mil		=	+		Whax	20	

Shaded areas contain advanced information

Capacitance ${ }^{[7]}$

Parameter	Description	Test Conditions		Max.	$\frac{\overline{\text { Unit }}}{\mathrm{pF}}$
$\mathrm{C}_{\text {IN }}$: Addresses	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	Com'1	4	pF
			Mil	6 .	
$\mathrm{C}_{\text {IN }}$: Other Inputs			Com'l	6	pF
			MiI	8	
Cout	Output Capacitance		Com'l	6	pF
			Mil	8 -	

Shaded areas contain advanced information

Notes:
5. Not more than one output should be shortened at one time. Duration of the short circuit should not exceed 30 seconds.
6. Clock signal allowed to run at speed.
7. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[8]}$

Parameter	Description	$\begin{aligned} & \hline 7 \mathrm{C} 1031-8 \\ & 7 \mathrm{C} 1032-8 \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 1031-10 \\ & \text { 7C1032-10 } \\ & \hline \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 1031-12 \\ & \text { 7C1032-12 } \\ & \hline \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Clock Cycle Time	12.5		15		20		ns
t_{CH}	Clock HIGH	5		6		8		ns
$\mathrm{t}_{\text {CL }}$	Clock LOW	5		6		8		ns
t_{AS}	Address Set-Up Before CLK Rise	2.5		2.5		3		ns
t_{AH}	Address Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}_{\text {CDV1 }}$	Data Output Valid After CLK Rise, 0-pF Load		8.5		10.5		12.5	ns
$\mathrm{t}_{\text {CDV2 }}$	Data Output Valid After CLK Rise, 85-pF Load		10		12		14	ns
$\mathrm{t}_{\mathrm{DOH}}$	Data Output Hold After CLK Rise	3		3		3		ns
$\mathrm{t}_{\text {ADS }}$	$\overline{\text { ADSP, }}$ ADSC Set-Up Before CLK Rise	2.5		2.5		3		ns
$\mathrm{t}_{\text {ADSH }}$	$\overline{\mathrm{ADSP}}, \overline{\mathrm{ADSC}}$ Hold After CLK Rise	0.5		0.5		1		ns
$t_{\text {WES }}$	$\overline{\text { WH, }}$ WL Set-Up Before CLK Rise	2.5		2.5		3		ns
twEH	$\overline{\text { WH, }} \overline{\text { WL }}$ Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}_{\text {ADVs }}$	$\overline{\text { ADV }}$ Set-Up Before CLK Rise	2.5		2.5		3		ns
$\mathrm{t}_{\text {ADVH }}$	$\overline{\text { ADV }}$ Hold After CLK Rise	0.5		0.5		1		ns
t_{DS}	Data Input Set-Up Before CLK Rise	2.5		2.5		3		ns
t_{DH}	Data Input Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}_{\text {CSS }}$	Chip Select Set-Up	2.5		2.5		3		ns
${ }^{\text {t }}$ CSH	Chip Select Hold After CLK Rise	0.5		0.5		1		ns
$\mathrm{t}^{\text {CSOZ }}$	Chip Select Sampled to Output High $\mathrm{Z}^{[9]}$	2	6	2	6	2	7	ns
$\mathrm{t}_{\mathrm{EOZ}}$	$\overline{\text { OE }}$ HIGH to Output High $\mathrm{Z}^{[9]}$	2	6	2	6	2	7	ns
teov	$\overline{\mathrm{OE}}$ LOW to Output Valid		5		5		6	ns
tweoz	$\overline{\text { WHor }}$ (\bar{W} LSampled LOW to OutputHigh $Z^{[9,10]}$		6		6		7	ns
${ }^{\text {tweov }}$	$\overline{\text { WH }}$ or $\overline{\text { WL }}$ Sampled HIGH to Output Valid ${ }^{[10]}$		10		12		14	ns

Notes:

8. Unless otherwise noted, test conditions assume signal transition time of 3 ns or less, timing reference leveis of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $85-\mathrm{pF}$ load capacitance.
9. $\mathrm{t}_{\mathrm{CSOZ}}, \mathrm{t}_{\mathrm{EOZ}}$, and $\mathrm{t}_{\mathrm{WEOZ}}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
10. At any given voltage and temperature, $\mathrm{t}_{\mathrm{WEOZ}} \mathrm{min}$. is less than tWEOV min.

Switching Waveforms

Single Read ${ }^{[11]}$

1031-6

Single Write Timing: Write Initiated by ADSP

Noies:
11. $\overline{\mathrm{OE}}$ is LOW throughout this operation.
12. If $\overline{\mathrm{ADSP}}$ is asserted while $\overline{\mathrm{CS}}$ is HIGH, $\overline{\mathrm{ADSP}}$ will be ignored.
13. $\overline{\mathrm{ADSP}}$ has no effect on $\overline{\mathrm{ADV}}, \overline{\mathrm{WL}}$, and $\overline{\mathrm{WH}}$ if $\overline{\mathrm{CS}}$ is HIGH.

Switching Waveforms (continued)
Single Write Timing: Write Initiated by ADSC

Burst Read Sequence with Four Accesses

Switching Waveforms (continued)

Output (Controlled by $\overline{\mathbf{O E}}$)

Write Burst Timing: Write Initiated by $\overline{\text { ADSC }}$

Switching Waveforms (continued)
Write Burst Timing: Write Initiated by $\overline{\text { ADSP }}$

Switching Waveforms (continued)

Truth Table

Input						Address	Operation
$\overline{\text { CS }}$	$\overline{\text { ADSP }}$	$\overline{\text { ADSC }}$	$\overline{\text { ADV }}$	$\overline{\text { WH or } \overline{\text { WL }}}$	CLK		
H	X	L	X	X	$\mathrm{L} \rightarrow \mathrm{H}$	N/A	Chip deselected
H	L	H	H	H	$\mathrm{L} \rightarrow \mathrm{H}$	Same address as previous cycle	Read cycle ($\overline{\text { ADSP }}$ ignored)
H	L	H	L	H	$\mathbf{L} \rightarrow \mathrm{H}$	Incremented burst address	Read cycle, in burst sequence (ADSP ignored)
H	L	H	H	L	L +H	Same address as previous cycle	Write cycle ($\overline{\mathrm{ADSP}}$ ignored)
H	L	H	L	L	$\mathrm{L} \rightarrow \mathrm{H}$	Incremented burst address	Write cycle, in burst sequence (ADSP ignored)
L	L	X	X	X	$\mathrm{L} \rightarrow \mathrm{H}$	External	Read cycle, begin burst
L	H	L	X	H	$\mathrm{L} \rightarrow \mathrm{H}$	External	Read cycle, begin burst
L	H	L	X	L	$\mathrm{L} \rightarrow \mathrm{H}$	External	Write cycle, begin burst
X	H	H	L	L	$\mathrm{L} \rightarrow \mathrm{H}$	Incremented burst address	Write cycle, in burst sequence
X	H	H	L	H	$\mathrm{L} \rightarrow \mathrm{H}$	Incremented burst address	Read cycle, in burst sequence
X	H	H	H	L	$\mathrm{L} \rightarrow \mathrm{H}$	Same address as previous cycle	Write cycle
X	H	H	H	H	$\mathrm{L} \rightarrow \mathrm{H}$	Same address as previous cycle	Read cycle

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
8	CY7C1031-8JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C1031-8NC	TBD	52-Lead Plastic Quad Flatpack	
10	CY7C1031-10JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C1031-10NC	TBD	52-Lead Plastic Quad Flatpack	
12	CY7C1031-12JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C1031-12NC	TBD	52-Lead Plastic Quad Flatpack	
	CY7C1031-12YMB	Y59	52-Pin Ceramic Leaded Chip Carrier	Military

Speed (ns)	Ordering Code	Package Name	Operating Range	
8	CY7C1032-8JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C1032-8NC	TBD	52-Lead Plastic Quad Flatpack	
	CY7C1032-10JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C1032-10NC	TBD	52-Lead Plastic Quad Flatpack	
12	CY7C1032-12JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C1032-12NC	TBD	52-Lead Plastic Quad Flatpack	
	CY7C1032-12YMB	Y59	52-Pin Ceramic Leaded Chip Carrier	Military

Shaded areas contain advanced information.

Document \#: 38-00219-A

Features

- Supports $200-\mathrm{MHz}$ cache systems
- 64 K by 18 (7B1051) and 128 K by 18 (7B1061) common I/O
- BiCMOS for optimum speed/power
- 3-ns access delay (clock to output)
- 5-ns cycle time (input to output)
- 3.3V power supply
- 3.3V GTL-capable I/O logic levels
- Write-through and byte-write capability
- Synchronous self-timed write
- Direct interface with the processor
- Two complementary synchronous chip enables
- Asynchronous output enable option

Functional Description

The CY7B1051 and CY7B1061 are 3.3V devices with the 5 -ns $\mathrm{t}_{\mathrm{CYC}}$ and 3 -ns t_{CO} needed to run at $200-\mathrm{MHz}$ clock speeds. Since Pentium ${ }^{\text {™ }}$ (P5) and the new RISC processors have 64 -bit and wider data buses with ECC and parity, $\mathrm{x} 9, \mathrm{x} 18$, and x 36 wide parts will be necessary to trade off between cache depth and width to satisfy both low-end and high-end systems (see the and CY7B1055/65 datasheet). The I/O
is designed for GTL-capable signal swings to achieve maximum speed with minimal noise. $\mathrm{C}_{\text {IN }}$ on all inputs except DQ is 5 pF max. and $\mathrm{DQ}_{0}-\mathrm{DQ}_{17}$ is 7 pF to provide less loading on the processoroutputs. A pipelined architecture is implemented by placing registers at both the data inputs and data outputs of the device. The advantage of this architecture is that it allows the designer to minimize the cycle time for the device by equalizing the delays through each segment of the pipeline. The devices are completely synchronous, therefore all the registers in the CY7B1051 and CY7B1061 (including the address and control registers) operate off the same clock. A consequence of these features is a oneclock latency between address and data. In other words, when an address is registered at a clock rise, the data corresponding to that address will be delivered to the data outputs following the next rising edge of the clock. Also, the control signals (write enable, output enable, and chip enable) follow a similar pipelined path to insure that the proper control accompanies the appropriate access. The write operations are greatly simplified by the self-timed write mechanism. An asynchronousoutput enable ($\overline{\mathrm{OE}}$) option is available as well as a
control pin to disable the output register to allow for flow-through operation where latency needs to be avoided. The CY7B1051 and CY7B1061 are packaged in 100-pin PBGAs (plastic ball grid array) and PGAs.
Pipelined SRAMs have architectures such that the propagation delays through the device are divided by a technique of registering information at intermediate states with a common clock signal. In this manner, each of the processes may be done concurrently. In a pipelined SRAM, the registers are inserted in two locations, between the address/control/data inputs and the memory cell and also between the memory cells and the data outputs. In this arrangement, the address, control, and data in (in case of a write) of the current access are clocked into the RAM while the data from the previous access is clocked out to the I/O pins. A write pass-through mode is included. In this mode, when chip enable ($\overline{\mathrm{CE}}$) is deasserted while write ($\overline{\mathrm{WE}}$) is asserted, the values registered at the data inputs are routed around the core to the output registers and presented at the data output pins on the next clock. This mode requires that the $\overline{\mathrm{OE}}$ pin be asserted during the same cycle that the write is asserted.

Selection Guide

		$\mathbf{7 B 1 0 5 1 - 5}$ $\mathbf{7 B 1 0 6 1 - 5}$	$\mathbf{7 B 1 0 5 1 - 7}$ $\mathbf{7 B 1 0 6 1 - 7}$
Maximum Cycle Time (ns)	5	7	
Maximum Operating Current (mA)	Commercial	TBD	TBD
	Military		TBD

Pentium is a trademark of Intel Corporation.
Document \#: 38-A-00038

Features

- Supports $\mathbf{2 0 0}-\mathrm{MHz}$ cache systems
- 32K by 36 (7B1055) and 64 K by 36 (7B1065) common I/O
- BiCMOS for optimum speed/power
- 3-ns access delay (clock to output)
- 5-ns cycle time (input to output)
- 3.3V power supply
- 3.3V GTL-capable I/O logic levels
- Write-through and byte-write capability
- Synchronous self-timed write
- Direct interface with the processor
- Two complementary synchronous chip enables
- Asynchronous output enable option

Functional Description
The CY7B1055 and CY7B1065 are 3.3 V devices with the $5-\mathrm{ns} \mathrm{t}_{\mathrm{CYC}}$ and $3-\mathrm{ns} \mathrm{t}_{\mathrm{CO}}$ needed to run at $200-\mathrm{MHz}$ clock speeds. Since Pentium ${ }^{\text {m }}$ (P5) and the new RISC processors have 64 -bit and wider data buses with ECC and parity, $\mathrm{x} 9, \mathrm{x} 18$, and $\times 36$ wide parts will be necessary to trade offbetween cache depth and width to satisfy both low-end and high-end systems (see the CY7B1051/61 datasheet). The I/O is
designed for GTL-capable signal swings to achieve maximum speed with minimal noise. C_{IN} on all inputs except DQ is 5 pF max. and $\mathrm{DQ}_{0}-\mathrm{DQ}_{35}$ is 7 pF to provide less loading on the processoroutputs. A pipelined architecture is implemented by placing registers at both the data inputs and data outputs of the device. The advantage of this architecture is that it allows the designer to minimize the cycle time for the device by equalizing the delays through each segment of the pipeline. The devices are completely synchronous, therefore all the registers in the CY7B1055 and CY7B1065 (including the address and control registers) operate off the same clock. A consequence of these features is a oneclock latency between address and data. In other words, when an address is registered at a clock rise, the data corresponding to that address will be delivered to the data outputs following the next rising edge of the clock. Also, the control signals (write enable, output enable, and chip enable) follow a similar pipelined path to insure that the proper control accompanies the appropriate access. The write operations are greatly simplified by the self-timed write mechanism. An asynchronous output enable ($\overline{\mathrm{OE}}$) option is available as well as a
control pin to disable the output register to allow for flow-through operation where latency needs to be avoided. The CY7B1055 and CY7B1065 are packaged in 100-pin PBGAs (plastic ball grid array) and PGAs.
Pipelined SRAMs have architectures such that the propagation delays through the device are divided by a technique of registering information at intermediate states with a common clock signal. In this manner, each of the processes may be done concurrently. In a pipelined SRAM, the registers are inserted in two locations, between the address/control/data inputs and the memory cell and also between the memory cells and the data outputs. In this arrangement, the address, control, and data in (in case of a write) of the current access are clocked into the RAM while the data from the previous access is clocked out to the I/O pins. A write pass-through mode is included. In this mode, when chip enable ($\overline{\mathrm{CE}}$) is deasserted while write ($\overline{\mathrm{WE}}$) is asserted, the values registered at the data inputs are routed around the core to the output registers and presented at the data output pins on the next clock. This mode requires that the $\overline{\mathrm{OE}}$ pin be asserted during the same cycle that the write is asserted.

Selection Guide

		$\begin{aligned} & 7 B 1055-5 \\ & 7 \mathrm{~B} 1065-5 \end{aligned}$	$\begin{aligned} & \text { 7B1055-7 } \\ & \text { 7B1065-7 } \end{aligned}$
Maximum Cycle Time (ns)		5	7
Maximum Operating Current (mA)	Commercial	TBD	TBD
	Military		TBD

Pentium is a trademark of Intel Corporation.
Document \#: 38-A-00039

Features

- High speed
$-t_{A A}=6 \mathrm{~ns}$
- BiCMOS for optimum speed/power
- Low active power
$-900 \mathrm{~mW}$
- Low standby power
$-350 \mathrm{~mW}$
- Automatic power-down when
deselected
- Output enable ($\overline{\mathbf{O E}})$ feature
- Both 5V and 3.3V TTLL-compatible inputs and outputs

Functional Description

The CY7B1094, CY7B1095, and CY7B1096 are high-performance Bi -

CMOS static RAMs organized as 65,536 words by 4 bits. All devices have a revolutionary center power/ground configuration. Easy memory expansion is provided by an active LOW chip enable (CE_{1}), an active LOW chip enable ($\overline{\mathrm{CE}}_{2}$, CY7B1096 only), an active LOW output enable ($\overline{\mathrm{OE}}$), and three-state drivers. All devices have an automatic power-down feature that reduces power consumption by more than 54% when deselected. Also, for 3.3 V systems, V_{OH} is limited to 3.3 V max.
Writing to the device is accomplished by taking chip enable one ($\overline{\mathrm{CE}}_{1}$) and write enable ($\overline{\mathrm{WE}}$) inputs and chip enable two ($\overline{\mathrm{CE}}_{2}$, CY7B1096 only) LOW. Data on the I / O pins $\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\mathrm{I} / \mathrm{O}_{3}$) is then written into the location specified on the address pins $\left(\mathrm{A}_{0}\right.$ through $\left.\mathrm{A}_{15}\right)$.

Reading from the device is accomplished by taking chip enable one ($\overline{\mathrm{CE}}_{1}$), chip enable two ($\mathrm{CE}_{2}, \mathrm{CY} 7 \mathrm{~B} 1096$ only), and output enable ($\overline{\mathrm{OE}})$ LOW, while forcing write enable ($\overline{\mathrm{WE}}) \mathrm{HIGH}$. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.
The four input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{3}$) are placed in a high-impedance state when the device is deselected ($\overline{\mathrm{CE}}_{1}$ HIGH or $\overline{\mathrm{CE}}_{2} \mathrm{HIGH}$ for the CY7B1096), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), or during a write operation $\left(\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}\right.$ for the CY7B1096, and WE all LOW).
The CY7B1094, CY7B1095, and CY7B1096 are available in leadless chip carriers, 300 -mil-wide center power/ ground DIPs, and SOJs.

Logic Block Diagram

1094-1

Pin Configurations

DIP/SOJ

1094-3

Selection Guide

		$\begin{aligned} & \text { 7B1094-6 } \\ & \text { 7B1095-6 } \\ & \text { 7B1096-6 } \end{aligned}$	$\begin{aligned} & \text { 7B1094-8 } \\ & \text { 7B1095-8 } \\ & 7 \mathrm{BB1096-8} \end{aligned}$	$\begin{array}{r} 7 \mathrm{7B1094-9} \\ 7 \mathrm{~B} 1095-9 \\ 7 \mathrm{~B} 1096-9 \end{array}$
Maximum Access Time (ns)		6	8	9
Maximum Operating Current (mA)	Commercial	180	180	
	Military	.	180	180
Maximum Standby Current (mA)	Commercial	70	70	
	Military		80	80

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} Relative to $\mathrm{GND}{ }^{[1]} .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State ${ }^{1]}$
-0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$
-0.5 V to +7.0 V
Current into Outputs (LOW) 20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature ${ }^{[2]}$	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		6
		pF		

Notes:

1. $\quad \mathrm{V}_{\mathrm{IL}(\min .)}=-3.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. V_{OH} maximum is limited by internal temperature-compensated bandgap reference. The output will not go above 3.3 V unless externally pulled to above 3.3 V .
5. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
6. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)
1094-5

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT $O-\underbrace{167 \Omega} \quad 1.73 \mathrm{~V}$
Switching Characteristics Over the Operating Range ${ }^{[3,7]}$

Parameter	Description	$\begin{aligned} & \hline 7 \mathrm{~B} 1094-6 \\ & \text { 7B1095-6 } \\ & \text { 7B1096-6 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{7B1094-8} \\ & 7 \mathrm{~B} 1095-8 \\ & 7 \mathrm{~B} 1096-8 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{~B} 1094-9 \\ & \text { 7B1095-9 } \\ & 7 \mathrm{~B} 1096-9 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	6		8		9		ns
t_{AA}	Address to Data Valid		6		8		9	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	2.5		2.5		2.5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		6		8		9	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		3.5		4		5	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[8]}$	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[8,9]}$		3		4		4.5	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	0		0		0		ns
$\mathrm{t}_{\mathrm{HzCE}}$	$\overline{\mathrm{CE}}$ HIGH to High $\mathrm{Z}^{[8,9]}$		3		4		4.5	ns
t_{PU}	$\overline{\mathrm{CE}}$ LOW to Power-Up		0		0		0	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		6		10		12	ns
WRITE CYCLE ${ }^{10,11]}$								
$\mathrm{t}_{\text {WC }}$	Write Cycle Time	6		8		9		ns
$t_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	5		6		7		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	4		6		7		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
tpwe	$\overline{\text { WE Pulse Width }}$	4		6		7		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	3		4		5		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[8]}$	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[8,9]}$	0	3	0	4	0	4.5	ns

Notes:

7. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\text {LZCE }}, \mathrm{t}_{\text {HZOE }}$ is less than $\mathrm{t}_{\text {LZOE }}$, and $\mathrm{t}_{\text {HZWE }}$ is less than $\mathrm{t}_{\text {LZWE }}$ for any given device.
9. $t_{H Z O E}, t_{H Z C E}$, and $t_{H Z W E}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
10. The internal write time of the memory is defined by the overlap of CE_{1} LOW, $\overline{\mathrm{CE}}_{2}$ LOW, and WE LOW. Both signals must be LOW to initiate a write and either signal will terminate a write by going HIGH . The input data set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
11. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ controlled, $\overline{O E}$ LOW) is the sum of $t_{\text {HZWE }}$ and $t_{S D}$.

Input/Output ESD and Clamp Diode Protection

Switching Waveforms

Read Cycle No. ${ }^{[12,13]}$

Read Cycle No. $2^{[13,14]}$

Notes:

12. Device is continuously selected. $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
13. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
14. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms (continued)

Write Cycle No. $1\left(\overline{\mathbf{C E}}_{1}\right.$ or $\overline{\mathbf{C E}}_{2}$ Controlled) ${ }^{[15,16]}$

Write Cycle No. 2 ($\overline{\text { WE }}$ Controlled, $\overline{\text { OE }}$ HIGH During Write for CY7B1095 and CY7B1096 only) ${ }^{[15,16]}$

Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[11,16]}$

Notes:

15. Data I / O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
16. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
17. During this time the I / Os are in the output mode and input signals must be applied.
$7 B 1094$ Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\overline{\mathbf{W E}}$	Input/Output	Mode	Power
H	X	High Z	Power-Down	Standby ($\left.\mathrm{I}_{\mathrm{SB}}\right)$
L	H	Data Out	Read	Active (I $\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	Data In	Write	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$

7B1095 Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Output	Mode	Power
H	X	X	High Z	Power-Down	Standby (I I_{SB})
L	H	L	Data Out	Read	Active (I I_{CC})
L	L	X	Data In	Write	Active (I I_{CC})
L	H	H	High Z	Selected, Output Disabled	Active (I $\left.\mathrm{I}_{\mathrm{CC}}\right)$

7B1096 Truth Table

$\overline{\mathbf{C E}}_{\mathbf{1}}$	$\overline{\mathbf{C E}}_{\mathbf{2}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Output	Mode	Power
H	X	X	X	High Z	Power-Down	Standby (I_{SB})
X	H	X	X	High Z	Power-Down	Standby (I_{SB})
L	L	H	L	Data Out	Read	Active (I_{CC})
L	L	L	X	Data In	Write	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	H	H	High Z	Selected, Output Disabled	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$

Ordering Information

Speed (ns)	Ordering Code	Package Name	Operating Range	
6	CY7B1094-6VC	V21	28-Lead Molded SOJ	Commercial
8	CY7B1094-8PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7B1094-8VC	V21	28-Lead Molded SOJ	
	CY7B1094-8DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7B1094-8LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
	CY7B1094-9DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7B1094-9LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

Speed (ns)	Ordering Code	Package Name	Opackage Type Range	
6	CY7B1095-6VC	V21	28-Lead Molded SOJ	Commercial
8	CY7B1095-8PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7B1095-8VC	V21	28-Lead Molded SOJ	
	CY7B1095-8DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7B1095-8LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
	CY7B1095-9DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7B1095-9LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
6	CY7B1096-6VC	V21	28-Lead Molded SOJ	Commercial
8	CY7B1096-8PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7B1096-8VC	V21	28-Lead Molded SOJ	
	CY7B1096-8DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7B1096-8LMB	L54	28-Pin Rectangular Leadless Chip Carrier	
	CY7B1096-9DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7B1096-9LMB	L54	28-Pin Rectangular Leadless Chip Carrier	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
$\mathrm{t}_{\text {RC }}$	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-A-00040-A

Features

- High speed
$-\mathrm{t}_{\mathrm{AA}}=\mathbf{6} \mathrm{ns}$
- BiCMOS for optimum speed/power
- Low active power
$-900 \mathrm{~mW}$
- Low standby power
$-350 \mathrm{~mW}$
- Automatic power-down when deselected
- Output enable ($\overline{\mathrm{OE}})$ feature
- Both 5V and 3.3V TTL-compatible inputs and outputs

Functional Description

The CY7B1099 is a high-performance BiCMOS static RAM organized as 32,768 words by 8 bits. The CY7B1099 has a revolutionary center power/ground configuration. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}}$), an active LOW output enable ($\overline{\mathrm{OE}}$), and threestate drivers. The device has an automatic power-down feature that reduces power consumption by more than 56% when deselected. Also, for 3.3 V systems, V_{OH} is limited to 3.3 V max.
Writing to the device is accomplished by taking chip enable ($\overline{\mathrm{CE}}$) and write enable ($\overline{\mathrm{WE}}$) inputs LOW. Data on the I/O pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is then written into the location specified on the address pins (A_{0} through A_{14}).

Reading from the device is accomplished by taking chip enable $(\overline{\mathrm{CE}})$ and output enable ($\overline{\mathrm{OE}}$) LOW, while forcing write enable ($\overline{\mathrm{WE}}$) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.
The eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) are placed in a high-impedance state when the device is deselected ($\overline{\mathrm{CE}} \mathrm{HIGH}$), the outputs are disabled ($\overline{\mathrm{OE}} \mathrm{HIGH}$), or during a write operation (CE and $\overline{W E}$ LOW).
The CY7B1099 is available in leadless chip carriers, and 300 -mil-wide center power/ground SOJs.

Logic Block Diagram

Pin Configurations

Selection Guide

		$\mathbf{7 B 1 0 9 9 - 6}$	$7 \mathbf{B 1 0 9 9 - 8}$	7B1099-9
Maximum Access Time (ns)	6	8	9	
Maximum Operating Current (mA)	Commercial	180	180	
Maximum Standby Current (mA)	Military		180	180

SEMICONDUCTOR

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Supply Voltage on V_{CC} Relative to $\mathrm{GND}^{[1]} .-0.5 \mathrm{~V}$ to +7.0 V DC Voltage Applied to Outputs
in High Z State ${ }^{1]}$ -0.5 V to +7.0 V
DC Input Voltage ${ }^{[1]}$
-0.5 V to +7.0 V
Current into Outputs (LOW)

Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature $22]$	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	6	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\text { min. })}=-3.0 \mathrm{~V}$ for pulse durations of less than 20 ns .
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. V_{OH} maximum is limited by internal temperature-compensated bandgap reference. The output will not go above 3.3 V unless externally pulled to above 3.3 V .
5. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
6. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3,7]}$

Parameter	Description	7B1099-6		7B1099-8		7B1099-9		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	6		8		9		ns
t_{AA}	Address to Data Valid		6		8		9	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	2.5		2.5		2.5		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}$ LOW to Data Valid		6		8		9	ns
${ }_{\text {t }}$	$\overline{O E}$ LOW to Data Valid		3.5		4		5	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[8]}$	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[8,9]}$		3		4		4.5	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[8]}$	0		0		0		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\text { CE HIGH }}$ to High $\mathrm{Z}^{[8,9]}$		3		4		4.5	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\mathrm{CE}}$ LOW to Power-Up		0		0		0	ns
t_{PD}	$\overline{\text { CE HIGH to Power-Down }}$		6		10		12	ns
WRITE CYCLE ${ }^{\text {[10, 11] }}$								
$\mathrm{t}_{\text {WC }}$	Write Cycle Time	6		8		9		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\overline{C E}}$ LOW to Write End	5		6		7		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	4		6		7		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	4		6		7		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	3		4		5		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low $\mathrm{Z}^{[8]}$	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[8,9]}$	0	3	0	4	0	4.5	ns

Notes:

7. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
8. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\text {LZCE }}, \mathrm{t}_{\text {HZOE }}$ is less than $\mathrm{t}_{\text {LZOE }}$, and $\mathrm{t}_{\text {HZWE }}$ is less than $\mathrm{t}_{\text {LZWE }}$ for any given device.
9. $t_{H Z O E}, t_{H Z C E}$, and $t_{H Z W E}$ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
10. The internal write time of the memory is defined by the overlap of CE_{1} LOW, $\overline{\mathrm{CE}}_{2}$ LOW, and WE LOW. Both signals must be LOW to initiate a write and either signal will terminate a write by going HIGH. The input data set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
11. The minimum write cycle time for Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{O E} L O W$) is the sum of $t_{\text {HZWE }}$ and $t_{S D}$.

Input/Output ESD and Clamp Diode Protection

Switching Waveforms

Read Cycle No. 1 ${ }^{[12,13]}$

Read Cycle No. 2 ${ }^{[13,14]}$

Notes:
12. Device is continuously selected. $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
13. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
14. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[15, ~ 16]}$

Write Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}} \mathbf{H I G H}$) ${ }^{[15,16]}$

Write Cycle No. 3 ($\overline{\mathbf{W E}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[11,16]}$

Notes:

15. Data I / O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
16. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.
17. During this time the I / Os are in the output mode and input signals must not be applied.

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\text { WE }}$	$\overline{\mathbf{O E}}$	Input/Output	Mode	Power
H	X	X	High Z	Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
L	H	L	Data Out	Read	Active (I_{CC})
L	L	X	Data In	Write	Active (I_{CC})
L	H	H	High Z	Selected, Output Disabled	Active (I_{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
6	CY7B1099-6VC	V32	32-Lead Molded SOJ	Commercial
8	CY7B1099-8VC	V32	32-Lead Molded SOJ	Commercial
	CY7B1099-8LMB	L55	32-Pin Rectangular Leadless Chip Carrier	Military
9	CY7B1099-9LMB	L55	32-Pin Rectangular Leadless Chip Carrier	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-A-00041-A

Features

- Supports 50-MHz Pentium ${ }^{\text {® }}$ processor cache systems with zero wait states
- 64 K by 18 common I/O
- Fast clock-to-output times
- 12.5 ns with $0-\mathrm{pF}$ load
- 14 ns with $85-\mathrm{pF}$ load
- Two-bit wraparound counter supporting the Pentium and 486 burst sequence ($7 \mathrm{C1331}$)
- Two-bit wraparound counter supporting linear burst sequence (7C1332)
- Separate processor and controller address strobes
- Synchronous self-timed write

64 K x 18 Synchronous Cache 3.3V RAM

- Direct interface with the processor and external cache controller
- Asynchronous output enable
- JEDEC-standard pinout
- 52-pin PLCC and PQFP packaging Functional Description

The CY7C1331 and CY7C1332 are 3.3V 64 K by 18 synchronous cache RAMs designed to interface with high-speed microprocessors with minimum glue logic. Maximum access delay from clock rise is 12.5 ns. A 2-bit on-chip counter captures the first address in a burst and increments the address automatically for the rest of the burst access.

The CY7C1331 is designed for Intel Pentium and i486 CPU-based systems; its counter follows the burst sequence of the Pentium and the $i 486$ processors. The CY7C1332 is architected for processors with linear burst sequences. Burst accesses can be initiated with the processor address strobe ($\overline{\mathrm{ADSP}}$) or the cache controller address strobe ($\overline{\text { ADSC }}$) inputs. Address advancement is controlled by the address advancement (ADV) input.
A synchronous self-timed write mechanism is provided to simplify the write interface. A synchronous chip select input and an asynchronous output enable input provide easy control for bank selection and output three-state control.

Selection Guide

		7C1331-12 $\mathbf{7 C 1 3 3 2 - 1 2}$	$\mathbf{7 C 1 3 3 1 - 1 6}$ $\mathbf{7 C 1 3 3 2 - 1 6}$	7C1331-19 $\mathbf{7 C 1 3 3 2 - 1 9}$
Maximum Access Time (ns) (0-pF load)		12.5	$\mathbf{1 6 . 5}$	19.5
Maximum Operating Current (mA)	Commercial	180	160	150
	Military			$\mathbf{1 7 0}$

Pentium is a trademark of Intel Corporation.
Note:

1. DP_{0} and DP_{1} are functionally equivalent to DQ_{x}.

Functional Description (continued)

Single Write Accesses Initiated by $\overline{\text { ADSP }}$
This access is initiated when the following conditions are satisfied at clock rise: (1) $\overline{\mathrm{CS}}$ is LOW and (2) $\overline{\mathrm{ADSP}}$ is LOW. $\overline{\mathrm{ADSP}}-$ triggered write cycles are completed in two clock periods. The address at A_{0} through A_{15} is loaded into the address register and address advancement logic and delivered to the RAM core. The write signal is ignored in this cycle because the cache tag or other external logic uses this clock period to perform address comparisons or protection checks. If the write is allowed to proceed, the write input to the CY7C1331 and CY7C1332 will be pulled LOW before the next clock rise. $\overline{\mathrm{ADSP}}$ is ignored if $\overline{\mathrm{CS}}$ is HIGH.
If $\overline{\mathrm{WH}}, \overline{\mathrm{WL}}$, or both are LOW at the next clock rise, information presented at $\mathrm{DQ}_{0}-\mathrm{DQ}_{15}$ and $\mathrm{DP}_{0}-\mathrm{DP}_{1}$ will be written into the location specified by the address advancement logic. $\overline{\mathrm{WL}}$ controls the writing of $\mathrm{DQ}_{0}-\mathrm{DQ}_{7}$ and DP_{0} while $\overline{\mathrm{WH}}$ controls the writing of $\mathrm{DQ}_{8}-\mathrm{DQ}_{15}$ and DP_{1}. Because the CY7C1331 and CY7C1332 are common-I/O devices, the output enable signal ($\overline{\mathrm{OE} \text {) must be }}$ deasserted before data from the CPU is delivered to $\mathrm{DQ}_{0}-\mathrm{DQ}_{15}$ and $\mathrm{DP}_{0}-\mathrm{DP}_{1}$. As a safety precaution, the appropriate data lines are three-stated in the cycle where $\overline{\mathrm{WH}}, \overline{\mathrm{WL}}$, or both are sampled LOW, regardless of the state of the $\overline{\mathrm{OE}}$ input.
Single Write Accesses Initiated by $\overline{\mathrm{ADSC}}$
This write access is initiated when the following conditions are satisfied at rising edge of the clock: (1) $\overline{\mathrm{CS}}$ is LOW, (2) $\overline{\text { ADSC }}$ is LOW, and (3) $\overline{W H}$ or $\overline{\text { WL }}$ are LOW. $\overline{A D S C}$ triggered accesses are completed in a single clock cycle.
The address at A_{0} through A_{15} is loaded into the address register and address advancement logic and delivered to the RAM core. Information presented at $\mathrm{DQ}_{0}-\mathrm{DQ}_{15}$ and $\mathrm{DP}_{0}-\mathrm{DP}_{1}$ will be written into the location specified by the address advancement logic. $\overline{\mathrm{WL}}$ controls the writing of $\mathrm{DQ}_{0}-\mathrm{DQ}_{7}$ and DP_{0} while $\overline{W H}$ controls the writing of $\mathrm{DQ}_{8}-\mathrm{DQ}_{15}$ and DP_{1}. Since the CY7C1331 and the CY7C1332 are common-I/O devices, the output enable signal ($\overline{\mathrm{OE}}$) must be deasserted before data from the cache controller is delivered to the data lines. As a safety precaution, the appropriate data lines are three-stated in the cycle where $\overline{\mathrm{WH}}, \overline{\mathrm{WL}}$, or both are sampled LOW, regardless of the state of the $\overline{\mathrm{OE}}$ input.

Single Read Accesses

A single read access is initiated when the following conditions are satisfied at clock rise: (1) $\overline{\mathrm{CS}}$ is LOW, (2) $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW, and (3) $\overline{\mathrm{WH}}$ and $\overline{\mathrm{WL}}$ are HIGH. The address at A_{0} through A_{15} is stored into the address advancement logic and delivered to the RAM core. If the output enable ($\overline{\mathrm{OE}}$) signal is asserted (LOW), data will be available at the data outputs a maximum of 12.5 ns after clock rise.

Burst Sequences

The CY7C1331 provides a 2-bit wraparound counter, fed by pins $A_{0}-A_{1}$, that implements the Intel 80486 and Pentium processor address burst sequence (see Table 1). Note that the burst sequence depends on the first burst address.

Table 1. Counter Implementation for the Intel
Pentium/80486 Processor's Sequence

First Address	Second Address	Third Address	Fourth Address
$\mathbf{A}_{\mathbf{X}}+\mathbf{1}, \mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}}+\mathbf{1}, \mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{X}}$
00	01	10	11
01	00	11	10
10	11	00	01
11	10	01	00

The CY7C1332 provides a two-bit wraparound counter, fed by pins $\mathrm{A}_{0}-\mathrm{A}_{1}$, that implements a linear address burst sequence (see Table 2).

Table 2. Counter Implementation for a Linear Sequence

First Address	Second Address	Third Address	Fourth Address
$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{X}}$	$\mathbf{A}_{\mathbf{X}+\mathbf{1}}, \mathbf{A}_{\mathbf{x}}$	$\mathbf{A}_{\mathbf{X}}+\mathbf{1}, \mathbf{A}_{\mathbf{x}}$	$\mathbf{A}_{\mathbf{X}+1, \mathbf{1}}, \mathbf{A}_{\mathbf{X}}$
00	01	10	11
01	10	11	00
10	11	00	01
11	00	01	10

Application Example

Figure1 shows a 512-Kbyte secondary cache for a hypothetical $3.3 \mathrm{~V}, 50-\mathrm{MHz}$ Pentium or $\mathbf{i 4 8 6}$ processor using four CY7C1331 cache RAMs.

Figure 1. Cache Using Four CY7C1331s

Pin Definitions

Signal Name	Type	\# of Pins	Description
VCC	Input	1	$+3.3 V$ Power
VCCQ	Input	4	$+3.3 V$ (Outputs)
GND	Input	1	Ground
VSSQ	Input	4	Ground (Outputs)
CLK	Input	1	Clock
$\mathrm{A}_{15}-\mathrm{A}_{0}$	Input	16	Address
$\overline{\mathrm{ADSP}}$	Input	1	Address Strobe from Processor
$\overline{\mathrm{ADSC}}$	Input	1	Address Strobe from Cache Controller
$\overline{\mathrm{WH}}$	Input	1	Write Enable - High Byte
$\overline{\mathrm{WL}}$	Input	1	Write Enable - Low Byte
$\overline{\mathrm{ADV}}$	Input	1	Advance
$\overline{\mathrm{OE}}$	Input	1	Output Enable
$\overline{\mathrm{CS}}$	Input	1	Chip Select
$\mathrm{DQ}_{15}-\mathrm{DQ}_{0}$	Input/Output	16	Regular Data
$\mathrm{DP}_{1}-\mathrm{DP}_{0}$	Input/Output	2	Parity Data

Pin Descriptions

Signal Name	I/O	Description	Signal Name	I/O	Description
Input Signals			$\overline{\text { WH }}$	I	Write signal for the high-order half of the RAM array. This signal is sampled by the rising edge of CLK. If WH is sampled as LOW, i.e., asserted, the control logic will perform a self-timed write of $\mathrm{DQ}_{15}-\mathrm{DQ}_{8}$ and DP_{1} from the on-chip data register into the selected RAM location. There is one exception to this. If $\overline{\mathrm{ADSP}}, \overline{\mathrm{WH}}$, and $\overline{\mathrm{CS}}$ are asserted (LOW) at the rising edge of CLK, the write signal, $\overline{\mathrm{WH}}$, is ignored. Note that $\overline{\mathrm{ADSP}}$ has no effect on $\overline{W H}$ if $\overline{C S}$ is HIGH.
CLK	I	Clock signal. It is used to capture the address, the data to be written, and the following control signals: $\overline{\mathrm{ADSP}}, \overline{\mathrm{ADSC}}, \overline{\mathrm{WH}}, \overline{\mathrm{WL}}, \overline{\mathrm{CS}}$, and $\overline{\mathrm{ADV}}$. It is also used to advance the on-chip auto-address-increment logic (when the appropriate control signals have been set).			
A15-A0	I	Sixteen address lines used to select one of 64 K locations. They are captured in an on-chip register on the rising edge of CLK if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW. The rising edge of the clock also loads the lower two address lines, $\mathrm{A}_{1}-\mathrm{A}_{0}$, into the on-chip auto-address-increment logic if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is LOW.	$\overline{\mathrm{WL}}$	I	signal, $\overline{W H}$, is ignored. Note that $\overline{\mathrm{ADSP}}$ has no effect on $\overline{\mathrm{WH}}$ if $\overline{\mathrm{CS}}$ is HIGH. Write signal for the low-order half of the RAM array. This signal is sampled by the rising edge of CLK. If WL is sampled as LOW, i.e., asserted, the control logic will perform a self-timed write of $\mathrm{DQ}_{7}-\mathrm{DQ}_{0}$ and DP_{0} from the on-chip data register
$\overline{\text { ADSP }}$	I	Address strobe from processor. This signal is sampled at the rising edge of CLK. When this input and/or $\overline{\mathrm{ADSC}}$ is asserted, $\mathrm{A}_{0}-\mathrm{A}_{15}$ will be captured in the on-chip address register. It also allows the lower two address bits to be loaded into the onchip auto-address-increment logic. If both $\overline{\text { ADSP }}$ and $\overline{\mathrm{ADSC}}$ are asserted at the rising edge of CLK, only $\overline{\mathrm{ADSP}}$ will be recognized. The $\overline{\mathrm{ADSP}}$ input should be connected to the $\overline{\text { ADS }}$ output of the processor. $\overline{\mathrm{ADSP}}$ is ignored when $\overline{\mathrm{CS}}$ is. HIGH.		I	into the selected RAM location. There is one exception to this. If $\overline{\mathrm{ADSP}}, \overline{\mathrm{WL}}$, and $\overline{\mathrm{CS}}$ are asserted (LOW) at the rising edge of CLK, the write signal, $\overline{\mathrm{WL}}$, is ignored. Note that $\overline{\mathrm{ADSP}}$ has no effect on $\overline{\mathrm{WL}}$ if $\overline{\mathrm{CS}}$ is HIGH. Advance. This signal is sampled by the rising edge of CLK. When it is asserted, it automatically increments the two-bit on-chip auto-address-increment counter. In the CY7C1332, the address will be incremented linearly. In the CY7C1331, the address
$\overline{\text { ADSC }}$	I	Address strobe from cache controller. This signal is sampled at the rising edge of CLK. When this input and/or $\overline{\text { ADSP }}$ is asserted, $\mathrm{A}_{0}-\mathrm{A}_{15}$ will be captured in the on-chip address register. It also allows the lower two address bits to be loaded into the onchip auto-address-increment logic. The $\overline{\mathrm{ADSC}}$ input should not be connected to the $\overline{\mathrm{ADS}}$ output of the processor.			will be incremented according to the Pentium/486 burst sequence. This signal is ignored if $\overline{\mathrm{ADSP}}$ or $\overline{\mathrm{ADSC}}$ is asserted concurrently with $\overline{\mathrm{CS}}$. Note that $\overline{\mathrm{ADSP}}$ has no effect on $\overline{\mathrm{ADV}}$ if $\overline{\mathrm{CS}}$ is HIGH.
			$\overline{\text { CS }}$	I	Chip select. This signal is sampled by the rising edge of CLK. If $\overline{\mathrm{CS}}$ is HIGH and $\overline{\mathrm{ADSC}}$ is LOW, the SRAM is deselected. If $\overline{\mathrm{CS}}$ is LOW and $\overline{\mathrm{ADSC}}$ or $\overline{\text { ADSP }}$ is LOW, a new address is captured by the address register. If $\overline{\mathrm{CS}}$ is $\mathrm{HIGH}, \overline{\mathrm{ADSP}}$ is ignored.

Pin Descriptions (continued)

Signal Name	I/O	Description

Bidirectional Signals

$$
\begin{aligned}
& \text { DQ15-DQ0 I/O } \begin{array}{l}
\text { Sixteen bidirectional data } \mathrm{I} / \mathrm{O} \text { lines. } \mathrm{DQ}_{15}-\mathrm{DQ}_{8} \\
\text { are inputs to and outputs from the high-order half } \\
\text { of the } \mathrm{RAM} \text { array, while } \mathrm{DQ}_{7}-\mathrm{DQ}_{0} \text { are inputs to } \\
\text { and outputs from the low-order half of the RAM } \\
\text { array. As inputs, they feed into an on-chip data } \\
\text { register that is triggered by the rising edge of CLK. } \\
\text { As outputs, they carry the data read from the se- } \\
\text { lected location in the RAM array. The direction of } \\
\text { the data pins is controlled by } \overline{\mathrm{OE}: \text { when } \overline{\mathrm{OE}} \text { is high, }} \\
\text { the data pins are three-stated and can be used as } \\
\text { inputs; when } \overline{\mathrm{OE}} \text { is low, the data pins are driven by } \\
\text { the output buffers and are outputs. } \mathrm{DQ}_{15}-\mathrm{DQ}_{8} \\
\text { and } \mathrm{DQ}-\mathrm{DQ}_{0} \text { are also three-stated when } \overline{W H} \\
\text { and } \overline{W L}, \text { respectively, are sampled } \mathrm{LOW} \text { at clock } \\
\text { rise. }
\end{array}
\end{aligned}
$$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150{ }^{\circ} \mathrm{C}$Ambient Temperature with	
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	
Supply Voltage on V_{CC} Relative to GND $\ldots-0.5 \mathrm{~V}$ to +3.6 V	
DC Voltage Applied to Outputs	
DC Input Voltage ${ }^{[2]} \ldots \ldots . \ldots \ldots .$.	
Current into Outputs (LOW)	

Signal Name	I/O	Description
DP1-DP0	I/O	Two bidirectional data I/O lines. These operate in exactly the same manner as $\mathrm{DQ}_{15}-\mathrm{DQ}_{0}$, but are named differently because their primary purpose is to store parity bits, while the DQs' primary purpose is to store ordinary data bits. DP_{1} is an input to and an output from the high-order half of the RAM array, while DP_{0} is an input to and an output from the lower-order half of the RAM array.

(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	$\underset{\text { Temperature }{ }^{[3]}}{\text { Ambient }}$	$\mathbf{V}_{\mathbf{C C}}, \mathbf{V}_{\mathbf{C C Q}}$
Com'l	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Mil	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

Electrical Characteristics Over the Operating Range ${ }^{[4]}$

Notes:

2. Minimum voltage equals -2.0 V for pulse durations of less than 20 ns .
3. T_{A} is the "instant on" case temperature.
4. Sce the last page of this specification för Group A subgroup iesting information.
5. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.

Electrical Charaterictics (continued)

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C1331-12 } \\ & \text { 7C1332-12 } \end{aligned}$		$\begin{aligned} & \text { 7C1331-16 } \\ & 7 \mathrm{C} 1332-16 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 1331-19 \\ & 7 \mathrm{C} 1332-19 \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	Min.	Min.	
ISB1	Automatic CE	Max. $\mathrm{V}_{\text {CC }}, \overline{\mathrm{CS}} \geq$	Com'l		30		30		30	mA
	Power-Down Current - TTL Inputs	$\begin{aligned} & \mathrm{V}_{\mathrm{IH}}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Mil						30	
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current -CMOS Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \\ & \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq \\ & \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \\ & \leq 0.3 \mathrm{~V}, \mathrm{f}=0[6] \end{aligned}$	Com'l		10		10		10	mA
			Mil						10	

Capacitance ${ }^{[7]}$

Parameter	Description	Test Conditions		Max.	Unit
$\mathrm{C}_{\text {IN }}$: Addresses	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	Com'l	4	pF
			Mil	6	
$\mathrm{C}_{\text {IN }}$: Other Inputs	Input Capacitance		Com'l	6	pF
			Mil	8	
Cout	Output Capacitance		Com'l	6	pF
			Mil	8	

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT

Notes:

6. Clock signal allowed to run at speed.
7. Tested initially and after any design or process changes that may affect these parameters.

$$
=
$$

\rightarrow

Switching Characteristics Over the Operating Range ${ }^{[8]}$

Parameter	Description	$\begin{aligned} & \hline 7 \mathrm{C} 1331-12 \\ & 7 \mathrm{C} 1331-12 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 1331-16 \\ & 7 \mathrm{C} 1331-16 \end{aligned}$		$\begin{aligned} & \hline \text { 7C1331-19 } \\ & 7 \mathrm{Cl1332-19} \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{CYC}}$	Clock Cycle Time	20		25		30		ns
t_{CH}	Clock HIGH	8		9		12		ns
t_{CL}	Clock LOW	8		9		12		ns
t_{AS}	Address Set-Up Before CLK Rise	3		4		5		ns
t_{AH}	Address Hold After CLK Rise	1		2		3		ns
$t_{\text {t }}$	Data Output Valid After CLK Rise, 0-pF Load		12.5		16.5		19.5	
$\mathrm{t}_{\text {CDV2 }}$	Data Output Valid After CLK Rise		14		18		21	ns
${ }^{\text {t }} \mathrm{DOH}$	Data Output Hold After CLK Rise	3		3		3		ns
$\mathrm{t}_{\text {ADS }}$	$\overline{\text { ADSP, }}$ ADSC Set-Up Before CLK Rise	3		4		5		ns
$\mathrm{t}_{\text {ADSH }}$	$\overline{\text { ADSP, }} \overline{\text { ADSC }}$ Hold After CLK Rise	1		2		3		ns
twes	$\overline{\text { WH,}}$, $\overline{\text { WL }}$ Set-Up Before CLK Rise	3		4		5		ns
${ }^{\text {twEH }}$	$\overline{\text { WH, }} \overline{\text { WL Hold After CLK Rise }}$	1		2		3		ns
$\mathrm{t}_{\text {ADVS }}$	$\overline{\text { ADV Set-Up Before CLK Rise }}$	3		4		5		ns
$\mathrm{t}_{\text {ADVH }}$	$\overline{\text { ADV }}$ Hold After CLK Rise	1		2		3		ns
$\mathrm{t}_{\text {DS }}$	Data Input Set-Up Before CLK Rise	3		4		5		ns
$\mathrm{t}_{\text {DH }}$	Data Input Hold After CLK Rise	1		2		3		ns
$\mathrm{t}_{\text {CSS }}$	Chip Select Set-Up	3		4		5		ns
$\mathrm{t}_{\text {CSH }}$	Chip Select Hold After CLK Rise	1		2		3		ns
$\mathrm{t}_{\text {CSOZ }}$	Chip Select Sampled to Output High $\mathrm{Z}^{[9]}$	2	7	2	8	2	11	ns
$\mathrm{t}_{\text {EOZ }}$	$\overline{\text { OE HIGH to Output High }}{ }^{[9]}$	2	7	2	8	2	11	ns
teov	$\overline{\mathrm{OE}}$ LOW to Output Valid		6		7		8	ns
${ }^{\text {twEOZ }}$	$\overline{\text { WH }}$ or $\overline{\text { WLS }}$ Sampled LOW to OutputHigh ${ }^{[9,10]}$		7		8		11	ns
tweov	$\overline{\text { WH }}$ or $\overline{\text { WL }}$ Sampled HIGH to Output Valid ${ }^{[10]}$		14		18		21	ns

Notes:
8. Unless otherwise noted, test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $85-\mathrm{pF}$ load capacitance.
9. $\mathrm{t}_{\mathrm{CSOZ}}, \mathrm{t}_{\mathrm{EOZ}}$, and twEOZ are specified with a load capacitance of 5 pF as in part (b) of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
10. At any given voltage and temperature, $\mathrm{t}_{\mathrm{WEOZ}} \mathrm{min}$. is less than $\mathrm{t}_{\text {WEOV }}$ \min.

Switching Waveforms

Single Read ${ }^{[11]}$

Single Write Timing: Write Initiated by ADSP

Notes:

11. $\overline{\mathrm{OE}}$ is LOW throughout.
12. If $\overline{\mathrm{ADSP}}$ is asserted while $\overline{\mathrm{CS}}$ is $\mathrm{HIGH}, \overline{\mathrm{ADSP}}$ will be ignored.
13. $\overline{\mathrm{ADSP}}$ has no effect on $\overline{\mathrm{ADV}} \overline{\mathrm{WH}}$, and $\overline{\mathrm{WL}}$ if $\overline{\mathrm{CS}}$ is HIGH .

Switching Waveforms (continued)
Single Write Timing: Write Initiated by $\overline{\text { ADSC }}$

Burst Read Sequence with Four Accesses

Switching Waveforms (continued)

Output (Controlled by $\overline{\mathbf{O E}}$)

Write Burst Timing: Write Initiated by $\overline{\text { ADSC }}$

Switching Waveforms (continued)

Write Burst Timing: Write Initiated by $\overline{\text { ADSP }}$

Switching Waveforms (continued)

Output Timing (Controlled by $\overline{\mathbf{W H}} / \overline{\mathbf{W L}}$)

Truth Table

Inputs						Address	Operation
$\overline{\mathrm{CS}}$	$\overline{\text { ADSP }}$	$\overline{\text { ADSC }}$	$\overline{\text { ADV }}$	$\overline{\mathrm{WH}}$ or $\overline{\mathrm{WL}}$	CLK		
H	X	L	X	X	$\mathrm{L} \rightarrow \mathrm{H}$	N/A	Chip deselected
H	L	H	H	H	$\mathrm{L} \rightarrow \mathrm{H}$	Same address as previous cycle	Read cycle ($\overline{\text { ADSP }}$ ignored)
H	L	H	L	H	$\mathrm{L} \rightarrow \mathrm{H}$	Incremented burst address	Read cycle, in burst sequence (ADSP ignored)
H	L	H	H	L	$\underline{L}+\mathrm{H}$	Same address as previous cycle	Write cycle ($\overline{\mathrm{ADSP}}$ ignored)
H	L	H	L	L	$\mathrm{L} \rightarrow \mathrm{H}$	Incremented burst address	Write cycle, in burst sequence ($\overline{\mathrm{ADSP}}$ ignored)
L	L	X	X	X	$\mathrm{L} \rightarrow \mathrm{H}$	External	Read cycle, begin burst
L	H	L	X	H	$\mathrm{L} \rightarrow \mathrm{H}$	External	Read cycle, begin burst
L	H	L	X	L	$\mathrm{L} \rightarrow \mathrm{H}$	External	Write cycle, begin burst
X	H	H	L	L	$\mathrm{L} \rightarrow \mathrm{H}$	Incremented burst address	Write cycle, begin burst
X	H	H	L	H	$\mathrm{L}+\mathrm{H}$	Incremented burst address	Read cycle, begin burst
X	H	H	H	L	$\mathrm{L} \rightarrow \mathrm{H}$	Same address as previous cycle	Write cycle
X	H	H	H	H	$\mathrm{L} \rightarrow \mathrm{H}$	Same address as previous cycle	Read cycle

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1331-12JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C1331-12NC	TBD	52-Lead Plastic Quad Flatpack	
16	CY7C1331-16JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C1331-16NC	TBD	52-Lead Plastic Quad Flatpack	
19	CY7C1331-19JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C1331-16NC	TBD	52-Lead Plastic Quad Flatpack	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
12	CY7C1332-12JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C1332-12NC	TBD	52-Lead Plastic Quad Flatpack	
16	CY7C1332-16JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C1332-16NC	TBD	52-Lead Plastic Quad Flatpack	
19	CY7C1332-19JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C1332-19NC	TBD	52-Lead Plastic Quad Flatpack	

Document \#: 38-00223-A

Features

- Supports 50-MHz Pentium ${ }^{\text {®0 }}$ processor cache systems with zero wait states
- 32 K by 18 common I/O
- Fast clock-to-output times
- $\mathbf{1 2 . 5} \mathrm{ns}$ with 0-pF load
- 14 ns with $85-\mathrm{pF}$ load
- Two-bit wraparound counter supporting the Pentium ${ }^{m \times}$ and 486 burst sequence (7C1378)
- Two-bit wraparound counter supporting the linear burst sequence (7C1379)
- Separate processor and controller address strobes
- Synchronous self-timed write
- Direct interface with the processor and external cache controller
- Asynchronous output enable
- Industry-standard pinout
- 52-pin PLCC and PQFP packaging Functional Description
The CY7C1378 and CY7C1379 are 3.3V 32 K by 18 synchronous cache RAMs designed to interface with high-speed microprocessors with minimumglue logic. Maximum access delay from clock rise is 12.5 ns. A 2-bit on-chip counter captures the first address in a burst and increments the address automatically for the rest of the burst access.

32K x 18 Synchronous Cache 3.3V RAM

The CY7C1378 is designed for Intel Pentium and i486 CPU-based systems; its counter follows the burst sequence of the Pentium and the i 486 processors. The CY7C1379 is architected for processors with linear burst sequences. Burst accesses can be initiated with the processor address strobe ($\overline{\mathrm{ADSP}}$) or the cache controller address strobe (ADSC) inputs. Address advancement is controlled by the address advancement ($\overline{\mathrm{ADV}}$) input.
A synchronous self-timed write mechanism is provided to simplify the write interface. A synchronous chip select input and an asynchronous output enable input provide easy control for bank selection and output three-state control.

Logic Block Diagram

1378-2

Selection Guide

		7C1378-12 $\mathbf{7 C 1 3 7 9 - 1 2}$	7C1378-16 7C1379-16	$\mathbf{7 C 1 3 7 8 - 1 9}$ $\mathbf{7 C 1 3 7 9 - 1 9}$
Maximum Access Time (ns) (0-pF Load)		12.5	16.5	19.5
Maximum Operating Current (mA)	Commercial	180	160	150
	Military			170

[^32]Note:

1. DP_{0} and DP_{1} are functionally equivalent to DQ_{x}.

ADVANCED INFORMATION CY7C1388

Features

- Single $3.3 \pm 0.3 \mathrm{~V}$ power supply
- High speed
$-20 \mathrm{~ns}$
- Low active power
- 235 mW
- Low standby power
$-90 \mathrm{~mW}$
- 2.0 V data retention
$-100 \mu \mathrm{~W}$
- Ideal for low-voltage cache memory applications
- Easy memory expansion with $\overline{\mathbf{C E}}_{1}$, CE_{2} and OE features
- CMOS for optimum speed/power
- Automatic power-down when deselected

Functional Description

The CY7C1388 is a high-performance 3.3 V CMOS static RAM organized as 32,768 words by 9 bits. Easy memory expansion is provided by an active LOW chip enable $\left(\mathrm{CE}_{1}\right)$, an active HIGHchip enable $\left(\mathrm{CE}_{2}\right)$, an active-LOW output enable (OE), and three-state drivers. This device has an automatic power-down feature that reduces power consumption by more than 60% when deselected.
Writing to the device is accomplished by taking chip enable one ($\overline{\mathrm{CE}}_{1}$) and write enable (WE) inputs LOW and chip enable two (CE_{2}) input HIGH. Data on the nine $\mathrm{I} / \mathrm{Opins}\left(\mathrm{I} / \mathrm{O}_{0}\right.$ through $\left.\mathrm{I} / \mathrm{O}_{8}\right)$ is then written
into the location specified on the address pins (A_{0} through A_{14}).
Reading from the device is accomplished by taking chip enable one (CE_{1}) and output enable (OE) LOW while forcing write enable (WE) and chip enable two (CE_{2}) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.
The nine input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{8}$) are placed in a high-impedance state when the device is deselected (CE_{1} HIGH or $\mathrm{CE}_{2} \mathrm{LOW}$), the outputs are disabled (OE HIGH), or during a write operation (CE_{1} LOW, CE_{2} HIGH, and WE LOW). THe CY7C1388 is available in standard 300 -mil-wide DIPs and SOJs. A die coat is used to ensure alpha immunity.

Logic Block Diagram

Pin Configuration

C1388-2

Selection Guide

	7C1388-20	7C1388-25	7C1388-35
Maximum Access Time (ns)	20	25	35
Maximum Operating Current (mA)	65	60	55
Maximum Standby Current (mA)	25	25	25

$=$
\because

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} to Relative GND $\ldots-0.5 \mathrm{~V}$ to +3.6 V
DC Voltage Applied to Outputs
in High Z State ${ }^{1]} \ldots5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
DC Input Voltage ${ }^{[1]} \ldots \ldots \ldots \ldots . .$.

Output Current into Outputs (LOW) 20 mA
Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions	7C1388-20		7C1388-25		7C1388-35		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$	2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$		0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ &+0.3 \mathrm{~V} \end{aligned}$	2.0	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	2.0	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$		-0.3	0.8	-0.3	0.8	-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled	-2	+2	-2	+2	-2	+2	$\mu \mathrm{A}$
İSS	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-300		-300		-300	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{IOUT}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$		65		60		55	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current - TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\text {IH }} \text { or } \\ & \mathrm{CE}_{2} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\text {IH }} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$		25		25		25	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current - CMOS Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \\ & \text { or } \mathrm{CE} \mathrm{E}_{2} \leq 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}} \\ & -0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$		500		500		500	$\mu \mathrm{A}$

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$: Addresses	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	6	pF
$\mathrm{C}_{\text {IN }}$: Controls			8	pF
Cout	Output Capacitance		8	pF

Notes:

1. Minimum voltage is equal to -2.0 for pulse durations of less than 20 ns.
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms ${ }^{[5,6]}$

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } 0 \text { - } 0 \text { 1.40V }
$$

Switching Characteristics Over the Operating Range ${ }^{[2,5]}$

Parameter	Description	7-1388-20		7C1388-25		7C1388-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
trc	Read Cycle Time	20		25		35		ns
t_{AA}	Address to Data Valid		20		25		35	ns
toha	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\mathrm{CE}}_{1}$ LOW or $\mathrm{CE}_{2} \mathrm{HIGH}$ to Data Valid		20		25		35	ns
$t_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		8		9		10	ns
t ${ }_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[7]}$	0		0		0		ns
thzoe	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[6,7]}$		7		7		7	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}_{1}$ LOW or CE_{2} HIGH to Low $\mathrm{Z}^{[7]}$	3		3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	$\overline{\mathrm{CE}}_{1}$ HIGH or CE_{2} LOW to High $\mathrm{Z}^{[6,7]}$		8		8		8	ns
t_{PU}	$\overline{\mathrm{CE}}_{1}$ LOW or CE_{2} HIGH to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}_{1} \mathrm{HIGH}$ or CE_{2} LOW to Power-Down		20		25		35	ns
WRITE CYCLE ${ }^{[8,9]}$								
t_{WC}	Write Cycle Time	20		25		35		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\mathrm{CE}}_{1}$ LOW or $\mathrm{CE}_{2} \mathrm{HIGH}$ to Write End	12		15		20		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	12		15		20		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
tpWE	WE Pulse Width	12		15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10		11		12		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
thzWE	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6]}$		7		7		7	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low ${ }^{[7]}$	3		3		3		ns

Notes:

5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and load capacitance $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
6. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ of AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\text {LZCE }}, \mathrm{t}_{\text {HZOE }}$ is less than $\mathrm{t}_{\text {LZOE }}$, and $\mathrm{t}_{\mathrm{HZWE}}$ is less than $\mathrm{t}_{\text {LZWE }}$ for any given device.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}_{1}$ LOW, $\mathrm{CE}_{2} \mathrm{HIGH}$, and $\overline{\mathrm{WE}}$ LOW. All three signals must be asserted to initiate a write and any signal can terminate a write by being deas-
serted. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. The minimum write cycle time for write cycle \#3 (馬E controlled, $\overline{\mathrm{OE}}$ LOW) is the sum of $\mathrm{t}_{\mathrm{HZWE}}$ and t_{SD}.

Data Retention Characteristics Over the Operating Range

Parameter	Description	Conditions ${ }^{[10]}$	Min.	Max.	Unit
V_{DR}	V_{CC} for Data Retention		2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}, \\ & \mathrm{CE}_{1} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{CE}_{2} \leq 0.3 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}- \\ & 0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		50	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[4]}$	Chip Deselect to Data Retention Time		0		ns
$\mathrm{t}{ }^{[4]}$	Operation Recovery Time		t_{RC}		ns

Data Retention Waveform

Switching Waveforms

Read Cycle No. ${ }^{[11,12]}$

Read Cycle No. 2 (Chip Enable Controlled) ${ }^{[12, ~ 13,14] ~}$

Notes:

10. No input may exceed $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$.
11. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
12. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
13. Timing parameters are the same for all chip-enable signals $\left(\overline{\mathrm{CE}}_{1}\right.$ and CE_{2}). Only the timing for $\overline{\mathrm{CE}}_{1}$ is shown.
14. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[8,13,15,16]}$

Write Cycle No. 2 ($\overline{\mathbf{C E}}$ Controlled) ${ }^{[8,13,15,16]}$

Write Cycle No. 3 (产E Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[9,16]}$

Notes:
15. Data I / O is high impedance if $\overline{O E}=V_{I H}$.
16. If $\overline{C E}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Output	Mode	Power
	Deselect/Power-Down	Standby ($\mathrm{I}_{\text {SB }}$)
	Read	Active (I_{CC})
	Write	Active (I_{CC})
	Deselect, Output Disabled	Active (I_{CC})

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CY7C1388-20PC	P31	32-Lead (300-Mil) Molded DIP	Commercial
	CY7C1388-20VC	V32	32-Lead (300-Mil) Molded SOJ	
25	CY7C1388-25PC	P31	32-Lead (300-Mil) Molded DIP	Commercial
	CY7C1388-25VC	V32	32-Lead (300-Mil) Molded SOJ	
35	CY7C1388-35PC	P31	32-Lead (300-Mil) Molded DIP	Commercial
	CY7C1388-35VC	V32	32-Lead (300-Mil) Molded SOJ	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
READ CYCLE	
t_{RC}	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
WRITE CYCLE	
t_{WC}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$
t_{AW}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{SA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$
t_{SD}	$7,8,9,10,11$
t_{HD}	$7,8,9,10,11$

Document \#: 38-00221-A

3.3V 32K x 8 Static RAM

Features

- Single $3.3 \pm 0.3 \mathrm{~V}$ power supply
- High speed
$-15 \mathrm{~ns}$
- Low active power
- 255 mW
- Low standby power
- 90 mW
- 2.0 V data retention
$-100 \mu \mathrm{~W}$
- Ideal for low-voltage cache memory applications
- Easy memory expansion with $\overline{\mathbf{C E}}$ and $\overline{O E}$ features
- CMOS for optimum speed/power

- Automatic power-down when deselected
 Functional Description

The CY7C1399 is a high-performance 3.3 V CMOS static RAM organized as 32,768 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable ($\overline{\mathrm{CE}})$ and active LOW output enable $(\overline{\mathrm{OE}})$ and three-state drivers. The device has an automatic power-down feature, reducing the power consumption by more than 60% when deselected.
An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When CE and WE inputs are both LOW, data on the eight data input/ output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written
into the memory location addressed by the address present on the address pins (A_{0} through A_{14}). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ active LOW, while WE remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the eight data input/output pins.
The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and write enable (WE) is HIGH. The CY7C1399 is available in standard 300 -mil-wide DIP and SOJ packages. A die coat is used to ensure alpha immunity.

Logic Block Diagram

Pin Configuration

C1399-2

Selection Guide

	7C1399-15	7C1399-20	7C1399-25	7C1399-35
Maximum Access Time (ns)	15	20	25	35
Maximum Operating Current (mA)	$\mathbf{7 0}$	65	60	55
Maximum Standby Current (mA)	25	25	25	25

[^33]Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} to Relative $\mathrm{GND}^{[1]} .-0.5 \mathrm{~V}$ to +3.6 V
DC Voltage Applied to Outputs
in High Z State ${ }^{1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$
DC Input Voltage ${ }^{[1]}$ \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$

Output Current into Outputs (LOW)
$>2001 \mathrm{~V}$
Static Discharge Voltage
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$3.3 \pm 0.3 \mathrm{~V}$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions	7C1399-15		7C1399-20		7C1399-25		7C1399-35		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \end{aligned}$	2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA} \end{aligned}$		0.4		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.0	$\begin{aligned} & \mathrm{VCC} \\ & +0.3 \mathrm{~V} \end{aligned}$	2.0	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	2.0	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	2.0	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ +0.3 \mathrm{~V} \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[2]}$		-0.3	0.8	-0.3	0.8	-0.3	0.8	-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current		-1	+1	-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled	-5	$+5$	-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[3]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$		-300		-300		-300		-300	mA
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$		70		65		60		55	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down Current TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { or } \mathrm{CE}_{2} \leq \mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IN}} \geq \\ & \mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$		25		25		25		25	mA
ISB2	Automatic CE Power-Down Current TTL Inputs	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}}_{1} \geq \mathrm{V}_{\mathrm{CC}}, \\ & 0.3 \mathrm{~V} \text { or } \mathrm{CE}_{2} \leq 0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V}, \mathrm{f}=0 \end{aligned}$		500		500		500		500	$\mu \mathrm{A}$

Shaded area contains advanced information.
Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\mathrm{IN}}:$ Addresses	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$	6	pF
$\mathrm{C}_{\mathrm{IN}}:$ Controls		8	pF	
$\mathrm{C}_{\mathrm{OUT}}$			8	pF

Notes:

1. Minimum voltage is equal to -2.0 V for pulse durations of less than 20 ns .
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than one output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

ALL INPUT PULSES

C1399-3
Equivalent to:
THÉVENIN EQUIVALENT
500Ω 1.40 V

Switching Characteristics Over the Operating Range ${ }^{[2,5]}$

Parameter	Description	7C1399-15		7C1399-20		7C1399-25		7C1399-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
t_{RC}	Read Cycle Time	15	W	20		25		35		ns
t_{AA}	Address to Data Valid		15		20		25		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{\text { CE }}$ LOW to Data Valid		15		20		25		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$	W\%	7		8		9		10	ns
t ${ }_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low ${ }^{[7]}$	0		0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		7		7		7		7	ns
$\mathrm{t}_{\text {LZCE }}$	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[7]}$	3		3		3		3		ns
thzCE	$\overline{\text { CE HIGH }}$ to High $\mathrm{Z}^{[6,7]}$	\%	8		8		8		8	ns
t_{PU}	$\overline{\text { CE LOW }}$ to Power-Up	0		0		0		0		ns
tPD	$\overline{\mathrm{CE}}$ HIGH to Power-Down		15		20		25		35	ns
WRITE CYCLE ${ }^{[8,9]}$										
t_{WC}	Write Cycle Time	15		20		25		35		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE LOW }}$ to Write End	10	\%	12		15		20		ns
t_{AW}	Address Set-Up to Write End	10		12		15		20		ns
t_{HA}	Address Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0	4	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	10		12		15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	9	1	10		11		12		ns
t_{HD}	Data Hold from Write End	0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	WE LOW to High $\mathrm{Z}^{[6]}$	H	8		8		8		8	ns
t ${ }_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low ${ }^{[7]}$	3		3		3		3		ns

Shaded area contains advanced information.

Notes:

5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and capacitance $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
6. ${ }^{\mathrm{t}} \mathrm{HZOE}, \mathrm{t}_{\mathrm{HZCE}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCE}}$ is less than $\mathrm{t}_{\text {LZCE }}, \mathrm{t}_{\mathrm{HZOE}}$ is less than $\mathrm{t}_{\text {LZOE }}$, and $\mathrm{t}_{\text {HZWE }}$ is less than $\mathrm{t}_{\text {LZWE }}$ for any given device.
8. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CE}}$ LOW and WELOW. Both signals mūst be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-
up and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. The minimum write cycle time for write cycle \#3 ($\overline{\mathrm{WE}}$ controlled, $\overline{\mathrm{OE}}$ LOW) is the sum of $\mathrm{t}_{\mathrm{HZWE}}$ and t_{SD}.

Data Retention Characteristics (Over the Operating Range)

Parameter	Description	Conditions ${ }^{[10]}$	Min.	Max.	Unit
$\mathrm{V}_{\text {DR }}$	V_{CC} for Data Retention		2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{DR}}=2.0 \mathrm{~V}, \\ & \mathrm{CE} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		50	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[4]}$	Chip Deselect to Data Retention Time		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[4]}$	Operation Recovery Time		t_{RC}		ns

Data Retention Waveform

Switching Waveforms

Read Cycle No. 1 ${ }^{[11,12]}$

C1399-5

Notes:

10. No input may exceed $\mathrm{V}_{\mathrm{CC}}+0.3 \mathrm{~V}$.
11. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
12. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
13. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text { WE }}$ Controlled) ${ }^{[8,14,15]}$

Write Cycle No. 2 ($\overline{\text { CE C Controlled })}{ }^{[8,14,15]}$

Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) ${ }^{[9,15]}$

Notes:

14. Data I / O is high impedance if $\overline{O E}=V_{I H}$.
15. If $\overline{\mathrm{CE}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Tabl

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Output	Mode	Power
H	X	X	High Z	Deselect/Power-Down	Standby (I_{SB})
L	H	L	Data Out	Read	Active (I $\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	X	Data In	Write	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	H	H	High Z	Deselect, Output Disabled	Active ($\left.\mathrm{I}_{\mathrm{CC}}\right)$

Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
	CY7C1399-15PC	P21	Commercial
	CY7C1399-15VC	V21	
	CY7C1399-20PC	P21	Commercial
	CY7C1399-20VC	V21	
25	CY7C1399-25PC	P21	Commercial
	CY7C1399-25VC	V21	
35	CY7C1399-35PC	P21	Commercial
	CY7C1399-35VC	V21	

Shaded area contains advanced information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups	
READ CYCLE		
t_{RC}	$7,8,9,10,11$	
t_{AA}	$7,8,9,10,11$	
$\mathrm{t}_{\mathrm{OHA}}$	$7,8,9,10,11$	
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$	
t $_{\mathrm{DOE}}$	$7,8,9,10,11$	
WRITE CYCLE		
t_{WC}	$7,8,9,10,11$	
$\mathrm{t}_{\mathrm{SCE}}$	$7,8,9,10,11$	
t_{AW}	$7,8,9,10,11$	
t_{HA}	$7,8,9,10,11$	
t_{SA}	$7,8,9,10,11$	
$\mathrm{t}_{\mathrm{PWE}}$	$7,8,9,10,11$	
t_{SD}	$7,8,9,10,11$	
t_{HD}	$7,8,9,10,11$	

Document \#: 38-00222-B
INFO

SRAMs2
PROMs3
PLDs 4
FIFOs 5
LOGIC 6
DATACOM 7
MODULES 8
ECL 9
BUS 10
MILITARY 11
TOOLS 12
QUALITY 15
PACKAGES 14
PROMs (Programmable Read Only Memory)
Introduction to CMOS PROMs 3-1
Device Number Description
CY7C225 512×8 Registered PROM 3-3
CY7C225A 512×8 Registered PROM 3-10
CY7C235$1 \mathrm{~K} \times 8$ Registered PROM3-17
CY7C235A 1K x 8 Registered PROM 3-24
CY7C245 2K x 8 Reprogrammable Registered PROM 3-31
CY7C245A 2K x 8 Reprogrammable Registered PROM 3-32
CY7C251 16K x 8 Power-Switched and Reprogrammable PROM 3-40
CY7C254 16K x 8 Reprogrammable PROM 3-40
CY7C256
32K x 8 Power-Switched and Reprogrammable PROM 3-47
CY7C258 $2 \mathrm{~K} \times 16$ Reprogrammable State Machine PROM 3-52
CY7C259 2K x 16 Reprogrammable State Machine PROM 3-52
CY7C261 8K x 8 Power-Switched and Reprogrammable PROM 3-64
CY7C263 8K x 8 Reprogrammable PROM 3-64
CY7C264 8K x 8 Reprogrammable PROM 3-64
CY7C265 8K x 8 Registered PROM 3-74
CY7C266 8K x 8 Power-Switched and Reprogrammable PROM 3-82
CY7C269 8K x 8 Registered Diagnostic PROM 3-89
CY7C270 $16 \mathrm{~K} \times 16$ Reprogrammable Processor-Intelligent PROM 3-100
CY7C271 32K x 8 Power Switched and Reprogrammable PROM 3-111
CY7C274 32K x 8 Reprogrammable PROM 3-111
CY7C276 16K x 16 Reprogrammable PROM 3-120
CY7C277 32K x 8 Reprogrammable Registered PROM 3-126
CY7C279 32K x 8 Reprogrammable Registered PROM 3-133
CY7C281 $1 \mathrm{~K} \times 8$ PROM 3-140
CY7C282 $1 \mathrm{~K} \times 8$ PROM 3-140
CY7C281A $1 \mathrm{~K} \times 8$ PROM 3-146
CY7C282A $1 \mathrm{~K} \times 8$ PROM 3-146
CY7C285 64K x 8 Reprogrammable Fast Column Access PROM 3-152
CY7C286 64K x 8 Reprogrammable, Asynchronous/Registered PROM 3-157
CY7C287 64K x 8 Reprogrammable, Asynchronous/Registered PROM 3-157
CY7C291 2K x 8 Reprogrammable PROM 3-165
CY7C292 2K x 8 Reprogrammable PROM 3-165
CY7C291A 2K x 8 Reprogrammable PROM 3-166
CY7C292A 2K x 8 Reprogrammable PROM 3-166
CY7C293A 2K x 8 Reprogrammable PROM 3-166
PROM Programming Information 3-175

Product Line Overview

The Cypress CMOS family of high-performance byte-wide and word-wide (x16) PROMs spans 4 -kilobit to 512-kilobit densities and three functional configurations. Products are typically available as EPROMs (Erasable, Programmable ROMs) in 300- and 600 -mil windowed cerDIP packages, leadless chip carriers (LCCs), leaded chip carriers (CLCC, PLCC) and flatpacks. They are also available as PROMs in similarly configured plastic and opaque hermetic packages. With the exception of the 4K PROMs (registered only), all densities are available in both registered and non-registered versions. The registered devices operate in either synchronous or asynchronous modes and may have an INITIALIZATION feature to preload the pipeline register, which allows the pipeline register to be loaded or examined via a serial path.
Cypress PROMs perform at or above the speed level of their bipolar counterparts with the advantage of lower power consumption inherent in CMOS technology. They operate with 10% power supply tolerances and can withstand 2000 volts of electrostatic discharge.

Technology Introduction

Cypress PROMs are executed in N-well CMOS EPROM processes that provide basic gate delays of 235 picoseconds for a fanout of one with a power consumption of 45 femto-joules. These processes provide the basis for the development of Cypress LSI products, which outperform the fastest bipolar equivalents.
Historically, CMOS static RAMs have challenged bipolar RAMs for speed, while CMOS PROMs have been slower than the fused bipolar devices because (1) the typical single transistor CMOS cell is slow compared to any "fuse," and (2) CMOS technologies were optimized for programmability and density at the expense of speed. Innovative Cypress EPROM technology overcomes both of these historical limitations. A substrate bias generator is employed in an EPROM technology to improve performance and raise latch-up immunity to greater than 200 mA . The result is a CMOS EPROM technology that outperforms bipolar fuse technology for both density and speed, particularly at higher densities. Limitations of devices implemented in the bipolar fuse technology such as programming yield, power dissipation and higher-density performance are eliminated or greatly reduced using Cypress CMOS EPROM technology.

Programming

Differential Memory Cells

Cypress PROMs are programmed a byte at a time by applying $V_{P P}$ ($\sim 12 \mathrm{~V}$) to the programming pin and the desired logic levels to input pins. Both logic 1 and logic 0 are programmed into the differential cell. A bit is programmed by applying V_{PP} on the control gate and 9 volts on the drain of the floating-gate write transistor. This causes hot electrons from the channel to be injected onto the floating gate, thereby raising the threshold voltage. Because the read transistor shares a common floating gate with the program transistor, the threshold of the read transistor is raised from about 1 volt to greater than 5 volts, resulting in a transistor that is turned "OFF" when selected in a read mode of operation. Since both sides of the differential cell are at equal potential before programming, a threshold shift of 100 mV is the corrected logic state. Because an unprogrammed cell has neither a 1 nor a 0 in it before programming, a special BLANK CHECK mode of operation is implemented. In this mode the output of each half of the cell is compared
against a fixed reference, which allows distinction of a programmed or unprogrammed cell. A MARGIN mode is also provided to monitor the thresholds of the individual bits allowing the monitoring of the quality of programming during the manufacturing operation.

Single-Ended Memory Cells

The programming mechanism of the EPROM transistor in a single-ended memory cell is the same as its counterpart in a double-ended memory cell. The difference is that only 1 s are programmed in a single-ended cell. A 1 applied to the I/O pin during programming causes an erased EPROM transistor to be programmed, while a 0 allows the EPROM transistor to remain unprogrammed.

Erasability

This is available for devices in windowed packages, both registered and non-registered. Wavelengths of light less than 4000 Angstroms begin to erase Cypress PROMs. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV intensity multiplied by exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{mV} / \mathrm{cm}^{2}$ power rating, the exposure time would be approximately 35 minutes.
The PROM needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high intensity light for an extended period of time. The recommended maximum dosage is $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$.
Some devices are sensitive to photo-electric effects during programming. Cypress recommends covering the windows of reprogrammable devices during programming.

Reliability

The CMOS EPROM approach to PROMs has some significant benefits to the user in the area of programming and functional yield. Since a cell may be programmed an erased multiple times, CMOS PROMs from Cypress can be tested 100% for programmability during the manufacturing process. Because each CMOS PROM contains a PHANTOM array, both the functionality and performance of the devices may be tested after they are packaged, thus assuring the user that not only will every cell program, but that the product performs to the specification.

General Testing Information

Incoming test procedures on these devices should be carefully planned, taking into account the high-performance and output drive capabilities of the parts. The following notes may be useful:

- Ensure that adequate decoupling capacitance is employed across the device V_{CC} and ground terminals. Multiple capacitors are recommended, including a $0.1 \mu \mathrm{~F}$ or larger capacitor and a $0.01 \mu \mathrm{~F}$ or smaller capacitor placed as close to the device terminals as possible. Inadequate decoupling may result in large variations of power supply voltage, creating erroneous function or transient performance failures.
- All device test loads should be located within $2^{\prime \prime}$ of device outputs.
- Do not leave any inputs disconnected (floating) during any tests.
- Do not attempt to perform threshold tests under AC conditions. Large amplitude, fast ground current transients normally occur as the device outputs discharge the load capaci-
tances. These transients flowing through the parasitic inductance between the device ground pin and the test system ground can create significant reductions in observable input noise immunity.
- V_{OH} and V_{OL} are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

Switching Tests

AC Test Loads and Waveforms

(a) Normal Load
 SCOPE
(b) High Z Load

- Capacitance is tested initially and after any design or process changes that may affect these parameters.
- The CMOS process does not provide a clamp diode. However, the Cypress PROM Products are insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50%).

INTRO-1
INTRO-2

Equivalent to: THÉVENINEQUIVALENT

Load circuit (a) is used to test all switching characteristics except High Z parameters. Load circuit (b) is used to test High Z parameters. R1 is a resistor connected from the output to V_{CC} and R 2 is connected between the output and ground for testing purposes.

Values of R1 and R2 are given in the individual datasheet for each product. Speed is measured at 1.5 V reference levels except for delay to output High Z.

Document \#: 38-00234

Features

- CMOS for optimum speed/power
- High speed
- $\mathbf{2 5}$ ns max set-up
- $\mathbf{1 2}$ ns clock to output
- Low power
- 495 mW (commercial)
- 660 mW (military)
- Synchronous and asynchronous output enables
- On-chip edge-triggered registers
- Buffered common PRESET and CLEAR inputs
- EPROM technology, 100\% programmable
- Slim 300-mil, 24-pin plastic or hermetic DIP, 28-pin LCC, or 28-pin PLCC
- $\mathbf{5 V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 1500 V static discharge

Functional Description

The CY7C225 is a high-performance 512 word by 8 bit electrically programmable read only memory packaged in a slim 300 -mil plastic or hermetic DIP, 28-pin leadless chip carrier, and 28 -pin PLCC. The memory cells utilize proven EPROM
floating gate technology and byte-wide intelligent programming algorithms.
The CY7C225 replaces bipolar devices and offers the advantages of lower power, superior performance, and high programming yield. The EPROM cell requires only 13.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet AC specification limits.

Logic Block Diagram

Pin Configurations

	DIP Top View	
$\mathrm{A}_{7}{ }^{1}$	24	V_{Cc}
$\mathrm{A}_{6} \square^{2}$	23	A_{8}
$\mathrm{A}_{5} \square^{3}$	22	$\square \mathrm{PS}$
$\mathrm{A}_{4} \square^{4}$	21]
$\mathrm{A}_{3}{ }^{5}$	20	CLR
$\mathrm{A}_{2}{ }^{6}$	19	E_{S}
$\mathrm{A}_{1} \mathrm{C}_{7}$	18	CP
$\mathrm{A}_{0} 8$	17	O_{7}
$\mathrm{O}_{0} \mathrm{H}_{9}$	16	O_{6}
$\mathrm{O}_{1}{ }^{10}$	15	O_{5}
$\mathrm{O}_{2} 11$	14	O_{4}
GND 12	13	O_{3}

Selection Guide

		7C225-25	7C225-30	7C225-35	7C225-40
Maximum Set-Up Time (ns)	25	30	35	40	
Maximum Clock to Output (ns)	12	15	20	25	
Maximum Operating Current (mA)	Commercial	90	90		90
	Military		120	120	120

CY7C225

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
Static Discharge Voltage . $>1500 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC Program Voltage (Pins 7, 18, 20) . 14.0 V
Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	Test Conditions		Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}_{.,} \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			0.4	V
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs		2.0		V
V_{IL}	Input LOW Level	Guaranteed Input LogicalLOW Voltage forAll Inputs			0.8	V
IIX	Input Leakage Current	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Clamp Diode Voltage	Note 4				
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled ${ }^{[5]}$		-40	+40	$\mu \mathrm{A}$
IOS	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}^{[6]}$		-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\text { Max. } .[7] \end{aligned}$	Commercial		90	mA
			Military		120	
$\mathrm{V}_{\text {PP }}$	Programming Supply Voltage			13	14	V
$\mathrm{I}_{\text {PP }}$	Programming Supply Current				50	mA
$\mathrm{V}_{\mathrm{IHP}}$	Input HIGH Programming Voltage			3.0		V
$\mathrm{V}_{\text {ILP }}$	Input LOW Programming Voltage				0.4	V

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
Cout	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		10	pF

Notes:

1. Contact a Cypress representative for industrial temperature range specifications.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. See the "Introduction to CMOS PROMs" section of the Cypress Data Book for general information on testing.
5. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
6. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
7. Due to the design of the differential cell in this device, I_{CC} can only be accurately measured on a programmed array.

AC Test Loads and Waveforms ${ }^{[4]}$

(a) Normal Load
(b) High Z Load

Equivalent to: THE'VENIN EQUIVALENT

C225-6

Operating Modes

The CY7C225 incorporates a D-type, master-slave register on chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with synchronous ($\overline{\mathrm{E}}_{\mathrm{S}}$) and asynchronous ($\overline{\mathrm{E}}$) output enables and CLEAR and PRESET inputs.
Upon power-up, the synchronous enable ($\overline{\mathrm{E}}_{S}$) flip-flop will be in the set condition causing the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$ to be in the OFF or high-impedance state. Data is read by applying the memory location to the address inputs $\left(\mathrm{A}_{0}-\mathrm{A}_{8}\right)$ and a logic LOW to the enable ($\overline{\mathrm{E}}_{S}$) input. The stored data is accessed and loaded into the master flip-flops of the dataregisterduring the addressset-uptime. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$ provided the asynchronous enable ($\overline{\mathbf{E}}$) is also LOW.
The outputs may be disabled at any time by switching the asynchronous enable $(\overline{\mathrm{E}})$ to a logic HIGH , and may be returned to the active state by switching the enable to a logic LOW.
Regardless of the condition of $\overline{\mathrm{E}}$, the outputs will go to the OFF or high-impedance state upon the next positive clock edge after the synchronous enable ($\overline{\mathrm{E}}_{\mathrm{S}}$) input is switched to a HIGH level. If the synchronous enable pin is switched to alogicLOW, the subsequent positive clock edge will return the output to the active state if $\overline{\mathrm{E}}$ is LOW. Following a positive clock edge, the address and synchro-
nous enable inputs are free to change since no change in the output will occur until the next LOW-to-HIGH transition of the clock. This unique feature allows the CY7C225 decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.
System timingissimplified in that the on-chipedge-triggered register allows the PROM clock to be derived directly from the system clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.
The CY7C225 has buffered asynchronous $\overline{\text { CLEAR }}$ and $\overline{\text { PRESET }}$ inputs. Applying a LOW to the PRESET input causes an immediate load of all ones into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). Applying a LOW to the CLEAR input, resets the flip-flops to all zeros. The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable ($\overline{\mathrm{E}}$) LOW.
When power is applied, the (internal) synchronous enable flip-flop will be in a state such that the outputs will be in the high-impedance state. In order to enable the outputs, a clock must occur and the \bar{E}_{S} input pin must be LOW at least a set-up time prior to the clock LOW-to-HIGH transition. The \bar{E} input may then be used to enable the outputs.

Switching Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	7C225-25		7C225-30		7C225-35		7C225-40		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Clock HIGH	25		30		35		40		ns
t_{HA}	Address Hold from Clock HIGH	0		0		0		0		ns
t_{CO}	Clock HIGH to Valid Output		12		15		20		25	ns
$\mathrm{t}_{\text {PWC }}$	Clock Pulse Width	10		15		20		20		ns
${ }^{\text {t }}$ SES	$\overline{\mathrm{E}}_{\text {S }}$ Setup to Clock HIGH	10		10		10		10		ns
$\mathrm{t}_{\text {HES }}$	$\overline{\mathrm{E}}_{\text {S }}$ Hold from Clock HIGH	0		5		5		5		ns
$\mathrm{t}_{\mathrm{DB}} \mathrm{t}_{\mathrm{DC}}$	Delay from $\overline{\text { PRESET }}$ or $\overline{\text { CLEAR }}$ to Valid Output		20		20		20		20	ns
$\mathrm{t}_{\mathrm{RB}} \mathrm{t}_{\mathrm{RC}}$	PRESET or CLEAR Recovery to Clock HIGH	15		20		20		20		ns
$\mathrm{t}_{\text {PWB }} \mathrm{t}_{\text {PWC }}$	PRESET or CLEAR Pulse Width	15		20		20		20		ns
$\mathrm{t}_{\mathrm{COS}}$	Valid Output from Clock HIGH ${ }^{[8]}$		20		20		25		30	ns
$\mathrm{t}_{\mathrm{HZC}}$	Inactive Output from Clock HIGH ${ }^{[8]}$		20		20		25		30	ns
$\mathrm{t}_{\text {DOE }}$	Valid Output from $\overline{\mathrm{E}}$ LOW		20		20		25		30	ns
$\mathrm{t}_{\text {HZE }}$	Inactive Output from $\overline{\mathrm{E}} \mathrm{HIGH}$		20		20		25		30	ns

Switching Waveforms ${ }^{[4]}$

Note:
8. Applies only when the synchronous $\left(\overline{\mathrm{E}}_{S}\right)$ function is used.

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including alisting of software packages, please
see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. Mode Selection

Mode		Pin Function ${ }^{[9]}$						
	Read or Output Disable	$\mathrm{A}_{8}-\mathrm{A}_{0}$	CP	$\bar{E}_{\text {S }}$	$\overline{\text { CLR }}$	$\overline{\mathrm{E}}$	$\overline{\text { PS }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	$\mathrm{A}_{8}-\mathrm{A}_{0}$	$\overline{\text { PGM }}$	$\overline{\overline{\mathbf{V F Y}}}$	$\mathbf{V}_{\text {PP }}$	$\overline{\text { E }}$	$\overline{\text { PS }}$	$\mathrm{D}_{7}-\mathrm{D}_{\mathbf{0}}$
Read		$\mathrm{A}_{8}-\mathrm{A}_{0}$	X	$\mathrm{V}_{\text {IL }}$	V_{IH}	$\mathrm{V}_{\text {IL }}$	V_{IH}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable		$\mathrm{A}_{8}-\mathrm{A}_{0}$	X	V_{IH}	V_{IH}	X	V_{IH}	High Z
Output Disable		$\mathrm{A}_{8}-\mathrm{A}_{0}$	X	X	V_{IH}	V_{IH}	V_{IH}	High Z
Clear		$\mathrm{A}_{8}-\mathrm{A}_{0}$	X	V_{IL}	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	Zeros
Preset		$\mathrm{A}_{8}-\mathrm{A}_{0}$	X	$\mathrm{V}_{\text {IL }}$	V_{IH}	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	Ones
Program		$\mathrm{A}_{8}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		$\mathrm{A}_{8}-\mathrm{A}_{0}$	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{A}_{8}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	High Z
Intelligent Program		$\mathrm{A}_{8}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Blank Check Ones		$\mathrm{A}_{8}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\mathrm{IHP}}$	Ones
Blank Check Zeros		$\mathrm{A}_{8}-\mathrm{A}_{0}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	Zeros

Note:
9. $\mathrm{X}=$ "don't care" but not to exceed $\mathrm{V}_{\mathrm{CC}} \pm 5 \%$.

DIP
Top View

LCC/PLCC
Top View

Figure 1. Programming Pinouts

Typical DC and AC Characteristics

Ordering Information ${ }^{[10]}$

Speed (ns)		OrderingCode	Package Name	Package Type	OperatingRange
$t_{\text {SA }}$	t_{CO}				
25	12	CY7C225-25DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C225-25JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C225-25PC	P13	24-Lead (300-Mil) Molded DIP	
30	15	CY7C225-30DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C225-30JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C225-30PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C225-30DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C225-30LMB	L64	28-Square Leadless Chip Carrier	
35	20	CY7C225-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C225-35LMB	L64	28-Square Leadless Chip Carrier	
40	25	CY7C225-40DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C225-40JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C225-40PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C225-40DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C225-40LMB	L64	28-Square Leadless Chip Carrier	

Note:
10. Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

SMD Cross Reference

SMD Number	Suffix	Cypress Number
$5962-88518$	01 LX	CY7C225-30DMB
$5962-88518$	013 X	CY7C225-30LMB
$5962-88518$	02 LX	CY7C225-35DMB
$5962-88518$	023 X	CY7C225-35LMB
$5962-88518$	03 LX	CY7C225-40DMB
$5962-88518$	033 X	CY7C225-40LMB

Document \#: 38-00002-E

Switching Characteristics

Parameter	Subgroups
t_{SA}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{DP}	$7,8,9,10,11$
t_{RP}	$7,8,9,10,11$

Features

- CMOS for optimum speed/power
- High speed
-18 ns max set-up
- $\mathbf{1 2}$ ns clock to output
- Low power
-495 mW (commercial)
- 660 mW (military)
- Synchronous and asynchronous output enables
- On-chip edge-triggered registers
- Buffered common PRESET and CLEAR inputs
- EPROM technology, $\mathbf{1 0 0 \%}$ programmable
- Slim 300-mil, 24-pin plastic or hermetic DIP, 28-pin LCC, or 28-pin PLCC
- $\mathbf{5 V} \pm \mathbf{1 0} \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 2001V static discharge

Functional Description

The CY7C225A is a high-performance 512 word by 8 bit electrically programmable read only memory packaged in a slim 300 -mil plastic or hermetic DIP, 28-pin leadless chip carrier, and 28 -pin PLCC. The memory cells utilize proven EPROM
floating gate technology and byte-wide intelligent programming algorithms.

The CY7C225A replaces bipolar devices and offers the advantages of lower power, superior performance, and high programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet AC specification limits.

Logic Block Diagram

Pin Configurations

Selection Guide

	7C225A-18	7C225A-25	7C225A-30	7C225A-35	7C225A-40	
Maximum Set-Up Time (ns)	18	25	30	35	40	
Maximum Clock to Output (ns)	12	12	15	20	25	
Maximum Operating Current (mA)	Commercial	90	90	90		90
	Military		120	120	$\mathbf{1 2 0}$	120

Static Discharge Voltage . > $\mathbf{~} 2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V
DC Input Voltage . -3.0 V to +7.0 V
DC Program Voltage (Pins 7, 18, 20) 13.0V
Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	Test Conditions		Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed InputLogical LOW Voltage for All Inputs			0.8	V
IIX	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
$\mathrm{V}_{\text {CD }}$	Input Clamp Diode Voltage	Note 4				
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$, Output Disabled ${ }^{[5]}$		-10	+10	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}^{[6]}$		-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} . \end{aligned}$	Commercial		90	mA
			Military		120	
V_{PP}	Programming Supply Voltage			12	13	V
I_{PP}	Programming Supply Current				50	mA
$\mathrm{V}_{\text {IHP }}$	Input HIGH Programming Voltage			3.0		V
$\mathrm{V}_{\text {ILP }}$	Input LOW Programming Voltage				0.4	V

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
CouT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. Contact a Cypress representative for industrial temperature range specifications.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. See the "Introduction to CMOSPROMs" section of the Cypress Data Book for general information on testing.
5. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
6. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

AC Test Loads and Waveforms ${ }^{[4]}$

(a) Normal Load

(b) High Z Load

Equivalent to: THE'VENIN EQUIVALENT

C225A-6

Operating Modes

The CY7C225A incorporates a D-type, master-slave register on chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with synchronous ($\overline{\mathrm{E}}_{S}$) and asynchronous ($\overline{\mathrm{E}}$) output enables and CLEAR and PRESET inputs.
Upon power-up, the synchronous enable ($\overline{\mathrm{E}}_{S}$) flip-flop will be in the set condition causing the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$ to be in the OFF or high-impedance state. Data is read by applying the memory location to the address inputs $\left(\mathrm{A}_{0}-\mathrm{A}_{8}\right)$ and a logic LOW to the enable (\bar{E}_{S}) input. The stored data is accessed and loaded into the master flip-flops of the data register during the address set-up time. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs ($\mathrm{O}_{0}-$ O_{7}) provided the asynchronous enable $(\overline{\mathrm{E}})$ is also LOW.
The outputs may be disabled at any time by switching the asynchronous enable $(\overline{\mathrm{E}})$ to a logic HIGH , and may be returned to the active state by switching the enable to a logic LOW.
Regardless of the condition of $\overline{\mathrm{E}}$, the outputs will go to the OFF or high-impedance state upon the next positive clock edge after the synchronous enable ($\overline{\mathrm{E}}_{S}$) input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the subsequent positive clock edge will return the output to the active state if \bar{E} is LOW. Following a positive clock edge, the address and synchro-
nous enable inputs are free to change since no change in the output will occur until the next LOW-to-HIGH transition of the clock. This unique feature allows the CY7C225A decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.
System timing issimplified in that the on-chipedge-triggered register allows the PROM clock to be derived directly from the system clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.
The CY7C225A has buffered asynchronous $\overline{\text { CLEAR }}$ and $\overline{\text { PRE- }}$ SET inputs. Applying a LOW to the PRESET input causes an immediate load of all ones into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). Applying a LOW to the CLEAR input, resets the flip-flops to all zeros. The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable ($\overline{\mathrm{E}}$) LOW.
When power is applied, the (internal) synchronous enable flip-flop will be in a state such that the outputswill be in the high-impedance state. In order to enable the outputs, a clock must occur and the $\overline{\mathrm{E}}_{\mathbf{S}}$ input pin must be LOW at least a set-up time prior to the clock LOW-to-HIGH transition. The Einput may then be used to enable the outputs.

Switching Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	7C225A-18		7C225A-25		7C225A-30		7C225A-35		7C225A-40		Unit
		Min.	Max.									
${ }^{\text {S }}$ A	Address Set-Up to Clock HIGH	18		25		30		35		40		ns
t_{HA}	Address Hold from Clock HIGH	0		0		0		0		0		ns
${ }^{\text {t }} \mathrm{CO}$	Clock HIGH to Valid Output		12		12		15		20		25	ns
tpWC	Clock Pulse Width	10		10		15		20		20		ns
$\mathrm{t}_{\text {SES }}$	\bar{E}_{S} Set-Up to Clock HIGH	10		10		10		10		10		ns
thes	$\overline{\mathrm{E}}_{\mathrm{S}}$ Hold from Clock HIGH	0		0		5		5		5		ns
$\mathrm{t}_{\mathrm{DP}}, \mathrm{t}_{\mathrm{DC}}$	Delayfrom $\overline{\text { PRESET }}$ or $\overline{\text { CLEAR }}$ to Valid Output		20		20		20		20		20	ns
$\mathrm{t}_{\mathrm{RP}}, \mathrm{t}_{\mathrm{RC}}$	$\overline{\text { PRESET }}$ or CLEAR Recovery to Clock HIGH	15		15		20		20		20		ns
tPWP, tPWC	$\overline{\text { PRESET }}$ or CLEAR Pulse Width	15		15		20		20		20		ns
$\mathrm{t}^{\text {COS }}$	Valid Output from Clock HIGH ${ }^{[7]}$		15		20		20		25		30	ns
${ }^{\text {t }} \mathrm{HZC}$	Inactive Output from Clock		15		20		20		25		30	ns
tooe	Valid Output from E LOW		15		20		20		25		30	ns
$\mathrm{t}_{\text {HZE }}$	Inactive Output from $\overline{\mathrm{E}} \mathrm{HIGH}$		15		20		20		25		30	ns

Switching Waveforms ${ }^{[4]}$

Note:
7. Applies only when the synchronous $\left(\overline{\mathrm{E}}_{\mathrm{S}}\right)$ function is used.

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please
see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. Mode Selection

Mode		Pin Function ${ }^{\text {[8] }}$						
	Read or Output Disable	$\mathrm{A}_{8}-\mathrm{A}_{0}$	CP	$\overline{\mathbf{E}}_{\mathbf{S}}$	$\overline{\text { CLR }}$	$\overline{\mathbf{E}}$	$\overline{\text { PS }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	$\mathbf{A}_{8}-\mathbf{A}_{0}$	$\overline{\text { PGM }}$	$\overline{\text { VFY }}$	$\mathbf{V P P}$	$\overline{\mathbf{E}}$	$\overline{\text { PS }}$	$\mathrm{D}_{7}-\mathrm{D}_{\mathbf{0}}$
Read		$\mathrm{A}_{8}-\mathrm{A}_{0}$	X	V_{IL}	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable		$\mathrm{A}_{8}-\mathrm{A}_{0}$	X	V_{IH}	$\mathrm{V}_{\text {IH }}$	X	V_{IH}	High Z
Output Disable		$\mathrm{A}_{8}-\mathrm{A}_{0}$	X	X	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IH }}$	High Z
Clear		$\mathrm{A}_{8}-\mathrm{A}_{0}$	X	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	V IL	$\mathrm{V}_{\text {IH }}$	Zeros
Preset		$\mathrm{A}_{8}-\mathrm{A}_{0}$	X	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	Ones
Program		$\mathrm{A}_{8}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		$\mathrm{A}_{8}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{A}_{8}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	High Z
Intelligent Program		$\mathrm{A}_{8}-\mathrm{A}_{0}$	VILP	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Blank Check		$\mathrm{A}_{8}-\mathrm{A}_{0}$	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	Zeros

Note:
8. $\mathrm{X}=$ "don't care" but not to exceed $\mathrm{V}_{\mathrm{CC}} \pm 5 \%$.

C225A-8

Figure 1. Programming Pinouts

Typical DC and AC Characteristics

C225A-10

Ordering Information ${ }^{[9]}$

Speed (ns)		Ordering Code	Package Type	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
$\mathbf{t}_{\text {SA }}$	t_{CO}				
18	12	CY7C225A-18DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C225A-18JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C225A-18PC	P13	24-Lead (300-Mil) Molded DIP	
25	12	CY7C225A-25DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C225A-25JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C225A-25PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C225A-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C225A-25LMB	L64	28-Square Leadless Chip Carrier	
30	15	CY7C225A-30DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C225A-30JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C225A-30PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C225A-30DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C225A-30LMB	L64	28-Square Leadless Chip Carrier	
35	20	CY7C225A-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C225A-35LMB	L64	28-Square Leadless Chip Carrier	
40	25	CY7C225A-40DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C225A-40JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C225A-40PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C225A-40DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C225A-40LMB	L64	28-Square Leadless Chip Carrier	

Note:
9. Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

SMD Cross Reference

SMD Number	Suffix	Cypress Number
$5962-88518$	01 LX	CY7C225A-30DMB
$5962-88518$	013 X	CY7C225A-30LMB
$5962-88518$	02 LX	CY7C225A-35DMB
$5962-88518$	023X	CY7C225A -35 LMB
$5962-88518$	03 LX	CY7C225A-40DMB
$5962-88518$	033X	CY7C225A-40LMB

Document \#: 38-00228-A

Switching Characteristics

Parameter	Subgroups
t_{SA}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{DP}	$7,8,9,10,11$
t_{RP}	$7,8,9,10,11$

Features

- CMOS for optimum speed/power
- High speed
- $\mathbf{2 5}$ ns max set-up
- 12 ns clock to output
- Low power
- 495 mW (commercial)
- 660 mW (military)
- Synchronous and asynchronous output enables
- On-chip edge-triggered registers
- Programmable asynchronous registers (INIT)
- EPROM technology, 100\% programmable
- Slim, 300-mil, 24-pin plastic or hermetic DIP or 28-pin LCC and PLCC
- $\mathbf{5 V} \pm \mathbf{1 0} \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 1500 V static discharge

Functional Description

The CY7C235 is a high-performance 1024 word by 8 bit electrically programmable read only memory packaged in a slim 300 -mil plastic or hermetic DIP, 28-pin leadless chip carrier, or 28 -pin plastic leaded chip carrier. The memory cells uti-
lize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.

The CY7C235 replaces bipolar devices pin for pin and offers the advantages of lower power, superior performance, and high programming yield. The EPROM cell requires only 13.5 V for the supervoltage, and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance toguarantee that the product will meet AC specification limits after customer programming.

Logic Block Diagram

Pin Configurations

C235-2

Selection Guide

		7C235-25	7C235-30	7C235-40
Maximum Set-Up Time (ns)	25	30	40	
Maximum Clock to Output (ns)	12	15	20	
Maximum Operating Current (mA)	Commercial	90	90	90
	Military		120	120

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12 for DIP) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
DC Program Voltage (Pins 7, 18, 20 for DIP) 14.0V

Static Discharge Voltage . > $>1500 \mathrm{~V}$ (per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs ${ }^{[4]}$		2.0		V
V_{IL}	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{[4]}$			0.8	V
I_{IX}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Clamp Diode Voltage	Note 5				
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled ${ }^{[5]}$		-40	+40	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}^{[6]}$		-20	-90	mA
I_{CC}	Power Supply Current ${ }^{[7]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		90	mA
			Military		120	
V_{PP}	Programming Supply Voltage			13	14	V
$\mathrm{I}_{\text {PP }}$	Programming Supply Current				50	mA
$\mathrm{V}_{\text {IHP }}$	Input HIGH Programming Voltage			3.0		V
$\mathrm{V}_{\text {ILP }}$	Input LOW Programming Voltage				0.4	V

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF
COUT			10	pF

Notes:

1. Contact a Cypress representative for industrial temperature range specifications.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
5. See Introduction to CMOS PROMs in this Data Book for general information on testing.
6. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
7. Due to the design of the differential cell in this device, I_{CC} can only be accurately measured on a programmed array.

AC Test Loads and Waveforms ${ }^{[5]}$

(b) High Z Load

Equivalent to: THÉVENIN EQUIVALENT

Operating Modes

The CY7C235 incorporates a D-type, master-slave register on chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with synchronous ($\overline{\mathrm{E}}_{\mathrm{S}}$) and asynchronous ($\overline{\mathrm{E}}$) output enables and asynchronous initialization ((INIT).
Upon power-up, the synchronous enable ($\overline{\mathrm{E}}_{S}$) flip-flop will be in the set condition causing the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$ to be in the OFF or high-impedance state. Data is read by applying the memory location to the address input ($\mathrm{A}_{0}-\mathrm{A}_{9}$) and a logic LOW to the enable ($\overline{\mathrm{E}}_{\mathrm{S}}$) input. The stored data is accessed and loaded into the master flip-flops of the data register during the address set-uptime. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$, provided the asynchronous enable ($\overline{\mathrm{E}}$) is also LOW.
The outputs may be disabled at any time by switching the asynchronous enable $(\overline{\mathrm{E}})$ to a logic HIGH , and may be returned to the active state by switching the enable to a logic LOW.
Regardless of the condition of \bar{E}, the outputs will go to the OFF or high-impedance state upon the next positive clock edge after the synchronous enable ($\overline{\mathrm{E}}_{S}$) input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the subsequent positive clock edge will return the output to the active state if $\overline{\mathrm{E}}$ is LOW. Following a positive clock edge, the address and synchronous enable inputs are free to change since no change in the output will occur until the next LOW-to-HIGH transition of the clock. This unique feature allows the CY7C235 decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.
System timing is simplified in that the on-chip edge-triggered register allows the PROM clock to be derived directly from the system
clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.
The CY7C235 has an asynchronous initialize input ($\overline{\mathrm{INIT}}$). The initialize function is useful during power-up and time-out sequences and can facilitate implementation of other sophisticated functions such as a built-in "jump start" address. When activated the initialize control input causes the contents of a user programmed 1025th 8-bit word to be loaded into the on-chip register. Each bit is programmable and the initialize function can be used to load any desired combination of 1 s and 0 s into the register. In the unprogrammed state, activating INIT will generate a register CLEAR (all outputs LOW). If all the bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).
Applying a LOW to the INIT input causes an immediate load of the programmed initialize word into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable ($\overline{\mathrm{E}}$) LOW.
When power is applied the (internal) synchronous enable flip-flop will be in a state such that the outputs will be in the high-impedance state. In order to enable the outputs, a clock must occur and the \bar{E}_{S} input pin must be LOW at least a set-up time prior to the clock LOW-to-HIGH transition. The Einput maythen be used to enable the outputs.
When the asynchronous initialize input, $\overline{\text { INIT, }}$ is LOW, the data in the initialize byte will be asynchronously loaded into the output register. It will not, however, appear on the output pins until they are enabled, as described in the preceding paragraph.

Switching Characteristics Over Operating Range ${ }^{[3,5]}$

Parameter	Description	7C235-25		7C235-30		7C235-40		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Clock HIGH	25		30		40		ns
t_{HA}	Address Hold from Clock HIGH	0		0		0		ns
t_{CO}	Clock HIGH to Valid Output		12		15		20	ns
$\mathrm{t}_{\text {PWC }}$	Clock Pulse Width	12		15		20		ns
$\mathrm{t}_{\text {SES }}$	$\bar{E}_{\text {S }}$ Set-Up to Clock HIGH	10		10		15		ns
$\mathrm{t}_{\text {HES }}$	$\overline{\mathrm{E}}_{\text {S }}$ Hold from Clock HIGH	5		5		5		ns
t_{DI}	Delay from INIT to Valid Output		25		25		35	ns
t_{RI}	INIT Recovery to Clock HIGH	20		20		20		ns
tpwi	$\overline{\text { INIT Pulse Width }}$	20		20		25		ns
$\mathrm{t}_{\cos }$	Inactive to Valid Output from Clock HIGH ${ }^{[8]}$		20		20		25	ns
$\mathrm{t}_{\mathrm{HZC}}$	Inactive Output from Clock HIGH ${ }^{[8]}$		20		20		25	ns
$\mathrm{t}_{\text {DOE }}$	Valid Output from $\overline{\mathbf{E}}$ LOW		20		20		25	ns
$\mathrm{t}_{\text {HZE }}$	Inactive Output from $\overline{\mathrm{E}} \mathrm{HIGH}$		20		20		25	ns

Note:
8. Applies only when the synchronous ($\overline{\mathrm{E}}_{S}$) function is used.

Switching Waveforms ${ }^{[5]}$

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please
see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. Mode Selection

Mode		Pin Function ${ }^{[9]}$							
	Read or Output Disable	$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	CP	$\overline{\mathbf{E}}_{S}$	$\overline{\mathbf{E}}$	$\overline{\text { INIT }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	$\mathbf{A}_{\mathbf{0}}, \mathrm{A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	$\overline{\text { PGM }}$	$\overline{\mathbf{V F Y}}$	$\overline{\mathbf{E}}$	$V_{P P}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Read		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	X	$\mathrm{V}_{\text {IL }}$	V_{IL}	V_{IH}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	X	V_{IH}	X	V_{IH}	High Z
Output Disable		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	X	X	V_{IH}	V_{IH}	High Z
Initialize		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	X	X	$\mathrm{V}_{\text {IL }}$	V_{IL}	Init Byte
Program		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {IHP }}$	V_{PP}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	High Z
Intelligent Program		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Initialize Byte		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	V_{PP}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Blank Check Ones		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	V_{PP}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	Ones
Blank Check Zeros		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	Zeros

Note:
9. $\mathrm{X}=$ "don't care" but not to exceed $\mathrm{V}_{\mathrm{CC}} \pm 5 \%$.

DIP
Top View

LCC/PLCC

Top View

Figure 1. Programming Pinouts

Typical DC and AC Characteristics

Ordering Information ${ }^{[10]}$

Speed (ns)		Ordering Code	Package Name	Package Type	Operating Range
$\mathbf{t}_{\text {SA }}$	t_{CO}				
25	12	CY7C235-25DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C235-25JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C235-25PC	P13	24-Lead ($300-\mathrm{Mil}$) Molded DIP	
30	15	CY7C235-30DC	D14	24-Lead (300-Mil) CerDIP	
		CY7C235-30JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C235-30PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C235-30DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C235-30KMB	K73	24-Lead Rectangular Cerpack	
		CY7C235-30LMB	L64	28-Square Leadless Chip Carrier	
40	20	CY7C235-40DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C235-40JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C235-40PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C235-40DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C235-40KMB	K73	24-Lead Rectangular Cerpack	
		CY7C235-40LMB	L64	28-Square Leadless Chip Carrier	

Note:
10. Most of the above products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{SA}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$

SMD Cross Reference

SMD Number	Suffix	Cypress Number
$5962-88636$	01 KX	CY7C235-40KMB
$5962-88636$	01 LX	CY7C235-40DMB
$5962-88636$	013 X	CY7C235-40LMB
$5962-88636$	02 KX	CY7C235-30KMB
$5962-88636$	02 LX	CY7C235-30DMB
$5962-88636$	$023 X$	CY7C235-30LMB

Document \#: 38-00003-E

Features

- CMOS for optimum speed/power
- High speed
-18 ns max set-up
- 12 ns clock to output
- Low power
-495 mW (commercial)
-660 mW (military)
- Synchronous and asynchronous output enables
- On-chip edge-triggered registers
- Programmable asynchronous registers (INIT)
- EPROM technology, $\mathbf{1 0 0 \%}$ programmable
- Slim, 300-mil, 24-pin plastic or hermetic DIP or 28-pin LCC and PLCC
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 2001V static discharge

Functional Description

The CY7C235A is a high-performance 1024 word by 8 bit electrically programmable read only memory packaged in a slim 300 -mil plastic or hermetic DIP, 28-pin leadless chip carrier, or 28 -pin plastic leaded chip carrier. The memory cells
utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
The CY7C235A replaces bipolar devices pin for pin and offers the advantages of lower power, superior performance, and high programming yield. The EPROM cell requires only 12.5 V for the supervoltage, and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that the product will meet AC specification limits after customer programming.

Logic Block Diagram

Pin Configurations

DIP	
${ }_{47}{ }^{1}$	24
$\mathrm{A}_{6} \mathrm{H}^{2}$	23
$\mathrm{A}_{6} \mathrm{C}^{3}$	22
$\mathrm{A}_{4} \mathrm{C}^{4}$	21
$\mathrm{A}_{3} \mathrm{C}_{5}$	20
$\mathrm{A}_{2} \mathrm{C}^{6}$	19
$\mathrm{A}_{1} \square_{7}$	18
$\mathrm{A}_{0} \mathrm{C}_{\mathrm{B}}$	17
$\mathrm{o}_{0} \mathrm{H}^{9}$	16
$0_{1} \square_{10}$	15
$\mathrm{O}_{2} \mathrm{C}_{11}$	14
GND 12	13

Selection Guide

	7C235A-18	7C235A-25	7C235A-30	7C235A-40	
Maximum Set-Up Time (ns)	$\mathbf{1 8}$	25	30	40	
Maximum Clock to Output (ns)	12	12	15	20	
Maximum Operating Current (mA)	Commercial	90	90	90	90
	Military		120	120	$\mathbf{1 2 0}$

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industria $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage . 3.0 V to +7.0 V
DC Program Voltage (Pins 7, 18, 20 for DIP) 13.0V
Electrical Characteristics Over Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}_{\mathrm{I}}, \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs ${ }^{[4]}$		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{[4]}$			0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Clamp Diode Voltage	Note 5				
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$ Output Disabled ${ }^{[4]}$		-10	+10	$\mu \mathrm{A}$
IOS	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}^{[6]}$		-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max} . \end{aligned}$	Commercial		90	mA
			Military		120	
V_{PP}	Programming Supply Voltage			12	13	V
I_{PP}	Programming Supply Current				50	mA
$\mathrm{V}_{\text {IHP }}$	Input HIGH Programming Voltage			3.0		V
$\mathrm{V}_{\text {ILP }}$	Input LOW Programming Voltage				0.4	V

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF
C $_{\text {OUT }}$		10	pF	

Notes:

1. Contact a Cypress representative for industrial temperature range specifications.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
5. See Introduction to CMOS PROMs in this Data Book for general information on testing.
6. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

AC Test Loads and Waveforms ${ }^{[5]}$

(b) High Z Load

Equivalent to: THÉVENIN EQUIVALENT

Operating Modes

The CY7C235A incorporates a D-type, master-slave registeron chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with synchronous ($\overline{\mathrm{E}}_{S}$) and asynchronous ($\overline{\mathrm{E}}$) output enables and asynchronous initialization (INIT).
Upon power-up, the synchronous enable ($\overline{\mathrm{E}}_{S}$) flip-flop will be in the set condition causing the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$ to be in the OFF or high-impedance state. Data is read by applying the memory location to the address input ($\mathrm{A}_{0}-\mathrm{A}_{9}$) and a logic LOW to the enable ($\overline{\mathrm{E}}_{S}$) input. The stored data is accessed and loaded into the master flip-flops of the data register during the addressset-up time. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$, provided the asynchronous enable $(\overline{\mathrm{E}})$ is also LOW.
The outputs may be disabled at any time by switching the asynchronous enable ($\overline{\mathrm{E}}$) to a logic HIGH, and may be returned to the active state by switching the enable to a logic LOW.
Regardless of the condition of $\overline{\mathrm{E}}$, the outputs will go to the OFF or high-impedance state upon the next positive clock edge after the synchronous enable ($\overline{\mathrm{E}}_{S}$) input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the subsequent positive clock edge will return the output to the active state if $\overline{\mathrm{E}}$ is LOW. Following a positive clock edge, the address and synchronous enable inputs are free to change since no change in the output will occur until the next LOW-to-HIGH transition of the clock. This unique feature allows the CY7C235A decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.
System timing issimplified in that theon-chipedge-triggered register allows the PROM clock to be derived directly from the system
clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.
The CY7C235A has an asynchronous initialize input (INIT). The initialize function is useful during power-up and time-out sequences and can facilitate implementation of other sophisticated functions such as a built-in "jump start" address. When activated the initialize control input causes the contents of a user programmed 1025th 8-bit word to be loaded into the on-chip register. Each bit is programmable and the initialize function can be used to load any desired combination of 1 s and 0 s into the register. In the unprogrammed state, activating INIT will generate a register CLEAR (all outputs LOW). If all the bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).
Applying a LOW to the $\overline{\text { INIT }}$ input causes an immediate load of the programmed initialize word into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable ($\overline{\mathrm{E}}$) LOW.
When power is applied the (internal) synchronous enable flip-flop will be in a state such that the outputs will be in the high-impedance state. In order to enable the outputs, a clock must occur and the \bar{E}_{S} input pin must be LOW at least a set-up time prior to the clock LOW-to-HIGH transition. The Einput may then be used toenable the outputs.
When the asynchronous initialize input, $\overline{\mathrm{INTT}}$, is LOW, the data in the initialize byte will be asynchronously loaded into the output register. It will not, however, appear on the output pins until they are enabled, as described in the preceding paragraph.

Switching Characteristics Over Operating Range ${ }^{[3,5]}$

Parameter	Description	7C235A-18		7C235A-25		7C235A-30		7C235A-40		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Clock HIGH	18		25		30		40		ns
t_{HA}	Address Hold from Clock HIGH	0		0		0		0		ns
t^{CO}	Clock HIGH to Valid Output		12		12		15		20	ns
tpWC	Clock Pulse Width	12		12		15		20		ns
$\mathrm{t}_{\text {SES }}$	$\bar{E}_{\text {S }}$ Set-Up to Clock HIGH	10		10		10		15		ns
$\mathrm{t}_{\text {HES }}$	$\overline{\mathrm{E}}_{\text {S }}$ Hold from Clock HIGH	5		5		5		5		ns
t_{DI}	Delay from INIT to Valid Output		20		25		25		35	ns
t_{RI}	$\overline{\text { INIT Recovery to Clock HIGH }}$	15		20		20		20		ns
$\mathrm{t}_{\text {PWI }}$	$\overline{\text { INIT Pulse Width }}$	15		20		20		25		ns
$\mathrm{t}_{\mathrm{Cos}}$	Inactive to Valid Output from Clock HIGH ${ }^{[7]}$		15		20		20		25	ns
$\mathrm{t}_{\mathrm{HzC}}$	Inactive Output from Clock HIGH ${ }^{[7]}$		15		20		20		25	ns
$\mathrm{t}_{\text {DOE }}$	Valid Output from $\overline{\mathrm{E}}$ LOW		15		20		20		25	ns
$\mathrm{t}_{\text {HZE }}$	Inactive Output from $\overline{\mathrm{E}} \mathrm{HIGH}$		15		20		20		25	ns

7. Applies only when the synchronous $\left(\overline{\mathrm{E}}_{\mathrm{S}}\right)$ function is used.

Switching Waveforms ${ }^{[5]}$

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please
see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cy press representative.

Table 1. Mode Selection

Mode		Pin Function ${ }^{[8]}$							
	Read or Output Disable	$\mathbf{A}_{0}, \mathbf{A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	CP	\bar{E}_{S}	E	INIT	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	$\mathbf{A}_{0}, \mathbf{A}_{3}-\mathbf{A}_{9}$	A_{1}	A_{2}	$\overline{\text { PGM }}$	$\overline{\mathbf{V F Y}}$	$\overline{\mathbf{E}}$	$V_{\text {PP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Read		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	X	V_{IL}	V_{IL}	V_{IH}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	X	V_{IH}	X	V_{IH}	High Z
Output Disable		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	X	X	V_{IH}	V_{IH}	High Z
Initialize		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	X	X	V_{IL}	$\mathrm{V}_{\text {IL }}$	Init Byte
Program		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	$\mathrm{V}_{\mathrm{ILP}}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	High Z
Intelligent Program		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{P P}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Initialize Byte		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	V ILP	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Blank Check		$\mathrm{A}_{0}, \mathrm{~A}_{3}-\mathrm{A}_{9}$	A_{1}	A_{2}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	Zeros

Note:
8. $X=$ "don't care" but not to exceed $V_{C C} \pm 5 \%$.

Figure 1. Programming Pinouts

Typical DC and AC Characteristics

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

vs. SUPPLY VOLTAGE

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

Ordering Information ${ }^{[9]}$

Speed (ns)		Ordering Code	Package Name	Package Type	Operating Range
$\mathbf{t s A}_{\text {S }}$	$t_{\text {co }}$				
18	12	CY7C235A-18DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C235A-18JC	J64	24-Lead Plastic Leaded Chip Carrier	
		CY7C235A-18PC	P13	24-Lead (300-Mil) Molded DIP	
25	12	CY7C235A-25DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C235A-25JC	J64	24-Lead Plastic Leaded Chip Carrier	
		CY7C235A-25PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C235A-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C235A-25LMB	L64	28-Square Leadless Chip Carrier	
30	15	CY7C235A-30DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C235A-30JC	J64	24-Lead Plastic Leaded Chip Carrier	
		CY7C235A-30PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C235A-30DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C235A-30LMB	L64	28-Square Leadless Chip Carrier	
40	20	CY7C235A-40DC	D14	24-Lead (300-Mil) CerDIP	Commercial
		CY7C235A-40JC	J64	24-Lead Plastic Leaded Chip Carrier	
		CY7C235A-40PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C235A-40DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C235A-40LMB	L64	28-Square Leadless Chip Carrier	

Note:
9. Most of the above products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
\mathbf{t}_{SA}	$7,8,9,10,11$
\mathbf{t}_{HA}	$7,8,9,10,11$
\mathbf{t}_{CO}	$7,8,9,10,11$

SMD Cross Reference

SMD Number	Suffix	Cypress Number
$5962-88636$	01 KX	CY7C235A-40KMB
$5962-88636$	01 LX	CY7C235A-40DMB
$5962-88636$	$013 X$	CY7C235A-40LMB
$5962-88636$	02 KX	CY7C235A-30KMB
$5962-88636$	02 LX	CY7C235A-30DMB
$5962-88636$	$023 X$	CY7C235A-30LMB

Document \#: 38-00229-A

This is an abbreviated datasheet. Contact a
Cypress representative for complete specifications.
For new designs, please refer to the CY7C245A.

SEMICONDUCTOR

Reprogrammable 2K x 8 Registered PROM

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
- 25 ns max set-up
- 12 ns clock to output
- Low power
 $-45 \mathrm{~ns}$
- 660 mW (military)
- Programmable synchronous or asynchronous output enable
- On-chip edge-triggered registers
- Programmable asynchronous register (INIT)
- EPROM technology, $\mathbf{1 0 0 \%}$ programmable
- Slim, 300-mil, 24-pin plastic or hermetic DIP
- $\mathbf{5 V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 2001V static discharge

Product Characteristics

The CY7C245 is a high-performance 2048 -word by 8 -bit electrically programmable read only memory packaged in a slim 300-mil plastic or hermetic DIP. The ceramic package maybe equipped with an erasure window; when exposed to UV light the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating-gate technology andbyte-wide intelligentprogrammingalgorithms.

The CY7C245 replaces bipolar devices and offers the advantages of lower power, reprogrammability,superiorperformance, and high programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow each memory location to be tested 100% because each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet AC specification limits.

The CY7C245 has an asynchronous initialize function (INIT). This function acts as a 2049th 8-bit word loaded into the on-chip register. It is user programmable with any desired word, or may be used as a PRESET or CLEAR function on the outputs. INIT is triggered by a LOW level, not an edge.

Logic Block Diagram

Pin Configurations

	DIP	
$\mathrm{A}_{7}{ }^{\text {c }}$	24	V_{cc}
$\mathrm{A}_{6}{ }^{2}$	23	A_{8}
$\mathrm{A}_{5} \square^{3}$	22	$\square \mathrm{A}_{9}$
$\mathrm{A}_{4} \square^{4}$	21	$\square A_{10}$
$\mathrm{A}_{3} 5$	20	$\square 1{ }^{1 / T}$
$\mathrm{A}_{2}{ }^{\text {c }}$	$\bigcirc 19$	$\square \mathrm{E} / \mathrm{E}_{\mathrm{S}}$
$\mathrm{A}_{1} \square_{7}$	\square_{18}	$\square \mathrm{CP}$
$A_{0} \square_{8}$	17	O_{7}
$\mathrm{O}_{0} \mathrm{C}_{9}$	16	O_{6}
$\mathrm{O}_{1} 10$	15	\square°
$\mathrm{O}_{2} \square_{11}$	14	C_{4}
GND 12	13	$\square \mathrm{O}_{3}$

Selection Guide

			7C245-25	7C245-35	7-245-45
Maximum Set-up Tim			25	35	40
Maximum Clock to O			12	15	25
Maximum Operating	STD	Commercial	90	90	90
Current (mA)		Military		120	120
	L	Commercial		60	60

Reprogrammable 2K x 8 Registered PROM

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
- 15-ns max set-up
- 10-ns clock to output
- Low power
$-\mathbf{3 3 0} \mathrm{mW}$ (commercial) for $\mathbf{- 2 5} \mathbf{~ n s}$
-660 mW (military)
- Programmable synchronous or asynchronous output enable
- On-chip edge-triggered registers
- Programmable asynchronous register (INIT)
- EPROM technology, 100\% programmable
- Slim, 300-mil, 24-pin plastic or hermetic DIP
- $5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 2001V static discharge

Functional Description

The CY7C245A is a high-performance 2048-word by 8 -bit electrically programmable read only memory packaged in a slim 300 -mil plastic or hermetic DIP. The ceramic package may be equipped with an erasure window; when exposed to UV light the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating-gate technology and byte-wide intelligent programming algorithms.

The CY7C245A replaces bipolar devices and offers the advantages of lower power, reprogrammability, superior performance and high programming yield. The EPROM cell requires only 12.5 V for the supervoltage, and low current requirements allow gang programming. The EPROM cells allow each memory location to be tested 100%, because each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet AC specificationlimits.
The CY7C245A has an asynchronous initialize function (INIT). This function acts as a 2049th 8 -bit word loaded into the onchip register. It is user programmable with any desired word, or may be used as a PRESET or CLEAR function on the outputs. $\overline{\text { INIT }}$ is triggered by a low level, not an edge.

Logic Block Diagram

Pin Configurations

C245A-2
LCC/PLCC (Opaque only) Top View

C245A-3

Selection Guide

			7C245A-15	$\begin{aligned} & \text { 7C245A-25 } \\ & \text { 7C245AL-25 } \end{aligned}$	$\begin{gathered} 7 \mathrm{C} 245 \mathrm{~A}-35 \\ 7 \mathrm{C} 245 \mathrm{AL}-35 \end{gathered}$	$\begin{gathered} \text { 7C245A-45 } \\ \text { 7C245AL-45 } \end{gathered}$
Maximum Set-Up Time (ns)			15	25	35	45
Maximum Clock to Output (ns)			10	12	15	25
$\begin{aligned} & \text { Míaximum Operating } \\ & \text { Current (mA) } \end{aligned}$	Standard	Commerciaí	120	90	90	90
		Military		120	120	120
	L	Commercial		60	60	60

CYPRESS

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12)
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
DC Program Voltage (Pins 7, 18, 20)
. 13.0 V
UV Erasure
$7258 \mathrm{Wsec} / \mathrm{cm}^{2}$

Static Discharge Voltage $>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industria $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	Test Conditions		7C245A-15		$\begin{aligned} & \text { 7C245A-25 } \\ & \text { 7C245A-35 } \\ & 7 \mathrm{C} 245 \mathrm{~A}-45 \end{aligned}$		$\begin{aligned} & \text { 7C245AL-25 } \\ & \text { 7C245AL-35 } \\ & \text { 7C245AL-45 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \mathrm{I} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \end{aligned}$	$4.0 \mathrm{~mA}$	2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}^{2}, \mathrm{I} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \end{aligned}$			0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed I HIGH Voltag	ical Inputs	2.0	V_{CC}	2.0	V_{CC}	2.0	V_{CC}	V
V_{IL}	Input LOW Level	Guaranteed I LOW Voltage	ical nputs		0.8		0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	GND $\leq \mathrm{V}_{\text {IN }}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Clamp Diode Voltage	Note 4								
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq$ Output Disab		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
IOS	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}^{6}$		-20	-90	-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Com'l		120		90		60	mA
			Mil		120		120			
V_{PP}	Programming Supply Voltage			12	13	12	13	12	13	V
$\mathrm{I}_{\text {PP }}$	Programming Supply Current				50		50		50	mA
$\mathrm{V}_{\text {IHP }}$	Input HIGH Programming Voltage			3.0		3.0		3.0		V
$\mathrm{V}_{\text {ILP }}$	Input LOW Programming Voltage				0.4		0.4		0.4	V

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
CouT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. Contact a Cypress representative for industrial temperature range specifications.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. See the "Introduction to CMOS PROMs" section of the Cypress Data Book for general information on testing.
5. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
6. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

AC Test Loads and Waveforms ${ }^{[3,4]}$

Equivalent to: THEVENIN EQUIVALENT
OUTPUT $0 \quad 100 \Omega$
C245A-6
Switching Characteristics Over Operating Range ${ }^{[3,4]}$

Parameter	Description	7C245A-15		$\begin{gathered} \text { 7C245A-25 } \\ \text { 7C245AL-25 } \end{gathered}$		$\begin{aligned} & \text { 7C245A-35 } \\ & \text { 7C245AL-35 } \end{aligned}$		$\begin{aligned} & \text { 7C245A-45 } \\ & \text { 7C245AL-45 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Clock HIGH	15		25		35		45		ns
t_{HA}	Address Hold from Clock HIGH	0		0		0		0		ns
t_{CO}	Clock HIGH to Valid Output		10		12		15		25	ns
tpWC	Clock Pulse Width	10		15		20		20		ns
$\mathrm{t}_{\text {SES }}$	\bar{E}_{S} Set-Up to Clock HIGH	10		12		15		15		ns
thes	$\overline{\mathrm{E}}_{\text {S }}$ Hold from Clock HIGH	5		5		5		5		ns
$\mathrm{t}_{\text {DI }}$	Delay from $\overline{\text { INIT }}$ to Valid Output		15		20		20		35	ns
t_{RI}	INIT Recovery to Clock HIGH	10		15		20		20		ns
tPWI	INIT Pulse Width	10		15		20		25		ns
$\mathrm{t}_{\mathrm{COS}}$	Valid Output from Clock HIGH ${ }^{[7]}$		15		15		20		30	ns
$\mathrm{t}_{\mathrm{HZC}}$	Inactive Output from Clock HIGH ${ }^{[7]}$		15		15		20		30	ns
$\mathrm{t}_{\text {DOE }}$	Valid Output from E LOW ${ }^{[8]}$		12		15		20		30	ns
$\mathrm{t}_{\mathrm{HZE}}$	Inactive Output from $\overline{\mathrm{E}} \mathrm{HIGH}^{[8]}$		15		15		20		30	ns

Notes:
7. Applies only when the synchronous $\left(\overline{\mathrm{E}}_{\mathrm{S}}\right)$ function is used.

Operating Modes

The CY7C245A is a CMOS electrically programmable read only memory organized as 2048 words $x 8$ bits and is a pin-for-pin replacement for bipolar TTL fusible link PROMs. The CY7C245A incorporates a D-type, master-slave register on chip, reducing the cost and size of pipelined microprogrammed systems and applications where accessed PROM data is stored temporarily in a register. Additional flexibility is provided with a programmable synchronous $\left(\overline{\mathrm{E}}_{\mathrm{S}}\right)$ or asynchronous $(\overline{\mathrm{E}})$ output enable and asynchronous initialization (INIT).
Upon power-up the state of the outputs will depend on the programmed state of the enable function ($\overline{\mathrm{E}}_{\mathrm{S}}$ or $\left.\overline{\mathrm{E}}\right)$. If the synchronous enable ($\overline{\mathrm{E}}_{\mathrm{S}}$) has been programmed, the register will be in the set condition causing the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$ to be in the OFF or highimpedance state. If the asynchronous enable $(\overline{\mathrm{E}})$ is being used, the outputs will come up in the OFF or high-impedance state only if the enable $(\overline{\mathrm{E}})$ input is at a HIGH logic level. Data is read by applying the memory location to the address inputs $\left(\mathrm{A}_{0}-\mathrm{A}_{10}\right)$ and a logic LOW to the enable input. The stored data is accessed and loaded into the master flip-flops of the data register during the ad-
8. Applies only when the asynchronous ($\overline{\mathrm{E}})$ function is used.
dress set-up time. At the next LOW-to-HIGH transition of the clock (CP), data is transferred to the slave flip-flops, which drive the output buffers, and the accessed data will appear at the outputs $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.
If the asynchronous enable $(\overline{\mathrm{E}})$ is being used, the outputs may be disabled at any time by switching the enable to a logic HIGH , and may be returned to the active state by switching the enable to a logic LOW.
If the synchronous enable ($\widetilde{\mathrm{E}}_{\mathrm{S}}$) is being used, the outputs will go to the OFF or high-impedance state upon the next positive clock edge after the synchronous enable input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the subsequent positive clock edge will return the output to the active state. Following a positive clock edge, the address and synchronous enable inputs are free to change since no change in the output will occur until the next LOW-to-HIGH transition of the clock. This unique feature allows the CY7C245A decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.

Operating Modes (continued)

System timing is simplified in that the on-chip edge triggered register allows the PROM clock to be derived directly from the system clock without introducing race conditions. The on-chip register timing requirements are similar to those of discrete registers available in the market.

The CY7C245A has an asynchronous initialize input (INIT). The initialize function is useful during power-up and time-out sequences and can facilitate implementation of other sophisticated functions such as a built-in "jump start" address. When activated, the initialize control input causes the contents of a user-programmed 2049th 8-bit word to be loaded into the on-chip register.

Each bit is programmable and the initialize function can be used to load any desired combination of 1 s and 0 s into the register. In the unprogrammed state, activating INIT will generate a register CLEAR (all outputs LOW). If all the bits of the initialize word are programmed, activating INIT performs a register PRESET (all outputs HIGH).
Applying a LOW to the INIT input causes an immediate load of the programmed initialize word into the master and slave flip-flops of the register, independent of all other inputs, including the clock (CP). The initialize data will appear at the device outputs after the outputs are enabled by bringing the asynchronous enable ($\overline{\mathrm{E}}$) LOW.

Switching Waveforms ${ }^{[4]}$

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7C245A. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose for erasure is ultraviolet light with a wavelength of 2537 Angstroms for a minimum dose (UV intensity multiplied by exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately 35 minutes. The 7C245A needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including alisting of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Bit Map Data

Programmer Address		RAM Data
Decimal	Hex	Contents
0	0	Data
.	\cdot	$:$
\cdot	\cdot	\cdot
2047	7 FF	Data
2048	800	Init Byte
2049	801	Control Byte

Control Byte

00 Asynchronous output enable (default state)
01 Synchronous output enable

Table 1. Mode Selection

Mode		Pin Function ${ }^{[9]}$							
	Read or Output Disable	$\mathrm{A}_{10}-\mathrm{A}_{4}$	A_{3}	$\mathrm{A}_{2}-\mathrm{A}_{1}$	A_{0}	CP	$\overline{\mathbf{E}}, \overline{\mathbf{E}}_{\mathbf{S}}$	$\overline{\text { INIT }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	$\mathrm{A}_{10}-\mathrm{A}_{4}$	A_{3}	$\mathbf{A}_{2}-\mathrm{A}_{1}$	A_{0}	$\overline{\text { PGM }}$	$\overline{\text { VFY }}$	$\mathbf{V}_{\mathbf{P P}}$	$\mathrm{D}_{7}-\mathrm{D}_{\mathbf{0}}$
Read		$\mathrm{A}_{10}-\mathrm{A}_{4}$	A_{3}	$\mathrm{A}_{2}-\mathrm{A}_{1}$	A_{0}	$\mathrm{V}_{\mathrm{IL}} / \mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IH }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable		$\mathrm{A}_{10}-\mathrm{A}_{4}$	A_{3}	$\mathrm{A}_{2}-\mathrm{A}_{1}$	A_{0}	X	$\mathrm{V}_{\text {IH }}$	V_{IH}	High Z
Initialize		$\mathrm{A}_{10}-\mathrm{A}_{4}$	A_{3}	$\mathrm{A}_{2}-\mathrm{A}_{1}$	A_{0}	X	$\mathrm{V}_{\text {IL }}$	V_{IL}	Init. Byte
Program		$\mathrm{A}_{10}-\mathrm{A}_{4}$	A_{3}	$\mathrm{A}_{2}-\mathrm{A}_{1}$	A_{0}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		$\mathrm{A}_{10}-\mathrm{A}_{4}$	A_{3}	$\mathrm{A}_{2}-\mathrm{A}_{1}$	A_{0}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {PP }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{A}_{10}-\mathrm{A}_{4}$	A_{3}	$\mathrm{A}_{2}-\mathrm{A}_{1}$	A_{0}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	High Z
Intelligent Program		$\mathrm{A}_{10}-\mathrm{A}_{4}$	A_{3}	$\mathrm{A}_{2}-\mathrm{A}_{1}$	A_{0}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Synchronous Enable		$\mathrm{A}_{10}-\mathrm{A}_{4}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{A}_{2}-\mathrm{A}_{1}$	V_{PP}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	High Z
Program Initialization Byte		$\mathrm{A}_{10}-\mathrm{A}_{4}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{A}_{2}-\mathrm{A}_{1}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Blank Check Zeros		$\mathrm{A}_{10}-\mathrm{A}_{4}$	A_{3}	$\mathrm{A}_{2}-\mathrm{A}_{1}$	A_{0}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	V_{PP}	Zeros

Note:
9. $\mathrm{X}=$ "don't care" but not to exceed $\mathrm{V}_{\mathrm{CC}}+5 \%$.

Figure 1. Programming Pinouts

Typical DC and AC Characteristics

NORMALIZED SET-UP TIME vs. TEMPERATURE

Ordering Information ${ }^{[10]}$

Speed (ns)		$\underset{(\mathbf{m A})}{\mathbf{I}_{\mathbf{C C}}}$	Ordering Code	Package Type	Package Type	Operating Range
$\mathrm{t}_{\text {SA }}$	t_{CO}					
15	10	120	CY7C245A-15JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
			CY7C245A-15PC	P13	24-Lead (300-Mil) Molded DIP	
			CY7C245A-15WC	W14	24-Lead (300-Mil) Windowed CerDIP	
			CY7C245A-15DMB	D14	24-Lead (300-Mil) CerDIP	Military
			CY7C245A-15LMB	L64	28-Square Leadless Chip Carrier	
			CY7C245A-15QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
			CY7C245A-15TMB	T73	24-Lead Windowed Cerpack T73	
			CY7C245A-15WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
25	15	60	CY7C245AL-25PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
			CY7C245AL-25WC	W14	24-Lead (300-Mil) Windowed CerDIP	
		90	CY7C245A-25JC	J64	28-Lead Plastic Leaded Chip Carrier	
			CY7C245A-25PC	P13	24-Lead (300-Mil) Molded DIP	
			CY7C245A-25SC	S13	24-Lead Molded SOIC	
			CY7C245A-25WC	W14	24-Lead (300-Mil) Windowed CerDIP	
		120	CY7C245A-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
			CY7C245A-25LMB	L64	28-Square Leadless Chip Carrier	
			CY7C245A-25QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
			CY7C245A-25TMB	T73	24-Lead Windowed Cerpack T73	
			CY7C245A-25WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
35	20	60	CY7C245AL-35PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
			CY7C245AL-35WC	W14	24-Lead (300-Mil) Windowed CerDIP	
		90	CY7C245A-35JC	J64	28-Lead Plastic Leaded Chip Carrier	
			CY7C245A-35PC	P13	24-Lead (300-Mil) Molded DIP	
			CY7C245A-35SC	S13	24-Lead Molded SOIC	
			CY7C245A-35WC	W14	24-Lead (300-Mil) Windowed CerDIP	
		120	CY7C245A-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
			CY7C245A-35LMB	L64	28-Square Leadless Chip Carrier	
			CY7C245A-35QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
			CY7C245A-35TMB	T73	24-Lead Windowed Cerpack T73	
			CY7C245A-35WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
45	25	60	CY7C245A-45JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
			CY7C245A-45PC	P13	24-Lead (300-Mil) Molded DIP	
		90	CY7C245A-45JC	J64	28-Lead Plastic Leaded Chip Carrier	
			CY7C245A-45PC	P13	24-Lead (300-Mil) Molded DIP	
			CY7C245A-45SC	S13	24-Lead Molded SOIC	
			CY7C245A-45WC	W14	24-Lead (300-Mil) Windowed CerDIP	
		120	CY7C245A-45DMB	D14	24-Lead (300-Mil) CerDIP	Military
			CY7C245A-45LMB	164	28-Square Leadless Chip Carrier	
			CY7C245A-45QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
			CY7C245A-45TMB	T73	24-Lead Windowed Cerpack T73	
			CY7C245A-45WMB	W14	24-Lead (300-Mil) Windowed CerDIP	

Note:
10. Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{SA}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$

SMD Cross Reference

SMD Number	Suffix	Cypress Number
5962-88735	01KX	CY7C245A-45KMB
5962-88735	01LX	CY7C245A-45DMB
5962-88735	013X	CY7C245A-45LMB
5962-88735	02KX	CY7C245A-35KMB
5962-88735	02LX	CY7C245A-35DMB
5962-88735	023X	CY7C245A-35LMB
5962-88735	03KX	CY7C245A-35KMB
5962-88735	03LX	CY7C245A-35DMB
5962-88735	033X	CY7C245A-25LMB
5962-88735	04KX	CY7C245A-25KMB
5962-88735	04LX	CY7C245A-25DMB
5962-88735	043X	CY7C245A-25LMB
5962-87529	01KX	CY7C245A-45TMB
5962-87529	01LX	CY7C245A-45WMB
5962-87529	013X	CY7C245A-45QMB
5962-87529	02KX	CY7C245A-35TMB
5962-87529	02LX	CY7C245A-35WMB
5962-87529	023X	CY7C245A-35QMB
5962-89815	01LX	CY7C245A-35WMB
5962-89815	01KX	CY7C245A-35TMB
5962-89815	013X	CY7C245A-35QMB
5962-89815	02LX	CY7C245A-25WMB
5962-89815	02KX	CY7C245A-25TMB
5962-89815	023X	CY7C245A-25QMB
5962-89815	03LX	CY7C245A-18WMB
5962-89815	03KX	CY7C245A-18TMB
5962-89815	033X	CY7C245A-18QMB

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
- 45 ns
- Low power
-550 mW (commercial)
-660 mW (military)
- Super low standby power (7C251)
- Less than 165 mW when deselected
- Fast access: 50 ns
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- Slim 300-mil or standard 600-mil packaging available
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding $\mathbf{> 2 0 0 1 V}$ static discharge

Functional Description

The CY7C251 and CY7C254 are highperformance 16,384 -word by 8 -bit CMOS PROMs. When deselected, the CY7C251 automatically powers down into a lowpower stand-by mode. It is packaged in a 300 -mil-wide package. The 7 C 254 is packaged in a 600 -mil-wide package and does not power down when deselected. The 7C251 and 7C254 are available in reprogrammable packages equipped with an erasure window; when exposed to UV light, these PROMs are erased and can then be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.

The CY7C251 and CY7C254 are plug-in replacements for bipolar devices and offer the advantages of lower power, superior performance, and high programming yield. The EPROM cell requires only 12.5 V for the super voltage, and low current requirements allow for gang programming. The EPROM cells allow each memory location to be tested 100% because each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming, the product will meet DC and AC specification limits.
Reading is accomplished by placing all four chip selects in their active states. The contents of the memory location addressed by the address lines $\left(\mathrm{A}_{0}-\mathrm{A}_{13}\right)$ will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Pin Configurations
DIP/Flatpack

C251-2
LCC

Selection Guide

		7C251-45, 7C254-45	7C251-55, 7C254-55	7C251-65, 7C254-65
Maximum Access Time (ns)	45	55	65	
Maximum Operating Current (mA)	Commercial	100	100	100
	Military	120	120	120
	Commercial	30	30	30
	Military	35	35	35

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 28 to Pin 14) -0.5 V to +7.0 V
DC Voltage Applied to Outputs

DC Input Voltage . -3.0 V to +7.0 V
DC Program Voltage (Pin 22)
13.5 V

Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	Test Conditions		$\begin{aligned} & 7 \mathrm{C} 251-45,55,65 \\ & 7 \mathrm{C} 254-45,55,65 \end{aligned}$		Unit
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}$			0.5	V
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs			0.8	V
I_{IX}	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage	GND $\leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		Note 4		
I_{OZ}	Output Leakage Current			-40	+40	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-20	-90	mA
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Com'l		100	mA
			Mil		120	
$\mathrm{I}_{\text {SB }}$	Standby Supply Current (7C251)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}_{\mathrm{C}}, \\ & \mathrm{CS}_{1}=\mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Com'1		30	mA
			Mil		35	
V_{PP}	Programming Supply Voltage			12	13	V
I_{PP}	Programming Supply Current				50	mA
$\mathrm{V}_{\text {IHP }}$	Input HIGH Programming Voltage			3.0		V
$\mathrm{V}_{\text {ILP }}$	Input LOW Programming Voltage				0.4	V

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)
Latch-Up Current $\ldots>200 \mathrm{~mA}$
UV Exposure $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Notes:

1. Contact a Cypress representative regarding industrial temperature range specification.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
ange specification presentative regarding industrial temperature
formation.

$$
5
$$

4. See the "Introduction to CMOS PROMs" section of the Cypress Data Book for general information on testing.
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

AC Test Loads and Waveforms ${ }^{4]}$

Equivalent to: THEVENIN EQUIVALENT

C251-6
Switching Characteristics Over the Operating Range ${ }^{[2,4]}$

Parameter	Description	$\begin{aligned} & \text { 7C251-45 } \\ & \text { 7C254-45 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 251-55 \\ & 7 \mathrm{C} 254-55 \end{aligned}$		$\begin{aligned} & \text { 7C251-65 } \\ & 7 \mathrm{C} 254-65 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		45		55		65	ns
$\mathrm{t}_{\mathrm{HZCSI}}$	Chip Select Inactive to High $\mathrm{Z}^{[6]}$		25		30		35	ns
$\mathrm{t}_{\mathrm{HzCS} 2}$	Chip Select Inactive to High Z (7C251, $\overline{\mathrm{CS}}_{1}$ Only)		50		60		70	ns
$\mathrm{t}_{\mathrm{ACS} 1}$	Chip Select Active to Output Valid [6]		25		30		35	ns
$\mathrm{t}_{\mathrm{ACS} 2}$	Chip Select Active to Output Valid (7C251, $\overline{\mathrm{CS}}_{1}$ Only)		50		60		70	ns
$\mathrm{t}_{\text {PU }}$	Chip Select Active to Power Up (7C251)	0		0		0		ns
$t_{\text {PD }}$	Chip Select Inactive to Power Down (7C251) ${ }^{[7]}$		50		60		70	ns

Switching Waveform ${ }^{[4,7]}$

Notes:
6. $\mathrm{t}_{\mathrm{HZCS} 1}$ and $\mathrm{t}_{\mathrm{ACS} 1}$ refers to 7 C 254 (all chip selects); and $7 \mathrm{C} 251\left(\overline{\mathrm{CS}}_{2}\right.$, CS_{3} and $\overline{\mathrm{CS}}_{4}$ only).
7. Power-down controlled by $7 \mathrm{C} 251 \overline{\mathrm{CS}}_{1}$ only.

[^34]SEMICONDUCTOR

Erasure Characteristics

Wavelengths of light less than 4000 angstroms begin to erase the 7C251 and 7C254 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum dose (UV intensity x exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a 12 $\mathrm{mW} / \mathrm{cm}^{2}$ power rating, the exposure time would be approximately 35 minutes. The 7C251 or 7C254 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Blankcheck

Blankcheck is accomplished by performing a verify cycle ($\overline{\mathrm{VFY}}$ toggles on each address), sequencing through all memory address locations, where all the data read will be zeros.

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cy press representative.

Table 1. Mode Selection

Mode		Pin Function ${ }^{[8]}$					
	Read or Output Disable	$\mathrm{A}_{13}-\mathrm{A}_{0}$	$\overline{\mathbf{C S}}_{4}$	CS_{3}	$\overline{\mathbf{C S}}_{2}$	$\overline{\mathbf{C S}}_{1}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	$\mathbf{A}_{13}-\mathbf{A}_{0}$	NA	$\overline{\mathbf{V F Y}}$	$\mathbf{V P P}$	$\overline{\text { PGM }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Read		$\mathrm{A}_{13}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	$\mathrm{V}_{\text {IL }}$	V_{IL}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable		$\mathrm{A}_{13}-\mathrm{A}_{0}$	X	X	X	V_{IH}	High Z
Output Disable		$\mathrm{A}_{13}-\mathrm{A}_{0}$	X	X	$\mathrm{V}_{\text {IH }}$	X	High Z
Output Disable		$\mathrm{A}_{13}-\mathrm{A}_{0}$	X	V_{IL}	X	X	High Z
Output Disable		$\mathrm{A}_{13}-\mathrm{A}_{0}$	V_{IH}	X	X	X	High Z
Program		$\mathrm{A}_{13}-\mathrm{A}_{0}$	X	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		$\mathrm{A}_{13}-\mathrm{A}_{0}$	X	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{A}_{13}-\mathrm{A}_{0}$	X	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	High Z
Blank Check		$\mathrm{A}_{13}-\mathrm{A}_{0}$	X	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$

Note:
8. $\mathrm{X}=$ "don't care" but not to exceed $\mathrm{V}_{\mathrm{CC}} \pm 5 \%$.

Figure 1. Programming Pinout

Typical DC and AC Characteristics

 SEMCONDUCTOR

CY7C251

CY7C254
Ordering Information ${ }^{[9]}$

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
45	CY7C251-45PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C251-45WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	CY7C251-45DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C251-45WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
55	CY7C251-55PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C251-55WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	CY7C251-55DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C251-55LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C251-55QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C251-55WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
65	CY7C251-65PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C251-65WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	CY7C251-65DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C251-65LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C251-65QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C251-65WMB	W22	28-Lead (300-Mil) Windowed CerDIP	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
45	CY7C254-45PC	P15	28-Lead (600-Mil) Molded DIP	Commercial
	CY7C254-45WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C254-45DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C254-45WMB	W16	28 -Lead (600-Mil) Windowed CerDIP	
55	CY7C254-55PC	P15	28-Lead (600-Mil) Molded DIP	Commercial
	CY7C254-55WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C254-55DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C254-55QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C254-55WMB	W16	28-Lead (600-Mil) Windowed CerDIP	
65	CY7C254-65PC	P15	28-Lead (600-Mil) Molded DIP	Commercial
	CY7C254-65WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C254-65DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C254-65QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C254-65WMB	W16	28-Lead (600-Mil) Windowed CerDIP	

Note:

9. Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB}}{ }^{[10]}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 1}[11]$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 2}[10]$	$7,8,9,10,11$

SMD Cross Reference

SMD Number	Suffix	Cypress Number
$5962-8953701$	YX	CY7C251-65WMB
$5962-8953701$	ZX	CY7C251-65TMB
$5962-8953701$	VX	CY7C251-65QMB
$5962-8953702$	YX	CY7C251-55WMB
$5962-8953702$	ZX	CY7C251-55TMB
$5962-8953702$	VX	CY7C251-55QMB
$5962-8953801$	XX	CY7C254-65WMB
$5962-8953801$	ZX	CY7C254-65TMB
$5962-8953801$	VX	CY7C254-65QMB
$5962-8953802$	XX	CY7C254-55WMB
$5962-8953802$	ZX	CY7C254-55TMB
$5962-8953802$	VX	CY7C254-55QMB

Notes:
10. 7 C 251 ($\overline{\mathrm{CS}}_{1}$ only).
11. 7C254 and 7C251 ($\overline{\mathrm{CS}}_{2}, \mathrm{CS}_{3}$ and $\overline{\mathrm{CS}}_{4}$ only).

Document \#: 38-00056-G

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
- 45 ns (commercial)
- 55 ns (military)
- Low power
-250 mW (commercial)
$-\mathbf{3 0 0} \mathrm{mW}$ (military)
- Super low standby power
-Less than 75 mW when deselected
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- Direct replacement for bipolar PROMs
- Capable of withstanding $>\mathbf{2 0 0 1 V}$ static discharge

Functional Description

The CY7C256 is a high-performance 32,768 -word by 8 -bit CMOS PROM. When disabled ($\overline{\mathrm{CE}} \mathrm{HIGH}$), the CY7C256 automatically powers down into a low-power stand-by mode. The CY7C256 is packaged in the industry standard 600-mil package. The CY7C256 is available in a cerDIP package equipped with an erasure window to provide for reprogrammability. When exposed to UV light, the PROM is erased and can be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.

The CY7C256 offers the advantage of lower power and superior performance and programming yield. The EPROM cell requires only 12.5 V for the super voltage, and low current requirements allow for gang programming. The EPROM cells allow each memory location to be tested 100% because each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming, the product will meet DC and AC specification limits.
Reading the CY7C256 is accomplished by placing active LOW signals on $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$. The contents of the memory location addressed by the address lines $\left(\mathrm{A}_{0}-\mathrm{A}_{14}\right)$ will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Selection Guide

		7C256-45	7C256-55
Maximum Access Time (ns)	45	55	
Maximum Operating Current (mA) [2]			

Notes:

1. For PLCC only: Pins 1 and 17 are common and tied to the die attach pad. They must therefore be DU (don't use) for the PLCC package.
2. Add $2 \mathrm{~mA} / \mathrm{MHz}$ for AC power component.

Latch-Up Current $>200 \mathrm{~mA}$
UV Exposure
$7258 \mathrm{Wsec} / \mathrm{cm}^{2}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[3]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[4]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State .

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

DC Input Voltage -3.0 V to +7.0 V
DC Program Voltage . 13.0V
Static Discharge Voltage . $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Electrical Characteristics Over the Operating Range ${ }^{[5]}$

Capacitance ${ }^{[8]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	10	pF
COUT	Output Capacitance		10	pF

Notes:

3. Contact a Cypress representative for information on industrial temperature range specifications.
4. T_{A} is the "instant on" case temperature.
5. See the last page of this specification for Group A subgroup testing information.
6. $\mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$ for military devices.
7. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
8. See Introduction to CMOS PROMs in this Data Book for general information on testing.

AC Test Loads and Waveforms ${ }^{[8]}$

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[5,8]}$

Parameter	Description	7C256-45		7C256-55		Unit
		Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		45		55	ns
$\mathrm{t}_{\text {HZOE }}$	Output Enable Inactive to High Z		15		20	ns
t_{OE}	Output Enable Active to Output Valid		15		20	ns
$\mathrm{t}_{\text {HZCE }}$	Chip Enable Inactive to High Z		45		55	ns
$\mathrm{t}_{\text {ACE }}$	Chip Enable Active to Output Valid		45		55	ns
$\mathrm{t}_{\text {PU }}$	Chip Enable Active to Power Up	0		0		ns
$\mathrm{t}_{\text {PD }}$	Chip Enable Inactive to Power Down		45		55	ns
t_{OH}	Output Hold from Address Change	0		0		ns

Switching Waveform
 SEMICONDUCTOR

Erasure Characteristics

Wavelengths of light less than 4000 angstroms begin to erase the 7C256 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum dose (UV intensity multiplied by exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating, the exposure time would be approximately 35 minutes. The 7C256 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if
the PROM is exposed to high-intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Programming Modes

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. CY7C256 Mode Selection

Mode		Pin Function ${ }^{[9]}$				
	Read or Output Disable	$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\overline{\mathrm{OE}}$	$\overline{\mathbf{C E}}$	$\mathbf{V}_{\mathbf{P P}}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	$\mathbf{A}_{14}-\mathbf{A}_{0}$	$\overline{\mathbf{V F Y}}$	$\overline{\text { PGM }}$	$\mathbf{V}_{\text {PP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Read		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IL }}$	V_{IL}	Note 10	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable		$\mathrm{A}_{14}-\mathrm{A}_{0}$	V_{IH}	X	X	High Z
Power Down		$\mathrm{A}_{14}-\mathrm{A}_{0}$	X	V_{IH}	X	High Z
Program		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	High Z

Notes:
9. X can be $\mathrm{V}_{\mathrm{IL}}\left(\mathrm{V}_{\mathrm{ILP}}\right)$ or $\mathrm{V}_{\mathrm{IH}}\left(\mathrm{V}_{\mathrm{IHP}}\right)$.
10. V_{PP} should not exceed V_{CC} in read mode.

Figure 1. Programming Pinouts

Ordering Information ${ }^{[11]}$

Speed (ns)	Ordering Code	Package Name	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
45	CY7C256-45JC	J65	32-Pin Rectangular Plastic Leaded Chip Carrier	Commercial
	CY7C256-45PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C256-45WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C256-45DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C256-45LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C256-45QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C256-45WMB	W16	28-Lead (600-Mil) Windowed CerDIP	
55	CY7C256-55JC	J65	32-Pin Rectangular Plastic Leaded Chip Carrier	Commercial
	CY7C256-55PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C256-55WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C256-55DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C256-55LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C256-55QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C256-55WMB	W16	28-Lead (600-Mil) Windowed CerDIP	

Note:
11. Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS

 Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{AA}	$7,8,9,10,11$
t_{OE}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$

[^35]
Features

- High speed: $100-\mathrm{MHz}$ operation
$-\mathrm{t}_{\mathrm{CP}}=10 \mathrm{~ns}$
$-\mathbf{t}_{\text {CKO }}=8 \mathrm{~ns}$
$-t_{A S}=2 \mathrm{~ns}$
- 16-bit-wide state word
- Can be programmed as asynchronous PROM taA $_{\text {A }}=18 \mathrm{~ns}$
- Optimum speed/ power
- Individually bypassable input and output registers
- Individually programmable address/ feedback muxes
- Synchronous and asynchronous chip select
- Synchronous and asynchronous INIT and programmable initialize word
- 16 outputs (CY7C259)
- Software support
- CY7C258 available in 28-pin, 300-mil plastic and ceramic DIP, LCC, PLCC
- CY7C259 available in 44-pin LCC and PLCC
- Reprogrammable in windowed packages
- Capable of withstanding greater than 2001V static discharge

Functional Description

The CY7C258 and CY7C259 are $2 \mathrm{~K} \times 16$ CMOS PROMs specifically designed for use in state machine applications.
State machines are one of the most common applications for registered PROMs. The CY7C258 and CY7C259 feature internal state feedback and a variety of programmable features to support $100-\mathrm{MHz}$ state machines with as many as 2,048 distinct states.
It is easy to use a PROM as a state machine. Each array location contains output data as well as information fed back to select the next state. Note that a PROM is only limited by the number of array inputs. If a given state machine can be implemented in the number of inputs/ feedbacks available (11 on the CY7C258/259), then it will always fit in the device. No software minimization is required.
Among the programmable features of the CY7C258/CY7C259 are individually bypassable input and output registers. The registers run off the same clock for pipeline capability. Each individual register can be programmed to capture data at the rising edge of the clock or to be transparent.

2K x 16 Reprogrammable State Machine PROM

Logic Block Diagram

Pin Configurations

DIP
Top View

C258-2

On the CY7C259, all 16 array outputs are available at the pins. Outputs $\mathrm{D}_{4}-\mathrm{D}_{0}$ remain as dedicated outputs while $\mathrm{D}_{5}-\mathrm{D}_{15}$ appear at the pins and are also fed back to the input muxes. This organization allows the user maximum flexibility in selecting the ratio of outputs to state feedback. The availability of state information at pins also improves testability. The CY7C259 is packaged in 44-pin LCC and PLCC packages.
Several third-party programmers will feature support for PROMs as state machines, including Data I/O (ABEL), ISDATA (LOG/iC), and CUPL. The devices are also supported on the Cypress Warp 2 development software.
The CY7C258 and CY7C259 offer the advantage of low power, superior performance, and programming yield. The EPROM cells allow for each memory location to be 100% tested, with each location being written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that the product will meet DC and AC specification limits after customer programming.

The difference between the CY7C258 and CY7C259 is in the packaging. The CY7C258 has three different types of outputs. D_{4} $-D_{0}$ are dedicated outputs that do not feed back to the input muxes. $D_{5}-D_{7}$ appear on the output pins and are fed back to the input muxes. Finally, $\mathrm{D}_{8}-\mathrm{D}_{15}$ are dedicated feedback lines that do not appear at the output pins. The dedicated feedback allows the CY7C258 to be packaged in 28-pin packages. The CY7C258 is available in 28-pin LCC, PLCC, and slim 300-mil DIP packages.

Pin Configurations (continued)

LCC/PLCC(Opaque Only)
 Top View

C258-3

C258-4

Selection Guide

	Commercial	Commercial and Military		Unit
	$\begin{aligned} & \text { 7C258-10 } \\ & 7 \mathrm{C} 259-10 \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 258-12 \\ & 7 \mathrm{C} 259-12 \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 258-15 \\ & 7 \mathrm{C} 259-15 \end{aligned}$	
Minimum Cycle Time	10	12	15	ns
Registered Input Set-Up/Hold ${ }^{[1]}$	$2 / 2$ or $5 / 0$	$3 / 3$ or 7/0	4/4 or 8/1	ns
Bypassed Input Set-Up/Hold	10/0	12/0	15/0	ns
Clock-to-Output	8	9	11	ns

Note:

1. This parameter is programmable.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Latch-Up Current $>200 \mathrm{~mA}$
UV Exposure . 7258 Wsec/cm ${ }^{2}$
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V
DC Input Voltage . 3.0 V to +7.0 V
DC Program Voltage . 13.0V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[2]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

(per MIL-STD-883, Method 3015)
Electrical Characteristics Over the Operating Range ${ }^{[4,5]}$

Parameter	Description	Test Conditions		Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$	Commercial		0.4	V
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=6 \mathrm{~mA}$	Military		0.4	V
V_{IH}	Input HIGH Voltage	Guaranteed InputLogicalHIGHVoltageforall Inputs		2.0	6.0	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for all Inputs		-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-40	+40	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[6]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=$ GND		-20	-90	mA
I_{CC}	Active Current ${ }^{[7]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Commercial		70	mA
		$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Military		90	mA

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:
2. Contact a Cypress representative for industrial temperature range specification.
3. T_{A} is the "instant on" case temperature.
4. See the last page of this specification for Group A subgroup testing information.
5. See Introduction to CMOS PROMs in this Data Book for general information on testing.
6. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
7. Add $1 \mathrm{~mA} / \mathrm{MHz}$ for AC power component.

AC Test Loads and Waveforms ${ }^{[4]}$

 SCOPE

(b) High Z Load

Equivalent to: THÉVENIN EQUIVALENT

CYPRESS
SEMICONDUCTOR
Switching Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	Commercial 7C258-10 7C259-10		Commercial and Military				Unit
				$\begin{aligned} & \text { 7C258-12 } \\ & \text { 7C259-12 } \end{aligned}$		$\begin{aligned} & \text { 7C258-15 } \\ & 7 \mathrm{C} 259-15 \end{aligned}$		
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{CP}	Clock Period	10		12		15		ns
t_{CH}	Clock HIGH	4		5		6.5		ns
t_{CL}	Clock LOW	4		5		6.5		ns
$\mathrm{t}_{\mathrm{AS}} / \mathrm{t}_{\mathrm{AH}}$	Register Input Set-Up/Hold	$2 / 2$ or $5 / 0$		$3 / 3$ or $7 / 0$		4/4 or 8/1		ns
$\mathrm{t}_{\text {ABS }}$	Address Set-Up to CLK with Input Bypassed	10		12		15		ns
$\mathrm{t}_{\text {ABH }}$	Address Hold from CLK with Input Bypassed	0		0		0		ns
$\mathrm{t}_{\text {CSS }} / \mathrm{t}_{\text {cSH }}$	Chip Select Set-Up/Hold	$2 / 2$ or $5 / 0$		$3 / 3$ or 7/0		4/4 or $8 / 1$		ns
$\mathrm{t}_{\text {IPD }}$	Asynchronous INIT to Output Valid with Output Bypassed		21		21		25	ns
$\mathrm{t}_{\mathrm{CKO1}}$	Output CLK to Registered Output Valid		8		9		11	ns
${ }^{\text {t }}$ CKO2	Output CLK to Output Valid with Output Bypassed		18		18		21	ns
$\mathrm{t}_{\text {DH }}$	Data Hold from CLK	2		2		2		ns
$\mathrm{t}_{\mathrm{COV}}$	CLK to Output Valid ${ }^{[8]}$		8		9		11	ns
$\mathrm{t}_{\mathrm{COZ}}$	CLK to High Z Output ${ }^{[8]}$		8		9		11	ns
$\mathrm{t}_{\mathrm{CSV}}$	CS to Output Valid with Input Bypassed ${ }^{[8]}$		10		12		15	ns
$\mathrm{t}_{\text {CSZ }}$	CS to High Z Output with Input Bypassed ${ }^{[8]}$		10		12		15	ns
toev	$\overline{\mathrm{OE}}$ to Output Valid ${ }^{[8]}$		8		9		11	ns
$\mathrm{t}_{\text {OEZ }}$	$\overline{\mathrm{OE}}$ to High Z Output ${ }^{[8]}$		8		9		11	ns
$\mathrm{t}_{\text {IS }} / \mathrm{t}_{\text {IH }}$	$\overline{\text { INIT Set-Up/Hold }}$	2/2 or 5/0		3/3 or $7 / 0$		4/4 or 8/1		ns
$\mathrm{t}_{\text {IBS }}$	$\overline{\text { INIT Set-Up to CLK with Input Bypassed }}$	10		12		15		ns
$\mathrm{t}_{\text {IBH }}$	$\overline{\text { INIT Hold from CLK with Input Bypassed }}$	0		0		0		ns
t_{PD}	Propagation Delay with Input and Output Bypassed		18		18		21	ns
$\mathrm{t}_{\mathrm{ICO}}$	CLK to Output Valid with Output Bypassed		18		18		21	ns
$\mathrm{t}_{\text {IW }}$	Asynchronous INIT Pulse Width	10		12		15		ns
tidV	Asynchronous INIT to Data Valid		10		12		15	ns
$\mathrm{t}_{\text {ICR }}$	Asynchronous INIT Recovery to Clock	10		12		15		ns

Note:
8. See Output Waveform-Measurement Level.

Output Waveform-Measurement Level

High Z Output		$\mathbf{v}_{\mathrm{x}}=0.0 \mathrm{~V}$	${ }^{\text {Pin }} \mathrm{O}-\mathrm{WH}^{\text {Rth }} \longrightarrow \mathrm{v}_{\mathrm{x}}$
High Z Output		$\mathbf{V}_{\mathbf{x}}=\mathbf{2 . 5 V}$	$\text { Pin } \mathrm{O}-\mathrm{M}^{\text {Rth }} \mathrm{O} \mathbf{v}_{\mathrm{x}}$
Output Enable	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\mathbf{V}_{\mathbf{O H}}$	$\text { Pin O-W } \mathrm{M}_{\mathrm{o}}$
Output Enable	$\begin{array}{rl} \mathrm{V}_{\mathrm{x}}=2.0 \mathrm{~V} & 1.5 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}} & =50 \mathrm{pF} \end{array}$	$V_{\text {OL }}$	$\text { Pin } O-W_{\square}^{500 \Omega}$

Switching Waveforms

Registered Input and Output (combined with $\overline{\mathrm{NIT}}$)

Bypassed Address and INIT Registers

Switching Waveforms (continued)

Asynchronous $\overline{\text { INTT }}$ and $\overline{\mathrm{OE}}$

Single- and Double-Registered Chip Select

Bypassed Output Register ${ }^{[9]}$

Note:
9. Even though the register is bypassed, $\overline{\text { INIT }}$ continues to set the output register (for feedback purposes).

Switching Waveforms

Bypassed Input and Output Register (CS and Address)

Asynchronous $\overline{\text { INIT }}$ and Bypassed Output Register ${ }^{[10]}$

C258-14
Note:
10. Output registers configured as feedback to the array and bypassed with respect to the output.
Mode Table

Mode	$\begin{gathered} \text { LAT } \\ \text { (7C258-CLK) } \end{gathered}$	$\begin{gathered} \overline{\mathbf{V P P}} \\ (\overline{\text { INIT }}) \end{gathered}$	$\begin{aligned} & \overline{\text { PGM }} \\ & \text { (CS) } \end{aligned}$	$\begin{aligned} & \overline{\overline{\mathrm{FFY}}} \\ & (\overline{\mathrm{OE}}) \end{aligned}$	$\begin{aligned} & \mathrm{D}_{0}-\mathrm{D}_{15}(259) \\ & \mathrm{D}_{0}-\mathrm{D}_{7}(258) \end{aligned}$
Latch High Byte	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }} / \mathrm{V}_{\text {ILP }}$
Program Inhibit	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	HI-Z
Program Enable	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }} / \mathrm{V}_{\text {ILP }}$
Program Verify	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {OHP }} / \mathrm{V}_{\text {OLP }}$

Programming Pinouts

DIP

LCC/PLCC (Opaque Only)

LCC/PLCC (Opaque Only)

Programming Information

This datasheet provides some but not all the of programming information necessary for on-board programming of the CY7C258 and CY7C259. For more information about on-board programming of Cypress PROMs contact your local Cypress Field Sales Engineer or Field Applications Engineer.

7 C 258 Bitmap ${ }^{[11]}$

Programmer Address Decimal	Programmer Address Hex	Programmer Memory $\mathbf{7 C 2 5 8}$	Bit Breakdown $\mathrm{D}_{15} \mathrm{D}_{14} \mathrm{D}_{13} \mathrm{D}_{12} \mathrm{D}_{11} \mathrm{D}_{10} \mathrm{D}_{9} \mathrm{D}_{8} \mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$
0	0	Data	
-	-	.	
.	.	.	Array Dat
.	.	.	
2047	7FF	Data	
2048	800	Address Register Select (1=Bypassed Register)	$\begin{array}{lllllllllllllllllllllll} & A_{9} & A_{8} & A_{7} & A_{6} & A_{5} & A_{2} & A_{1} & A_{0} & A_{10} & X & X & X & X & \end{array}$
2049	801	Array Input Select (1= Feedback)	$\begin{array}{llllllllllllllllllllll}\mathrm{A}_{9} & \mathrm{~A}_{8} & \mathrm{~A}_{7} & \mathrm{~A}_{6} & \mathrm{~A}_{5} & \mathrm{~A}_{2} & \mathrm{~A}_{1} & \mathrm{~A}_{0} & \mathrm{~A}_{10} & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{X} & \mathrm{X}\end{array}$
2050	802	Output Register Select (1 = Bypassed Register)	$\begin{array}{lllllllllllllllllllll}\mathrm{X} & \mathrm{X} & \mathrm{D}_{7} & \mathrm{D}_{6} & \mathrm{D}_{5} & \mathrm{D}_{4} & \mathrm{D}_{3} & \mathrm{D}_{2} & \mathrm{D}_{1} & \mathrm{D}_{0}\end{array}$
2051	803	$\begin{aligned} & \text { INIT WORD } \\ & (1=\text { INIT Bit } 1 \text {) } \end{aligned}$	
2052	804	Architecture	

Note:
11. All configurable bits default to 0 .

$7 \mathrm{C259}$ Bitmap ${ }^{[11]}$

Programmer Address Decimal	Programmer Address Hex	Programmer Memory $7 \mathbf{C 2 5 9}$	Bit Breakdown
0	0	Data	
.	.	.	
.	.	.	ray Data
.	.	.	
2047	7FF	Data	
2048	800	Address Register Select (1 = Bypassed Register)	$\mathrm{A}_{10} \mathrm{~A}_{9} \mathrm{~A}_{8} \mathrm{~A}_{7} \mathrm{~A}_{6} \mathrm{~A}_{5} \mathrm{X}$
2049	801	Array Input Select ($1=$ Feedback)	
2050	802	Output Register Select (1 = Bypassed Register)	$\mathrm{D}_{15} \mathrm{D}_{14} \mathrm{D}_{13} \mathrm{D}_{12} \mathrm{D}_{11} \mathrm{D}_{10} \mathrm{D}_{9} \mathrm{D}_{8} \mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$
2051	803	$\begin{aligned} & \text { INIT WORD } \\ & (1=\text { INIT Bit } 1) \end{aligned}$	$\mathrm{D}_{15} \mathrm{D}_{14} \mathrm{D}_{13} \mathrm{D}_{12} \mathrm{D}_{11} \mathrm{D}_{10} \mathrm{D}_{9} \cdot \mathrm{D}_{8} \mathrm{D}_{7} \mathrm{D}_{6} \mathrm{D}_{5} \mathrm{D}_{4} \mathrm{D}_{3} \mathrm{D}_{2} \mathrm{D}_{1} \mathrm{D}_{0}$
2052	804	Architecture	$\begin{array}{lllllllllllll}\text { SH } \mathrm{C}_{1} & \mathrm{C}_{2} & \text { CP IB IA } & \mathrm{X} end{array}$

Architecture Word

Control Option	Control Word			Function
	Bit (258)	Bit (259)	Programmed level	
IA (INIT Async)	D_{2}	D_{10}	$0=$ Default $1=$ Programmed	Synchronous INIT Asynchronous INIT
IB (INIT Bypass)	D_{3}	D_{11}	$0=$ Default $1=$ Programmed	INIT Registered Bypass INIT Register
CP (CS Polarity)	D_{4}	D_{12}	$0=$ Default $1=$ Programmed	CS Active LOW CS Active HIGH
C2 (CS Bypass) (Buried Register)	D_{5}	D_{13}	$0=$ Default $1=$ Programmed	CS Input Registered Bypass CS Register
C1 (CS Bypass) (Input Register)	D_{6}	D_{14}	$0=$ Default $1=$ Programmed	CS Input Registered Bypass CS Register
SH (Set-Up/Hold)	D_{7}	D_{15}	$0=$ Default $1=$ Programmed	Set-Up/Hold $=2 / 2 \mathrm{~ns}$ Set-Up/Hold $=5 / 0 \mathrm{~ns}$

CYPRESS
SEMICONDUCTOR

Typical DC and AC Characteristics

NORMALIZED ICC $\mathbf{v s}$. AMBIENT TEMPERATURE

NORMALIZED ICC vs.
SUPPLY VOLTAGE

NORMALIZED tckO1 vs. SUPPLY VOLTAGE

DELTA tpd vs.
OUTPUT LOADING

NORMALIZED tCKO1 vs. AMBIENT TEMPERATURE
 PROMs

NORMALIZED tpp vs. SUPPLY VOLTAGE

TYPICAL tcko1 CHANGE vs. OUTPUT LOADING

NORMALIZED ICC vs. CLOCK PERIOD

Ordering Information ${ }^{[12]}$

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C258-10HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
	CY7C258-10JC	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C258-10PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C258-10WC	W22	28-Lead (300-Mil) Windowed CerDIP	
12	CY7C258-12HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
	CY7C258-12JC	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C258-12PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C258-12WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	CY7C258-12HMB	H64	28-Pin Windowed Leaded Chip Carrier	Military
	CY7C258-12LMB	L64	28-Square Leadless Chip Carrier	
	CY7C258-12QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
	CY7C258-12WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
15	CY7C258-15HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
	CY7C258-15JC	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C258-15PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C258-15WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	CY7C258-15HMB	H64	28-Pin Windowed Leaded Chip Carrier	Military
	CY7C258-15LMB	L64	28-Square Leadless Chip Carrier	
	CY7C258-15QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
	CY7C258-15WMB	W22	28-Lead (300-Mil) Windowed CerDIP	

Speed (ns)	Ordering Code	Package Name	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
10	CY7C259-10HC	H67	44-Pin Windowed Leaded Chip Carrier	Commercial
	CY7C259-10JC	J67	44-Lead Plastic Leaded Chip Carrier	
12	CY7C259-12HC	H67	44-Pin Windowed Leaded Chip Carrier	Commercial
	CY7C259-12JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C259-12HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military
	CY7C259-12LMB	L67	44-Square Leadless Chip Carrier	
	CY7C259-12QMB	Q67	44-Pin Windowed Leadless Chip Carrier	
15	CY7C259-15HC	H67	44-Pin Windowed Leaded Chip Carrier	Commercial
	CY7C259-15JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C259-15HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military
	CY7C259-15LMB	L67	44-Square Leadless Chip Carrier	
	CY7C259-15QMB	Q67	44-Pin Windowed Leadless Chip Carrier	

Note:
12. Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$,
V_{OL}	$1,2,3$,
V_{IH}	$1,2,3$,
V_{II}	$1,2,3$,
I_{IX}	$1,2,3$,
I_{OZ}	$1,2,3$,
I_{CC}	$1,2,3$,

Switching Characteristics

Parameter	Subgroups
t_{CP}	$7,8,9,10,11$
t_{CH}	$7,8,9,10,11$
t_{CL}	$7,8,9,10,11$
t_{AS}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ABS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CSS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CSH}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{IPD}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CKO}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CKO}}$	$7,8,9,10,11$
t_{DH}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{COV}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CSV}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OEV}}$	$7,8,9,10,11$
t_{IS}	$7,8,9,10,11$
t_{IH}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{IBS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{IBH}}$	$7,8,9,10,11$
t_{PD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICO}}$	$7,8,9,10,11$
t_{IW}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{IDV}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICR}}$	$7,8,9,10,11$

Document \#: 38-00173-E

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
- 20 ns (commercial)
- 25 ns (military)
- Low power
-660 mW (commercial)
- 770 mW (military)
- Super low standby power (7C261)
- Less than 220 mW when deselected
—Fast access: 20 ns
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- Slim 300-mil or standard 600-mil packaging available
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- Capable of withstanding greater than 2001V static discharge
- TTL-compatible I/O
- Direct replacement for bipolar PROMs

Functional Description

The CY7C261, CY7C263, and CY7C264 are high-performance 8192 -word by 8 -bit CMOS PROMs. When deselected, the 7C261 automatically powers down into a low-power standby mode. It is packaged in a 300 -mil-wide package. The 7C263 and 7C264 are packaged in 300 -mil-wide and 600 -mil-wide packages respectively, and do not power down when deselected. The reprogrammable packages are equipped with an erasure window; when exposed to UV light, these PROMs are erased and can then be reprogrammed. The memory cells utilize proven EPROM floating-gate technology and byte-wide intelligent programming algorithms.

The CY7C261, CY7C263, and CY7C264 are plug-in replacements for bipolar devices and offer the advantages of lower power, superior performance and programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allowfor each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.
Read is accomplished by placing an active LOW signal on CS. The contents of the memory location addressed by the address line $\left(A_{0}-A_{12}\right)$ will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Logic Block Diagram

Pin Configurations

C261-1

Selection Guide

		$\begin{aligned} & \hline \text { 7C261-20 } \\ & \text { 7C263-20 } \\ & \text { 7C264-20 } \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 261-25 \\ & 7 \mathrm{C} 263-25 \\ & 7 \mathrm{C} 264-25 \end{aligned}$	$\begin{aligned} & \text { 7C261-35 } \\ & \text { 7C263-35 } \\ & \text { 7C264-35 } \end{aligned}$	$\begin{aligned} & \text { 7C261-45 } \\ & \text { 7C263-45 } \\ & \text { 7C264-45 } \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 261-55 \\ & 7 \mathrm{C} 263-55 \\ & \text { 7C264-55 } \end{aligned}$
Maximum Access Time (ns)		20	25	35	45	55
$\begin{aligned} & \text { Maximum Operating } \\ & \text { Current (mA) } \end{aligned}$	Commercial	120	120	100	100	100
	Military		140	120	120	120
Maximum Standby Current (mA) (7C261 only)	Commercial	40	40	30	30	30
	Military		40	30	30	30

. $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
UV Exposure 7258 Wsec/cm ${ }^{2}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C261-20, 25 } \\ & \text { 7C263-20,25 } \\ & \text { 7C264-20, } 25 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 261-35,45,55 \\ & 7 \mathrm{C} 263-35,45,55 \\ & 7 \mathrm{C} 264-35,45,55 \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4				V
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$				2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA} \\ & (6 \mathrm{~mA} \text { Mil }) \end{aligned}$			0.4			V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$					0.4	V
V_{IH}	Input HIGH Level			2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level				0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Note 4		Note 4		
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{OH}}, \\ & \text { Output } \text { Disabled } \end{aligned}$		-40	+40	-40	+40	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[5]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{~V}_{\mathrm{OUT}}=\mathrm{GND} \end{aligned}$		-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \\ & \mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} \end{aligned}$	Com'l		120		100	mA
			Mil		140		120	
$\mathrm{I}_{\text {SB }}$	Standby Supply Current (7C261)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{CS} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		40		30	mA
			Mil		40		30	
V_{PP}	Programming Supply Voltage			12	13	12	13	V
I_{PP}	Programming Supply Current				50		50	mA
$\mathrm{V}_{\text {IHP }}$	Input HIGH Programming Voltage			3.0		3.0		V
$\mathrm{V}_{\text {ILP }}$	Input LOW Programming Voltage				0.4		0.4	V

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. See the Ordering Information section regarding industrial temperature range specification.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. See the "Introduction to CMOS PROMs" section of the Cypress Data Book for general information on testing.
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

AC Test Loads and Waveforms ${ }^{[4]}$

Test Load for $\mathbf{- 2 0}$ through $\mathbf{- 3 0}$ speeds

(a) Normal Load

C261-4

C261-5

Equivalent to: THÉVENIN EQUIVALENT

Test Load for - $\mathbf{- 3 5}$ through - $\mathbf{5 5}$ speeds

(c) Normal Load

C261-6
(d) High Z Load

Equivalent to: THEVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[2,3,4]}$

Parameter	Description	$\begin{aligned} & \hline 7 \mathrm{C} 261-20 \\ & 7 \mathrm{C} 263-20 \\ & 7 \mathrm{C} 264-20 \end{aligned}$		$\begin{aligned} & \hline \text { 7C261-25 } \\ & 7 \mathrm{C} 263-25 \\ & 7 \mathrm{C} 264-25 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 261-35 \\ & 7 \mathrm{C} 263-35 \\ & 7 \mathrm{C} 264-35 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 261-45 \\ & 7 \mathrm{C} 263-45 \\ & 7 \mathrm{C} 264-45 \end{aligned}$		$\begin{aligned} & \text { 7C261-55 } \\ & 7 \mathrm{C} 263-55 \\ & 7 \mathrm{C} 264-55 \end{aligned}$		Unit
		Min.	Max.									
$\mathrm{t}_{\text {AA }}$	Address to Output Valid		20		25		35		45		55	ns
$\mathrm{t}_{\mathrm{HzCS} 1}$	Chip Select Inactive to High Z		12		12		20		30		35	ns
$\mathrm{t}_{\mathrm{HZCS} 2}$	Chip Select Inactive to High Z (7C261)		20		25		35		45		55	ns
$\mathrm{t}_{\text {ACS }}$	ChipSelect Active to Output Valid		12		12		20		30		35	ns
$\mathrm{t}_{\text {ACS }}$	ChipSelect Active to Output Valid (7C261)		20		25		35		45		55	ns
tpu	Chip Select Active to Power-Up (7C261)	0		0		0		0		0		ns
${ }_{\text {tpD }}$	Chip Select Inactive to Power-Down (7C261)		20		25		35		45		55	ns

Switching Waveforms ${ }^{[4]}$

Erasure Characteristics

Wavelengths of light less than 4000 angstroms begin to erase the devices in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum dose (UV intensity multiplied by exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating, the exposure time would be approximately 45 minutes. The 7C261 or 7C263 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Operating Modes

Read

Read is the normal operating mode for a programmed device. In this mode, all signals are normal TTL levels. The PROM is addressed with a 13-bit field, a chip select, (active LOW), is applied to the $\overline{\mathrm{CS}}$ pin, and the contents of the addressed location appear on the data out pins.

Program, Program Inhibit, Program Verify

These modes are entered by placing a high voltage V_{PP} on pin 19, with pins 18 and 20 set to $V_{\text {ILP }}$ In this state, pin 21 becomes a latch signal, allowing the upper 5 address bits to be latched into an onboard register, pin 22 becomes an active LOW program ($\overline{\mathrm{PGM}}$) signal and pin 23 becomes an active LOW verify (VFY) signal. Pins 22 and 23 should never be active LOW at the same time. The PROGRAM mode exists when $\overline{\text { PGM }}$ is LOW, and $\overline{\mathrm{VFY}}$ is HIGH. The verify mode exists when the reverse is true, $\overline{\mathrm{PGM}}$ HIGH and $\overline{\mathrm{VFY}}$ LOW and the program inhibit mode is entered with both PGM and VFY HIGH. Program inhibit is specifically provided to allow data to be placed on and removed from the data pins without conflict.

Table 1. Mode Selection

Mode		Pin Function ${ }^{[6,7]}$						
	Read or Output Disable	A_{12}	A_{11}	A_{10}	A9	A_{8}	$\overline{\mathbf{C S}}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Program	NA	$\mathbf{V}_{\mathbf{P P}}$	LATCH	$\overline{\text { PGM }}$	$\overline{\mathbf{V F Y}}$	$\overline{\mathbf{C S}}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Read		A_{12}	A_{11}	A_{10}	A_{9}	A_{8}	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable		A_{12}	A_{11}	A_{10}	A9	A_{8}	V_{IH}	High Z
Program		$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\mathrm{ILP}}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Inhibit		$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	High Z
Program Verify		$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {IHP }}$	VILP	V ILP	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Blank Check		$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\mathrm{ILP}}$	$\mathrm{V}_{\mathrm{ILP}}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$

Notes:
6. $\mathrm{X}=$ "don't care" but not to exceed $\mathrm{V}_{\mathrm{CC}} \pm 5 \%$.

LCC/PLCC (Opaque only)
Top View

C261-8
7. Addresses $\mathrm{A}_{8}-\mathrm{A}_{12}$ must be latched through lines $\mathrm{A}_{0}-\mathrm{A}_{4}$ in programming modes.

Figure 1. Programming Pinouts

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cy press representative.

Typical DC and AC Characteristics

NORMALIZED SUPPLY CURRENT vs. CYCLE PERIOD

Ordering Information ${ }^{[8]}$

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CY7C261-20JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C261-20PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7C261-20WC	W14	24-Lead (300-Mil) Windowed CerDIP	
25	CY7C261-25JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C261-25PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7C261-25WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	CY7C261-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C261-25LMB	L64	28-Square Leadless Chip Carrier	
	CY7C261-25QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
	CY7C261-25TMB	T73	24-Lead Windowed Cerpack	
	CY7C261-25WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
35	CY7C261-35JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C261-35PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7C261-35WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	CY7C261-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C261-35LMB	L64	28-Square Leadless Chip Carrier	
	CY7C261-35QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
	CY7C261-35TMB	T73	24-Lead Windowed Cerpack	
	CY7C261-35WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
45	CY7C261-45JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C261-45PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7C261-45WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	CY7C261-45DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C261-45LMB	L64	28-Square Leadless Chip Carrier	
	CY7C261-45QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
	CY7C261-45TMB	T73	24-Lead Windowed Cerpack	
	CY7C261-45WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
55	CY7C261-55JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C261-55PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7C261-55WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	CY7C261-55DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C261-55LMB	L64	28-Square Leadless Chip Carrier	
	CY7C261-55QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
	CY7C261-55TMB	T73	24-Lead Windowed Cerpack	
	CY7C261-55WMB	W14	24-Lead (300-Mil) Windowed CerDIP	

Note:

8. Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

Ordering Information ${ }^{[8]}$ (continued)

$\begin{gathered} \text { Speed } \\ (\mathrm{ns}) \end{gathered}$	Ordering Code	Package	Package	$\begin{gathered} \hline \text { Operating } \\ \text { Range } \end{gathered}$
20	CY7C263-20JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C263-20PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7C263-20WC	W14	24-Lead (300-Mil) Windowed CerDIP	
25	CY7C263-25JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C263-25PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7C263-25WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	CY7C263-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C263-25LMB	L64	28-Square Leadless Chip Carrier	
	CY7C263-25QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
	CY7C263-25TMB	T73	24-Lead Windowed Cerpack	
	CY7C263-25WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
35	CY7C263-35JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C263-35PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7C263-35WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	CY7C263-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C263-35LMB	L64	28-Square Leadless Chip Carrier	
	CY7C263-35QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
	CY7C263-35TMB	T73	24-Lead Windowed Cerpack	
	CY7C263-35WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
45	CY7C263-45JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C263-45PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7C263-45WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	CY7C263-45DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C263-45LMB	L64	28-Square Leadless Chip Carrier	
	CY7C263-45QMB	Q64	28-Pin Windowed Leadless Ćhip Carrier	
	CY7C263-45TMB	T73	24-Lead Windowed Cerpack	
	CY7C263-45WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
55	CY7C263-55JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C263-55PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7C263-55WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	CY7C263-55DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C263-55LMB	L64	28-Square Leadless Chip Carrier	
	CY7C263-55QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
	CY7C263-55TMB	T73	24-Lead Windowed Cerpack	
	CY7C263-55WMB	W14	24-Lead (300-Mil) Windowed CerDIP	

Ordering Information (continued) ${ }^{[8]}$

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CY7C264-20DC	D12	24-Lead (600-Mil) CerDIP	Commercial
	CY7C264-20PC	P11	24-Lead (600-Mil) Molded DIP	
	CY7C264-20WC	W12	24-Lead (600-Mil) Windowed CerDIP	
25	CY7C264-25DC	D12	24-Lead (600-Mil) CerDIP	Commercial
	CY7C264-25PC	P11	24-Lead (600-Mil) Molded DIP	
	CY7C264-25WC	W12	24-Lead (600-Mil) Windowed CerDIP	
	CY7C264-25DMB	D12	24-Lead (600-Mil) CerDIP	Military
	CY7C264-25WMB	W12	24-Lead (600-Mil) Windowed CerDIP	
35	CY7C264-35DC	D12	24-Lead (600-Mil) CerDIP	Commercial
	CY7C264-35PC	P11	24-Lead (600-Mil) Molded DIP	
	CY7C264-35WC	W12	24-Lead (600-Mil) Windowed CerDIP	
	CY7C264-35DMB	D12	24-Lead (600-Mil) CerDIP	Military
	CY7C264-35WMB	W12	24-Lead (600-Mil) Windowed CerDIP	
45	CY7C264-45DC	D12	24-Lead (600-Mil) CerDIP	Commercial
	CY7C264-45PC	P11	24-Lead (600-Mil) Molded DIP	
	CY7C264-45WC	W12	24-Lead (600-Mil) Windowed CerDIP	
	CY7C264-45DMB	D12	24-Lead (600-Mil) CerDIP	Military
	CY7C264-45WMB	W12	24-Lead (600-Mil) Windowed CerDIP	
55	CY7C264-55DC	D12	24-Lead (600-Mil) CerDIP	Commercial
	CY7C264-55PC	P11	24-Lead (600-Mil) Molded DIP	
	CY7C264-55WC	W12	24-Lead (600-Mil) Windowed CerDIP	
	CY7C264-55DMB	D12	24-Lead (600-Mil) CerDIP	Military
	CY7C264-55WMB	W12	24-Lead (600-Mil) Windowed CerDIP	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB}}{ }^{[9]}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 1}[10]$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 2}[10]$	$7,8,9,10,11$

Notes:
9. 7C261 only.
10. 7C263 and 7C264 only.

SMD Cross Reference

$\begin{gathered} \text { SMD } \\ \text { Number } \end{gathered}$	Suffix	Cypress Number
5962-87515	05KX	CY7C261-45TMB
5962-87515	05LX	CY7C261-45WMB
5962-87515	053X	CY7C261-45QMB
5962-87515	06KX	CY7C261-55TMB
5962-87515	06LX	CY7C261-55WMB
5962-87515	063X	CY7C261-55QMB
5962-90803	01MKX	CY7C261-55KMB
5962-90803	01MLX	CY7C261-55DMB
5962-90803	01M3X	CY7C261-55LMB
5962-90803	02MKX	CY7C261-45KMB
5962-90803	02MLX	CY7C261-45DMB
5962-90803	02M3X	CY7C261-45LMB
5962-90803	03MKX	CY7C261-35KMB
5962-90803	03MLX	CY7C261-35DMB
5962-90803	03M3X	CY7C261-35LMB
5962-90803	04MKX	CY7C261-25KMB
5962-90803	04MLX	CY7C261-25DMB
5962-90803	04M3X	CY7C261-25LMB
5962-90803	05MJX	CY7C264-55DMB
5962-90803	05MKX	CY7C263-55KMB
5962-90803	05MLX	CY7C263-55DMB
5962-90803	05M3X	CY7C263-55LMB
5962-90803	06MJX	CY7C264-45DMB
5962-90803	06MKX	CY7C263-45KMB
5962-90803	06MLX	CY7C263-45DMB
5962-90803	06M3X	CY7C263-45LMB
5962-90803	07MJX	CY7C264-35DMB
5962-90803	07MKX	CY7C263-35KMB
5962-90803	07MLX	CY7C263-35DMB
5962-90803	07M3X	CY7C263-35LMB
5962-90803	08MJX	CY7C264-25DMB
5962-90803	08MKX	CY7C263-25KMB
5962-90803	08MLX	CY7C263-25DMB
5962-90803	08M3X	CY7C263-25LMB

Document \#: 38-00005-1

Features

- CMOS for optimum speed/power
- High speed (commercial and military)
-15 ns max. set-up
- 12 ns clock to output
- Low power
- 660 mW (commercial)
-770 mW (military)
- On-chip edge-triggered registers
- Ideal for pipelined microprogrammed systems
- EPROM technology
- 100\% programmable
- Reprogrammable (7C265W)
- $\mathbf{5 V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- Capable of withstanding $\mathbf{> 2 0 0 1 V}$ static discharge
- Slim 28-pin, 300-mil plastic or hermetic DIP

Functional Description

The CY7C265 is a 8192×8 registered

PROM. It is organized as 8,192 words by 8 bits wide, and has a pipeline output register. In addition, the device features a programmable initialize byte that may be loaded into the pipeline register with the initialize signal. The programmable initialize byte is the 8,193 rd byte in the PROM and its value is programmed at the time of use.
Packaged in 28 pins, the PROM has 13 address signals (A_{0} through A_{12}), 8 data out signals $\left(\mathrm{O}_{0}\right.$ through $\left.\mathrm{O}_{7}\right), \overline{\mathrm{E}} / \mathrm{I}$ (enable or initialize), and CLOCK.
CLOCK functions as a pipeline clock, loading the contents of the addressed memory location into the pipeline register on each rising edge. The data will appear on the outputs if they are enabled. One pin on the CY7C265 is programmed to perform either the enable or the initialize function.
If the asynchronous enable ($\overline{\mathrm{E}}$) is being used, the outputs may be disabled at any
time by switching the enable to a logic HIGH, and may be returned to the active state by switching the enable to a logic LOW.

If the synchronous enable (\bar{E}_{S}) is being used, the outputs will go to the OFF or high-impedance state upon the next positive clock edge after the synchronous enable input is switched to a HIGH level. If the synchronous enable pin is switched to a logic LOW, the subsequent positive clock edge will return the output to the active state. Following a positive clock edge, the address and synchronous enable inputs are free to change since no change in the output will occur until the next LOW-to-HIGH transition of the clock. This unique feature allows the CY7C265 decoders and sense amplifiers to access the next location while previously addressed data remains stable on the outputs.

Functional Description (continued)

If the $\overline{\mathrm{E}} / \overline{\mathrm{I}}$ pin is used for $\overline{\text { INIT }}$ (asynchronous), then the outputs are permanently enabled. The initialize function is useful during power-up and time-out sequences, and can facilitate implementation of other sophisticated functions such as a built-in "jump start" address. When activated, the initialize control input causes the contents of a user programmed 8193rd 8-bit word to be loaded into the on-chip register. Each bit is programmable and the initialize function can be used to load any desired combina-
tion of 1 s and 0 s into the register. In the unprogrammed state, activating INIT will generate a register clear (all outputs LOW). If all the bits of the initialize word are programmed to be a 1 , activating INIT performs a register preset (all outputs HIGH).
Applying a LOW to the $\overline{\text { INIT }}$ input causes an immediate load of the programmed initialize word into the pipeline register and onto the outputs. The INIT LOW disables clock and must return HIGH to enable clock independent of all other inputs, including the clock.

Selection Guides

		7C265-15	7C265-25	7C265-40	7C265-50
Maximum Set-Up Time (ns)	$\mathbf{1 5}$	25	40	50	
Maximum Clock to Output (ns)	$\mathbf{1 2}$	15	20	25	
Maximum Operating Current (mA)	Com'l	120	120	100	80
	Mil	140	140		120

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature...............$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
DC Program Voltage .13 .0 V

UV Exposure 7258 Wsec/cm ${ }^{2}$
Static Discharge Voltage
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	Test Conditions		7C265-15, 25		7C265-40		7C265-50		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~m}$		2.4						V
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~m}$				2.4		2.4		
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Com'l		0.4					V
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\text {OL }}=12.0 \mathrm{~mA}$					0.4		0.4	
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=6.0 \mathrm{~mA}$	Mil		0.4					
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$					0.4		0.4	
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0		2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$		- 10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}$Output Disabled		-40	+40	-40	+40	-40	+40	$\mu \mathrm{A}$
$\mathrm{IOS}^{[4]}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			90		90		90	mA
I_{CC}	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Com'l		120		100		80	mA
			Mil		140				120	
$\bar{V}_{\text {PP }}$	ProgrammingSupplyVoltage			12	13	12	13	12	13	V
$\mathrm{I}_{\text {PP }}$	ProgrammingSupplyCurrent				50		50		50	mA
$\mathrm{V}_{\text {IHP }}$	Input HIGH Programming Voltage			3.0		3.0		3.0		V
$\mathrm{V}_{\text {ILP }}$	Input LOW Programming Voltage				0.4		0.4		0.4	V

Notes:

1. Contact a Cypress representative for industrial temperature range
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Note:
5. See Introduction to CMOS PROMs in this Data Book for general information on testing.

AC Test Loads and Waveforms

Test Load for - 15 through $\mathbf{- 2 5}$ speeds

Equivalent to: THÉVENIN EQUIVALENT

$$
\mathrm{R}_{\mathrm{TH}} 200 \Omega(250 \Omega \mathrm{Mil})
$$

OUTPUT O-O 2.0 V

Test Load for -40 through - $\mathbf{5 0}$ speeds

(c) Normal Load

(d) High Z Load C265-6

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT $\mathrm{O} \underbrace{\mathrm{R}_{\text {TH }}} 100 \Omega$ 2.0V

Switching Characteristics Over the Operating Range ${ }^{[3,5]}$

Parameter	Description	7C265-15		7C265-25		7C265-40		7C265-50		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{AS}	Address Set-Up to Clock	15		25		40		50		ns
t_{HA}	Address Hold from Clock	0		0		0		0		ns
t_{CO}	Clock to Output Valid		12		15		20		25	ns
$\mathrm{t}_{\text {PW }}$	Clock Pulse Width	12		15		15		20		ns
tses	$\overline{\mathrm{E}}_{\text {S }}$ Set-Up to Clock (Sync. Enable Only)	12		15		15		15		ns
$\mathrm{t}_{\text {HES }}$	\bar{E}_{S} Hold from Clock	5		5		5		5		ns
$\mathrm{t}_{\text {DI }}$	$\overline{\text { INIT to Output Valid }}$		15		18		25		35	ns
t_{RI}	$\overline{\text { INIT Recovery to Clock }}$	12		15		20		25		ns
$\mathrm{t}_{\text {PWI }}$	INIT Pulse Width	12		15		25		35		ns
$\mathrm{t}_{\mathrm{COS}}$	Output Valid from Clock (Sync. Mode)		12		15		20		25	ns
$\mathrm{t}_{\mathrm{HZC}}$	Output Inactive from Clock (Sync. Mode)		12		15		20		25	ns
$\mathrm{t}_{\text {DOE }}$	Output Valid from $\overline{\mathrm{E}}$ LOW (Async. Mode)		12		15		20		25	ns
$\mathrm{t}_{\text {HZE }}$	Output Inactive from Ē HIGH (Async. Mode)		12		15		20		25	ns

Switching Waveform

C265-7

Erasure Characteristics

Wavelengths of light less than 4000 angstroms begin to erase the 7C265 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum dose (UV intensity \bullet exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a 12 $\mathrm{mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately 45 minutes. The 7C265 needs to be within one inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Bit Map Data

Programmer Address (Hex.)		RAM Data
Decimal	Hex	Contents
0	0	Data
\cdot	\cdot	\cdot
8191	1 FFF	Data
8192	2000	INIT Byte
8193	2001	Control Byte

Control Byte
00 Asynchronous output enable (default condition)
01 Synchronous output enable
02 Asynchronous initialize

Programming Modes

The 7C265 offers a limited selection of programmed architectures. Programming these features should be done with a single $10-\mathrm{ms}$-wide pulse in place of the intelligent algorithm, mainly because these features are verified operationally, not with the VFY pin. Architecture programming is implemented by applying the supervoltage to two additional pins during programming. In programming the 7C265 architecture, V_{PP} is applied to pins 3,9 , and 22. The choice of a particular mode depends on the states of the other pins during programming, so it is important that the condi-
tion of the other pins be met as set forth in the mode table. The considerations that apply with respect to power-up and powerdown during intelligent programming also apply during architecture programming. Once the supervoltages have been established and the correct logic states exist on the other device pins, programming may begin. Programming is accomplished by pulling PGM from HIGH to LOW and then back to HIGH with a pulse width equal to 10 ms .

Table 1. Mode Selection

Mode		Pin Function						
	Read or Output Disable	A_{12}	A_{11}	$\mathbf{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathbf{A}_{4}-\mathrm{A}_{3}$	A_{2}
	Other	A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathbf{A}_{4}-\mathrm{A}_{3}$	A_{2}
Asynchronous Enable Read		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}
Synchronous Enable Read		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}
Asynchronous Initialization Read		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}
Program Memory		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}
Program Verify		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}
Program Inhibit		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}
Program Synchronous Enable		$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{A}_{10}-\mathrm{A}_{7}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{A}_{4}-\mathrm{A}_{3}$	$\mathrm{V}_{\text {IHP }}$
Program Initialize		$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{A}_{10}-\mathrm{A}_{7}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	$\mathrm{V}_{\mathrm{ILP}}$
Program Initial Byte		A_{12}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{A}_{10}-\mathrm{A}_{7}$	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{A}_{4}-\mathrm{A}_{3}$	$\mathrm{V}_{\mathrm{ILP}}$

Mode		Pin Function						
	Read or Output Disable	A_{1}	A_{0}	GND	CLK	GND	$\overline{\mathbf{E}, \overline{\mathbf{I}}}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	A_{1}	A_{0}	PGM	CLK	$\overline{\text { VFY }}$	$\mathbf{V P P}^{\text {P }}$	$\mathbf{D}_{7}-\mathbf{D}_{\mathbf{0}}$
Asynchronous Enable Read		A_{1}	A_{0}	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	GND	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Synchronous Enable Read		A_{1}	A_{0}	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }} / \mathrm{V}_{\text {IH }}$	GND	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Asynchronous Initialization Read		A_{1}	A_{0}	V_{IL}	$\mathrm{V}_{\text {IL }}$	GND	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Memory		A_{1}	A_{0}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		A_{1}	A_{0}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		A_{1}	A_{0}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	High Z
Program Synchronous Enable		V_{PP}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Initialize		V_{PP}	$\mathrm{V}_{\mathrm{ILP}}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Initial Byte		V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$

LCC/PLCC (Opaque Only)

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed program-
ming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Typical DC and AC Characteristics

Typical DC and AC Characteristics (continued)
NORMALIZED SUPPLY CURRENT
vs. CLOCK PERIOD

Ordering Information ${ }^{[6]}$

$\begin{gathered} \text { Speed } \\ (\mathrm{ns}) \end{gathered}$	$\begin{array}{\|c} \hline \mathbf{I}_{\mathbf{C C C}} \\ (\mathbf{m A}) \\ \hline \end{array}$	Ordering Code	Package Name	Package Type	$\begin{gathered} \hline \text { Operating } \\ \hline \text { Range } \\ \hline \end{gathered}$
15	120	CY7C265-15JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C265-15PC	P21	28-Lead (300-Mil) Molded DIP	
		CY7C265-15WC	W22	28-Lead ($300-\mathrm{Mil}$) Windowed CerDIP	
	140	CY7C265-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
		CY7C265-15LMB	L64	28-Square Leadless Chip Carrier	
		CY7C265-15QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C265-15WMB	W22	28-Lead ($300-\mathrm{Mil}$) Windowed CerDIP	
25	120	CY7C265-25JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C265-25PC	P21	28-Lead (300-Mil) Molded DIP	
		CY7C265-25WC	W22	28-Lead ($300-\mathrm{Mil}$) Windowed CerDIP	
	140	CY7C265-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
		CY7C265-25LMB	L64	28-Square Leadless Chip Carrier	
		CY7C265-25QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C265-25WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
40	100	CY7C265-40JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C265-40PC	P21	28-Lead (300-Mil) Molded DIP	
		CY7C265-40WC	W22	28-Lead (300-Mil) Windowed CerDIP	
50	80	CY7C265-50JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C265-50PC	P21	28-Lead (300-Mil) Molded DIP	
		CY7C265-50WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	120	CY7C265-50DMB	D22	28-Lead (300-Mil) CerDIP	Military
		CY7C265-50LMB	L64	28-Square Leadless Chip Carrier	
		CY7C265-50QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C265-50WMB	W22	28-Lead (300-Mil) Windowed CerDIP	

Notes:

6. Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{AS}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{PW}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SES}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{HES}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{COS}}$	$7,8,9,10,11$

Document \#: 38-00084-E

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
- 20 ns (commercial)
- 25 ns (military)
- Low power
-660 mW (commercial)
- 770 mW (military)
- Super low standby power
-Less than 85 mW when deselected
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- $\mathbf{5 V} \pm \mathbf{1 0} \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military

- TTL-compatible I/O

- Direct replacement for 27C64 EPROMs

Functional Description

The CY7C266 is a high-performance 8192 word by 8 bit CMOS PROM. When deselected, the CY7C266 automatically powers down into a low-power standby mode. It is packaged in a 600 -mil-wide package. The reprogrammable packages are equipped with an erasure window; when exposed to UV light, these PROMs are erased and can then be reprogrammed. The memory cells utilize proven EPROM floating-gate technology and byte-wide intelligent programming algorithms.

The CY7C266 is a plug-in replacement for EPROM devices. The EPROM cell requires only 12.5 V for the super voltage and low-current requirements allow for gang programming. The EPROM cells allow for each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming, the product will meet DC and AC specification limits.
Reading is accomplished by placing an active LOW signal on $\overline{\mathrm{OE}}$ and $\overline{\mathrm{CE}}$. The contents of the memory location addressed by the address lines (A_{0} through A_{12}) will become available on the output lines (O_{0} through O_{7}).

Logic Block Diagram

Pin Configurations

	CerDIP Top View	
v_{cc}	1 28	V_{Cc}
A_{12}	$2 \quad 27$	$7 \mathrm{~V}_{\mathrm{cc}}$
A_{7}	$3 \quad 26$	6 NC
A_{6}	$4 \quad 25$	$5 A_{B}$
A_{5}	$5 \quad 24$	$7 A_{9}$
A_{4}	$6 \quad 23$	$1 \mathrm{~A}_{11}$
A_{3}	$7 \bigcirc$	$\square{ }^{\text {OE }}$
A_{2}	$8 \bigcirc 2$	$1 \mathrm{~A}_{10}$
A_{1}	9 7C266 20	0 CE
A_{0}	$10 \quad 19$	0_{7}
O_{0} [$11 \quad 18$	$8 \mathrm{O}_{6}$
0_{1}	$12 \quad 17$	${ }_{7} \mathrm{O}_{5}$
O_{2}	1316	${ }_{6} \mathrm{O}_{4}$
GND	$14 \quad 15$	SO_{3}

Selection Guide

		7C266-20	7C266-25	7C266-35	7C266-45
Maximum Access Time (ns)	20	25	35	45	
Maximum Operating Current (mA)	Commercial	120	120	100	100
	Military		140		120
Maximum Standby Current (mA)	Commercial	15	15	15	15
	Military		15		15

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Starage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 28 to Pin 14) \qquad -0.5 V to +7.0 V DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V

DC Program Voltage 13.0 V

Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
UV Exposure
$7258 \mathrm{Wsec} / \mathrm{cm}^{2}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range[${ }^{[3,4]}$

Parameter	Description	Test Conditions		7C266-20		7C266-25		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA} \end{aligned}$	Com'l	2.4		2.4		V
			Mil			2.4		
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Com'l		0.4		0.4	V
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\text {OL }}=6.0 \mathrm{~mA}$	Mil				0.4	
V_{IH}	Input HIGH Voltage			2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8	V
I_{IX}	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Note 4				
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{OH}}$ Output Disabled		-40	+40	-40	+40	$\mu \mathrm{A}$
Ios	$\begin{array}{\|l} \text { Output Short } \\ \text { Circuit Current } \end{array}$	$\mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$		-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		120		120	mA
			Mil				140	
$\mathrm{I}_{\text {SB }}$	Standby Supply Current	Chip Enable Inactive, $\overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}$	Com'l		15		15	mA
			Mil				15	

Notes:

1. Contact a Cypress representative regarding industrial temperature range specification.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. See the "Introduction to CMOS PROMs" section of the Cypress Data Book for general information on testing.
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$ (continued)

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
COUT	Output Capacitance		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10
		pF		

AC Test Loads and Waveforms

Test Load for $\mathbf{- 2 0}$ through $\mathbf{- 2 5}$ speeds

(a) Normal Load
(b) High Z Load

C266-4
Equivalent to: THÉVENIN EQUIVALENT

Test Load for $\mathbf{- 3 5}$ through $\mathbf{- 5 5}$ speeds

(c) Normal Load
(d) High Z Load

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[1,2,4]}$

Parameter	Description	7C266-20		7C266-25		7C266-35		7C266-45		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		20		25		35		45	ns
$\mathrm{t}_{\text {HZCE }}$	Chip Enable Inactive to High Z		25		30		40		45	ns
$\mathrm{t}_{\text {HZOE }}$	Output Enable Inactive to High Z		12		12		20		25	ns
${ }^{\text {t }}$ AOE	Output Enable Active to Output Valid		12		12		20		25	ns
$t_{\text {ACE }}$	Chip Enable Active to Output Valid		25		30		40		45	ns
toha	Data Hold from Address Change	3		3		3		3		ns
$t_{\text {PU }}$	Chip Enable Active to Power-Up		25		30		40		45	ns
$t_{\text {PD }}$	Chip Enable Inactive to Power-Down		25		30		40		45	ns

EPROM is exposed to high-intensity UV light for an extended period of time.
$7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Programming Modes

Programming support is available from Cypress as well as from a number of third party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Erasure Characteristics

Wavelengths of light less than 4000 angstroms begin to erase the devices in the windowed package. For this reason, an opaque label should be placed over the window if the EPROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum dose (UV intensity multiplied by exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating, the exposure time would be approximately 35 minutes. The CY7C266 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the

Table 1. Mode Selection

Mode		Pin Function ${ }^{[6,7]}$							
	Normal Operation	A_{8}	A9	A_{10}	A_{11}	\mathbf{A}_{12}	$\overline{\mathbf{C E}}$	$\overline{\mathbf{O E}}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
	Program	$\overline{\overline{\mathbf{V F Y}}}$	$\overline{\text { PGM }}$	LAT	NA	NA	$\overline{\mathbf{C E}}$	$\mathbf{V}_{\text {PP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Read		A_{8}	A9	A_{10}	A_{11}	A_{12}	V_{IL}	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Standby		X	X	X	X	X	V_{IH}	X	Three-Stated
Output Disable		A_{8}	A9	A_{10}	A_{11}	A_{12}	$\mathrm{V}_{\text {IL }}$	V_{IH}	Three-Stated
Program		$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$				
Program Verify		$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\mathrm{ILP}}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\text {IHP }}$	VILP	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {ILP }}$	V_{PP}	Three-Stated
Blank Check		$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{O}_{7}-\mathrm{O}_{0}$

Notes
6. $\mathrm{X}=$ "don't care" but must not exceed $\mathrm{V}_{\mathrm{CC}}+5 \%$.
7. Address $\mathrm{A}_{8}-\mathrm{A}_{12}$ must be latched through lines $\mathrm{A}_{0}-\mathrm{A}_{4}$ in Programming modes.

Figure 1. Programming Pinout

Typical DC and AC Characteristics

NORMALIZED SUPPLY CURRENT vs. CYCLE PERIOD

Ordering Information ${ }^{[8]}$

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CY7C266-20PC	P15	28-Lead (600-Mil) Molded DIP	Commercial
	CY7C266-20WC	W16	28-Lead (600-Mil) Windowed CerDIP	
25	CY7C266-25PC	P15	28-Lead (600-Mil) Molded DIP	Commercial
	CY7C266-25WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C266-25DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C266-25LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C266-25QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C266-25WMB	W16	28-Lead (600-Mil) Windowed CerDIP	
35	CY7C266-35PC	P15	28-Lead (600-Mil) Molded DIP	Commercial
	CY7C266-35WC	W16	28-Lead (600-Mil) Windowed CerDIP	
45	CY7C266-45PC	P15	28-Lead (600-Mil) Molded DIP	Commercial
	CY7C266-45WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C266-45DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C266-45LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C266-45QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C266-45WMB	W16	28-Lead (600-Mil) Windowed CerDIP	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AOE}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$

Note:

8. Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

Document \#: 38-00086-D

Features

- CMOS for optimum speed/power
- High speed (commercial and military)
- 15-ns max set-up
— 12-ns clock to output
- Low power
-660 mW (commercial)
- 770 mW (military)
- On-chip edge-triggered registers
- Ideal for pipelined microprogrammed systems
- On-chip diagnostic shift register
-For serial observability and controllability of the output register
- EPROM technology
- 100\% programmable
— Reprogrammable (7C269W)
- $\mathbf{5 V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- Capable of withstanding $\mathbf{>} \mathbf{2 0 0 1 V}$ static discharge
- Slim 300-mil, 28-pin plastic or hermetic DIP

8K x 8 Registered Diagnostic PROM

Functional Description

The CY7C269 is a $8 \mathrm{~K} \times 8$ registered diagnostic PROM. It is organized as 8,192 words by 8 bits wide, and has both a pipeline output register and an onboard diagnostic shift register. The device features a programmable initialize byte that may be loaded into the pipeline register with the initialize signal. The programmable initialize byte is the 8,193 rd byte in the PROM, and may be programmed to any desired value.

Logic Block Diagram

Pin Configurations

C269-1

Selection Guide

		$\mathbf{7 C 2 6 9 - 1 5}$	$\mathbf{7 C 2 6 9 - 2 5}$	7C269-40	7C269-50
Maximum Set-Up Time (ns)		15	25	40	50
Maximum Clock to Output (ns)		12	15	20	25
Maximum Operating Current (mA)	Commercial	120	120	100	80
	Military	140	140		120

Functional Description (continued)

The CY7C269 is optimized for applications that require diagnostics in a minimum amount of board area. Packaged in 28 pins, it has 13 address signals (A_{0} through A_{12}), 8 data out signals (O_{0} through O_{7}), $\overline{\mathrm{E}} / \overline{\mathrm{I}}$ (Enable or Initialize), and CLOCK (pipeline and diagnostic clock). Additional diagnostic signals consist of MODE, SDI (shift in), and SDO (shift out). Normal pipelined operation and diagnostic operation are mutually exclusive.
When the MODE signal is LOW, the 7C269 operates in a normal pipelined mode. CLOCK functions as a pipeline clock, loading the contents of the addressed memory location into the pipeline register on each rising edge. The data will appear on the outputs if they are enabled. One pin on the 7C269 is programmed to perform either the Enable or the Initialize function. If the \bar{E} / \bar{I} pin is used for a INIT (asynchronous initialize) function, the outputs are permanently enabled and the initialize word is loaded into the pipeline register on a HIGH to LOW transition of the INIT signal. The INIT LOW disables CLOCK and must return high to re-enable CLOCK. If the \bar{E} / \bar{I} pin is used for an enable signal, it may be programmed for either synchronous or asynchronous operation.

[^36]When the MODE signal is HIGH, the 7C269 operates in the diagnostic mode. The $\overline{\mathrm{E}} / \mathrm{I}$ signal becomes a secondary mode signal designating whether to shift the diagnostic shift register or to load either the diagnostic register or the pipeline register. If $\overline{\mathrm{E}} / \overline{\mathrm{I}}$ is HIGH , it shifts SDI into the least-significant location of the diagnostic register and all bits one location toward the most-significant location on each rising edge. The contents of the most-significant location in the diagnostic register are available on the SDO pin.
If the \bar{E} / \bar{I} signal is LOW, SDI becomes a direction signal, transferring the contents of the diagnostic register into the pipeline register when SDI is LOW. When SDI is HIGH, the contents of the output pins are transferred into the diagnostic register. Both transfers occur on a LOW to HIGH transition of the CLOCK. If the outputs are enabled, the contents of the pipeline register are transferred into the diagnostic register. If the outputs are disabled, an external source of data may be loaded into the diagnostic register. In this condition, the SDO signal is internally driven to be the same as the SDI signal, thus propagating the "direction of transfer information" to the next device in the string.

Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Notes:

1. Contact a Cypress representative for industrial temperature range specifications.
2. T_{A} is the "instant on" case temperature.

Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	Test Conditions		7C269-15, 25		7C269-40		7C269-50		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{OC}}=\mathrm{Min}, \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4						V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$, $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$				2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Com'l		0.4					V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=6.0 \mathrm{~mA}$	Mil		0.4					
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$	Com'l				0.4		0.4	V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Mil				0.4		0.4	
V_{IH}	Input HIGH Voltage			2.0		2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \text { GND } \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$		-40	+40	-40	+40	-40	+40	$\mu \mathrm{A}$
$\mathrm{IOS}^{[5]}$	Output Short Circuit Current				90		90		90	mA
I_{CC}	$V_{C C}$ Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Com'l		120		100		80	mA
			Mil		140				120	
$\mathrm{V}_{\text {PP }}$	Programming Supply Voltage			12	13	12	13	12	13	V
IPP	Programming Supply Current				50		50		50	mA
$\mathrm{V}_{\text {IHP }}$	Input HIGH Programming Voltage			3.0		3.0		3.0		V
$\mathrm{V}_{\text {ILP }}$	Input LOW Programming Voltage				0.4		0.4		0.4	V

Capacitance ${ }^{[4,6]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		10
		pF		

Notes:

3. See the last page of this specification for Group A subgroup testing information.
4. See Introduction to CMOS PROMs in this Data Book for general information on testing.
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
6. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Test Load for - $\mathbf{1 5}$ through $\mathbf{- 2 5}$ speeds

Equivalent to: THEVENIN EQUIVALENT

Test Load for - 40 through - 50 speeds

(c) Normal Load

SCOPE

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	7C269-15		7C269-25		7C269-40		7C269-50		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{AS}	Address Set-Up to Clock	15		25		40		50		ns
$\mathrm{t}_{\text {AH }}$	Address Hold from Clock	0		0		0		0		ns
\mathbf{t}_{CO}	Clock to Output Valid		12		15		20		25	ns
$\mathrm{t}_{\text {PW }}$	Clock Pulse Width	12		15		15		20		ns
$\mathrm{t}_{\text {SES }}$	\bar{E}_{S} Set-Up to Clock (Sync Enable Only)	12		15		15		15		ns
$\mathrm{t}_{\text {HES }}$	$\overline{\mathrm{E}}_{S}$ Hold from Clock	5		5		5		5		ns
t_{DI}	$\overline{\text { INIT }}$ to Out Valid		15		18		25		35	ns
$\mathrm{t}_{\text {RI }}$	$\overline{\text { INIT Recovery to Clock }}$	12		15		20		25		ns
$\mathrm{t}_{\text {PWI }}$	INIT Pulse Width	12		15		25		35		ns
$\mathrm{t}_{\mathrm{COS}}$	Output Valid from Clock (Sync. Mode)		12		15		20		25	ns
$\mathrm{t}_{\mathrm{HZC}}$	Output Inactive from Clock (Sync. Mode)		12		15		20		25	ns
$\mathrm{t}_{\text {DOE }}$	Output Valid from $\overline{\mathrm{E}}$ LOW (Asynch. Mode)		12		15		20		25	ns
$\mathrm{t}_{\text {HZE }}$	Output Inactive from $\overline{\mathrm{E}} \mathrm{HIGH}$ (Async. Mode)		12		15		20		25	ns

CY7C269
SEMICONDUCTOR

Diagnostic Mode Switching Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description		7C269-15		7C269-25		7C269-40,50		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
${ }^{\text {t SSDI }}$	Set-Up SDI to Clock	Com'1	20		25		30		ns
		Mil	25		30		35		
$\mathrm{t}_{\text {HSDI }}$	SDI Hold from Clock	Com'l	0		0		0		ns
		Mil	0		0		0		
$\mathrm{t}_{\text {DSDO }}$	SDO Delay from Clock	Com'l		20		25		30	ns
		Mil		25		30		40	
${ }^{\text {t }}$ LCL	Minimum Clock LOW	Com'l	20		25		25		ns
		Mil	25		25		25		
$\mathrm{t}_{\mathrm{DCH}}$	Minimum Clock HIGH	Com'l	20		25		25		ns
		Mil	25		25		25		
${ }^{\text {t }}$ SM	Set-Up to Mode Change	Com'l	20		25		25		ns
		Mil	25		30		30		
t_{HM}	Hold from Mode Change	Com'l	0		0		0		ns
		Mil	0		0		0		
$\mathrm{t}_{\text {MS }}$	Mode to SDO	Com'I		20		25		25	ns
		Mil		25		30		30	
$\mathrm{t}_{\text {SS }}$	SDI to SDO	Com'l		30		40		40	ns
		Mil		35		40		45	
$\mathrm{t}_{\text {So }}$	Data Set-Up to DCLK	Com'l	20		25		25		ns
		Mil	25		30		30		
t_{HO}	Data Hold from DCLK	Com'l	10		10		10		ns
		Mil	13		13		15		

Switching Waveforms ${ }^{[3,4]}$

Pipeline Operation $($ Mode $=\mathbf{0}$)

Diagnostic Application (Shifting the Shadow Register ${ }^{[7]}$)

Diagnostic Application (Parallel Data Transfer)

Notes:
7. Diagnostic register $=$ shadow register $=$ shift register.
8. Asynchronous enable mode only.
9. The mode transition to HIGH latches the asynchronous enable state. If the enable state is changed and held before leaving the diagnostic mode (mode $H \| L$) then the output impedance change delay is t_{MS}.

Bit Map Data

Programmer Address (Hex.)		RAM Data
Decimal	Hex	Contents
0	0	Data
.	\cdot	\cdot
8191	$1 \dot{\mathrm{FFF}}$	Data
8192	2000	Init Byte
8193	2001	Control Byte

Control Byte
00 Asynchronous output enable (default condition)
01 Synchronous output enable
02 Asynchronous initialize

Programming Modes

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cy press representative.

LCC/PLCC (Opaque Only)

Figure 1. Programming Pinouts

Mode Selection

Mode		Pin Function ${ }^{10]}$							
	Read or Output Disable	A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}	A_{1}
	Other	A_{12}	A_{11}	$\mathbf{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}	A_{1}
Read		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}	A_{1}
Load SR to PR		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}	A_{1}
Load Output to SR		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}	A_{1}
Shift SR		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}	A_{1}
Asynchronous Enable Read		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}	A_{1}
Synchronous Enable Read		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}	A_{1}
Asynchronous Initialization Read		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}	A_{1}
Program Memory		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}	A_{1}
Program Verify		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}	A_{1}
Program Inhibit		A_{12}	A_{11}	$\mathrm{A}_{10}-\mathrm{A}_{7}$	A_{6}	A_{5}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	A_{2}	A_{1}
Program Synchronous Enable		$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{A}_{10}-\mathrm{A}_{7}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	$\mathrm{V}_{\text {IHP }}$	A_{1}
Program Initialize		$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{A}_{10}-\mathrm{A}_{7}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	$\mathrm{V}_{\text {ILP }}$	A_{1}
Program Initial Byte		A_{12}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{A}_{10}-\mathrm{A}_{7}$	$V_{\text {IHP }}$	V_{PP}	$\mathrm{A}_{4}-\mathrm{A}_{3}$	$\mathrm{V}_{\text {ILP }}$	A_{1}

Mode		Pin Function ${ }^{[10]}$						
	Read or Output Disable	A_{0}	MODE	CLK	SDI	SDO	$\overline{\mathbf{E}}, \overline{\mathbf{I}}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	A_{0}	$\overline{\text { PGM }}$	CLK	NA	$\overline{\text { VFY }}$	$\mathbf{V P P}^{\text {P }}$	$\mathbf{D}_{7}-\mathrm{D}_{\mathbf{0}}$
Read		A_{0}	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\mathrm{IL}} / \mathrm{V}_{\text {IH }}$	X	High Z	V_{IL}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Load SR to PR		A_{0}	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {II }} / \mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\text {IL }}$	SDI	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Load Output to SR		A_{0}	V_{IH}	$\mathrm{V}_{\mathrm{IL}} / \mathrm{V}_{\text {IH }}$	V_{IH}	SDI	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Shift SR		A_{0}	$\mathrm{V}_{\text {IH }}$	$\mathrm{V}_{\mathrm{IL}} / \mathrm{V}_{\text {IH }}$	$\mathrm{D}_{\text {IN }}$	SDO	$\mathrm{V}_{\text {IH }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Asynchronous Enable Read		A_{0}	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	X	High Z	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Synchronous Enable Read		A_{0}	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {II }} / \mathrm{V}_{\text {IH }}$	X	High Z	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Asynchronous Initialization Read		A_{0}	$\mathrm{V}_{\text {IL }}$	V_{IL}	X	High Z	V_{IL}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Memory		A_{0}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	X	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		A_{0}	$\mathrm{V}_{\text {IHP }}$	$V_{\text {ILP }}$	X	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		A_{0}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	X	$\mathrm{V}_{\text {IHP }}$	V_{PP}	High Z
Program Synchronous Enable		$V_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	X	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Initialize		$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	X	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Initial Byte		$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	X	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$

Note:
10. $\mathrm{X}=$ "don't care" but not to exceed $\mathrm{V}_{\mathrm{CC}}+5 \%$.

Typical DC and AC Characteristics

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

Ordering Information ${ }^{[11]}$

Speed (ns)	$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & (\mathbf{m A}) \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
15	120	CY7C269-15JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C269-15PC	P21	28-Lead (300-Mil) Molded DIP	
		CY7C269-15WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	140	CY7C269-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
		CY7C269-15LMB	L64	28-Square Leadless Chip Carrier	
		CY7C269-15QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C269-15WMB	W22	28 -Lead (300-Mil) Windowed CerDIP	
25	140	CY7C269-25JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C269-25PC	P21	28-Lead (300-Mil) Molded DIP	
		CY7C269-25WC	W22	28-Lead (300-Mil) Windowed CerDIP	
		CY7C269-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
		CY7C269-25LMB	L64	28-Square Leadless Chip Carrier	
		CY7C269-25QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C269-25WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
40	100	CY7C269-40JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C269-40PC	P21	28-Lead (300-Mil) Molded DIP	
		CY7C269-40WC	W22	28-Lead (300-Mil) Windowed CerDIP	
50	80	CY7C269-50JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C269-50PC	P21	28-Lead (300-Mil) Molded DIP	
		CY7C269-50WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	120	CY7C269-50DMB	D22	28-Lead (300-Mil) CerDIP	Military
		CY7C269-50LMB	L64	28-Square Leadless Chip Carrier	
		CY7C269-50QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C269-50WMB	W22	28-Lead (300-Mil) Windowed CerDIP	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{AS}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{PW}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{SES}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{HES}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{COS}}$	$7,8,9,10,11$

Note:
11. Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

Diagnostic Mode Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\mathrm{SSDI}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{HSDI}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DSDO}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{DCL}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{tCH}}$	$7,8,9,10,11$
t_{HM}	$7,8,9,10,11$
t_{MS}	$7,8,9,10,11$
t_{SS}	$7,8,9,10,11$

Features

- 0.8-micron CMOS for optimum speed/power
- High speed (for commercial and military)
- $25-\mathrm{ns}$ single access time
- 11-ns burst access time
- 16-bit-wide words
- Input address registered, latched, or transparent
- On-chip programmable burst logic
- Programmable compatibility with many common microprocessors
- Three programmable chip selects
- Programmable output enable
- 44-pin PLCC and 44-pin LCC packages
- $\mathbf{1 0 0 \%}$ reprogrammable in windowed packages
- TTL-compatible I/O
- Capable of withstanding greater than 2001V static discharge

Functional Description

The CY7C270 is a 16 K -word by 16 -bit PROM designed to support a number of popular microprocessors with little or no "glue" logic. This PROM is packaged in a 44-pin PLCC package and a 44 -pin LCC package. The CY7C270 is available in windowed packages for 100% reprogrammability. The memory cells utilize proven EPROM floating-gate technology.
The CY7C270 offers a number of programmable features that allow the user to configure the PROM for use with their
chosen microprocessor. The programmable features include a choice between registered and latched modes of operation. The CY7C270 also has an on-board programmable counter for burst reads. The user may select a 2 -bit, 4 -bit, or 8 -bit linear counter, or program the PROM to use the Intel 80486 burst pattern (Table 2). A separate control input ($\overline{\mathrm{ADV}}$) is used to choose between single reads and bursts. In addition, the burst counter and latch may be bypassed for asynchronous operation to be used with DSP processors.
The CY7C270 allows the user to independently program the polarity of each chip select $\left(\mathrm{CS}_{2}-\mathrm{CS}_{0}\right)$. This provides on-chip decoding of up to eight banks of PROM. The polarity of the asynchronous output enable pin (OE) is also programmable.

Logic Block Diagram

Selection Guide

		CY7C270-15	CY7C270-20	CY7C270-30
Minimum Clock Period (ns)	15	20	30	
Maximum Operating Current (mA)	Commercial	175	175	$\mathbf{1 7 5}$
	Military	200	200	200

Pin Configuration

Operating Modes

The CY7C270 can be specifically configured for use with many popular microprocessors. The PROM configuration for some of these processors is detailed in Table 1. Note that many of the processors can use either registered or latched mode depending on their speed.

Table 1. Processor-Intelligent PROM Configuration

Processor	Registered/Latched	Burst Counter
SPARC	Registered	-
Intel 486	Latched	Table Logic ${ }^{[1]}$
80386	Latched	-
Motorola 68040	Latched	2-Bit Counter
Motorola 68030	Latched	2-Bit Counter
Intel 80960KB	Registered	2-Bit Counter
Intel 80960CA	Latched	2-Bit Counter
AMD 29000	Latched	8-Bit Counter
MIPS R3000	Registered	-
MIPS R2000	Registered	-
Motorola 88000	Registered	-

Note:

1. The Intel 486 uses a non-sequential burst. The CY7C270 is equipped with a look-up table (described in Table 2) for use with this processor.

Single Read Access in Registered Mode

A read access is initiated in registered mode on the rising edge of CLK if all three chip selects are asserted and LE is sampled LOW. The address applied to the input is stored in a register and is delivered to both the PROM core and the counter. The contents of the memory location accessed by the original address are delivered to the outputs. When $\overline{\mathrm{LE}}$ is asserted the system ignores the advance enable ($\overline{\mathrm{ADV}}$) input.

Single Read Access in Latched Mode

In latched mode, the CY7C270 can take advantage of situations where the address is available well before the rising edge of CLK. A read is initiated when the latch is opened (on the falling edge of $\overline{\mathrm{LE}})$. The address is sent directly to the PROM core and to the counter. The contents of the memory location addressed by the original address are delivered to the outputs. The latch is closed when $\overline{\mathrm{LE}}$ is deasserted.

Burst Sequence

During a burst, the first read is initiated as a single access read. After the initial read, the $\overline{\mathrm{LE}}$ input is held inactive. The advance enable input $(\overline{\mathrm{ADV}})$ controls the address sequencing starting with the second read. $\overline{A D V}$ is sampled on the rising edge of the CLK input. If $\overline{\mathrm{ADV}}$ is sampled LOW, the address is incremented to the nextlocation. The number of address bits incremented by the counter is programmed by the user. The counter wraps around after reaching the maximum count without affecting other bits in the address.
Special burst advancement logic is included in the CY7C270 to support the Intel 80486 burst operation. The 80486 bursts in the non-sequential pattern shown in Table 2.
Some processors have the capability to suspend a burst. In order to suspend a burst in the CY7C270 the processor must simply deassert the $\overline{\mathrm{ADV}}$ input. When the $\overline{\mathrm{ADV}}$ input is reasserted the burst will continue from where it left off. It is not necessary for the processor to send a new address to the PROM.

Table 2. Look-Up Table for Use with Intel 486

First Address		Second Address		Third Address		Fourth Address	
$\mathbf{A}_{\mathbf{x}+\mathbf{1}}$	$\mathbf{A}_{\mathbf{x}}$	$\mathbf{A}_{\mathbf{x}+\mathbf{1}}$	$\mathbf{A}_{\mathbf{x}}$	$\mathbf{A}_{\mathbf{x}+1}$	$\mathbf{A}_{\mathbf{x}}$	$\mathbf{A}_{\mathbf{x}+\mathbf{1}}$	$\mathbf{A}_{\mathbf{x}}$
0	0	0	1	1	0	1	1
0	1	0	0	1	1	1	0
1	0	1	1	0	0	0	1
1	1	1	0	0	1	0	0

Application Example 1

80486 Instruction Memory Using Two CY7C270s

Application Example 2

Intel 80960CA Using Two CY7C270s

Pin Descriptions

Input Signals

$\mathbf{A}_{13}-\mathbf{A}_{0}$ (Address lines). The address inputs are stored in a register at the rising edge of CLK if the device is programmed in registered mode. If the device is programmed in latched mode, the address inputs flow into the PROM while $\overline{\mathrm{LE}}$ is active and are captured at the rising edge of $\overline{\mathrm{LE}}$. For asynchronous operation, the device should be programmed in the latch mode with $\overline{\mathrm{LE}}$ tied LOW.
CLK (Clock line). The clock is used to sample the $\overline{\mathrm{ADV}}$ input. In registered mode, the clock is also used to sample $\overline{\mathrm{LE}}, \mathrm{CS}_{2}-\mathrm{CS}_{0}$, and the address.
$\overline{\mathbf{L E}}$ (Latch Enable). In registered mode, this input is sampled on the rising edge of CLK. If it is active, the address and chip selects are stored in a register. In latched mode, the address and chip selects are latched on the rising edge of this signal.
$\overline{\mathrm{ADV}}$ (Advance Enable). This signal is used for burst reads. If $\overline{\mathrm{LE}}$ is inactive, $\overline{\mathrm{ADV}}$ is sampled on the rising edge of CLK. If $\overline{\mathrm{ADV}}$ is

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V

DC Input Voltage . -3.0 V to +7.0 V
DC Program Voltage . 13.0 V
UV Erasure . 7258 Wsec/cm²
Static Discharge Voltage . > $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Pin Definitions

Signal Name	I/O	Description
$\mathrm{A}_{13}-\mathrm{A}_{0}$	I	Address Inputs
CLK	I	Clock
$\overline{\mathrm{LE}}$	I	Latch Enable
$\overline{\mathrm{ADV}}$	I	Advance Enable
$\mathrm{CS}_{2}-\mathrm{CS}_{0}$	I	Programmable Chip Selects
OE	I	Programmable Output Enable
$\mathrm{D}_{15}-\mathrm{D}_{0}$	O	Data Outputs
V_{CC}	-	Power Supply
V_{SS}	-	Ground

LOW, the counter will be incremented and the next address will be delivered to the PROM core. $\overline{\mathrm{ADV}}$ should be tied HIGH, and in the programming mode, the burst enable (BE) should be disabled for asynchronous operation.
$\mathbf{C S}_{\mathbf{2}}-\mathbf{C S}_{\mathbf{0}}$ (Synchronous Chip Selects). The polarity of each chip select is programmed by the user. The inputs from these pins are stored in a register on the rising edge of CLK in registered mode. In latched mode, the inputs are latched on the rising edge of $\overline{\mathrm{LE}}$. All three chip selects must be active in order to select the device.
OE (Asynchronous Output Enable). The polarity of this pin is programmable. The outputs are active when OE is asserted and tristated when OE is deasserted.

Output Signals

$\mathrm{D}_{15}-\mathrm{D}_{\mathbf{0}}$ (Data Outputs). Data from the array location addressed on inputs $A_{13}-A_{0}$ will appear on these pins. The outputs will be tri-stated if OE is deasserted or if the chip is not selected.

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[2]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Notes:
2. Contact a Cypress representative for industrial temperature range specifications.
3. T_{A} is the "instant on" case temperature.

Electrical Characteristics ${ }^{[4,5]}$

Parameter	Description	Test Conditions		Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}(6.0 \mathrm{~mA} \mathrm{Mil})$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs		2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs		-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-10	$+10$	$\mu \mathrm{A}$
V_{CD}	Input Clamp Diode Voltage	Note 4				$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{OH}}, \\ & \text { Output Disabled } \end{aligned}$		-40	+40	$\mu \mathrm{A}$
IOS	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}^{[6]}$		-20	-90	mA
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0.0 \mathrm{~mA}$	Com'l		175	mA
			Military		200	mA

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance			10
			pF	

Notes:

4. See Introduction to CMOS PROMs in this Data Book for general information on testing.
5. See the last page of this specification for Group A subgroup testing information.
6. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	Commercial and Military						Unit
		CY7C270-15		CY7C270-20		CY7C270-30		
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{CP}	Clock Period	15		20		30		ns
t_{CH}	Clock HIGH Pulse Width	6		8		13		ns
t_{CL}	Clock LOW Pulse Width	6		8		13		ns
$\mathrm{t}_{\text {AS }}$	Address Set-Up to CLK Rise	3		4		4		ns
t_{AH}	Address Hold from CLK Rise	2		3		4		ns
$\mathrm{t}_{\text {LES }}$	$\overline{\text { LE Set-Up to CLK Rise }}$	3		4		4		ns
$\mathrm{t}_{\text {LEH }}$	$\overline{\text { LE Hold from CLK Rise }}$	2		3		4		ns
$\mathrm{t}_{\text {LW }}$	Latch Pulse Width	7		10		12		ns
$\mathrm{t}_{\text {ADVS }}$	ADV Set-Up to CLK Rise	3		4		4		ns
$\mathrm{t}_{\mathrm{ADVH}}$	$\overline{\text { ADV }}$ Hold from CLK Rise	2		3		4		ns
$\mathrm{t}_{\text {ASL }}$	Address Set-Up to Latch Close	3		4		4		ns
$\mathrm{t}_{\text {AHL }}$	Address Hold from Latch Close	2		3		4		ns
t_{DH}	Data Hold	3		3		3		ns
t_{AA}	Address to Data for Single Read		25		28		35	ns
$t_{\text {LEA }}$	$\overline{\mathrm{LE}}$ Low to Data Valid for Single Read		25		28		35	ns
$\mathrm{t}_{\text {CKA }}$	Clock to Data for Single Read		25		28		35	ns
$\mathrm{t}_{\text {CKB }}$	CLK Rise to Data for Burst Read		11		12		15	ns
$\mathrm{t}_{\mathrm{CSS}}$	CS Set-Up to CLK Rise	3		4		4		ns
$\mathrm{t}_{\mathrm{CSH}}$	CS Hold from CLK Rise	2		3		4		ns
tcov	CLK Rise to Output Valid		11		12		15	ns
$\mathrm{t}_{\mathrm{COZ}}$	CLK Rise to High Z Output		11		12		15	ns
$\mathrm{t}_{\text {csov }}$	CS Asserted to Output Valid	.	13		15		18	ns
$\mathrm{t}_{\mathrm{CSO}}$	CS Deasserted to High Z Output		13		15		18	ns
$\mathrm{t}_{\text {CSSL }}$	CS Set-Up to Latch Close	3		4		4		ns
$\mathrm{t}_{\text {CSHL }}$	CS Hold from Latch Close	2		3		4		ns
$\mathrm{t}_{\text {LOV }}$	Latch Open to Output Valid		13		15		18	ns
$\mathrm{t}_{\mathrm{LOZ}}$	Latch Open to High Z Output		13		15		18	ns
toev	OE Asserted to Output Valid		11		12		15	ns
$\mathrm{t}_{\text {OEZ }}$	OE Deasserted to High Z Output		11		12		15	ns

Switching Waveforms

Single Reads - Registered Mode ${ }^{[7,8]}$

Single Reads - Latched Mode ${ }^{[8]}$

4-Word Burst Followed by Single Read - Registered Mode ${ }^{[8]}$

Notes:
7. $\overline{\mathrm{ADV}}$ is assumed HIGH .
8. $\mathrm{CS}_{2}-\mathrm{CS}_{0}, \mathrm{OE}$ are assumed active.

Switching Waveforms (continued)

4-Word Burst Followed by Single Read - Latched Mode ${ }^{[8]}$

C270-10
Suspended Burst ${ }^{[8,9]}$

Output Controlled by CS and CLK - Registered Mode ${ }^{[10]}$

Notes:
9. Burst in progress.
10. OE assumed active.

CY7C270

Outputs Controlled by $\mathrm{OE}^{[11]}$

Notes:

11. $\mathrm{CS}_{2}-\mathrm{CS}_{0}$ are assumed active.

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the CY7C270. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose for erasure of ultraviolet light is a wavelength of 2537 Angstroms for a minimum dose (UV intensity multiplied by exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately 35 minutes. The 7 C 270 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM
12. OE active HIGH is a programmable option.
is exposed to high intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Architecture Configuration Bits

The CY7C270 is configured by programming the Control Word located at the end of the programmable array (4000 H). Table 3 gives the specific information for configuring the architecture.
To use the CY7C270 as a purely asynchronous PROM, tie the $\overline{\mathrm{ADV}}$ signal to V_{CC}, the $C L K$ and $\overline{\mathrm{LE}}$ signal to V_{SS}, and program the control word for No Burst and Latched mode of operation ($\left.\mathrm{D}_{3}=1, \mathrm{D}_{15}=0\right)$.

Table 3. Control Word for Architecture Configuration

Control Option	Control Word		Function
	Bit	Programmed Level	
OE Output Enable	D_{0}	$\begin{aligned} & 0=\text { Default } \\ & 1=\text { Programmed } \end{aligned}$	OE Active LOW OE Active HIGH
$\xrightarrow[\text { (Counter Configuration) }]{\mathrm{C}_{1} \mathrm{C}_{0}}$	$\mathrm{D}_{2} \mathrm{D}_{1}$	$\begin{aligned} & 00=\text { Default } \\ & 01=\text { Programmed } \\ & 10=\text { Programmed } \\ & 11=\text { Programmed } \end{aligned}$	486 2-Bit Counter Linear 2-Bit Counter Linear 4-Bit Counter Linear 8-Bit Counter
R/L/Latched Registered/La	D_{3}	$\begin{aligned} & 0=\text { Default } \\ & 1=\text { Programmed } \end{aligned}$	Registered Mode Latched Mode
$\begin{gathered} \mathrm{CS}_{0} \\ \text { Chip Select } 0 \end{gathered}$	D_{12}	$\begin{aligned} & 0=\text { Default } \\ & 1=\text { Programmed } \end{aligned}$	CS_{0} Active LOW CS_{0} Active HIGH
CS_{1} Chip Select 1	D_{13}	$\begin{aligned} & 0=\text { Default } \\ & 1=\text { Programmed } \end{aligned}$	CS_{1} Active LOW CS_{1} Active HIGH
$\underset{\text { Chip Select } 2}{\mathrm{CS}_{2}}$	D_{14}	$\begin{aligned} & 0=\text { Default } \\ & 1=\text { Programmed } \end{aligned}$	CS_{2} Active LOW CS_{2} Active HIGH
$\begin{gathered} \mathrm{BE} \\ \text { (Burst Enable) } \end{gathered}$	D_{15}	$\begin{aligned} & 0=\text { Default } \\ & 1=\text { Programmed } \end{aligned}$	No Burst Burst (follow $\mathrm{C}_{1} \mathrm{C}_{0}$)

Bit Map

Programmer Address (Hex)	RAM Data
0000	Data
.	\cdot
\cdot	\cdot
3 FFF	Data
4000	Control Word

Control Word $(4000 \mathrm{H}$ - default state is 00 H$)$
$\stackrel{\mathrm{D}_{15}}{\mathrm{BE}} \mathrm{CS}_{2} \mathrm{CS}_{1} \mathrm{CS}_{0}$ X X X X X X X XR/LC $\mathrm{C}_{1} \mathrm{C}_{0}$ OE

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 4. Program Mode Table

Mode	$\mathbf{V}_{\mathbf{P P}}$	$\overline{\mathbf{P G M}}$	$\overline{\mathbf{V F Y}}$	$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{\mathbf{1 5}}$
Program Inhibit	V_{PP}	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\mathrm{IHP}}$	High Z
Program Enable	V_{PP}	$\mathrm{V}_{\mathrm{ILP}}$	$\mathrm{V}_{\mathrm{IHP}}$	Data
Program Verify	V_{PP}	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\mathrm{ILP}}$	Data

Table 5. Configuration Mode Table

Mode	$\mathbf{V}_{\mathbf{P P}}$	$\overline{\mathbf{P G M}}$	$\overline{\mathbf{V F Y}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{\mathbf{1 5}}$
Program Inhibit	V_{PP}	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\mathrm{IHP}}$	V_{PP}	High Z
Program Control Word	V_{PP}	$\mathrm{V}_{\mathrm{ILP}}$	$\mathrm{V}_{\mathrm{IHP}}$	V_{PP}	Control Word
Verify Control Word	V_{PP}	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\mathrm{ILP}}$	V_{PP}	Control Word

Table 6. Signature Mode Table

Signature Mode	$\mathbf{A}_{\mathbf{0}}$	$\mathbf{A}_{\mathbf{9}}$	$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{\mathbf{1 5}}$
Cypress Code	$\mathrm{V}_{\text {ILP }}$	V_{PP}	0034 H
Device Code	$\mathrm{V}_{\text {IHP }}$	V_{PP}	0013 H

Figure 1. Programming Pinout

Typical DC and AC Characteristics

Ordering Information ${ }^{[13]}$

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C270-15HC	H67	44-Pin Windowed Leaded Chip Carrier	Commercial
	CY7C270-15JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C270-15HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military
	CY7C270-15QMB	Q67	44-Pin Windowed Leadless Chip Carrier	
	CY7C270-20HC	H67	44-Pin Windowed Leaded Chip Carrier	Commercial
	CY7C270-20JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C270-20HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military
	CY7C270-20QMB	Q67	44-Pin Windowed Leadless Chip Carrier	
	CY7C270-30HC	H67	44-Pin Windowed Leaded Chip Carrier	Commercial
	CY7C270-30JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C270-30HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military
	CY7C270-30QMB	Q67	44-Pin Windowed Leadless Chip Carrier	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Note:

13. Most of the above products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

Switching Characteristics

Parameter	Subgroups
t_{AS}	$7,8,9,10,11$
t_{AH}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{LES}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{LEH}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADVS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ADVH}}$	$7,8,9,10,11$
t_{DH}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CKA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CSS}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CSH}}$	$7,8,9,10,11$
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CKB}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{LEA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OEV}}$	$7,8,9,10,11$
t_{LW}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ASL}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CSSL}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AHL}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CSHL}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CSOV}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{tOV}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{COV}}$	$7,8,9,10,11$

Document \#: 38-00179-E

32K x 8 PROM PowerSwitched and Reprogrammable

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
- 30 ns (commercial)
- 35 ns (military)
- Low power
-660 mW (commercial)
- 715 mW (military)
- Super low standby power
-Less than 165 mW when deselected
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- Slim 300-mil package (7C271)
- Direct replacement for bipolar PROMs
- Capable of withstanding $>\mathbf{2 0 0 1 V}$ static discharge

Functional Description

The CY7C271 and CY7C274 are highperformance 32,768 -word by 8 -bit CMOS PROMs. When disabled ($\overline{\mathrm{CE}} \mathrm{HIGH}$), the 7C271/7C274 automatically powers down into a low-power stand-by mode. The CY7C271 is packaged in the $300-\mathrm{mil}$ slim package. The CY7C274 is packaged in the industry standard 600 -mil package. Both the 7C271 and 7C274 are available in a cerDIP package equipped with an erasure window to provide for reprogrammability. When exposed to UV light, the PROM is erased and can be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
The CY7C271 and CY7C274 offer the advantage of lower power, superior perform-
ance, and programming yield. The EPROM cell requires only 12.5 V for the super voltage, and low current requirements allow for gang programming. The EPROM cells allow each memory location to be tested 100% because each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming, the product will meet DC and AC specification limits.
Reading the 7C271 is accomplished by placing active LOW signals on CS_{1} and $\overline{\mathrm{CE}}$, and an active HIGH on CS_{2}. Reading the 7C274 is accomplished by placing active LOW signals on $\overline{O E}$ and $\overline{\mathrm{CE}}$. The contents of the memory location addressed by the address lines ($\mathrm{A}_{0}-\mathrm{A}_{14}$) will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.
Logic Block Diagram
Pin Configurations

LCC/PLCC (Opaque Only)

DIP/Flatpack

LCC/PLCC (Opaque Only)

Selection Guide

		$\begin{aligned} & \text { 7C271-30 } \\ & \text { 7C274-30 } \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{C} 271-35 \\ & \text { 7C274-35 } \end{aligned}$	$\begin{aligned} & \hline \text { 7C271-45 } \\ & \text { 7C274-45 } \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 271-55 \\ & 7 \mathrm{C} 274-55 \end{aligned}$
Maximum Access Time	(ns)	30	35	45	55
Maximum Operating	Com'l	120	120	120	120
Current (mA)	Military		130	130	130
Standby Current(mA)	Com'l	30	30	30	30
	Military		40	40	40

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs

DC Input Voltage -3.0 V to +7.0 V
DC Program Voltage
. 13.0 V
Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Latch-Up Current $>200 \mathrm{~mA}$
UV Exposure
$7258 \mathrm{Wsec} / \mathrm{cm}^{2}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. Contact a Cypress representative for information on industrial temperature range specifications.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. $\quad 6.0 \mathrm{~mA}$ military
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
6. See Introduction to CMOS PROMs in this Data Book for general information on testing.

AC Test Loads and Waveforms ${ }^{[6]}$

(a) Normal Load

Equivalent to: THÉVENIN EQUIVALENT

$$
\mathrm{C} 271-7
$$

Switching Characteristics Over the Operating Range ${ }^{[3,6]}$

	Description	$\begin{aligned} & \text { 7C271-30 } \\ & \text { 7C274-30 } \end{aligned}$		$\begin{aligned} & \hline \mathbf{C C 2 7 1 - 3 5} \\ & 7 \mathrm{C} 274-35 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 271-45 \\ & 7 \mathrm{C} 274-45 \end{aligned}$		$\begin{aligned} & \text { 7C271-55 } \\ & 7 \mathrm{C} 274-55 \end{aligned}$		Unit
Parameter		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		30		35		45		55	ns
$\mathrm{t}_{\mathrm{HZCS}}$	Chip Select Inactive to High Z($\overline{\mathrm{CS}}_{1}$ and $\mathrm{CS}_{2}, 7 \mathrm{C} 271$ Only)		20		25		30		30	ns
$\mathrm{t}_{\text {ACS }}$	Chip Select Active to Output Valid ($\overline{\mathrm{CS}}_{1}$ and CS_{2}, 7C271 Only)		20		25		30		30	ns
$\mathrm{t}_{\text {HZOE }}$	Output Enable Inactive to High Z ($\overline{\mathrm{OE}}, 7 \mathrm{C} 274$ Only)		20		20		25		25	ns
t_{OE}	Output Enable Active to Output Valid ($\overline{\mathrm{OE}}, 7 \mathrm{C} 274$ Only)		20		20		25		25	ns
$\mathrm{t}_{\mathrm{HZCE}}$	Chip Enable Inactive to High Z ($\overline{\mathrm{CE}}$ Only)		35		40		50		60	ns
$\mathrm{t}_{\text {ACE }}$	Chip Enable Active to Output Valid ($\overline{\mathrm{CE}}$ Only)		35		40		50		60	ns
$\mathrm{t}_{\text {PU }}$	Chip Enable Active to Power Up	0		0		0		0		ns
t_{PD}	Chip Enable Inactive to Power Down		35		40		50		60	ns
t_{OH}	Output Hold from Address Change	0		0		0		0		ns

Switching Waveform

Note:
7. CS_{2} and $\overline{\mathrm{CS}}_{1}$ are used on the 7 C 271 only. $\overline{\mathrm{OE}}$ is used on the 7 C 274 only.

Erasure Characteristics

Wavelengths of light less than 4000 angstroms begin to erase the 7C271 and 7C274 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum dose (UV intensity \times exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a 12 $\mathrm{mW} / \mathrm{cm}^{2}$ power rating, the exposure time would be approximately 35 minutes. The 7C271 or 7C274 needs to be within 1 inch of the
lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Programming Modes

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. CY7C271 Mode Selection

Mode		Pin Function ${ }^{[8]}$				
	Read or Output Disable	$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\overline{\text { CE }}$	CS_{2}	$\overline{\mathbf{C S}}_{1}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\overline{\mathbf{V F Y}}$	$\overline{\text { PGM }}$	$V_{\text {PP }}$	$\mathrm{D}_{7}-\mathrm{D}_{\mathbf{0}}$
Read		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Power Down		$\mathrm{A}_{14}-\mathrm{A}_{0}$	V_{IH}	X	X	High Z
Output Disable		$\mathrm{A}_{14}-\mathrm{A}_{0}$	X	$\mathrm{V}_{\text {IL }}$	X	High Z
Output Disable		$\mathrm{A}_{14}-\mathrm{A}_{0}$	X	X	$\mathrm{V}_{\text {IH }}$	High Z
Program		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }} / \mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	High Z
Blank Check		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }} / \mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$

Table 2. CY7C274 Mode Selection

Mode		Pin Function ${ }^{[8]}$				
	Read or Output Disable	$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\overline{\mathrm{OE}}$	$\overline{\mathbf{C E}}$	$\mathbf{V}_{\mathbf{P P}}$	$\mathrm{O}_{7}-\mathrm{O}_{\mathbf{0}}$
	Other	$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\overline{\mathbf{V F Y}}$	$\overline{\text { PGM }}$	$\mathbf{V}_{\mathbf{P P}}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Read		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IL }}$:	$\mathrm{V}_{\text {IL }}$	Note 9	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable		$\mathrm{A}_{14}-\mathrm{A}_{0}$	V_{IH}	X	X	High Z
Power Down		$\mathrm{A}_{14}-\mathrm{A}_{0}$	X	V_{IH}	X	High Z
Program		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\mathrm{ILP}}$	$\mathrm{V}_{\text {IHP }} / \mathrm{V}_{\text {ILP }}$	$V_{\text {PP }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	High Z
Blank Check		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }} / \mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{O}_{7}-\mathrm{O}_{0}$

Notes:
8. X can be $\mathrm{V}_{\mathrm{IL}}\left(\mathrm{V}_{\mathrm{ILP}}\right)$ or $\mathrm{V}_{\mathrm{IH}}\left(\mathrm{V}_{\mathrm{IHP}}\right)$.
9. V_{PP} should be tied to $\mathrm{V}_{\mathrm{CC}} \pm 5 \%$ in read mode.

Figure 1. Programming Pinouts

Typical DC and AC Characteristics

OUTPUT SOURCE CURRENT vs. VOLTAGE

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

NORMALIZED SUPPLY CURRENT vs. CYCLE PERIOD

Ordering Information ${ }^{[10]}$

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
30	CY7C271-30JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C271-30PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C271-30WC	W22	28-Lead (300-Mil) Windowed CerDIP	
35	CY7C271-35JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C271-35PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C271-35WC	W22	28 -Lead ($300-\mathrm{Mil}$) Windowed CerDIP	
	CY7C271-35DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C271-35KMB	K74	28-Lead Rectangular Cerpack	
	CY7C271-35LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C271-35QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C271-35WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
45	CY7C271-45JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C271-45PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C271-45WC	W22		
	CY7C271-45DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C271-45KMB	K74	28-Lead Rectangular Cerpack	
	CY7C271-45LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C271-45QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C271-45TMB	T74	28-Lead Windowed Cerpack	
	CY7C271-45WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
55	CY7C271-55JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C271-55PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C271-55WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	CY7C271-55DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C271-55KMB	K74	28-Lead Rectangular Cerpack	
	CY7C271-55LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C271-55QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C271-55TMB	T74	28-Lead Windowed Cerpack	
	CY7C271-55WMB	W22	28-Lead (300-Mil) Windowed CerDIP	

Note:

10. Most of these products are available in industrial temperature range.

Contact a Cypress representative for specifications and product availability.

Ordering Information ${ }^{[10]}$ (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
30	CY7C274-30JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C274-30PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C274-30WC	W16	28-Lead (600-Mil) Windowed CerDIP	
35	CY7C274-35JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C274-35PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C274-35WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C274-35DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C274-35KMB	K74	28-Lead Rectangular Cerpack	
	CY7C274-35LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C274-35QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C274-35TMB	T74	28-Lead Windowed Cerpack	
	CY7C274-35WMB	W16	28-Lead (600-Mil) Windowed CerDIP	
45	CY7C274-45JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C274-45PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C274-45WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C274-45DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C274-45KMB	K74	28-Lead Rectangular Cerpack	
	CY7C274-45LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C274-45QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C274-45TMB	T74	28-Lead Windowed Cerpack	
	CY7C274-45WMB	W16	28-Lead (600-Mil) Windowed CerDIP	
55	CY7C274-55JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C274-55PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C274-55WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C274-55DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C274-55KMB	K74	28-Lead Rectangular Cerpack	
	CY7C274-55LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C274-55QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C274-55TMB	T74	28-Lead Windowed Cerpack	
	CY7C274-55WMB	W16	28-Lead (600-Mil) Windowed CerDIP	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 1}{ }^{[11]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OE}}{ }^{[12]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACE}}$	$7,8,9,10,11$

Notes:
11. 7 C 274 and $7 \mathrm{C} 271\left(\overline{\mathrm{CS}}_{2}, \mathrm{CS}_{3}\right.$ and $\overline{\mathrm{CS}}_{4}$ only).
12. 7C271 only.

SMD Cross Reference

SMD Number	Suffix	Cypress Number
$5962-89817$	01 XX	CY7C271-55WMB
$5962-89817$	01 YX	CY7C271-55TMB
$5962-89817$	01 ZX	CY7C271-55QMB
$5962-89817$	02 XX	CY7C271-45WMB
$5962-89817$	02 YX	CY7C271-45TMB
$5962-89817$	02 ZX	CY7C271-45QMB

Document \#: 38-00068-G

Features

- 0.8-micron CMOS for optimum speed/ power
- High speed (for commercial and military)
$-25-n s$ access time
- 16-bit-wide words
- Three programmable chip selects
- Programmable output enable
- 44-pin PLCC and 44-pin LCC packages
- 100% reprogrammable in windowed packages
- TTL-compatible I/O
- Capable of withstanding greater than 2001V static discharge

Functional Description

The CY7C276 is a high-performance 16 K word by 16 -bit CMOS PROM. It is available in a 44 -pin PLCC/CLCC and a 44 -pin LCC packages, and is 100% reprogrammable in windowed packages. The memory cells utilize proven EPROM floating gate technology and word-wide programming algorithms.

The CY7C276 allows the user to independently program the polarity of each chip select $\left(\mathrm{CS}_{2}-\mathrm{CS}_{0}\right)$. This provides on-chip decoding of up to eight banks of PROM. The polarity of the asynchronous output enable pin (OE) is also programmable.
In order to read the CY7C276, all three chip selects must be active and OE must be asserted. The contents of the memory location addressed by the address lines (A_{13} A_{0}) will become available on the output lines $\left(D_{15}-D_{0}\right)$. The data will remain on the outputs until the address changes or the outputs are disabled.

Logic Block Diagram

Pin Configuration

LCC/PLCC/CLCC
 Top View

C276-2

Selection Guide

		CY7C276-25	CY7C276-30	CY7C276-35
Maximum Access Time (ns)	25	30	35	
Maximum Operating Current (mA)	Commercial	175	175	175
	Military	200	200	200

CYPRESS

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
DC Program Voltage 13.0 V

UV Erasure . 7258 Wsec/cm ${ }^{2}$

Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperatuire	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics ${ }^{[3,4]}$

Parameter	Description	Test Conditions		$\begin{aligned} & \text { CY7C276-25 } \\ & \text { CY7C276-30 } \\ & \text { CY7C276-35 } \end{aligned}$		Unit
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}(6.0 \mathrm{~mA} \mathrm{Mil})$			0.4	V
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs		2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs		-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Clamp Diode Voltage			Note 3		$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OL}} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{OH}}$Output Disabled		-40	+40	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}^{[5]}$		-20	-90	mA
I_{CC}	Power Supply Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{I}_{\text {OUT }}=0.0 \mathrm{~mA}$	Com'l		175	mA
			Military		200	mA

Capacitance ${ }^{[3]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. Contact a Cypress representative for industrial temperature range specifications.
2. T_{A} is the "instant on" case temperature
3. See Introduction to CMOS PROMs in this Data Book for general information on testing.
4. See the last page of this specification for Group A subgroup testing information.
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

AC Test Loads and Waveforms

Equivalent to: THEVENIN EQUIVALENT
200Ω (250Ω Mil)
OUTPUT O—— 2.0 V (1.9V Mil)

C276-5

Switching Characteristics Over the Operating Range ${ }^{33,4]}$

Parameter	Description	CY7C276-25		CY7C276-30		CY7C276-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Data Valid		25		30		35	ns
$\mathrm{t}_{\text {CSOV }}$	CS Active to Output Valid		13		15		18	ns
$\mathrm{t}_{\text {csoz }}$	CS Inactive to High Z Output		13		15		18	ns
$\mathrm{t}_{\text {OEV }}$	OE Active to Output Valid		11		12		15	ns
$\mathrm{t}_{\text {OEZ }}$	OE Inactive to High Z Output		11		12		15	ns

Erasure Characteristics

The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV intensity multiplied by exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating the exposure time would be approximately 35 minutes. The 7C276 needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the EPROM is exposed to high-intensity UV light for an extended
period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.
Wavelengths of light less than 4000 Angstroms begin to erase the 7 C 276 in the windowed package. For this reason, an opaque label should be placed over the window if the EPROM is exposed to sunlight or fluorescent lighting for extended periods of time.

Switching Waveforms

Read Operation Timing Diagram ${ }^{[6]}$

Chip Select and Output Enable Timing Diagrams

Notes:
6. $\mathrm{CS}_{2}-\mathrm{CS}_{0}, \mathrm{OE}$ assumed active.

CY7C276
SEMICONDUCTOR

Architecture Configuration Bits

The CY7C276 has four user-programmable options in addition to the reprogrammable data array. For detailed programming information contact your local Cypress representative.
The programmable options determine the active polarity for the three chip selects $\left(\mathrm{CS}_{2}-\mathrm{CS}_{0}\right)$ and OE. When these control bits are programmed with a 0 the inputs are active LOW. When these control bits are programmed with a 1 the inputs are active HIGH.

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. Control Word for Architecture Configuration

Control Option	Control Word		Function
	Bit	Programmed Level	
OE	D_{0}	$0=$ Default $1=$ Programmed	CS_{0} Active LOW CS_{0} Active HIGH
CS_{0}	D_{12}	$0=$ Default $1=$ Programmed	CS_{1} Active LOW CS_{1} Active HIGH
CS_{1}	D_{13}	$0=$ Default $1=$ Programmed	CS_{2} Active LOW CS_{2} Active HIGH
CS_{2}	D_{14}	$0=$ Default $1=$ Programmed	

Bit Map

Table 2. Program Mode Table

Programmer Address (Hex)	RAM Data
0000	Data
.	\cdot
\cdot	$\dot{ }$
3 FFF	Data
4000	Control Word

Mode	$\mathbf{V}_{\mathbf{P P}}$	$\overline{\mathbf{P G M}}$	$\overline{\mathbf{V F Y}}$	$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{\mathbf{1 5}}$
Program Inhibit	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	High Z
Program Enable	V_{PP}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	Data
Program Verify	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	Data

Control Word (4000H)
$\mathrm{D}_{15} \quad \mathrm{D}_{0}$
X CS $\mathrm{CS}_{1} \mathrm{CS}_{0}$ XXXXXXXX1XXOE
Table 3. Configuration Mode Table

Mode	$\overline{V_{\mathbf{P P}}}$	$\overline{\mathbf{P G M}}$	$\overline{\mathbf{V F Y}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{D}_{\mathbf{0}}-\mathbf{D}_{\mathbf{1 5}}$
Program Inhibit	V_{PP}	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\mathrm{IHP}}$	V_{PP}	High Z
Program Control Word	V_{PP}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\mathrm{IHP}}$	V_{PP}	Control Word
Verify Control Word	V_{PP}	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\mathrm{ILP}}$	V_{PP}	Control Word

Figure 1. Programming Pinout

Typical DC and AC Characteristics

NORMALIZED t ${ }^{\text {CKA }}$
vs. SUPPLY VOLTAGE

NORMALIZED I ${ }_{\text {CC }}$ vs. OUTPUT VOLTAGE

$t_{\text {CKA }}$ CHANGE
vs. OUTPUT LOADING

NORMALIZED tckA
vs. TEMPERATURE

NORMALIZED ICC vs. AMBIENT TEMPERATURE

 SEMICONDUCTOR

Ordering Information ${ }^{[7]}$

Speed (ns)	Ordering Code	Package Name	Operating Range	
25	CY7C276-25HC	H67	44-Pin Windowed Leaded Chip Carrier	Commercial
	CY7C276-25JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C276-25HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military
	CY7C276-25QMB	Q67	44-Pin Windowed Leadless Chip Carrier	
	CY7C276-30HC	H67	44-Pin Windowed Leaded Chip Carrier	Commercial
	CY7C276-30JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C276-30HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military
	CY7C276-30QMB	Q67	44-Pin Windowed Leadless Chip Carrier	
35	CY7C276-35HC	H67	44-Pin Windowed Leaded Chip Carrier	Commercial
	CY7C276-35JC	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C276-35HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military
	CY7C276-35QMB	Q67	44-Pin Windowed Leadless Chip Carrier	

Note:
7. Most of the above products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS

 Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CSOV}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{OEV}}$	$7,8,9,10,11$

Document \#: 38-00183-D

Reprogrammable 32K x 8 Registered PROM

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
- 30-ns max. set-up
- 15-ns clock to output
- Low power
-660 mW (commercial)
- 715 mW (military)
- Programmable address latch enable input
- Programmable synchronous or asynchronous output enable
- On-chip edge-triggered output registers
- EPROM technology, 100\% programmable
- Slim 300-mil, 28-pin plastic or hermetic DIP
- $5 \mathrm{~V} \pm 10 \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 2001V static discharge

Selection Guides

	7C277-30	7C277-40	7C277-50	
Maximum Setup Time (ns)	30	40	50	
Maximum Clock to Output (ns)	15	20	25	
Maximum Operating Current (mA)	Com'l	120	120	120
	Mil		130	$\mathbf{1 3 0}$

Functional Description

The CY7C277 is a high-performance 32 K word by 8 -bit CMOS PROMs. It is packaged in the slim 28 -pin 300 -mil package. The ceramic package may be equipped with an erasure window; when exposed to UV light, the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floa-ting-gate technology and byte-wide algorithms.
The CY7C277 offers the advantages of low power, superior performance, and high programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be 100% tested, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that the product will meet DC and AC specification limits after customer programming.

Maximum Ratings

(Above which the usefullife may be impaired. For user guidelines, not tested.)

Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
(Pin 24 to Pin 12)
DC Voltage Applied to Outputs

DC Input Voltage -3.0 V to +7.0 V
DC Program Voltage (Pins 7, 18, 20) 13.0V
UV Erasure . 7258 Wsec/cm ${ }^{2}$

On the 7C277, the outputs are pipelined through a master-slave register. On the rising edge of CP , data is loaded into the 8 -bit edge triggered output register. The $\overline{\mathrm{E}} / \mathrm{E}_{\mathrm{S}}$ input provides a programmable bit to select between asynchronous and synchronous operation. The default condition is asynchronous. When the asynchronous mode is selected, the $\overline{\mathrm{E}} / \mathrm{E}_{S}$ pin operates as an asynchronous output enable. If the synchronous mode is selected, the $\overline{\mathrm{E}} / \overline{\mathrm{E}}_{\text {S }}$ pin is sampled on the rising edge of CP to enable and disable the outputs. The 7C277 also provides a programmable bit to enable the Address Latch input. If this bit is not programmed, the device will ignore the ALE pin and the address will enter the device asynchronously. If the ALE function is selected, the address enters the PROM while the ALE pin is active, and is captured when ALE is deasserted. The user may define the polarity of the ALE signal, with the default being active HIGH.

Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Notes:

1. Contact a Cypress representative for industrial temperature range specifications.
2. T_{A} is the "instant on" case temperature.

Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	Test Conditions		7C277-30		7C277-40, 50		Unit
				Min.	Max.	Min.	Max.	
VOH	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs		2.0	V_{CC}	2.0	V_{CC}	V
V_{IL}	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs			0.8		0.8	V
I_{IX}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Clamp Diode Voltage			Note 4				
I_{OZ}	Output Leakage Current	$0 \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled ${ }^{[5]}$		-40	+40	-40	+40	$\mu \mathrm{A}$
Ios	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.0 \mathrm{~V}^{[6]}$		-20	-90	-20	-90	mA
$\mathrm{I}_{\text {CC }}$	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		120		120	mA
			Military				130	
V_{PP}	Programming Supply Voltage			12	13	12	13	V
I_{PP}	Programming Supply Current				50		50	mA
$\mathrm{V}_{\text {IHP }}$	Input HIGH Programming Voltage			3.0		3.0		V
$\mathrm{V}_{\text {ILP }}$	Input LOW Programming Voltage				0.4		0.4	V

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
CouT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms ${ }^{[4]}$

MIL)
C277-6
(b) High Z Load
-

Equivalent to: THEVENIN EQUIVALENT

C277-7

Notes:
3. See the last page of this specification for Group A subgroup testing information.
4. See "Introduction to CMOS PROMs" in this Book for general information on testing.
5. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
6. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

CY7C277 Switching Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	7C277-30		7C277-40		7C277-50		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AL}	Address Set-Up to ALE Inactive	5		10		10		ns
$\mathrm{t}_{\text {LA }}$	Address Hold from ALE Inactive	10		10		15		ns
t_{LL}	ALE Pulse Width	10		10		15		ns
$t_{\text {SA }}$	Address Set-Up to Clock HIGH	30		40		50		ns
\mathbf{t}_{HA}	Address Hold from Clock HIGH	0		0		0		ns
$\mathrm{t}_{\text {SES }}$	$\overline{\mathrm{E}}_{\text {S }}$ Set-Up to Clock HIGH	12		15		15		ns
$\mathrm{t}_{\text {HES }}$	$\overline{\mathrm{E}}_{\mathrm{S}}$ Hold from Clock HIGH	5		10		10		ns
t_{CO}	Clock HIGH to Output Valid		15		20		25	ns
$\mathrm{t}_{\text {PWC }}$	Clock Pulse Width	15		20		20		ns
$\mathrm{t}_{\mathrm{LZC}}{ }^{[7]}$	Output Valid from Clock HIGH		15		20		30	ns
$\mathrm{t}_{\mathrm{HzC}}$	Output High Z from Clock HIGH		15		20		30	ns
$\mathrm{t}_{\text {LZE }}{ }^{[8]}$	Output Valid from $\overline{\mathrm{E}}$ LOW		15		20		30	ns
$\mathrm{t}_{\mathrm{HzE}}{ }^{[8]}$	Output High Z from $\overline{\mathrm{E}}$ HIGH		15		20		30	ns

Notes:
7. Applies only when the synchronous $\left(\overline{\mathrm{E}}_{\mathrm{S}}\right)$ function is used.
8. Applies only when the asynchronous ($\overline{\mathrm{E}}$) function is used.

Architecture Configuration Bits

$\begin{gathered} \hline \text { Architecture } \\ \text { Bit } \end{gathered}$	Architecture Verify$\mathbf{D}_{7}-\mathbf{D}_{\mathbf{0}}$		Function
ALE	D_{1}	0 = DEFAULT	Input Transparent
		1 = PGMED	Input Latched
ALEP	D_{2}	0 = DEFAULT	ALE = Active HIGH
		1 = PGMED	ALE = Active LOW
$\overline{\mathrm{E}} / \overline{\mathrm{E}}_{S}$	D_{0}	0 = DEFAULT	Asynchronous Output Enable ($\overline{\mathrm{E}}$)
		1 = PGMED	Synchronous Output Enable ($\overline{\mathrm{E}}_{\mathrm{S}}$)

Bit Map

Programmer Address (Hex.)	RAM Data
0000	Data
\cdot	$\dot{.}$
$\dot{\mathrm{FFF}}$..ta
8000	Control Byte

Architecture Byte (8000)
$\mathrm{D}_{7} \quad \mathrm{D}_{0}$

Timing Diagram (Input Latched) ${ }^{[9]}$

Timing Diagram (Input Transparent)

Note:
9. ALE is shown with positive polarity.

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programminginformation, including a listing of software packages, please
see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. Mode Selection

Mode		Pin Function ${ }^{[10]}$				
	Read or Output Disable	$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\overline{\mathbf{E}}, \overline{\mathbf{E}}_{\mathbf{S}}$	CP	ALE	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\overline{\overline{V F Y}}$	$\overline{\text { PGM }}$	$\mathbf{V}_{\mathbf{P P}}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Read		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable		$\mathrm{A}_{14}-\mathrm{A}_{0}$	V_{IH}	X	X	High Z
Program		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }} / \mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	High Z
Blank Check		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }} / \mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$

Note:
10. $\mathrm{X}=$ "don't care" but not to exceed $\mathrm{V}_{\mathrm{CC}} \pm 5 \%$.

Figure 1. Programming Pinouts

C277-12

SEMICONDUCTOR
CY7C277
Ordering Information ${ }^{[11]}$

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
30	CY7C277-30JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C277-30PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C277-30WC	W22	28-Lead (300-Mil) Windowed CerDIP	
40	CY7C277-40JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C277-40PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C277-40WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	CY7C277-40DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C277-40KMB	K74	28-Lead Rectangular Cerpack	
	CY7C277-40LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C277-40QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C277-40TMB	T74	28-Lead Windowed Cerpack T74	
	CY7C277-40WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
50	CY7C277-50JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C277-50PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C277-50WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	CY7C277-50DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C277-50KMB	K74	28-Lead Rectangular Cerpack	
	CY7C277-50LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C277-50QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C277-50TMB	T74	28-Lead Windowed Cerpack T74	
	CY7C277-50WMB	W22	28-Lead (300-Mil) Windowed CerDIP	

Note:
11. Most of the above products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{SA}	$7,8,9,10,11$
t_{HA}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$

Document \#: 38-00085-E

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
-3 ns max. set-up
- $\mathbf{3 5}$ ns clock to output
- Low power
-660 mW (commercial)
- 715 mW (military)
- Programmable address latch enable input
- Optional registered/latched address inputs
- EPROM technology, $\mathbf{1 0 0 \%}$ programmable
- Slim 300-mil, 28-pin plastic or hermetic DIP
- $\mathbf{5 V} \pm \mathbf{1 0} \% \mathrm{~V}_{\mathrm{CC}}$, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding greater than 2001V static discharge

Selection Guides

		7C279-35	7C279-45	7C279-55
Maximum Access Time (ns)	35	45	55	
Maximum Operating Current (mA)	Commercial	120	120	120
	Military		130	130
Maximum Standby Current (mA)	Commercial	30	30	30
	Military		40	40

Functional Description

The CY7C279 is a high-performance 32 K word by 8 -bit CMOS PROM. When deselected, the CY7C279 automatically powers dow into a low power standby mode. It is packaged in the slim 28 -pin 300 -mil package. The ceramic package may be equipped with an erasure window; when exposed to UV light, the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating-gate technology and byte-wide algorithms.
The CY7C279 offers the advantages of low power, superior performance, and high programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be 100% tested, as each location is written into, erased, and repeatedly exercised prior to

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V (Pin 24 to Pin 12)
DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V

DC Program Voltage (Pins 7, 18, 20) 13.0V
Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$
encapsulation. Each PROM is also tested for AC performance to guarantee that the product will meet DC and AC specification limits after customer programming.
On the 7C279, address registers are provided to easily interface with microprocessors that deliver addresses around a rising clock edge. A programmable bit is provided to select between latched and registered address inputs. The default is registered inputs, which will sample the address on the RISING EDGE of CP and load the address register. The latched address option will recognize any address changes while the ALE pin is active and load the address into the address latches on the deactiviating edge of ALE. If the latched address option is selected, another programmable bit is provided for the user to select the polarity that will define ALE active, with the default being active HIGH.

UV Erasure . 7258 Wsec/cm ${ }^{2}$
Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Notes:

1. Contact a Cypress representative for industrial temperature range specifications.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. See "Introduction to CMOSPROMs" in this Data Book for generalinformation on testing.
\qquad
Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms ${ }^{[4]}$

(b) High Z Load

C279-6
$3.0 \mathrm{~V} \rightarrow$ ALL INPUT PULSES

Equivalent to: THÉVENIN EQUIVALENT

OUTPUT O———
Military

C279-7

Switching Characteristics Over the Operating Rangee ${ }^{[3,4]}$

Parameter	Description	7C279-35		7C279-45		7C279-55		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Data Valid (Latched Mode)		35		45		55	ns
t_{CO}	Clock to Output Valid (Registered Mode)		35		45		55	ns
$\mathrm{t}_{\mathrm{HzCS}}$	Chip Select Inactive to High Z		15		20		20	ns
$\mathrm{t}_{\text {ACS }}$	Chip Select Active to Output Valid		15		20		20	ns
$\mathrm{t}_{\text {AR }}$	AddressSet-uptoClockRise(RegisteredMode)	3		10		10		ns
t_{RA}	Address Hold from Clock Rise (Registered Mode)	6		10		10		ns
$\mathrm{t}_{\mathrm{ADH}}$	Data Hold from Clock Rise (Registered Mode)	5		5		5		ns
$\mathrm{t}_{\text {SU }}$	AddressSet-uptoALEInactive(LatchedMode)	5		10		10		ns
t_{HD}	Address Hold from ALE Inactive (Latched Mode)	10		10		10		ns
$\mathrm{t}_{\text {PU }}$	Chip Enable Active to Power Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	Chip Enable Inactive to Power Down		40		50		60	ns
$\mathrm{taH}^{[7]}$	```Output Hold from Address Change (Latched Mode)```	0		0		0		ns
tPWA	ALE Pulse Width	10		20		30		ns
$\mathrm{t}_{\text {CESC }}$	Chip Enable Set-up to Clock Rise	10		10		10		ns
$\mathrm{t}_{\text {CESL }}$	Chip Enable Set-up to Latch Close (Latch Mode)	10		10		10		ns
$\mathrm{t}_{\text {LV }}$	Output Valid from ALE Active (Latched Mode)		40		50		60	ns

Notes:
5. For devices using the synchronous enable, the device must be clocked after applying these voltages to perform this measurement.
6. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
7. $t_{A A}$ and toH apply only when the latched mode is selected.

Architecture Configuration Bits

Architecture Bit	Architecture Verify $\mathbf{D}_{\mathbf{7}}-\mathbf{D}_{\mathbf{0}}$		
ALE	D_{1}	$0=$ DEFAULT	Input Registered
		$1=$ PGMED	Input Latched
ALEP	D_{2}	$0=$ DEFAULT	ALE = Active HIGH
		$1=$ PGMED	ALE = Active LOW

Bit Map

Programmer Address (Hex.)	RAM Data	Architecture Byte (8000)
0000	Data	$\begin{array}{lllllll} \mathrm{D}_{7} & C_{6} & C_{5} & C_{4} & C_{3} & C_{2} & C_{1} \end{array} \stackrel{D}{0}_{0}^{0}$
-	-	
7FFF	Data	
8000	Control Byte	

Timing Diagram (Registered) ${ }^{[8]}$

Timing Diagram (ALE)

Note:
8. ALE is shown with positive polarity.

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please
see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. Mode Selection

Mode		Pin Function ${ }^{[9]}$				
	Read or Output Disable	$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\overline{\mathbf{C E}}$	CS	CP/ALE	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	$\mathbf{A}_{14}-\mathbf{A}_{\mathbf{0}}$	$\overline{\overline{\mathbf{V F Y}}}$	$\overline{\text { PGM }}$	$\mathbf{V}_{\mathbf{P P}}$	$\mathrm{D}_{7}-\mathrm{D}_{\mathbf{0}}$
Read		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IL }}$	V_{IH}	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IH }}$	X	X	High Z
Program		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }} / \mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	High Z
Blank Check		$\mathrm{A}_{14}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }} / \mathrm{V}_{\text {ILP }}$	V_{PP}	$\mathrm{O}_{7}-\mathrm{O}_{0}$

Note:
9. $\mathrm{X}=$ "don't care" but not to exceed $\mathrm{V}_{\mathrm{CC}} \pm 5 \%$.

Figure 1. Programming Pinouts

Typical DC and AC Characteristics

C279-12

Ordering Information ${ }^{[10]}$

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
35	CY7C279-35JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C279-35WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	CY7C279-45JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C279-45WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	CY7C279-45WMB	W22	28-Lead (300-Mil) Windowed CerDIP	Military
55	CY7C279-55JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C279-55WC	W22	28-Lead (300-Mil) Windowed CerDIP	Military

Note:
10. Most of the above products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
I_{SB}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{AR}	$7,8,9,10,11$
t_{RA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{tHA}}$	$7,8,9,10,11$

Document \#: 38-00246

Features

- CMOS for optimum speed/power
- High speed
-30 ns (commercial)
- 45 ns (military)
- Low power
-495 mW (commercial)
-660 mW (military)
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- Slim 300-mil or standard 600-mil DIP or 28-pin LCC
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding $>1500 \mathrm{~V}$ static discharge

Functional Description

The CY7C281 and CY7C282 are highperformance 1024 -word by 8 -bit CMOS PROMs. They are functionally identical, but are packaged in $300-\mathrm{mil}$ and 600-mil-wide packages respectively. The CY7C281 is also available in a 28 -pin leadless chip carrier. The memory cells utilize proven EPROM floating-gate technology and byte-wide intelligent programming algorithms.

The CY7C281 and CY7C282 are plug-in replacements for bipolar devices and offer the advantages of lower power, superior performance, and programming yield.

1K x 8 PROM

The EPROM cell requires only 13.5 V for the super voltage, and low current requirements allow for gang programming. The EPROM cells allow each memory location to be tested 100% because each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming, the product will meet DC and AC specification limits.

Reading is accomplished by placing an active LOW signal on $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$, and active HIGH signals on CS_{3} and CS_{4}. The contents of the memory location addressed by the address lines (A_{0} A_{9}) will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Selection Guide

		7C281-30 7C282-30	7C281-45 7C282-45
Maximum Access Time (ns)	30	45	
Maximum Operating Current (mA) Commercial	100	90	
	Military		120

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12)

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
DC Program Voltage (Pins 18, 20)
14.0 V

Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$

Static Discharge Voltage (per MIL-STD-883, Method 3015)	V
Latch-Up Current	200 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $\left.{ }^{[2]}\right]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C281-30 } \\ & \text { 7C282-30 } \end{aligned}$		$\begin{aligned} & \text { 7C281-45 } \\ & 7 \mathrm{C} 282-45 \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs		2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs			0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-40	+40	-40	+40	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-20	-90	-20	-90	mA
I_{CC}	Power Supply Current ${ }^{[6]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		100		90	mA
			Military				120	
V_{PP}	Program Voltage			13	14	13	14	V
$\mathrm{V}_{\text {IHP }}$	Program HIGH Voltage			3.0		3.0		V
$\mathrm{V}_{\text {ILP }}$	Program LOW Voltage				0.4		0.4	V
I_{PP}	Program Supply Current				50		50	mA

Capacitance ${ }^{[4]}$

Parameter	Tescription	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. Contact a Cypress representative for industrial temperature range specifications.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. See"Introduction to CMOSPROMs" in thisData Book for general information on testing.
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
6. Due to the design of the differential cell in this device, I_{cc} can only be accurately measured on a programmed array.

AC Test Loads and Waveforms ${ }^{4]}$

(b) High Z Load

C281-5

Equivalent to: THEVENIN EQUIVALENT

Switching Waveforms

Switching Characteristics Over the Operating Range ${ }^{2,4]}$

Parameter	Description	$\begin{aligned} & \hline 7 \mathrm{C} 281-30 \\ & 7 \mathrm{C} 282-30 \end{aligned}$		$\begin{aligned} & \text { 7C281-45 } \\ & \text { 7C282-45 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		30		45	ns
$\mathrm{t}_{\mathrm{HZCS}}$	Chip Select Inactive to High Z		20		25	ns
$\mathrm{t}_{\text {ACS }}$	Chip Select Active to Output Valid		20		25	ns

Programming Information

Programming support is available from Cypress as well as from a number of third party software vendors. For detailed programming information, including a listing of software packages, please
see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. Mode Selection

Mode		Pin Function ${ }^{[7]}$					
	Read or Output Disable	$\mathrm{A}_{9}-\mathrm{A}_{0}$	CS_{4}	CS_{3}	$\overline{\mathbf{C S}_{2}}$	$\overline{\mathbf{C S}}_{1}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	$\mathrm{A}_{9}-\mathrm{A}_{0}$	$\overline{\text { PGM }}$	$\overline{\mathbf{V F Y}}$	$\mathbf{V}_{\text {PP }}$	$\overline{\mathbf{C S}}_{1}$	$\mathrm{D}_{7}-\mathrm{D}_{\mathbf{0}}$
Read		$\mathrm{A}_{7}-\mathrm{A}_{0}$	V_{IH}	V_{IH}	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable		$\mathrm{A}_{7}-\mathrm{A}_{0}$	X	X	V_{IH}	X	High Z
Output Disable		$\mathrm{A}_{7}-\mathrm{A}_{0}$	X	V_{IL}	X	X	High Z
Output Disable		$\mathrm{A}_{7}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IL }}$	X	X	X	High Z
Output Disable		$\mathrm{A}_{7}-\mathrm{A}_{0}$	X	X	X	$\mathrm{V}_{\text {IH }}$	High Z
Program		$\mathrm{A}_{7}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	VIHP	$\mathrm{V}_{\text {PP }}$	VILP	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		$\mathrm{A}_{7}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	VILP	V_{PP}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{A}_{7}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{V}_{\text {ILP }}$	High Z
Intelligent Program		$\mathrm{A}_{7}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Blank Check Ones		$\mathrm{A}_{7}-\mathrm{A}_{0}$	V_{PP}	VILP	$\mathrm{V}_{\text {ILP }}$	V ILP	Ones
Blank Check Zeros		$\mathrm{A}_{7}-\mathrm{A}_{0}$	V_{PP}	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	Zeros

Note:
7. $\mathrm{X}=$ "don't care" but not to exceed $\mathrm{V}_{\mathrm{CC}} \pm 5 \%$.

Figure 1. Programming Pinouts

SEMICONDUCTOR

Typical DC and AC Characteristics

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
30	CY7C281-30DC	D14	24-Lead (300-Mil) CerDIP	Commercial
	CY7C281-30JC	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C281-30PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7C281-45DC	D14	24-Lead (300-Mil) CerDIP	Commercial
	CY7C281-45JC	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C281-45PC	P13	24-Lead (300-Mil) Molded DIP	Military
	CY7C281-45DMB	D14	24-Lead (300-Mil) CerDIP	
	CY7C281-45KMB	K73	24-Lead Rectangular Cerpack	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
	CY7C282-30PC	P11	24-Lead (600-Mil) Molded DIP	Commercial
	CY7C282-45PC	P11	24-Lead (600-Mil) Molded DIP	
	CY7C282-45DMB	D12	24-Lead (600-Mil) CerDIP	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$

Document \#: 38-00006-F

SMD Cross Reference

SMD Number	Suffix	Cypress Number
$5962-87651$	01 JX	CY7C282-45DMB
$5962-87651$	01 KX	CY7C281-45KMB
$5962-87651$	01 LX	CY7C281-45DMB
$5962-87651$	013 X	CY7C281-45LMB

- Capable of withstanding $\mathbf{> 2 0 0 1 V}$ static discharge

Functional Description

The CY7C281A and CY7C282A are high-performance 1024 -word by 8 -bit CMOS PROMs. They are functionally identical, but are packaged in $300-\mathrm{mil}$ and $600-$ mil-wide packages respectively. The CY7C281A is also available in a 28 -pin leadless chip carrier. The memory cells utilize proven EPROM floating-gate technology and byte-wide intelligent programming algorithms.
The CY7C281A and CY7C282A are plug-in replacements for bipolar devices and offer the advantages of lower power, superior performance, and programming

1K x 8 PROM

yield. The EPROM cell requires only 12.5 V for the super voltage, and low current requirements allow for gang programming. The EPROM cells allow each memory location to be tested 100% because each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming, the product will meet $D C$ and $A C$ specification limits.

Reading is accomplished by placing an active LOW signal on $\overline{\mathrm{CS}}_{1}$ and $\overline{\mathrm{CS}}_{2}$, and active HIGH signals on CS_{3} and CS_{4}. The contents of the memory location addressed by the address lines $\left(A_{0}-A_{9}\right)$ will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Logic Block Diagram

Pin Configurations

C281A-2

Selection Guide

		$\begin{aligned} & \text { 7C281A-25 } \\ & \text { 7C282A-25 } \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 281 \mathrm{~A}-30 \\ & \text { 7C282A-30 } \end{aligned}$	$\begin{aligned} & \hline \text { 7C281A-45 } \\ & \text { 7C282A-45 } \end{aligned}$
Maximum Access Time (ns)		25	30	45
$\begin{aligned} & \text { Maximum Operating } \\ & \text { Current (mA) } \end{aligned}$	Commercial	100	100	90
	Military		120	120

CYPRESS
PRELIMINARY

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $. \ldots$.
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12)
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
DC Program Voltage (Pins 18, 20)
13.0 V

Static Discharge Voltage . > $\mathbf{~} 2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	Test Conditions		$\begin{aligned} & 7 \mathrm{C} 281 \mathrm{~A}-25 \\ & 7 \mathrm{C} 282 \mathrm{~A}-25 \end{aligned}$		$\begin{aligned} & \text { 7C281A-30 } \\ & \text { 7C282A-30 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 281 \mathrm{~A}-45 \\ & 7 \mathrm{C} 282 \mathrm{~A}-45 \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs		2.0		2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs			0.8		0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{0} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-20	-90	-20	-90	-20	-90	mA
I_{CC}	Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Commercial		100		100		90	mA
			Military				120		120	
V_{PP}	Program Voltage			12	13	12	13	12	13	V
$\mathrm{V}_{\mathrm{IHP}}$	Program HIGH Voltage			3.0		3.0		3.0		V
$\mathrm{V}_{\text {ILP }}$	Program LOW Voltage				0.4		0.4		0.4	V
I_{PP}	Program Supply Current				50		50		50	mA

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. Contact a Cypress representative for industrial temperature range specifications.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. See "Introduction to CMOSPROMs" in this Data Book for generalinformation on testing.
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

AC Test Loads and Waveforms ${ }^{4]}$

(a) Normal Load

(b) High Z Load

Equivalent to: THÉVENIN EQUIVALENT

Switching Waveforms

C281A-7
Switching Characteristics Over the Operating Range $\left.{ }^{2}, 4\right]$

Parameter	Description	$\begin{aligned} & \hline 7 \mathrm{C} 281 \mathrm{~A}-25 \\ & \text { 7C282A-25 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C281A-30 } \\ & \text { 7C282A-30 } \end{aligned}$		$\begin{aligned} & \text { 7C281A-45 } \\ & \text { 7C282A-45 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		25		30		45	ns
$\mathrm{t}_{\mathrm{HZCS}}$	Chip Select Inactive to High Z		15		20		25	ns
$\mathrm{t}_{\text {ACS }}$	Chip Select Active to Output Valid		15		20		25	ns

PRELIMINARY

Programming Information

Programming support is available from Cypress as well as from a number of third party software vendors. For detailed programming information, including a listing of software packages, please see the

PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. Mode Selection

Mode		Pin Function ${ }^{[6]}$					
	Read or Output Disable	$\mathrm{A}_{9}-\mathrm{A}_{0}$	CS_{4}	CS_{3}	$\overline{\mathrm{CS}}_{2}$	$\overline{\mathbf{C S}}_{1}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	$\mathrm{A}_{9}-\mathrm{A}_{0}$	$\overline{\text { PGM }}$	$\overline{\text { VFY }}$	$\mathbf{V P P}$	$\overline{\mathbf{C S}}_{1}$	$\mathbf{D}_{7}-\mathrm{D}_{\mathbf{0}}$
Read		$\mathrm{A}_{9}-\mathrm{A}_{0}$	V_{IH}	V_{IH}	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable		$\mathrm{A}_{9}-\mathrm{A}_{0}$	X	X	$\mathrm{V}_{\text {IH }}$	X	High Z
Output Disable		$\mathrm{A}_{9}-\mathrm{A}_{0}$	X	$\mathrm{V}_{\text {IL }}$	X	X	High Z
Output Disable		$\mathrm{A}_{9}-\mathrm{A}_{0}$	V_{IL}	X	X	X	High Z
Output Disable		$\mathrm{A}_{9}-\mathrm{A}_{0}$	X	X	X	V_{IH}	High Z
Program		$\mathrm{A}_{9}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		$\mathrm{A}_{9}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{P P}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{A}_{9}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {IHP }}$	$V_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	High Z
Intelligent Program		$\mathrm{A}_{9}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {PP }}$	$V_{\text {ILP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Blank Check		$\mathrm{A}_{9}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	Zeros

Note:

6. $\mathrm{X}=$ "don't care" but not to exceed $\mathrm{V}_{\mathrm{CC}} \pm 5 \%$.

C281A-8

Figure 1. Programming Pinouts

SEMICONDUCTOR

Typical DC and AC Characteristics

C281A-10

Ordering Information

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C281A-25DC	D14	24-Lead (300-Mil) CerDIP	Commercial
	CY7C281A-25JC	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C281A-25PC	P13	24-Lead (300-Mil) Molded DIP	
30	CY7C281A-30DC	D14	24-Lead (300-Mil) CerDIP	Commercial
	CY7C281A-30JC	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C281A-30PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7C281A-30DMB	D14	24-Lead (300-Mil) CerDIP	Military
45	CY7C281A-45DC	D14	24-Lead (300-Mil) CerDIP	Commercial
	CY7C281A-45JC	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C281A-45PC	P13	24-Lead (300-Mil) Molded DIP	
	CY7C281A-45DMB	D14	24-Lead (300-Mil) CerDIP	Military
	CY7C281A-45KMB	K73	24-Lead Rectangular Cerpack	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C282A-25PC	P11	24-Lead (600-Mil) Molded DIP	Commercial
30	CY7C282A-30PC	P11	24-Lead (600-Mil) Molded DIP	Commercial
	CY7C282A-30DMB	D12	24-Lead (600-Mil) CerDIP	Military
45	CY7C282A-45PC	P11	24-Lead (600-Mil) Molded DIP	Commercial
	CY7C282A-45DMB	D12	24-Lead (600-Mil) CerDIP	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$

Document \#: 38-00227-A

SMD Cross Reference

SMD Number	Suffix	Cypress Number
$5962-87651$	01 JX	CY7C282A-45DMB
$5962-87651$	01 KX	CY7C281A-45KMB
$5962-87651$	01 LX	CY7C281A-45DMB
$5962-87651$	013 X	CY7C281A-45LMB

CY7C285

64K x 8 Reprogrammable Fast Column Access PROM

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- Unique fast column access
$-\mathbf{t}_{\mathrm{AA}}=20 \mathrm{~ns}$ (commercial)
$-\mathrm{t}_{\mathrm{AA}}=25 \mathrm{~ns}$ (military)
- WAIT signal
- EPROM technology, $\mathbf{1 0 0 \%}$ programmable
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL-compatible I/O
- Slim 300-mil package
- Capable of withstanding $>2001 \mathrm{~V}$ static discharge

Functional Description

The CY7C285 is a high-performance 65,536 by 8 -bit CMOS PROM. It is available in a 28 -pin 300 -mil package and features a unique fast column access feature that allow access times as fast as 20 ns for each byte in a 64 -byte page. There are 1024 pages in the device. The access time when changing pages is 65 ns . In order to easily facilitate the use of the fast column access feature, a WAIT signal is generated to advise the processor of a page change.
The CY7C285 offers the advantage of low power, superior performance, and program-
ming yield. The EPROM cell requires only 12.5 V for the super voltage, allowing for each memory location to be 100% tested, with each location being written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet $D C$ and $A C$ specification limits.
Reading the CY7C285 is accomplished by placing an active LOW signal on the $\overline{\mathrm{CS}}$ pin. The contents of the memory location addressed by the address lines $\left(\mathrm{A}_{0}-\mathrm{A}_{15}\right)$ will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Logic Block Diagram

Pin Configurations

Selection Guide

Description		7C285-65	7C285-75	7C285-85
Maximum Access Time (ns)	Page Access Time	65	75	85
	Column Access Time	20	25	35
Maximum Operating Current (mA)	Commercial	180	180	180
	Military		200	200

Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 28 to Pin 14) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
DC Program Voltage (Pin 22) . 13.0V

UV Exposure $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$
Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	Test Conditions		7C285		Unit
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}^{[5]}$			0.4	V
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs		2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs			0.8	V
V_{CD}	Input Diode Clamp Voltage					V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$		-10	$+10$	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$, Output Disabled		-40	$+40$	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current ${ }^{[6]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=$ GND		-20	-90	mA
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Com'l		180	mA
			Mil		200	mA

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. Contact a Cypress representative for industrial temperature range specification.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. See Introduction to CMOS PROMs in this Data Book for general information on testing.
5. $\mathrm{I}_{\mathrm{OL}}=6.0 \mathrm{~mA}$ for military .
6. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

AC Test Loads and Waveform ${ }^{[4]}$

(a) Normal Load

(b) High Z Load

C285-5

Switching Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	7C285-65		7C285-75		7C285-85		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {RAC }}$	Slow Address Access Time ($\mathrm{A}_{6}-\mathrm{A}_{15}$)		65		75		85	ns
$\mathrm{t}_{\text {CAA }}$	Fast Address Access Time ($\mathrm{A}_{0}-\mathrm{A}_{5}$)		20		25		35	ns
$\mathrm{t}_{\mathrm{HZCS}}$	Output High Z from $\overline{\mathrm{CS}}$		15		20		25	ns
$\mathrm{t}_{\text {ACS }}$	Output Valid from $\overline{\text { CS }}$		15		20		25	ns
$t_{\text {WD }}$	WAIT Delay from First Slow Address Change		20		25		35	ns
$\mathrm{t}_{\text {DW }}$	WAIT Hold from Data Valid	0		0		0		ns
tww	WAIT Recovery from Last Address Change		90		110		120	ns
tPWD	WAIT Pulse Width	10		12		15		ns

Switching Waveform

Erasure Characteristics

Wavelengths of light less than 4000 angstroms begin to erase the 7C285 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum dose (UV intensity multipled by exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating, the exposure time would be approximately 35 minutes. The 7C285 needs to be within 1 inch of the
lamp during erasure. Permanent damage may result if the PROM is exposed tohigh-intensity UV lightfor an extended periodoftime. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Programming Modes

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Mode Selection

Mode: Read or Output Disable	Pin Number				
	22	23	21	20	19-15, 13-11
	A_{15}	A_{14}	$\overline{\text { CS }}$	$\overline{\text { WAIT }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Read (within a page: $\mathrm{A}_{6}-\mathrm{A}_{15}$ stable)	A_{15}	A_{14}	V_{IL}	V_{OH}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Read (page break: $\mathrm{A}_{6}-\mathrm{A}_{15}$ transition)	A_{15}	A_{14}	$\mathrm{V}_{\text {IL }}$	Pulse LOW	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable	A_{15}	A_{14}	$\mathrm{V}_{\text {IH }}$	Output	High Z
Mode: Other	$\mathbf{V P P}^{\text {Pr }}$	LATCH	$\overline{\text { PGM }}$	$\overline{\text { VFY }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program	V_{PP}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Inhibit	$\mathrm{V}_{\text {PP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	High Z
Program Verify	$V_{P P}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\mathrm{IHP}}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Blank Check	V_{PP}	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	Zeros

Figure 1. Programming Pinouts

CY7C285

Ordering Information ${ }^{[7]}$

Speed (ns)	Ordering Code	Package Name	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
65	CY7C285-65PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C285-65WC	W22	28-Lead (300-Mil) Windowed CerDIP	
75	CY7C285-75PC	P21.	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C285-75WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	CY7C285-75DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C285-75LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C285-75QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C285-75WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
85	CY7C285-85PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C285-85WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	CY7C285-85DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C285-85LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C285-85QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C285-85WMB	W22	28-Lead (300-Mil) Windowed CerDIP	

Note:
7. Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CAA}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS}}$	$7,8,9,10,11$

Document \#: 38-00097-G

Features

- CMOS for optimum speed/power
- Windowed for reprogrammability
- High speed
- $\mathbf{t}_{\text {SA }}=45 \mathrm{~ns}$ (7C287)
$-\mathbf{t}_{\mathbf{C O}}=15 \mathrm{~ns}(7 \mathrm{C} 287)$
$-\mathrm{t}_{\mathrm{ACC}}=50 \mathrm{~ns}$ (7C286)
- Low power
-120 mA active
- 40 mA standby (7C286)
- On-chip, edge-triggered output registers (7C287)
- Programmable synchronous (7C287 only) or asynchronous output enable
- EPROM technology, 100\% programmable
- $\mathbf{5 V} \pm 10 \% \mathrm{~V}_{\mathbf{C C}}$, commercial and military
- TTL-compatible I/O
- Slim 300-mil package (7C287)

- Capable of withstanding >2001V static discharge

Functional Description

The CY7C286 and the CY7C287 are high-performance 65,536 by 8 -bit CMOS PROMs. The CY7C286 is configured in the JEDEC-standard 512 K EPROM pinout and is available in a 28 -pin, $600-\mathrm{mil}$ package. Power consumption is 120 mA in the active mode and 40 mA in the standby mode. Access time is 50 ns . The CY7C287 has registered outputs and operates in the synchronous mode. $\overline{\mathrm{E}}$ can also be programmed into the synchronous mode, E_{S}. It is available in a 28 -pin, $300-\mathrm{mil}$ package. The address set-up time is 45 ns and the time from clock HIGH to output valid is 15 ns .
Both the CY7C286 and the CY7C287 are available in a cerDIP package equipped with an erasure window to provide reprogrammability. When exposed to UV light, the PROM is erased and can be repro-
grammed. The memory cells utilize proven EPROM floating-gate technology and bytewide intelligent programming algorithms. The CY7C286 and the CY7C287 offer the advantage of low power, superior performance, and programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allow for each memory location to be 100% tested with each location being written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that the product will meet DC and AC specification limits after customer programming.
Reading the CY7C286 is accomplished by placing active LOW signals on the $\overline{\mathrm{OE}}$ and CE pins. Reading the CY7C287 is accomplished by placing an active LOW signal on $\mathrm{E} / \mathrm{E}_{\mathrm{S}}$. The contents of the memory location addressed by the address lines $\left(\mathrm{A}_{0}-\mathrm{A}_{15}\right)$ will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$ on the next rising of CP .

Logic Block Diagram

Pin Configurations

C286-1

Selection Guide

		$\mathbf{7 C 2 8 6 - 5 0}$	$\mathbf{7 C 2 8 6}-\mathbf{6 0}$	$\mathbf{7 C 2 8 6 - 7 0}$	7C286-80
Maximum Access Time (ns)	50	60	70	80	
Maximum Operating Current (mA)	Com'l	120	120	90	
	Mil		150	120	120
Maximum Standby Current (mA)	Com'l	40	40	30	
	Mil		50	40	40

		$\mathbf{7 C 2 8 7 - 4 5}$	7C287~55	7C287~65
Maximum Set-Up Time (ns)	45	55	65	
Maximum Clock to Output (ns)	15	20	25	
Maximum Operating Current (mA)	Com'l	120	120	120
	Mil		150	150

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad
Supply Voltage to Ground Potential -0.5 V to +7.0 V
(Pin 28 to Pin 14)
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
DC Program Voltage (Pin 22)

UV Exposure
7258 Wsec/cm ${ }^{2}$
Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015.2)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial ${ }^{[1]}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[2]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		$\begin{array}{\|c\|} \hline 7 \mathrm{C} 286-50 \\ \hline 7 \mathrm{C} 287-45 \\ \hline \end{array}$		$\begin{array}{\|c} \hline \text { 7C286-60 } \\ \hline 7 \mathrm{C} 287-55 \\ \hline \end{array}$		$\begin{array}{\|c\|} \hline 7 \mathrm{C} 286-70,80 \\ \hline 7 \mathrm{C} 287-65 \\ \hline \end{array}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$	Com'l		0.4		0.4		0.4	V
		$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I} \mathrm{OL}=6.0 \mathrm{~mA}$	Mil				0.4		0.4	
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for Inputs		2.0	V_{CC}	2.0	V_{CC}	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOWVoltage for Inputs			0.8		0.8		0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Note 4						
I_{OZ}	Output Leakage Current	$\begin{aligned} & \text { GND } \leq V_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$		-40	+40	-40	+40	-40	+40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OS }}$	OutputShortCircuitCurrent	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}^{[5]}$		-20	-90	-20	-90	-20	-90	mA
$\begin{aligned} & \mathrm{I}_{\mathrm{CC}} \\ & (7 \mathrm{C} 286) \end{aligned}$	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Com'l		120		120		90	mA
			Mil				150		120	
$\begin{aligned} & \mathrm{I}_{\mathrm{CC}} \\ & (7 \mathrm{C} 287) \end{aligned}$	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \\ & \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Com'l		120		120		120	mA
			Mil				150		150	
$\mathrm{I}_{\mathrm{SB}}{ }^{[6]}$	Standby Supply Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \overline{\mathrm{CE}}=\mathrm{HIGH}$	Com'l		40		40		30	mA
			Mil				50		40	

Notes:

1. Contact a Cypress representative for industrial termperature range specifications.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. See Introduction to CMOS PROMs for general information on testing.
5. Short circuit test should not exceed 30 seconds.
6. Only the CY7C286 has a standby mode.
\qquad

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
C OUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveform ${ }^{[4]}$

(a) Normal Load

(b) High Z Load
Equivalent to:
THÉVENIN EQUIVALENT
OUTPUT $0 \overbrace{\text { Commercial }}^{200 \Omega} \overbrace{2.0 \mathrm{~V}}^{20}$

7C286 Switching Characteristics Over the Operating Range ${ }^{[3,4]}$

	Description	7C286-50		7C286-60		7C286-70		7C286-80		Unit
Parameter		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{ACC}}$	Address Access Time		50		60		70		80	ns
t_{CE}	Output Valid from $\overline{\mathrm{CE}}$		50		60		70		80	ns
$\mathrm{t}_{\text {OE }}$	Output Valid from $\overline{\mathrm{OE}}$		18		20		25		25	ns
t_{DF}	Output Tri-State from $\overline{\mathrm{CE}} / \overline{\mathrm{OE}}$		18		20		25		25	ns
$\mathrm{t}_{\text {PU }}$	Chip Enable to Power-Up	0		0		0		0		ns
$t_{\text {PD }}$	Chip Disable to Power-Down		40		50		60		60	ns

7C287 Switching Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	7C287-45		7C287-55		7C287-65		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{SA}	Address Set-Up to Clock HIGH	45		55		65		ns
t_{HA}	Address Hold from Clock HIGH	0		0		0		ns
t_{CO}	Clock HIGH to Output Valid		15		20		25	ns
$\mathrm{t}_{\text {HZE }}$	Output High Z from $\overline{\mathrm{E}}$		15		20		25	ns
$\mathrm{t}_{\text {DOE }}$	Output Valid from E		15		20		25	ns
tpwC	Clock Pulse Width	15		20		25		ns
$\mathrm{t}_{\text {SEs }}{ }^{[7]}$	$\overline{\mathrm{E}}_{\text {S }}$ Set-Up to Clock HIGH	12		15		18		ns
$\mathrm{t}_{\mathrm{HEs}}{ }^{[7]}$	$\overline{\mathrm{E}}_{\mathrm{S}}$ Hold from Clock HIGH	5		8		10		ns
$\mathrm{t}_{\mathrm{HZC}}{ }^{[7]}$	Output High Z from CLK/Es		20		25		30	ns
$\mathrm{t}_{\mathrm{COs}}{ }^{[7]}$	Output Valid from CLK/E/ $\overline{\mathrm{E}}_{\text {S }}$		20		25		30	ns

Note:
7. Parameters with synchronous $\overline{\mathrm{E}}_{\mathrm{S}}$ option.

Architecture Configuration Bits

Architecture Bit	Device	Architecture Verify $\mathbf{D}_{\mathbf{0}}$		Function
$\overline{\mathrm{E}} / \overline{\mathrm{E}}_{\mathrm{S}}$	7 C 287	D_{0}	$0=$ Erased	Asynchronous Output Enable (Pin 20= $\overline{\mathrm{E}})$
			1 = PGMED	Synchronous Output Enable (Pin 20= $\left.\overline{\mathrm{E}}_{S}\right)$

Bit Map

Programmer Address (Hex.)	RAM Data	Architecture Byte (10000 H)
0000	Data	
FFFF 10000	Data Control Byte	

Switching Waveform for the 7C286

Switching Waveform for the 7C287

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the 7C286 and 7C287 in the windowed package. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 angstroms for a minimum dose (UV intensity multiplied by exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating, the exposure time would be approximately 35 minutes. The 7C286 or 7C287
needs to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. $7258 \mathrm{Wsec} /$ cm^{2} is the recommended maximum dosage.

Programming Modes

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cypress representative.

Table 1. CY7C286 Mode Selection

Mode: Read or Output Disable	Pin Number ${ }^{[8]}$				
	21	23	20	22	19-15, 13-11
	A_{10}	A_{11}	$\overline{\mathbf{C E}}$	$\overline{\text { OE }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Read	A_{10}	A_{11}	VIL	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable	A_{10}	A_{11}	X	$\mathrm{V}_{\text {IH }}$	High Z
Output Disable \& Power Down	A_{10}	A_{11}	V_{IH}	X	High Z
Mode: Other	$\overline{\text { PGM }}$	LATCH	$\overline{\overline{\mathbf{V F Y}}}$	$\mathbf{V P P}$	$\mathbf{D}_{7}-\mathbf{D}_{0}$
Program	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {PP }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	High Z
Blank Check	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	V_{PP}	Zeros

Table 2. CY7C287 Mode Selection

Mode: Read or Output Disable	Pin Function ${ }^{[8]}$				
	21	23	20	22	19-15, 13-11
	CP	A_{14}	$\stackrel{\rightharpoonup}{\mathbf{E}}, \overline{\mathrm{E}}_{\mathbf{S}}$	A_{15}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Synchronous Read	$\mathrm{V}_{\mathrm{IL}} / \mathrm{V}_{\mathrm{IH}}$	A_{14}	$\mathrm{V}_{\text {IL }}$	A_{15}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable - Asychronous	X	A_{14}	V_{IH}	A_{15}	High Z
Output Disable - Synchronous	$\mathrm{V}_{\mathrm{IL}} / \mathrm{V}_{\mathrm{IH}}$	A_{14}	V_{IH}	A_{15}	High Z
Mode: Other	$\overline{\text { PGM }}$	LATCH	$\overline{\overline{\mathbf{V F Y}}}$	$\mathbf{V}_{\mathbf{P P}}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	VILP	V_{PP}	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {PP }}$	High Z
Blank Check	$V_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	V ILP	$V_{\text {PP }}$	Zeros

Note:
8. $\mathrm{X}=$ "don't care" but not to exceed $\mathrm{V}_{\mathrm{CC}} \pm 5 \%$.

DIP

LCC

Figure 1. Programming Pinouts

CYPRESS
SEMICONDUCTOR

Ordering Information ${ }^{[9]}$

Speed (ns)	Ordering Code	Package Name	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
50	CY7C286-50PC	P15	28-Lead (600-Mil) Molded DIP	Commercial
	CY7C286-50WC	W16	$28-L e a d ~(600-M i l) ~ W i n d o w e d ~ C e r D I P ~$	
60	CY7C286-60PC	P15	28-Lead (600-Mil) Molded DIP	Commercial
	CY7C286-60WC	W16	28-Lead (600-Mil) Windowed CerDIP	
	CY7C286-60DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C286-60LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C286-60QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C286-60WMB	W16	28-Lead (600-Mil) Windowed CerDIP	
70	CY7C286-70PC	P15	28-Lead (600-Mil) Molded DIP	Commercial
	CY7C286-70WC	W16	28 -Lead (600-Mil) Windowed CerDIP	
	CY7C286-70DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C286-70LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C286-70QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C286-70WMB	W16	28-Lead (600-Mil) Windowed CerDIP	
80	CY7C286-80WMB	W16	28-Lead (600-Mil) Windowed CerDIP	Military
	CY7C286-80QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
45	CY7C287-45PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C287-45WC	W22	28-Lead (300-Mil) Windowed CerDIP	
55	CY7C287-55PC	P21		Commercial
	CY7C287-55WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	CY7C287-55DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C287-55LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C287-55QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C287-55WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
65	CY7C287-65PC	P21	28 -Lead (300-Mil) Molded DIP	Commercial
	CY7C287-65WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	CY7C287-65DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C287-65LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C287-65QMB	Q55	32-Pin Windowed Rectangular Leadless Chip Carrier	
	CY7C287-65WMB	W22	28-Lead (300-Mil) Windowed CerDIP	

Note:
9. Most of these products are available in industrial temperature range. Contact a Cypress representative for specifications and product availability.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{IB}^{[10]}}$	$1,2,3$

Switching Characteristics

Device	Parameter	Subgroups
7 C 286	$\mathrm{t}_{\mathrm{ACC}}$	$7,8,9,10,11$
	t_{CE}	$7,8,9,10,11$
	t_{OE}	$7,8,9,10,11$
7 C 287	t_{SA}	$7,8,9,10,11$
	t_{HA}	$7,8,9,10,11$
	t_{CO}	$7,8,9,10,11$
	$\mathrm{t}_{\mathrm{DOE}}$	$7,8,9,10,11$
	$\mathrm{t}_{\mathrm{PWC}}$	$7,8,9,10,11$

Note:

10. CY7C286 only.

Document \#: 38-00103-G

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
- 35 ns (commercial)
- 35 ns (military)
- Low power
- $\mathbf{3 3 0} \mathrm{mW}$ (commercial)
-660 mW (military)
- EPROM technology $\mathbf{1 0 0 \%}$ programmable
- Slim 300-mil or standard $\mathbf{6 0 0}-\mathrm{mil}$ packaging available
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding $\mathbf{> 2 0 0 0 V}$ static discharge

Functional Description

The CY7C291 and CY7C292 are highperformance 2048 -word by 8 -bit CMOS PROMs. They are functionally identical, but are packaged in $300-\mathrm{mil}$ and $600-\mathrm{mil}$ wide plastic and hermetic DIP packages respectively. The 300 -mil ceramic DIP package is equipped with an erasure window; when exposed to UV light the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating gate technology and byte-wide intelligent programming algorithms.
The CY7C291 and CY7C292 are plug-in replacements for bipolar devices and offer
the advantages of lower power, superior performance, and programming yield. The EPROM cell requires only 12.5 V for the super voltage, and low current requirements allow for gang programming. The EPROM cells allow each memory location to be tested 100% because each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming, the product will meet DC and AC specification limits.

Reading is accomplished by placing an active LOW signal on $\overline{\mathrm{CS}}_{1}$, and active HIGH signals on CS_{2} and CS_{3}. The contents of the memory location addressed by the address lines $\left(\mathrm{A}_{0}-\mathrm{A}_{10}\right)$ will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Logic Block Diagram

Pin Configurations
 C291-2

Window available on 300 -mil cerdip only.

Selection Guide

			$\begin{aligned} & \hline \text { 7C291-35 } \\ & 7 \mathrm{C} 292-35 \end{aligned}$	$\begin{aligned} & 7 \mathrm{C} 291-50 \\ & 7 \mathrm{C} 292-50 \end{aligned}$
Maximum Access Time (ns)			35	50
Maximum Operating Current (mA)	STD	Commercial	90	90
		Military	$120^{[1]}$	120
	L	Commercial	60	60

Note:

1. 7 C 291 only.

Features

- Windowed for reprogrammability
- CMOS for optimum speed/power
- High speed
- 20 ns (commercial)
-25 ns (military)
- Low power
-660 mW (commercial and military)
- Low standby power
- 220 mW (commercial and military)
- EPROM technology 100% programmable
- Slim 300-mil or standard $\mathbf{6 0 0}$-mil packaging available
- $\mathbf{5 V} \pm \mathbf{1 0 \%} \mathrm{V}_{\mathrm{CC}}$, commercial and military
- TTL-compatible I/O
- Direct replacement for bipolar PROMs
- Capable of withstanding $>2001 \mathrm{~V}$ static discharge
Functional Description
The CY7C291A, CY7C292A, and CY7C293A are high-performance 2 K word by 8 -bit CMOS PROMs. They are functionally identical, but are packaged in 300-mil (7C291A, 7C293A) and 600-mil wide plastic and hermetic DIP packages (7C292A). The CY7C293A has an automatic power down feature which reduces the power consumption by over 70% when deselected. The 300 -mil ceramic package may be equipped with an erasure window; when exposed to UV light the PROM is erased and can then be reprogrammed. The memory cells utilize proven EPROM floating-gate technology and byte-wide intelligent programming algorithms.

The $\mathrm{CY} 7 \mathrm{C} 291 \mathrm{~A}, \quad \mathrm{CY} 7 \mathrm{C} 292 \mathrm{~A}$, and CY7C293A are plug-in replacements for bipolar devices and offer the advantages of lower power, reprogrammability, superior performance and programming yield. The EPROM cell requires only 12.5 V for the supervoltage and low current requirements allow for gang programming. The EPROM cells allowfor each memory location to be tested 100%, as each location is written into, erased, and repeatedly exercised prior to encapsulation. Each PROM is also tested for AC performance to guarantee that after customer programming the product will meet DC and AC specification limits.
A read is accomplished by placing an active LOW signal on $\overline{\mathrm{CS}}_{1}$, and active HIGH signals on CS_{2} and CS_{3}. The contents of the memory location addressed by the address line $\left(\mathrm{A}_{0}-\mathrm{A}_{10}\right)$ will become available on the output lines $\left(\mathrm{O}_{0}-\mathrm{O}_{7}\right)$.

Logic Block Diagram

Pin Configurations

DIP Top View

C291A-2

LCC/PLCC (Opaqe Only) Top View

C291A-3

Window available on 7C291A and 7C293A only.

Selection Guide

CYPRESS
SEMICONDUCTOR

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad
Ambient Temperature with
Power Applied
\qquad
Supply Voltage to Ground Potential $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

DC Voltage Applied to Outputs
in High Z State . \qquad -0.5 V to +7.0 V

DC Input Voltage -0.5 V to +7.0 V

DC Program Voltage -3.0 V to +7.0 V

UV Exposure \qquad 13.0 V

Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$

Notes:

1. Contact a Cypress representative for industrial temperature range specifications.
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.

Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial $[1]$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3,4]}$ (continued)

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C291I } \\ & \text { 7C292 } \\ & \text { 7C293 } \end{aligned}$	$\begin{array}{r} -35,50 \\ -35,50 \\ -35,50 \end{array}$	$\begin{aligned} & 7 \mathrm{C} 291 \\ & 7 \mathrm{C} 292 \\ & 7 \mathrm{C} 293 \end{aligned}$	$\begin{aligned} & -35,50 \\ & -35,50 \\ & -35,50 \end{aligned}$	Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}$			0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs		2.0		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs			0.8		0.8	V
IIX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-10	+10	-10	+10	$\mu \mathrm{A}$
V_{CD}	Input Diode Clamp Voltage			Note 4				
I_{OZ}	Output Leakage Current	$\begin{aligned} & \mathrm{GND} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}, \\ & \text { Output Disabled } \end{aligned}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-20	-90	-20	-90	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Commercial		60		90	mA
			Military				90	
ISB	Standby Supply Current (7C293A Only)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{CS}_{1}=\mathrm{V}_{\mathrm{IH}} \end{aligned}$	Commercial		30		30	mA
			Military				40	
V_{PP}	Programming Supply Voltage			12	13	12	13	V
I_{PP}	Programming Supply Current				50		50	mA
$\mathrm{V}_{\text {IHP }}$	Input HIGH Programming Voltage			3.0		3.0		V
$\mathrm{V}_{\text {ILP }}$	Input LOW Programming Voltage				0.4		0.4	V

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms ${ }^{[4]}$

(a) Normal Load

(b) High Z Load
Equivalent to: THÉVENIN EQUIVALENT

C291A-7
Switching Characteristics Over the Operating Range ${ }^{[3,4]}$

Parameter	Description	$\begin{aligned} & \text { 7C291A-20 } \\ & \text { 7C292A-20 } \\ & \text { 7C293A-20 } \end{aligned}$		7C291A-25 7C292A-25 7C293A-25 7C291AL-25 7C292AL-25 7C293AL-25		$\begin{gathered} \text { 7C291A-35 } \\ \text { 7C292A-35 } \\ \text { 7C293A-35 } \\ \text { 7C291AL-35 } \\ \text { 7C292AL-35 } \\ \text { 7C293AL- }-35 \end{gathered}$		$\begin{gathered} \text { 7C291A-50 } \\ \text { 7C292A-50 } \\ \text { 7C293A-50 } \\ \text { 7C291AL-50 } \\ \text { 7C292AL-50 } \\ \text { 7C293AL-50 } \end{gathered}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{AA}	Address to Output Valid		20		25		35		50	ns
$\mathrm{t}_{\mathrm{HZCS} 1}$	Chip Select Inactive to High Z		15		15		20		20	ns
$\mathrm{t}_{\mathrm{ACS}} 1$	Chip Select Active to Output Valid		15		15		20		20	ns
$\mathrm{t}_{\mathrm{HZCS} 2}$	Chip Select Inactive to High Z (7C293A CS ${ }_{1}$ Only) ${ }^{[6]}$		22		27		35		45	ns
$\mathrm{t}_{\mathrm{ACS} 2}$	Chip Select Active to Output Valid (7C293A $\overline{C S}_{1}$ Only) ${ }^{[6]}$		22		27		35		45	ns
$\mathrm{t}_{\text {PU }}$	$\begin{aligned} & \text { Chip Select Active to Power-Up } \\ & \left(7 \mathrm{C} 293 \mathrm{~A} \mathrm{CS}_{1} \text { Only }\right) \end{aligned}$	0		0		0		0		ns
t_{PD}	Chip Select Inactive to Power-Down (7C293A CS $_{1}$ Only)		22		27		35		45	ns

Notes:
6. $\mathrm{t}_{\mathrm{HZCS} 2}$ and $\mathrm{t}_{\mathrm{ACS} 2}$ refer to $7 \mathrm{C} 293 \mathrm{~A} \overline{\mathrm{CS}}_{1}$ only.

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase these PROMs. For this reason, an opaque label should be placed over the window if the PROM is exposed to sunlight or fluorescent lighting for extended periods of time.
The recommended dose of ultraviolet light for erasure is a wavelength of 2537 Angstroms for a minimum dose (UV intensity x exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a 12 $\mathrm{mW} / \mathrm{cm}^{2}$ power rating, the exposure time would be approximately 35 minutes.

These PROMs need to be within 1 inch of the lamp during erasure. Permanent damage may result if the PROM is exposed to high-intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Programming Information

Programming support is available from Cypress as well as from a number of third-party software vendors. For detailed programming information, including a listing of software packages, please see the PROM Programming Information located at the end of this section. Programming algorithms can be obtained from any Cy press representative.

Table 1. Mode Selection

Mode		Pin Function ${ }^{[7]}$				
	Read or Output Disable	$\mathrm{A}_{10}-\mathrm{A}_{0}$	CS_{3}	CS_{2}	$\overline{\mathrm{CS}}{ }_{1}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
	Other	$\mathrm{A}_{10}-\mathrm{A}_{0}$	$\overline{\text { PGM }}$	$\overline{\text { VFY }}$	$V_{\text {PP }}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Read		$\mathrm{A}_{10}-\mathrm{A}_{0}$	V_{IH}	V_{IH}	$\mathrm{V}_{\text {IL }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Output Disable ${ }^{[8]}$		$\mathrm{A}_{10}-\mathrm{A}_{0}$	X	X	V_{IH}	High Z
Output Disable		$\mathrm{A}_{10}-\mathrm{A}_{0}$	X	V_{IL}	X	High Z
Output Disable		$\mathrm{A}_{10}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IL }}$	X	X	High Z
Program		$\mathrm{A}_{10}-\mathrm{A}_{0}$	VILP	$\mathrm{V}_{\text {IHP }}$	V_{PP}	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Program Verify		$\mathrm{A}_{10}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$V_{\text {PP }}$	$\mathrm{O}_{7}-\mathrm{O}_{0}$
Program Inhibit		$\mathrm{A}_{10}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{\text {PP }}$	High Z
Intelligent Program		$\mathrm{A}_{10}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {IHP }}$	$V_{P P}$	$\mathrm{D}_{7}-\mathrm{D}_{0}$
Blank Check Zeros		$\mathrm{A}_{10}-\mathrm{A}_{0}$	$\mathrm{V}_{\text {IHP }}$	$\mathrm{V}_{\text {ILP }}$	$\mathrm{V}_{\text {PP }}$	Zeros

Notes:
7. $\mathrm{X}=$ "don't care" but not to exceed $\mathrm{V}_{\mathrm{CC}}+5 \%$.
8. The power-down mode for the CY7C293A is activated by deselecting $\overline{\mathrm{CS}}_{1}$.

LCC/PLCC (Opaqe Only)
Top View

C291A-9

Figure 1. Programming Pinouts

Typical DC and AC Characteristics

C291A-11

Ordering Information ${ }^{[9]}$

Speed (ns)	$\begin{array}{\|l\|} \hline \mathbf{I}_{\mathbf{C C}} \\ (\mathbf{m A}) \end{array}$	Ordering Code	Package Name	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
20	120	CY7C291A-20JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C291A-20PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C291A-20SC	S13	24-Lead Molded SOIC	
		CY7C291A-20WC	W14	24-Lead (300-Mil) Windowed CerDIP	
25	60	CY7C291AL-25JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C291AL-25PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C291AL-25WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	90	CY7C291A-25JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C291A-25PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C291A-25SC	S13	24-Lead Molded SOIC	
		CY7C291A-25WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	120	CY7C291A-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C291A-25LMB	L64	28-Square Leadless Chip Carrier	
		CY7C291A-25QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C291A-25TMB	T73	24-Lead Windowed Cerpack	
		CY7C291A-25WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
30	120	CY7C291A-30DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C291A-30LMB	L64	28-Square Leadless Chip Carrier	
		CY7C291A-30QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C291A-30TMB	T73	24-Lead Windowed Cerpack	
		CY7C291A-30WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
35	60	CY7C291AL-35JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C291AL-35PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C291AL-35WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	90	CY7C291A-35SC	S13	24-Lead Molded SOIC	Commercial
		CY7C291A-35PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C291A - 35WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	120	CY7C291A-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C291A-35LMB	L64	28-Square Leadless Chip Carrier	
		CY7C291A-35QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C291A-35TMB	T73	24-Lead Windowed Cerpack	
		CY7C291A-35WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
50	60	CY7C291AL-50JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
		CY7C291AL-50PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C291AL-50WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	90	CY7C291A-50SC	S13	24-Lead Molded SOIC	Commercial
		CY7C291A-50PC	P13	24-Lead (300-Mil) Molded DIP	
		CY7C291A-50WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	90	CY7C291A-50DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C291A-50LMB	L64	28-Square Leadless Chip Carrier	
		CY7C291A-50QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C291A-50TMB	T73	24-Lead Windowed Cerpack	
		CY7C291A-50WMB	W14	24-Lead (300-Mil) Windowed CerDIP	

Note:

9. Most of these products are available in industrial temperature range.

Contact a Cypress representative for specifications and product avail ability.

Ordering Information ${ }^{[9]}$ (continued)

Speed (ns)	$\begin{array}{\|c} \mathrm{I}_{\mathbf{I C}} \\ (\mathrm{mA}) \end{array}$	Ordering Code	Package Name	Package Type	Operating Range
20	120	CY7C292A-20DC	D12	24-Lead (600-Mil) CerDIP	Commercial
		CY7C292A-20PC	P11	24-Lead (600-Mil) Molded DIP	
25	120	CY7C292A-25DC	D12	24-Lead (600-Mil) CerDIP	Commercial
		CY7C292A-25PC	P11	24-Lead (600-Mil) Molded DIP	
		CY7C292A-25DMB	D12	24-Lead (600-Mil) CerDIP	Military
30	120	CY7C292A-30DMB	D12	24-Lead (600-Mil) CerDIP	Military
35	60	CY7C292AL-35PC	P11	24-Lead (600-Mil) Molded DIP	Commercial
	90	CY7C292A-35DC	D12	24-Lead (600-Mil) CerDIP	Commercial
		CY7C292A-35PC	P11	24-Lead (600-Mil) Molded DIP	
	120	CY7C292A-35DMB	D12	24-Lead (600-Mil) CerDIP	Military
50	60	CY7C292AL-50PC	P11	24-Lead (600-Mil) Molded DIP	Commercial
	90	CY7C292A-50DC	D12	24-Lead (600-Mil) CerDIP	Commercial
		CY7C292A-50PC	P11	24-Lead (600-Mil) Molded DIP	
	120	CY7C292A-50DMB	D12	24-Lead (600-Mil) CerDIP	Military

Speed (ns)	$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & (\mathbf{m A}) \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
20	120	CY7C293A-20PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
		CY7C293A-20WC	W14	24-Lead (300-Mil) Windowed CerDIP	
25	120	CY7C293A-25PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
		CY7C293A-25WC	W14	24-Lead (300-Mil) Windowed CerDIP	
		CY7C293A-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C293A-25LMB	L64	28-Square Leadless Chip Carrier	
		CY7C293A-25QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C293A-25WMB	W14	24-Lead ($300-\mathrm{Mil}$) Windowed CerDIP	
30	120	CY7C293A-30DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C293A-30LMB	L64	28-Square Leadless Chip Carrier	
		CY7C293A-30QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C293A-30WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
35	60	CY7C293AL-35PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
		CY7C293AL-35WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	90	CY7C293A-35PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
		CY7C293A-35WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	90	CY7C293A-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C293A-35LMB	L64	28-Square Leadless Chip Carrier	
		CY7C293A-35QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C293A-35WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
50	60	CY7C293AL-50PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
		CY7C293AL-50WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	90	CY7C293A-50PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
		CY7C293A-50WC	W14	24-Lead (300-Mil) Windowed CerDIP	
	90	CY7C293A-50DMB	D14	24-Lead (300-Mil) CerDIP	Military
		CY7C293A-50LMB	L64	28-Square Leadless Chip Carrier	
		CY7C293A-50QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C293A-50WMB	W14	24-Lead (300-Mil) Windowed CerDIP	

SEMICONDUCTOR

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB}}{ }^{[10]}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{AA}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 1}{ }^{[11]}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACS} 2}{ }^{[10]}$	$7,8,9,10,11$

Notes:

10. 7C293A only.
11. 7C291A and 7C292A only.

Document \#: 38-00075-G

SMD Cross Reference

SMD Number	Suffix	Cypress Number
$5962-87650$	01 KX	CY7C291-50TMB
$5962-87650$	01 LX	CY7C291-50WMB
$5962-87650$	013 X	CY7C291-50QMB
$5962-87650$	03 KX	CY7C291-35TMB
$5962-87650$	03 LX	CY7C291-35WMB
$5962-87650$	$033 X$	CY7C291-35QMB
$5962-88680$	01 LX	CY7C293A-50WMB
$5962-88680$	01 KX	CY7C293A-50TMB
$5962-88680$	$013 X$	CY7C293A-50QMB
$5962-88680$	02 LX	CY7C293A-35WMB
$5962-88680$	02 KX	CY7C293A-35TMB
$5962-88680$	$023 X$	CY7C293A-35QMB
$5962-88680$	03 LX	CY7C293A-30WMB
$5962-88680$	03 KX	CY7C293A-30TMB
$5962-88680$	$033 X$	CY7C293A-30QMB
$5962-88680$	04 LX	CY7C293A-25WMB
$5962-88680$	04 KX	CY7C293A-25TMB
$5962-88680$	$043 X$	CY7C293A-25QMB
$5962-88734$	02 JX	CY7C292A-45DMB
$5962-88734$	02 KX	CY7C291A-45KMB
$5962-88734$	02 LX	CY7C291A-45DMB
$5962-88734$	$023 X$	CY7C291A-45LMB
$5962-88734$	$03 J X$	CY7C292A-35DMB
$5962-88734$	03 KX	CY7C291A-35KMB
$5962-88734$	03 LX	CY7C291A-35DMB
$5962-88734$	$033 X$	CY7C291A-35LMB
$5962-88734$	04 JX	CY7C292A-25DMB
$5962-88734$	04 KX	CY7C291A-25KMB
$5962-88734$	04 LX	CY7C291A-25DMB
$5962-88734$	$043 X$	CY7C291A-25LMB

PROM Programming Information

Introduction

PROMs or Programmable Read Only Memories have existed since the early 1970s and continue to provide the highest-speed non-volatile form of semiconductor memory available. Until the introduction of CMOS PROMs from Cypress, all PROMs were produced in bipolar technology, because bipolar technology provided the highest possible performance at an acceptable cost level. All bipolar PROMs use a fuse for the programming element. The fuses are intact when the product is delivered to the user, and may be programmed or written once with a pattern and used or read infinitely. The fuses are literally blown using a high current supplied by a programming system. Since the fuses may only be blown or programmed once, they may not be programmed during test. In addition, since they may not be programmed until the user determines the pattern, they may not be completely tested prior to shipment from the supplier. The result of this inability to completely test is less than 100% yield during programming by the customer for two reasons. First, some percentage of the product fails to program. These devices fall out during the programming operation. Additional yield is lost because the device fails to perform even though it programs correctly. This failure is normally due to the device being too slow. This is a more subtle failure, and can only be found by 100% post program AC testing, or by trouble shooting an assembled board or system.
Cypress CMOS PROMs use an EPROM programming mechanism. This technology has been in use in MOS technologies since the late 1970s. However, as with most MOS technologies the emphasis has been on density, not performance. CMOS at Cypress is as fast as or faster than bipolar and, coupled with EPROM, becomes a viable alternative to bipolar PROMs from a performance point of view. In the arena of programming, EPROM has some significant advantages over fuse technology. EPROM cells are programmed by injecting charge on an isolated gate, which permanently turns off the transistor. This mechanism can be reversed by irradiating the device with ultraviolet light. The fact that programming can be erased totally changes the testing and programming situation and philosophy. All cells can be programmed during the manufacturing process and then erased prior to packaging and subsequent shipment. When these cells are programmed, the performance of each cell in the memory can be tested, ensuring that we ship devices that program every time and will perform as specified when programmed. In addition, when these devices are supplied in a windowed package they can be programmed and erased indefinitely providing the designer a reprogrammable PROM for development.

Programmable Technology

EPROM Process Technology

EPROM technology employs a floating or isolated gate between the normal control gate and the source/drain region of a transistor. This gate may be charged with electrons during the programming operation and when charged with electrons, the transistor is permanently turned off. When uncharged (the transistor is unprogrammed) the device may be turned on and off normally with the control gate. The state of the floating gate, charged or uncharged, is permanent because the gate is isolated in an extremely pure oxide. The charge may be removed if the device is irradiated with ultraviolet energy in the form of light. This ultraviolet light allows the electrons on the gate to recombine and discharge the the gate. This process is repeatable and therefore can be used
during the processing of the device repeatedly if necessary to assure programming function and performance.

Programming Algorithm

Byte Addressing and Programming

All Cypress CMOS PROMs are addressed and programmed on a byte basis, unlike the bipolar products that they replace. The address lines used to access the memory in a read mode are the same for programming, and the address map is identical. The information to be programmed into each byte is presented on the data-out pins during the programming operation, and the data is read from these same pins for verification that the byte has been programmed.

Blank Check for Differential Cells

Since a differential cell contains neither a 1 not a 0 before it is programmed, the conventional blank check is not valid. For this reason, Cypress CMOS PROMs that use differential cells contain a special blank check mode of operation. Blank check is performed by separately examining the 0 and 1 sides of the differential memory cell to determine whether either side has been independently programmed. This is accomplished in two passes: one comparing the 0 side of the differential cell against a reference voltage applied to the opposite side of the sense amplifier, and then repeating this operation for the 1 side of the cell. The modes are called blank check ones and blank check zeros. These modes are entered by applying a supervoltage to the device.

Blank Check for Single-Ended Cells

Single-ended cells blank check in a conventional manner. An erased device contains all 0 s and a programmed cell will contain a 1. Cypress PROMs that use the single-ended approach provide a specific mode to perform the blank check, which also provides the verify function. This makes the need to switch high voltages unnecessary during the program verify operation. See specific datasheets for details.

Programming the Data Array

Programming is accomplished by applying a supervoltage to one pin of the device causing it to enter the programming mode of operation. This also provides the programming voltage for the cells to be programmed. In this mode of operation, the address lines of the device are used to address each location to be programmed, and the data is presented on the pins normally used for reading the contents of the device. Each device has a read and write pin in the programming mode. These are active-LOW signals and cause the data on the output pins to be written into the addressed memory location in the case of the write signal or read out of the device in the case of the read signal. When both the read and write signals are HIGH, the outputs are disabled and in a high-impedance state. Programming therefore is accomplished by placing data on the output pins, and writing it into the addressed location with the write signal. Verification of data is accomplished by reading the information on the output pins while the read signal is active.
The timing for actual programming is supplied in the unique programming specifications for each device.

Special Features

Depending on the specific CMOS PROM in question, additional features that require programming may be available to the designer. Two of these features are a Programmable Initial Byte
and Programmable Synchronous/Asynchronous Enable available in some of the registered devices. Like programming the array, these features make use of EPROM cells and are programmed in a similar manner using supervoltages. The specific timing and programming requirements are specified in the data sheet of the device employing the feature.

Programming Support

Programming support for Cypress CMOS PROMs is available on Cypress's QuickPro II. Support is also available from a number of programmer manufacturers, some of which are listed below.
AVAL Data Corp.
M. K. Bldg. 2F 4-8 Nakaitabashi,

Itabashi-ku
Tokyo, Japan 173
03 (5375)-7321
BP Microsystems
10681 Haddington, Ste. \#190
Houston, TX 77043
(800) 225-2102

Cypress Semiconductor, Inc.
3901 North First St.
San Jose, CA 95134
(408) 943-2600

Data I/O
Customer Resource Center
10525 Willows Rd. NE
P.O. Box 97046

Redmond, WA 98073-9746
(800) 247-5700
(206) 881-6444

Logical Devices Inc.
692 South Military Trail
Deerfield, FL 33442
(305) 428-6868

Micropross
Parc d'Activite des Pres
5, rue Denis-Papin
59650 Villenueve-d'Ascq. France
(20) 47.90 .40

Minato Electronics
4105, Minami Yamada-cho
Kohoku-ku
Yokohama, Japan 223
(045) 591-5611

SMS Mikrocomputersystem GmbH
Im Grund 15
D-7988 Wangen im Allgeau
BRD
(49) 7522-5018

SMS Microcomputer
P.O. Box 1348

Lawrence, MA 01842
(508) 683-4659

Stag Microsystems
1600 Wyatt Dr.
Santa Clara, CA 95054
(408) 988-1118

System General
510 S. Park Victoria
Milpitas, CA 95035
(408) 263-6667

Document \#: 38-00235
INFO

SRAMs2
PROMs3
PLDs 4
FIFOs 5
LOGIC 6
DATACOM 7
MODULES 8
ECL 9
BUS 10
MILITARY 11
TOOLS 12
QUALITY 15
PACKAGES 14
PLDs (Programmable Logic Devices) Page Number
Introduction to Cypress PLDs 4-1
Device Number DescriptionCY7C258
2 K x 16 Reprogrammable State Machine PROM 4-6
CY7C259 2K x 16 Reprogrammable State Machine PROM 4-6PLDC18G8PALC20 Series
CMOS Generic 20-Pin Programmable Logic Device 4-7
Reprogrammable CMOS PALC 16L8, 16R8, 16R6, 16R4 4-14
4.5-ns, Industry-Standard, PLDs 4-18
PAL20 Series
CMOS Generic 24-Pin Reprogrammable Logic Device 4-28
CMOS Generic 24-Pin Reprogrammable Logic Device 4-28
PLDC20G10B
Generic 24-Pin PAL Device 4-36
Reprogrammable Asynchronous CMOS Logic Device 4-46
Reprogrammable CMOS PAL Device 4-57
Reprogrammable CMOS PAL Device 4-67
Universal PAL Device 4-76
Universal PAL Device 4-76
Universal PAL Device 4-87
Universal PAL Device 4-87
Flash Erasable, Reprogrammable CMOS PAL Device 4-97
Universal PAL Device 4-105
Universal PAL Device 4-105
CMOS Programmable Synchronous State Machine 4-114
Asynchronous Registered EPLD 4-115
Registered Combinatorial EPLD 4-129
Universal Synchronous EPLD 4-130
Multiple Array Matrix High-Density EPLDs 4-145
192-Macrocell MAX EPLD 4-150
192-Macrocell MAX EPLD 4-150
128-Macrocell MAX EPLD 4-166
128-Macrocell MAX EPLD 4-166
64-Macrocell MAX EPLD 4-182
32-Macrocell MAX EPLD 4-194
Ultra High Speed State Machine EPLD 4-204
High-Density Flash PLDs 4-217
32-Macrocell Flash PLD 4-224
64-Macrocell Flash PLD 4-232
64-Macrocell Flash PLD 4-240
128-Macrocell Flash PLD 4-248
128-Macrocell Flash PLD 4-256
256-Macrocell Flash PLD 4-265
256-Macrocell Flash PLD 4-266
Very High Speed CMOS FPGAs 4-267
Very High Speed 1K (3K) Gate CMOS FPGA 4-274
Very High Speed 1K (3K) Gate CMOS FPGA 4-274
Very High Speed 2K (6K) Gate CMOS FPGA 4-281
Very High Speed 2K (6K) Gate CMOS FPGA 4-281
Very High Speed 4K (12K) Gate CMOS FPGA 4-288
CY7C385A
Very High Speed 4K (12K) Gate CMOS FPGA 4-288
PLD Programming Information 4-289

Cypress PLD Family Features

Cypress Semiconductor's PLD family offers the user a wide range of programmable logic solutions that incorporate leading-edge circuit design techniques as well as diverse process technology capabilities. This allows Cypress PLD users to select PLD that best suit the needs of their particular high-performance system, regardless of whether speed, power consumption, density, or device flexibility are the critical requirements imposed by the system.
Cypress offers enhanced-performance industry-standard 20- and 24 -pin device architectures, proprietary 28 -pin application-tailored architectures and highly flexible 28 - to 84 -pin universal device architectures. The range of technologies offered includes lea-ding-edge 0.8 -micron CMOS EPROM for high speed, low power, and high density, 0.8 -micron bipolar for the highest-speedECLdevices, 0.8 -micron BiCMOS for high-speed, power-sensitive applications, and 0.65 -micron FLASH technology for high speed, low power and electrical alterability.
The reprogrammable memory cells used by Cypress serve the same purpose as the fuse used in most bipolar PLD devices. Before programming, the AND gates or product terms are connected via the reprogrammable memory cell to both the true and complement inputs. When the reprogrammable memory cell is programmed, the inputs from a gate or product term are disconnected. Programming alters the transistor threshold of each cell so that no conduction can occur, which is equivalent to disconnecting the input from the gate or product term. This is similar to "blowing" the fuses of BiC MOS or bipolar fusible devices, which disconnects the input gate from the product term. Selective programming of each of these reprogrammable memory cells enables the specific logic function to be implemented by the user.
The programmability of Cypress's PLDs allows the users to customize every device in a number of ways to implement their unique logic requirements. Using PLDs in place of SSI or MSI components results in more effective utilization of board space, reduced cost and increased reliability. The flexibility afforded by these PLDs allows the designer to quickly and effectively implement a number of logic functions ranging from random logic gate replacement to complex combinatorial logic functions.

The PLD family implements the familiar "sum of products" logic by using a programmable AND array whose output terms feed a fixed OR array. The sum of these can be expressed in a Boolean transfer function and is limited only by the number of product terms available in the AND-OR array. A variety of different sizes and architectures are available. This allows for more efficient logic optimization by matching input, output, and product terms to the desired application.

PLD Notation

To reduce confusion and to have an orderly way of representing the complex logic networks, logic diagrams are provided for the various part types. In order to be useful, Cypress logic diagrams employ a common logic convention that is easy to use. Figure 1 shows the adopted convention. In part (a), an " \times " represents an unprogrammed EPROM cell or intact fuse link that is used to perform the logicalAND operation upon the inputterms. The convention adopted does not imply that the input terms are connected on the common line that is indicated. A further extension of this convention is shown in part (b), which shows the implementation of a simple transfer function. The normal logic representation of the transfer function logic convention is shown in part (c).

PLD Circuit Configurations

Cypress PLDs have several different output configurations that cover a wide spectrum of applications. The available outputconfigurations offer the user the benefits of both lower package counts and reduced costs when used. This approach allows designers to select PLDs that best fit their applications. An example of some of the configurations that are available are listed below.

Programmable I/O

Figure 2 illustrates the programmable I/O offered in the Cypress PLD family that allows product terms to directly control the outputs of the device. One product term is used to directly control the three-state output buffer, which then gates the summation of the remaining terms to the output pin. The output of this summation can be fed back into the PLD as an input to the array. This programmable I/O feature allows the PLD to drive the output pin when the three-state output is enabled or, when the three-state output is disabled, the I/O pin can be used as an input to the array.

Figure 2. Programmable I/O

Figure 3. Registered Outputs with Feedback

Registered Outputs with Feedback

Figure 3 illustrates the registered outputs offered on a number of the Cypress PLDs which allow any of these circuits to function as a state sequencer. The summation of the product terms is stored in the D-type output flip-flop on the rising edge of the system clock. The Q output of the flip-flop can then be gated to the output pin by enabling the three-state output buffer. The output of the flip-flop can also be fed back into the array as an input term. The output feedback feature allows the PLD to remember and then alter its function based upon that state. This circuit can be used to execute such functions as counting, skip, shift, and branch.

Programmable Macrocell

The programmable macrocell, illustrated in Figure 4, provides the capability of defining the architecture of each output individually. Each of the potential outputs may be specified to be "registered" or"combinatorial." Polarity of each output may also be individually selected allowing complete flexibility of output configuration. Further configurability is provided through "array" configurable "output enable" for each potential output. This feature allows the outputs to be reconfigured as inputs on an individual basis or alternately used as a bidirectional I/O controlled by the programmable array (see Figure 5).

Buried Register Feedback

The CY7C330 and CY7C331 PLDs provide registers that may be "buried" or "hidden" by electing feedback of the register output. These buried registers, which are useful in state machines, may be implemented without sacrificing the use of the associated device pin as an input. In previous PLDs, when the feedback path was activated, the input pin-path to the logic array was blocked. The proprietary CY7C330 reprogrammable synchronous state machine macrocell illustrates the shared input multiplexer, which provides an alternative input path for the I/O pin associated with a buried macrocell register (Figure 6). Each pair of macrocells shares an in-
put multiplexer, and as long as alternate macrocells are buried, up to six of the twelve output registers can be buried without the loss of any I/O pins as inputs. The CY7C330 also contains four dedicated hidden macrocells with no external output that are used as additional state registers for creating high-performance state machines (Figure 7).

Asynchronous Register Control

Cypress also offers PLDs that may be used in asynchronous systems in which register clock, set, and reset are controlled by the outputs of the product term array. The clock signal is created by the processing of external inputs and/or internal feedback by the logic of the product term array, which is then routed to the register clock. The register set and reset are similarly controlled by product term outputs and can be triggered at any time independent of the register clock in response to external and/or feedback inputs processed by the logic array. The proprietary CY7C331 Asynchronous Registered PLD, for which the I/O macrocell is illustrated in Figure 8, is an example of such a device. The register clock, set, and reset functions of the CY7C331 are all controlled by product terms and are dependent only on input signal timing and combinatorial delay through the device logic array to enable their respective functions.

Input Register Cell

Other Cypress PLDs provide input register cells to capture short duration inputs that would not otherwise be present at the inputs long enough to allow the device to respond. Both the proprietary CY7C330 Reprogrammable Synchronous State Machine and the proprietary CY7C332 Combinatorial PLD provide these input register cells (Figure 9). The clock for the input register may be provided from one of two external clock input pins selectable by a configuration bit, C 4 , dedicated for this purpose for each input register. This choice of input register clock allows signals to be captured and processed from two independent system sources, each controlled by its own independent ciock. These input register celis are provided within I/O macrocells, as well as for dedicated input pins.

Figure 4. Programmable Macrocell

Figure 5. CY7C330 I/O Macrocell

INTRO-8

Figure 6. CY7C330 I/O Macrocell Pair Shared Input MUX

Figure 7. CY7C330 Hidden State Register Macrocell

Figure 8. CY7C331 Registered Asynchronous Macrocell

Figure 9. CY7C330 Dedicated Input Cell
Document \#: 38-00165-A

2K x 16 Reprogrammable State Machine PROM

Features

- High speed: $\mathbf{1 0 0 - M H z}$ operation
$-\mathbf{t}_{\text {CP }}=10 \mathrm{~ns}$
$-\mathbf{t}_{\mathrm{CKO}}=8 \mathrm{~ns}$
$-t_{A S}=2 \mathrm{~ns}$
- 16-bit-wide state word
- Can be programmed as asynchronous PROM $\mathrm{t}_{\text {AA }}=18 \mathrm{~ns}$
- Optimum speed/ power
- Individually bypassable input and output registers
- Individually programmable address/ feedback muxes
- Synchronous and asynchronous chip select
- Synchronous and asynchronous INIT and programmable initialize word
- 16 outputs (CY7C259)
- Software support
- CY7C258 available in 28 -pin, $300-\mathrm{mil}$ plastic and ceramic DIP, LCC, PLCC
- CY7C259 available in 44-pin LCC and PLCC
- Reprogrammable in windowed packages
- Capable of withstanding greater than 2001V static discharge

Functional Description

The CY7C258 and CY7C259 are $2 \mathrm{~K} \times 16$ CMOS PROMs specifically designed for use in state machine applications.
State machines are one of the most common applications for registered PROMs. The CY7C258 and CY7C259 feature internal state feedback and a variety of programmable features to support $100-\mathrm{MHz}$ state machines with as many as 2,048 distinct states.
It is easy to use a PROM as a state machine. Each array location contains output data as well as information fed back to select the next state. Note that a PROM is only limited by the number of array inputs. If a given state machine can be implemented in the number of inputs/ feedbacks available (11 on the CY7C258/259), then it will always fit in the device. No software minimization is required.
Among the programmable features of the CY7C258/CY7C259 are individually bypassable input and output registers. The registers run off the same clock for pipeline capability. Each individual register can be programmed to capture data at the rising edge of the clock or to be transparent.

The registers at the inputs are useful for signals that require short set-up times ($\mathrm{t}_{\mathrm{AS}}=2 \mathrm{~ns}$). The input register does introduce a cycle of latency, however. For signals that directly affect the next state of the machine, each input register can be bypassed. Note that the cycle time remains the same ($10-\mathrm{ns}$ min.), even if the inputs are bypassed.
Registers at the output are used to hold both state information and output data. These registers are also bypassable for maximum flexibility. Occasionally, an individual output cannot wait for the next clock edge. These outputs are sometimes called Mealy outputs, and can be created by bypassing the appropriate output register.
Since the CY7C258 and CY7C259 contain a 2 K array, they each require 11 inputs. Each of these inputs can come from an input pin or from internal output register feedback. Eleven individually programmable address muxes allow the user to select the ratio of pin input and state feedback.
These devices have both an asynchronous output ($\overline{\mathrm{OE}}$) and a synchronous chip select (CS).

CMOS Generic 20－Pin Programmable Logic Device

Features

－Fast
－Commercial： $\mathbf{t}_{\mathrm{PD}}=\mathbf{1 2} \mathbf{n s}$ ，
$\mathbf{t}_{\mathrm{CO}}=10 \mathrm{~ns}, \mathrm{t}_{\mathrm{s}}=10 \mathrm{~ns}$
－Military／Industrial： $\mathbf{t}_{\text {PD }}=15 \mathrm{~ns}$ ， $\mathbf{t}_{\mathrm{CO}}=12 \mathrm{~ns}, \mathrm{t}_{\mathrm{S}}=12 \mathrm{~ns}$
－Low power
－ICC max．of $110 \mathbf{m A}$
－Commercial，industrial，and military
temperature range
－User－programmable output cells
－Selectable for registered or combinatorial operation
－Output polarity control
－Output enable source selectable from pin 11 or product term
－Generic architecture to replace stan－ dard logic functions including：10H8， 12H6，14H4，16H2，10L8，12L6，14L4， 16L2，10P8，12P6，14P4，16P2，16H8， 16L8，16P8，16R8，16R6，16R4， 16RP8，16RP6，16RP4，18P8，16V8
－Eight product terms and one OE product term per output
－CMOS EPROM technology for reprogrammability
－Highly reliable
－Uses proven EPROM technology
－Fully AC and DC tested
－Security feature prevents logic pattern duplication
$->2000 \mathrm{~V}$ input protection for electrostatic discharge

Functional Description

Cypress PLD devices are high－speed elec－ trically programmable logic devices．These devicesutilize the sum－of－products（AND－ OR）structure，providing users with the ability to program custom logic functions for unique requirements．
In an unprogrammed state，the AND gates are connected via EPROM cells to both the true and complement of every input．By selectively programming the EPROM cells，AND gates may be con－ nected to either the true or complement or disconnected from both true and com－ plement inputs．
Cypress PLD C18G8 uses an advanced 0.8 －micron CMOS technology and a prov－ en EPROM cell as the programmable

Logic Block Diagram，DIP and SOJ Pinout

Pin Configurations

18G8－3

PLCC Top View	
3 2 1.2019	
1 ¢4 18	－1／0
155	－1／0
156	$\square 1 / 0$
157	］1／0
$1 \square 8$	－1／0
910111213	
แロレロロ	
－¢ ا	18G8－2

Selection Guide

Generic Part Number	$\mathrm{I}_{\mathrm{CC}}(\mathrm{mA})$		$\mathbf{t p D}^{\text {(}}$ (${ }^{\text {a }}$		ts		t_{CO}	
	Com'l	Mil/Ind	Com'l	Mil/Ind	Com'l	Mil/Ind	Com'l	Mil/Ind
18G8-12	90		12		10		10	
18G8-15	90	110	15	15	12	12	12	12
18G8-15L	70		15		12		12	
18G8-20		110		20		15		15

Functional Description (continued)

element. This technology and the inherent advantage of being able to program and erase each cell enhances the reliability and testability of the circuit, reducing the customer's need to test and to handle rejects.
A preloadfunction allows the registered outputs to be preset to any pattern during testing. Preload is important for testing the functionality of the Cypress PLD device.

18G8 Functional Description

The PLDC18G8 is a generic 20 -pin device that can be programmed to logic functions which include but are not limited to: 10H8, 12H6, 14H4, 16H2, 10L8, 12L6, 14L4, 16L2, 10P8, 12P6, 14P4, 16P2, 16H8, 16L8, 16P8, 16R8, 16R6, 16R4, 16RP8, 16RP6, 16RP4, 18P8,16V8. Thus, the PLDC18G8 provides significant design, inventory, and programming flexibility over dedicated 20-pin devices. It is executed in a $20-\mathrm{pin}, 300-\mathrm{mil}$ molded DIP and a 300 -mil windowed cerDIP. It provides up to 18 inputs and 8 outputs. When the windowed cerDIP is exposed to UV light, the 18G8 is erased and can then be reprogrammed.
The programmable output cell provides the capability of defining the architecture of each output individually. Each of the 10 output cells may be configured with registered or combinatorial outputs, active HIGH or active LOW outputs, and product term or Pin 11 generated output enables. Four architecture bits determine the
configurations as shown in the Configuration Table. A total of sixteen different configurations are possible. The default or unprogrammed state is registered/active LOW/Pin 11 OE. The entire programmable output cell is shown in Figure 1.
Architecture bit C1 controls the registered/combinatorial option. In either combinatorial or registered configuration, the outputcan serve as an I/O pin, or if the output is disabled, as an input only. Any unused inputs should be tied to ground. In either registered or combinatorial configuration, the output of the register may be fed back to the array. This allows the creation of state machines by providing storage and feedback of the current system state. The register is clocked by the signal from Pin 1 . The register is initialized upon power-up to Q output LOW and $\overline{\mathrm{Q}}$ output HIGH.
In both the combinatorial and registered configurations, the source of the output enable signal can be individually chosen with architecture bit C 2 . The OE signal may be generated within the array or from the external $\overline{\mathrm{OE}}$ (Pin 11). Pin 11 allows direct control of the outputs, hence having faster enable/disable times.
Each output cell can be configured for output polarity. The output can be either active HIGH or active LOW. This option is controlled by architecture bit C 0 .
Along with this increase in functional density, the Cypress PLDC18G8 provides lower-power operation through the use of CMOS technology and increased testability with a register preload feature.

Figure 1. Programmable Output Cell

$\xrightarrow[C l l l]{2}$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots . \ldots \ldots . . .$.
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (LOW) 24 mA
DC Programming Voltage 13.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range (Unless Otherwise Noted)

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
COUT $^{\text {Output Capacitance }}$	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF	

Notes:

1. T_{A} is the "instant on" case temperature.
2. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V}$ has
been chosen to avoid test problems caused by tester ground degradation.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

Equivalent to: THÉVENIN EQUIVALENT (Commercial)

18G8-6

Equivalent to: THÉVENIN EQUIVALENT (Military/Industrial)

Configuration Table ${ }^{[5]}$

$\mathbf{C}_{\mathbf{3}}$	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	Configuration
0	0	0	0	Active LOW, Registered Mode, Registered Feedback, Pin 11 OE
0	0	0	1	Active HIGH, Registered Mode, Registered Feedback, Pin 11 OE
0	0	1	0	Active LOW, Combinatorial Mode, Registered Feedback, Pin 11 OE
0	0	1	1	Active HIGH, Combinatorial Mode, Registered Feedback, Pin 11 OE
0	1	0	0	Active LOW, Registered Mode, Registered Feedback, Product Term OE
0	1	0	1	Active HIGH, Registered Mode, Registered Feedback, Product Term OE
0	1	1	0	Active LOW, Combinatorial Mode, Registered Feedback, Product Term OE
0	1	1	1	Active HIGH, Combinatorial Mode, Registered Feedback, Product Term OE
1	0	0	0	Active LOW, Registered Mode, Pin Feedback, Pin 11 OE
1	0	0	1	Active HIGH, Registered Mode, Pin Feedback, Pin 11 OE
1	0	1	0	Active LOW, Combinatorial Mode, Pin Feedback, Pin 11 OE
1	0	1	1	Active HIGH, Combinatorial Mode, Pin Feedback, Pin 11 OE
1	1	0	0	Active LOW, Registered Mode, Pin Feedback, Product Term OE
1	1	0	1	Active HIGH, Registered Mode, Pin Feedback, Product Term OE
1	1	1	0	Active LOW, Combinatorial Mode, Pin Feedback, Product Term OE
1	1	1	1	Active HIGH, Combinatorial Mode, Pin Feedback, Product Term OE

Notes:

5. In the virgin or unprogrammed state, a configuration bit is in the "0"
state.

Switching Characteristics Over the Operating Range ${ }^{[1,6,7]}$

Parameters	Description	Commercial				Military/Industrial				Units
		-12		-15, -15L		-15		-20		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PD }}$	Input or Feedback to Non-Registered Output		12		15		15		20	ns
t_{EA}	Input to Output Enable		12		15		15		20	ns
t_{ER}	Input to Output Disable		12		15		15		20	ns
$t_{\text {PZX }}$	Pin 11 to Output Enable		10		12		12		15	ns
$\mathrm{t}_{\text {PXZ }}$	Pin 11 to Output Disable		10		10		10		15	ns
t_{CO}	Clock to Output		10		12		12		15	ns
t_{5}	Input or Feedback Set-Up Time	10		12		12		15		ns
t_{H}	Hold Time	0		0		0		0		ns
$\mathrm{tP}^{[8]}$	Clock Period	22		24		27		35		ns
$t_{\text {WH }}$	Clock High Time	7		8		9		10		ns
${ }^{\text {twL }}$	Clock Low Time	8		9		10		11		ns
$\mathrm{f}_{\text {MAX }}{ }^{[9]}$	Maximum Frequency	50.0		41.6		41.6		33.3		MHz

Notes:
6. Part (a) of AC Test Loads and Waveforms is used for all parameters except $t_{E R}, t_{P Z X}$, and $t_{P X Z}$. Part (b) of AC Test Loads and Waveforms is used for $t_{E R}, t_{P Z X}$, and $t_{P X Z}$.
7. The parameters $t_{E R}$ and $t_{P X Z}$ are measured as the delay from the input disable logic threshold transition to $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ for an enabled HIGH output or $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ for an enabled LOW input.
8. t_{B} or minimum guaranteed clock period, is the clock period guaranteed for state machine operation and is calculated from $t_{P}=t_{S}+t_{C O}$.

The minimum guaranteed period for registered data path operation (no feedback) can be calculated as the greater of ($\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}$) or (t_{S} $+\mathrm{t}_{\mathrm{H}}$).
9. $f_{\text {MAX }}$, or minimum guaranteed operating frequency, is the operating frequency guaranteed for state machine operation and is calculated from $\mathrm{f}_{\mathrm{MAX}}=1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{CO}}\right)$. The minimum guaranteed $\mathrm{f}_{\mathrm{MAX}}$ for registered data path operation (no feedback) can be calculated as the lower of $1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)$ or $1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)$.

Switching Waveform

Functional Logic Diagram

Ordering Information

$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & (\mathbf{m A}) \end{aligned}$	Speed (ns)	Ordering Code	Package Name	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
90	12	PLDC18G8-12JC	J61	20-Lead Plastic Leaded Chip Carrier	Commercial
		PLDC18G8-12PC	P5	20-Lead (300-Mil) Molded DIP	
		PLDC18G8-12VC	V5	20-Lead (300-Mil) Molded SOJ	
		PLDC18G8-12WC	W6	20-Lead (300-Mil) Windowed CerDIP	
70	15	PLDC18G8L-15JC	J61	20-Lead Plastic Leaded Chip Carrier	Commercial
		PLDC18G8L-15PC	P5	20-Lead (300-Mil) Molded DIP	
		PLDC18G8L-15VC	V5	20-Lead (300-Mil) Molded SOJ	
		PLDC18G8L-15WC	W6	20-Lead (300-Mil) Windowed CerDIP	
90	15	PLDC18G8-15JC	J61	20-Lead Plastic Leaded Chip Carrier	Commercial
		PLDC18G8-15PC	P5	20-Lead (300-Mil) Molded DIP	
		PLDC18G8-15VC	V5	20-Lead (300-Mil) Molded SOJ	
		PLDC18G8-15WC	W6	20-Lead (300-Mil) Windowed CerDIP	
110	15	PLDC18G8-15JI	J61	20-Lead Plastic Leaded Chip Carrier	Industrial
		PLDC18G8-15PI	P5	20-Lead (300-Mil) Molded DIP	
		PLDC18G8-15WI	W6	20-Lead (300-Mil) Windowed CerDIP	
110	15	PLDC18G8-15DMB	D6	20-Lead (300-Mil) CerDIP	Military
		PLDC18G8-15LMB	L61	20-Pin Square Leadless Chip Carrier	
		PLDC18G8 - 15QMB	Q61	20-PinWindowedSquareLeadlessChip Carrier	
		PLDC18G8-15WMB	W6	20-Lead (300-Mil) Windowed CerDIP	
110	20	PLDC18G8-20JI	J61	20-Lead Plastic Leaded Chip Carrier	Industrial
		PLDC18G8-20PI	P5	20-Lead (300-Mil) Molded DIP	
		PLDC18G8-20WI	W6	20-Lead (300-Mil) Windowed CerDIP	
110	20	PLDC18G8-20DMB	D6	20-Lead (300-Mil) CerDIP	Military
		PLDC18G8-20LMB	L61	20-Pin Square Leadless Chip Carrier	
		PLDC18G8-20QMB	Q61	20-PinWindowedSquareLeadlessChipCarrier	
		PLDC18G8-20WMB	W6	20-Lead (300-Mil) Windowed CerDIP	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

AC Characteristics

Parameters	Subgroups
$t_{P D}$	$9,10,11$
t_{PZX}	$9,10,11$
t_{CO}	$9,10,11$
t_{S}	$9,10,11$
t_{H}	$9,10,11$

Document \#: 38-00080-E

Reprogrammable CMOS PALC 16L8, 16R8, 16R6, 16R4

Features

- CMOS EPROM technology for reprogrammability
- High performance at quarter power
$-\mathbf{t}_{\mathrm{PD}}=25 \mathrm{~ns}$
$-\mathbf{t}_{\mathrm{S}}=20 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{CO}}=15 \mathrm{~ns}$
$-I_{\mathrm{CC}}=45 \mathrm{~mA}$
- High performance at military temperature
$-\mathbf{t}_{\text {PD }}=20 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{S}}=20 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{CO}}=15 \mathrm{~ns}$
$-I_{C C}=70 \mathrm{~mA}$
- Commercial and military temperature range

- High reliability

- Proven EPROM technology
$->1500 \mathrm{~V}$ input protection from electrostatic discharge
$-100 \% \mathrm{AC}$ and DC tested
- $\mathbf{1 0 \%}$ power supply tolerances
- High noise immunity
-Security feature prevents pattern duplication
$-\mathbf{1 0 0 \%}$ programming and functional testing

Functional Description

Cypress PALC20 Series devices are highspeed electrically programmable and UVerasable logic devices produced in a proprietary N-well CMOS EPROM process. These devices utilize a sum-of-products (AND-OR) structure providing users with the ability to program custom logic functions serving unique requirements.

PALs are offered in 20-pin plastic and ceramic DIP, plastic SOJ, and ceramic LCC packages. The ceramic package can be equipped with an erasure window; when exposed to UV light, the PAL is erased and can then be reprogrammed.
Before programming, AND gates or product terms are connected via EPROM cells to both true and complement inputs. Programming an EPROM cell disconnects an input term from a product term. Selective programming of these cells allows a specific logic function to be implemented in a PALC device. PALC devices are supplied in four functional configurations designated 16R8, 16R6, 16R4, and 16L8. These 8 devices have potentially 16 inputs and 8 outputs configurable by the user. Output configurations of 8 registers, 8 combinatorial, 6 registers and 2 combinatorial as well as 4 registers and 4 combinatorial are provided by the 4 functional variations of the product family.

Logic Symbols and DIP and SOJ Pinouts

16 L 8

LCC Pinouts

[^37]EPROM technology is the basis for a superior product with inherent advantages in reliability, testability, programming, and functional yield. EPROM technology has the inherent advantage that all programmable elements may be programmed, tested, and erased during the manufacturing process. This also allows the device to be 100% functionally tested during manufacturing. An ability to preload the registers of registered devices during the testing operation makes the testing easier and more efficient. Combining these inherent and designed-in features provides an extremely high degree of functionality, programmability and assured AC performance, and testing becomes an easy task.
The register preload allows the user to initialize the registered devices to a known state prior to testing the device, significantly simplifying and shortening the testing procedure.

Commercial and Industrial Selection Guide

$\begin{aligned} & \hline \text { Generic } \\ & \text { Part } \\ & \text { Number } \end{aligned}$	Logic	Output Enable	Outputs	$\mathrm{I}_{\mathrm{CC}}(\mathrm{mA})$		$\mathbf{t}_{\text {PD }}$ (ns)		$\mathrm{t}_{S}(\mathrm{~ns})$		t_{CO} (ns)	
				L	Com'//Ind	-25	-35	-25	-35	-25	-35
16L8	(8) 7-wide AND-OR-Invert	Programmable	(6) Bidirectional (2) Dedicated	45	70	25	35	-	-	-	-
16R8	(8) 8-wide AND-OR	Dedicated	Registered Inverting	45	70	-	-	20	30	15	25
16R6	(6) 8-wide AND-OR	Dedicated	Registered Inverting	45	70	25	35	20	30	15	25
	(2) 7-wide AND-OR-Invert	Programmable	Bidirectional								
16R4	(4) 8-wide AND-OR	Dedicated	Registered Inverting	45	70	25	35	20	30	15	25
	(4) 7 -wide AND-OR-Invert	Programmable	Bidirectional								

Military Selection Guide

$\begin{aligned} & \text { Generic } \\ & \text { Part } \\ & \text { Number } \end{aligned}$	Logic	Output Enable	Outputs	$\underset{(\mathbf{m A})}{\mathbf{I}_{\mathbf{C C}}}$	$\mathbf{t P D}^{\text {(}} \mathbf{n s}$)			t_{S} (ns)			t_{CO} (ns)		
					-20	-30	-40	-20	-30	-40	-20	-30	-40
16L8	(8) 7-wide AND-OR-Invert	Programmable	(6) Bidirectional (2) Dedicated	70	20	30	40	-	-	-	-	-	-
16R8	(8) 8-wide AND-OR	Dedicated	Registered Inverting	70	-	-	-	20	25	35	15	20	25
16R6	(6) 8 -wide AND-OR	Dedicated	Registered Inverting	70	20	30	40	20	25	35	15	20	25
	(2) 7-wide AND-OR-Invert	Programmable	Bidirectional										
16R4	$\begin{aligned} & \text { (4) 8-wide } \\ & \text { AND-OR } \end{aligned}$	Dedicated	Registered Inverting	70	20	30	40	20	25	35	15	20	25
	(4) 7-wide AND-OR-Invert	Programmable	Bidirectional										

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 20 to Pin 10) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (LOW) 24 mA
DC Programming Voltage . 14.0V

UV Exposure 7258 Wsec/cm ${ }^{2}$
Static Discharge Voltage . $>1500 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{11]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	

Electrical Characteristics Over the Operating Range (unless otherwise noted) ${ }^{[2]}$

Parameter	Description	Test Conditions			Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min. } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	Com'1/Ind	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	Military			
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	Com'l/Ind		0.4	V
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	Military			
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH ${ }^{[3]}$ Voltage for All Inputs			2.0		V
V_{IL}	Input LOW Level	Guaranteed Input Logical LOW ${ }^{3]}$ Voltage for All Inputs				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$			-10	10	$\mu \mathrm{A}$
VPP	Programming Voltage	$\mathrm{I}_{\mathrm{PP}}=50 \mathrm{~mA}$ Max.			13.0	14.0	V
$\mathrm{I}_{\text {SC }}$	OutputShortCircuitCurrent	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V}^{[4]}$				-300	mA
I_{CC}	Power Supply Current	All Inputs $=G N D, V_{C C}=$ Max., $\mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}^{[5]}$		"L"		45	mA
				Com'//Ind		70	mA
				Military		70	mA
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}$			-100	100	$\mu \mathrm{A}$

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
5. $\mathrm{I}_{\mathrm{CC}(\mathrm{AC})}=(0.6 \mathrm{~mA} / \mathrm{MHz}) \times$ (Operating Frequency in MHz$)+$ $\mathrm{I}_{\mathrm{CC}(\mathrm{DC})} \cdot \mathrm{I}_{\mathrm{CC}(\mathrm{DC})}$ is measured with an unprogrammed device.

Parameter	$\mathbf{V}_{\mathbf{X}}$	Output Waveform-Measurement Level	
$\mathrm{t}_{\text {PXZ }}(-)$	1.5 V		C20-9
$\mathrm{t}_{\text {PXZ }}(+)$	2.6 V	$\mathrm{V}_{\mathrm{OL}} \xrightarrow{0.5 \mathrm{~V} \stackrel{\downarrow}{4} \underset{\sim}{\leftarrow} \mathrm{~V}_{\mathrm{X}}}$	C20-10
$t_{\text {PZX }}(+)$	$\mathrm{V}_{\text {thc }}$	$\mathrm{V}_{\mathrm{X}} \xrightarrow{0.5 \mathrm{~V}+}$	C20-11
$\mathrm{t}_{\text {PZX }}(-)$	$\mathrm{V}_{\text {thc }}$	$\mathrm{V}_{\mathrm{X}} \frac{\downarrow}{0.5 \mathrm{~V} \frac{4}{4}}$	C20-12
$\mathrm{t}_{\text {ER }}(-)$	1.5 V		C20-13
ter (+)	2.6 V	$\mathrm{V}_{\mathrm{OL}}-0.5 \mathrm{~V} \stackrel{\downarrow}{+} \mathrm{V}_{\mathrm{X}}$	C20-14
$t_{\text {EA }}(+)$	$\mathrm{V}_{\text {thc }}$	$\mathrm{V}_{\mathrm{X}} \xrightarrow{0.5 \mathrm{~V} \stackrel{\downarrow}{+} \underset{\sim}{\leftarrow}} \mathrm{V}_{\mathrm{OH}}$	C20-15
$\mathrm{t}_{\mathrm{EA}}(-)$	$\mathrm{V}_{\text {thc }}$	$\mathrm{v}_{\mathrm{X}} \frac{\mathrm{t}}{0.5 \mathrm{~V} \frac{\mathrm{t}}{4}} \mathrm{~V}_{\mathrm{OL}}$	C20-16

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
C OUT	Output Capacitance	$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Switching Characteristics Over Operating Range ${ }^{[2,7,8]}$

Parameter	Description	Commercial/Industrial				Military						Unit
		-25		-35		-20		-30		-40		
		Min.	Max.									
$\mathrm{t}_{\text {PD }}$	Input or Feedback to Non-Registered Output 16L8, 16R6, 16R4		25		35		20		30		40	ns
t_{EA}	Input to Output Enable 16L8, 16R6, 16R4		25		35		20		30		40	ns
t_{ER}	Input to Output Disable Delay 16L8, 16R6, 16R4		25		35		20		30		40	ns
$\mathrm{t}_{\text {PZX }}$	Pin 11 to Output Enable 16R8, 16R6, 16R4		20		25		20		25		25	ns
$\mathrm{t}_{\text {PXZ }}$	Pin 11 to Output Disable 16R8, 16R6,		20		25		20		25		25	ns
t_{CO}	Clock to Output 16R8, 16R6, 16R4		15		25		15		20		25	ns
t_{5}	Input or Feedback Set-Up Time 16R8, 16R6, 16R4	20		30		20		25		35		ns
t_{H}	Hold Time 16R8, 16R6, 16R4	0		0		0		0		0		ns
t_{P}	Clock Period	35		55		35		45		60		ns
t_{W}	Clock Width	15		20		12		20		25		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency		28.5		18		28.5		22		16.5	MHz

Notes:

6. Tested initially and after any design or process changes that may affect these parameters.
7. Part (a) (part (c) for military) of AC Test Loads and Waveforms is used for all parameters except $t_{E A}, t_{E R}, t_{P Z X}$ and $t_{P X Z}$. Part (b) (part (d) for military) of AC Test Loads and Waveforms is used for $t_{E A}, t_{E R}, t_{P Z X}$ and $t_{P X Z}$.
8. The parameters t_{ER} and $\mathrm{t}_{\mathrm{PXZ}}$ are measured as the delay from the input disable logic threshold transition to $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ for an enabled HIGH output or $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ for an enabled LOW output. Please see Electrical Characteristics for waveforms and measurement reference levels.

Features

- Ultra high speed supports today's and tomorrow's fastest microprocessors
$-\mathrm{t}_{\mathrm{PD}}=4.5 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{S}}=2.5 \mathrm{~ns}$
$-\mathbf{f}_{\text {MAX }}=142.9 \mathrm{MHz}$ (external)
- Popular industry standard architectures
- Power-up RESET
- High reliability
- Proven Ti-W fuses
- AC and DC tested at the factory
- Security fuse

Functional Description

Cypress PAL20 Series devices consist of the PAL16L8, PAL16R8, PAL16R6, and PAL16R4. Using BiCMOS process and Ti-Wfuses, these devices implement the familiar sum-of-products (AND-OR) logic structure.
The PAL device is a programmable AND array driving a fixed OR array. The AND array is programmed to create custom product terms while the OR array sums selected terms at the outputs.
The product selector guide details all the different options available. All the registered devices feature power-up RESET.

The register Q output is set to a logic LOW when power is applied to the devices.
A security fuse is provided on all the devices to prevent copying of the device fuse pattern.

Programming

The PAL20 Series devices can be programmed using the QuickPro II programmer available from Cypress Semiconductor and also with Data I/O, Logical Devices, BP Microsystems, Advin, B\&C Microsystems, and other programmers. Please contact your local Cypress representative for further information.

Logic Symbols and DIP Pinouts

20-Pin PLCC/LCC Pinouts

28-Pin PLCC (-4 Speed Bin Only) Pinouts

PAL is a registered trademark of Monolithic Memories Inc.

Function Selection Guide

Device	Dedicated Inputs	Outputs	Product Terms/Outputs	Feedback	Enable
PAL16L8	10	6 comb. 2 comb.	7	I/O	prog. prog.
PAL16R8	8	8 reg.	-	reg.	pin
PAL16R6	8	6 reg.	8	reg.	pin
		2 comb.	8	I/O	prog.
PAL16R4	8	4 reg.	7 remb.	8	I/O

Speed Selection Guide (Commercial -4/-5/-7, Military $-7 /-10$)

Speed Bin	$\mathbf{t P D}_{\mathbf{P D}} \mathbf{(n s)}$	$\mathbf{t}_{\mathbf{S}}(\mathbf{n s})$	$\mathbf{t}_{\mathbf{C O}}(\mathbf{n s})$	$\mathbf{f}_{\mathbf{M A X}}(\mathbf{M H z})$	$\mathbf{I}_{\mathbf{C C}}(\mathbf{m A})$
-4	4.5	2.5	4.5	$\mathbf{1 4 2 . 9}$	$\mathbf{1 8 0}$
-5	5	2.5	5	$\mathbf{1 3 3 . 3}$	$\mathbf{1 8 0}$
-7	7	3.5	6	$\mathbf{1 0 5 . 3}$	$\mathbf{1 8 0}$
-10	10	4.5	7	87.0	$\mathbf{1 8 0}$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage
-1.2 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$

DC Input Current
(except during programming) $\ldots \ldots \ldots .-30 \mathrm{~mA}$ to +5 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions			Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min. } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	Commercial	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	Military			
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min. } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$	Commercial		0.5	V
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	Military			
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs ${ }^{[2]}$			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{[2]}$				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$0.4 \mathrm{~V} \leq \mathrm{V}_{\mathrm{IN}} \leq 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=$ Max. ${ }^{[3]}$			-250	50	$\mu \mathrm{A}$
II	Maximum Input Current	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=$ Max.				1	mA
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}{ }^{[3]}$			-100	+100	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}[4]$			-30	-130	mA
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=$ GND, Outputs Open				180	mA

Notes:

1. T_{A} is the "instant on" case temperature.
2. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
3. I / O pin leakage is the worse case of I_{IL} and $\mathrm{I}_{\mathrm{OZL}}$ (or I_{IH} and $\mathrm{I}_{\mathrm{OZH}}$).
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

Capacitance ${ }^{[5]}$

Parameter	Description		Test Conditions	Typical	Unit
C_{IN}	Input Capacitance	$\mathrm{CP}, \overline{\mathrm{OE}}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	8	pF
		$\mathrm{V}_{\mathrm{IN}}=0, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		5	pF
			8	pF	

Switching Characteristics Over the Operating Range ${ }^{[6]}$

Parameter	Description		-4		-5		-7		-10		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {PD }}$	Input or Feedback to Non-Registered Output 16L8, 16R6, 16R4		1	4.5	1	5	2	7	2	10	ns
$t_{\text {EA }}$	Input to Output Enable 16L8, 16R6, 16R4		2	6.5	2	6.5	2	7	2	10	ns
ter	Input to Output Disable Delay 16L8, 16R6, 16R4		2	5.5	2	5.5	2	7	2	10	ns
tPZX	Pin 11 to Output Enable 16R8, 16R6, 16R4		1	6	1	6	2	7	2	10	ns
tpxz	Pin 11 to Output Disable 16R8, 16R6, 16R4		1	5	1	5	2	7	2	10	ns
t_{CO}	Clock to Output 16R8, 16R6, 16R4		1	4.5	1	5	2	6	2	7	ns
$\mathrm{t}_{\text {SKEWR }}$	Skew Between Registered Outputs 16R8, 16R6, 16R4 ${ }^{[5]}$			0.75		1		1		1	ns
ts_{s}	Input or Feedback Set-Up Time 16R8, 16R6, 16R4		2.5		2.5		3.5		4.5		ns
t_{H}	Hold Time 16R8, 16R6, 16R4		0		0		0		0		ns
t_{p}	Clock Period ($\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{s}}$)		7		7.5		9.5		11.5		ns
t_{W}	Clock Width		3		3		3.5		5		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency	External Feedback (1/tp) ${ }^{[7]}$		142.9		133.3		105.3		87	$\overline{\mathrm{MHz}}$
		Internal Feedback ${ }^{[5,8]}$		175		175		150		133	

Notes:

5. Tested initially and after any design or process changes that may affect these parameters.
6. See the last page of this specification for Group A subgroup testing information.
7. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
8. This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal-only feedback can operate.

AC Test Loads and Waveforms

Specification	S_{1}	C_{L}	Commercial		Military		Measured Output Value
			R_{1}	\mathbf{R}_{2}	R_{1}	\mathbf{R}_{2}	
$\mathrm{t}_{\mathrm{PD}}, \mathrm{t}_{\mathrm{CO}}$	Closed	50 pF	200Ω	390	390Ω	750Ω	1.5 V
$\mathrm{t}_{\text {PZX }}, \mathrm{t}_{\mathrm{EA}}$	Z H: Open Z ${ }^{\text {L: Closed }}$						1.5 V
${ }_{\text {texz }}$, ter	$\begin{aligned} & \mathrm{H} \text { Z: Open } \\ & \text { L Z: Closed } \end{aligned}$	5 pF					$\begin{aligned} & \mathrm{H}: \mathrm{Z}: \mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V} \\ & \mathrm{~L}: \mathrm{Z}: \mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V} \end{aligned}$

Switching Waveforms ${ }^{[9]}$

Note:
9. Input rise and fall time is 2-ns typical.

Power-Up Reset

The power-up reset feature ensures that all flip-flops will be reset to LOW after the device has been powered up. The output state will be HIGH due to the inverting output buffer. This feature is valuable in simplifying state machine initialization. A timing diagram and parameter table are shown below. Due to the synchronous operation of the power-up reset and the wide range of ways
V_{CC} can rise to its steady state, two conditions are required to ensure a valid power-up reset. These conditions are:

1. The V_{CC} must be monotonic.
2. Following reset, the clock input must not be driven from LOW to HIGH until all applicable input and feedback set-up times are met.

Parameter Symbol	Parameter Description	Max.	Unit
t_{PR}	Power-up Reset Time	1000	ns
t_{S}	Input or Feedback Set-Up Time	See Switching Characteristics	
t_{WL}	Clock Width LOW		

Power-Up Reset Waveform

PAL20 Series
16L8/16R8
16R6/16R4

16L8 Logic Diagram 20-Pin DIP/PLCC/LCC (28-Pin PLCC) Pinouts

$(6,9,11,13,15,17,19,21)$

16R8 Logic Diagram 20-Pin DIP/PLCCCLCC (28-Pin PLCC) Pinouts

16R6 Logic Diagram 20-Pin DIP/PLCC/LCC (28-Pin PLCC) Pinouts

16R6/16R4

16R4 Logic Diagram 20-Pin DIP/PLCC/LCC (28-Pin PLCC) Pinouts

Ordering Information

$\begin{aligned} & \mathrm{I}_{\mathbf{(G C}} \\ & (\mathrm{mA}) \end{aligned}$	$\begin{aligned} & \mathbf{t} \mathbf{t p D} \\ & (\mathbf{n s}) \end{aligned}$	Ordering Code	Package Name	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
180	4.5	PAL16L8-4JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	5	PAL16L8-5DC	D6	20-Lead (300-Mil) CerDIP	
		PAL16L8-5JC	J61	20-Lead Plastic Leaded Chip Carrier	
		PAL16L8-5PC	P5	20-Lead (300-Mil) Molded DIP	
	7	PAL16L8-7DC	D6	20-Lead (300-Mil) CerDIP	
		PAL16L8-7JC	J61	20-Lead Plastic Leaded Chip Carrier	
		PAL16L8-7PC	P5	20-Lead (300-Mil) Molded DIP	
		PAL16L8-7DMB	D6	20-Lead (300-Mil) CerDIP	Military
		PAL16L8-7LMB	L61	20-Pin Square Leadless Chip Carrier	
	10	PAL16L8-10DMB	D6	20-Lead (300-Mil) CerDIP	
		PAL16L8-10LMB	L61	20-Pin Square Leadless Chip Carrier	

$\begin{aligned} & \mathrm{I}_{\mathbf{C C}} \\ & (\mathbf{m A}) \end{aligned}$	$\begin{gathered} \mathbf{f}_{\mathrm{MAX}} \\ (\mathbf{M H z}) \end{gathered}$	Ordering Code	Package Name	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
180	142.9	PAL16R8-4JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	133.3	PAL16R8-5DC	D6	20-Lead (300-Mil) CerDIP	
		PAL16R8-5JC	J61	20-Lead Plastic Leaded Chip Carrier	
		PAL16R8-5PC	P5	20-Lead (300-Mil) Molded DIP	
	105.3	PAL16R8-7DC	D6	20-Lead (300-Mil) CerDIP	
		PAL16R8-7JC	J61	20-Lead Plastic Leaded Chip Carrier	
		PAL16R8-7PC	P5	20-Lead (300-Mil) Molded DIP	
		PAL16R8-7DMB	D6	20-Lead (300-Mil) CerDIP	Military
		PAL16R8-7LMB	L61	20-Pin Square Leadless Chip Carrier	
	87	PAL16R8-10DMB	D6	20-Lead (300-Mil) CerDIP	
		PAL16R8-10LMB	L61	20-Pin Square Leadless Chip Carrier	

$\begin{gathered} \mathbf{I}_{\mathrm{CC}} \\ (\mathrm{~mA}) \end{gathered}$	$\begin{aligned} & \text { tPD } \\ & (\mathbf{n s}) \end{aligned}$	$\begin{gathered} \mathbf{f}_{\text {MAX }} \\ (\mathbf{M H z}) \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
180	4.5	142.9	PAL16R6-4JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	5	133.3	PAL16R6-5DC	D6	20-Lead (300-Mil) CerDIP	
			PAL16R6-5JC	J61	20-Lead Plastic Leaded Chip Carrier	
			PAL16R6-5PC	P5	20-Lead ($300-\mathrm{Mil}$) Molded DIP	
	7	105.3	PAL16R6-7DC	D6	20-Lead (300-Mil) CerDIP	
			PAL16R6-7JC	J61	20-Lead Plastic Leaded Chip Carrier	
			PAL16R6-7PC	P5	20-Lead (300-Mil) Molded DIP	
			PAL16R6-7DMB	D6	20-Lead (300-Mil) CerDIP	Military
			PAL16R6-7LMB	L61	20-Pin Square Leadless Chip Carrier	
	10	87	PAL16R6-10DMB	D6	20-Lead (300-Mil) CerDIP	
			PAL16R6-10LMB	L61	20-Pin Square Leadless Chip Carrier	

Ordering Information (continued)

$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & (\mathrm{mA}) \end{aligned}$	$\begin{aligned} & \mathbf{t}_{\text {PD }} \\ & (\mathbf{n s}) \end{aligned}$	$\begin{gathered} \mathbf{f}_{\mathrm{MAX}} \\ (\mathbf{M H z}) \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
180	4.5	142.9	PAL16R4-4JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	5	133.3	PAL16R4-5DC	D6	20-Lead (300-Mil) CerDIP	
			PAL16R4-5JC	J61	20-Lead Plastic Leaded Chip Carrier	
			PAL16R4-5PC	P5	20-Lead (300-Mil) Molded DIP	
	7	105.5	PAL16R4-7DC	D6	20-Lead (300-Mil) CerDIP	
			PAL16R4-7JC	J61	20-Lead Plastic Leaded Chip Carrier	
			PAL16R4-7PC	P5	20-Lead (300-Mil) Molded DIP	
			PAL16R4-7DMB	D6	20-Lead (300-Mil) CerDIP	Military
			PAL16R4-7LMB	L61	20-Pin Square Leadless Chip Carrier	
	10	87	PAL16R4-10DMB	D6	20-Lead (300-Mil) CerDIP	
			PAL16R4-10LMB	L61	20-Pin Square Leadless Chip Carrier	

MILITARY SPECIFICATIONS
Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
$\mathrm{~V}_{\mathrm{PP}}$	$1,2,3$
I_{CC}	$1,2,3$
I_{OZ}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{PD}	$9,10,11$
$\mathrm{t}_{\mathrm{PZX}}$	$9,10,11$
t_{CO}	$9,10,11$
t_{S}	$9,10,11$
t_{H}	$9,10,11$

Document \#: 38-A-00025-C

PLDC20G10B/PLDC20G10

Reprogrammable Logic Device

Features

- Fast
- Commercial: $\mathbf{t}_{\text {PD }}=\mathbf{1 5} \mathbf{n s}, \mathbf{t}_{\mathbf{C O}}=\mathbf{1 0}$ $\mathbf{n s}, \mathrm{t}_{\mathbf{S}}=12 \mathrm{~ns}$
- Military: $\mathrm{t}_{\mathbf{P D}}=\mathbf{2 0} \mathbf{n s}, \mathrm{t}_{\mathrm{CO}}=\mathbf{1 5} \mathbf{n s}$, $\mathbf{t s}_{\mathrm{S}}=15 \mathrm{~ns}$
- Low power
- ICC max.: 70 mA , commercial
- ICC max.: $\mathbf{1 0 0 ~ m A , ~ m i l i t a r y ~}$
- Commercial and military temperature range
- User-programmable output cells
- Selectable for registered or combinatorial operation
- Output polarity control
- Output enable source selectable from pin 13 or product term
- Generic architecture to replace standard logic functions including: 20 L 10, 20L8, 20R8, 20R6, 20R4, 12L10, 14L8, 16L6, 18L4, 20L2, and $20 \mathrm{V8}$
- Eight product terms and one OE product term per output
- CMOS EPROM technology for reprogrammability
- Highly reliable
- Uses proven EPROM technology
- Fully AC and DC tested
-Security feature prevents logic pattern duplication
$- \pm 10 \%$ power supply voltage and higher noise immunity

Functional Description

Cypress PLD devices are high-speed electrically programmablelogic devices. These devicesutilize thesum-of-products (ANDOR) structure providing users the ability to program custom logic functions for unique requirements.
In an unprogrammed state the AND gates are connected via EPROM cells to both the true and complement of every input. By selectively programming the EPROM cells, AND gates may be connected to either the true or complement or disconnected from both true and complement inputs.
Cypress PLDC20G10 uses an advanced 0.8 -micron CMOS technology and a proven EPROM cell as the programmable element. This technology and the inherent

Logic Block Diagram

Pin Configurations

Note:

1. The CG7C323 is the PLDC20G10 packaged in the JEDEC-compatible 28 -pin PLCC pinout. Pin function and pin order is identical for
both PLCC pinouts. The difference is in the location of the "no connect" or NC pins.

Selection Guide

Generic Part Number	ICC (mA)		tPD (ns)		ts (ns)		tCo (ns)	
	Com/Ind	Mil	Com/Ind	Mil	Com/Ind	Mil	Com/Ind	Mil
20G10B-15	70		15		12		10	
20G10B-20	70	100	20	20	12	15	12	15
20G10B-25		100		25		18		15
$20 \mathrm{G} 10-25$	55		25		15		15	
$20 \mathrm{G} 10-30$		80		30		20		20
$20 \mathrm{G} 10-35$	55		35		30		25	
$20 \mathrm{G} 10-40$		80		40		35		25

Functional Description (continued)

advantage of being able to program and erase each cell enhances the reliability and testability of the circuit. This reduces the burden on the customer to test and to handle rejects.
A preload function allows the registered outputs to be preset to any pattern during testing. Preload is important for testing the functionality of the Cypress PLD device.

20G10 Functional Description

The PLDC20G10 is a generic 24 -pin device that can be programmed to logic functions that include but are not limited to: 20L10, 20L8, 20R8, 20R6, 20R4, 12L10, 14L8, 16L6, 18L4, 20L2, and 20V8. Thus, the PLDC20G10 provides significant design, inventory and programming flexibility over dedicated 24 -pin devices. It is executed in a 24 -pin 300 -mil molded DIP and a $300-\mathrm{mil}$ windowed cerDIP. It provides up to 22 inputs and 10 outputs. When the windowed cerDIP is exposed to UV light, the 20G10 is erased and then can be reprogrammed.
The programmable output cell provides the capability of defining the architecture of each output individually. Each of the 10 output cells may be configured with registered or combinatorial outputs, active HIGH or active LOW outputs, and product term or Pin 13 generated output enables. Three architecture bits determine the configurations as shown in the Configuration Table and in Figures 1 through 8. A total of eight different configurations are possible,
with the two most common shown in Figure 3 and Figure 5. The default or unprogrammed state is registered/active/LOW/Pin 11 OE. The entire programmable output cell is shown in the next section.
The architecture bit ' C 1 ' controls the registered/combinatorial option. In either combinatorial or registered configuration, the output can serve as an I/O pin, or if the output is disabled, as an input only. Any unused inputs should be tied to ground. In either registered or combinatorial configuration, the output of the register is fed back to the array. This allows the creation of control-state machines by providing the next state. The register is clocked by the signal from Pin 1. The register is initialized on power up to Q output LOW and $\overline{\mathrm{Q}}$ output HIGH.
In both the combinatorial and registered configurations, the source of the output enable signal can be individually chosen with architecture bit ' C 2 '. The OE signal may be generated within the array, or from the external $\overline{\mathrm{OE}}$ (Pin 13). The Pin 13 allows direct control of the outputs, hence having faster enable/disable times.
Each output cell can be configured for output polarity. The output can be either active HIGH or active LOW. This option is controlled by architecture bit ' C 0 '.
Along with this increase in functional density, the Cypress PLDC20G10 provides lower-power operation through the use of CMOS technology and increased testabilitywith a register preload feature.

Programmable Output Cell

Configuration Table

Figure	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	Configuration
$\mathbf{1}$	0	0	0	Product Term OE/Registered/Active LOW
2	0	0	1	Product Term OE/Registered/Active HIGH
5	0	1	0	Product Term OE/Combinatorial/Active LOW
6	0	1	1	Product Term OE/Combinatorial/Active HIGH
3	1	0	0	Pin 13 OE/Registered/Active LOW
4	1	0	1	Pin 13 OE/Registered/Active HIGH
7	1	1	0	Pin 13 OE/Combinatorial/Active LOW
8	1	1	1	Pin 13 OE/Combinatorial/Active HIGH

Registered Output Configurations

Figure 1. Product Term OE/Active LOW

Figure 3. Pin 13 OE/Active LOW

Combinatorial Output Configurations ${ }^{[2]}$

$\mathrm{C}_{2}=0$
$\mathrm{C}_{2}=1$
$\mathrm{C}_{1}=0$
$\mathrm{C}_{0}=0$

20G10-10
Figure 5. Product Term OE/Active LOW

Figure 7. Pin 13 OE/Active LOW
Note:
2. Bidirectional I / O configurations are possible only when the combinatorial output option is selected

Figure 2. Product Term OE/Active HIGH

Figure 4. Pin 13 OE/Active HIGH

$\mathrm{C}_{2}=0$
$\mathrm{C}_{1}=1$
$\mathrm{C}_{0}=1$

Figure 6. Product Term OE/Active HIGH

$\mathrm{C}_{2}=1$
$\mathrm{C}_{1}=1$
$\mathrm{C}_{0}=1$

Figure 8. Pin 13 OE/Active HIGH

逃

Maximum Ratings

（Above which the useful life may be impaired．For user guidelines， not tested．）
Storage Temperature \qquad
Ambient Temperature with
Power Applied ．．．．．．．．．．．．．．．．．．．．．．．．．$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential ．．．．．．．-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V

Output Current into Outputs（LOW） 16 mA
DC Programming Voltage
PLDC20G10B and CG7C323B－A ．．．．．．．．．．．．．．．．．．．13．0V
PLDC20G10 and CG7C323－A ．．．．．．．．．．．．．．．．．．．14．0V

Latch－Up Current
$>200 \mathrm{~mA}$
Static Discharge Voltage
$>500 \mathrm{~V}$
（per MIL－STD－883，Method 8015）

Operating Range

Range	Ambient Temperature	V $_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $\left.{ }^{3}\right]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range（Unless Otherwise Noted）${ }^{[4]}$

Capacitance ${ }^{[7]}$

Parameter	Description	Test Conditions	Max．	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes：

3． T_{A} is the＂instant on＂case temperature．
4．See the last page of this specification for Group A subgroup testing in－ formation．
5．These are absolute values with respect to device ground．All over－ shoots due to system or tester noise are included．

6．Not more than one output should be tested at a time．Duration of the short circuit should not be more than one second． $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degrada－ tion．
7．Tested initially and after any design or process changes that may affect these parameters．

AC Test Loads and Waveforms (Commercial)

Equivalent to: THÉVENIN EQUIVALENT (Commercial)

Equivalent to: THÉVENIN EQUIVALENT (Military/Industrial)

Switching Characteristics Over Operating Range ${ }^{[3,8,9]}$

Parameter	Description	Commercial								Unit
		B-15		B-20		-25		-35		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PD }}$	Input or Feedback to Non-Registered Output		15		20		25		35	ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable		15		20		25		35	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable		15		20		25		35	ns
$\mathrm{t}_{\text {PZX }}$	Pin 11 to Output Enable		12		15		20		25	ns
$t_{\text {PXZ }}$	Pin 11 to Output Disable		12		15		20		25	ns
t_{CO}	Clock to Output		10		12		15		25	ns
ts_{5}	Input or Feedback Set-Up Time	12		12		15		30		ns
t_{H}	Hold Time	0		0		0		0		ns
$\mathrm{tp}^{[10]}$	Clock Period	22		24		30		55		ns
$\mathrm{t}_{\text {WH }}$	Clock High Time	8		10		12		17		ns
$\mathrm{t}_{\text {WL }}$	Clock Low Time	8		10		12		17		ns
$\mathrm{f}_{\text {MAX }}{ }^{[11]}$	Maximum Frequency	45.4		41.6		33.3		18.1		MHz

Notes:
8. Part (a) of AC Test Loads and Waveforms used for all parameters except $t_{E R}, t_{\text {PZX }}$, and $t_{P X Z}$. Part (b) of AC Test Loads and Waveforms used for $t_{E R}, t_{P Z X}$, and $t_{P X Z}$.
9. The parameters t_{ER} and $\mathrm{t}_{\mathrm{PXZ}}$ are measured as the delay from the input disable logic threshold transition to $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ for an enabled HIGH output or $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ for an enabled LOW input.
10. t_{B} minimum guaranteed clock period is that guaranteed for state machine operation and is calculated from $\mathrm{t}_{\mathrm{P}}=\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{CO}}$. The minimum
guaranteed period for registered data path operation (no feedback) can be calculated as the greater of ($\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}$) or ($\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}$).
11. $\mathrm{f}_{\text {MAX }}$, minimum guaranteed operating frequency, is that guaranteed for state machine operation and is calculated from $f_{\mathrm{MAX}}=1 /\left(\mathrm{t}_{\mathrm{S}}+\right.$ t_{CO}). The minimum guaranteed $\mathrm{f}_{\mathrm{MAX}}$ for registered data path operation (no feedback) can be calculated as the lower of $1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)$ or $1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)$.

Switching Characteristics Over Operating Range (continued)

Parameter	Description	Military/Industrial								Unit
		B-20		B-25		-30		-40		
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PD }}$	Input or Feedback to Non-Registered Output		20		25		30		40	ns
teA	Input to Output Enable		20		25		30		40	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable		20		25		30		40	ns
tPZX	Pin 11 to Output Enable		17		20		25		25	ns
tPXZ	Pin 11 to Output Disable		17		20		25		25	ns
t_{CO}	Clock to Output		15		15		20		25	ns
$\mathrm{ts}^{\text {S }}$	Input or Feedback Set-Up Time	15		18		20		35		ns
t_{H}	Hold Time	0		0		0		0		ns
$\mathrm{t}_{\mathrm{P}}{ }^{[10]}$	Clock Period	30		33		40		60		ns
$t_{\text {WH }}$	Clock High Time	12		14		16		22		ns
${ }^{\text {twL }}$	Clock Low Time	12		14		16		22		ns
$\mathrm{f}_{\text {MAX }}{ }^{[11]}$	Maximum Frequency	33.3		30.3		25.0		16.6		MHz

Switching Waveform

CYPRESS

Functional Logic Diagram

SEMICONDUCTOR

Ordering Information

$\begin{aligned} & \mathrm{t} \mathbf{P D} \\ & (\mathbf{n s}) \end{aligned}$	$\underset{(\mathbf{n s})}{\mathbf{t s}_{\mathbf{S}}}$	$\begin{aligned} & \hline \mathrm{t}_{\mathrm{CO}} \\ & (\mathrm{~ns}) \end{aligned}$	$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathbf{m A}) \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
15	12	10	70	PLDC20G10B-15PC/PI	P13	24-Lead (300-Mil) Molded DIP	Commercial/ Industrial
				PLDC20G10B-15WC	W14	24-Lead (300-Mil) Windowed CerDIP	
				PLDC20G10B-15JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
				CG7C323B-A15JC/JI ${ }^{[12]}$	J64	28-Lead Plastic Leaded Chip Carrier	
20	12	12	70	PLDC20G10B-20PC/PI	P13	24-Lead (300-Mil) Molded DIP	Commercial/ Industrial
				PLDC20G10B-20WC	W14	24-Lead (300-Mil) Windowed CerDIP	
				PLDC20G10B-20JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
				CG7C323B-A20JC/JI ${ }^{[12]}$	J64	28-Lead Plastic Leaded Chip Carrier	
20	15	15	100	PLDC20G10B-20DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PLDC20G10B-20WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
				PLDC20G10B-20LMB	L64	28-Square Leadless Chip Carrier	
25	15	15	55	PLDC20G10-25PC/PI	P13	24-Lead (300-Mil) Molded DIP	Commercial/ Industrial
				PLDC20G10-25WC	W14	24-Lead (300-Mil) Windowed CerDIP	
				PLDC20G10-25JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
				CG7C323-A25JC/JI ${ }^{121}$	J64	28-Lead Plastic Leaded Chip Carrier	
25	18	15	100	PLDC20G10B-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PLDC20G10B-25LMB	L64	28-Square Leadless Chip Carrier	
				PLDC20G10B-25WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
30	20	20	80	PLDC20G10-30DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PLDC20G10-30LMB	L64	28-Square Leadless Chip Carrier	
				PLDC20G10-30WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
35	30	25	55	PLDC20G10-35PC/PI	P13	24-Lead (300-Mil) Molded DIP	Commercial/ Industrial
				PLDC20G10-35WC	W14	24-Lead (300-Mil) Windowed CerDIP	
				PLDC20G10-35JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
				CG7C323-A35JC/JI ${ }^{12]}$	J64	28-Lead Plastic Leaded Chip Carrier	
40	35	25	80	PLDC20G10-40DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PLDC20G10-40LMB	L64	28-Square Leadless Chip Carrier	
				PLDC20G10-40WMB	W14	24-Lead (300-Mil) Windowed CerDIP	

Note:
12. The CG7C323 is the PLD20G10 packaged in the JEDEC-compatible 28-pin PLCC pinout. Pin function and pin order is identical for both PLCC pinouts. The principle difference is in the location of the "no connect" (NC) pins.

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{PD}	$9,10,11$
$\mathrm{t}_{\mathrm{PZX}}$	$9,10,11$
t_{CO}	$9,10,11$
t_{S}	$9,10,11$
t_{H}	$9,10,11$

Document \#: 38-00019-G

Features

- Ultra high speed supports today's and tomorrow's fastest microprocessors
$-\mathbf{t}_{\mathbf{P D}}=7.5 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{SU}}=3 \mathrm{~ns}$
$-\mathbf{f}_{\mathrm{MAX}}=105 \mathrm{MHz}$
- Reduced ground bounce and undershoot
- PLCC and LCC packages with additional $V_{C C}$ and $V_{\text {SS }}$ pins for lowest ground bounce
- Generic architecture to replace standard logic functions including: $20 \mathrm{L10}$, 20L8, 20R8, 20R6, 20R4, 12L10, 14L8, $16 \mathrm{~L} 6,18 \mathrm{~L} 4,20 \mathrm{~L} 2$, and 20 V 8
- Up to 22 inputs and 10 outputs for more logic power
- 10 user-programmable output macrocells
- Output polarity control
- Registered or combinatorial operation
- Pin or product term output enable control
- Preload capability for flexible design and testability
- High reliability
- Proven Ti-W fuse technology
- AC and DC tested at the factory
- Security Fuse

Functional Description

The PLD20G10C is a generic 24 -pin device that can be used in place of 24 PAL devices. Thus, the PLD20G10C provides significant design, inventory, and programming flexibility over dedicated 24-pin devices.

Generic 24-Pin PAL® Device

Using BiCMOS process and Ti-W fuses, the PLD20G10C implements the familiar sum-of-products (AND-OR) logic structure. It provides 12 dedicated input pins and 10I/Opins(seeLogicBlock Diagram). By selecting each I/O pin as permanent or temporary input, up to 22 inputs can be achieved. Applications requiring up to 21 inputs and a single output, down to 12 inputs and 10 outputs can be realized. The output enable product term available on each I/O or a common pin controlled $\overline{\mathrm{OE}}$ function allows this selection.
The PLD20G10C automatically resets on power-up. The Q output of all internal registers is set to a logic LOW and the $\overline{\mathrm{Q}}$ output to a logic HIGH. In addition, the PRELOAD capability allows the registers to be set to any desired state during testing.
Asecurity fuse is provided to prevent copying of the device fuse pattern.

Logic Block Diagram and PDIP (P)/CDIP (D) Pin Configuration

Pin Configurations

PAL is a registered trademark of Monolithic Memories Inc.

Selection Guide

		20G10C-7	20G10C-10	20G10C-12	20G10C-15
$\mathrm{I}_{\mathrm{CC}}(\mathrm{mA})$	Commercial	190	190	190	
	Military		190	190	190
$\mathrm{t}_{\mathrm{PD}}(\mathrm{ns})$	Commercial	7.5	10	12	
	Military		10	12	15
$\mathrm{t}_{\mathrm{s}}(\mathrm{ns})$	Commercial	3.0	3.6	4.5	
	Military		3.6	4.5	7.5
$\mathrm{t}_{\mathrm{CO}}(\mathrm{ns})$	Commercial	6.5	7.5	9.5	
	Military		7.5	9.5	10
$\mathrm{f}_{\mathrm{MAX}}(\mathrm{MHz})$	Commercial	105	90	71	
	Military		90	71	57

Programmable Macrocell

The PLD20G10C has 10 programmable I/O macrocells (see Macrocell). Two fuses (C_{1} and C_{0}) can be programmed to configure output in one of four ways. Accordingly, each output can be registered or combinatorial with an active HIGH or active LOW polarity. The feedback to the array is also from this output. An additional fuse $\left(\mathrm{C}_{2}\right)$ determines the source of the output enable signal. The signal can be generated either from the individual OE product term or from a common external $\overline{\mathrm{OE}} \mathrm{pin}$.

Programming

The PLD20G10C can be programmed using the QuickPro II® programmer available from Cypress Semiconductor and also with Data I/O, Logical Devices, STAG, and other programmers. Please contact your local Cypress representative for further information.

Macrocell

[^38]\qquad

Configuration Table

Figure	$\mathbf{C}_{\mathbf{2}}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	Configuration
$\mathbf{1}$	0	0	0	Product Term OE/Registered/Active LOW
2	0	0	1	Product Term OE/Registered/Active HIGH
5	0	1	0	Product Term OE/Combinatorial/Active LOW
6	0	1	1	Product Term OE/Combinatorial/Active HIGH
3	1	0	0	Pin $\overline{\mathrm{OE}} /$ Registered/Active LOW
4	1	0	1	Pin $\overline{\mathrm{OE}} /$ Registered/Active HIGH
7	1	1	0	Pin $\overline{\mathrm{OE} / C o m b i n a t o r i a l / A c t i v e ~ L O W ~}$
8	1	1	1	Pin $\overline{\mathrm{OE} / C o m b i n a t o r i a l / A c t i v e ~ H I G H ~}$

Registered Output Configurations

Figure 1. Product Term OE/Active LOW

Figure 3. Pin $\overline{\mathrm{OE}} /$ Active LOW

Combinatorial Output Configurations ${ }^{[1]}$

Figure 5. Product Term OE/Active LOW

Figure 7. Pin $\overline{\mathbf{O E}} /$ Active LOW

Note:

1. Bidirectional I/O configurations are possible only when the combinatorial output option is selected.

Figure 2. Product Term OE/Active HIGH

Figure 4. Pin $\overline{\mathrm{OE}} /$ Active HIGH

Figure 6. Product Term OE/Active HIGH

Figure 8. Pin $\overline{\mathbf{O E}} /$ Active HIGH

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature
$\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to V_{CC}
DC Input Voltage \qquad -0.5 V to V_{CC}

DC Input Current -30 mA to +5 mA (except during programming)
DC Program Voltage 10 V

Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	4.75 V to 5.5 V

DC Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions			Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}^{2}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	Com'l	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	Mil			
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min. } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	Com'l		0.5	V
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	Mil			
V_{IH}	Input HIGH Voltage	Guaranteed Input Logical HIGH Voltage for All Inputs ${ }^{[3]}$			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{[3]}$				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current Maximum Input Current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\text {IN }} \leq 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=$ Max.			-250	50	$\mu \mathrm{A}$
I_{I}	Maximum Input Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.		Com'l		100	$\mu \mathrm{A}$
				Mil		250	
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			-100	100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SC }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[4]}$			-30	- 120	mA
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=$ GND, Outputs Open		Com'l		190	mA
				Mil		190	

Notes:
2. T_{A} is the "instant on" case temperature.
3. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

Switching Characteristics PLD20G10C ${ }^{[5]}$

Parameter	Description	20G10C-7		20G10C-10		20G10C-12		20G10C-15		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PD }}$	Input to Output Propagation Delay ${ }^{[6]}$	2	7.5	2	10	2	12	2	15	ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable Delay	2	7.5	2	10	2	12	2	15	ns
t_{ER}	Input to Output Disable Delay ${ }^{[7]}$	2	7.5	2	10	2	12	2	15	ns
$\mathrm{t}_{\text {PZX }}$	$\overline{\mathrm{OE}}$ Input to Output Enable Delay	2	7.5	2	10	2	12	2	15	ns
$\mathrm{t}_{\text {PXZ }}$	$\overline{\mathrm{OE}}$ Input to Output Disable Delay	2	7.5	2	10	2	12	2	15	ns
t_{CO}	Clock to Output Delay ${ }^{[6]}$	1	6.5	1	7.5	1	9.5	1	10	ns
t_{5}	Input or Feedback Set-Up Time	3		3.6		4.5		7.5		ns
t_{H}	Input Hold Time	0		0 .		0		0		ns
t_{P}	External Clock Period ($\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{s}}$)	9		11.1		14		17.5		ns
$\mathbf{t}_{\text {WH }}$	Clock Width HIGH ${ }^{[8]}$	3		3		3		6		ns
t_{WL}	Clock Width LOW ${ }^{[8]}$	3		3		3		6		ns
$\mathrm{f}_{\text {MAX } 1}$	External Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{s}}\right)\right)^{[9]}$	105		90		71		57		MHz
$\mathrm{f}_{\text {MAX2 }}$	Data Path Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)\right)^{[8,10]}$	166		166		166		83		MHz
$\mathrm{f}_{\text {MAX }}$	Internal Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CF}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[11]}$	133		100		83		66		MHz
t_{CF}	Register Clock to Feedback Input ${ }^{[12]}$		4.5		6.4		7.5		7.5	ns
t_{PR}	Power-Up Reset Time ${ }^{[13]}$	1		1		1		1		$\mu \mathrm{s}$

Capacitance ${ }^{[8]}$

Parameter	Description	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	8	pF
C OUT	Output Capacitance	10	pF

Notes:

5. AC test load used for all parameters except where noted.
6. This specification is guaranteed for all device outputs changing state in a given access cycle.
7. This parameter is measured as the time after output disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below $\mathrm{V}_{\mathrm{OH}} \mathrm{min}$. or a previous LOW level has risen to 0.5 volts above V_{OL} max.
8. Tested initially and after any design or process changes that may affect these parameters.
9. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
10. This specification indicates the guaranteed maximum frequency at which an individual output register can be cycled.
11. This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feedback can operate. This parameter is tested periodically by sampling production product.
12. This parameter is calculated from the clock period at $\mathrm{f}_{\text {MAX }}$ internal ($\mathrm{f}_{\mathrm{MAX}}$) as measured (see Note 11) minus ts.
13. The registers in the PLD20G10Chave been designed with the capability to reset during system power-up. Following power-up, all registers will be reset to a logic LOW state. The output state will depend on the polarity of the output buffer. This feature is useful in establishing state machine initialization. To insure proper operation, the rise in V_{CC} must be monotonic and the timing constraints depicted in power-up reset waveforms must be satisfied.

AC Test Loads and Waveforms

$\mathbf{C}_{\mathbf{L}}{ }^{[14]}$	Package
15 pF	P / D
50 pF	$\mathrm{J} / \mathrm{K} / \mathrm{L}$

Equivalent to: THÉVENIN EQUIVALENT

Equivalent to: THÉVENIN EQUIVALENT

Parameter	$\mathbf{V}_{\text {th }}$	Output Waveform-Measurement Level
$\mathrm{t}_{\mathrm{ER}}(-), \mathrm{t}_{\text {PHZ }}$	1.5 V	
$\mathrm{t}_{\mathrm{ER}}(+), \mathrm{t}_{\text {PLZ }}$	2.6 V	
${ }^{\text {t }}$ EA (+), $\mathrm{t}_{\text {PZH }}$	1.5 V	$1.5 \mathrm{~V}-0.5 \mathrm{~V} \stackrel{\downarrow}{4} / \mathrm{F}$
$\mathrm{t}_{\mathrm{EA}(-)}, \mathrm{t}_{\text {PZL }}$	1.5 V	

Note:
14. $C_{L}=5 \mathrm{pF}$ for $t_{E R}$ and $t_{P X Z}$ measurements for all packages.

Switching Waveform

Power-Up Reset Waveform ${ }^{[13]}$

Preload Waveform ${ }^{[15]}$

Notes:

15. Pins 4 (5), 5 (6), 7 (9) at $\mathrm{V}_{\mathrm{ILP}}$; Pins $10(12)$ and 11 (13) at $\mathrm{V}_{\mathrm{IHP}} ; \mathrm{V}_{\mathrm{CC}}$ (Pin 24 (1 and 28)) at $\mathrm{V}_{\mathrm{CCP}}$
16. Pins $2-8(3-7,9,10), 10(12), 11(13)$ can be set at $\mathrm{V}_{\text {IHP }}$ or $\mathrm{V}_{\text {ILP }}$ to insure asynchronous reset is not active.

D/K/P (J/L) Pinouts

Forced level on register pin during preload	Register Q output state after preload
$\mathrm{V}_{\text {IHP }}$	HIGH
$\mathrm{V}_{\text {ILP }}$	LOW

Name	Description	Min.	Max.	Unit
V_{PP}	Programming Voltage	9.25	9.75	V
$\mathrm{t}_{\mathrm{DPR} 1}$	Delay for Preload	1		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{DPR} 2}$	Delay for Preload	0.5		$\mu \mathrm{~s}$
$\mathrm{~V}_{\mathrm{ILP}}$	Input LOW Voltage	0	0.4	V
$\mathrm{~V}_{\mathrm{IHP}}$	Input HIGH Voltage	3	4.75	V
$\mathrm{~V}_{\mathrm{CCP}}$	V_{CC} for Preload	4.75	5.25	V

SEMICONDUCTOR
Functional Logic Diagram for PLD20G10C

Ordering Information

$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & (\mathbf{m A}) \end{aligned}$	$\mathrm{tPD}^{\text {(}} \mathrm{ns}$)	$\begin{aligned} & \mathbf{f}_{\text {MAX }} \\ & (\mathbf{M H z}) \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
190	7.5	105	PLD20G10C-7DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PLD20G10C-7JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PLD20G10C-7PC	P13	24-Lead (300-Mil) Molded DIP	
	10	90	PLD20G10C-10DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PLD20G10C-10JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PLD20G10C-10PC	P13	24-Lead (300-Mil) Molded DIP	
			PLD20G10C-10DMB	D14	24-Lead (300-Mil) CerDIP	Military
			PLD20G10C-10KMB	K73	24-Lead Rectangular Cerpack	
			PLD20G10C-10LMB	L64	28-Square Leadless Chip Carrier	
	12	71	PLD20G10C-12DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PLD20G10C-12JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PLD20G10C-12PC	P13	24-Lead (300-Mil) Molded DIP	
			PLD20G10C-12DMB	D14	24-Lead (300-Mil) CerDIP	Military
			PLD20G10C-12KMB	K73	24-Lead Rectangular Cerpack	
			PLD20G10C-12LMB	L64	28-Square Leadless Chip Carrier	
	15	57	PLD20G10C-15DMB	D14	24-Lead (300-Mil) CerDIP	Military
			PLD20G10C-15KMB	K73	24-Lead Rectangular Cerpack	
			PLD20G10C-15LMB	L64	28-Square Leadless Chip Carrier	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristerics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{PD}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{S}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$

Document \#: 38-A-00027-A

Features

- Advanced-user programmable macrocell
- CMOS EPROM technology for reprogrammability
- Up to 20 input terms
- 10 programmable I/O macrocells
- Output macrocell programmable as combinatorial or asynchronous Dtype registered output
- Product-term control of register clock, reset and set and output enable
- Register preload and power-up reset
- Four data product terms per output macrocell
- Fast
- Commercial

$$
\begin{aligned}
& \mathbf{t}_{\mathrm{PD}}=15 \mathrm{~ns} \\
& \mathbf{t}_{\mathrm{CO}}=15 \mathrm{~ns} \\
& \mathbf{t}_{\mathrm{SU}}=7 \mathrm{~ns}
\end{aligned}
$$

-Military/Industrial

$$
\begin{aligned}
& \mathbf{t}_{\mathrm{PD}}=20 \mathrm{~ns} \\
& \mathbf{t}_{\mathrm{CO}}=20 \mathrm{~ns} \\
& \mathbf{t}_{\mathbf{S U}}=10 \mathrm{~ns}
\end{aligned}
$$

- Low power
- ICC max - 80 mA (Commercial)
$-\mathrm{I}_{\mathrm{CC}} \max =\mathbf{8 5} \mathbf{~ m A}$ (Military)
- High reliability
—Proven EPROM technology
$\longrightarrow \mathbf{2 0 0 1 V}$ input protection
$\mathbf{- 1 0 0 \%}$ programming and functional testing
- Windowed DIP, windowed LCC, DIP, LCC, PLCC available

Functional Description

The Cypress PLDC20RA10 is a high-performance, second-generation program-

Reprogrammable Asynchronous CMOS Logic Device

mable logic device employing a flexible macrocellstructure that allows any individual output to be configured independently as a combinatorial output or as a fully asynchronous D-type registered output.
The Cypress PLDC20RA10 provides low-er-power operation with superior speed performance than functionally equivalent bipolar devices through the use of highperformance 0.8 -micron CMOS manufacturing technology.
The PLDC20RA10 is packaged in a 24 pin $300-\mathrm{mil}$ molded DIP, a $300-\mathrm{mil}$ windowed cerDIP, and a 28 -lead square leadless chip carrier, providing up to 20 inputs and 10 outputs. When the windowed device is exposed to UV light, the 20RA10 is erased and can then be reprogrammed.

Logic Block Diagram

Selection Guide

Generic Part Number	tPD ns		tsu ns		tCO ns		ICC ns	
	Com'l	Mil/Ind	Com’l	Mil/Ind	Com'l	Mil/Ind	Com'l	Mil/Ind
20RA10-15	15		7		15		80	
20RA10-20	20	20	10	10	20	20	80	85
20RA10-25		25		15		25		85
20RA10-35		35		20		35		85

Pin Configurations

LCC
Top View

Macrocell Architecture

Figure 1 illustrates the architecture of the 20RA10 macrocell. The cell dedicates three product terms for fully asynchronous control of the register set, reset, and clock functions, as well as, one term for control of the output enable function.
The output enable product term output is ANDed with the input from pin 13 to allow either product term or hardwired external control of the output or a combination of control from both sources. If product-term-only control is selected, it is automatically chosen for all outputs since, for this case, the external output enable pin must be tied LOW. The active polarity of each output may be programmed independently for each output cell and is subsequently fixed. Figure 2 illustrates the output enable options available.
When an I/O cell is configured as an output, combinatorial-only capability may be selected by forcing the set and reset product term outputs to be HIGH under all input conditions. This is achieved by programming all input term programming cells for these two product terms. Figure 3 illustrates the available output configuration options.
An additional four uncommitted product terms are provided in each output macrocell as resources for creation of user-defined logic functions.

Programmable I/O

Because any of the ten I/O pins may be selected as an input, the device input configuration programmed by the user may vary from a total of nine programmable plus ten dedicated inputs (a total of nineteen inputs) and one output down to a ten-input, ten-output configuration with all ten programmable I/O cells configured as

JEDEC PLCC/HLCC ${ }^{[1]}$ Top View
outputs. Each input pin available in a given configuration is available as an input to the four control product terms and four uncommitted product terms of each programmable I/O macrocell that has been configured as an output.
An I/O cell is programmed as an input by tying the output enable pin (pin 13) HIGH or by programming the output enable product term to provide a LOW, thereby disabling the output buffer, for all possible input combinations.
When utilizing the I/O macrocell as an output, the input path functions as a feedback path allowing the output signal to be fed back as an input to the product term array. When the output cell is configured as a registered output, this feedback path may be used to feed back the current output state to the device inputs to provide current state control of the next output state as required for state machine implementation.

Preload and Power-Up Reset

Functional testability of programmed devices is enhanced by inclusion of register preload capability, which allows the state of each register to be set by loading each register from an external source prior to exercising the device. Testing of complexstate machine designs is simplified by the ability to load an arbitrary state without cycling through long test vector sequences to reach the desired state. Recovery from illegal states can be verified by loading illegal states and observing recovery. Preload of a particular register is accomplished by impressing the desired state on the register output pin and lowering the signal level on the preload control pin (pin1) to a logic LOW level. If the specified preload set-up, hold and pulse width minimums have been observed, the desired state is loadedinto the register. To insure predictable systeminitialization, all registers are preset to a logic LOW state upon power-up, thereby setting the active LOW outputs to a logic HIGH.

Note:

1. The CG7C324 is the PLDC20RA10 packaged in the JEDEC-compatible 28-pin PLCC pinout. Pin fuction and pin order is identical for both PLCC pinouts. The principle differencd is in the location of the "no connect" (NC) pins.

Figure 1. PLDC20RA10 Macrocell

Output Always Enabled

RA10-6

External Pin

Combination of Programmable and Hardwired

RA10-7

RA10-9

Figure 2. Four Possible Output Enable Alternatives for the PLDC20RA10

Combinatorial/Active LOW

RA10-11

Combinatorial/Active HIGH

RA10-13

Registered/Active HIGH

Figure 3. Four Possible Macrocell Configurations for the PLDC20RA10

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V
DC Input Voltage . -3.0 V to +7.0 V
Output Current into Outputs (LOW) 16 mA
Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions			Min.	Max.	Unit
VOH	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	Com'l	2.4	-	V
			$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	Mil/Ind			
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.5	V
V_{IH}	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs ${ }^{[4]}$			2.0		V
V_{IL}	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{[4]}$				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max			-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			-40	+40	$\mu \mathrm{A}$
ISC	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[6]}$			-30	-90	mA
$\mathrm{I}_{\mathrm{CCl}}$	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=$ GND Outputs Open		Com'l		75	mA
				Mil/Ind		80	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current at Frequency ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., Outputs Disabled (In High Z State) Device Operating af $\mathrm{f}_{\mathrm{MAX}}$		Com'l		80	mA
				Mil/Ind		85	mA

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
C IN	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$	10	pF

Notes:

2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.

Latch-Up Current
$>200 \mathrm{~mA}$
DC Program Voltage
13.0 V

Operating Range

Range	Ambient Temperature	\mathbf{V}_{CC}
Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

5. Tested initially and after any design or process changes that may affect these parameters.
6. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

Switching Characteristics Over the Operating Range ${ }^{[3,7,8]}$

Parameter	Description	Commercial				Military/Industrial						Unit
		-15		-20		-20		-25		-35		
		Min.	Max.									
$\mathrm{t}_{\text {PD }}$	Input or Feedback to Non-Registered Output		15		20		20		25		35	ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable		15		20		20		30		35	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable		15		20		20		30		35	ns
${ }^{\text {t }}$ PZX	Pin 13 to Output Enable		12		15		15		20		25	ns
${ }^{\text {t }}$ PXZ	Pin 13 to Output Disable		12		15		15		20		25	ns
${ }^{\text {t }} \mathrm{CO}$	Clock to Output		15		20		20		25		35	ns
t_{SU}	Input or Feedback Set-Up Time	7		10		10		15		20		ns
t_{H}	Hold Time	3		5		3		5		5		ns
t_{P}	$\begin{aligned} & \text { Clock Period } \\ & \left(\mathrm{t}_{\mathrm{su}}+\mathrm{t}_{\mathrm{CO}}\right) \end{aligned}$	22		30		30		40		55		ns
${ }^{\text {W }}$ W	Clock Width HIGH ${ }^{[5]}$	10		13		12		18		25		ns
t_{WL}	Clock Width LOW ${ }^{[5]}$	10		13		12		18		25		ns
$\mathrm{f}_{\text {MAX }}$	$\begin{aligned} & \text { Maximum Frequency } \\ & \left(1 / t_{\mathrm{P}}\right)^{[5]} \end{aligned}$	45.5		33.3		33.3		25.0		18.1		MHz
t_{S}	Input of Asynchronous Set to Registered Output		15		20		20		25		40	ns
t_{R}	Input of Asynchronous Reset to Registered Output		15		20		20		25		40	ns
${ }^{\text {t }}$ ARW	Asynchronous Reset Width ${ }^{[5]}$	15		20		20		25		25		ns
$\mathrm{t}_{\text {ASW }}$	$\begin{aligned} & \text { Asynchronous Set } \\ & \text { Width }{ }^{[5]} \end{aligned}$	15		20		20		25		25		ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Set/ Reset Recovery Time	10		12		12		15		20		ns
t_{WP}	Preload Pulse Width	15		15		15		15		15		ns
$\mathrm{t}_{\text {SUP }}$	Preload Set-Up Time	15		15		15		15		15		ns
t_{HP}	Preload Hold Time	15		15		15		15		15		ns

Notes:

7. Part (a) of AC Test Loads was used for all parameters except $t_{E A}, t_{E R}$, $\mathrm{t}_{\mathrm{PZX}}$ and $\mathrm{t}_{\mathrm{PXZ}}$, which use part (b).
8. The parameters $t_{E R}$ and $t_{P X Z}$ are measured as the delay from the input disable logic threshold transition to $\mathrm{V}_{\mathrm{OH}}-0.5 \mathrm{~V}$ for an enabled

HIGH output or $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$ for an enabled LOW output. Please see part (c) of AC Test Loads and Waveforms for waveforms and measurement reference levels.

AC Test Loads and Waveforms (Commercial)

Parameter	V_{th}	Output Waveform-Measurement Level		
$\mathrm{t}_{\mathrm{PXZ}}(-)$	1.5 V	$\mathrm{~V}_{\mathrm{OH}}$		
$\mathrm{t}_{\mathrm{PXZ}}(+)$	2.5 V	$\mathrm{~V}_{\mathrm{OL}}$	V_{X}	V_{X}

(c)

Switching Waveform

Preload Switching Waveform

Asynchronous Reset

ASYNCHRONOUS
RESET
OUTPUT

Asynchronous Set

PLDC20RA10

Functional Logic Diagram

SEMICONDUCTOR
Ordering Information

$\mathrm{I}_{\text {CC2 }}$	$\begin{aligned} & \overline{\text { tpp }} \\ & (\mathbf{n s}) \end{aligned}$	$\begin{aligned} & \underline{\mathbf{t s u}_{(\mathrm{ns})}} \end{aligned}$	$\begin{aligned} & \hline \text { tco } \\ & \text { (ns) } \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
80	15	7	15	PLDC20RA10-15HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
				PLDC20RA10-15JC	J64	28-Lead Plastic Leaded Chip Carrier	
				PLDC20RA10-15PC	P13	24-Lead (300-Mil) Molded DIP	
				PLDC20RA10-15WC	W14	24-Lead (300-Mil) Windowed CerDIP	
				CG7C324-A15HC	H64	28-Pin Windowed Leaded Chip Carrier	
				CG7C324-A15JC	J64	28-Lead Plastic Leaded Chip Carrier	
80	20	10	20	PLDC20RA10-20HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
				PLDC20RA10-20JC	J64	28-Lead Plastic Leaded Chip Carrier	
				PLDC20RA10-20PC	P13	24-Lead (300-Mil) Molded DIP	
				PLDC20RA10-20WC	W14	24-Lead (300-Mil) Windowed CerDIP	
				CG7C324-A20HC	H64	28-Pin Windowed Leaded Chip Carrier	
				CG7C324-A20JC	J64	28-Lead Plastic Leaded Chip Carrier	
85	20	10	20	PLDC20RA10-20DI	D14	24-Lead (300-Mil) CerDIP	Industrial
				PLDC20RA10-20JI	J64	28-Lead Plastic Leaded Chip Carrier	
				PLDC20RA10-20PI	P13	24-Lead (300-Mil) Molded DIP	
				PLDC20RA10-20WI	W14	24-Lead (300-Mil) Windowed CerDIP	
				PLDC20RA10-20DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PLDC20RA10-20HMB	H64	28-Pin Windowed Leaded Chip Carrier	
				PLDC20RA10-20LMB	L64	28-Square Leadless Chip Carrier	
				PLDC20RA10-2QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
				PLDC20RA10-20WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
85	25	15	25	PLDC20RA10-25DI	D14	24-Lead (300-Mil) CerDIP	Industrial
				PLDC20RA10-25JI	J64	28-Lead Plastic Leaded Chip Carrier	
				PLDC20RA10-25PI	P13	24-Lead (300-Mil) Molded DIP	
				PLDC20RA10-25WI	W14	24-Lead (300-Mil) Windowed CerDIP	
				PLDC20RA10-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PLDC20RA10-25HMB	H64	28-Pin Windowed Leaded Chip Carrier	
				PLDC20RA10-25LMB	L64	28-Square Leadless Chip Carrier	
				PLDC20RA10-25QMB	Q64	28-Pin Windowed Leadiess Chip Carrier	
				PLDC20RA10-25WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
85	35	20	35	PLDC20RA10-35DI	D14	24-Lead (300-Mil) CerDIP	Industrial
				PLDC20RA10-3JI	J64	28-Lead Plastic Leaded Chip Carrier	
				PLDC20RA10-35PI	P13	24-Lead (300-Mil) Molded DIP	
				PLDC20RA10-35WI	W14	24-Lead (300-Mil) Windowed CerDIP	
				PLDC20RA10-35DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PLDC20RA10-35HMB	H64	28-Pin Windowed Leaded Chip Carrier	
				PLDC20RA10-35LMB	L64	28-Square Leadless Chip Carrier	
				PLDC20RA10-35QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
				PLDC20RA10-35WMB	W14	24-Lead (300-Mil) Windowed CerDIP	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{PD}	$9,10,11$
$\mathrm{t}_{\mathrm{PZX}}$	$9,10,11$
t_{CO}	$9,10,11$
t_{SU}	$9,10,11$
t_{H}	$9,10,11$

Document \#: 38-00073-E

Features

- Advanced second-generation PAL architecture
- Low power
-55 mA max. "L"
- 90 mA max. standard
-120 mA max. military
- CMOS EPROM technology for reprogrammability
- Variable product terms
- $2 \times(8$ through 16) product terms
- User-programmable macrocell
- Output polarity control
- Individually selectable for registered or combinatorial operation
- $20,25,35 \mathrm{~ns}$ commercial and industrial
- $25,30,40 \mathrm{~ns}$ military
- Up to 22 input terms and 10 outputs
- High reliability
-Proven EPROM technology
- $\mathbf{1 0 0 \%}$ programming and functional testing
- Windowed DIP, windowed LCC, DIP, LCC, and PLCC available

Functional Description

The Cypress PALC22V10 is a CMOS se-cond-generation programmable logic array device. It is implemented with the familiar sum-of-products (AND-OR) logic structure and a new concept, the "programmable macrocell."
The PALC22V10 is available in 24 -pin $300-\mathrm{mil}$ molded DIPs, $300-\mathrm{mil}$ windowed cerDIPs, 28-lead square ceramic leadless chip carriers, 28 -lead square plastic leaded chip carriers, and provides up to 22 inputs
and 10 outputs. When the windowed cerDIP is exposed to UV light, the 22 V 10 is erased and can then be reprogrammed. The programmable macrocell provides the capability of defining the architecture of each output individually. Each of the 10 potential outputs may be specified as registered or combinatorial. Polarity of each output may also be individually selected, allowing complete flexibility of output configuration. Further configurability is provided through array-configurable output enable for each potential output. This feature allows the 10 outputs to be reconfigured as inputs on an individual basis, or alternately used as a combination I / O controlled by the programmable array.

Logic Block Diagram (PDIP/CDIP)

[^39]
Functional Description (continued)

PALC22V10 features a variable product term architecture. There are five pairs of product terms beginning at 8 product terms per output and incrementing by 2 to 16 product terms per output. By providing this variable structure, the PALC22V10 is optimized to the configurations found in a majority of applications without creating devices that burden the product term structures with unusable product terms and lower performance.
Additional features of the Cypress PALC22V10 include a synchronous preset and an asynchronous reset product term. These product terms are common to all macrocells, eliminating the need to dedicatestandardproductterms for initializationfunction. Thedevice automatically resets on power-up.
For testing of programmed functions, a preload feature allows any or all of the registers to be loaded with an initial value for testing. This is accomplished by raising pin 8 to a supervoltage $V_{P P}$, which puts the output drivers in a high-impedance state. The data to be loaded is then placed on the I/O pins of the device and is loaded into the registers on the positive edge of the clock on pin 1 . A 0 on the I/Opin preloads the register with a 0 , and a 1 preloads the register with a 1 . The actual signal on the output pin will be the inversion of the input data. The data on the I/O pins is then removed and pin 8 is returned to a normal TTL voltage. Again, care should be exercised to power sequence the device properly.
The PALC22V10 featuring programmable macrocells and variable product terms provides a device with the flexibility to implement logic functions in the 500 to 800 gate array complexity. Since each of the 10 output pins may be individually configured as inputs on a temporary or permanent basis, functions requiring up to 21 inputs and only a single output and down to 12 inputs and 10 outputs are possible. The 10 potential outputs are enabled using product terms. Any output pin may be permanently se-
lected as an output or arbitrarily enabled as an output and an input through the selective use of individual product terms associated with each output. Each of these outputs is achieved through an individual programmable macrocell. These macrocells are programmable to provide a combinatorial or registered inverting or non-inverting output. In a registered mode of operation, the output of the register is fed back into the array, providing current status information to the array. This information is available for establishing the next result in applications such as control state machines. In a combinatorial configuration, the combinatorial output or, if the output is disabled, the signal present on the I/O pin is made available to the array. The flexibility provided by both programmable macrocell product term control of the outputs and variable product terms allows a significant gain in functional density through the use of a programmable logic.

Along with this increase in functional density, the Cypress PALC22V10 provides lower-power operation through the use of CMOS technology and increased testability with a register preload feature. Preload facilitates testing programmed devices by loading initial values into the registers.

Configuration Table

Registered/Combinatorial		
$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	Configuration
0	0	Registered/Active LOW
0	1	Registered/Active HIGH
1	0	Combinatorial/Active LOW
1	1	Combinatorial/Active HIGH

Macrocell

SEMICONDUCTOR
Selection Guide

Generic Part Number	$\mathbf{I}_{\mathbf{C C 1}}$ (mA)			t $_{\text {PD }}$ (ns)		ts $_{\mathbf{S}}$ (ns)		t $_{\mathbf{C O}}$ (ns)	
		Com/Ind	Mil	Com/Ind	Mil	Com/Ind	Mil	Com/Ind	Mil
$22 \mathrm{~V} 10-25$	55	90		20		12		12	
$22 \mathrm{~V} 10-30$			100	25	25	15	18	15	15

Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)

DC Programming Voltage . 14.0V
Latch-Up Current $>200 \mathrm{~mA}$
Static Discharge Voltage . $>500 \mathrm{~V}$
(per MIL-STD-883, Method 8015)
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[3]}$

Parameter	Description	Test Conditions	Min.	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	pF

Notes:

1. t_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Tested initially and after any design or process changes that may affect these parameters.
4. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
5. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

Commercial and Industrial Switching Characteristics PALC22V10 ${ }^{[2,6]}$

Parameter	Description	-20		-25		Unit
		Min.	Max.	Min.	Max.	
t_{PD}	Input to Output Propagation Delay ${ }^{[7]}$		20		25	ns
t_{EA}	Input to Output Enable Delay		20		25	ns
t_{ER}	Input to Output Disable Delay ${ }^{[8]}$		20		25	ns
t_{CO}	Clock to Output Delay ${ }^{[9]}$		12		15	ns
t_{S}	Input or Feedback Set-Up Time	12		15		ns
t_{H}	Input Hold Time	0		0		ns
t_{P}	External Clock Period ($\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}$)	24		30		ns
$\mathrm{t}_{\text {WH }}$	Clock Width HIGH ${ }^{[3]}$	10		12		ns
t_{WL}	Clock Width LOW ${ }^{[3]}$	10		12		ns
$\mathrm{f}_{\text {MAX } 1}$	External Maximum Frequency ($\left.1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[10]}$	41.6		33.3		MHz
$\mathrm{f}_{\text {MAX2 }}$	Data Path Maximum Frequency $\left(1 /\left(t_{W H}+t_{W L}\right)\right)^{[3,11]}$	50.0		41.6		MHz
$\mathrm{f}_{\text {MAX }}$	Internal Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CF}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[12]}$	45.4		35.7		MHz
t_{CF}	Register Clock to Feedback Input ${ }^{[13]}$		10		13	ns
$\mathrm{t}_{\text {AW }}$	Asynchronous Reset Width	20		25		ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset Recovery Time	20		25		ns
t_{AP}	Asynchronous Reset to Registered Output Delay		25		25	ns
${ }_{\text {t }}$ SPR	Synchronous Preset Recovery Time	20		25		ns
$\mathrm{t}_{\text {PR }}$	Power-Up Reset Time ${ }^{[14]}$	1.0		1.0		$\mu \mathrm{s}$

Notes:
6. Part (a) of AC Test Loads and Waveforms used for all parameters except $t_{E A}, t_{E R}, t_{P Z X}$, and $t_{P X Z}$. Part (b) of AC Test Loads and Waveforms used for $t_{E A}, t_{E R}, t_{P Z X}$, and $t_{P X Z}$.
7. This specification is guaranteed for all device outputs changing state in a given access cycle. See part (d) of AC Test Loads and Waveforms for the minimum guaranteed negative correction which may be subtracted from $t_{P D}$ for cases in which fewer outputs are changing state per access cycle.
8. This parameter is specified as the time after output disable input during which the previous output data state remains stable on the output. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 V below $\mathrm{VOH}_{\mathrm{OH}} \mathrm{min}$. or a previous LOW level has risen to 0.5 V above V_{OL} max. Please see part (e) of AC Test Loads and Waveforms for enable and disable test waveforms and measurement reference levels.
9. This specification is guaranteed for all device outputs changing state in a given access cycle. See part (d) of AC Test Loads and Waveforms for the minimum guaranteed negative correction that may be subtracted from $t_{C O}$ for cases in which fewer outputs are changing state per access cycle.
10. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
11. This specification indicates the guaranteed maximum frequency at which an individual output register can be cycled.
12. This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feedback can operate. This parameter is tested periodically by sampling production product.
13. This parameter is calculated from the clock period at $f_{\text {MAX }}$ internal ($1 / \mathrm{f}_{\text {MAX3 }}$) as measured (see Note 12 above) minus ts.
14. The registers in the PALC22V10 have been designed with the capability to reset during system power-up. Following power-up, all registers will be reset to a logic LOW state. The output state will depend on the polarity of the output buffer. This feature is useful in establishing state machine initialization. To insure proper operation, the rise in $V_{C C}$ must be monotonic and the timing constraints depicted in Power-Up Reset Waveform must be satisfied.

Military Switching Characteristics PALC22V10 ${ }^{[2,6]}$

Parameter	Description	-25		-30		Unit
		Min.	Max.	Min.	Max.	
t_{PD}	Input to Output Propagation Delay ${ }^{[7]}$		25		30	ns
t_{EA}	Input to Output Enable Delay		25		25	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable Delay ${ }^{[8]}$		25		25	ns
${ }^{\text {t }}$ CO	Clock to Output Delay ${ }^{[9]}$		15		20	ns
t_{S}	Input or Feedback Set-Up Time	18		20		ns
t_{H}	Input Hold Time	0		0		ns
t_{P}	External Clock Period ($\mathrm{t}_{\text {cO }}+\mathrm{ts}_{\text {s }}$)	33		40		ns
$\mathrm{t}_{\text {WH }}$	Clock Width HIGH ${ }^{[3]}$	14		16		ns
$\mathrm{t}_{\text {WL }}$	Clock Width LOW ${ }^{[3]}$	14		16		ns
$\mathrm{f}_{\text {MAX1 }}$	External Maximum Frequency ($\left.1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[10]}$	30.3		25.0		MHz
$\mathrm{f}_{\text {MAX2 }}$	Data Path Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)\right)^{[3,11]}$	35.7		31.2		MHz
$\mathrm{f}_{\text {MAX }}$	Internal Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CF}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[12]}$	32.2		28.5		MHz
t_{CF}	Register Clock to Feedback Input ${ }^{[13]}$		13		15	ns
$\mathrm{t}_{\text {AW }}$	Asynchronous Reset Width	25		30		ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset Recovery Time	25		30		ns
t_{AP}	Asynchronous Reset to Registered Output Delay		25		30	ns
$\mathrm{t}_{\text {SPR }}$	Synchronous Preset Recovery Time	25		30		ns
$\mathrm{t}_{\text {PR }}$	Power-Up Reset Time ${ }^{[14]}$	1.0		1.0		$\mu \mathrm{s}$

AC Test Loads and Waveforms

PALC22V10
AC Test Loads and Waveforms (continued)

(d)

Parameter	$\mathbf{V}_{\mathbf{X}}$	Output Waveform-Measurement Level
$t_{\text {ER (}}(-)$	1.5 V	
$\mathrm{t}_{\mathrm{ER}}(+)$	2.6 V	
$\mathrm{t}_{\mathrm{EA}}(+)$	$\mathrm{V}_{\text {thc }}$	
$t_{\text {EA }}(-)$	$\mathrm{V}_{\text {thc }}$	

(e) Test Waveforms

Switching Waveform

Power-Up Reset Waveform ${ }^{[14,15]}$

Note:
15. The clock signal input must be in a valid LOW state ($\mathrm{V}_{\text {IN }}$ less than 0.8 V) or a valid HIGH state (V_{IN} greater than 2.4 V) prior to occurrence of the 10% level on the monotonically rising power supply voltage as shown in Power-Up Reset Waveform. In addition, the clock input signai must remain stabie in that valid state as indicated until the
90% level on the power supply voltage has been reached. The clocksignal may transition LOW to HIGH to clock in new data or to execute a synchronous preset after the indicated delay $\left(\mathrm{t}_{\mathrm{PR}}+\mathrm{t}_{\mathrm{S}}\right)$ has been observed.

Functional Logic Diagram for PALC22V10

PALC22V10

Typical DC and AC Characteristics

NORMALIZED SET-UP TIME vs. TEMPERATURE

NORMALIZED CLOCK-TO-OUTPUT TIME vs. SUPPLY VOLTAGE

NORMALIZED CLOCK-TOOUTPUT TIME vs. TEMPERATURE

PALC22V10
Typical DC and AC Characteristics (continued)

Ordering Information 22 V 10

$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & (\mathbf{m A}) \end{aligned}$	$\begin{aligned} & \mathbf{t}_{\text {PD }} \\ & (\mathbf{n s}) \end{aligned}$	$\underset{\left(\mathbf{n s}_{\mathbf{S}}\right)}{\mathbf{t}_{\mathbf{s}}}$	$\begin{aligned} & \mathbf{t}_{\mathrm{CO}} \\ & (\mathrm{~ns}) \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
90	20	12	12	PALC22V10-20HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial/ Industrial
				PALC22V10-20JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
				PALC22V10-20PC/PI	P13	24-Lead (300-Mil) Molded DIP	
				PALC22V10-20WC/WI	W14	24-Lead (300-Mil) Windowed CerDIP	
55	25	15	15	PALC22V10L-25HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
				PALC22V10L-25JC	J64	28-Lead Plastic Leaded Chip Carrier	
				PALC22V10L-25PC	P13	24-Lead (300-Mil) Molded DIP	
				PALC22V10L-25WC	W14	24-Lead (300-Mil) Windowed CerDIP	
90	25	15	15	PALC22V10-25HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial/ Industrial
				PALC22V10-25JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
				PALC22V10-25PC/PI	P13	24-Lead (300-Mil) Molded DIP	
				PALC22V10-25WC/WI	W14	24-Lead (300-Mil) Windowed CerDIP	
100	25	18	15	PALC22V10-25DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALC22V10-25KMB	K73	24-Lead Rectangular Cerpack	
				PALC22V10-25LMB	L64	28-Square Leadless Chip Carrier	
				PALC22V10-25QMB	Q64	24-Pin Windowed Leadless Chip Carrier	
				PALC22V10-25WMB	W14	24-Lead (300-Mil) Windowed CerDIP	

Ordering Information 22V10 (continued)

$\underset{(\mathbf{m A})}{\mathbf{I}_{\text {CC }}}$	$\begin{aligned} & \mathbf{t}_{\mathbf{P D}} \\ & (\mathbf{n s}) \end{aligned}$	$\underset{(\mathbf{n s})}{\mathbf{t}_{\mathbf{S}}}$	$\begin{aligned} & \mathbf{t}_{\mathbf{t O}} \\ & (\mathbf{n s}) \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
100	30	20	20	PALC22V10-30DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALC22V10-30KMB	K73	24-Lead Rectangular Cerpack	
				PALC22V10-30LMB	L64	28-Square Leadless Chip Carrier	
				PALC22V10-30QMB	Q64	24-Pin Windowed Leadless Chip Carrier	
				PALC22V10-30WMB	W14	24-Lead (300-Mil) Windowed CerDIP	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{PD}	$9,10,11$
t_{CO}	$9,10,11$
t_{S}	$9,10,11$
t_{H}	$9,10,11$

Document \#: 38-00020-G

Functional Description

The Cypress PALC22V10B is a CMOS se-cond-generation programmable logic array device. It is implemented with the familiar sum-of-products (AND-OR) logic structure and a new concept, the "Programmable Macrocell."
The PALC22V10B is executed in a 24 -pin 300-mil molded DIP, a $300-\mathrm{mil}$ windowed cerDIP, a 28 -lead square ceramic leadless chip carrier, a 28 -lead square plastic leaded chip carrier, and provides up to 22 inputs and 10 outputs. When the windowed cerDIP is exposed to UV light, the 22 V 10 B is erased and can then be reprogrammed. The programmable macrocell provides the capability of defining the architecture of each output individually. Each of the 10 potential outputs may be specified as "registered" or "combinatorial." Polarity of each output may also be

Logic Block Diagram (PDIP/CDIP)

Pin Configurations

PAL is a registered trademark of Monolithic Memories Inc.

Functional Description (continued)

individually selected, allowing complete flexibility of output configuration. Further configurability is provided through "array" configurable "output enable" for each potential output. This feature allows the 10 outputs to be reconfigured as inputs on an individual basis, or alternately used as a combination I/O controlled by the programmable array.
PALC22V10B features a "variable product term" architecture. There are 5 pairs of product terms beginning at 8 product terms per output and incrementing by 2 to 16 product terms per output. By providing this variable structure, the PALC22V10B is optimized to the configurations found in a majority of applications without creating devices that burden the product term structures with unusable product terms and lower performance.
Additional features of the Cypress PALC22V10B include a synchronous preset and an asynchronous reset product term. These product terms are common to all macrocells, eliminating the need to dedicate standard product terms for initialization function. The device automatically resets upon power-up.
For testing of programmed functions, a preload feature allows any or all of the registers to be loaded with an initial value for testing. This is accomplished by raising pin 8 to a supervoltage $V_{P P}$, which puts the output drivers in a high-impedance state. The data to be loaded is then placed on the I/O pins of the device and is loaded into the registers on the positive edge of the clock on pin 1.A 0 on the I / O pin preloads the register with a 0 and a 1 preloads the register with a 1. The actual signal on the output pin will be the inversion of the input data. The data on the I/O pins is then removed, and pin 8 returned to a normal TTL voltage. Care should be exercised to power sequence the device properly.
The PALC22V10B featuring programmable macrocells and variable product terms provides a device with the flexibility to implement logic functions in the 500 to 800 gate array complexity. Since each of the 10 output pins may be individually configured as inputs on a temporary or permanent basis, functions requiring up to 21 inputs and only a single output and down to 12 inputs and 10 outputs are possible. The 10 potential outputs are enabled using product terms. Any output pin may be permanently selected as an out-
put or arbitrarily enabled as an output and an input through the selective use of individual product terms associated with each output. Each of these outputs is achieved through an individual programmable macrocell. These macrocells are programmable to provide a combinatorial or registered inverting or non-inverting output. In a registered mode of operation, the output of the register is fed back into the array, providing current status information to the array. This information is available for establishing the next result in applications such as control-state-machines. In a combinatorial configuration, the combinatorial output or, if the output is disabled, the signal present on the I/O pin is made available to the array. The flexibility provided by both programmable macrocell product term control of the outputs and variable product terms allows a significant gain in functional density through the use of a programmable logic.
Along with this increase in functional density, the Cypress PALC22V10B provides lower-power operation through the use of CMOS technology, increased testability with a register preload feature, and guaranteed AC performance through the use of a phantom array. This phantom array $\left(\mathrm{P}_{0}-\mathrm{P}_{3}\right)$ and the "top test" and "bottom test" features allow the 22V10B to be programmed with a test pattern and tested prior to shipment for full AC specifications without using any of the functionality of the device specified for the product application. In addition, this same phantom array may be used to test the PALC22V10B at incoming inspection before committing the device to a specific function through programming. Preload facilitates testing programmed devices by loading initial values into the registers.

Configuration Table 2

Registered/Combinatorial		
$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	Configuration
0	0	Registered/Active LOW
0	1	Registered/Active HIGH
1	0	Combinatorial/Active LOW
1	1	Combinatorial/Active HIGH

Macrocell

Selection Guide

Generic Part Number	I CC1 mA 2		tpD ns		ts ns		tCo ns	
	Com/Ind	Mil	Com/Ind	Mil	Com/Ind	Mil	Com/Ind	Mil
22 V10B-15	90	100	15	15	10	10	10	10
22 V10B -20	-	100	-	20	-	17	-	15

Maximum Rating

(Above which the useful life may be impaired. For user guidelines, not tested.)	DC Programming Voltage . 13.0V Latch-Up Current $>200 \mathrm{~mA}$		
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Static Discharge Voltage (per MIL-STD 883 Method 3015) >2001V		
Ambient Temperature with Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Operating Range		
Supply Voltage to Ground Potential (Pin 24 to Pin 12) -0.5 V to +7.0 V DC Voltage Applied to Outputs	Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
in High Z State . -0.5 V to +7.0 V	Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
DC Input Voltage -3.0 V to +7.0 V	Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Output Current into Outputs (Low) 16 mA	Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

UV Exposure 7258 Wsec/cm ${ }^{2}$
Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions			Min.	Max.	Units
$\mathrm{V}_{\mathrm{OH} 1}$	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	Com'1/Ind	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	Mil			
$\mathrm{V}_{\mathrm{OH} 2}$	HIGH Level CMOS Output Voltage ${ }^{[3]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}- \\ & 1.0 \mathrm{~V} \end{aligned}$		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} . \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$	Com'1/Ind		0.5	V
			$\mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$	Mil			
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed Input Logical HIGH Voltage for All Inputs ${ }^{[4]}$			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{[4]}$				0.8	V
IIX	Input Leakage Current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.			-10	10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			-40	40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SC }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[3,5]}$			-30	-90	mA
$\mathrm{I}_{\mathrm{CC} 1}$	Standby Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=$ GND Outputs Open for Unprogrammed Device		Com'1/Ind		90	mA
				Mil		100	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Operating Power Supply Current	$\mathrm{f}_{\text {toggle }}=\mathrm{F}_{\mathrm{MAX}}{ }^{[3]}$ Device Programmedwith Worst Case Pattern, Outputs Three-Stated		Com'1/Ind		90	mA
				Mil		100	mA

Notes:

1. t_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Tested initially and after any design or process changes that may affect these parameters.
4. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
5. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

Capacitance ${ }^{[3]}$

Parameters	Description	Typical	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	11		pF
COUT	Output Capacitance	9		pF

Switching Characteristics PALC22V10 ${ }^{[2,6]}$

Parameters	Description	Commercial \& Industrial $B-15$		$\begin{gathered} \hline \text { Military } \\ \hline \text { B-15 } \end{gathered}$		$\begin{gathered} \text { Military } \\ \hline \text { B-20 } \end{gathered}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {PD }}$	Input to Output Propagation Delay ${ }^{[7]}$		15		15		20	ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable Delay		15		15		20	ns
t_{ER}	Input to Output Disable Delay ${ }^{[8]}$		15		15		20	ns
t_{CO}	Clock to Output Delay ${ }^{[9]}$		10		10		15	ns
t_{5}	Input or Feedback Set-Up Time	10		10		17		ns
t_{H}	Input Hold Time	0		0		0		ns
t_{P}	External Clock Period ($\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}$)	20		20		32		ns
t_{WH}	Clock Width HIGH ${ }^{[3]}$	6		6		12		ns
t_{WL}	Clock Width LOW ${ }^{[3]}$	6		6		12		ns
$\mathrm{f}_{\text {MAX1 }}$	External Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[10]}$	50.0		50		31.2		MHz
$\mathrm{f}_{\mathrm{MAX} 2}$	Data Path Maximum Frequency $\left(1 /\left(t_{W H}+t_{W L}\right)\right)^{[3,11]}$	83.3		83.3		41.6		MHz
$\mathrm{f}_{\mathrm{MAX} 3}$	Internal Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CF}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[12]}$	80.0		80		33.3		MHz
t_{CF}	Register Clock to Feedback Input ${ }^{[13]}$		2.5		2.5		13	ns
t_{AW}	Asynchronous Reset Width	15		15		20		ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset Recovery Time	10		12		20		ns
t_{AP}	Asynchronous Reset to Registered Output Delay		20		20		25	ns
$\mathrm{t}_{\text {SPR }}$	Synchronous Preset Recovery Time	10		20		20		ns
t_{PR}	Power-Up Reset Time ${ }^{[14]}$	1.0		1.0		1.0		$\mu \mathrm{s}$

Notes:
6. Part (a) of AC Test Loads and Waveforms used for all parameters except $t_{E A}, t_{E R}, t_{P Z X}$, and $t_{P X Z}$. Part (b) of AC Test Loads and Waveforms used for $t_{E A}, t_{E R}, t_{P Z X}$ and $t_{P X Z}$.
7. This specification is guaranteed for all device outputs changing state in a given access cycle. See part (d) of AC Test Loads and Waveforms for the minimum guaranteed negative correction which may be subtracted from $t_{P D}$ for cases in which fewer outputs are changing state per access cycle.
8. This parameter is measured as the time after output disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below $\mathrm{V}_{\mathrm{OH}} \mathrm{min}$. or a previous LOW level has risen to 0.5 volts above V_{OL} max. Please see part (e) of AC Test Loads and Waveforms for enable and disable test waveforms and measurement reference levels.
9. This specification is guaranteed for all device outputs changing state in a given access cycle. See part (d) of ACTest Loads and Waveforms for the minimum guaranteed negative correction which maybe subtracted from $t_{C O}$ for cases in which fewer outputs are changing state per access cycle.
10. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
11. This specification indicates the guaranteed maximum frequency at which an individual output register can be cycled.
12. This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feedback can operate. This parameter is tested periodically by sampling production product.
13. This parameter is calculated from the clock period at $f_{\text {MAX }}$ internal (1/f MAX3) as measured (see Note 12 above) minus ts.
14. The registers in the PALC22V10B has been designed with the capability to reset during system power-up. Following power-up, all registers will be reset to a logic LOW state. The output state will depend on the polarity of the output buffer. This feature is useful in establishing state machine initialization. To insure proper operation, the rise in V_{CC} must be monotonic and the timing constraints depicted in Power-Up Reset Waveform must be satisfied.

AC Test Loads and Waveforms (Commercial)

Equivalent to: THEVENIN EQUIVALENT (Commercial)

$$
\text { OUTPUT O- } \underbrace{99 \Omega} \quad 2.08 \mathrm{~V}=V_{\text {thc }}^{\text {V10B-11 }}
$$

Equivalent to: THEVENIN EQUIVALENT (Military)
OUTPUT O——~~~~~

(d)

Parameter	$\mathbf{V}_{\mathbf{X}}$	Output Waveform-Measurement Level	
$\mathrm{t}_{\mathrm{ER}}(-)$	1.5 V		V10B-5
$\mathrm{t}_{\text {ER (}}(+)$	2.6 V	$\mathrm{V}_{\mathrm{OL}} \xrightarrow{0.5 \mathrm{~V} \frac{\downarrow}{4} / \mathrm{F}} \mathrm{~V}_{\mathrm{X}}$	V10B-6
${ }^{\text {teA }}$ (+)	$\mathrm{V}_{\text {thc }}$	$\mathrm{V}_{\mathrm{X}} \xrightarrow{0.5 \mathrm{~V} \stackrel{\downarrow}{4} / \mathrm{F}} \mathrm{~V}_{\mathrm{OH}}$	V108-7
teA (-)	$\mathrm{V}_{\text {thc }}$		V10B-8

(e) Test Waveforms

Switching Waveform

PALC22V10B

Power-Up Reset Waveform ${ }^{[14]}$

Functional Logic Diagram for PALC22V10B

Typical DC and AC Characteristics

PALC22V10B

Typical DC and AC Characteristics (continued)

Erasure Characteristics

Wavelengths of light less than 4000 Angstroms begin to erase the PALC22V10B. For this reason, an opaque label should be placed over the window if the device is exposed to sunlight or fluorescent lighting for extended periods of time. In addition, high ambient light levels can create hole-electron pairs that may cause "blank" check failures or "verify errors" when programming windowed parts. This phenomenon can be avoided by use of an opaque label over the window during programming in high ambient light environments.

The recommended dose for erasure is ultraviolet light with a wavelength of 2537 Angstroms for a minimum dose (UV intensity multiplied by exposure time) of $25 \mathrm{Wsec} / \mathrm{cm}^{2}$. For an ultraviolet lamp with a $12 \mathrm{~mW} / \mathrm{cm}^{2}$ power rating, the exposure would be approximately 35 minutes. The PALC22V10B needs to be placed within 1 inch of the lamp during erasure. Permanent damage may result if the device is exposed to high-intensity UV light for an extended period of time. $7258 \mathrm{Wsec} / \mathrm{cm}^{2}$ is the recommended maximum dosage.

Ordering Information

$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathbf{m A}) \end{gathered}$	$\begin{aligned} & \mathbf{t} \mathbf{P D} \\ & (\mathbf{n S}) \end{aligned}$	$\underset{(\mathbf{n s})}{\mathbf{t s}_{\mathbf{S}}}$	$\begin{aligned} & \mathrm{t} \mathbf{\mathrm { tcO }} \\ & \text { (ns) } \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
90	15	10	10	PALC22V10B-15PC/PI	P13	24-Lead (300-Mil) Molded DIP	Commercial/ Industrial
				PALC22V10B-15WC/WI	W14	24-Lead (300-Mil) Windowed CerDIP	
				PALC22V10B-15JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
				PALC22V10B-15HC	H64	28-Pin Windowed Leaded Chip Carrier	
100	15	10	10	PALC22V10B-15DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALC22V10B-15WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
				PALC22V10B-15HMB	H64	28-Pin Windowed Leaded Chip Carrier	
				PALC22V10B-15LMB	L64	28-Square Leadless Chip Carrier	
				PALC22V10B-15QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
				PALC22V10B-15KMB	K73	24-Lead Rectangular Cerpack	
100	20	17	15	PALC22V10B-20DMB	D14	24-Lead (300-Mil) CerDIP	Military
				PALC22V10B-20WMB	W14	24-Lead (300-Mil) Windowed CerDIP	
				PALC22V10B-20HMB	H64	28-Pin Windowed Leaded Chip Carrier	
				PALC22V10B-20LMB	L64	28-Square Leadless Chip Carrier	
				PALC22V10B-20QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
				PALC22V10B-20KMB	K73	24-Lead Rectangular Cerpack	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{PD}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{S}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$

Document \#: 38-00195

Features

- Ultra high speed supports today's and tomorrow's fastest microprocessors
$-\mathbf{t}_{\mathbf{P D}}=6 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{SU}}=3 \mathrm{~ns}$
$-\mathbf{f}_{\mathrm{MAX}}=117 \mathrm{MHz}$
- Reduced ground bounce and undershoot
- PLCC and LCC packages with additional $V_{C C}$ and $V_{S S}$ pins for lowest ground bounce
- Up to 22 inputs and 10 outputs for more logic power
- Variable product terms
-8 to 16 per output
- 10 user-programmable output macrocells
- Output polarity control
- Registered or combinatorial operation
- 2 new feedback paths (PAL22VP10C)
- Synchronous PRESET, asynchronous RESET, and PRELOAD capability for flexible design and testability
- High reliability
— Proven Ti-W fuse technology
- AC and DC tested at the factory

- Security Fuse

Functional Description

The Cypress PAL22V10C and PAL22VP10C are second-generation programmable array logic devices. Using BiCMOS
process and Ti-W fuses, the PAL22V10C and PAL22VP10C use the familiar sum-of-products (AND-OR) logic structure and a new concept, the programmable macrocell.
Both the PAL22V10C and PAL22VP10C provide 12 dedicated input pins and $10 \mathrm{I} / \mathrm{O}$ pins (see Logic Block Diagram). By selecting each I/O pin as either permanent or temporary input, up to 22 inputs can be achieved. Applications requiring up to 21 inputs and a single output, down to 12 inputs and 10 outputs can be realized. The output enable product term available on each I/O allows this selection.
The PAL22V10C and PAL22VP10C feature variable product term architecture, where 8 to 16 product terms are allocated to each output. This structure permits more applications to be

Logic Block Diagram and PDIP (P)/CDIP (D) Pin Configuration

Pin Configurations

v10c-3
PAL is a registered trademark of Monolithic Memories Inc. SEMICONDUCTOR

Functional Description (continued)
implemented with these devices than with other PAL devices that have fixed number of product terms for each output.
Additional features include common synchronous preset and asynchronous reset product terms. They eliminate the need to use standard product terms for initialization functions
Both the PAL22V10C and PAL22VP10C automatically reset on power-up. In addition, the preload capability allows the outputregisters to be set to any desired state during testing.
A security fuse is provided on each of these two devices to prevent copying of the device fuse pattern.
With the programmable macrocells and variable product term architecture, the PAL22V10C and PAL22VP10C can implement logic functions in the 700 to 800 gate array complexity, with the inherent advantages of programmable logic.

Programmable Macrocell

The PAL22V10C and PAL22VP10C each has 10 programmable output macrocells (see Macrocell figure). On the PAL22V10C two fuses (C_{1} and C_{0}) can be programmed to configure output in one of four ways. Accordingly, each output can be registered or combinatorial with an active HIGH or active LOW polarity. The feedback to the array is also from this output (see Figure 1). An additional fuse $\left(\mathrm{C}_{2}\right)$ in the PAL22VP10C provides for two feedback paths (see Figure 2).

Programming

The PAL22V10C and PAL22VP10C can be programmed using the QuickPro II programmer available from Cypress Semiconductor and also with Data I/O, Logical Devices,STAG and other programmers. Please contact yourlocal Cypress representative for further information.

Macrocell

Output Macrocell Configuration

$\mathbf{C}_{\mathbf{2}}{ }^{[\mathbf{1}]}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	Output Type	Polarity	Feedback
0	0	0	Registered	Active LOW	Registered
0	0	1	Registered	Active HIGH	Registered
X	1	0	Combinatorial	Active LOW	I/O
X	1	1	Combinatorial	Active HIGH	I / O
1	0	0	Registered	Active LOW	I/O ${ }^{[1]}$
1	0	1	Registered	Active HIGH	I/O ${ }^{[1]}$

Notes:

1. PAL22VP10C only.

REGISTER FEEDBACK, REGISTERED, ACTIVE-LOW OUTPUT

I/O FEEDBACK, COMBINATORIAL, ACTIVE-LOW OUTPUT

REGISTER FEEDBACK, REGISTERED, ACTIVE-HIGH OUTPUT

I/O FEEDBACK, COMBINATORIAL, ACTIVE-HIGH OUTPUT

Figure 1. PAL22V10C and PAL22VP10C Macrocell Configurations

Figure 2. Additional Macrocell Configurations for the PAL22VP10C

Selection Guide

		$\begin{gathered} \text { 22V10C-6 } \\ \text { 22VP10C-6 } \end{gathered}$	$\begin{gathered} \hline \text { 22V10C-7 } \\ \text { 22VP10C-7 } \end{gathered}$	$\begin{gathered} 22 \mathrm{~V} 10 \mathrm{C}-10 \\ 22 \mathrm{VP} 10 \mathrm{C}-10 \\ \hline \end{gathered}$	$\begin{gathered} 22 \mathrm{~V} 10 \mathrm{C}-12 \\ 22 \mathrm{VP} 10 \mathrm{C}-12 \end{gathered}$	$\begin{gathered} \text { 22V10C-15 } \\ \text { 22VP10C-15 } \end{gathered}$
$\mathrm{I}_{\mathrm{CC}}(\mathrm{mA})$	Commercial	190	190	190	190	
	Military			190	190	190
t_{PD} (ns)	Commercial	6.0	7.5	10	12	
	Military			10	12	15
$\mathrm{t}_{\mathrm{s}}(\mathrm{ns})$	Commercial	3.0	3.0	3.6	4.5	
	Military			3.6	4.5	7.5
$\mathrm{t}_{\mathrm{CO}}(\mathrm{ns})$	Commercial	5.5	6.0	7.5	9.5	
	Military			7.5	9.5	10
$\mathrm{f}_{\mathrm{MAX}}(\mathrm{MHz})$	Commercial	117	111	90	71	
	Military			90	71	57

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

DC Input Current -30 mA to +5 mA

Storage Temperature \qquad (except during programming)
DC Program Voltage
10 V
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to V_{CC}
DC Input Voltage
-0.5 V to V_{CC}

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Military $^{2]} \mathrm{C}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$

DC Electrical Characteristics Over the Operating Range

Notes:

2. t_{A} is the "instant on" case temperature.
3. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

Switching Characteristics ${ }^{[5]}$

Parameters	Description	$\begin{array}{\|c\|} \hline 22 \mathrm{~V} 10 \mathrm{C}-6 \\ 22 \mathrm{VP10C}-6 \end{array}$		$\begin{array}{\|c} \hline 22 \mathrm{~V} 10 \mathrm{C}-7 \\ \text { 22VP10C-7 } \end{array}$		$\begin{array}{\|c} \text { 22V10C-10 } \\ \text { 22VP10C-10 } \end{array}$		$\begin{array}{\|c} 22 \mathrm{~V} 10 \mathrm{C}-12 \\ 22 \mathrm{VP} 10 \mathrm{C}-12 \end{array}$		$\begin{array}{\|c} 22 \mathrm{~V} 10 \mathrm{C}-15 \\ 22 \mathrm{VP} 10 \mathrm{C}-15 \end{array}$		Units
		Min.	Max.									
t_{PD}	Input to Output Propagation Delay ${ }^{[6]}$	1	6	2	7.5	2	10	2	12	2	15	ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable Delay	1	6	2	7.5	2	10	2	12	2	15	ns
t_{ER}	$\underset{\text { Delay }{ }^{[7]} \text { to }}{\text { to }}$ Output Disable	1	6	2	7.5	2	10	2	12	2	15	ns
t_{CO}	Clock to Output Delay ${ }^{[6]}$	1	5.5	1	6.0	1	7.5	1	9.5	1	10	ns
t_{5}	Input or Feedback Set-UpTime	3		3		3.6		4.5		7.5		ns
t_{H}	Input Hold Time	0		0		0		0		0		ns
t_{p}	External Clock Period $\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)$	8.5		9		11.1		14		17.5		ns
$\mathrm{t}_{\text {WH }}$	Clock Width HIGH ${ }^{\text {8] }}$	3		3		3		3		6		ns
$t_{\text {WL }}$	Clock Width LOW ${ }^{[8]}$	3		3		3		3		6		ns
$\mathrm{f}_{\mathrm{MAX} 1}$	External Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[9]}$	117		111		90		71		57		MHz
$\mathrm{f}_{\text {MAX2 }}$	Data PathMaximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)\right)^{[8,10]}$	166		166		166		166		83		MHz
$\mathrm{f}_{\text {MAX3 }}$	Internal Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CF}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[11]}$	142		133		100		83		66		MHz
t_{CF}	Register Clock to Feedback Input ${ }^{[12]}$		4	\cdot	4.5		6.4		7.5		7.5	ns
$\mathrm{t}_{\text {AW }}$	Asynchronous Reset Width	7.5		8.5		10		12		15		ns
t_{AR}	Asynchronous Reset Recovery Time	4		5		6		7		10		ns
t_{AP}	Asynchronous Reset to Registered Output Delay	2	11	2	12	2	12	2	14	2	20	ns
${ }_{\text {tSPR }}$	Synchronous Preset Recovery Time	4		5		6		7		10		ns
$t_{\text {PR }}$	Power-Up Reset Time ${ }^{[13]}$	1		1		1		1		1		$\mu \mathrm{s}$

Capacitance ${ }^{[8]}$

Parameters	Description	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	8	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	10	pF

Notes:
5. AC test load used for all parameters except where noted.
6. This specification is guaranteed for all device outputs changing state in a given access cycle.
7. This parameter is measured as the time after output disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below $\mathrm{V}_{\mathrm{OH}} \mathrm{min}$. or a previous LOW level has risen to 0.5 volts above V ${ }_{\text {OL }}$ max.
8. Tested initially and after any design or process changes that may affect these parameters.
9. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
10. This specification indicates the guaranteed maximum frequency at which an individual output register can be cycled.
11. This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feedback can operate. This parameter is tested periodically by sampling production product.
12. This parameter is calculated from the clock period at $f_{\text {MAX }}$ internal ($\mathrm{f}_{\mathrm{MAX}}$) as measured (see Note 11) minus t_{S}.
13. The registers in the PAL22V10C/PAL22VP10C have been designed with the capability to reset during system power-up. Following powerup, all registers will be reset to a logic LOW state. The output state will depend on the polarity of the output buffer. This feature is useful in establishing state machine initialization. To insure proper operation, the rise in $V_{\text {CC }}$ must be monotonic and the timing constraints depicted in power-up reset waveforms must be satisfied.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Equivalent to: THEVENIN EQUIVALENT

Parameter	VX	Output Waveform-Measurement Level	
$\mathrm{t}_{\mathrm{ER}}(-)$	1.5 V		v10c-12
$\mathrm{t}_{\mathrm{ER}(+)}$	2.6 V	$\mathrm{V}_{\mathrm{OL}} \xrightarrow{0.5 \mathrm{~V} \frac{1}{4}}$	v100-13
$\mathrm{t}_{\mathrm{EA}(+)}$	1.5 V	$\mathrm{V}_{\mathrm{X}} \xrightarrow[4]{0.5 \mathrm{~V}+\mathrm{t}} \mathrm{~F}$	v10c-14
${ }^{\text {teA }}(-)$	1.5 V	$\mathrm{V}_{\mathrm{X}} \frac{+}{0.5 \mathrm{~V}^{-}-1}$	$\mathrm{v} 10 \mathrm{c}-15$

Switching Waveform

Power-Up Reset Waveform ${ }^{[13]}$

Notes:
14. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for t_{ER} measurement for all packages.
15. For high-capacitive load applications $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)$, usePAL22V10CF/ PAL22VP10CF.

Preload Waveform ${ }^{[16]}$

Notes:

16. Pins 4 (5), 5 (6), 7 (9) at $\mathrm{V}_{\mathrm{ILP}}$; Pins 10 (12) and 11 (13) at $\mathrm{V}_{\mathrm{IHP}} ; \mathrm{V}_{\mathrm{CC}}\left(\operatorname{Pin} 24\left(1\right.\right.$ and 28)) at $\mathrm{V}_{\mathrm{CCP}}$
17. Pins 2-8(3-7,9,10), $10(12), 11(13)$ can be set at $\mathrm{V}_{\mathrm{IHP}}$ or $\mathrm{V}_{\text {ILP }}$ to insure asynchronous reset is not active.

D/K/P (J/L/Y) Pinouts

Forced Level on Register Pin During Preload	Register Q Output State After Preload
$\mathrm{V}_{\mathrm{IHP}}$	HIGH
$\mathrm{V}_{\text {ILP }}$	LOW

Name	Description	Min.	Max.	Unit
V_{PP}	Programming Voltage	9.25	9.75	V
$\mathrm{t}_{\mathrm{DPR} 1}$	Delay for Preload	1		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{DPR} 2}$	Delay for Preload	0.5		$\mu \mathrm{~s}$
$\mathrm{~V}_{\mathrm{ILP}}$	Input LOW Voltage	0	0.4	V
$\mathrm{~V}_{\mathrm{IHP}}$	Input HIGH Voltage	3	4.75	V
$\mathrm{~V}_{\mathrm{CCP}}$	V_{CC} for Preload	4.75	5.25	$\overline{\mathrm{~V}}$

Functional Logic Diagram for PAL22V10C/PAL22VP10C

Typical DC and AC Characteristics

TYPICAL CORRECTION TO TPD
AND tco vs. NUMBER OF
OUTPUTS SWITCHING

CHANGING STATE PER ACCESS CYCLE

NORMALIZED SET-UP TIME vs. SUPPLY VOLTAGE

NORMALIZED CLOCK TO OUTPUT TIME vs. TEMPERATURE

v10c-21

Typical DC and AC Characteristics (continued)

Ordering Information

$\begin{gathered} \mathrm{I}_{\mathbf{C C}} \\ (\mathbf{m A}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{tPD} \\ & (\mathrm{~ns}) \end{aligned}$	$\begin{aligned} & \mathbf{f}_{\mathrm{MAX}} \\ & (\mathbf{M H z}) \end{aligned}$	Ordering Code	Package Name	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
190	6	117	PAL22V10C-6JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	7.5	111	PAL22V10C-7DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PAL22V10C-7JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PAL22V10C-7PC	P13	24-Lead (300-Mil) Molded DIP	
			PAL22V10C-7YC	Y64	28-Pin Ceramic Leaded Chip Carrier	
	10	90	PAL22V10C-10DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PAL22V10C-10JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PAL22V10C-10PC	P13	24-Lead (300-Mil) Molded DIP	
			PAL22V10C-10YC	Y64	28-Pin Ceramic Leaded Chip Carrier	
			PAL22V10CM-10DMB	D14	24-Lead (300-Mil) CerDIP	Military
			PAL22V10CM - 10KMB	K73	24-Lead Rectangular Cerpack	
			PAL22V10CM-10LMB	L64	28-Square Leadless Chip Carrier	
			PAL22V10CM-10YMB	Y64	28-Pin Ceramic Leaded Chip Carrier	
	12	71	PAL22V10C-12DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PAL22V10C-12JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PAL22V10C-12PC	P13	24-Lead (300-Mil) Molded DIP	
			PAL22V10C-12YC	Y64	28-Pin Ceramic Leaded Chip Carrier	
			PAL22V10CM-12DMB	D14	24-Lead (300-Mil) CerDIP	Military
			PAL22V10CM - 12KMB	K73	24-Lead Rectangular Cerpack	
			PAL22V10CM-12LMB	L64	28-Square Leadless Chip Carrier	
			PAL22V10CM - 12YMB	Y64	28-Pin Ceramic Leaded Chip Carrier	
	15	57	PAL22V10CM-15DMB	D14	24-Lead (300-Mil) CerDIP	Military
			PAL22V10CM-15KMB	K73	24-Lead Rectangular Cerpack	
			PAL22V10CM-15LMB	L64	28-Square Leadless Chip Carrier	
			PAL22V10CM-15YMB	Y64	28-Pin Ceramic Leaded Chip Carrier	

2
PAL22V10C
PAL22VP10C
CYPRESS
SEMICONDUCTOR
Ordering Information (continued)

$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & (\mathbf{m A}) \end{aligned}$	$\begin{aligned} & \text { tPD } \\ & \text { (ns) } \end{aligned}$	$\begin{gathered} \mathbf{f}_{\mathrm{MAX}} \\ (\mathrm{MHz}) \end{gathered}$	Ordering Code	$\begin{gathered} \hline \text { Package } \\ \text { Name } \end{gathered}$	Package Type	$\begin{gathered} \hline \text { Operating } \\ \text { Range } \end{gathered}$
190	6	117	PAL22VP10C-6JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	7.5	111	PAL22VP10C-7DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PAL22VP10C-7JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PAL22VP10C-7PC	P13	24-Lead (300-Mil) Molded DIP	
			PAL22VP10C-7YC	Y64	28-Pin Ceramic Leaded Chip Carrier	
	10	90	PAL22VP10C-10DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PAL22VP10C-10JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PAL22VP10C-10PC	P13	24-Lead (300-Mil) Molded DIP	
			PAL22VP10C-10YC	Y64	28-Pin Ceramic Leaded Chip Carrier	
			PAL22VP10CM-10DMB	D14	24-Lead (300-Mil) CerDIP	Military
			PAL22VP10CM-10KMB	K73	24-Lead Rectangular Cerpack	
			PAL22VP10CM-10LMB	L64	28-Square Leadless Chip Carrier	
			PAL22VP10CM-10YMB	Y64	28-Pin Ceramic Leaded Chip Carrier	
	12	71	PAL22VP10C-12DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PAL22VP10C-12JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PAL22VP10C-12PC	P13	24-Lead (300-Mil) Molded DIP	
			PAL22VP10C-12YC	Y64	28-Pin Ceramic Leaded Chip Carrier	
			PAL22VP10CM-12DMB	D14	24-Lead (300-Mil) CerDIP	Military
			PAL22VP10CM-12KMB	K73	24-Lead Rectangular Cerpack	
			PAL22VP10CM-12LMB	L64	28-Square Leadless Chip Carrier	
			PAL22VP10CM-12YMB	Y64	28-Pin Ceramic Leaded Chip Carrier	
	15	57	PAL22VP10CM-15DMB	D14	24-Lead (300-Mil) CerDIP	Military
			PAL22VP10CM-15KMB	K73	24-Lead Rectangular Cerpack	
			PAL22VP10CM-15LMB	L64	28-Square Leadless Chip Carrier	
			PAL22VP10CM-15YMB	Y64	28-Pin Ceramic Leaded Chip Carrier	

MILITARY SPECIFICATIONS
Group A Subgroup Testing

DC Characteristerics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{PD}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{S}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$

Document \#: 38-A - 00020 -D

PAL22V10CF PAL22VP10CF

Features

- Ultra high speed supports today's and tomorrow's fastest microprocessors
$-\mathrm{t}_{\mathrm{PD}}=7.5 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{SU}}=3 \mathrm{~ns}$
$-\mathbf{f}_{\mathrm{MAX}}=\mathbf{1 0 0} \mathbf{~ M H z}$
- Drives 50-pF load (C_{L})
- "No Connect" PLCC pinout
- Up to 22 inputs and 10 outputs for more logic power
- Variable product terms
- 8 to 16 per output
- 10 user-programmable output macrocells
- Output polarity control
— Registered or combinatorial operation
-2 new feedback paths
(PAL22VP10CF)
- Synchronous PRESET, asynchronous RESET, and PRELOAD capability for flexible design and testability
- High reliability
- Proven Ti-W fuse technology
- AC and DC tested at the factory
- Security Fuse

Functional Description

The Cypress PAL22V10CF and PAL22VP10CF are second-generation programmable array logic devices. Using BiCMOS process and Ti-W fuses, the PAL22V10CF and PAL22VP10CF use the familiar sum-of-products (AND-OR) logic structure and a new concept, the programmable macrocell.

Logic Block Diagram and PDIP (P)/CDIP (D) Pin Configuration

Pin Configuration

[^40]Both the PAL22V10CF and PAL22VP10CF provide 12 dedicated input pins and $10 \mathrm{I} / \mathrm{O}$ pins (see Logic Block Diagram). By selecting each I/O pin as either permanent or temporary input, up to 22 inputs can be achieved. Applications requiring up to 21 inputs and a single output, down to 12 inputs and 10 outputs can be realized. The output enable product term available on each I/O allows this selection.
The PAL22V10CF and PAL22VP10CF feature variable product-term architecture, where 8 to 16 product terms are allocated to each output. This structure permits more applications to be implemented with these devices than with other PAL devices that have fixed number of product terms for each output.

Functional Description (continued)

Additional features include common synchronous preset and asynchronous reset product terms. They eliminate the need to use standard product terms for initialization functions
Both the PAL22V10CF and PAL22VP10CF automatically reset on power-up. In addition, the preload capability allows the output registers to be set to any desired state during testing.
A security fuse is provided on each of these two devices to prevent copying of the device fuse pattern.
With the programmable macrocells and variable product term architecture, the PAL22V10CF and PAL22VP10CF can implement logic functions in the 700 to 800 gate array complexity, with the inherent advantages of programmable logic.

Programmable Macrocell

The PAL22V10CF and PAL22VP10CF each has 10 programmable output macrocells (see Macrocell figure). On the PAL22V10CF two fuses (C_{1} and C_{0}) can be programmed to configure output in one of four ways. Accordingly, each output can be registered or combinatorial with an active HIGH or active LOW polarity. The feedback to the array is also from this output (see Figure 1). An additional fuse (C_{2}) in the PAL22VP10CF provides for two feedback paths (see Figure 2).

Programming

The PAL22V10CF and PAL22VP10CF can be programmed using the QuickPro II ${ }^{\text {m }}$ programmer available from Cypress Semiconductor and also with Data I/O, Logical Devices, STAG and other programmers. Please contact your local Cypress representative for further information.

Macrocell

Output Macrocell Configuration

$\mathbf{C}_{\mathbf{2}}{ }^{[1]}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	Output Type	Polarity	Feedback
0	0	0	Registered	Active LOW	Registered
0	0	1	Registered	Active HIGH	Registered
X	1	0	Combinatorial	Active LOW	I/O
X	1	1	Combinatorial	Active HIGH	I / O
1	0	0	Registered	Active LOW	$\mathrm{I} / \mathrm{O}^{[1]}$
1	0	1	Registered	Active HIGH	$\mathrm{I} / \mathrm{O}^{[1]}$

Notes:

1. PAL22VP10CF only.

REGISTER FEEDBACK, REGISTERED, ACTIVE-LOW OUTPUT

I/O FEEDBACK, COMBINATORIAL, ACTIVE-LOW OUTPUT

REGISTER FEEDBACK, REGISTERED, ACTIVE-HIGH OUTPUT

I/O FEEDBACK, COMBINATORIAL, ACTIVE-HIGH OUTPUT

Figure 1. PAL22V10CF and PAL22VP10CF Macrocell Configurations

Figure 2. Additional Macrocell Configurations for the PAL22VP10CF

SEMICONDUCTOR
PAL22V10CF
PAL22VP10CF

Selection Guide

	22V10CF-7 $\mathbf{2 2 V P 1 0 C F}-7$	22V10CF-10 22VP10CF-10
$\mathrm{I}_{\mathrm{CC}}(\mathrm{mA})$	190	190
$\mathrm{t}_{\mathrm{PD}}(\mathrm{ns})$	7.5	10
$\mathrm{t}_{\mathrm{s}}(\mathrm{ns})$	3.0	3.6
$\mathrm{t}_{\mathrm{CO}}(\mathrm{ns})$	7.0	7.5
$\mathrm{f}_{\mathrm{MAX}}(\mathrm{MHz})$	100	90

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature................$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to V_{CC}
DC Input Current . 30 mA to +5 mA (except during programming)
DC Program Voltage 10 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$

DC Input Voltage -0.5 V to V_{CC}
DC Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Units	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	2.4		V
$\mathrm{~V}_{\mathrm{OL}}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.5	V
$\mathrm{~V}_{\mathrm{H}}$	Input HIGH Voltage	GuaranteedInputLogicalHIGHVoltagefor AllInputs ${ }^{[2]}$	2.0		V	
$\mathrm{~V}_{\mathrm{IL}}$	Input LOW Voltage	Guaranteed Input LogicalLOW Voltage for All Inputs $[2]$		0.8	V	
I_{IX}	Input Leakage Current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=$ Max.	-250	50	$\mu \mathrm{~A}$	
I_{I}	Maximum Input Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.		100	$\mu \mathrm{~A}$	
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}$	-100	100	$\mu \mathrm{~A}$	
I_{SC}	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{OUT}}=0.5 \mathrm{~V}[3]$	-30	-120	mA	
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$, Outputs Open		190	mA	

Notes:
2. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $V_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

CYPRESS
SEMICONDUCTOR

Switching Characteristics ${ }^{[4]}$

Parameters	Description	$\begin{aligned} & \text { 22V10CF-7 } \\ & \text { 22VP10CF-7 } \end{aligned}$		$\begin{aligned} & \text { 22V10CF-10 } \\ & \text { 22VP10CF-10 } \end{aligned}$		Units
		Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PD }}$	Input to Output Propagation Delay ${ }^{[5]}$	2	7.5	2	10	ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable Delay	2	7.5	2	10	ns
ter	Input to Output Disable Delay[6]	2	7.5	2	10	ns
t_{CO}	Clock to Output Delay ${ }^{[5]}$	1	7.0	1	7.5	ns
t_{S}	Input or Feedback Set-Up Time	3		3.6		ns
t_{H}	Input Hold Time	0		0		ns
t_{P}	External Clock Period ($\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{s}}$)	10		11.1		ns
$\mathrm{t}_{\text {WH }}$	Clock Width HIGH ${ }^{[7]}$	3		3		ns
$\mathrm{t}_{\text {WL }}$	Clock Width LOW ${ }^{[7]}$	3		3		ns
$\mathrm{f}_{\text {MAX1 }}$	External Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[8]}$	100		90		MHz
$\mathrm{f}_{\text {MAX2 }}$	Data Path Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)\right)^{[7,9]}$	166		166		MHz
$\mathrm{f}_{\text {MAX }}$	Internal Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CF}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[10]}$	133		100		MHz
${ }^{\text {t }}$ CF	Register Clock to Feedback Input ${ }^{[11]}$		4.5		6.4	ns
$\mathrm{t}_{\text {AW }}$	Asynchronous Reset Width	8.5		10		ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset Recovery Time	5		6		ns
t_{AP}	Asynchronous Reset to Registered Output Delay	2	12	2	12	ns
$\mathrm{t}_{\text {SPR }}$	Synchronous Preset Recovery Time	5		6		ns
${ }_{\text {tPR }}$	Power-Up Reset Time ${ }^{[12]}$	1		1		$\mu \mathrm{S}$

Capacitance ${ }^{[7]}$

Parameters	Description	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	8	pF
COUT	Output Capacitance	10	pF

Notes:
4. AC test load used for all parameters except where noted.
5. This specification is guaranteed for all device outputs changing state in a given access cycle.
6. This parameter is measured as the time after output disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below $\mathrm{VOH}_{\mathrm{OH}}$ min. or a previous LOW level has risen to 0.5 volts above V_{OL} max.
7. Tested initially and after any design or process changes that may affect these parameters.
8. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
9. This specification indicates the guaranteed maximum frequency at which an individual output register can be cycled.
10. This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feedback can operate. This parameter is tested periodically by sampling production product.
11. This parameter is calculated from the clock period at $\mathrm{f}_{\mathrm{MAX}}$ internal ($\mathrm{f}_{\mathrm{MAX}}$) as measured (see Note 10) minus t_{s}.
12. The registers in the PAL22V10CF/PAL22VP10CF have been designed with the capability to reset during system power-up. Following powerup, all registers will be reset to a logic LOW state. The output state will depend on the polarity of the output buffer. This feature is useful in establishing state machine initialization. To insure proper operation, the rise in V_{CC} must be monotonic and the timing constraints depicted in power-up reset waveforms must be satisfied.

AC Test Loads and Waveforms

Switching Waveform

Power-Up Reset Waveform ${ }^{[13]}$

Netes:
13. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for t_{ER} measurement for all packages.

Preload Waveform ${ }^{[14]}$

Notes:

14. Pins 4 (5), 5(6), 7 (9) at $\mathrm{V}_{\text {ILP }}$; Pins 10 (12) and 11 (13) at $\mathrm{V}_{\mathrm{IHP}}$; $\mathrm{V}_{\mathrm{CC}}\left(\operatorname{Pin} 24\right.$ (1 and 28)) at $\mathrm{V}_{\mathrm{CCP}}$
15. Pins $2-8(3-7,9,10), 10(12), 11(13)$ can be set at $\mathrm{V}_{\text {IHP }}$ or $\mathrm{V}_{\text {ILP }}$ to insure asynchronous reset is not active.

D/P (J) Pinouts

Forced Level on Register Pin During Preload	Register Q Output State After Preload
$\mathrm{V}_{\mathrm{IHP}}$	HIGH
$\mathrm{V}_{\mathrm{ILP}}$	LOW

Name	Description	Min.	Max.	Unit
V_{PP}	Programming Voltage	9.25	9.75	V
$\mathrm{t}_{\mathrm{DPR} 1}$	Delay for Preload	1		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{DPR} 2}$	Delay for Preload	0.5		$\mu \mathrm{~s}$
$\mathrm{~V}_{\mathrm{ILP}}$	Input LOW Voltage	0	0.4	V
$\mathrm{~V}_{\mathrm{IHP}}$	Input HIGH Voltage	3	4.75	V
$\mathrm{~V}_{\mathrm{CCP}}$	V_{CC} for Preload	4.75	5.25	V

Functional Logic Diagram for PAL22V10CF/PAL22VP10CF

Typical DC and AC Characteristics

NORMALIZED CLOCK TO OUTPUT TIME vs. TEMPERATURE

Typical DC and AC Characteristics (continued)

Ordering Information

$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & (\mathrm{mA}) \end{aligned}$	$\begin{aligned} & \hline \mathbf{t}_{\mathrm{AA}} \\ & (\mathbf{n s}) \end{aligned}$	$\begin{aligned} & \mathbf{f}_{\text {MAX }} \\ & (\mathrm{MHz}) \end{aligned}$	Ordering Code	Package Type	Package Type	$\begin{gathered} \hline \text { Operating } \\ \text { Range } \\ \hline \end{gathered}$
190	7.5	100	PAL22V10CF-7DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PAL22V10CF-7JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PAL22V10CF-7PC	P13	24-Lead (300-Mil) Molded DIP	
			PAL22VP10CF-7DC	D14	24-Lead (300-Mil) CerDIP	
			PAL22VP10CF-7JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PAL22VP10CF-7PC	P13	24-Lead (300-Mil) Molded DİP	
	10	90	PAL22V10CF-10DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PAL22V10CF-10JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PAL22V10CF-10PC	P13	24-Lead (300-Mil) Molded DIP	
			PAL22VP10CF-10DC	D14	24-Lead (300-Mil) CerDIP	
			PAL22VP10CF-10JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PAL22VP10CF-10PC	P13	24-Lead (300-Mil) Molded DIP	

Document \#: 38-A-00020

Features

- Advanced second-generation PAL architecture
- Low power
- 90 mA max. commercial (10 ns)
-130 mA max. commercial (7.5 ns)
- CMOS Flash EPROM technology for electrical erasability and reprogrammability
- Variable product terms
-2×8 through 16) product terms
- User-programmable macrocell
- Output polarity control
- Individually selectable for registered or combinatorial operation
- Up to 22 input terms and 10 outputs
- DIP, LCC, and PLCC available
- 7.5 ns commercial version 5 ns tco
$5 \mathrm{~ns} \mathrm{t}_{\mathrm{s}}$
7.5 ns tpD
$133-\mathrm{MHz}$ state machine
-10 ns military and industrial versions
$6 \mathrm{nst} \mathrm{t}_{\mathrm{CO}}$
6 nst
$10 \mathrm{~ns} \mathrm{t}_{\text {PD }}$
110-MHz state machine
- 15-ns commercial and military versions
- 25-ns commercial and military versions
- High reliability

-Proven Flash EPROM technology

- $\mathbf{1 0 0 \%}$ programming and functional testing

Functional Description

The Cypress PALC22V10D is a CMOS Flash Erasable second-generation programmable array logic device. It is implemented with the familiar sum-of-products (AND-OR) logic structure and the programmable macrocell.
The PALC22V10D is executed in a 24 -pin 300 -mil molded DIP, a $300-$ mil cerDIP, a 28-lead square ceramic leadless chip carrier, a28-lead square plastic leaded chip carrier, and provides up to 22 inputs and 10 outputs. The 22V10D can be electrically

Logic Block Diagram (PDIP/CDIP)

Pin Configuration

V10D-3

PAL is a registered trademark of Monolithic Memories Inc.

PALC22V10D

Functional Description (continued)

erased and reprogrammed.The programmable macrocell provides the capability of defining the architecture of each output individually. Each of the 10 potential outputs may be specified as "registered" or "combinatorial." Polarity of each output may also be individually selected, allowing complete flexibility of output configuration. Further configurability is provided through "array" configurable "output enable" for each potential output. This feature allows the 10 outputs to be reconfigured as inputs on an individual basis, or alternately used as a combination I/O controlled by the programmable array.
PALC22V10D features a variable product term architecture. There are 5 pairs of product term sums beginning at 8 product terms per output and incrementing by 2 to 16 product terms per output. By providing this variable structure, the PALC22V10D is optimized to the configurations found in a majority of applications without creating devices that burden the product term structures with unusable product terms and lower performance.
Additional features of the Cypress PALC22V10D include a synchronous preset and an asynchronous reset product term. These product terms are common to all macrocells, eliminating the need to dedicate standard product terms forinitialization functions. The device automatically resets upon power-up.
The PALC22V10D featuring programmable macrocells and variable product terms provides a device with the flexibility to implement logic functions in the 500 - to 800 -gate-array complexity. Since each of the 10 output pins may be individually configured as inputs on a temporary or permanent basis, functions requiring up to 21 inputs and only a single output and down to 12 inputs and 10 outputs are possible. The 10 potential outputs are enabled using
product terms. Any output pin may be permanently selected as an output or arbitrarily enabled as an output and an input through the selective use of individual product terms associated with each output. Each of these outputs is achieved through an individual programmable macrocell. These macrocells are programmable to provide a combinatorial or registered inverting or non-inverting output. In a registered mode of operation, the output of the register is fed back into the array, providing current status information to the array. This information is available for establishing the next result in applications such as control state machines. In a combinatorial configuration, the combinatorial output or, if the output is disabled, the signal present on the I / O pin is made available to the array. The flexibility provided by both programmable productterm control of the outputs and variable product terms allows a significant gain in functional density through the use of programmable logic.
Along with this increase in functional density, the Cypress PALC22V10D provides lower-power operation through the use of CMOS technology, and increased testability with Flash reprogrammability.

Configuration Table 1

Registered/Combinatorial		
$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	Configuration
0	0	Registered/Active LOW
0	1	Registered/Active HIGH
1	0	Combinatorial/Active LOW
1	1	Combinatorial/Active HIGH

Macrocell

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 24 to Pin 12) \qquad
\qquad -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V
Output Current into Outputs (LOW) 16 mA
DC Programming Voltage .12 .5 V

Static Discharge Voltage
(per MIL-STD-883, Method 3015)
$>2001 \mathrm{~V}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Min.	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	pF

Endurance Characteristics ${ }^{[6]}$

Parameter	Description	Test Conditions	Min.	Max.	Unit
N	Minimum Reprogramming Cycles	Normal Programming Conditions	100		Cycles

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
4. V_{IL} (Min.) is equal to -3.0 V for pulse durations less than 20 ns .
5. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
6. Tested initially and after any design or process changes that may affect these parameters.

Commercial Switching Characteristics PALC22V10D ${ }^{[2,7]}$

Parameter	Description	22V10D-7		22V10D-10		22V10D-15		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PD }}$	$\begin{array}{\|l\|} \hline \text { Input to Output } \\ \text { Propagation Delay }[8,9] \end{array}$	3	7.5	3	10	3	15	ns
t_{EA}	Input to Output Enable Delay ${ }^{[10]}$		8		10		15	ns
t_{ER}	Input to Output Disable Delay[11]		8		10		15	ns
t_{CO}	Clock to Output Delay ${ }^{[8,9]}$	2	5	2	7	2	8	ns
$\mathrm{t}_{\mathrm{S} 1}$	Input or Feedback Set-Up Time	5		6		10		ns
$\mathrm{t}_{\mathbf{S} 2}$	Synchronous Preset Set-Up Time	6		7		10		ns
t_{H}	Input Hold Time	0		0		0		ns
t_{P}	$\begin{aligned} & \text { External Clock } \\ & \text { Period }\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{s}}\right) \end{aligned}$	10		12		20		ns
$\mathrm{t}_{\text {WH }}$	Clock Width HIGH ${ }^{[6]}$	3		3		6		ns
t_{WL}	Clock Width LOW ${ }^{6}$]	3		3		6		ns
$\mathrm{f}_{\text {MAX1 }}$	External Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[12]}$	100		76.9		55.5		MHz
$\mathrm{f}_{\text {MAX2 }}$	$\begin{aligned} & \text { Data Path Maximum } \\ & \text { Frequency } \\ & \left(1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)\right)^{[6,13]} \end{aligned}$	166		142		83.3		MHz
$\mathrm{f}_{\text {MAX }}$	Internal Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CF}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[6,14]}$	133		111		68.9		MHz
${ }^{\text {t }}$ CF	Register Clock to Feedback Input ${ }^{[6,15]}$		2.5		3		4.5	ns
$\mathrm{t}_{\text {AW }}$	Asynchronous Reset Width	8		10		15		ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset Recovery Time	5		6		10		ns
t_{AP}	Asynchronous Reset to Registered Output Delay		12		13		20	ns
$\mathrm{t}_{\text {SPR }}$	Synchronous Preset Recovery Time	6		8		10		ns
t_{PR}	$\begin{array}{\|l} \hline \text { Power-Up } \\ \text { Reset Time }{ }^{[6,16]} \end{array}$	1		1		1		$\mu \mathrm{s}$

Notes:
7. Part (a) of AC Test Loads and Waveforms is used for all parameters except $t_{E R}$ and $t_{E A}(+)$. Part (b) of AC Test Loads and Waveforms is used for $t_{E R}$. Part (c) of AC Test Loads and Waveforms is used for teA $(+)$.
8. Min. times are tested initially and after any design or process changes that may affect these parameters.
9. This specification is guaranteed for all device outputs changing state in a given access cycle.
10. The test load of part (a) of AC Test Loads and Waveforms is used for measuring $t_{\text {EA }}(-)$. The test load of part (c) of AC Test Loads and Waveforms is used for measuring teA + only. Please see part (e) of AC Test Loads and Waveforms for enable and disable test waveforms and measurement reference levels.
11. This parameter is measured as the time after output disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below $\mathrm{V}_{\mathrm{OH}} \mathrm{min}$. or a previous LOW level has risen to 0.5 volts above V_{OL} max. Please see part (e) of AC Test Loads and Waveforms for enable and disable test waveforms and measurement reference levels.
12. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
13. This specification indicates the guaranteed maximum frequency at which the device can operate in data path mode.
14. This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal only feedback can operate.
15. This parameter is calculated from the clock period at $\mathrm{f}_{\mathrm{MAX}}$ internal ($1 / \mathrm{f}_{\text {MAX } 3}$) as measured (see Note 11 above) minus t_{s}.
16. The registers in the PALC22V10D have been designed with the capability to reset during system power-up. Following power-up, all registers will be reset to a logic LOW state. The output state will depend on the polarity of the output buffer. This feature is useful in establishing state machine initialization. To insure proper operation, the rise in $V_{C C}$ must be monotonic and the timing constraints depicted in Power-Up Reset Waveform must be satisfied.

Military and Industrial Switching Characteristics PALC22V10D ${ }^{[2,7]}$

Parameter	Description	22V10D-10		22V10D-15		22V10D-25		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{PD}	Input to Output Propagation Delay ${ }^{[9]}$		10		15		25	ns
t_{EA}	Input to Output Enable Delay ${ }^{[11]}$		10		15		25	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable Delay ${ }^{[11]}$		10		15		25	ns
t_{CO}	Clock to Output Delay ${ }^{[9]}$		7		8		15	ns
$\mathrm{t}_{\mathbf{S} 1}$	Input or Feedback Set-Up Time	6		10		18		ns
$\mathrm{t}_{\mathrm{S} 2}$	Synchronous Preset Set-Up Time	7		10		18		ns
t_{H}	Input Hold Time	0		0		0		ns
t_{P}	External Clock Period ($\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{s}}$)	12		20		33		ns
$\mathrm{t}_{\text {WH }}$	Clock Width HIGH ${ }^{[6]}$	3		6		14		ns
t_{WL}	Clock Width LOW ${ }^{[6]}$	3		6		14		ns
$\mathrm{f}_{\text {MAX } 1}$	External Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[12]}$	76.9		50.0		30.3		MHz
$\mathrm{f}_{\text {MAX2 }}$	Data Path Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)\right)^{[6,13]}$	142		83.3		35.7		MHz
$\mathrm{f}_{\text {MAX }}$	Internal Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CF}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[6,14]}$	111		68.9		32.2		MHz
t_{CF}	Register Clock to Feedback Input ${ }^{[6,14]}$		3		4.5		13	ns
$\mathrm{t}_{\text {AW }}$	Asynchronous Reset Width	10		15		25		ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset Recovery Time	6		12		25		ns
t_{AP}	Asynchronous Reset to Registered Output Delay		12		20		25	ns
$\mathrm{t}_{\text {SPR }}$	Synchronous Preset Recovery Time	8		20		25		ns
$\mathrm{t}_{\text {PR }}$	Power-Up Reset Time ${ }^{[6,16]}$	1		1		1		$\mu \mathrm{s}$

AC Test Loads and Waveforms

(a)

(b)

(c)

AC Test Loads and Waveforms (continued)

Equivalent to: THÉVENIN EQUIVALENT (Commercial)

Load Speed	$\mathbf{C}_{\mathbf{L}}$	Package
7.5, OUTPUT 25 ns	$2.08 \mathrm{~V}=\mathrm{V}_{\text {thc }}$	

(d)

Equivalent to: THÉVENIN EQUIVALENT (Military)

Parameter	$\mathbf{V}_{\mathbf{X}}$	Output Waveform-Measurement Level		
$t_{\text {ER }}(-)$	1.5V	$\mathrm{V}_{\mathrm{OH}} \frac{1}{0.5 \mathrm{~V}} \frac{1}{4}$		V10D-9
ter (+)	2.6 V	$\mathrm{V}_{\mathrm{OL}} \xrightarrow{0.5 \mathrm{~V} \frac{1}{4}}$	V_{X}	V10D-10
$\mathrm{t}_{\mathrm{EA}(+)}$	0V	$\mathrm{V}_{\mathrm{X}}-1.5 \mathrm{~V} \frac{1}{7}$	v_{OH}	V10D-11
$t_{\text {EA }}(-)$	$\mathrm{V}_{\text {thc }}$	$\mathrm{V}_{\mathrm{X}} \frac{1}{0.5 \mathrm{~V}-\frac{1}{4}}$	V_{OL}	V10D-12

(e) Test Waveforms

Switching Waveform

Power-Up Reset Waveform ${ }^{[16]}$

Functional Logic Diagram for PALC22V10D

Ordering Information

$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathrm{mA}) \end{gathered}$	$\begin{aligned} & \mathbf{t}_{\mathbf{P D}} \\ & (\mathbf{n s}) \end{aligned}$	$\underset{(\mathrm{ns})}{\mathbf{t s}_{\mathbf{S}}}$	$\begin{aligned} & \mathbf{t}_{(\mathrm{CO}} \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
130	7.5	5	5	PALC22V10D-7JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALC22V10D-7PC	P13	24-Lead (300-Mil) Molded DIP	
90	10	6	7	PALC22V10D-10JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALC22V10D-10PC	P13	24-Lead (300-Mil) Molded DIP	
150	10	6	7	PALC22V10D-10DMB	D14	24-Lead (300-Mil) CerDIP	Military/ Industrial
				PALC22V10D-10JI	J64	28-Lead Plastic Leaded Chip Carrier	
				PALC22V10D-10KMB	K73	24-Lead Rectangular Cerpack	
				PALC22V10D-10LMB	L64	28-Square Leadless Chip Carrier	
				PALC22V10D-10PI	P13	24-Lead (300-Mil) Molded DIP	
90	15	7.5	10	PALC22V10D-15JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
				PALC22V10D-15PC	P13	24-Lead (300-Mil) Molded DIP	
120	15	7.5	10	PALC22V10D-15DMB	D14	24-Lead (300-Mil) CerDIP	Military/ Industrial
				PALC22V10D-15JI	J64	28-Lead Plastic Leaded Chip Carrier	
				PALC22V10D-15KMB	K73	24-Lead Rectangular Cerpack	
				PALC22V10D-15LMB	L64	28-Square Leadless Chip Carrier	
				PALC22V10D-15PI	P13	24-Lead (300-Mil) Molded DIP	
	25	15	15	PALC22V10D-25DMB	D14	24-Lead (300-Mil) CerDIP	
				PALC22V10D-25JI	J64	28-Lead Plastic Leaded Chip Carrier	
				PALC22V10D-25KMB	K73	24-Lead Rectangular Cerpack	
				PALC22V10D-25LMB	L64	28-Square Leadless Chip Carrier	
				PALC22V10D-25PI	P13	24-Lead (300-Mil) Molded DIP	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{PD}	$9,10,11$
t_{CO}	$9,10,11$
t_{S}	$9,10,11$
t_{H}	$9,10,11$

Document \#: 38-00185-F

Features

- Ultra high speed supports today's and tomorrow's fastest microprocessors
$-\mathrm{t}_{\text {PD }}=5 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{SU}}=2.5 \mathrm{~ns}$
$-\mathbf{f}_{\text {MAX }}=153.8 \mathrm{MHz}$
- Reduced ground bounce and undershoot
- PLCC and LCC packages with additional $V_{\text {CC }}$ and $V_{\text {SS }}$ pins for lowest ground bounce
- Up to 22 inputs and 10 outputs for more logic power
- Variable product terms
- 8 to 16 per output
- 10 user-programmable output macrocells
-Output polarity control
-Registered or combinatorial operation
- 2 new feedback paths (PAL22VP10G)
- Synchronous PRESET, asynchronous RESET, and PRELOAD capability for flexible design and testability
- High reliability
- Proven Ti-W fuse technology
- AC and DC tested at the factory
- Security Fuse

Functional Description
The Cypress PAL22V10G and PAL22VP10G are second-generation programmable arraylogic devices. Using BiCMOS process and Ti-W fuses, the PAL22V10G and PAL22VP10Guse thefamiliar sum-of-products (AND-OR) logic
structure and a new concept, the programmable macrocell.
Both the PAL22V10G and PAL22VP10G provide 12 dedicated input pins and 10 I/O pins (see Logic Block Diagram). By selecting each I/O pin as either permanent or temporary input, up to 22 inputs can be achieved. Applications requiring up to 21 inputs and a single output, down to 12 inputs and 10 outputs can be realized. The output enable product term available on each I/O allows this selection.
The PAL22V10G and PAL22VP10G feature variable product term architecture, where 8 to 16 product terms are allocated to each output. This structure permits more applications to be implemented with these devices than with other PAL devices that have fixed number of product terms for each output.

Logic Block Diagram and PDIP (P)/CDIP (D) Pin Configuration

Pin Configurations

v10g-4

[^41]
Functional Description (continued)

Additional features include common synchronous preset and asynchronous reset product terms. They eliminate the need to use standard product terms for initialization functions
Both the PAL22V10G and PAL22VP10G automatically reset on power-up. In addition, the preload capability allows the output registers to be set to any desired state during testing.
A security fuse is provided on each of these two devices to prevent copying of the device fuse pattern.
With the programmable macrocells and variable product term architecture, the PAL22V10G and PAL22VP10G can implement logicfunctions in the 700 to 800 gate array complexity, with the inherent advantages of programmable logic.

Programmable Macrocell

The PAL22V10G and PAL22VP10G each has 10 programmable output macrocells (see Macrocell figure). On the PAL22V10G two fuses $\left(\mathrm{C}_{1}\right.$ and $\left.\mathrm{C}_{0}\right)$ can be programmed to configure output in one of four ways. Accordingly, each output can be registered or combinatorial with an active HIGH or active LOW polarity. The feedback to the array is also from this output (see Figure 1). An additional fuse $\left(\mathrm{C}_{2}\right)$ in the PAL22VP10G provides for two feedback paths (see Figure 2).

Programming

The PAL22V10G and PAL22VP10G can be programmed using the QuickPro II programmer available from Cypress Semiconductor and also with Data I/O, Logical Devices, STAG and other programmers. Please contact your local Cypress representative for further information.

Macrocell

Output Macrocell Configuration

$\mathbf{C}_{\mathbf{2}}{ }^{[1]}$	$\mathbf{C}_{\mathbf{1}}$	$\mathbf{C}_{\mathbf{0}}$	Output Type	Polarity	Feedback
$\mathbf{0}$	0	0	Registered	Active LOW	Registered
0	0	1	Registered	Active HIGH	Registered
\mathbf{X}	1	0	Combinatorial	Active LOW	I/O
\mathbf{X}	1	1	Combinatorial	Active HIGH	I/O
1	0	0	Registered	Active LOW	I/O ${ }^{[1]}$
1	0	$\mathbf{1}$	Registered	Active HIGH	I/O ${ }^{[1]}$

Notes:

1. PAL22V10G only.

REGISTER FEEDBACK, REGISTERED, ACTIVE-LOW OUTPUT

I/O FEEDBACK, COMBINATORIAL, ACTIVE-LOW OUTPUT

REGISTER FEEDBACK, REGISTERED, ACTIVE-HIGH OUTPUT

I/O FEEDBACK, COMBINATORIAL, ACTIVE-HIGH OUTPUT

Figure 1. PAL22V10G and PAL22VP10G Macrocell Configurations

Figure 2. Additional Macrocell Configurations for the PAL22V10G

CYPRESS
PRELIMINARY
PAL22V10G
PAL22VP10G

Selection Guide

Maximum Ratings

(Above which the useful life maybe impaired. For user guidelines, not tested.)

DC Input Current -30 mA to +5 mA (except during programming)
DC Program Voltage
10 V
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Operating Range

Power Applied $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential $\ldots \ldots .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .0 .5 \mathrm{~F}$ to V_{CC}
DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots .-0.5 \mathrm{~V}$ to V_{CC}

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions			Min.	Max.	Units
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min}^{2}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	Com'l	2.4		V
			$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	Mil	2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \end{aligned}$	$\mathrm{I}_{\text {OL }}=16 \mathrm{~mA}$	Com'l		0.5	V
			$\mathrm{I}_{\text {OL }}=12 \mathrm{~mA}$	Mil		0.5	V
V_{IH}	Input HIGH Voltage	Guaranteed InputLogical HIGH Voltage for All Inputs ${ }^{[3]}$			2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed Input Logical LOW Voltage for All Inputs ${ }^{[3]}$				0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{V}_{\mathrm{SS}} \leq \mathrm{V}_{\mathrm{IN}} \leq 2.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=$ Max.			- 250	50	$\mu \mathrm{A}$
I_{I}	Maximum Input Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}$.		Com'l		100	$\mu \mathrm{A}$
				Mil		250	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$			-100	100	$\mu \mathrm{A}$
ISC	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[4]}$			-30	-120	mA
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=$ GND, Outputs Open		Com'l		190	mA
				Mil		190	

Notes:

2. t_{A} is the "instant on" case temperature.
3. These are absolute values with respect to device ground. All overshoots due to system or tester noise are included.
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.

Switching Characteristics ${ }^{[5]}$

Parameter	Description	$\begin{gathered} \text { 22V10G-5 } \\ 22 \mathrm{VP} 10 \mathrm{G}-5 \end{gathered}$		$\begin{array}{\|c\|} \hline 22 \mathrm{~V} 10 \mathrm{G}-6 \\ \text { 22VP10G-6 } \\ \hline \end{array}$		$\begin{gathered} \text { 22V10G-7 } \\ \text { 22VP10G-7 } \end{gathered}$		$\begin{gathered} 22 \mathrm{~V} 10 \mathrm{G}-10^{[6]} \\ \text { 22VP10G-10 } \end{gathered}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PD }}$	Input to Output Propagation Delay[7]	1	$\begin{array}{\|l\|} \hline 5 \text { (PLCC) } \\ 5.5 \text { (PDIP) } \end{array}$	1	6	2	7.5	2	10	ns
${ }^{\text {teA }}$	Input to Output Enable Delay	1	6	1	6	2	7.5	2	10	ns
${ }^{\text {ter }}$	Input to Output Disable Delay ${ }^{[8]}$	1	5	1	6	2	7.5	2	10	ns
${ }^{\text {t }} \mathrm{CO}$	Clock to Output Delay ${ }^{[7]}$	1	$\begin{aligned} & 4 \text { (PLCC) } \\ & 4.5 \text { (PDIP) } \end{aligned}$	1	5.5	1	6.0	1	7.5/9.5	ns
t_{5}	Input or Feedback Set-Up Time	2.5		3		3		3.6		ns
t_{H}	Input Hold Time	0		0		0		0		ns
t_{P}	External Clock Period ($\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}$)	$\begin{gathered} 6.5 \text { (PLCC) } \\ 7 \text { (PDIP) } \end{gathered}$		8.5		9		11.1/13.1		ns
${ }_{\text {twh }}$	ClockWidthHIGH ${ }^{19}$	3		3		3		3		ns
$\mathrm{t}_{\text {WL }}$	Clock Width LOW ${ }^{9]}$	3		3		3		3		ns
$\mathrm{f}_{\text {MAX1 }}$	$\begin{aligned} & \text { External Maximum } \\ & \text { Frequency } \\ & \left(1 /\left(\text { t }_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[10]} \\ & \hline \end{aligned}$	$\begin{aligned} & 153.8 \text { (PLCC) } \\ & 142.8 \text { (PDIP) } \end{aligned}$		117		111		90/76		$\overline{\mathrm{MHz}}$
$\mathrm{f}_{\text {MAX2 }}$	Data Path Maximum Frequency (1/($\mathrm{t}_{\mathrm{WH}}+$ $\left.\mathrm{t}_{\mathrm{WL}}\right)^{[9,11]}$	166		166		166		166		MHz
$\mathrm{f}_{\text {MAX3 }}$	Internal Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CF}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[12]}$	$\begin{array}{\|c} 181.8 \text { (PLCC) } \\ 166 \text { (PDIP) } \end{array}$		142		133		100/90		MHz
${ }^{\text {t }}$ CF	$\begin{aligned} & \text { Register Clock to } \\ & \text { Feedback Input }{ }^{13]} \end{aligned}$		$\begin{array}{\|l\|} \hline \text { 3 (PLCC) } \\ \text { 3.5 (PDIP) } \\ \hline \end{array}$		4		4.5		6.4/7.5	ns
${ }^{\text {taw }}$	Asynchronous Reset Width	6		7.5		8.5		10		ns
${ }^{\text {taR }}$	Asynchronous Reset Recovery Time	4		4		5		6		ns
t_{AP}	Asynchronous Reset to Registered Output Delay	2	7	2	11	2	12	2	12	ns
${ }_{\text {t SPR }}$	Synchronous Preset Recovery Time	4		4		5		6		ns
t_{PR}	$\begin{aligned} & \text { Power-Up Reset } \\ & \text { Time }{ }^{[14]} \end{aligned}$	1		1		1		1		$\mu \mathrm{s}$

Capacitance ${ }^{[9]}$

Parameter	Description	Typ.	Unit
C IN $^{\text {COUT }}$	Input Capacitance	6	pF
C $^{\text {OUP }}$	8	pF	

Notes:
5. AC test load used for all parameters except where noted.
6. If an entry in this column consists of two numbers, the second number is for the military version in CDIP packages.
7. This specification is guaranteed for all device outputs changing state in a given access cycle.
8. This parameter is measured as the time after output disable input that the previous output data state remains stable on the output. This delay is measured to the point at which a previous HIGH level has fallen to 0.5 volts below $\mathrm{V}_{\mathrm{OH}} \mathrm{min}$. or a previous LOW level has risen to 0.5 volts above $\mathrm{V}_{\text {OL }}$ max.
9. Tested initially and after any design or process changes that may affect these parameters.
10. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external feedback can operate.
11. This specification indicates the guaranteed maximum frequency at which an individual output register can be cycled.
12. This specification indicates the guaranteed maximum frequency at which a state machine configuration with internal-only feedback can operate. This parameter is tested periodically by sampling production product.
13. This parameter is calculated from the clock period at $\mathrm{f}_{\mathrm{MAX}}$ internal ($\mathrm{f}_{\mathrm{MAX}}$) as measured (see Note 11) minus ts.
14. The registers in the PAL22V10G and PAL22VP10G have been designed with the capability to reset during system power-up. Following power-up, all registers will be reset to a logic LOW state. The output state will depend on the polarity of the output buffer. This feature is useful in establishing state machine initialization. To insure proper operation, the rise in V_{CC} must be monotonic and the timing constraints depicted in power-up reset waveforms must be satisfied.

AC Test Loads and Waveforms

$$
\mathrm{C}_{\mathrm{L}}{ }^{[15]}=50 \mathrm{pF}
$$

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } O-\underbrace{99 \Omega}_{\text {Commercial }} \text { O } 2.08 \mathrm{~V}=\text { Vthe }
$$

Equivalent to: THEVENIN EQUIVALENT

Parameter	V_{X}	Output Waveform-Measurement Level
$\mathrm{t}_{\text {ER }}(-)$	1.5 V	
tER (+)	2.6 V	$\mathrm{V}_{\mathrm{OL}} \xrightarrow{0.5 \mathrm{~V} \dot{\boldsymbol{\dagger}}} \mathrm{H}$
${ }^{\text {teA }}(+)$	1.5 V	$\mathrm{V}_{\mathrm{X}} \xrightarrow{0.5 \mathrm{~V}+\mathrm{t}} \frac{1}{4} \mathrm{~V}_{\mathrm{OH}}$
$t_{\text {EA }}(-)$	1.5 V	$\mathrm{V}_{\mathrm{X}} \frac{\downarrow}{0.5 \mathrm{~V}^{-}+\frac{1}{4}} \mathrm{~V}_{\mathrm{OL}}{ }_{\mathrm{v} 10 \mathrm{~g}-16}$

Switching Waveform

Power-Up Reset Waveform ${ }^{[14]}$

Nôtes:
15. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for t_{ER} measurement for all packages.

Preload Waveform ${ }^{[16]}$

Notes:

16. Pins 4 (5), 5 (6), 7 (9) at $\mathrm{V}_{\mathrm{ILP}}$; Pins 10 (12) and 11 (13) at $\mathrm{V}_{\mathrm{IHP}}$; $\mathrm{V}_{\mathrm{CC}}\left(\operatorname{Pin} 24(1\right.$ and 28$)$) at $\mathrm{V}_{\mathrm{CCP}}$
17. Pins $2-8(3-7,9,10), 10(12), 11(13)$ can be set at $\mathrm{V}_{\mathrm{IHP}}$ or $\mathrm{V}_{\mathrm{ILP}}$ to insure asynchronous reset is not active.

D/P (J/L) Pinouts

Forced Level on Register Pin During Preload	Register Q Output State After Preload
$\mathrm{V}_{\mathrm{IHP}}$	HIGH
$\mathrm{V}_{\mathrm{ILP}}$	LOW

Name	Description	Min.	Max.	Unit
V_{PP}	Programming Voltage	9.25	9.75	V
$\mathrm{t}_{\mathrm{DPR} 1}$	Delay for Preload	1		$\mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{DPR} 2}$	Delay for Preload	0.5		$\mu \mathrm{~s}$
$\mathrm{~V}_{\mathrm{ILP}}$	Input LOW Voltage	0	0.4	V
$\mathrm{~V}_{\mathrm{IHP}}$	Input HIGH Voltage	3	4.75	V
$\mathrm{~V}_{\mathrm{CCP}}$	V_{CC} for Preload	4.75	5.25	V

Functional Logic Diagram for PAL22V10G/PAL22VP10G

Ordering Information

$\begin{gathered} \mathbf{I}_{\mathbf{C C}} \\ (\mathbf{m A}) \end{gathered}$	$\begin{aligned} & \mathbf{t}_{\mathbf{P D}} \\ & (\mathbf{n s}) \end{aligned}$	$\begin{aligned} & \hline \mathbf{f}_{\text {MAX }} \\ & (\mathbf{M H z}) \end{aligned}$	Ordering Code	Package	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
190	5	153.8	PAL22V10G-5JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	5.5	142.8	PAL22V10G-5PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	6	117	PAL22V10G-6JC	J64	28-Lead Plastic Leaded Chíp Carrier	Commercial
			PAL22V10G-6PC	P13	24-Lead (300-Mil) Molded DIP	
	7.5	111	PAL22V10G-7DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PAL22V10G-7JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PAL22V10G-7PC	P13	24-Lead (300-Mil) Molded DIP	
			PAL22V10G-7LMB	L64	28-Pin Square Leadless Chip Carrier	Military
	10	90	PAL22V10G-10DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PAL22V10G-10JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PAL22V10G-10PC	P13	24-Lead (300-Mil) Molded DIP	
		76	PAL22V10G-10DMB	D14	24-Lead (300-Mil) CerDIP	Military
		90	PAL22V10G-10LMB	L64	28-Pin Square Leadless Chip Carrier	

$\underset{(\mathbf{m A})}{\mathbf{I}_{\mathbf{C C}}}$	$\begin{aligned} & \hline \mathbf{t P D} \\ & (\mathrm{ns}) \end{aligned}$	$\begin{gathered} \mathbf{f}_{\text {MAX }} \\ (\mathbf{M H z}) \end{gathered}$	Ordering Code	Package Type	Package Type	Operating Range
190	5	153.8	PAL22VP10G-5JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
	5.5	142.8	PAL22VP10G-5PC	P13	24-Lead (300-Mil) Molded DIP	Commercial
	6	117	PAL22VP10G-6JC	J64	28-Lead Plastic Leaded Chip Carrier	Commercial
			PAL22VP10G-6PC	P13	24-Lead (300-Mil) Molded DIP	
	7.5	111	PAL22VP10G-7DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PAL22VP10G-7JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PAL22VP10G-7PC	P13	24-Lead (300-Mil) Molded DIP	
			PAL22VP10G-7LMB	L64	28-Pin Square Leadless Chip Carrier	Military
	10	90	PAL22VP10G-10DC	D14	24-Lead (300-Mil) CerDIP	Commercial
			PAL22VP10G-10JC	J64	28-Lead Plastic Leaded Chip Carrier	
			PAL22VP10G-10PC	P13	24-Lead (300-Mil) Molded DIP	
		76	PAL22VP10G-10DMB	D14	24-Lead (300-Mil) CerDIP	Military
		90	PAL22VP10G-10LMB	L64	28-Pin Square Leadless Chip Carrier	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristerics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{PD}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{S}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$

Document \#: 38-A-00044

Features

- Twelve I/O macrocells each having: - registered, three-state I/O pins
- input register clock select multiplexer
- feed back multiplexer
- output enable (OE) multiplexer
- All twelve macrocell state registers can be hidden
- User-configurable state registersJK, RS, T, or D
- One input multiplexer per pair of I / O macrocells allows I/O pin associated with a hidden macrocell state register to be saved for use as an input
- Four dedicated hidden registers
- Eleven dedicated, registered inputs
- Three separate clocks-two inputs, one output
- Common (pin 14-controlled) or product term-controlled output enable for each I/O pin
- 256 product terms- $\mathbf{3 2}$ per pair of macrocells, variable distribution
- Global, synchronous, product termcontrolled, state register set and re-set-inputs to product term are clocked by input clock
- $66-\mathrm{MHz}$ operation
-3-ns input set-up and 12 -ns clock to output
- 15-ns input register clock to state register clock
- Low power
$-130 \mathrm{~mA} \mathrm{I}_{\mathrm{CC}}$
- 28-pin, 300-mil DIP, LCC
- Erasable and reprogrammable

Functional Description

The CY7C330 is a high-performance, erasable, programmable, logic device (EPLD) whose architecture has been optimized to enable the user to easily and efficiently construct very high performance synchronous state machines.
The unique architecture of the CY7C330, consisting of the user-configurable output macrocell, bidirectional I/O capability, input registers, and three separate clocks, enables the user to design high-performance state machines that can communicate either with each other or with microprocessors over bidirectional parallel buses of user-definable widths.

Selection Guide

		$\mathbf{7 C 3 3 0}-\mathbf{6 6}$	$\mathbf{7 C 3 3 0 - 5 0}$	$\mathbf{7 C 3 3 0 - 4 0}$	7C330-33	7C330-28
Maximum Operating Frequency, $\mathrm{f}_{\text {MAX }}(\mathrm{MHz})$	Commercial	66.6	50.0		33.3	
	Military		50.0	40.0		28.5
Power Supply Current ICC1 (mA)	Commercial	140	130		130	
	Military		160	150		150

Document \#: 38-00064-E

Features

- Twelve I/O macrocells each having:
- One state flip-flop with an XOR sum-of-products input
- One feedback flip-flop with input coming from the I/O pin
- Independent (product term) set, reset, and clock inputs on all registers
-Asynchronous bypass capability on all registers under product term control ($\mathrm{r}=\mathrm{s}=1$)
- Global or local output enable on three-state I/O
—Feedback from either register to the array
- 192 product terms with variable distribution to macrocells
- 13 inputs, 12 feedback I/O pins, plus 6 shared I/O macrocell feedbacks for a total of $\mathbf{3 1}$ true and complementary inputs
- High speed: 20 ns maximum tPD
- Security bit
- Space-saving 28-pin slim-line DIP package; also available in 28 -pin PLCC
- Low power
-90 mA typical I_{CC} quiescent
$-180 \mathrm{~mA} \mathrm{I}_{\mathrm{CC}}$ maximum
- UV-erasable and reprogrammable
- Programming and operation 100% testable

Functional Description

The CY7C331 is the most versatile PLD available for asynchronous designs. Central resources include twelve full D-type flip-flops with separate set, reset, and clock capability. For increased utility, XOR gates are provided at the D -inputs and the product term allocation per flip-flop is variably distributed.

I/O Resources

Pins 1 through 7 and 9 through 14 serve as array inputs; pin 14 may also be used as a global output enable for the I/O macrocell three-state outputs. Pins 15 through 20 and 23 through 28 are connected to I/O macrocells and may be managed as inputs or outputs depending on the configuration and the macrocell OE terms.

Logic Block Diagram

Selection Guide

Generic Part Number	$\mathbf{I}_{\mathbf{C C 1}}$ (mA)		t $_{\text {PD }}$ (ns)		t $_{\mathbf{S}}$ (ns)		$\mathbf{t}_{\mathbf{C O}}$ (ns)	
	Com'l	Mil	Com'l	Mil	Com'l	Mil	Com'l	Mil
CY7C331-20	130		20		12		20	
CY7C331-25	120	160	25	25	12	15	25	25
CY7C331-30		150		30		15		30
CY7C331-40		150		40		20		40

Pin Configuration

PLCC
Top View

I/O Resources (continued)

It should be noted that there are two ground connections (pins 8 and 21) which, together with V_{CC} (pin 22) are located centrally on the package. The reason for this placement and dual-ground structure is to minimize the ground-loop noise when the outputs are driving simultaneously into a heavy capacitive load.
TheCY7C331 has twelve I/O macrocells (see Figure 1). Each macrocell has two D-type flip-flops. One is fed from the array, and one from the I/Opin. For each flip-flop there are three dedicated product terms driving the R, S, and clock inputs, respectively. Each macrocell has one input to the array and for each pair of macrocells there is one shared input to the array. The macrocell input to the array may be configured to come from the ' Q ' output of either flip-flop.

The D-type flip-flop that is fed from the array (i.e., the state flipflop) has a logical XOR function on its input that combines a single product term with a sum(OR) of a number of product terms. The single product term is used to set the polarity of the output or to implement toggling (by including the current output in the product term).
The R and S inputs to the flip-flops override the current setting of the ' Q ' output. The S input sets ' Q ' true and the R input resets ' Q ' (sets it false). If both R and S are asserted (true) at once, then the output will follow the input ('Q' = 'D') (see Table 1).

Table 1. RS Truth Table

\mathbf{R}	\mathbf{S}	\mathbf{Q}
1	0	0
0	1	1
1	1	\mathbf{D}

Shared Input Multiplexer

The input associated with each pair of macrocells may be configured by the shared input multiplexer to come from either macrocell; the 'Q' output of the flip-flop coming from the I / O pin is used as the input signal source (see Figure 2).

Product Term Distribution

The product terms are distributed to the macrocells such that 32 product terms are distributed between two adjacent macrocells.

Figure 1. I/O Macrocell

Product Term Distribution (continued)

The pairing of macrocells is the same as it is for the shared inputs. Eight of the product terms are used in each macrocell for set, reset, clock, output enable, and the upper part of the XOR gate. This leaves 16 product terms per pair of macrocells to be divided between the sum-of-products inputs to the two state registers. The following table shows the I / O pin pairing for shared inputs, and the product term (PT) allocation to macrocells associated with the I/O pins (see Table 2).
The CY7C331 is configured by three arrays of configuration bits ($\mathrm{C} 0, \mathrm{C} 1, \mathrm{C} 2$). For each macrocell, there is one C 0 bit and one C 1 bit. For each pair of macrocells there is one C 2 bit.

Table 2. Product Term Distribution

There are twelve C 0 bits, one for each macrocell. If C 0 is programmed for a macrocell, then the three-state enable (OE) will be controlled by pin 14 (the global OE). If C0 is not programmed, then the OE product term for that macrocell will be used.
Thereare twelve C 1 bits, one for each macrocell. The C 1 bit selects inputs for the product term(PT) array from either the state register (if the bit is unprogrammed) or the input register (if the bit is programmed).
There are six C 2 bits, providing one C 2 bit for each pair of macrocells. The C2 bit controls the shared input multiplexer; if the C2 bit is not programmed, then the input to the product term array comes from the upper macrocell (A). If the C 2 bit is programmed, then the input comes from the lower macrocell (B).
The timing diagrams for the CY7C331 cover state register, input register, and various combinational delays. Since internal clocks are the outputs of product terms, all timing is from the transition of the inputs causing the clock transition.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \ldots.
Ambient Temperature with
Power Applied
Supply Voltage to Ground Potential

DC Input Voltage $\ldots \ldots \ldots \ldots \ldots \ldots \ldots .$.
Output Current into Outputs (LOW) 12 mA
Static Discharge Voltage . $>1500 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
DC Programming Voltage 13.0 V

Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

Figure 2. Shared Input Multiplexer

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}\left(\text { Com' }^{\prime}\right), \mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}(\mathrm{Mil}) \end{aligned}$		2.4		V
V_{OL}	Output LOW Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}(\mathrm{Com}), \mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}(\mathrm{Mil}) \end{aligned}$			0.5	V
V_{IH}	Input HIGH Voltage	Guaranteed HIGH Input, all Inputs ${ }^{[3]}$		2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	Guaranteed LOW Input, all Inputs ${ }^{[3]}$			0.8	V
I_{IX}	Input Leakage Current	$\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {IN }}<\mathrm{V}_{\text {CC }}, \mathrm{V}_{\text {CC }}=$ Max.		-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.		-40	+40	$\mu \mathrm{A}$
$\mathrm{I}_{\text {SC }}$	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[5]}$		-30	-90	mA
$\mathrm{I}_{\mathrm{CC} 1}$	Standby Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{V}_{\mathrm{IN}}=\mathrm{GND}, \\ & \text { Outputs Open } \end{aligned}$	Com'l-20		130	mA
			Com'l -25, -35		120	
			Mil -25		160	mA
			Mil -30, -40		150	
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current at Frequency ${ }^{[4,6]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., Outputs Disabled (in High Z State) Device Operating at $\mathrm{f}_{\text {MAX }}$ External ($\mathrm{f}_{\mathrm{MAX} 1)}$	Com'l		180	mA
			Mil		200	

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$	10	pF
C OUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$	10	pF

Notes:
2. See the last page of this specification for Group A subgroup testing information.
3. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
4. Tested initially and after any design or process changes that may affect these parameters.
5. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
6. Because these input signals are controlled by product terms, active input polarity may be of either polarity. Internal active input polarity has been shown for clarity.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT (Commercial)
Equivalent to: THÉVENIN EQUIVALENT (Military)

Parameter	$\mathbf{V}_{\mathbf{X}}$	Output Waveform-Measurement Level	
$\mathrm{t}_{\text {PXZ }}(-)$	1.5 V		$\mathrm{V}_{\mathrm{X}} \quad$ с331-9
$\operatorname{tPXZ}_{\mathbf{Z}}(+)$	2.6 V		$\mathrm{V}_{\mathrm{X}} \quad$ C331-10
$\mathrm{t}_{\text {PZX }}(+)$	$\mathrm{V}_{\text {the }}$		$\mathrm{V}_{\mathrm{OH}} \quad{ }_{\text {c331-11 }}$
tPZX(-)	$\mathrm{V}_{\text {thc }}$		$\mathrm{V}_{\text {OL }} \quad$ c331-12
$t_{\text {ER (}-)}$	1.5 V		$\mathrm{V}_{\mathrm{X}} \quad$ C331-13
$\mathrm{t}_{\mathrm{ER}(+)}$	2.6 V		$\mathrm{V}_{\mathrm{X}} \quad$ C331-14
$\mathrm{t}_{\mathrm{EA}(+)}$	$\mathrm{V}_{\text {the }}$		V
$\mathrm{t}_{\mathrm{EA}(-)}$	$\mathrm{V}_{\text {thc }}$		$\mathrm{V}_{\text {OL }} \quad$ C331-16

(c) Test Waveforms and Measurement Levels

Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Commercial				Unit
		-20		-25		
		Min.	Max.	Min.	Max.	
t_{PD}	Input to Output Propagation Delay ${ }^{[7]}$		20		25	ns
$\mathrm{t}_{\mathrm{ICO}}$	Input Register Clock to Output Delay ${ }^{[8]}$		35		40	ns
$\mathrm{t}_{\mathrm{IOH}}$	Output Data Stable Time from Input Clock ${ }^{[8]}$	5		5		ns
$\mathrm{t}_{\text {IS }}$	Input or Feedback Set-Up Time to Input Register Clock ${ }^{[8]}$	2		2		ns
t_{IH}	Input Register Hold Time from Input Clock ${ }^{[8]}$	11		13		ns

CYPRESS SEMICONDUCTOR

Switching Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Parameter	Description	Commercial				Unit
		-20		-25		
		Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{IAR}}$	Input to Input Register Asynchronous Reset Delay ${ }^{[8]}$		35		40	ns
$\mathrm{t}_{\text {IRW }}$	Input Register Reset Width ${ }^{[4,8]}$	35		40		ns
$\mathrm{t}_{\text {IRR }}$	Input Register Reset Recovery Time ${ }^{[4,8]}$	35		40		ns
$\mathrm{t}_{\text {IAS }}$	Input to Input Register Asynchronous Set Delay ${ }^{[8]}$		35		40	ns
$\mathrm{t}_{\text {ISW }}$	Input Register Set Width ${ }^{[4,8]}$	35		40		ns
$\mathrm{t}_{\text {ISR }}$	Input Register Set Recovery Time ${ }^{[4,8]}$	35		40		ns
t_{W}	Input and Output Clock Width HIGH ${ }^{8,9,10]}$	12		15		ns
t_{WL}	Input and Output Clock Width LOW ${ }^{[8,9,10]}$	12		15		ns
$\mathrm{f}_{\text {MAX1 }}$	Maximum Frequency with Feedback in Input Registered Mode $\left(1 /\left(\mathrm{t}_{\mathrm{ICO}}+\mathrm{t}_{\mathrm{IS}}\right)\right)^{[11]}$	27.0		23.8		MHz
$\mathrm{f}_{\mathrm{MAX} 2}$	Maximum Frequency Data Path in Input Registered Mode (Lowest of $1 / \mathrm{t}_{\mathrm{ICO}}, 1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)$, or $1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)^{[8]}$	28.5		25.0		MHz
$\mathrm{t}_{10 \mathrm{H}} \mathrm{t}_{\mathrm{IH}} 33 \mathrm{X}$	Output Data Stable from Input Clock Minus Input Register Input Hold Time for 7C330 and 7C332 ${ }^{[12,13]}$	0		0		ns
t_{CO}	Output Register Clock to Output Delay ${ }^{[9]}$		20		25	ns
t_{OH}	Output Data Stable Time from Output Clock ${ }^{[9]}$	3		3		ns
t_{S}	Output Register Input Set-Up Time to Output Clock ${ }^{[9]}$	12		12		ns
t_{H}	Output Register Input Hold Time from Output Clock ${ }^{[9]}$	8		8		ns
$\mathrm{t}_{\text {OAR }}$	Input to Output Register Asynchronous Reset Delay ${ }^{[9]}$		20		25	ns
$\mathrm{t}_{\text {ORW }}$	Output Register Reset Width ${ }^{[9]}$	20		25		ns
$\mathrm{t}_{\text {ORR }}$	Output Register Reset Recovery Time ${ }^{[9]}$	20		25		ns
$\mathrm{t}_{\text {OAS }}$	Input to Output Register Asynchronous Set Delay ${ }^{[9]}$		20		25	ns
tosw	Output Register Set Width ${ }^{[9]}$	20		25		ns
$\mathrm{t}_{\text {OSR }}$	Output Register Set Recovery Time ${ }^{[9]}$	20		25		ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable Delay ${ }^{[14,15]}$		25		25	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable Delay $[14,15]$		25		25	ns
$\mathrm{t}_{\text {PZX }}$	Pin 14 to Output Enable Delay ${ }^{\text {[14, 15] }}$		20		20	ns
$\mathrm{t}_{\text {PXZ }}$	Pin 14 to Output Disable Delay ${ }^{[14,15]}$		20		20	ns
$\mathrm{f}_{\text {MAX3 }}$	Maximum Frequency with Feedback in Output Registered Mode $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[16,17]}$	31.2		27.0		MHz
$\mathrm{f}_{\text {MAX4 }}$	Maximum Frequency Data Path in Output Registered Mode (Lowest of $1 / \mathrm{t}_{\mathrm{CO}}, 1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)$, or $\left.1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)\right)^{[9]}$	41.6		33.3		MHz
$\mathrm{t}_{\mathrm{OH}} \mathrm{t}_{\mathrm{IH}} 33 \mathrm{X}$	Output Data Stable from Output Clock Minus Input Register Input Hold Time for 7C330 and 7C332[13, 18]	0		0		ns
$\mathrm{f}_{\text {MAX } 5}$	Maximum Frequency Pipelined Mode ${ }^{[10,17]}$	35.0		30.0		MHz

Notes:

7. Refer to Figure 3, configuration 1.
8. Refer to Figure 3, configuration 2.
9. Refer to Figure 3, configuration 3.
10. Refer to Figure 3, configuration 6.
11. Refer to Figure 3, configuration 7.
12. Refer to Figure 3, configuration 9.
13. This specification is intended to guarantee interface compatibility of the other members of the CY7C330 family with the CY7C331. This specification is met for the devices noted operating at the same ambient temperature and at the same power supply voltage. These parameters are tested periodically by sampling of production product.
14. Part (a) of AC Test Loads and Waveforms used for all parameters except $t_{P Z X I}, t_{P X Z I}, t_{P Z X}$, and $t_{P X Z}$, which use part (b). Part (c) shows the test waveforms and measurement levels.
15. Refer to Figure 3, configuration 4.
16. Refer to Figure 3, configuration 8.
17. This specification is intended to guarantee that a state machine configuration created with internal or external feedback can be operated with output register and input register clocks controlled by the same source. These parameters are tested by periodic sampling of production product.
18. Refer to Figure 3, configuration 10.

Switching Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Parameter	Description	Military						Unit
		-25		-30		-40		
		Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {PD }}$	Input to Output Propagation Delay ${ }^{[7]}$		25		30		40	ns
$\mathrm{t}_{\mathrm{ICO}}$	Input Register Clock to Output Delay ${ }^{[4, ~ 8]}$		45		50		65	ns
$\mathrm{t}_{\mathrm{IOH}}$	Output Data Stable Time from Input Clock ${ }^{[4,8]}$	5		5		5		ns
$\mathrm{t}_{\text {IS }}$	Input or Feedback Set-Up Time to Input Register Clock ${ }^{[8]}$	5		5		5		ns
t_{IH}	Input Register Hold Time from Input Clock ${ }^{[4,8]}$	13		15		20		ns
$\mathrm{t}_{\text {IAR }}$	Input to Input Register Asynchronous Reset Delay ${ }^{[4,8]}$		45		50		65	ns
$\mathrm{t}_{\text {IRW }}$	Input Register Reset Width ${ }^{[8]}$	45		50		65		ns
$\mathrm{t}_{\text {IRR }}$	Input Register Reset Recovery Time ${ }^{[8]}$	45		50		65		ns
$\mathrm{t}_{\text {IAS }}$	Input to Input Register Asynchronous Set Delay ${ }^{[8]}$		45		50		65	ns
$\mathrm{t}_{\text {ISW }}$	Input Register Set Width ${ }^{[8]}$	45		50		65		ns
$\mathrm{t}_{\text {ISR }}$	Input Register Set Recovery Time ${ }^{[8]}$	45		50		65		ns
$\mathrm{t}_{\text {WH }}$	Input and Output Clock Width High ${ }^{[8,9,10]}$	15		20		25		ns
t_{WL}	Input and Output Clock Width Low ${ }^{[8, ~ 9, ~ 10] ~}$	15		20		25		ns
$\mathrm{f}_{\text {MAX1 }}$	Maximum frequency with Feedback in Input Registered Mode $\left(1 /\left(\mathrm{t}_{\text {ICO }}+\mathrm{t}_{\text {IS }}\right)\right)^{[11]}$	20.0		18.1		14.2		MHz
$\mathrm{f}_{\text {MAX2 }}$	Maximum frequency Data Path in Input Registered Mode (Lowest of $1 / \mathrm{t}_{\mathrm{ICO}}, 1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)$, or $1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)^{[8]}$	22.2		20.0		15.3		MHz
$\mathrm{t}_{\mathrm{IOH}}{ }^{-\mathrm{t}_{1 \mathrm{H}} 33 \mathrm{X}}$	Output Data Stable from Input Clock Minus Input Register Input Hold Time for 7C330 and 7C332 ${ }^{[12,13]}$	0		0		0		ns
t_{CO}	Output Register Clock to Output Delay ${ }^{[9]}$		25		30		40	ns
t_{OH}	Output Data Stable Time from Output Clock ${ }^{[9]}$	3		3		3		ns
t_{5}	Output Register Input Set-Up Time to Output Clock ${ }^{[9]}$	15		15		20		ns
t_{H}	Output Register Input Hold Time from Output Clock ${ }^{[9]}$	10		10		12		ns
toAR	Input to Output Register Asynchronous Reset Delay ${ }^{[9]}$		25		30		40	ns
torw	Output Register Reset Width ${ }^{[9]}$	25		30		40		ns
torr	Output Register Reset Recovery Time ${ }^{[9]}$	25		30		40		ns
toAs	Input to Output Register Asynchronous Set Delay ${ }^{[9]}$		25		30		40	ns
tosw	Output Register Set Width ${ }^{\text {[9] }}$	25		30		40		ns
tosR	Output Register Set Recovery Time ${ }^{[9]}$	25		30		40		ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable Delay ${ }^{[14,15]}$		25		30		40	ns
ter	Input to Output Disable Delay ${ }^{[14,15]}$		25		30		40	ns
tPZX	Pin 14 to Output Enable Delay ${ }^{[14,15]}$		20		25		35	ns
$\mathrm{t}_{\text {PXZ }}$	Pin 14 to Output Disable Delay ${ }^{[14,15]}$		20		25		35	ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency with Feedback in Output Registered Mode $) 1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)^{[16,17]}$	25.0		22.2		16.6		MHz
$\mathrm{f}_{\text {MAX4 }}$	Maximum Frequency Data Path in Output Registered Mode (Lowest of $1 / \mathrm{t}_{\mathrm{CO}}, 1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)$, or $1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)^{[9]}$	33.3		25.0		20.0		MHz
$\mathrm{tOH}^{-\mathrm{t}_{\mathrm{IH}}} 33 \mathrm{X}$	Output Data Stable from Output Clock Minus Input Register Input Hold Time for 7C330 and 7C332[13, 18]	0		0		0		ns
$\mathrm{f}_{\text {MAX } 5}$	Maximum Frequency Pipelined Mode ${ }^{[10,17]}$	28.0		23.5		18.5		MHz

Switching Waveforms

Notes:

19. Output register is set in Transparent mode. Output register set and reset inputs are in a HIGH state.
20. Dedicated input or input register set in Transparent mode. Input register set and reset inputs are in a HIGH state.
21. Combinatorial Mode. Reset and set inputs of the input and output registers should remain in a HIGH state at least until the output responds at tPD. When returning set and reset inputs to a LOW state, one of these signals should go LOW à miñiunuini of tosR (́set inpuí) or tor or (reset input) prior to the other. This guarantees predictable register states upon exit from Combinatorial mode.
22. When entering the Combinatorial mode, input and output register set and reset inputs must be stable in a HIGH state a minimum of $t_{I S R}$ or $\mathrm{t}_{\text {IRR }}$ and $\mathrm{t}_{\mathrm{OSR}}$ or torR respectively prior to application of logic input signals.
23. When returning to the input and/or output Registered mode, register set and reset inputs must be stable in a LOW state a minimum of $\mathrm{t}_{\text {ISR }}$ or $t_{I R R}$ and $t_{O S R}$ or $t_{O R R}$ respectively prior to the application of the registé clơck ínpūt.
24. Refer to Figure 3, configuration 5.

CONFIGURATION 1

Figure 3. Timing Configurations

CONFIGURATION 7

CONFIGURATION 8

CONFIGURATION 9

CONFIGURATION 10

Figure 3. Timing Configurations (continued)

CY7C331 Logic Diagram (Upper Half)

SEMICONDUCTOR

Ordering Information

$\begin{aligned} & \mathbf{I}_{(\mathrm{CC1}} \end{aligned}$	$\mathrm{t}_{\mathrm{n} \mathbf{n s})}$	$\begin{gathered} \mathbf{t}_{\mathbf{S}} \\ \text { (ns) } \end{gathered}$	$\begin{aligned} & \hline \mathbf{t}_{\mathrm{CO}} \\ & \text { (ns) } \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
130	20	12	20	CY7C331-20HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
				CY7C331-20JC	J64	28-Lead Plastic Leaded Chip Carrier	
				CY7C331-20PC	P21	28-Lead (300-Mil) Molded DIP	
				CY7C331-20WC	W22	28 -Lead (300-Mil) Windowed CerDIP	
160	25	15	25	CY7C331-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
				CY7C331-25HMB	H64	28-Pin Windowed Leaded Chip Carrier	
				CY7C331-25LMB	L64	28-Square Leadless Chip Carrier	
				CY7C331-25QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
				CY7C331-25TMB	T74	28-Lead Windowed Cerpack	
				CY7C331-25WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
120	25	12	25	CY7C331-25HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
				CY7C331-25JC	J64	28-Lead Plastic Leaded Chip Carrier	
				CY7C331-25PC	P21	28-Lead ($300-\mathrm{Mil}$) Molded DIP	
				CY7C331-25WC	W22	28-Lead (300-Mil) Windowed CerDIP	
150	30	15	30	CY7C331-30DMB	D22	28-Lead (300-Mil) CerDIP	Military
				CY7C331-30HMB	H64	28-Pin Windowed Leaded Chip Carrier	
				CY7C331-30LMB	L64	28-Square Leadless Chip Carrier	
				CY7C331-30QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
				CY7C331-30TMB	T74	28-Lead Windowed Cerpack	
				CY7C331-30WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
150	40	20	40	CY7C331-40DMB	D22	28-Lead (300-Mil) CerDIP	Military
				CY7C331-40HMB	H64	28-Pin Windowed Leaded Chip Carrier	
				CY7C331-40LMB	L64	28-Square Leadless Chip Carrier	
				CY7C331-40QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
				CY7C331-40TMB	T74	28-Lead Windowed Cerpack	
				CY7C331-40WMB	W22	28-Lead (300-Mil) Windowed CerDIP	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{IS}	$9,10,11$
t_{IH}	$9,10,11$
t_{WH}	$9,10,11$
t_{WL}	$9,10,11$
t_{CO}	$9,10,11$
t_{PD}	$9,10,11$
$\mathrm{t}_{\mathrm{IAR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{IAS}}$	$9,10,11$
$\mathrm{t}_{\mathrm{PXZ}}$	$9,10,11$
$\mathrm{t}_{\mathrm{PZX}}$	$9,10,11$
t_{ER}	$9,10,11$
t_{EA}	$9,10,11$
t_{S}	$9,10,11$
t_{H}	$9,10,11$

Document \#: 38-00066-C

Registered Combinatorial EPLD

Features

- 12 I/O macrocells each having:
- Registered, latched, or transparent array input
- A choice of two clock sources
-Global or local output enable (OE)
- Up to 19 product terms (PTs) per output
- Product term (PT) output polarity control
- 192 product terms with variable distribution to macrocells
-An average of 14 PTs per macrocell sum node
- Two clock inputs with configurable polarity control
- 13 input macrocells, each having:
- Complementary input
- Register, latch, or transparent access
-Two clock sources
- $15 \mathbf{n s}_{\text {tPD }}$ max.
- Low power
-120 mA typical $\mathrm{I}_{\mathbf{C C}}$ quiescent
- 180 mA max.
—Power-saving "Miser Bit" feature
- Security fuse
- 28-pin slim-line package; also available in 28-pin PLCC
- UV-erasable and reprogrammable
- Programming and operation $\mathbf{1 0 0 \%}$ testable

Functional Description

The CY7C332 is a versatile combinatorial PLD with I/O registers on-board. There are 25 array inputs; each has a macrocell that may be configured as a register, latch, or simple buffer. Outputs have polarity and three-state control product terms. The allocation of product terms to I/O macrocells is varied so that functions of up to 19 product terms can be accommodated.

I/O Resources

Pins 1 through 7 and 9 through 14 function as dedicated array inputs. Pins 1 and 2 function as input clocks as well as normal inputs. Pin 14 functions as a global output enable as well as a normal input.

Selection Guide

Generic Part Number	$\mathrm{I}_{\mathbf{C C 1}}(\mathrm{mA})$		$\mathbf{t}_{\text {ICO }} / \mathrm{t}_{\text {PD }}$ (ns)		$\mathbf{t I S}_{\text {IS }}$ (ns)	
	Commercial	Military	Commercial	Military	Commercial	Military
7C332-15	130		18/15		3	
7C332-20	120	160	20	23/20	3	4
7C332-25	120	150	25	25	3	4
7C332-30		150		30		4

[^42]
Features

- $\mathbf{1 0 0}-\mathbf{M H z}$ output registered operation
- Twelve I/O macrocells, each having:
- Registered, three-state I/O pins
- Input and output register clock select multiplexer
- Feed back multiplexer
- Output enable ($\overline{\mathrm{OE}}$) multiplexer
- Bypass on input and output registers
- All twelve macrocell state registers can be hidden
- User configurable I/O macrocells to implement JK or RS flip-flops and T or D registers
- Input multiplexer per pair of I/O macrocells allows I/O pin associated with a hidden macrocell state register to be saved for use as an input
- Four dedicated hidden registers
- Twelve dedicated registered inputs with individually programmable bypass option
- Three separate clocks-two input clocks, two output clocks
- Common (pin 14-controlled) or product term-controlled output enable for each I/O pin
- 256 product terms- $\mathbf{3 2}$ per pair of macrocells, variable distribution
- Global, synchronous, product term controlled, state register set and re-set-inputs to product term are clocked by input clock
- 2-ns input set-up and 9-ns output register clock to output
- 10-ns input register clock to state register clock
- 28-pin, 300-mil DIP, LCC, PLCC
- Erasable and reprogrammable
- Programmable security bit

Functional Description

The CY7C335 is a high-performance, erasable, programmable logic device (EPLD) whose architecture has been optimized to enable the user to easily and efficiently
construct very high performance state machines.
The architecture of the CY7C335, consisting of the user-configurable output macrocell, bidirectional I/O capability, input registers, and three separate clocks, enables the user to design high-performance state machines that can communicate either with each other or with microprocessors over bidirectional parallel buses of userdefinable widths.
The four clocks permit independent, synchronous state machines to be synchronized to each other.
The user-configurable macrocells enable the designer to designate JK-, RS-, T-, or D-type devices so that the number of product terms required to implement the logic is minimized.
The CY7C335 is available in a wide variety of packages including 28 -pin, 300 -mil plastic and ceramic DIPs, PLCCs, and LCCs.

Logic Block Diagram

Pin Configurations

Selection Guide

		CY7C335-100	CY7C335-83	CY7C335-66	CY7C335-50	CY7C335-40
Maximum Operating Frequency (MHz)	Commercial	100	83.3	66.6	50	
	Military		83.3	66.6	50	40.0
	Commercial	140	140	140	140	
	Military		160	160	160	160

Architecture Configuration Bits

The architecture configuration bits are used to program the multiplexers. The function of the architecture bits is outlined in Table 1.

Table 1. Architecture Configuration Bits

Architecture Configuration Bit		Number of Bits	Value	Function
C0	Output Enable Select MUX	12 Bits, 1 Per I/O Macrocell	0-Virgin State	Output Enable Controlled by Product Term
			1-Programmed	Output Enable Controlled by Pin 14
C1	State Register Feed Back MUX	12 Bits, 1 Per I/O Macrocell	0-Virgin State	State Register Output is Fed Back to Input Array
			1--Programmed	I/O Macrocell is Configured as an Input and Output of Input Path is Fed to Array
C2	I/O Macrocell Input Register Clock Select MUX	12 Bits, 1 Per I/O Macrocell	0-Virgin State	ICLK1 Controls the Input Register I/O Macrocell Input Register Clock Input
			1-Programmed	ICLK2 Controls the Input Register I/O Macrocell Input Register Clock Input
C3	Input Register Bypass MUXI/O Macrocell	12 Bits, 1 Per I/O Macrocell	0-Virgin State	Selects Input to Feedback MUX from Input Register
			1-Programmed	Selects Input to Feedback MUX from I/O pin
C4	Output Register Bypass MUX	12 Bits, 1 Per I/O Macrocell	0-Virgin State	Selects Output from the State Register
			1-Programmed	Selects Output from the Array, Bypassing the State Register
C5	State Clock MUX	16 Bits, 1 Per I/O Macrocell and 1 Per Hidden Macrocell	0-Virgin State	State Clock 1 Controls the State Register
			1—Programmed	State Clock 2 Controls the State Register
C6	Dedicated Input Register Clock Select MUX	12 Bits, 1 Per Dedicated Input Cell	0-Virgin State	ICLK1 Controls the Input Register I/O Macrocell Dedicated Input Register Clock Input
			1-Programmed	ICLK2 Controls the Input Register I/O Macrocell Dedicated Input Register Clock Input

Table 1. Architecture Configuration Bits (continued)

Architecture Configuration Bit		Number of Bits	Value	Function
C7	Input Register Bypass MUX- Input Cell	12 Bits, 1 Per Dedicated Input Cell	0-Virgin State	Selects Input to Array from Input Register
			1-Programmed	Selects Input to Array from Input Pin
C8	ICLK2 Select MUX	1 Bit	0-Virgin State	Input Clock 2 Controlled by Pin 2
			1-Programmed	Input Clock 2 Controlled by Pin 3
C9	ICLK1 Select MUX	1 Bit	0 -Virgin State	Input Clock 1 Controlled by Pin 2
			1-Programmed	Input Clock 1 Controlled by Pin 1
C10	SCLK2 Select MUX	1 Bit	0-Virgin State	State Clock 2 Grounded
			1-Programmed	State Clock 2 Controlled by Pin 3
$\begin{gathered} \mathrm{CX} \\ (11-16) \end{gathered}$	I/O Macrocell Pair Input Select MUX	6 Bits, 1 Per I/O Macrocell Pair	0 -Virgin State	Selects Data from I/O Macrocell Input Path of Macrocell A of Macrocell Pair
			1-Programmed	Selects Data from I/O Macrocell Input Path of Macrocell B of Macrocell Pair

Figure 1. CY7C335 Input Macrocell

Figure 2. CY7C335 Input/Output Macrocell

Figure 3. CY7C335 Hidden Macrocell

Figure 4. CY7C335 Input Clocking Scheme

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature

$$
-65^{\circ} \mathrm{C} \text { to }+150^{\circ} \mathrm{C}
$$

Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential

DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (Low) 12 mA

Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
DC Programming Voltage . 13.0V
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Min.	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{OUT}}=2.0 \mathrm{~V} @ \mathrm{f}=1 \mathrm{MHz}$		10	pF

Notes:

1. t_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by ground degradation.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms (Commercial)

(c) Thévenin Equivalent (Load 1)

(b)

(d) Three-state Delay Load (Load 2)

Parameter	$\mathbf{V}_{\mathbf{X}}$	Output Waveform-Measurement Level	
$t_{\text {PXZ }}(-)$	1.5 V		$\mathrm{V}_{\mathrm{X}} \quad$ c335-12
${ }_{\text {tPXZ }}(+)$	2.6 V	$\mathrm{V}_{\mathrm{OL}} \xrightarrow{0.5 \mathrm{~V} \frac{1}{4}}$	$\mathrm{V}_{\mathrm{X}} \quad{ }_{\text {c335-13 }}$
$\mathrm{t}_{\text {PZX }}(+)$	$\mathrm{V}_{\text {th }}$	$\mathrm{V}_{\mathrm{X}} \xrightarrow{0.5 \mathrm{~V}+\frac{\downarrow}{4}}$	$\mathrm{V}_{\mathrm{OH}}{ }_{\text {C335-14 }}$
$\mathrm{t}_{\text {PZX }}(-)$	$\mathrm{V}_{\text {th }}$	$V_{X} \xrightarrow[0.5 \mathrm{~V}]{\frac{1}{4}}$	VOL C335-15
${ }_{\text {t }}^{\text {CER }}$ (-)	1.5 V		$\mathrm{V}_{\mathrm{X}} \quad$ c335-16
${ }^{\text {t }}$ CER $(+)$	2.6 V	$\mathrm{V}_{\mathrm{OL}} \xrightarrow{0.5 \mathrm{~V} \frac{\downarrow}{4}+\infty}$	$\mathrm{VX}_{\mathrm{X}} \quad$ c335-17
$\mathrm{t}_{\text {CEA }}(+)$	$\mathrm{V}_{\text {th }}$	$\mathrm{V}_{\mathrm{X}}-0.5 \mathrm{~V} \frac{\downarrow}{4}$	$\mathrm{VOH}_{\text {C335-18 }}$
$\mathrm{t}_{\text {CEA }}(-)$	$\mathrm{V}_{\text {th }}$		VOL ${ }_{\text {O335-19 }}$

Figure 5. Test Waveforms

Commercial AC Characteristics

Parameter	Description	7C335-100		7C335-83		7C335-66		7C335-50		Unit
		$\overline{\mathrm{Min}}$.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Combinatorial Mode Parameters										
tPD	Input to Output Propagation Delay		15		15		20		25	ns
teA	Input to Output Enable		15		15		20		25	ns
ter	Input to Output Disable		15		15		20		25	ns
Input Registered Mode Parameters										
t_{WH}	Input and Output Clock Width HiGH ${ }^{\text {[5] }}$	4		5		6		8		ns
$t_{\text {WL }}$	Input and Output Clock Width LOW ${ }^{[5]}$	4		5		6		8		ns
$\mathrm{t}_{\text {IS }}$	Input or Feedback Set-Up Time to Input Clock	2		2		2		3		ns
t_{IH}	Input Register Hold Time from Input Clock	2		2		2		3		ns
$\mathrm{t}_{\mathrm{ICO}}$	Input Register Clock to Output Delay		18		18		20		25	ns
$\mathrm{t}_{\mathrm{IOH}}$	Output Data Stable Time from Input Clock	3		3		3		3		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{IOH}}-\mathrm{t}_{\mathrm{IH}} \\ & 33 \mathrm{x} \end{aligned}$	Output Data Stable from Input Clock Minus Input Register Hold Time for 7C330, 7C332, and 7C335 [6]	0		0		0		0		ns
$\mathrm{t}_{\text {PZX }}$	Pin 14 Enable to Output Enabled		12		12		15		20	ns
$\mathrm{t}_{\text {PXZ }}$	Pin 14 Disable to Output Disabled		12		12		15		20	ns
$\mathrm{f}_{\text {MAX1 }}$	Maximum Frequency of (2) CY7C335s in Input Registered Mode (Lowest of $\left.1 /\left(\mathrm{t}_{\mathrm{ICO}}+\mathrm{t}_{\mathrm{IS}}\right) \& 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)\right)^{[5]}$	50		50		45.4		35.7		MHz
$\mathrm{f}_{\text {MAX2 }}$	Maximum Frequency Data Path in Input Registered Mode (Lowest of ($\left.1 /\left(\mathrm{t}_{\mathrm{ICO}}\right), 1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right), 1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)\right)^{[5]}$	55.5		55.5		50		40		MHz
$\mathrm{t}_{\text {ICEA }}$	Input Clock to Output Enabled		17		17		20		25	ns
ticer	Input Clock to Output Disabled		15		15		20		25	ns
Output Registered Mode Parameters										
tCEA	Output Clock to Output Enabled ${ }^{51}$		17		17		20		25	ns
$\mathrm{t}_{\text {CER }}$	Output Clock to Output Disabled ${ }^{51}$		15		15		20		25	ns
$\mathrm{t}_{\text {S }}$	Output Register Input Set-Up Time from Output Clock	8		9		12		15		ns
t_{H}	Output Register Input Hold Time from Output Clock	0		0		0		0		ns
t_{CO}	Output Register Clock to Output Delay		9		10		12		15	ns
${ }^{\text {t }} \mathrm{CO} 2$	Input Output Register Clock or Latcha Enable to Combinatorial Output Delay (Through Logic Array) ${ }^{[5]}$		17		18		23		30	ns
t_{OH}	Output Data Stable Time from Output Clock	2		2		2		2		ns
$\mathrm{t}_{\mathrm{OH} 2}$	Output Data Stable Time From Output Clock (Through Memory Array) ${ }^{[5]}$	3		3		3		3		ns
$\mathrm{t}_{\mathrm{OH} 2}{ }^{-\mathrm{t}_{\mathrm{IH}}}$	Output Data Clock Stable Time From Output Clock Minus Input Register Hold Time ${ }^{\text {[5] }}$	0		0		0		0		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency with Internal Feedback in Output Registered Mode ${ }^{[5]}$	100		83.3		66.6		50		$\overline{\mathrm{MHz}}$
$\mathrm{f}_{\text {MAX } 4}$	Maximum Frequency of (2)CY7C335s in Output Registered Mode (Lowest of $\left.1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right) \& 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)\right)^{[5]}$	58.8		50		41.6		33.3		$\overline{\mathrm{MHz}}$
$\mathrm{f}_{\text {MAX } 5}$	Maximum Frequency Data Path in Output Registered Mode (Lowest of $\left.1 /\left(\mathrm{t}_{\mathrm{CO}}\right), 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)\right)^{[5]}$	111		100		83.3		62.5		$\overline{\mathrm{MHz}}$
$\begin{aligned} & \mathrm{t}_{\mathrm{OH}}-\mathrm{t}_{\mathrm{IH}} \end{aligned}$	OutputData Stable from Output Clock Minus Input Register Hold Time for 7C330, 7C332, and 7C335[6]	0		0		0		0		ns

Commercial AC Characteristics (continued)

Parameter	Description	7C335-100		7C335-83		7C335-66		7C335-50		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Pipelined Mode Parameters										
$\mathrm{t}_{\mathrm{COS}}$	Input Clock to Output Clock	10		12		15		20		ns
$\mathrm{f}_{\text {MAX6 }}$	Maximum Frequency Pipelined Mode (Lowest of $\left.1 /\left(\mathrm{t}_{\mathrm{COS}}\right), 1 /\left(\mathrm{t}_{\mathrm{CO}}\right), 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)\right), 1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)^{[5]}$	100		83.3		66.6		50		$\overline{\mathrm{MHz}}$
$\mathrm{f}_{\mathrm{MAX} 7}$	Maximum Frequency of (2)CY7C335s in Pipelined Mode (Lowest of $1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{IS}}\right)$ or $1 / \mathrm{t}_{\mathrm{COS}}$)	90.9		83.3		66.6		50		MHz
Power-Up Reset Parameters										
tPOR	Power-Up Reset Time ${ }^{\text {[5, 7] }}$		1		1		1		1	$\mu \mathrm{s}$

Military/Industrial AC Characteristics

Parameter	Description	7C335-83		7C335-66		7C335-50		7C335-40		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Combinatorial Mode Parameters										
$\mathrm{t}_{\text {PD }}$	Input to Output Propagation Delay		20		20		25		30	ns
t_{EA}	Input to Output Enable		20		20		25		30	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable		20		20		25		30	ns

Input Registered Mode Parameters

twh	Input and Output Clock Width HIGH ${ }^{[5]}$	5		6		8		10		ns
t_{WL}	Input and Output Clock Width LOW ${ }^{[5]}$	5		6		8		10		ns
$\mathrm{t}_{\text {IS }}$	Input or Feedback Set-Up Time to Input Clock	3		3		3		4		ns
t_{IH}	Input Register Hold Time from Input Clock	3		3		3		4		ns
$\mathrm{t}_{\mathrm{ICO}}$	Input Register Clock to Output Delay		23		23		25		30	ns
$\mathrm{t}_{\mathrm{IOH}}$	Output Data Stable Time from Input Clock	3		3		3		3		ns
$\underset{33 \mathrm{x}}{\mathrm{t}_{\mathrm{IOH}}}-\mathrm{t}_{\mathrm{IH}}$	Output Data Stable from Input Clock Minus Input Register Hold Time for 7C330, 7C332, and 7C335[6]	0		0		0		0		ns
$\mathrm{t}_{\text {PZX }}$	Pin 14 Enable to Output Enabled		15		15		20		30	ns
$\mathrm{t}_{\text {PXZ }}$	Pin 14 Disable to Output Disabled		15		15		20		30	ns
$\mathrm{f}_{\text {MAX1 }}$	Maximum Frequency of (2) CY7C335s in Input Registered Mode (Lowest of $1 /\left(\mathrm{t}_{\mathrm{ICO}}+\mathrm{t}_{\mathrm{IS}}\right) \&$ $\left.1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)\right)^{[5]}$	38.4		38.4		35.7		29.4		MHz
$\mathrm{f}_{\text {MAX2 }}$	Maximum Frequency Data Path in Input Registered Mode (Lowest of $\left(1 /\left(\mathrm{t}_{\mathrm{ICO}}\right), 1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)\right.$, $\left.1 /\left(\mathrm{t}_{\text {IS }}+\mathrm{t}_{\mathrm{IH}}\right)\right)^{[5]}$	43.4		43.4		40		33.3		MHz
$\mathrm{t}_{\text {ICEA }}$	Input Clock to Output Enabled		20		20		25		30	ns
ticer	Input Clock to Output Disabled		20		20		25		30	ns

Output Registered Mode Parameters

$\mathrm{t}_{\text {CEA }}$	Output Clock to Output Enabled [5]		20		20		25		30	ns
$\mathrm{t}_{\mathrm{CER}}$	Output Clock to Output Disabled $[5]$		20		20		25		30	ns
t_{S}	Output Register Input Set-Up Time to Output Clock	10		12		15		20		ns
$\mathrm{t}_{\mathbf{H}}$	Output Register Input Hold Time from Output Clock	0		0		0		0		ns
t_{CO}	Output Register Clock to Output Delay		11		12		15		20	ns
$\mathrm{t}_{\mathrm{CO} 2}$	Output Register Clockor LatchEnabletoC Combinatorial Output Delay (Through Logic Array) $[5]$		22		23		30		35	ns

Notes:

6. This specification is intended to guarantee interface compatibility of the other members of the CY7C330 family with the CY7C335. This specification is met for the devices operating at the same ambient temperature and at the same power supply voltage.
7. This part has beeñ designed with the capability to reset during sysiem power-up. Following power-up, the input and output registers will be reset to a logic LOW state. The output state will depend on how the array is programmed.

Military/Industrial AC Characteristics (continued)

Parameter	Description	7C335-83		7C335-66		7C335-50		7C335-40		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{OH}	Output Data Stable Time from Output Clock	2		2		2		2		ns
$\mathrm{t}_{\mathrm{OH} 2}$	Output Data Stable Time From Output Clock (Through Memory Array) ${ }^{[5]}$	3		3		3		3		ns
$\mathrm{t}_{\mathrm{OH} 2}{ }^{-\mathrm{t}_{\mathrm{IH}}}$	Output Data Clock Stable Time From Output Clock Minus Input Register Hold Time ${ }^{[5]}$	0		0		0		0		ns
$\mathrm{f}_{\text {MAX3 }}$	Maximum Frequency with Internal Feedback in Output Registered Mode ${ }^{[5]}$	83.3		66.6		50		40		MHz
$\mathrm{f}_{\mathrm{MAX} 4}$	Maximum Frequency of (2) CY7C335s in Output Registered Mode (Lower of $\left.1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{s}}\right) \& 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)\right)^{[5]}$	47.6		41.6		33.3		25		MHz
$\mathrm{f}_{\text {MAX } 5}$	Maximum Frequency Data Path in Output Registered Mode (Lowest of $\left.1 /\left(\mathrm{t}_{\mathrm{CO}}\right), 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)\right)^{[5]}$	90.9		83.3		62.5		50		MHz
$\begin{aligned} & \mathrm{t}_{\mathrm{OH}}-\mathrm{t}_{\mathrm{IH}} \\ & \hline 3 \mathrm{x} \end{aligned}$	Output Data Stable from Output Clock Minus Input Register Hold Time for 7C330, 7C332, and 7C335[6]	0		0		0		0		ns
Pipelined Mode Parameters										
$\mathrm{t}_{\mathrm{COS}}$	Input Clock to Output Clock	12		15		20		25		ns
$\mathrm{f}_{\text {MAX6 }}$	Maximum Frequency Pipelined Mode (Lowest of $1 /\left(\mathrm{t}_{\mathrm{COS}}\right), 1 /\left(\mathrm{t}_{\mathrm{IS}}\right)$, or $\left.1 /\left(\mathrm{t}_{\mathrm{CO}}\right)\right), 1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)^{[5]}$	83.3		66.6		50		40		MHz
$\mathrm{f}_{\mathrm{MAX} 7}$	Maximum Frequency of (2) CY7C335s in Pipelined Mode (Lowest of $1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{IS}}\right)$ or $1 / \mathrm{t}_{\mathrm{COS}}$)	71.4		66.6		50		40		MHz
Power-Up Reset Parameters										
$\mathrm{t}_{\text {POR }}$	Power-Up Reset Time ${ }^{[5,7]}$		1		1		1		1	$\mu \mathrm{s}$

Pipelined Mode Parameters

Switching Waveform

Power-Up Reset Waveform ${ }^{[7]}$

Block Diagram (Page 1 of 2)

Block Diagram (Page 2 of 2)

Ordering Information

$\mathbf{f}_{\text {MAX }}$ (MHz)	$\begin{aligned} & \mathrm{ICCl}_{(\mathrm{CCl}}^{(\mathrm{mA})} \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
100	140	CY7C335-100HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
		CY7C335-100JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C335-100PC	P21	28-Lead (300-Mil) Molded DIP	
		CY7C335-100WC	W22	28-Lead (300-Mil) Windowed CerDIP	
83.3	160	CY7C335-83DI	D22	28 -Lead (300-Mil) CerDIP	Industrial
		CY7C335-83HI	H64	28-Pin Windowed Leaded Chip Carrier	
		CY7C335-83PI	P21	28-Lead (300-Mil) Molded DIP	
		CY7C335-83WI	W22	28-Lead (300-Mil) Windowed CerDIP	
		CY7C335-83DMB	D22	28-Lead (300-Mil) CerDIP	Military
		CY7C335-83HMB	H64	28-Pin Windowed Leaded Chip Carrier	
		CY7C335-83LMB	L64	28-Square Leadless Chip Carrier	
		CY7C335-83QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C335-83WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
83.3	140	CY7C335-83HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
		CY7C335-83JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C335-83PC	P21	28-Lead (300-Mil) Molded DIP	
		CY7C335-83WC	W22	28 -Lead (300-Mil) Windowed CerDIP	
66.6	160	CY7C335-66DI	D22	28-Lead (300-Mil) CerDIP	Industrial
		CY7C335-66HI	H64	28-Pin Windowed Leaded Chip Carrier	
		CY7C335-66PI	P21	28 -Lead (300-Mil) Molded DIP	
		CY7C335-66WI	W22	28 -Lead (300-Mil) Windowed CerDIP	
		CY7C335-66DMB	D22	28-Lead (300-Mil) CerDIP	Military
		CY7C335-66HMB	H64	28-Pin Windowed Leaded Chip Carrier	
		CY7C335-66LMB	L64	28-Square Leadless Chip Carrier	
		CY7C335-66QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C335-66WMB	W22	28 -Lead ($300-\mathrm{Mil}$) Windowed CerDIP	
66.6	140	CY7C335-66HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
		CY7C335-66JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C335-66PC	P21	28-Lead (300-Mil) Molded DIP	
		CY7C335-66WC	W22	28 -Lead (300-Mil) Windowed CerDIP	
50	140	CY7C335-50HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
		CY7C335-50JC	J64	28-Lead Plastic Leaded Chip Carrier	
		CY7C335-50PC	P21	28-Lead (300-Mil) Molded DIP	
		CY7C335-50WC	W22	28-Lead (300-Mil) Windowed CerDIP	

Ordering Information (continued)

$\begin{gathered} \mathbf{f}_{\text {MAX }} \\ (\mathbf{M H z}) \end{gathered}$	$\begin{aligned} & \hline \mathbf{I}_{\mathbf{C C 1}} \\ & (\mathrm{mA}) \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
50	160	CY7C335-50DI	D22	28-Lead (300-Mil) CerDIP	Industrial
		CY7C335-50HI	H64	28-Pin Windowed Leaded Chip Carrier	
		CY7C335-50PI	P21	28-Lead (300-Mil) Molded DIP	
		CY7C335-50WI	W22	28-Lead (300-Mil) Windowed CerDIP	
		CY7C335-50DMB	D22	28-Lead (300-Mil) CerDIP	Military
		CY7C335-50HMB	H64	28-Pin Windowed Leaded Chip Carrier	
		CY7C335-50LMB	L64	28-Square Leadless Chip Carrier	
		CY7C335-50QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C335-50WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
40	160	CY7C335-40DI	D22	28-Lead (300-Mil) CerDIP	Industrial
		CY7C335-40HI	H64	28-Pin Windowed Leaded Chip Carrier	
		CY7C335-40PI	P21	28-Lead (300-Mil) Molded DIP	
		CY7C335-40WI	W22	28-Lead (300-Mil) Windowed CerDIP	
		CY7C335-40DMB	D22	28-Lead (300-Mil) CerDIP	Military
		CY7C335-40HMB	H64	28-Pin Windowed Leaded Chip Carrier	
		CY7C335-40LMB	L64	28-Square Leadless Chip Carrier	
		CY7C335-40QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C335-40WMB	W22	28-Lead (300-Mil) Windowed CerDIP	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{PD}	$9,10,11$
$\mathrm{t}_{\mathrm{ICO}}$	$9,10,11$
t_{IS}	$9,10,11$
t_{CO}	$9,10,11$
t_{S}	$9,10,11$
t_{H}	$9,10,11$
$\mathrm{t}_{\mathrm{COS}}$	$9,10,11$

Document \#: 38-00186-C

Features

- Erasable, user-configurable CMOS EPLDs capable of implementing highdensity custom logic functions
- 0.8-micron double-metal CMOS EPROM technology (CY7C34X)
- Advanced 0.65-micron CMOS technology to increase performance (CY7C34XB)
- Multiple Array Matrix architecture optimized for speed, density, and straightforward design implementation
- Programmable Interconnect Array (PIA) simplifies routing
- Flexible macrocells increase utilization
- Programmable clock control
- Expander product terms implement complex logic functions
- Warp2
— Low-cost VHDL compiler for PLDs
— IEEE 1076-compliant VHDL
- Available on PC and Sun platforms
- Warp3
- VHDL synthesis
- ViewLogic graphical user interface
- Schematic capture (ViewDraw)

- VHDL simulation (ViewSim)
 - Available on PC and Sun platforms

General Description

The Cypress Multiple Array Matrix (MAX®) family of EPLDs provides a user-configurable, high-density solution to general-purpose logic integration requirements. With the combination of innovative architecture and state-of-theart process, the MAX EPLDs offer LSI density without sacrificing speed.
The MAX architecture makes it ideal for replacing large amounts of TTL SSI and MSI logic. For example, a 74161 counter utilizes only 3% of the 128 macrocells available in the CY7C342. Similarly, a 741518 -to- 1 multiplexer consumes less than 1% of the over 1,000 product terms in the CY7C342. This allows the designer to replace 50 or more TTL packages with just one MAX EPLD. The family comes in a range of densities, shown below. By standardizing on a few MAX building blocks, the designer can replace hundreds of different 7400 series part numbers currently used in most digital systems.
The family is based on an architecture of flexible macrocells grouped together into Logic Array Blocks (LABs). Within the

LAB is a group of additional product terms called expander product terms. These expanders are used and shared by the macrocells, allowing complex functions of up to 35 product terms to be easily implemented in a single macrocell. A Programmable Interconnect Array (PIA) globally routes all signals within devices containing more than one LAB. This architecture is fabricated on the Cypress 0.8 -micron, double-layer-metal CMOS EPROM process, yielding devices with significantly higher integration, density and system clockspeed than the largest of previous generation EPLDs. The CY7C34XB devices are 0.65 -micron shrinks of the original $0.8-\mathrm{mi}$ cron family. The CY7C34XBs offer faster speed bins for each device in the Cypress MAX family.
The density and performance of the CY7C340 family is accessed using Cypress's Warp 2 and Warp 3 design software. Warp 2 provides state-of-the-art VHDL synthesis for MAX at a very low cost. Warp 3 is a sophisticated CAE tool that includes schematic capture (ViewDraw) and timing simulation (ViewSim) in addition to VHDL synthesis. Consult the Warp 2 and Warp 3 datasheets for more information about the development tools.

Max Family Members

Feature	CY7C344(B)	CY7C343(B)	CY7C342(B)	CY7C341(B)
Macrocells	32	64	128	192
MAX Flip-Flops	32	64	128	192
MAX Latches ${ }^{[1]}$	64	128	256	384
MAX Inputs ${ }^{[2]}$	23	35	59	71
MAX Outputs	16	28	52	64
Packages	28H,J,W,D	$44 \mathrm{H}, \mathrm{J}$	$68 \mathrm{H}, \mathrm{J}, \mathrm{R}, \mathrm{G}$	$84 \mathrm{H}, \mathrm{J}, \mathrm{R}, \mathrm{G}$

Key: D——DIP; G—Pin Grid Array; H—Windowed Ceramic Leaded Chip Carrier; J—J-Lead Chip Carrier; R_-Windowed Pin Grid Array; W-Windowed Ceramic DIP

Notes:

1. When all expander product terms are used to implement latches. 2. With one output.

PAL is a registered trademark of Monolithic Memories Inc.
MAX is a registered trademark of Altera Corporation.
IBM and IBM PC/AT are registered trademarks of International Business Machines Corporation.
Warp 2 and Warp 3 are trademarks of Cypress Semiconductor Corporation.
ViewDraw and ViewSim are registered trademarks of ViewLogic Corporation.

Figure í. Key iniax Features

Functional Description

The Logic Array Block

The logic array block, shown in Figure 2, is the heart of the MAX architecture. It consists of a macrocell array, expander product term array, and an I/O block. The number of macrocells, expanders, and I/O vary, depending upon the device used. Global feedback of all signals is provided within a LAB, giving each functional block complete access to the LAB resources. The LAB itself is fed by the programmable interconnect array and dedicated input bus. The feedbacks of the macrocells and I/O pins feed the PIA, providing access to them through other LABs in the device. The members of the CY7C340 family of EPLDs that have a single LAB use a global bus, so a PIA is not needed (see Figure 3).

The MAX Macrocell

Traditionally, PLDs have been divided into either PLA (programmable AND, programmableOR), or PAL® (programmable AND, fixed OR) architectures. PLDs of the latter type provide faster in-put-to-output delays, but can be inefficient due to fixed allocation of product terms. Statistical analysis of PLD logic designs has shown that 70% of all logic functions (per macrocell) require three product terms or less.
The macrocell structure of MAX has been optimized to handle variable product term requirements. As shown in Figure 4, each macrocell consists of a product term array and a configurable register. In the macrocell, combinatorial logic is implemented with three product terms ORed together, which then feeds an XOR gate. The second input to the XOR gate is also controlled by a product term, providing the ability to control active HIGH or active LOW logic and to implement T- and JK-type flip-flops.
If more product terms are required to implement a given function, they may be added to the macrocell from the expander product term array. These additional product terms may be added to any
macrocell, allowing the designer to build gate-intensive logic, such as address decoders, adders, comparators, and complex state machines, without using extra macrocells.
The register within the macrocell may be programmed for either $\mathrm{D}, \mathrm{T}, \mathrm{JK}$, or RS operation. It may alternately be configured as a flow-through latch for minimum input-to-output delays, or bypassed entirely for purely combinatorial logic. In addition, each register supports both asynchronous preset and clear, allowing asynchronous loading of counters of shift registers, as found in many standard TTLfunctions. These registers maybe clocked with a synchronous system clock, or clocked independently from the logic array.

Expander Product Terms

The expander product terms, as shown in Figure 5, are fed by the dedicated input bus, the programmable interconnect array, the macrocell feedback, the expanders themselves, and the I/O pin feedbacks. The outputs of the expanders then go to each and every product term in the macrocell array. This allows expanders to be "shared" by the product terms in the logic array block. One expander may feed all macrocells in the LAB, or even multiple product terms in the same macrocell. Since these expanders feed the secondary product terms (preset, clear, clock, and output enable) of each macrocell, complex logicfunctionsmaybe implemented without utilizing another macrocell. Likewise, expanders may feed and be shared by other expanders, to implement complex multilevel logic and input latches.

I/O Block

Separate from the macrocell array is the I/O control block of the LAB. Figure 6 shows the I/O block diagram. The three-state buffer is controlled by a macrocell product term and the drives the I/O pad. The input of this buffer comes from a macrocell within the

Figure 3. 7C344 LAB Block Diagram

Figure 2. Typical LAB Block Diagram

Figure 4. Macrocell Block Diagram

Figure 5. Expander Produci Terms
Figure 6. I/O Block Diagram

Functional Description (continued)

associated LAB. The feedback path from the I/O pin may feed otherblocks within the LAB, as well as the PIA. By decoupling the I/O pins from the flip-flops, all the registers in the LAB are "buried," allowing the I/Opins to be used as dedicated outputs, bidirectional outputs, or as additional dedicated inputs. Therefore, applications requiring many buried flip-flops, such as counters, shift registers, and state machines, no longer consume both the macrocell register and the associated I/O pin, as in earlier devices.

The Programmable Interconnect Array

PLD density and speed has traditionally been limited by signal routing; i.e., getting signals from one macrocell to another. For smaller devices, a single array is used and all signals are available to all macrocells. But as the devices increase in density, the number of signals being routed becomes very large, increasing the amount of silicon used for interconnections. Also, because the signal must be global, the added loading on the internal connection path reduces the overall speed performance of the device. The MAX architecture solves these problems. It is based on the concept of small, flexible logic array blocks that, in the larger devices, are interconnected by a PIA.
The PIA solves interconnect limitations by routing only the signals needed by each LAB. The architecture is designed so that every signal on the chip is within the PIA. The PIA is then programmed to give each LAB access to the signals that it requires. Consequently, each LAB receives only the signals needed. This effectively solves any routing problems that may arise in a design without degrading the performance of the device. Unlike masked or programmable gate arrays, which induce variable delays dependent on routing, the PIA has a fixed delay from point to point. This eliminates undesired skews among logic signals, which may cause glitches in internal or external logic.

Development Software Support
 Warp2

Warp 2 is a state-of-the-art VHDL compiler for designing with Cypress PLDs and PROMs. Warp2 utilizes a proper subset of IEEE 1076 VHDL as its Hardware Description Language (HDL) for de-
sign entry. VHDL provides a number of significant benefits for the design entry process. Warp 2 accepts VHDLinput, synthesizes and optimizes the entered design, and outputs a JEDEC map for the desired device. For simulation, Warp 2 provides the graphical waveform simulator from the PLD ToolKit.
VHDL (VHSIC Hardware Description Language) is an open, powerful, non-proprietarylanguage that is astandardfor behavioral design entry and simulation. It is already mandated for use by the Department of Defense, and supported by every major vendor of CAE tools. VHDL allows designers to learn a single language that is useful for all facets of the design process.

Warp3

Warp 3 is a sophisticated design tool that is based on the latest version of ViewLogic's CAE design environment. Warp3 features schematic capture (ViewDraw®), VHDL waveform simulation (ViewSim ${ }^{\circledR}$), a VHDL debugger, and VHDL synthesis, all integrated in a graphical design environment. Warp 3 is available on PCs using Windows 3.1 or subsequent versions, and on Sun workstations.
For further information on Warp software, see the Warp2 and Warp3 Datasheets contained in this data book.

Ordering Information

Device Adapters

CY3340	Adapter for CY7C341 in PLCC packages.
CY3340F	Adapter for CY7C341 in PGA packages.
CY3342	Adapter for CY7C342 in PLCC packages.
CY3342F	Adapter for CY7C342 in Flatpack packages.
CY3342R	Adapter for CY7C342 in PGA packages.
CY3344	Adapter for CY7C344 in DIP and PLCC packages.
CY33435	Adapter for CY7C343 in PLCCpackages.

Document \#: 38-00087-C SEMICONDUCTOR

CY7C341 CY7C341B

- 192 macrocells in 12 LABs
- 8 dedicated inputs, 64 bidirectional I/O pins
- Programmable interconnect array
- 384 expander product terms
- Available in 84-pin HLCC, PLCC, and PGA packages

Functional Description

The CY7C341 andCY7C341B are Erasable Programmable Logic Devices (EPLD) in which CMOS EPROM cells are used to configure logic functions within the device. The MAX architecture is 100% user configurable allowing the devices to accommodate a variety of independent logic functions.
The 192 macrocells in the CY7C341 and CY7C341B are divided into 12 Logic Array Blocks (LABs), 16 per LAB. There are 384 expander product terms, 32 per LAB , to be used and shared by the macrocells within each LAB. Each LAB is interconnected with a programmable interconnect array, allowing all signals to be routed throughout the chip.
The speed and density of the CY7C341 and CY7C341B allows them to be used in a wide range of applications, from replacement of large amounts of 7400 series TTL logic, to complex controllers and multifunction chips. With greater than 37 times the functionality of 20 -pin PLDs, the CY7C341 and CY7C341B allows the replacement of over 75 TTL devices. By replacing large amounts of logic, the CY7C341 and CY7C341B reduces board space, part count, and increases system reliability.
Each LAB contains 16 macrocells. In LABs A, F, G, and L, 8 macrocells are connected to I/O pins and 8 are buried, while forLABs B, C, D, E, H, I, J, and K, 4 macrocells are connected to I/O pins and 12 are buried. Moreover, in addition to the I/O and buried macrocells, there are 32 single product term logic expanders in each LAB. Their usegreatly enhances the capability of themacrocellswithout increasing thenumber of product terms in each macrocell.

Logic Array Blocks

There are 12 logic array blocks in the CY7C341 and CY7C341B. Each LAB consists of a macrocell array containing $16 \mathrm{ma}-$ crocells, an expander product termarraycontaining 32 expanders, and an I/O block. The LAB is fed by the programmable interconnect array and the dedicated input bus. All macrocell feedbacks go to the macrocell array, the expander array, and the programmable interconnect array. Expanders feed themselves and the macrocell array. All I/O feedbacks go to the programmable interconnect array so that they may be accessed by macrocells in other LABs as well as the macrocells in the LAB in which they aresituated.
Externally, the CY7C341 and CY7C341B provide 8dedicated inputs, one of which may be used as a system clock. There are 64 I/O pins that may be individually configured for input, output, or bidirectional data flow.

Programmable Interconnect Array

The Programmable Interconnect Array (PIA) solves interconnect limitations by routing only the signals needed by each logic array block. The inputs to the PIA are the outputs of every macrocell within the device and the I / O pin feedback of every pin on the device.
Unlike masked or programmable gate arrays, which induce variable delay dependent on routing, the PIA has a fixed delay. This eliminates undesired skews among logic signals, which may cause glitchesininternal or externallogic. The fixed delay, regardless of programmable interconnect arrayconfiguration, simplifies designbyassuring that internal signal skews or races are avoided. The result is ease of designimplementation, often in a single pass, without the multiple internal logic placement and routing iterations required for a programmable gate array to achieve design timing objectives.

Timing Delays

Timing delays within the CY7C341 and CY7C341B may be easily determined us-

Warp software or by the model in Figure 1. The CY7C341 and CY7C341B have fixed internal delays, allowing the user to determine the worst case timing delays for any design. For complete timing information, the Warp software provides a timing simulator.

Design Recommendations

For proper operation, input and output pins must be constrained to the range GND $\leq\left(V_{\text {IN }}\right.$ or $\left.V_{\text {OUT }}\right) \leq V_{\mathrm{CC}}$. Unused inputs must always be tied to an appropriate logic level (either V_{CC} or GND). Each set of V_{CC} and GND pins must be connected together directly at the device. Power supply decoupling capacitors of at least $0.2 \mu \mathrm{~F}$ must be connected between V_{CC} and GND. For the most effective decoupling, each $V_{C C}$ pin should be separately decoupled to GND, directly at the device. Decoupling capacitors should have good frequency response, such as monolithic ceramic types.

Design Security

The CY7C341 and CY7C341B contain a programmable design security feature that controls the access to the data programmed into the device. If this programmable feature is used, a proprietary design implemented in the device cannot be copied or retrieved. This enables a high level of design control to be obtained since programmed data within EPROM cells is invisible. The bit that controls this function, along with all other program data, may be reset simply by erasing the device.
The CY7C341 and CY7C341B is fully functionally tested and guaranteed through complete testing of each programmable EPROM bit and all internal logic elements thus ensuring 100% programming yield.
The erasable nature of these devices allows test programs to be used and erased during early stages of the production flow. The devices also contain on-board logic test circuitry to allow verification of function and AC specification once encapsulated in non-windowed packages.

Selection Guide

		7C341B-15	7C341B-20	7C341-25	7C341B-25	7C341-30	7C341-35	7C341-40
Maximum Access Time (ns)		15.	- 20	25	25	30	35	40
Maximum Operating Current (mA)	Commercial	380	-380	380		380	380	
	Industrial	480	41480	480		480	480	
	Military		480		480	480	480	480
$\begin{aligned} & \hline \text { Maximum } \\ & \text { Standby } \\ & \text { Current } \\ & \text { (mA) } \\ & \hline \end{aligned}$	Commercial	360	-	360		360	360	
	Industrial	435	- 435	435		435	435	
	Military	4,	1-435		435	435	435	435

Shaded areas contain preliminary information.
MAX is a registered trademark of Altera Corporation. Warp is a trademark of Cypress Semiconductor Corporation.

SEMICONDUCTOR

Logic Block Diagram

Pin Configurations

Figure 1. CY7C341 Internal Timing Model

SEMICONDUCTOR

Maximum Ratings

(Above which the useful life maybe impaired. For user guidelines, not tested.)

Storage Temperature................
Ambient Temperature with
Power Applied \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature
(Under Bias)
$150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -2.0 V to +7.0 V
Maximum Power Dissipation
2500 mW
DC $V_{C C}$ or GND Current 500 mA
DC Output Current, per Pin

DC Program Voltage . 13.5V
Static Discharge Voltage . $>1100 \mathrm{~V}$
(per MIL-STD-883, method 3015)

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Case)	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[6]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
C OUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	20	pF

Notes:

1. Minimum $D C$ input is -0.3 V . During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
3. Guaranteed but not 100% tested.
4. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
5. This parameter is measured with device programmed as a 16-bit counter in each LAB and is tested periodically by sampling production material.
6. Part (a) in AC Test Load and Waveforms is used for all parameters except $t_{E R}$ and $t_{X Z}$, which is used for part (b) in AC Test Load and Waveforms. All external timing parameters are measured referenced to external pins of the device.

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT (commercial/military)
OUTPUT $0 _163 \Omega$
OUTPUT O—O 1.75 V

External Synchronous Switching Characteristics Over the Operating Range ${ }^{[6]}$

Parameter	Description		7C341B-15		7C341B-20		7C341-25		7C341B-25		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PD1 }}$	Dedicated Input to Combinatorial Output Delay ${ }^{[7]}$	Com'l		15		20		25	4		ns
		Mil	\%			20				25	
tpD2	I/O Input to Combinatorial Output Delay ${ }^{[8]}$	Com'l		25		33		40			ns
		Mil				33				40	
${ }_{\text {tP }}$	Dedicated Input toCombinatorial Output Delay with Expander Delay[9]	Com'l		23		30		37			ns
		Mil				30				37	
${ }_{\text {tPD4 }}$	I/O Input to Combinatorial Output Delay with Expander Delay ${ }^{[3,10]}$	Com'1		33		43		52	6		ns
		Mil				43				52	
$\mathrm{t}_{\text {EA }}$	$\begin{array}{\|l\|} \hline \text { Input to Output } \\ \text { Enable Delay }{ }^{[3,7]} \end{array}$	Com'l		15		20		25			ns
		Mil				20				25	
${ }^{\text {ter }}$	Input to Output Disable Delay ${ }^{[0]}$	Com'l		15		20		25			ns
		Mil				20				25	
${ }^{\text {t }} \mathrm{CO} 1$	Synchronous Clock Input to Output Delay	Com'1	\#w	7		8		14			ns
		Mil				8				14	
${ }^{\text {t }} \mathrm{CO} 2$	Synchronous Clock to Local Feed-back to CombinatorialOutput ${ }^{[3,11]}$	Com'l		17		20		30			ns
		Mil				20				30	
$\mathrm{t}_{\text {S }}$	Dedicated Input or Feedback Set-upTime to Synchronous ClockOutput ${ }^{[6,12]}$	Com'l	10		12		15				ns
		Mil			12				15		
$\mathrm{t}_{\text {S2 }}$	I/O Input Set-up Time to Synchronous Clock Input ${ }^{[8]}$	Com'l	20		24		30		\%		ns
		Mil			24				30		
t_{H}	Input Hold Time from Synchronous Clock Input${ }^{[6]}$	Com'l	0		0		0				ns
		Mil			0	4 ${ }^{\text {a }}$			0		
${ }^{\text {twh }}$	Synchronous Clock Input High Time	Com'l	5		7	极	8				ns
		Mil		${ }^{4}$	7	\#wiry			8		
${ }^{\text {tw }}$	Synchronous Clock Input Low Time	Com'l	5	4	7.	W	8				ns
		Mil			7	4 3			8	3	
$\mathrm{t}_{\text {RW }}$	Asynchronous Clear Width ${ }^{[3,6]}$	Com'l	16	4	22		25				ns
		Mil			22	+			25		
t_{RR}	Asynchronous Clear Recovery ${ }^{[3,7]}$	Com'l	16		22		25				ns
		Mil			22				25	W4\|	
t_{R}	Asynchronous Clear to Registered Output Delay ${ }^{[5]}$	Com'l		15	E	20		25		¢	ns
		Mil				20			linil	25	
$\mathrm{t}_{\text {PW }}$	Asynchronous Preset Width ${ }^{[3,0]}$	Com'l	15	ER	20		25				ns
		Mil			20	4			25	4	
$\mathrm{t}_{\text {PR }}$	Asynchronous Preset Recovery Time ${ }^{[3,6]}$	Com'l	15	=	20		25				ns
		Mil			20				25		

Shaded areas contain preliminary information.

CY7C341
CY7C341B
External Synchronous Switching Characteristics Over the Operating Range ${ }^{[6]}$ (continued)

Parameter	Description		7C341B-15		7C341B-20		7C341-25		7C341B-25		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
tPO	Asynchronous Preset to Registered Output Delay ${ }^{[6]}$	Com'l		15		20		25	4		ns
		Mil				20				25	
$\mathrm{t}_{\text {CF }}$	Synchronous Clock to Local Feedback Input ${ }^{[3,13]}$	Com'l		3		3		3			ns
		Mil				3				3	
$\mathrm{t}_{\mathbf{P}}$	External Synchronous Clock Period $\left(1 / \mathrm{f}_{\text {MAX }}\right)^{[3]}$	Com'l	12		14		16		4		ns
		Mil			14				16		
$\mathrm{f}_{\text {MAX1 }}$	External Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S} 1}\right)\right)^{[3,14]}$	Com'l	58.8	4	50		34.5				MHz
		Mil			50				34.5		
$\mathrm{f}_{\mathrm{MAX} 2}$	Internal Local Feedback Maximum Frequency, lesser of $\left(1 /\left(\mathrm{t}_{\mathrm{S}} 1+\mathrm{t}_{\mathrm{CF}}\right)\right)$ or $\left(1 / t_{\mathrm{CO} 1}\right)^{[3,15]}$	Com'l	76.9		66.6		55.5				MHz
		Mil			66.6				55.5		
$\mathrm{f}_{\text {MAX3 }}$	Data Path Maximum Frequency, least of $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{S} 1}+\mathrm{t}_{\mathrm{H}}\right)$, or $\left(1 / \mathrm{t}_{\mathrm{CO}}\right)^{[3,16]}$	Com'l	100		71.4		62.5				MHz
		Mil			71.4				62.5		
$\mathrm{f}_{\text {MAX4 }}$	Maximum Register Toggle Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)\right)^{[3,17]}$	Com'l	100		71.4		62.5				MHz
		Mil			71.4				62.5	cit	
t_{OH}	Output Data Stable Time from Synchronous Clock Input ${ }^{[3,18]}$	Com'l	3		3		3			=	ns
		Mil			3	S			3		

Shaded areas contain preliminary information.

Notes:

7. This specification is a measure of the delay from input signal applied to a dedicated input to combinatorial output on any output pin. This delay assumes no expander terms are used to form the logic function. When this note is applied to any parameter specification it indicates that the signal (data, asynchronous clock, asynchronous clear, and/or asynchronous preset) is applied to a dedicated input only and no signal path (either clock or data) employs expander logic.
If an input signal is applied to an I/O pin an additional delay equal to $t_{\text {PIA }}$ should be added to the comparable delay for a dedicated input. If expanders are used, add the maximum expander delay texp to the overall delay for the comparable delay without expanders.
8. This specification is a measure of the delay from input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to form the logic function.
9. This specification is a measure of the delay from an input signal applied to a dedicated input to combinatorial output on any output pin. This delay assumes expander terms are used to form the logic functions and includes the worst-case expander logic delay for one pass through the expander logic.
10. This specification is a measure of the delay from an input signal applied to an I/O macrocell pin to any output. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
11. This specification is a measure of the delay from synchronous register clock to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used, register is synchronously clocked and all feedback is within the same LAB. This parameter is tested periodically by sampling production material.
12. If data is applied to an I/O input for capture by a macrocell register, the I/O pin set-up time minimums should be observed. These parameters are $t_{S 2}$ for synchronous operation and $t_{A S 2}$ for asynchronous operation.
13. This specification is a measure of the delay associated with the internal register feedback path. This is the delay from synchronous clock to LAB logic array input. This delay plus the register set-up time, $\mathrm{t}_{\mathrm{S} 1}$, is the minimum internal period for an internal synchronous state machine configuration. This delay is for feedback within the same LAB. This parameter is tested periodically by sampling production material.
14. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which a state machine configuration with external feedback can operate. It is assumed that all data inputs and feedback signals are applied to dedicated inputs. All feedback is assumed to be local originating within the same LAB.
15. This specification indicates the guaranteed maximum frequency at which astate machine, with internal-only feedback, can operate. Ifregister output states must also control external points, this frequency can still be observed as long as this frequency is less than $1 / \mathrm{t}_{\mathrm{CO}}$.
16. This frequency indicates the maximum frequency at which the device may operate in data path mode (dedicated input pin to output pin). This assumes data input signals are applied to dedicated input pins and no expander logic is used. If any of the data inputs are I/O pins, $\mathrm{t}_{\mathrm{S} 2}$ is the appropriate t_{S} for calculation.
17. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which anindividual output or buried registercan be cycle by a clock signal applied to the dedicated clock input pin.
18. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.

CYPRESS
SEMICONDUCTOR
External Synchronous Switching Characteristics Over the Operating Range ${ }^{[6]}$ (continued)

Parameter	Description		7C341-30		7C341-35		7C341-40		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PD1 }}$	Dedicated Input to Combinatorial Output Delay ${ }^{[7]}$	Com'l		30		35			ns
		Mil		30		35		40	
tPD 2	I/O Input to Combinatorial Output Delay ${ }^{[8]}$	Com'l		45		55			ns
		Mil		45		55		65	
${ }_{\text {tPD3 }}$	Dedicated Input to Combinatorial Output Delay with Expander Delay ${ }^{[9]}$	Com'l		44		55			ns
		Mil		44		55		65	
${ }_{\text {tPD4 }}$	I/O Input to Combinatorial Output Delay with Expander Delay ${ }^{[3,10]}$	Com'l		59		75			ns
		Mil		59		75		90	
t_{EA}	Input to Output Enable Delay ${ }^{[3,7]}$	Com'l		30		35			ns
		Mil		30		35		40	
t_{ER}	Input to Output Disable Delay ${ }^{[0]}$	Com'l		30		35			ns
		Mil		30		35		40	
$\mathrm{t}_{\mathrm{CO1}}$	Synchronous Clock Input to Output Delay	Com'l		16		20			ns
		Mil		16		20		23	
$\mathrm{t}_{\mathrm{CO} 2}$	Synchronous Clock to Local Feedback to Combinatorial Output ${ }^{[3,11]}$	Com'l		35		42			ns
		Mil		35		42		48	
${ }^{\text {t }}$ 1	Dedicated Input or Feedback Set-upTime to Synchronous Clock Output ${ }^{[6,12]}$	Com'l	20		25				ns
		Mil	20		25		28		
$\mathrm{t}_{\mathbf{S} 2}$	I/O Input Set-up Time to Synchronous Clock Input ${ }^{[8]}$	Com'l	39		45				ns
		Mil	39		45		52		
t_{H}	Input Hold Time from Synchronous Clock Input ${ }^{[6]}$	Com'l	0		0				ns
		Mil	0		0		0		
$\mathrm{t}_{\text {WH }}$	Synchronous Clock Input High Time	Com'l	10		12.5				ns
		Mil	10		12.5		15		
t_{WL}	Synchronous Clock Input Low Time	Com'l	10		12.5				ns.
		Mil	10		12.5		15		
t_{RW}	Asynchronous Clear Width ${ }^{[3,6]}$	Com'l	30		35				ns
		Mil	30		35		40		
$\mathrm{t}_{\mathrm{R} R}$	Asynchronous Clear Recovery ${ }^{[3,7]}$	Com'l	30		35				ns
		Mil	30		35		40		
t_{RO}	Asynchronous Clear to Registered Output Delay ${ }^{[5]}$	Com'l		30		35			ns
		Mil		30		35		40	
${ }_{\text {tPW }}$	Asynchronous Preset Width ${ }^{[3,6]}$	Com'l	30		35				ns
		Mil	30		35		40		
t_{PR}	Asynchronous Preset Recovery Time ${ }^{[3,6]}$	Com'l	30		35				ns
		Mil	30		35		40		

External Synchronous Switching Characteristics Over the Operating Range ${ }^{[6]]}$ (continued)

Parameter	Description		7C341-30		7C341-35		7C341-40		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
t_{PO}	Asynchronous Preset to Registered Output Delay[6]	Com'l		30		35			ns
		Mil		30		35		40	
${ }^{\text {t }}$ CF	Synchronous Clock to Local Feedback Input ${ }^{[3,13]}$	Com'l		3		5			ns
		Mil		3		5		7	
t_{P}	External Synchronous Clock Period $\left(1 / \mathrm{f}_{\mathrm{MAX}}\right)^{[3]}$	Com'l	20		25				ns
		Mil	20		25		30		
$\mathrm{f}_{\text {MAX1 }}$	External Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S} 1}\right)\right)^{[3,14]}$	Com'l	27.7		22.2				MHz
		Mil	27.7		22.2		19.6		
$\mathrm{f}_{\text {MAX2 }}$	Internal Local Feedback Maximum Frequency, lesser of $\left(1 /\left(\mathrm{t}_{\mathrm{S}} 1+\mathrm{t}_{\mathrm{CF}}\right)\right)$ or $\left(1 / t_{\mathrm{CO}}\right)^{[3,15]}$	Com'l	43		33				MHz
		Mil	43		33		28.5		
$\mathrm{f}_{\text {MAX3 }}$	Data Path Maximum Frequency, least of $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{S} 1}+\mathrm{t}_{\mathrm{H}}\right)$, or $\left(1 / \mathrm{t}_{\mathrm{CO}}\right)^{[3,16]}$	Com'l	50		40.0				MHz
		Mil	50		40.0		33.3		
$\mathrm{f}_{\text {MAX4 }}$	Maximum Register Toggle Frequency$\left(1 /\left(t_{W L}+t_{W H}\right)\right)^{[3,17]}$	Com'l	50		40.0				MHz
		Mil	50		40.0		33.3		
t_{OH}	Output Data Stable Time from Synchronous Clock Input ${ }^{[3,18]}$	Com'l	3		3				ns
		Mil	3		3		3		

External Asynchronous Switching Characteristics Over the Operating Range ${ }^{[6]}$ (continued)

Parameter	Description		7C3418-15		7C341B-20		7C341-25		7C3418-25		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{ACO} 1}$	Dedicated Asynchronous Clock Input to Output Delay[6]	Com'l	- 4 due	${ }^{15}$	\%	20		25			ns
		Mil	3-14.			20				25	
$\mathrm{t}_{\mathrm{ACO} 2}$	Asynchronous Clock Input to Local Feedback to Combinatorial Output [19]	Com'l	+	25	E	32		40			ns
		Mil				32				40	
${ }^{\text {taS1 }}$	Dedicated Input or Feedback Set-up Time to Asynchronous Clock Input ${ }^{[6]}$	Com'l	5		6		5				ns
		Mil			6				5		
${ }^{\text {taS2 }}$	I/O Input Set-Up Time to Asynchronous Clock Input ${ }^{[6]}$	Com'l	14		18		20				ns
		Mil			18				20		
${ }^{\text {AH }}$	Input Hold Time from Asynchronous Clock Input ${ }^{[6]}$	Com'l	5		6		6				ns
		Mil			6				6		
${ }^{\text {tawh }}$	Asynchronous Clock Input HIGH Time ${ }^{[6]}$	Com'l	5		7.		11				ns
		Mil			7				11		
$\mathrm{t}_{\text {AWL }}$	Asynchronous Clock Input LOW Time ${ }^{[6,20]}$	Com'l	5		7	4	9				ns
		Mil			7				9		
${ }^{\text {t }}$ ACF	Asynchronous Clock to Local Feedback Input ${ }^{[21]}$	Com'l		10	3	13		15	$\underline{4}$	418	ns
		Mil				13				15	
t_{AP}	External Asynchronous Clock Period (1/f mAX_{4})	Com'l	12.		14		20				ns
		Mil			14				20		
$\mathrm{f}_{\text {MAXA1 }}$	External Feedback Maximum Frequency in Asynchronous Mode $1 /\left(\mathrm{t}_{\mathrm{ACO}}+\mathrm{t}_{\mathrm{AS} 1}\right)^{[22]}$	Com'l	55.5		40		33.3				MHz
		Mil			40				33.3		
$\mathrm{f}_{\text {MAXA2 }}$	Maximum Internal Asynchronous Frequency ${ }^{[23]}$	Com'l	76.9		58		50				MHz
		Mil			58				50		
$\mathrm{f}_{\text {MAXA3 }}$	Data Path Maximum Frequency in Asynchronous Mode ${ }^{[24]}$	Com'l	66.6		50		40				MHz
		Mil			50				40		
$\mathrm{f}_{\text {MAXA4 }}$	Maximum Asynchronous RegisterToggle Frequency $1 /\left(\text { tawh }_{\text {AWH }}+\mathrm{t}_{\mathrm{AWL}}\right)^{[25]}$	Com'l	77		58		50				MHz
		Mil	4	1	58				50		
$\mathrm{t}_{\mathrm{AOH}}$	Output Data Stable Time from Asynchronous Clock Input ${ }^{[26]}$	Com'l	15		15		15				ns
		Mil	3		15				15		

Shaded areas contain preliminary information.

Notes:

19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used in the logic of combinatorial output or the asynchronous clock input. The clock signal is applied to the dedicated clock input pin and all feedback is within a single LAB. This parameter is tested periodically by sampling production material.
20. This parameter is measured with a positive-edge-triggered clock at the register. For negative-edge triggering, the $t_{A W H}$ and $t_{A W L}$ parameters must be swapped. If a given input is used to clock multiple registers with both positive and negative polarity, $\mathrm{t}_{\text {AWH }}$ should be used for both $t_{\text {AWH }}$ and $\mathrm{t}_{\mathrm{AWL}}$.
21. This specification is a measure of the delay associated with the internal register feedback path for an asynchronous clock to LAB logic array input. This delay plus the asynchronous register set-up time, $\mathrm{t}_{\mathrm{AS} 1}$, is the minimum internal period for an internal asynchronously clocked state machine configuration. This delay is for feedback within the same LAB, and assumes there is no expander logic in the clock path and the clock input signal is applied to a dedicated input pin. This parameter is tested periodically by sampling production material.
22. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can operate. It is assumed that all data inputs, clock in-
puts, and feedback signals are applied to dedicated inputs, and that no expander logic is employed in the clock signal path or data path.
23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate. This parameter is determined by the lesser of $\left.\left(1 / t_{A C F}+t_{A S 1}\right)\right)$ or $\left(1 /\left(t_{A W H}+t_{A W L}\right)\right)$. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1 / \mathrm{t}_{\mathrm{ACO}}$.
24. This frequency is the maximum frequency at which the device may operate in the asynchronously clocked data path mode. This specification is determined by the least of $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right), 1 /\left(\mathrm{t}_{\mathrm{AS} 1}+\mathrm{t}_{\mathrm{AH}}\right)$ or $1 / \mathrm{t}_{\mathrm{ACO}} 1$. It assumes data and clock input signals are applied to dedicated input pins and no expander logic is used.
25. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode by a clock signal applied to an external dedicated input pin.
26. This parameter indicates the minimum time that the previous register output data is maintained on the output after an asynchronous register clock input applied to añ extemal dedicated input pini.

External Asynchronous Switching Characteristics Over the Operating Range ${ }^{[6]}$ (continued)

Parameter	Description		7C341-30		7C341-35		7C341-40		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{ACO}}$	Dedicated Asynchronous Clock Input to Output Delay[6]	Com'l		30		35			ns
		Mil		30		35		45	
$\mathrm{t}_{\mathrm{ACO} 2}$	Asynchronous Clock Input to Local Feedback to Combinatorial Output [19]	Com'l		46		55			ns
		Mil		46		55		64	
$\mathrm{t}_{\text {AS } 1}$	Dedicated Input or Feedback Set-up Time to Asynchronous Clock Input ${ }^{[6]}$	Com'l	6		8				ns
		Mil	6		8		10		
$\mathrm{t}_{\text {AS2 }}$	I/O Input Set-Up Time to Asynchronous Clock Input ${ }^{[6]}$	Com'l	27		30				ns
		Mil	27		30		33		
$\mathrm{t}_{\text {AH }}$	Input Hold Time from Asynchronous Clock Input ${ }^{[6]}$	Com'l	8		10				ns
		Mil	8		10		12		
$\mathrm{t}_{\text {AWH }}$	Asynchronous Clock Input HIGH Time ${ }^{[6]}$	Com'l	14		16				ns
		Mil	14		16		20		
${ }^{\text {tawL }}$	Asynchronous Clock Input LOW Time ${ }^{[6,20]}$	Com'l	11		14				ns
		Mil	11		14		20		
$\mathrm{t}_{\mathrm{ACF}}$	Asynchronous Clock to Local Feedback Input ${ }^{[21]}$	Com'1		18		22			ns
		Mil		18		22		26	
t_{AP}	External Asynchronous Clock Period (1/f $\mathrm{f}_{\mathrm{MAX} 4}$)	Com'l	25		30				ns
		Mil	25		30		40		
$\mathrm{f}_{\text {MAXA1 }}$	External Feedback Maximum Frequency in Asynchronous Mode $1 /\left(\mathrm{t}_{\mathrm{ACO}}+\mathrm{t}_{\mathrm{AS} 1}\right)^{[22]}$	Com'l	27		23				MHz
		Mil	27		23		18		
$\mathrm{f}_{\text {MAXA2 }}$	Maximum Internal Asynchronous Frequency ${ }^{[23]}$	Com'l	40		33.3				MHz
		Mil	40		33.3		25		
$\mathrm{f}_{\text {MAXA3 }}$	Data Path Maximum Frequency in Asynchronous Mode ${ }^{[24]}$	Com'l	33.3		28.5				MHz
		Mil	33.3		28.5		22.2		
$\mathrm{f}_{\text {MAXA4 }}$	Maximum Asynchronous Register Toggle Frequency $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)^{[25]}$	Com'l	40		33.3				MHz
		Mil	40		33.3		25		
$\mathrm{t}_{\mathrm{AOH}}$	Output Data Stable Time from Asynchronous Clock Input ${ }^{[26]}$	Com'l	15		15				ns
		Mil	15		15		15		

Switching Waveforms

External Combinatorial

External Synchronous

External Asynchronous

Internal Switching Characteristics Over the Operating Range ${ }^{[1]}$

Parameter	Description		7C341B-15		7C341B-20		7C341-25		7C341B-25		
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{IN}	Dedicated Input Pad and Buffer Delay	Com'l	E	3		4		5			ns
		Mil	4			4			:4.	5	
${ }^{1} \mathrm{O}$	I/O Input Pad and Buffer Delay	Com'l		3		4		6			ns
		Mil				4				6	
$\mathrm{t}_{\text {EXP }}$	Expander Array Delay	Com'l	3	8		10		12			ns
		Mil				10				12	
$\mathrm{t}_{\text {LAD }}$	Logic Array Data Delay	Com'l		8		10		12	4		ns
		Mil				10				12	
$\mathrm{t}_{\text {LAC }}$	Logic Array Control Delay	Com'l		5	\%	5		10			ns
		Mil				5			ailm	10	
${ }^{\text {tod }}$	Output Buffer and Pad Delay	Com'l		3		3		5	4	4	ns
		Mil				3			=	5	
${ }^{\text {t }}$ IX	Output Buffer Enable Delay ${ }^{[27]}$	Com'l	E	5		5		10			ns
		Mil				5				10	
${ }^{\text {t }} \mathrm{XZ}$	Output Buffer Disable Delay	Com'l		5		5		10			ns
		Mil				5				10	
$\mathrm{t}_{\text {RSU }}$	Register Set-Up Time Relative to Clock Signal at Register	Com'l	4		5		6			플	ns
		Mil			5				6		
t_{RH}	Register Hold Time Relative to Clock Signal at Register	Com'l	4		5	2	6			\#	ns
		Mil			5				6		
$\mathrm{t}_{\text {LATCH }}$	Flow-Through Latch Delay	Com'l		1	=	1		3			ns
		Mil		+		1				3	
t_{RD}	Register Delay	Com'l		1		1		1	18		ns
		Mil				1			[1	
$\mathrm{t}_{\text {COMB }}$	Transparent Mode Delay ${ }^{[28]}$	Com'l		1		1		3	-		ns
		Mil	\%			1				3	
t_{CH}	Clock High Time	Com'l	4		6		8		\%		ns
		Mil			6				8		
${ }^{\text {t }}$ CL	Clock Low Time	Com'l	4	-	6		8				ns
		Mil			6				8	=	
$\mathrm{t}_{\text {IC }}$	Asynchronous Clock Logic Delay	Com'l	1	6	T	8		14			ns
		Mil				8				14	
${ }^{\text {tics }}$	Synchronous Clock Delay	Com'l		0		0		2			ns
		Mil				0			1	2	
t_{FD}	Feedback Delay	Com'1	4	1		1		1	4	\%	ns
		Mil			3	1				1	
tPRE	Asynchronous Register Preset Time	Com'1	+	3		3		5	\%		ns
		Mil	[,	3				5	
${ }^{\text {t CLR }}$	Asynchronous Register Clear Time	Com'l		3		3		5	-	S	ns
		Mil	+श	=		3				5	
trcw	Asynchronous Preset and Clear Pulse Width	Com'l	3	-	4		5				ns
		Mil			4				5	rem	
${ }_{\text {tPCR }}$	Asynchronous Preset and Clear Recovery Time	Com'1	3		4		5				ns
		Mil			4				5	는	
$t_{\text {PIA }}$	Programmable Interconnect Array Delay Time	Com'l	4	10		13		14			ns
		Mil	E			13			3	14	

Shaded areas contain preliminary information

Notes:

27. Sample tested only for an output change of 500 mV .
28. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial operation.

Internal Switching Characteristics Over the Operating Range ${ }^{[1]}$

Parameter	Description		7C341-30		7C341-35		7C341-40		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {IN }}$	Dedicated Input Pad and	Com'l		7		9			ns
	Buffer Delay	Mil		7		9		11	
t_{IO}	I/O Input Pad and	Com'l		6		9			ns
		Mil		6		9		12	
$\mathrm{t}_{\text {EXP }}$	Expander Array Delay	Com'l		14		20			ns
		Mil		14		20		25	
${ }^{\text {t }}$ LAD	Logic Array Data Delay	Com'l		14		16			ns
		Mil		14		16		18	
$\mathrm{t}_{\text {LAC }}$	Logic Array Control Delay	Com'l		12		13			ns
		Mil		12		13		14	
${ }_{\text {tod }}$	Output Buffer and Pad Delay	Com'l		5		6			ns
		Mil		5		6		7	
${ }^{\text {z }}$ (Output Buffer Enable Delay ${ }^{[29]}$	Com'l		11		13			ns
		Mil		11		13		15	
t_{XZ}	Output Buffer Disable Delay	Com'l		11		13			ns
		Mil		11		13		15	
$\mathrm{t}_{\mathrm{RSU}}$	Register Set-Up Time Relative to Clock Signal at Register	Com'l	8		10				ns
		Mil	8		10		12		
t_{RH}	Register Hold Time Relative to Clock Signal at Register	Com'l	8		10				ns
		Mil	8		10		12		
$\mathrm{t}_{\text {LATCH }}$	Flow-Through Latch Delay	Com'l		4		4			ns
		Mil		4		4		4	
t_{RD}	Register Delay	Com'l		2		2			ns
		Mil		2		2		2	
${ }^{\text {t }}$ COMB	Transparent Mode Delay ${ }^{[30]}$	Com'l		4		4			ns
		Mil		4		4		4	
t_{CH}	Clock High Time	Com'l	10		12.5				ns
		Mil	10		12.5		15		
${ }^{\text {t }}$ LL	Clock Low Time	Com'l	10		12.5				ns
		Mil	10		12.5		15		
${ }_{\text {IIC }}$	Asynchronous Clock Logic Delay	Com'l		16		18			ns
		Mil		16		18		20	
$\mathrm{t}_{\text {ICS }}$	Synchronous Clock Delay	Com'l		2		3			ns
		Mil		2		3		4	
t_{FD}	Feedback Delay	Com'l		1		2			ns
		Mil		1		2		3	
$\mathrm{t}_{\text {PRE }}$	Asynchronous Register Preset Time	Com'l		6		7			ns
		Mil		6		7		8	
$\mathrm{t}_{\text {CLR }}$	Asynchronous Register Clear Time	Com'l		6		7			ns
		Mil		6		7		8	
${ }^{\text {trCW }}$	Asynchronous Preset and Clear Pulse Width	Com'l	6		7				ns
		Mil	6		7		8		
$\mathrm{t}_{\mathrm{PCR}}$	Asynchronous Preset and Clear Recovery Time	Com'l	6		7				ns
		Mil	6		7		8		
${ }_{\text {tPIA }}$	Programmable Interconnect Array Delay Time	Com'l		16		20			ns
		Mil		16		20		24	

Switching Waveforms (continued)

Internal Asynchronous

Internal Synchronous

Switching Waveforms (continued)

Internal Synchronous

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C341B-15HC	H84	84-Lead Windowed Leaded Chip Carrier	Commercial/ Industrial
	CY7C341B-15JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C341B-15RC/RI	R84	84-Lead Windowed Pin Grid Array	
20	CY7C341B-20HC/HI	H84	84-Lead Windowed Leaded Chip Carrier	Commercial/ Industrial
	CY7C341B-20JC/JI	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C341B-20RC/RI	R84	84-Lead Windowed Pin Grid Array	
	CY7C341B-20HMB	H84	84-Lead Windowed Leaded Chip Carrier	Military
	CY7C341B-20RMB	R84	84-Lead Windowed Pin Grid Array	
25	CY7C341-25GC	G84	84-Pin Pin Grid Array (Cavity Up)	Commercial
	CY7C341-25HC	H84	84-Lead Windowed Leaded Chip Carrier	
	CY7C341-25JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C341-25RC	R84	84-Lead Windowed Pin Grid Array	
	CY7C341B-25HMB	H84	84-Lead Windowed Leaded Chip Carrier	Military
	CY7C341B-25RMB	R84	84-Lead Windowed Pin Grid Array	
30	CY7C341-30GC	G84	84-Pin Pin Grid Array (Cavity Up)	Commercial
	CY7C341-30HC	H84	84-Lead Windowed Leaded Chip Carrier	
	CY7C341-30JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C341-30RC	R84	84-Lead Windowed Pin Grid Array	
	CY7C341-30HMB	H84	84-Lead Windowed Leaded Chip Carrier	Military
	CY7C341-30RMB	R84	84-Lead Windowed Pin Grid Array	
35	CY7C341-35GC	G84	84-Pin Pin Grid Array (Cavity Up)	Commercial
	CY7C341-35HC	H84	84-Lead Windowed Leaded Chip Carrier	
	CY7C341-35JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C341-35RC	R84	84-Lead Windowed Pin Grid Array	
	CY7C341-35HMB	H84	84-Lead Windowed Leaded Chip Carrier	Military
	CY7C341-35RMB	R84	84-Lead Windowed Pin Grid Array	
40	CY7C341-40HMB	H84	84-Lead Windowed Leaded Chip Carrier	Military
	CY7C341-40RMB	R84	84-Lead Windowed Pin Grid Array	

MILITARY SPECIFICATIONS

 Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathrm{CCl}}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
$\mathrm{t}_{\mathrm{PD} 1}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PD} 2}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PD} 3}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CO} 1}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{S} 1}$	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACO} 1}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACO} 2}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AS} 1}$	$7,8,9,10,11$
t_{AH}	$7,8,9,10,11$

Document \#: 38-00137-E

Features

- 128 macrocells in 8 LABs
- 8 dedicated inputs, 52 bidirectional I/O pins
- Programmable interconnect array
- Available in 68-pin HLCC, PLCC, PGA, and Flatpack

Functional Description

The CY7C342/CY7C342B is an Erasable Programmable Logic Device (EPLD) in which CMOS EPROM cells are used to configure logic functions within the device. The MAX architecture is 100% user configurable, allowing the devices to accommodate a variety of independent logic functions.
The 128 macrocells in the CY7C342/ CY7C342B are divided into 8 Logic Array Blocks (LABs), 16 per LAB. There are 256 expander product terms, 32 per LAB, to be used and shared by the macrocells within each LAB.

Each LAB is interconnected with a programmable interconnect array, allowing all signals to be routed throughout the chip.
The speed and density of the CY7C342/CY7C342B allows it to be used in a wide range of applications, from replacement of large amounts of 7400 -series TTLlogic, to complex controllers andmultifunction chips. With greater than 25 times the functionality of $20-$-pin PLDs, the CY7C342/CY7C342B allows the replacement of over 50 TTL devices. By replacing large amounts of logic, the CY7C342/CY7C342B reduces board space, part count, and increases system reliability.

MAX is a registered trademark of Altera Corporation. Warp is a trademark of Cypress Semiconductor.
CY7C342B

Selection Guide

		$\mathbf{7 C 3 4 2 B}-\mathbf{1 5}$	$\mathbf{7 C 3 4 2 B} \mathbf{- 2 0}$	$\mathbf{7 C 3 4 2 - 2 5}$	$\mathbf{7 C 3 4 2 - 3 0}$	$\mathbf{7 C 3 4 2 - 3 5}$
Maximum Access Time (ns)		$\mathbf{1 5}$	20	25	30	35
Maximum Operating Current (mA)	Commercial	250	250	250	250	250
	Military		320	320	320	320
	Industrial	320	320	320	320	320
Maximum Static Current (mA)	Commercial	225	225	225	225	225
	Military		275	275	275	275
	Industrial	275	275	275	275	275

Shaded area contains preliminary information.

Pin Configurations

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
.......... $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature
(under bias) \qquad
Supply Voltage to Ground Potential -3.0 V to +7.0 V
Maximum Power Dissipation 2500 mW
DC V ${ }_{\text {CC }}$ or GND Current . 500 mA
DC Output Current per Pin $\ldots \ldots . . .-25 \mathrm{~mA}$ to +25 mA

DC Input Voltage ${ }^{[1]} \ldots$. . 3.0 V to +7.0 V
DC Program Voltage . 13.5 V
Static Discharge Voltage . > 1100 V
(per MIL-STD-883, Method 3015)

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}($ Case $)$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{IOL}=8.0 \mathrm{~mA}$			0.45	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Current	GND $\leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND		-40	+40	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{3,4]}$		-30	-90	mA
$\mathrm{I}_{\mathrm{CC1}}$	Power Supply Current (Static)	$\mathrm{V}_{\mathrm{I}}=$ GND (No Load)	Com'l		225	mA
			Mil/Ind		275	
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current ${ }^{[5]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND (No Load) } \\ & \mathrm{f}=1.0 \mathrm{MHz}{ }^{[4]} \end{aligned}$	Com'l		250	mA
			Mil/Ind		320	
t_{R}	Recommended Input Rise Time				100	ns
t_{F}	Recommended Input Fall Time				100	ns

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{OUT}}=2 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	10	pF

Notes:

1. Minimum DC input is -0.3 V . During transitions, the inputs may undershoot to -3.0 V for periods less than 20 ns .
2. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. Guaranteed but not 100% tested.
5. This parameter is measured with device programmed as a 16 -bit counter in each LAB.
6. Part (a) in AC Test Load and Waveforms is used for all parameters except $t_{E R}$ and $t_{X Z}$, which is used for part (b) in AC Test Load and Waveforms. All external timing parameters are measured referenced to external pins of the device.

AC Test Loads and Waveforms ${ }^{[4]}$

Equivalent to: THÉVENIN EQUIVALENT (commercial/military)

Logic Array Blocks

There are 8 logic array blocks in the CY7C342／CY7C342B．Each LAB consists of a macrocell array containing 16 macrocells，an ex－ pander product term array containing 32 expanders，and an I／O block．The LAB is fed by the programmable interconnect array and the dedicated input bus．All macrocell feedbacks go to the macro－ cell array，the expander array，and the programmable interconnect array．Expanders feed themselves and the macrocell array．All I／O feedbacks go to the programmable interconnect array so that they may be accessed by macrocells in other LABs as well as the macro－ cells in the LAB in which they are situated．
Externally，the CY7C342／CY7C342B provides eight dedicated in－ puts，one of which may be used as a system clock．There are 52 I／O pins that may be individually configured for input，output，or bidi－ rectional data flow．

Programmable Interconnect Array

TheProgrammable Interconnect Array（PIA）solves interconnectlim－ itations by routing only the signals needed by each logic array block． The inputs to the PIA are the outputs of every macrocell within the device and the I／O pin feedback of every pin on the device．
Unlike masked or programmable gate arrays，which induce vari－ able delay dependent on routing，the PIA has a fixed delay．This eliminates undesired skews among logic signals that may cause glitches in internal or external logic．The fixed delay，regardless of programmable interconnect array configuration，simplifies design by assuring that internal signal skews or races are avoided．The re－ sult is ease of design implementation，often in a signal pass，without the multiple internal logic placement and routing iterations re－ quired for a programmable gate array to achieve design timing ob－ jectives．

Timing Delays

Timing delays within the CY7C342／CY7C342B may be easily de－ termined using Warp ${ }^{\text {（⿶凵 }}$ software or by the model shown in Figure 1. The CY7C342／CY7C342B has fixed internal delays，allowing the user to determine the worst case timing delays for any design．For complete timing information the Warp ${ }^{(凶)}$ software provides a tim－ ing simulator．

Design Recommendations

Operation of the devices described herein with conditions above those listedunder＂Maximum Ratings＂may cause perma－ nent damage to the device．This is a stress rating only and func－ tional operation of the device at these or any other conditions above those indicated in the operational sections of this data－ sheet is not implied．Exposure to absolute maximum ratings conditions for extended periods of time may affect device reli－ ability．The CY7C342／CY7C342B contains circuitry to protect device pins from high static voltages or electric fields，but nor－ mal precautions should be taken to avoid application of any voltage higher than the maximum rated voltages．
For properoperation，input and output pins must be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {IN }}\right.$ or $\left.\mathrm{V}_{\mathrm{OUT}}\right) \leq \mathrm{V}_{\mathrm{CC}}$ ．Unused inputs must al－ ways be tied to an appropriate logic level（either $V_{C C}$ or GND）． Each set of $V_{C C}$ and GND pins must be connected together direct－ ly at the device．Power supply decoupling capacitors of at least 0.2 $\mu \mathrm{F}$ must be connected between V_{CC} and GND ．For the most effec－ tive decoupling，each V_{CC} pin should be separately decoupled to GND directly at the device．Decoupling capacitors should have good frequency response，such as monolithic ceramic types have．

Figure 1．CY7C342／CY7C342B Internal Timing Model

Design Security

The CY7C342/CY7C342B contains a programmable design security feature that controls the access to the data programmed into the device. If this programmable feature is used, a proprietary design implemented in the device cannot be copied or retrieved. This enables a high level of design control to be obtained since programmed data within EPROM cells is invisible. The bit that controls this function, along with all other program data, may be reset simply by erasing the entire device.
The CY7C342/CY7C342B is fully functionally tested and guaranteed through complete testing of each programmable EPROM bit and all internal logic elements thus ensuring 100% programming yield.
The erasable nature of these devices allows test programs to be used and erased during early stages of the production flow. The devices also contain on-board logic test circuitry to allow verification of function and AC specification once encapsulated in non-windowed packages.
Typical $\mathbf{I}_{\mathbf{C C}}$ vs. $\mathbf{f}_{\mathrm{MAX}}$

Output Drive Current

Timing Considerations

Unless otherwise stated, propagation delays do not include expanders. When using expanders, add the maximum expander delay $\mathrm{t}_{\text {EXP }}$ to the overall delay. Similarly, there is an additional tPIA delay for an input from an I/O pin when compared to a signal from straight input pin.
When calculating synchronous frequencies, use $t_{S 1}$ if all inputs are on dedicated input pins. The parameter $\mathrm{t}_{\mathrm{S} 2}$ should be used if data is applied at an I/O pin. If $\mathrm{t}_{\mathrm{S} 2}$ is greater than $\mathrm{t}_{\mathrm{CO}}, 1 / \mathrm{t}_{\mathrm{s} 2}$ becomes the limiting frequency in the data path mode unless $1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)$ is less than $1 / \mathrm{t}_{\mathrm{S} 2}$.
When expander logic is used in the data path, add the appropriate maximum expander delay, $\mathrm{t}_{\mathrm{EXP}}$ to $\mathrm{t}_{\mathrm{S} 1}$. Determine which of $1 /\left(\mathrm{t}_{\mathrm{WH}}\right.$ $\left.+\mathrm{t}_{\mathrm{WL}}\right), 1 / \mathrm{t}_{\mathrm{CO} 1}$, or $1 /\left(\mathrm{t}_{\mathrm{EXP}}+\mathrm{t}_{\mathrm{S} 1}\right)$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the synchronous configuration.
When calculating external asynchronous frequencies, use ${ }_{\mathrm{AS} 1}$ if all inputs are on the dedicated input pins. If any data is applied to an I/O pin, $\mathrm{t}_{\mathrm{AS} 2}$ must be used as the required set-up time. If $\left(\mathrm{t}_{\mathrm{AS} 2}+\right.$ $\left.t_{\mathrm{AH}}\right)$ is greater than $\mathrm{t}_{\mathrm{ACO} 1}, 1 /\left(\mathrm{t}_{\mathrm{AS} 2}+\mathrm{t}_{\mathrm{AH}}\right)$ becomes the limiting frequency in the data path mode unless $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)$ is less than $1 /\left(\mathrm{t}_{\mathrm{AS} 2}+\mathrm{t}_{\mathrm{AH}}\right)$.
When expander logic is used in the data path, add the appropriate maximum expander delay, $\mathrm{t}_{\mathrm{ExP}}$ to $\mathrm{t}_{\mathrm{AS} 1}$. Determine which of $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right), 1 / \mathrm{t}_{\mathrm{ACO}}$, or $1 /\left(\mathrm{t}_{\mathrm{EXP}}+\mathrm{t}_{\mathrm{AS} 1}\right)$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the asynchronous configuration.
The parameter t_{OH} indicates the system compatibility of this device when driving other synchronous logic with positive input hold times, which is controlled by the same synchronous clock. If t_{OH} is greater than the minimum required input hold time of the subsequent synchronous logic, then the devices are guaranteed to function properly with a common synchronous clock under worst-case environmental and supply voltage conditions.
The parameter $\mathrm{t}_{\mathrm{AOH}}$ indicates the system compatibility of this device when driving subsequent registered logic with a positive hold time and using the same asynchronous clock as the CY7C342.CY7C342B
In general, if $\mathrm{t}_{\mathrm{AOH}}$ is greater than the minimum required input hold time of the subsequent logic (synchronous or asynchronous) then the devices are guaranteed to function properly under worstcase environmental and supply voltage conditions, provided the clock signal source is the same. This also applies if expander logic is used in the clock signal path of the driving device, but not for the driven device. This is due to the expander logic in the second device's clock signal path adding an additional delay (teXP) causing the output data from the preceding device to change prior to the arrival of the clock signal at the following device's register.

CYPRESS
SEMICONDUCTOR

Commercial and Industrial External Synchronous Switching Characteristics ${ }^{[6]}$ Over Operating Range

Parameter	Description	7C342B-15		7C342B-20		7C342-25		7C342-30		7C342-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
${ }^{\text {tPD1 }}$	Dedicated Input to Combinatorial Output Delay ${ }^{[7]}$		15		20		25		30		35	ns
${ }^{\text {tPD2 }}$	I/O Input to Combinatorial Output Delay ${ }^{[8]}$		25	$18=$	32		39		46		55	ns
${ }^{\text {tPD3 }}$	Dedicated Input to Combinatorial Output Delay with Expander Delay ${ }^{[9]}$		23		30		37		44		55	ns
$\mathrm{t}_{\text {PD4 }}$	I/O Input to Combinatorial Output Delay with Expander Delay $[4,10]$		33		42		51		60		75	ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable Delay ${ }^{[4,7]}$		15		20		25		30		35	ns
ter	Input to Output Disable Delay ${ }^{[4,7]}$	-	15		20		25		30		35	ns
$\mathrm{t}_{\mathrm{CO} 1}$	Synchronous Clock Input to Output Delay		7		8		14		16		20	ns
$\mathrm{t}_{\mathrm{CO} 2}$	Synchronous Clock to Local Feedback to Combinatorial Output ${ }^{[4,11]}$		17		20		30		35		42	ns
$\mathrm{t}_{\text {S }}$	Dedicated Input or Feedback Set-Up Time to Synchronous Clock Input ${ }^{[7,12]}$	10		12		15		20		25		ns
$\mathrm{t}_{5} 2$	I/O Input Set-Up Time to Synchronous Clock Input ${ }^{[7]}$	20		24	4	29		36		45		ns
t_{H}	Input Hold Time from Synchronous Clock Input ${ }^{[7]}$	0		0		0	,	0		0		ns
$\mathrm{t}_{\text {WH }}$	Synchronous Clock Input HIGH Time	5		7		8		10		12.5		ns
${ }^{\text {wh }}$	Synchronous Clock Input LOW Time	5		7		8		10		12.5		ns
$\mathrm{t}_{\text {RW }}$	Asynchronous Clear Width ${ }^{[4,7]}$	16		22		25		30		35		ns
t_{RR}	Asynchronous Clear Recovery Time ${ }^{[4,7]}$	16		22		25		30		35		ns
t_{RO}	Asynchronous Clear to Registered Output Delay ${ }^{[7]}$	3	15		20		25		30		35	ns
tPW	Asynchronous Preset Width ${ }^{[4,7]}$	15	-	20		25		30		35		ns
$\mathrm{t}_{\text {PR }}$	Asynchronous Preset Recovery Time ${ }^{[4,7]}$	15		20		25		30		35		ns
t_{PO}	Asynchronous Preset to Registered Output Delay ${ }^{[7]}$				20		25		30		35	ns
t_{CF}	Synchronous Clock to Local Feedback Input ${ }^{[4,13]}$		3		3		3		3		6	ns
t_{p}	External Synchronous Clock Period (1/(f $\left.\left.\mathrm{MAX}_{3}\right)\right)^{[4]}$	12		14		16		20		25		ns
$\mathrm{f}_{\text {MAX1 }}$	External Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S} 1}\right)\right)^{[4,14]}$	58.8		50.0		34.5		27.7		22.2		MHz
$\mathrm{f}_{\text {MAX2 }}$	Internal Local Feedback Maximum Frequency, lesser of $\left(1 /\left(\mathrm{t}_{\mathrm{S} 1}+\mathrm{t}_{\mathrm{CF}}\right)\right)$ or $\left(1 / \mathrm{t}_{\mathrm{CO} 1}\right)^{[4,15]}$	100			V	55.5		43.4		32.2		MHz

[^43]Commercial and Industrial External Synchronous Switching Characteristics ${ }^{[6]}$ Over Operating Range (continued)

Parameter	Description	$7 \mathrm{C} 342 \mathrm{~B}-15$		$7 \mathrm{C342B-20}$		7C342-25		7C342-30		7C342-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{f}_{\text {MAX3 }}$	Data Path Maximum Frequency, lesser of ($1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)$), $\left(1 /\left(\mathrm{t}_{\mathrm{S} 1}+\mathrm{t}_{\mathrm{H}}\right)\right)$ or $\left(1 / \mathrm{t}_{\mathrm{CO} 1}\right)^{[4,16]}$	100		71.4		62.5		50		40		MHz
$\mathrm{f}_{\text {MAX4 }}$	Maximum Register Toggle Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)\right)^{[4,17]}$	100		71.4		62.5		50		40		MHz
t_{OH}	Output Data Stable Time from Synchronous Clock Input ${ }^{[4,18]}$	3		3		3		3		3		ns

> Shaded area contains preliminary information.

Notes:

7. This specification is a measure of the delay from input signal applied to a dedicated input (68-pin PLCC input pin 1,2,32, 34, 35, 66, or 68) to combinatorial output on any output pin. This delay assumes no expander terms are used to form the logic function.
When this note is applied to any parameter specification it indicates that the signal (data, asynchronous clock, asynchronous clear, and/or asynchronous preset) is applied to a dedicated input only and no signal path (either clock or data) employs expander logic.
If an input signal is applied to an I/O pin an additional delay equal to $t_{\text {PIA }}$ should be added to the comparable delay for a dedicated input. If expanders are used, add the maximum expander delay $\mathrm{t}_{\mathrm{EXP}}$ to the overall delay for the comparable delay without expanders.
8. This specification is a measure of the delay from input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to form the logic function.
9. This specification is a measure of the delay from an input signal applied to a dedicated input (68-pin PLCC input pin 1, 2, 32, 34, 35, 36,66 , or 68) to combinatorial output on any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic.
10. This specification is a measure of the delay from an input signal applied to an I/O macrocell pin to any output. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
11. This specification is a measure of the delay from synchronous register clock to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used, register is synchronously clocked and all feedback is within the same LAB. This parameter is tested periodically by sampling production material.
12. If data is applied to an I/O input for capture by a macrocell register, the I / Op pin inputset-up time minimums should be observed. These parameters are $\mathrm{t}_{\mathrm{S} 2}$ for synchronous operation and $\mathrm{t}_{\mathrm{AS} 2}$ for asynchronous operation.
13. This specification is a measure of the delay associated with the internal register feedback path. This is the delay from synchronous clock to LAB logic array input. This delay plus the register set-up time, t_{S}, is the minimum internal period for an internal synchronous state machine configuration. This delay is for feedback within the same LAB. This parameter is tested periodically by sampling production material.
14. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which a state machine configuration with external feedback can operate. It is assumed that all data inputs and feedback signals are applied to dedicated inputs. All feedback is assumed to be local originating within the same LAB.
15. This specification indicates the guaranteed maximum frequency at which a state machine with internal-onlyfeedback can operate. Ifregister output states must also control external points, this frequency can still be observed as long as this frequency is less than $1 / \mathrm{t}_{\mathrm{CO}}$.
16. This frequency indicates the maximum frequency at which the device may operate in data path mode (dedicated input pin to output pin). This assumes data input signals are applied to dedicated input pins and no expander logic is used. If any of the data inputs are I / O pins, $\mathrm{t}_{\mathrm{S} 2}$ is the appropriate t_{S} for calculation.
17. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which an individual output or buried register can be cycled by a clock signal applied to the dedicated clock input pin.
18. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.

Commercial and Industrial External Asynchronous Switching Characteristics ${ }^{[6]}$ Over Operating Range

Parameter	Description	7C342B-15		7C342B-20		7C342-25		7C342-30		7C342-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{ACO} 1}$	Asynchronous Clock Input to Output Delay ${ }^{[7]}$		15		20		25		30		35	ns
$\mathrm{t}_{\mathrm{ACO} 2}$	Asynchronous Clock Input to Local Feedback to Combinatorial Output ${ }^{[19]}$		25		32		39		46		55	ns
$\mathrm{t}_{\text {AS }}$	Dedicated Input or Feedback Set-Up Time to Asynchronous Clock Input ${ }^{[7]}$	4.5		5		5		6		8		ns
$\mathrm{t}_{\text {AS2 }}$	I/O Input Set-Up Time to Asynchronous Clock Input ${ }^{[7]}$	14		18		19		22		28		ns
t_{AH}	Input Hold Time from Asynchronous Clock Input ${ }^{[7]}$	4		4		6		8		10		ns
$\mathrm{t}_{\text {AWH }}$	Asynchronous Clock Input High Time ${ }^{[7]}$	5		7		11		12.5		15		ns
$\mathrm{t}_{\text {AWL }}$	Asynchronous Clock Input Low Time ${ }^{[7,20]}$	5		7		11		12.5		15		ns
$\mathrm{t}_{\text {ACF }}$	Asynchronous Clock to Local Feedback Input ${ }^{[4,21]}$		10		13		15		18		22	ns
t_{AP}	External Asynchronous Clock Period (1/(f MAXA4 $))^{[4]}$	12		14		20		25		30		ns
$\mathrm{f}_{\text {MAXA1 }}$	External Feedback Maximum Frequency in Asynchronous $\operatorname{Mode}\left(1 /\left(\mathrm{t}_{\mathrm{ACO}}+\mathrm{t}_{\mathrm{AS} 1}\right)\right)^{[4,22]}$	51.3		40		33.3		27.7		23.2		MHz
$\mathrm{f}_{\text {MAXA2 }}$	Maximum Internal Asynchronous Frequency ${ }^{[4,23]}$	71.4		55.5	4	50		40		33.3		MHz
$\mathrm{f}_{\text {MAXA3 }}$	Data Path Maximum Frequency in Asynchronous Mode ${ }^{[4,24]}$	66.6		50		40		33.3		28.5		MHz
$\mathrm{f}_{\text {MAXA4 }}$	$\begin{array}{\|l\|} \hline \text { Maximum Asynchronous } \\ \text { Register Toggle Frequency } \\ \left.1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)^{[4,} 5\right] \\ \hline \end{array}$	100	=	71.4		50		40		33.3		MHz
$\mathrm{t}_{\mathrm{AOH}}$	Output Data Stable Time from Asynchronous Clock Input ${ }^{[4,26]}$	15		15		15		15		15		ns

Shaded area contains preliminary information.

Notes:

19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used in the logic of combinatorial output or the asynchronous clock input. The clock signal is applied to the dedicated clock input pin and all feedback is within a single LAB. This parameter is tested periodically by sampling production material.
20. This parameter is measured with a positive-edge triggered clock at the register. For negative edge triggering, the $t_{\text {AWH }}$ and $t_{\text {AWL }}$ parameters must be swapped. If a given input is used to clock multiple registers with both positive and negative polarity, $\mathrm{t}_{\text {AWH }}$ should be used for both ${ }^{t_{\text {AWH }}}$ and taWL.
21. This specification is a measure of the delay associated with the internal register feedback pathfor an asynchronous clock to LAB logic array input. This delay plus the asynchronous register set-up time, $\mathrm{t}_{\mathrm{AS} 1}$, is the minimum internal period for an internal asynchronously clocked state machine configuration. This delay is for feedback within the same LAB, assumes no expander logic in the clock path, and assumes that the clock input signal is applied to a dedicated input pin. This parameter is tested periodically by sampling production material.
22. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can operate. It is assumed that all data inputs, clock inputs, and feedback signals are applied to dedicated inputs and that no expander logic is employed in the clock signal path or data path.
23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate. This parameter is determined by the lesser of $\left(1 /\left(t_{A C F}+t_{A S 1}\right)\right)$ or $\left(1 /\left(t_{A W H}+t_{A W L}\right)\right)$. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1 / \mathrm{t}_{\mathrm{ACO}}$ -
This specification assumes no expander logic is utilized, all data inputs and clock inputs are applied to dedicated inputs, and all state feedback is within a single LAB. This parameter is tested periodically by sampling production material.
24. This frequency is the maximum frequency at which the device may operate in the asynchronously clocked data path mode. This specification is determined by the lesser of $1 /\left(t_{A W H}+t_{A W L}\right), 1 /\left(t_{A S 1}+t_{A H}\right)$ or $1 / \mathrm{t}_{\mathrm{ACO}}$. It assumes data and clock input signals are applied to dedicated input pins and no expander logic is used.
25. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode by a clock signal applied to an external dedicated input pin.
26. This parameter indicates the minimum time that the previous register output data is maintained on the output after an asynchronous register clock input applied to an external dedicated input pin.

Commercial and Industrial Typical Internal Switching Characteristics Over Operating Range

Parameter	Description	7C342B-15		7C342B-20		7C342-25		7C342-30		7C342-35		Unit
		Min.	Max	Min:	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {IN }}$	Dedicated Input Pad and Buffer Delay		3		4		5		7		9	ns
t_{IO}	I/O Input Pad and Buffer Delay		3	\%	4		6		6		9	ns
texp	Expander Array Delay	W	8	- ${ }^{3}$	10		12		14		20	ns
t ${ }_{\text {LAD }}$	Logic Array Data Delay		8	[10		12		14		16	ns
$\mathrm{t}_{\text {LAC }}$	Logic Array Control Delay	4	5	4	5		10		12		13	ns
tod	Output Buffer and Pad Delay	4	3	+	3		5		5		6	ns
${ }^{\text {t }}$ ZX	Output Buffer Enable Delay ${ }^{[27]}$	4	5		5		10		11		13	ns
t_{XZ}	Output Buffer Disable Delay	[13]	5	4	5		10		11		13	ns
$\mathrm{t}_{\text {RSU }}$	Register Set-Up TimeRelative to Clock Signal at Register	4		5		6		8		10		ns
t_{RH}	Register Hold Time Relative to Clock Signal at Register	4	11	5		6		8		10		ns
$\mathrm{t}_{\text {LATCH }}$	Flow Through Latch Delay	-	1		1		3		4		4	ns
t_{RD}	Register Delay		1		1		1		2		2	ns
$\mathrm{t}_{\text {COMB }}$	Transparent Mode Delay ${ }^{[28]}$		4		1		3		4		4	ns
${ }_{\text {t }}$	Clock HIGH Time	4	$\underline{ }$	6	-	8		10		12.5		ns
t_{CL}	Clock LOW Time	4	1	6		8		10		12.5		ns
t_{IC}	Asynchronous Clock Logic Delay	\pm	6		8		14		16		18	ns
$\mathrm{t}_{\text {ICS }}$	Synchronous Clock Delay		0	=	0		2		2		3	ns
t_{FD}	Feedback Delay		1		1		1		1		2	ns
$\mathrm{t}_{\text {PRE }}$	Asynchronous Register Preset Time		3		3		5		6		7	ns
${ }^{\text {t CLR }}$	Asynchronous Register Clear Time		3		3		5		6		7	ns
$\mathrm{t}_{\text {PCW }}$	Asynchronous Preset and Clear Pulse Width	3		4		5		6		7		ns
$\mathrm{t}_{\text {PCR }}$	Asynchronous Preset and Clear Recovery Time	3		4		5		6		7		ns
${ }_{\text {t }}$ IA	Programmable Interconnect Array Delay Time		10	-	13		14		16		20	ns

Shaded area contains preliminary information.

Notes:

27. Sample tested only for an output change of 500 mV .
28. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial operation.

Military External Synchronous Switching Characteristics ${ }^{[6]}$ Over Operating Range

Parameter	Description	7C342B-20		7C342B-25		7C342-30		7C342-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PD1 }}$	Dedicated Input to Combinatorial Output Delay ${ }^{[7]}$		20		25		30		35	ns
$\mathrm{t}_{\text {PD2 }}$	I/O Input to Combinatorial Output Delay ${ }^{[8]}$		32		39		46		55	ns
$\mathrm{t}_{\text {PD3 }}$	Dedicated Input to Combinatorial Output Delay with Expander Delay ${ }^{[9]}$		30		37		44		55	ns
$\mathrm{t}_{\text {PD4 }}$	I/O Input to Combinatorial Output Delay with Expander Delay[4, 10]		42		51		60		75	ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable Delay $[4,7]$		20		25		30		35	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable Delay $[4,7]$		20		25		30		35	ns
${ }^{\text {coor }}$	Synchronous Clock Input to Output Delay	=	8	\%	14		16		20	ns
${ }^{\text {t }} \mathrm{CO} 2$	Synchronous Clock to Local Feedback to Combinatorial Output ${ }^{4,11]}$		20		30		35		42	ns
${ }^{\text {t }}$ S 1	Dedicated Input or Feedback Set-Up Time to Synchronous Clock Input ${ }^{[7,12]}$	12		15		20		25		ns
$\mathrm{t}_{\text {S } 2}$	I/O Input Set-Up Time to Synchronous Clock Input ${ }^{[7]}$	24		29		36		45		ns
t_{H}	Input Hold Time from Synchronous Clock Input ${ }^{[7]}$	0		0		0		0		ns
${ }^{\text {twh }}$	Synchronous Clock Input HIGH Time	7		8		10		12.5		ns
${ }^{\text {WL }}$	Synchronous Clock Input LOW Time	7		8		10		12.5		ns
t_{RW}	Asynchronous Clear Width ${ }^{[4,7]}$	22		25		30		35		ns
t_{RR}	Asynchronous Clear Recovery Time ${ }^{[4,7]}$	22		25		30		35		ns
t_{RO}	Asynchronous Clearto Registered Output Delay ${ }^{[7]}$		20		25		30		35	ns
tPW	Asynchronous Preset Width ${ }^{[4,7]}$	20		25		30		35		ns
t_{PR}	Asynchronous Preset Recovery Time ${ }^{[4,7]}$	20		25		30		35		ns
t_{PO}	Asynchronous Preset to Registered Output Delay ${ }^{[7]}$	=	20	\%	25		30		35	ns
${ }^{\text {t }}$ CF	Synchronous Clock to Local Feedback Input ${ }^{[4,13]}$	\%	3		3		3		6	ns
t_{P}	External Synchronous Clock Period (1/(f $\left.\left.\mathrm{f}_{\mathrm{MAX} 3}\right)\right)^{[4]}$	14		16		20		25		ns
$\mathrm{f}_{\text {MAX1 }}$	External Feedback Maximum Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S} 1}\right)\right)^{[4,14]}$			34.5		27.7		22.2		MHz

[^44]Military External Synchronous Switching Characteristics ${ }^{[6]}$ Over Operating Range (continued)

Parameter	Description	7C342B-20		7C342B-25		7C342-30		7C342-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{f}_{\text {MAX2 }}$	Internal Local Feedback Maximum Frequency, lesser of $\left(1 /\left(\mathrm{t}_{\mathrm{S} 1}+\mathrm{t}_{\mathrm{CF}}\right)\right)$ or $\left(1 / \mathrm{t}_{\mathrm{CO} 1}\right)^{[4,15]}$	66.6		55.5		43.4		32.2		MHz
$\mathrm{f}_{\text {MAX3 }}$	Data Path Maximum Frequency, lesser of $\left(1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)\right)$, $\left(1 /\left(\mathrm{t}_{\mathrm{S} 1}+\mathrm{t}_{\mathrm{H}}\right)\right)$ or $\left(1 / \mathrm{t}_{\mathrm{CO} 1}\right)^{[4,16]}$	71.4		62.5		50		40		MHz
$\mathrm{f}_{\text {MAX4 }}$	$\begin{array}{\|l\|} \hline \text { Maximum Register Toggle } \\ \text { Frequency }\left(1 /\left(\text { t }_{\text {WL }}+\text { t }_{\mathrm{WH}}\right)\right)^{[4,17]} \end{array}$	714		62.5		50		40		MHz
t_{OH}	Output Data Stable Time from Synchronous Clock Input ${ }^{[4,18]}$	3		3		3		3		ns

Shaded area contains preliminary information.
Military External Asynchronous Switching Characteristics ${ }^{[6]}$ Over Operating Range

Parameter	Description	7C342B-20		7C342B-25		7C342-30		7C342-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{ACO}}$	Asynchronous Clock Input to Output Delay ${ }^{[7]}$		20		25		30		35	ns
$\mathrm{t}_{\mathrm{ACO} 2}$	Asynchronous Clock Input to Local Feedback to Combinatorial Output ${ }^{[19]}$		32		39		46		55	ns
$\mathrm{t}_{\mathrm{AS} 1}$	Dedicated Input or Feedback Set-Up Time to Asynchronous Clock Input ${ }^{[7]}$					6		8		ns
$\mathrm{t}_{\mathrm{AS} 2}$	I/O Input Set-Up Time to Asynchronous Clock Input ${ }^{[7]}$	18		19		22		28		ns
t_{AH}	Input Hold Time from Asynchronous Clock Input ${ }^{[7]}$	4		6		8		10		ns
$\mathrm{t}_{\text {AWH }}$	Asynchronous Clock Input High Time ${ }^{[7]}$	7		11		12.5		15		ns
$\mathrm{t}_{\text {AWL }}$	Asynchronous Clock Input Low Time ${ }^{[7,20]}$	7		11		12.5		15		ns
$\mathrm{t}_{\mathrm{ACF}}$	Asynchronous Clock to Local Feedback Input ${ }^{[4,21]}$		13		15		18		22	ns
t_{AP}	External Asynchronous Clock Period (1/(f MAXA4) $){ }^{[4]}$	14		20		25		30		ns
$\mathrm{f}_{\text {MAXA1 }}$	External Feedback Maximum Frequency in Asynchronous Mode $\left(1 /\left(\mathrm{t}_{\mathrm{ACO}}+\mathrm{t}_{\mathrm{AS} 1}\right)\right)^{[4,22]}$	40		33.3		27.7		23.2		MHz
$\mathrm{f}_{\text {MAXA2 }}$	Maximum Internal Asynchronous Frequency ${ }^{4}{ }^{4}$ 23]	55.5				40		33.3		MHz
$\mathrm{f}_{\text {MAXA3 }}$	Data Path Maximum Frequency in Asynchronous Mode ${ }^{[4,24]}$	71.4		40		33.3		28.5		MHz
$\mathrm{f}_{\text {MAXA4 }}$	Maximum Asynchronous Register Toggle Frequency $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)^{[4,25]}$	71.4	5	50	든	40		33.3		MHz
$\mathrm{t}_{\mathrm{AOH}}$	Output Data Stable Time from Asynchronous Clock Input ${ }^{[4,26]}$	15		15	=	15		15		ns

[^45]Military Typical Internal Switching Characteristics Over Operating Range

Parameter	Description	7C342B-20		7C342B-25		7C342-30		7C342-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {IN }}$	Dedicated Input Pad and Buffer Delay		4		5		7		9	ns
tIO	I/O Input Pad and Buffer Delay	mm	4	,	6		6		9	ns
texp	Expander Array Delay		10		12		14		20	ns
$\mathrm{t}_{\text {LAD }}$	Logic Array Data Delay		10	min	12		14		16	ns
$\mathrm{t}_{\text {LAC }}$	Logic Array Control Delay		5		10		12		13	ns
${ }_{\text {tod }}$	Output Buffer and Pad Delay		3		5		5		6	ns
${ }^{\text {t }}$ \%	Output Buffer Enable Delay ${ }^{[27]}$	\%	5		10		11		13	ns
${ }^{\text {t }}$ XZ	Output Buffer Disable Delay		5		10		11		13	ns
$\mathrm{t}_{\mathrm{RSU}}$	Register Set-Up Time Relative to Clock Signal at Register	5		6		8		10		ns
t_{RH}	Register Hold Time Relative to Clock Signal at Register	5		6		8		10		ns
${ }^{\text {t }}$ LATCH	Flow Through Latch Delay		1		3		4		4	ns
t_{RD}	Register Delay		1		1		2		2	ns
$\mathrm{t}_{\text {COMB }}$	Transparent Mode Delay ${ }^{[28]}$		1	-	3		4		4	ns
${ }^{\text {t }}$ CH	Clock HIGH Time	6		8		10		12.5		ns
t_{CL}	Clock LOW Time	6		8		10		12.5		ns
t_{IC}	Asynchronous Clock Logic Delay		8		14		16		18	ns
$\mathrm{t}_{\text {ICS }}$	Synchronous Clock Delay		0		2		2		3	ns
t_{FD}	Feedback Delay	4	1		1		1		2	ns
$\mathrm{t}_{\text {PRE }}$	Asynchronous Register Preset Time		3		5		6		7	ns
$\mathrm{t}_{\text {CLR }}$	Asynchronous Register Clear Time	W	3		5		6		7	ns
$\mathrm{t}_{\text {PCW }}$	Asynchronous Preset and Clear Pulse Width	4		5		6		7		ns
${ }_{\text {t }}^{\text {PCR }}$	Asynchronous Preset and Clear Recovery Time	4		5		6		7		ns
$\mathrm{t}_{\text {PIA }}$	Programmable Interconnect Array Delay Time		13		14		16		20	ns

[^46]
Switching Waveforms

External Combinatorial

External Synchronous

External Asynchronous

Switching Waveforms (continued)

Internal Asynchronous

Internal Synchronous

Switching Waveforms (continued)

Internal Synchronous

Ordering Information

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C342-25HC/HI	H81	68-Pin Windowed Leaded Chip Carrier	Commercial/ Industrial
	CY7C342-25JC/JI	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C342-25RC/RI	R68	68-Pin Windowed Ceramic Pin Grid Array	
30	CY7C342-30HC/HI	H81	68-Pin Windowed Leaded Chip Carrier	Commercial/ Industrial
	CY7C342-30JC/JI	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C342-30RC/RI	R68	68-Pin Windowed Ceramic Pin Grid Array	
	CY7C342-30HMB	H81	68-Pin Windowed Leaded Chip Carrier	Military
	CY7C342-30RMB	R68	68-Pin Windowed Ceramic Pin Grid Array	
	CY7C342-30TMB	T91	68-Lead Windowed Cerquad Flatpack	
35	CY7C342-35HC/HI	H81	68-Pin Windowed Leaded Chip Carrier	Commercial/ Industrial
	CY7C342-35JC/JI	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C342-35RC/RI	R68	68-Pin Windowed Ceramic Pin Grid Array	
	CY7C342-35HMB	H81	68-Pin Windowed Leaded Chip Carrier	Military
	CY7C342-35RMB	R68	68-Pin Windowed Ceramic Pin Grid Array	
	CY7C342-35TMB	T91	68-Lead Windowed Cerquad Flatpack	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C342B-15HC/HI	H81	68-Pin Windowed Leaded Chip Carrier	Commercial/ Industrial
	CY7C342B-15JC/JI	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C342B-15RC/RI	R68	68-Pin Windowed Ceramic Pin Grid Array	
20	CY7C342B-20HC/HI	H81	68-Pin Windowed Leaded Chip Carrier	Commercial/ Industrial
	CY7C342B-20JC/JI	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C342B-20RC/RI	R68	68-Pin Windowed Ceramic Pin Grid Array	
	CY7C342B-20HMB	H81	68-Pin Windowed Leaded Chip Carrier	Military
	CY7C342B-20RMB	R68	68-Pin Windowed Ceramic Pin Grid Array	
	CY7C342B-20TMB	T91	68-Lead Windowed Cerquad Flatpack	
25	CY7C342B-25HMB	H81	68-Pin Windowed Leaded Chip Carrier	Military
	CY7C342B-25RMB	R68	68-Pin Windowed Ceramic Pin Grid Array	
	CY7C342B-25TMB	T91	68-Lead Windowed Cerquad Flatpack	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathrm{CCl}}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
$\mathrm{t}_{\mathrm{PD} 1}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PD} 2}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PD} 2}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CO} 1}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{S} 1}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{S} 2}$	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$
t_{WH}	$7,8,9,10,11$
t_{WL}	$7,8,9,10,11$
t_{RO}	$7,8,9,10,11$
t_{PO}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACO}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AS} 1}$	$7,8,9,10,11$
t_{AH}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AWH}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{AWL}}$	$7,8,9,10,11$

Document \#: 38-00119-E

CY7C343

Features

- 64 MAX macrocells in 4 LABs
- 8 dedicated inputs, 24 bidirectional I/O pins
- Programmable interconnect array
- Available in 44-pin HLCC, PLCC
- Lowest power MAX device

Functional Description

The CY7C343 is a high-performance, high-density erasable programmable logic device, available in 44 -pin PLCC and HLCC packages.
The CY7C343 contains 64 highly flexible macrocells and 128 expander product terms. These resources are divided into four Logic Array Blocks (LABs) connected through the Programmable Inter-
connect Array (PIA). There are 8 input pins, one of which doubles as a clock pin if needed. The CY7C343 also has 28 I/O pins, each connected to a macrocell (6 for LABs A and C, and 8 for LABs B and D). The remaining 36 macrocells are used for embedded logic.
The CY7C343 is excellent for a wide range of both synchronous and asynchronous applications.

Logic Block Diagram

Selection Guide

		7C343-20	$\mathbf{7 C 3 4 3 - 2 5}$	7C343-30	7C343-35
Maximum Access Time (ns)	20	25	30	35	
Maximum Operating Current (mA)	Commercial	135	135	135	135
	Military		225	225	225
	Industrial	225	225	225	225
Maximum Standby Current (mA)	Commercial	125	125	125	125
	Military		200	200	200
	Industrial	200	200	200	200

MAX® and MAX+PLUS® are registered trademarks of Altera Corporation.

SEMICONDUCTOR

Pin Configuration

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature
(Under Bias) $150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -2.0 V to +7.0 V
Maximum Power Dissipation 2500 mW
DC V ${ }_{\text {CC }}$ or GND Current . 500 mA
DC Output Current, per Pin -25 mA to +25 mA

DC Program Voltage . 13.5V
Static Discharge Voltage . $>1100 \mathrm{~V}$
(per MIL-STD-883, method 3015)

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}($ Case $)$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.45	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level			2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Level			-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND		-40	+40	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[3,4]}$		-30	-90	mA
$\mathrm{I}_{\mathrm{CC} 1}$	Power Supply Current (Standby)	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND } \\ & \text { (No Load) } \end{aligned}$	Commercial		125	mA
			Military/Industrial		200	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current ${ }^{\text {P] }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND (No Load) } \\ & \mathrm{f}=1.0 \mathrm{MHz}^{[4,5]} \end{aligned}$	Commercial		135	mA
			Military/Industrial		225	mA
t_{R}	Recommended Input Rise Time				100	ns
t_{F}	Recommended Input Fall Time				100	ns

Notes:

1. Minimum DC input is -0.3 V . During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns .
2. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. V $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has
been chosen to avoid test problems caused by tester ground degradation.
4. Guaranteed but not 100% tested.
5. Measured with device programmed as a 16 -bit counter in each LAB. This parameter is tested periodically by sampling production material.

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	10	pF

Notes:
6. Part (a) in AC Test Load and Waveforms is used for all parameters except $t_{E R}$ and $t_{X Z}$, which is used for part (b) in AC Test Load and Wave-
forms. All external timing parameters are measured referenced to external pins of the device.

AC Test Loads and Waveforms ${ }^{[6]}$

Programmable Interconnect Array

The Programmable Interconnect Array (PIA) solves interconnect limitations by routing only the signals needed by each logic array block. The inputs to the PIA are the outputs of every macrocell within the device and the I/O pin feedback of every pin on the device.
Unlike masked or programmable gate arrays, which induce variable delay dependent on routing, the PIA has a fixed delay. This eliminates undesired skews among logic signals, which may cause glitches in internal or external logic. The fixed delay, regardless of programmable interconnect array configuration, simplifies design by ensuring that internal signal skews or races are avoided. The result is simpler design implementation, often in a single pass, without the multiple internal logic placement and routing iterations required for a programmable gate array to achieve design timing objectives.

Timing Delays

Timing delays within the CY7C343 maybe easily determined using MAX + PLUS ${ }^{\circledR}$ software or by the model shown in Figure 1. The CY7C343 has fixed internal delays, allowing the user to determine the worst case timing delays for any design. For complete timing information, the MAX + PLUS software provides a timing simulator.

Design Recommendations

Operation of the devices described herein with conditions above thoselistedunder"Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this data sheet is not implied. Exposure to absolute maximum ratings conditions for extended periods of time may affect device reliability.The CY7C343 contains circuitry to protect device pins from high static voltages or electric fields; however, normal precautions should be taken to avoid applying any voltage higher than maximum rated voltages.

For proper operation, input and output pins must be constrained to the range $G N D \leq\left(V_{\text {IN }}\right.$ or $\left.V_{\text {OUT }}\right) \leq V_{\text {CC }}$. Unused inputs must always be tied to an appropriate logic level (either V_{CC} or GND). Each set of $V_{C C}$ and GND pins must be connected together directly at the device. Power supply decoupling capacitors of at least 0.2 $\mu \mathrm{F}$ must be connected between V_{CC} and GND. For the most effective decoupling, each V_{CC} pin should be separately decoupled to GND, directly at the device. Decoupling capacitors should have good frequency response, such as monolithic ceramic types.

Timing Considerations

Unless otherwise stated, propagation delays do not include expanders. When using expanders, add the maximum expander delay $\mathrm{t}_{\mathrm{ExP}}$ to the overall delay. Similarly, there is an additional tPIA delay for an input from an I/O pin when compared to a signal from a straight input pin.
When calculating synchronous frequencies, use $\mathrm{t}_{\mathbf{S 1}}$ if all inputs are on the input pins. $\mathrm{t}_{\mathrm{S} 2}$ should be used if data is applied at an I/O pin. If $\mathrm{t}_{\mathrm{S} 2}$ is greater than $\mathrm{t}_{\mathrm{CO} 1}, 1 / \mathrm{t}_{\mathrm{S} 2}$ becomes the limiting frequency in the data path mode unless $1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)$ is less than $1 / \mathrm{t}_{\mathrm{S} 2}$.
When expander logic is used in the data path, add the appropriate maximum expander delay, $\mathrm{t}_{\text {EXP }}$ to $\mathrm{t}_{\mathrm{S} 1}$. Determine which of $1 /\left(\mathrm{t}_{\mathrm{WH}}\right.$ $\left.+t_{\mathrm{WL}}\right), 1 / \mathrm{t}_{\mathrm{CO} 1}$, or $1 /\left(\mathrm{t}_{\mathrm{EXP}}+\mathrm{t}_{\mathrm{S} 1}\right)$ is the lowest frequency. The lowest of these frequencies is the maximum data path frequency for the synchronous configuration.
When calculating external asynchronous frequencies, use $t_{\text {AS1 }}$ if all inputs are on dedicated input pins. If any data is applied to an I/O pin, $t_{\text {AS2 }}$ must be used as the required set-up time. If $\left(t_{A S 2}+t_{A H}\right)$ is greater than $\mathrm{t}_{\mathrm{ACO}}, 1 /\left(\mathrm{t}_{\mathrm{AS} 2}+\mathrm{t}_{\mathrm{AH}}\right)$ becomes the limiting frequency in the data path mode unless $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AH}}\right)$ is less than $1 /\left(\mathrm{t}_{\mathrm{AS} 2}+\mathrm{t}_{\mathrm{AH}}\right)$.
When expander logic is used in the data path, add the appropriate maximum expander delay, texp to $t_{A S 1}$. Determine which of $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right), 1 / \mathrm{t}_{\mathrm{ACO}}$, or $1 /\left(\mathrm{t}_{\mathrm{EXP}}+\mathrm{t}_{\mathrm{AS} 1}\right)$ is the lowest fre-
quency. The lowest of these frequencies is the maximum data path frequency for the asynchronous configuration.
The parameter t_{OH} indicates the system compatibility of this device when driving other synchronous logic with positive input hold times, which is controlled by the same synchronous clock. If t_{OH} is greater than the minimum required input hold time of the subsequent synchronous logic, then the devices are guaranteed to function properly with a common synchronous clock under worst-case environmental and supply voltage conditions.
The parameter $\mathrm{t}_{\mathrm{AOH}}$ indicates the system compatibility of this device when driving subsequent registered logic with a positive hold time and using the same clock as the CY7C343.

In general, if $\mathrm{t}_{\mathrm{AOH}}$ is greater than the minimum required input hold time of the subsequent logic (synchronous or asynchronous), then the devices are guaranteed to function properly under worstcase environmental and supply voltage conditions, provided the clock signal source is the same. This also applies if expander logic is used in the clock signal path of the driving device, but not for the driven device. This is due to the expander logic in the second device's clock signal path adding an additional delay (texp), causing the output data from the preceding device to change prior to the arrival of the clock signal at the following device's register.

Figure 1. CY7C343 Internal Timing Model

External Synchronous Switching Characteristics ${ }^{[6]}$ Over Operating Range

Parameter	Description		CY7C343-20		CY7C343-25		CY7C343-30		CY7C343-35		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$t_{\text {PD1 }}$	Dedicated Input to Combinatorial Output Delay[7]	Com'l \& Ind		20		25		30		35	ns
		Mil				25		30		35	
$\mathrm{t}_{\text {PD2 }}$	I/O Input to Combinatorial Output Delay ${ }^{[8]}$	Com'l \& Ind		32		39		44		53	ns
		Mil				39		44		53	
${ }_{\text {tPD3 }}$	Dedicated Input to Combinatorial Output Delay with Expander Delay ${ }^{9]}$	Com'l \& Ind		30		37		44		55	ns
		Mil				37		44		55	
tpD4	I/O Input to Combinatorial Output Delay with Expander Delay ${ }^{[4,10]}$	Com'l \& Ind		42		51		58		73	ns
		Mil				51		58		73	
$\mathrm{t}_{\text {EA }}$	Input to Output Enable Delay ${ }^{[4,7]}$	Com'l \& Ind		20		25		30		35	ns
		Mil				25		30		35	
$\mathrm{t}_{\text {ER }}$	Input to Output Disable Delay ${ }^{[4,7]}$	Com'l \& Ind		20		25		30		35	ns
		Mil				25		30		35	
$\mathrm{t}_{\mathrm{CO} 1}$	Synchronous Clock Input to Output Delay	Com'l \& Ind		12		14		16		20	ns
		Mil				14		16		20	
$\mathrm{t}_{\mathrm{CO} 2}$	Synchronous Clock to Local Feedback to Combinatorial Output ${ }^{4,11]}$	Com'l \& Ind		25		30		35		42	ns
		Mil				30		35		42	
$\mathrm{t}_{\text {S1 }}$	Dedicated Input or Feedback Set-Up Time to Synchronous Clock Input ${ }^{[7]}$	Com'l \& Ind	12		15		20		25		ns
		Mil			15		20		25		
$\mathrm{t}_{\text {S } 2}$	I/O Input Set-Up Time to Synchronous Clock Input ${ }^{[7,12]}$	Com'l \& Ind	24		30		35		42		ns
		Mil			30		35		42		
t_{H}	Input Hold Time from Synchronous Clock Input ${ }^{77]}$	Com'l \& Ind	0		0		0		0		ns
		Mil			0		0		0		
${ }^{\text {twh }}$	Synchronous Clock Input HIGH Time	Com'l \& Ind	6		8		10		12.5		ns
		Mil			8		10		12.5		
${ }^{\text {WhL }}$	Synchronous Clock Input LOW Time	Com'l \& Ind	6		8		10		12.5		ns
		Mil			8		10		12.5		
$\mathrm{t}_{\text {RW }}$	Asynchronous Clear Width ${ }^{[4,7]}$	Com'l \& Ind	20		25		30		35		ns
		Mil			25		30		35		
t_{RR}	Asynchronous Clear Recovery Time ${ }^{[4,7]}$	Com'l \& Ind	20		25		30		35		ns
		Mil			25		30		35		
t_{RO}	Asynchronous Clear to Registered Output Delay[7]	Com'l \& Ind		20		25		30		35	ns
		Mil				25		30		35	
t_{PR}	Asynchronous Preset Recovery Time ${ }^{[4,7]}$	Com'l \& Ind	20		25		30		35		ns
		Mil			25		30		35		
tPO	Asynchronous Preset to Registered Output Delay ${ }^{[7]}$	Com'l \& Ind		20		25		30		35	ns
		Mil				25		30		35	

External Synchronous Switching Characteristics ${ }^{[6]}$ Over Operating Range (continued)

Parameter	Description		CY7C343-20		CY7C343-25		CY7C343-30		CY7C343-35		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{CF}	Synchronous Clock to Local Feedback Input ${ }^{[4,13]}$	Com'l \& Ind		3		3		3		5	ns
		Mil				3		3		5	
$\mathrm{t}_{\mathbf{P}}$	External Synchronous Clock Period $\left(1 / \mathrm{f}_{\mathrm{MAX}}\right)^{[4]}$	Com'l \& Ind	12		16		20		25		ns
		Mil			16		20		25		
$\mathrm{f}_{\mathrm{MAX} 1}$	External Maximum Fre-$\left(1 /\left(\mathrm{t}_{\mathrm{CO} 1}+\mathrm{t}_{\mathrm{S} 1}\right)\right)^{[4,14]}$	Com'l \& Ind	41.6		34		27		22.2		MHz
		Mil			34		27		22.2		
$\mathrm{f}_{\mathrm{MAX} 2}$	Internal Local Feedback Maximum Frequency, lesser of $\left(1 /\left(\mathrm{t}_{\mathrm{S}_{1}}+\mathrm{t}_{\mathrm{CF}}\right)\right)$ or $(1 / \mathrm{t} \mathrm{CO} 1)^{[4,15]}$	Com'l \& Ind	66.7		55		43		33		MHz
		Mil			55		43		33		
$\mathrm{f}_{\text {MAX }}$	Data Path Maximum Frequency, least of $1 /\left(t_{\text {WL }}+\right.$ $\mathrm{twH}_{\mathrm{W}}$, $1 /\left(\mathrm{t} \mathrm{s} \mathrm{l}_{\mathrm{l}}+\mathrm{t}_{\mathrm{H}}\right.$), or $\left(1 / \mathrm{t}_{\mathrm{CO}}\right)^{44,16]}$	Com'l \& Ind	83.3		62.5		50		40		MHz
		Mil			62.5		50		40		
$\mathrm{f}_{\mathrm{MAX} 4}$	Maximum Register Toggle Frequency $\left(1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)\right)^{[4,17]}$	Com'l \& Ind	83.3		62.5		50		40		MHz
		Mil			62.5		50		40		
$\mathrm{t}^{\text {OH }}$	Output Data Stable Time from Synchronous Clock Input ${ }^{[4,18]}$	Com'l \& Ind	3		3		3		3		ns
		Mil			3		3		3		
${ }_{\text {t }}$ (Asynchronous Preset Width ${ }^{[4,7]}$	Com'l \& Ind	20		25		30		35		ns
		Mil			25		30		35		

Notes:
7. This specification is a measure of the delay from input signal applied to a dedicated input (44-pin PLCC input pin $9,11,12,13,31,33,34$, or 35) to combinatorial output on any output pin. This delay assumes no expander terms are used to form the logic function.
When this note is applied to any parameter specification it indicates that the signal (data, asynchronous clock, asynchronous clear, and/or asynchronous preset) is applied to a dedicated input only and no signal path (either clock or data) employs expander logic.
If an input signal is applied to an I/O pin, an additional delay equal to $t_{\text {PIA }}$ should be added to the comparable delay for a dedicated input. If expanders are used, add the maximum expander delay $t_{\text {EXP }}$ to the overall delay for the comparable delay without expanders.
8. This specification is a measure of the delay from input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to form the logic function.
9. This specification is a measure of the delay from an input signal applied to a dedicated input (44-pin PLCC input pin $9,11,12,13,31,33,34$, or 35) to combinatorial output on any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
10. This specification is a measure of the delay from an inputsignal applied to an I/O macrocell pin to any output. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
11. This specification is a measure of the delay from synchronous register clock to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used, register is synchronously clocked and all
feedback is within the same LAB. This parameter is tested periodically by sampling production material.
12. If data is applied to an I/O input for capture by a macrocell register, the I/O pin set-up time minimums should be observed. These parameters are $t_{S 2}$ for synchronous operation and $t_{\mathrm{AS} 2}$ for asynchronous operation.
13. This specification is a measure of the delay associated with the internal register feedback path. This is the delay from synchronous clock to LAB logic array input. This delay plus the register set-up time, $\mathrm{t}_{\mathrm{S} 1}$, is the minimum internal period for an internal synchronous state machine configuration. This delay is for feedback within the same LAB. This parameter is tested periodically by sampling production material.
14. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which a state machine configuration with external feedback can operate. It is assumed that all data inputs and feedback signals are applied to dedicated inputs.
15. This specification indicates the guaranteed maximum frequency at which a state machine, with internal-onlyfeedback, can operate. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1 / \mathrm{t}_{\mathrm{CO} 1}$. All feedback is assumed to be local, originating within the same LAB.
16. This frequency indicates the maximum frequency at which the device may operate in data path mode. This delay assumes data input signals are applied to dedicated inputs and no expander logic is used.
17. This specification indicates the guaranteed maximum frequency, in synchronous mode, at which an individual output or buried register can be cycled.
18. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.

External Asynchronous Switching Characteristics Over Operating Rangee ${ }^{[6]}$

Parameter	Description		CY7C343-20		CY7C343-25		CY7C343-30		CY7C343-35		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{ACO}}$	Asynchronous Clock Input to Output Delay ${ }^{[7]}$	Com'l \& Ind		20		25		30		35	ns
		Mil				25		30		35	
$\mathrm{t}_{\mathrm{ACO}}$	Asynchronous Clock Input to Local Feedback to Combinatorial Output ${ }^{[19]}$	Com'l \& Ind		32		40		46		55	ns
		Mil				40		46		55	
$\mathrm{t}_{\text {AS1 }}$	Dedicated Input or Feedback Set-Up Time to Asynchronous Clock Input ${ }^{[7]}$	Com'l \& Ind	4		5		6		8		ns
		Mil			5		6		8		
$\mathrm{t}_{\mathrm{AS} 2}$	I/O Input Set-Up Time to Asynchronous Clock Input ${ }^{[7]}$	Com'l \& Ind	15		20		25		30		ns
		Mil			20		25		30		
$\mathrm{t}_{\text {AH }}$	Input Hold Time from Asynchronous Clock Input ${ }^{[7]}$	Com'l \& Ind	5		6		8		10		ns
		Mil			6		8		10		
$\mathrm{t}_{\text {AWH }}$	Asynchronous Clock Input HIGH Time ${ }^{[7]}$	Com'l \& Ind	9		11		14		16		ns
		Mil			11		14		16		
$\mathrm{t}_{\text {AWL }}$	Asynchronous Clock Input LOW Time ${ }^{[7,20]}$	Com'l \& Ind	7		9		11		14		ns
		Mil			9		11		14		
$\mathrm{t}_{\mathrm{ACF}}$	Asynchronous Clock to Local Feedback Input ${ }^{[4,}$ 21]	Com'l \& Ind		13		15		18		22	ns
		Mil				15		18		22	
t_{AP}	External Asynchronous Clock Period$\left(1 / \mathrm{f}_{\text {MAXA }}\right)^{[4]}$	Com'l \& Ind	16		20		25		30		ns
		Mil			20		25		30		
$\mathrm{f}_{\text {MAXA1 }}$	External Maximum Frequency in Asynchronous Mode$1 /\left(\mathrm{t}_{\mathrm{ACO} 1}+\mathrm{t}_{\mathrm{AS} 1}\right)^{[4,22]}$	Com'l \& Ind	41.6		33		27		23		$\overline{\mathrm{MHz}}$
		Mil			33		27		23		
$\mathrm{f}_{\text {MAXA2 }}$	Maximum Internal Asynchronous Frequen$\mathrm{cy}^{[4,23]}$	Com'l \& Ind	62.5		50		40		33		MHz
		Mil			50		40		33		
$\mathrm{f}_{\text {MAXA3 }}$	Data Path Maximum Frequency in Asynchronous Mode ${ }^{[4,24]}$	Com'l \& Ind	50		40		33		28		MHz
		Mil			40	:	33		28		
$\mathrm{f}_{\text {MAXA4 }}$	Maximum Asynchronous Register Toggle Frequency $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)^{44,25]}$	Com'l \& Ind	62.5		50		40		33		MHz
		Mil			50		40		33		
taOH	Output Data Stable Time from Asynchronous Clock Input ${ }^{[4,}$, 26]	Com'l \& Ind	15		15		15		15		ns
		Mil			15		15		15		

Notes:
19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the register output signal to the input of the LAB logic array and then to a combinatorial output. This delay assumes no expanders are used in the logic of combinatorial output or the asynchronous clock input. The clock signal is applied to a dedicated input pin and all feedback is within a single LAB. This parameter is tested periodically by sampling production material.
20. This parameter is measured with a positive-edge triggered clock at the register. For negative edge triggering, the $\mathrm{t}_{\mathrm{AWH}}$ and $\mathrm{t}_{\mathrm{AWL}}$ parameters must be swapped. If a given input is used to clock multiple registers with both positive and negative polarity, $\mathrm{t}_{\mathrm{AWH}}$ should be used for both
$\mathrm{t}_{\mathrm{AWH}}$ and $\mathrm{t}_{\mathrm{AWL}}$.
21. This specification is a measure of the delay associated with the internal register feedback path for an asynchronous clock to LAB logic array input. This delay plus the asynchronous register set-up time, ${ }_{\mathrm{AS}}$, is the minimum internal period for an internal asynchronously clocked state machine configuration. This delay is for feedback within the same LAB, assumes noexpander logicin the clock path, and assumes that the clock input signal is applied to a dedicated input pin. This parameter is tested periodically by sampling production material.
22. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine configuration with external feedback can operate. It is assumed that all data inputs, clock inputs, and feedback signals are applied to dedicated inputs, and that no expander logic is employed in the clock signal path or data path.

Internal Switching Characteristics Over Operating Range ${ }^{[1]}$

Parameter	Description		CY7C343-20		CY7C343-25		CY7C343-30		CY7C343-35		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {IN }}$	Dedicated Input Pad and Buffer Delay	Com'l \& Ind		4		5		7		9	ns
		Mil				5		7		9	
t_{I}	I/O Input Pad and Buffer Delay	Com'l \& Ind		4		5		5		7	ns
		Mil				5		5		7	
$\mathrm{t}_{\mathrm{EXP}}$	Expander Array Delay	Com'l \& Ind		10		12		14		20	ns
		Mil				12		14		20	
${ }_{\text {t }}$	Logic Array Data Delay	Com'l \& Ind		10		12		14		16	ns
		Mil				12		14		16	
$\mathrm{t}_{\text {LAC }}$	Logic Array Control Delay	Com'l \& Ind		8		10		12		13	ns
		Mil				10		12		13	
$\mathrm{t}_{\text {OD }}$	Output Buffer and Pad Delay	Com'l \& Ind		4		5		5		6	ns
		Mil				5		5		6	
t_{ZX}	$\begin{aligned} & \text { Output Buffer Enable } \\ & \text { Delay[27] } \end{aligned}$	Com'l \& Ind		8		10		11		13	ns
		Mil				10		11		13	
${ }^{\text {t }} \mathrm{XZ}$	Output Buffer DisableDelay Delay	Com'l \& Ind		8		10		11		13	ns
		Mil				10		11		13	
$\mathrm{t}_{\text {RSU }}$	Register Set-Up Time Relative to Clock Signal at Register	Com'l \& Ind	4		6		8		10		ns
		Mil			6		8		10		
t_{RH}	Register Hold Time Relative to Clock Signal at Register	Com'I \& Ind	4		6		8		12		ns
		Mil			6		8		12		
${ }^{\text {t }}$ LATCH	Flow-Through Latch Delay	Com'l \& Ind		2		3		4		4	ns
		Mil				3		4		4	
t_{RD}	Register Delay	Com'l \& Ind		1		1		2		2	ns
		Mil				1		2		2	
$\mathrm{t}^{\text {comb }}$	$\underset{\substack{\text { Transparent Mode } \\ \text { Delay } \\ \\ \\ \\ \\ \text { 28] }}}{ }$	Com'l \& Ind		2		3		4		4	ns
		Mil				3		4		4	
t_{CH}	Clock HIGH Time	Com'l \& Ind	6		8		10		12.5		ns
		Mil			8		10		12.5		
${ }^{\text {t }}$ CL	Clock LOW Time	Com'l \& Ind	6		8		10		12.5		ns
		Mil			8		10		12.5		
${ }^{\text {tIC }}$	Asynchronous ClockLogic Delay	Com'l \& Ind		12		14		16		18	ns
		Mil				14		16		18	
tics	Synchronous ClockDelay	Com'l \& Ind		2		2		2		3	ns
		Mil				2		2		3	
${ }^{\text {t }}$ FD	Feedback Delay	Com'l \& Ind		1		1		1		2	ns
		Mil				1		1		2	
tpre	$\begin{aligned} & \hline \text { Asynchronous Register } \\ & \text { Preset Time } \end{aligned}$	Com'l \& Ind		4		5		6		7	ns
		Mil				5		6		7	
${ }^{\text {t }}$ CLR	Asynchronous Register Clear Time	Com'l \& Ind		4		5		6		7	ns
		Mil				5		6		7	
${ }^{\text {tPCW }}$	Asynchronous Preset and Clear Pulse Width	Com'l \& Ind	4		5		6		7		ns
		Mil			5		6		7		
${ }_{\text {t }}$	Asynchronous Preset and Clear Recovery Time	Com'l \& Ind	4		5		6		7		ns
		Mil			5		6		7		
${ }^{\text {t PIA }}$	Programmable Interconnect Array Delay Time	Com'l \& Ind		12		14		16		20	\square
		Mil				14		16		20	

Switching Waveforms

External Synchronous

Notes:

23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate. This parameter is determined by the lesser of $\left.\left(1 / t_{A C F}+t_{A S 1}\right)\right)$ or $\left(1 /\left(t_{A W H}+t_{A W L}\right)\right)$. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1 / t_{\mathrm{ACO}} 1$.
24. This frequency is the maximum frequency at which the device may operate in the asynchronously clocked data path mode. This specification is determined by the least of $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right), 1 /\left(\mathrm{t}_{\mathrm{AS} 1}+\mathrm{t}_{\mathrm{AH}}\right)$ or $1 / \mathrm{t}_{\mathrm{ACO}} 1$. It assumes data and clock input signals are applied to dedicated input pins and no expander logic is used.
25. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode by a clock signal applied to an external dedicated input pin.
26. This parameter indicates the minimum time that the previous register output data is maintained on the output after an asynchronous register clock input.
27. Sample tested only for an output change of 500 mV .
28. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial operation.

Switching Waveforms (continued)

Switching Waveforms (continued)

Internal Synchronous

Output Mode

Ordering Information

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
20	CY7C343-20HC/HI	H67	44-Pin Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C343-20JC/JI	J67	44-Lead Plastic Leaded Chip Carrier	
25	CY7C343-25HC/HI	H67	44-Pin Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C343-25JC/JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C343-25HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military
30	CY7C343-30HC/HI	H67	44-Pin Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C343-30JC/JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C343-30HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military
35	CY7C343-35HC/HI	H67	44-Pin Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C343-35JC/JI	J67	44-Lead Plastic Leaded Chip Carrier	
	CY7C343-35HMB	H67	44-Pin Windowed Leaded Chip Carrier	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$

Switching Characteristics

Parameters	Subgroups
$\mathrm{t}_{\mathrm{PD} 1}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PD} 2}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PD} 3}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CO} 1}$	$7,8,9,10,11$
t_{S}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACO} 1}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACO} 2}$	$7,8,9,10,11$
t_{AS}	$7,8,9,10,11$
t_{AH}	$7,8,9,10,11$

Document \#: 38-00128-E

Features

- High-performance, high-density replacement for TTL, 74HC, and custom logic
- 32 macrocells, 64 expander product terms in one LAB
- 8 dedicated inputs, 16 I/O pins
- 28-pin 300-mil DIP, cerDIP or 28-pin HLCC, PLCC package

Functional Description

Available in a 28 -pin 300 -mil DIP or windowed J-leaded ceramic chip carrier (HLCC), the CY7C344 represents the densest EPLD of this size. Eight dedicated inputs and 16 bidirectional I/O pins communicate to one logic array block. In the CY7C344 LAB there are 32 macrocells and 64 expander product terms. When an I/O macrocell is used as an input, two expanders are used to create an input path. Even if all of the I/O pins are driven by macrocell registers, there are still 16 "buried"
registers available. All inputs, macrocells, and I / O pins are interconnected within the LAB.
The speed and density of the CY7C344 makes it a natural for all types of applications. With just this one device, the designer can implement complex state machines, registered logic, and combinatorial "glue" logic, without using multiple chips. This architectural flexibility allows the CY7C344 toreplace multichip TTL solutions, whether they are synchronous, asynchronous, combinatorial, or all three.

Pin Configurations

CerDIP
Top View

Selection Guide

		7C344-20	$\mathbf{7 C 3 4 4 - 2 5}$	7C344-35
Maximum Access Time (ns)	20	25	35	
Maximum Operating Current (mA)	Commercial	200	200	200
	Military		220	220
	Industrial	220	220	
Maximum Standby Current (mA)	Commercial	150	150	150
	Military		170	170
	Industrial	170	170	

Note:

1. Figures in () are for J-leaded packages.

MAX and MAX+PLUS are registered trademarks of Altera Corporation.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Maximum Junction Temperature
(Under Bias)
$150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -2.0 V to +7.0 V
Maximum Power Dissipation
1500 mW
DC $V_{C C}$ or GND Current
500 mA

Static Discharge Voltage
(per MIL-STD-883, Method 3015)
$>2001 \mathrm{~V}$
DC Output Current, per Pin -25 mA to +25 mA

DC Program Voltage . -13.5 V
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ (Case)	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	Test Conditions		Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8 \mathrm{~mA}$			0.45	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level			2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Level			-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND		-40	+40	$\mu \mathrm{A}$
IOS	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[4,5}$		-30	-90	mA
$\mathrm{I}_{\mathrm{CC} 1}$	Power Supply	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND (No Load) }$	Commercial		150	mA
	Current (Standby)		Military/Industrial		170	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND (No Load) }$	Commercial		200	mA
			Military/Industrial		220	mA
t_{R}	Recommended Input Rise Time				100	ns
t_{F}	Recommended Input Fall Time				100	ns

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{OUT}}=2.0 \mathrm{~V}, \mathrm{f}=1.0 \mathrm{MHz}$	10	pF

AC Test Loads and Waveforms ${ }^{[7]}$

SCOPE
(a)

(b) C344-4

C344-5

Equivalent to: THEVENIN EQUIVALENT (commercial/military)
OUTPUT $0 \longrightarrow 163 \Omega \longrightarrow \longrightarrow 1.75 \mathrm{~V}$

Notes:
2. Minimum DC input is -0.3 V . During transitions, the inputs may undershoot to -2.0 V for periods less than 20 ns .
3. Typical values are for $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ and $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$.
4. Guaranteed but not 100% tested.
5. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
6. Measured with device programmed as a 16-bit counter.
7. Part (a) in AC Test Load and Waveforms is used for all parameters except $t_{E R}$ and $t_{X Z}$, which is used for part (b) in AC Test Load and Waveforms. All external timing parameters are measured referenced to external pins of the device.

Timing Delays

Timing delays within the CY7C344 may be easily determinedusing MAX+PLUS ${ }^{\circledR}$ software or by the model shown in Figure 1. The CY7C344 has fixed internal delays, allowing the user to determine the worst case timing delays for any design. For complete timing information, the MAX+PLUS software provides a timing simulator.

Design Recommendations

Operation of the devices described herein with conditions above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this datasheet is not implied. Exposure to absolute maximum ratings conditions for extended periods of time may affect device reliability. The CY7C344 contains circuitry to protect device pins from high-static voltages or electric fields; however, normal precautions should be taken to avoid applying any voltage higher than maximum rated voltages.
For proper operation, input and output pinsmust be constrained to the range $\mathrm{GND} \leq\left(\mathrm{V}_{\text {IN }}\right.$ or $\left.\mathrm{V}_{\text {OUT }}\right) \leq \mathrm{V}_{\mathrm{CC}}$. Unused inputs must always be tied to an appropriate logic level (either V_{CC} or GND). Each set of $V_{C C}$ and $G N D$ pins must be connected together directly at the device. Power supply decoupling capacitors of at least 0.2 $\mu \mathrm{F}$ must be connected between V_{CC} and GND. For the most effective decoupling, each V_{CC} pin should be separately decoupled.

Timing Considerations

Unless otherwise stated, propagation delays do not include expanders. When using expanders, add the maximum expander delay $t_{\text {EXP }}$ to the overall delay.
When calculating synchronous frequencies, use $\mathrm{t}_{\mathrm{S} 1}$ if all inputs are on the input pins. $\mathrm{t}_{\mathrm{S} 2}$ should be used if data is applied at an I/O pin. If $\mathrm{t}_{\mathrm{S} 2}$ is greater than $\mathrm{t}_{\mathrm{CO} 1}, 1 / \mathrm{t}_{\mathrm{S} 2}$ becomes the limiting frequency in the data-path mode unless $1 /\left(\mathrm{t}_{\mathrm{WH}}+\mathrm{t}_{\mathrm{WL}}\right)$ is less than $1 / \mathrm{t}_{\mathrm{S} 2}$.

When expander logic is used in the data path, add the appropriate maximum expander delay, $\mathrm{t}_{\mathrm{EXP}}$ to $\mathrm{t}_{\mathrm{S} 1}$. Determine which of $1 /\left(\mathrm{t}_{\mathrm{WH}}\right.$ $\left.+\mathrm{t}_{\mathrm{WL}}\right), 1 / \mathrm{t}_{\mathrm{CO} 1}$, or $1 /\left(\mathrm{t}_{\mathrm{EXP}}+\mathrm{t}_{\mathrm{S} 1}\right)$ is the lowest frequency. The lowest of these frequencies is the maximum data-path frequency for the synchronous configuration.
When calculating externalasynchronous frequencies, use $t_{\text {AS } 1}$ ifall inputs are on dedicated input pins. If any data is applied to an I/O pin, $\mathrm{t}_{\mathrm{AS} 2}$ must be used as the required set-up time. If $\left(\mathrm{t}_{\mathrm{AS} 2}+\mathrm{t}_{\mathrm{AH}}\right)$ is greater than $t_{\mathrm{ACO}}, 1 /\left(\mathrm{t}_{\mathrm{AS} 2}+\mathrm{t}_{\mathrm{AH}}\right)$ becomes the limiting frequency in the data-path mode unless $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)$ is less than $1 /\left(t_{\mathrm{AS} 2}+\mathrm{t}_{\mathrm{AH}}\right)$.
When expander logic is used in the data path, add the appropriate maximum expander delay, $\mathrm{t}_{\mathrm{EXP}}$ to $\mathrm{t}_{\mathrm{AS} 1}$. Determine which of $1 /\left(t_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right), 1 / \mathrm{t}_{\mathrm{ACO} 1}$, or $1 /\left(\mathrm{t}_{\mathrm{EXP}}+\mathrm{t}_{\mathrm{AS} 1}\right)$ is the lowest frequency. The lowest of these frequencies is the maximum data-path frequency for the asynchronous configuration.
The parameter t_{OH} indicates the system compatibility of this device when driving other synchronous logic with positive input hold times, which is controlled by the same synchronous clock. If t_{OH} is greater than the minimum required input hold time of the subsequent synchronous logic, then the devices are guaranteed to function properly with a common synchronous clock under worst-case environmental and supply voltage conditions.
The parameter $\mathrm{t}_{\mathrm{AOH}}$ indicates the system compatibility of this device when driving subsequent registered logic with a positive hold time and using the same clock as the CY7C344.
In general, if $\mathrm{t}_{\mathrm{AOH}}$ is greater than the minimum required input hold time of the subsequent logic (synchronous or asynchronous), then the devices are guaranteed to function properly under worstcase environmental and supply voltage conditions, provided the clock signal source is the same. This also applies if expander logic is used in the clock signal path of the driving device, but not for the driven device. This is due to the expander logic in the second device's clock signal path adding an additional delay ($\mathrm{t}_{\mathrm{EXP}}$), causing the output data from the preceding device to change prior to the arrival of the clock signal at the following device's register.

Figure 1. CY7C344 Timing Model

CY7C344
SEMICONDUCTOR
External Synchronous Switching Characteristics ${ }^{[7]}$ Over Operating Range

Parameter	Description		CY7C344-20		CY7C344-25		CY7C344-35		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
tpD1	Dedicated Input to Combinatorial Output Delay ${ }^{[8]}$	Com'l \& Ind		20		25			ns
		Mil				25		35	
$\mathrm{t}_{\text {PD2 }}$	I/O Input to Combinatorial Output Delay ${ }^{[9]}$	Com'l \& Ind		20		25			ns
		Mil				25		35	
$\mathrm{t}_{\text {PD3 }}$	Dedicated Input to Combinatorial Output Delay with Expander Delay ${ }^{[10]}$	Com'l \& Ind		30		40			ns
		Mil				40		55	
$\mathrm{t}_{\text {PD4 }}$	I/OInput to Combinatorial Output Delay with Expander Delay $[4,11]$	Com'l \& Ind		30		40			ns
		Mil				40		55	
$\mathrm{t}_{\text {EA }}$	Input to Output Enable Delay ${ }^{[4]}$	Com'l \& Ind		20		25			ns
		Mil				25		35	
t_{ER}	Input to Output Disable Delay ${ }^{[4]}$	Com'l \& Ind		20		25			ns
		Mil				25		35	
${ }^{\text {c }} \mathrm{CO1}$	Synchronous Clock Input to Output Delay	Com'l \& Ind		12		15			ns
		Mil				15		20	
${ }^{\text {t }} \mathrm{CO} 2$	Synchronous Clock to Local Feedback to Combinatorial Output[4, 12]	Com'l \& Ind		22		29			ns
		Mil				29		37	
t_{5}	Dedicated Input or Feedback Set-Up Time to Synchronous Clock Input	Com'l \& Ind	12		15				ns
		Mil			15		21		
t_{H}	Input Hold Time from Synchronous Clock Input ${ }^{[7]}$	Com'l \& Ind	0		0				ns
		Mil			0		0		
${ }^{\text {twh }}$	Synchronous Clock Input HIGH Time ${ }^{[4]}$	Com'l \& Ind	7		8				ns
		Mil			8		10		
t_{WL}	Synchronous Clock Input LOW Time ${ }^{[4]}$	Com'l \& Ind	7		8				ns
		Mil			8		10		
$\mathrm{t}_{\text {RW }}$	Asynchronous Clear Width ${ }^{[4]}$	Com'l \& Ind	20		25				ns
		Mil			25		35		
t_{RR}	Asynchronous Clear Recovery Time ${ }^{[4]}$	Com'1 \& Ind	20		25				ns
		Mil			25		35		
t_{RO}	Asynchronous Clear to Registered Output Delay ${ }^{[4]}$	Com'l \& Ind		20		25			ns
		Mil				25		35	
${ }_{\text {t }}{ }^{\text {W }}$	Asynchronous Preset Width ${ }^{[4]}$	Com'l \& Ind	20		25				ns
		Mil			25		35		
t_{PR}	Asynchronous Preset Recovery Time ${ }^{[4]}$	Com'l \& Ind		20		25			ns
		Mil				25		35	

External Synchronous Switching Characteristics ${ }^{[7]}$ Over Operating Range (continued)

Parameter	Description		CY7C344-20		CY7C344-25		CY7C344-35		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
t_{PO}	Asynchronous Preset to Registered Output Delay ${ }^{[4]}$	Com'l \& Ind		20		25			ns
		Mil				25		35	
t_{CF}	Synchronous Clock to Local Feedback Input ${ }^{[4,13]}$	Com'l \& Ind		4		7			ns
		Mil				7		13	
t_{P}	External Synchronous Clock Period $\left(1 / \mathrm{f}_{\text {MAX }}\right)^{[4]}$	Com'l \& Ind	14		16				ns
		Mil			16		20		
$\mathrm{f}_{\mathrm{MAX} 1}$,	External Maximum Frequency$\left(1 /\left(\mathrm{t}_{\mathrm{CO} 1}+\mathrm{t}_{\mathrm{S} 1}\right)\right)^{[4,14]}$	Com'l \& Ind	41.6		33.3				MHz
		Mil			33.3		24.3		
$\mathrm{f}_{\text {MAX2 }}$	Maximum Frequency with Internal Only Feedback $\left(1 /\left(\mathrm{t}_{\mathrm{CF}}+\mathrm{t}_{\mathrm{S}}\right)\right)^{[4,15]}$	Com'l \& Ind	62.5		45.4				MHz
		Mil			45.4		29.4		
$\mathrm{f}_{\mathrm{MAX}}$	Data Path Maximum Frequency, least of $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)$, or $\left(1 / \mathrm{t}_{\mathrm{CO}}\right)^{[4,16]}$	Com'l \& Ind	71.4		62.5				MHz
		Mil			62.5		47.6		
$\mathrm{f}_{\text {MAX4 }}$	Maximum Register Toggle Frequency$1 /\left(t_{W L}+t_{W H}\right)^{[4,17]}$	Com'l \& Ind	71.4		62.5				MHz
		Mil			62.5		50.0		
t_{OH}	Output Data Stable Time from Synchronous Clock Input ${ }^{[4,18]}$	Com'l \& Ind	3		3				ns
		Mil			3		3		

Notes:

8. This parameter is the delay from an input signal applied to a dedicated input pin to a combinatorial output on any output pin. This delay assumes no expander terms are used to form the logic function.
9. This parameter is the delay associated with an input signal applied to an I/O macrocell pin to any output. This delay assumes no expander terms are used to form the logic function.
10. This parameter is the delay associated with an input signal applied to a dedicated input pin to combinatorial output on any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
11. This parameter is the delay associated with an input signal applied to an I/O macrocell pin to any output pin. This delay assumes expander terms are used to form the logic function and includes the worst-case expander logic delay for one pass through the expander logic. This parameter is tested periodically by sampling production material.
12. This specification is a measure of the delay from synchronous register clockinput to internal feedback of the register outputsignal to a combinatorial output for which the registered output signal is used as an input. This parameter assumes no expanders are used in the logic of the combinatorial output and the register is synchronously clocked. This parameter is tested periodically by sampling production material.
13. This specification is a measure of the delay associated with the internal register feedback path. This delay plus the register set-uptime, t_{S}, is the minimum internal period for an internal state machine configuration. This parameter is tested periodically by sampling production material.
14. This specification indicates the guaranteed maximum frequency at which a state machine configuration with external only feedback can operate.
15. This specification indicates the guaranteed maximum frequency at which a state machine with internal-only feedback can operate. Ifregister output states must also control external points, this frequency can still be observed as long as it is less than $1 / \mathrm{t}_{\mathrm{CO} 1}$. This specification assumes no expander logic is used. This parameter is tested periodically by sampling production material.
16. This frequency indicates the maximum frequency at which the device may operate in data-path mode (dedicated input pin to output pin). This assumes that no expander logic is used.
17. This specification indicates the guaranteed maximumfrequency insynchronous mode, at which an individual output or buried register can be cycled by a clock signal applied to either a dedicated input pin or an I/O pin.
18. This parameter indicates the minimum time after a synchronous register clock input that the previous register output data is maintained on the output pin.

External Asynchronous Switching Characteristics Over Operating Range ${ }^{[7]}$

Parameter	Description		CY7C344-20		CY7C344-25		CY7C344-35		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{ACO} 1}$	Asynchronous Clock Input to Output Delay	Com'l \& Ind		20		25			ns
		Mil				25		35	
$\mathrm{t}_{\mathrm{ACO}} 2$	Asynchronous Clock Input to LocalFeedback to Combinatorial Output ${ }^{[19]}$	Com'l \& Ind		30		37			ns
		Mil				37		49	
$\mathrm{t}_{\text {AS }}$	Dedicated Input or Feedback Set-Up Time to Asynchronous Clock Input	Com'l \& Ind	9		12				ns
		Mil			12		15		
t_{AH}	Input Hold Time from Asynchronous Clock Input	Com'l \& Ind	9		12				ns
		Mil			12		17.5		
${ }^{\text {taWH }}$	Asynchronous Time Clock 20] Input HIGH	Com'l \& Ind	7		9				ns
		Mil			9		15		
$\mathrm{t}_{\text {AWL }}$	Asynchronous Clock Input LOW Time ${ }^{[4]}$	Com'l \& Ind	9		11				ns
		Mil			11		15		
$\mathrm{t}_{\mathrm{ACF}}$	Asynchronous Clock to Local Feedback Input ${ }^{[4,21]}$	Com'l \& Ind		18		21			ns
		Mil				21		27	
t_{AP}	External Asynchronous Clock Period $\left(1 / \mathrm{f}_{\text {MAX } 4}\right)^{[4]}$	Com'l \& Ind	16		20				ns
		Mil			20		30		
$\mathrm{f}_{\text {MAXA1 }}$	External Maximum Frequency in Asynchronous Mode $1 /\left(\mathrm{t}_{\mathrm{ACO}}+\mathrm{t}_{\mathrm{AS}}\right)^{[4,22]}$	Com'l \& Ind	34.4		27				MHz
		Mil			27		20		
$\mathrm{f}_{\text {MAXA2 }}$	$\begin{aligned} & \text { Maximum Internal Asynchronous } \\ & \text { Frequency } 1 /\left(\mathrm{t}_{\mathrm{ACF}}+\mathrm{t}_{\mathrm{AS}}\right) \text { or } \\ & 1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)^{[4,23]} \end{aligned}$	Com'l \& Ind	37		30.3				MHz
		Mil			30.3		23.8		
$\mathrm{f}_{\text {MAXA3 }}$	Data Path Maximum Frequency in Asynchronous Mode ${ }^{[4,24]}$	Com'l \& Ind	50		40				MHz
		Mil			40		28.5		
$\mathrm{f}_{\text {MAXA4 }}$	Maximum Asynchronous RegisterToggle Frequency $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)^{[4,25]}$	Com'l \& Ind	62.5		50				MHz
		Mil			50		33.3		
$\mathrm{t}_{\mathrm{AOH}}$	Output Data Stable Time from Asynchronous Clock Input ${ }^{[4,26]}$	Com'l \& Ind	15		15				ns
		Mil			15		15		

Notes:
19. This specification is a measure of the delay from an asynchronous register clock input to internal feedback of the registered output signal to a combinatorial output for which the registered output signal is used as an input. Assumes no expanders are used in logic of combinatorial output or the asynchronous clock input. This parameter is tested periodically by sampling production material.
20. This parameter is measured with a positive-edge-triggered clock at the register. For negative edge triggering, the $\mathrm{t}_{\mathrm{AWH}}$ and $\mathrm{t}_{\mathrm{AWL}}$ parameters must be swapped. If a given input is used to clock multiple registers with both positive and negative polarity, $\mathrm{t}_{\text {AWH }}$ should be used for both $\mathrm{t}_{\mathrm{AWH}}$ and $\mathrm{t}_{\mathrm{AWL}}$.
21. This specification is a measure of the delay associated with the internal register feedback path for an asynchronously clocked register. This delay plus the asynchronous register set-up time, t_{AS}, is the minimum internal period for an asynchronously clocked state machine configuration. This delay assumes no expander logic in the asynchronous clock path. This parameter is tested periodically by sampling production material.
22. This parameter indicates the guaranteed maximum frequencyat which an asynchronously clocked state machine configuration with external feedback can operate. It is assumed that no expander logic is employed in the clock signal path or data path.
23. This specification indicates the guaranteed maximum frequency at which an asynchronously clocked state machine with internal-only feedback can operate. If register output states must also control external points, this frequency can still be observed as long as this frequency is less than $1 / \mathrm{t}_{\mathrm{ACO}}$. This specification assumes no expander logic is utilized. This parameter is tested periodically bysampling production material.
24. This specification indicates the guaranteed maximum frequency at which an individual output or buried register can be cycled in asynchronously clocked mode. This frequency is least of $1 /\left(\mathrm{t}_{\mathrm{AWH}}+\mathrm{t}_{\mathrm{AWL}}\right)$, $1 /\left(\mathrm{t}_{\mathrm{AS}}+\mathrm{t}_{\mathrm{AH}}\right)$, or $1 / \mathrm{t}_{\mathrm{ACO}}$. It also indicates the maximum frequency at which the device may operate in the asynchronously clocked data-path mode. Assumes no expander logic is used.
25. This specification indicates the guaranteed maximum frequency at which an individual output or buried registercan be cycled in asynchronously clocked mode by a clock signal applied to an external dedicated input or an I/O pin.
26. This parameter indicates the minimum time that the previous register output data is maintained on the output pin after an asynchronous register clock input to an external dedicated input or I/O pin.

Typical Internal Switching Characteristics Over Operating Range ${ }^{[7]}$

Parameter	Description		CY7C344-20		CY7C344-25		CY7C344-35		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {IN }}$	Dedicated Input Pad and Buffer Delay	Com'l \& Ind		5		7			ns
		Mil				7		11	
t_{IO}	I/O Input Pad and Buffer Delay	Com'l \& Ind		5		7			ns
		Mil				7		11	
$\mathrm{t}_{\mathrm{EXP}}$	Expander Array Delay	Com'l \& Ind		10		15			ns
		Mil				15		20	
$\mathrm{t}_{\text {LAD }}$	Logic Array Data Delay	Com'l \& Ind		9		10			ns
		Mil				10		11	
$\mathrm{t}_{\text {LAC }}$	Logic Array Control Delay	Com'l \& Ind		7		7			ns
		Mil				7		7	
$\mathrm{t}_{\text {OD }}$	Output Buffer and Pad Delay	Com'l \& Ind		5		5			ns
		Mil				5		8	
t_{ZX}	Output Buffer Enable Delay ${ }^{[27]}$	Com'l \& Ind		8		11			ns
		Mil				11		12	
${ }_{\text {t }} \mathrm{Z}$	Output Buffer Disable Delay	Com'l \& Ind		8		11			ns
		Mil				11		12	
$\mathrm{t}_{\mathrm{RSU}}$	Register Set-Up Time Relative to Clock Signal at Register	Com'l \& Ind	5		8				ns
		Mil			8		11		
t_{RH}	Register Hold Time Relative to Clock Signal at Register	Com'l \& Ind	9		12				ns
		Mil			12		15		
$\mathrm{t}_{\text {LATCH }}$	Flow-Through Latch Delay	Com'l \& Ind		1		3			ns
		Mil				3		5	
t_{RD}	Register Delay	Com'l \& Ind		1		1			ns
		Mil				1		1	
${ }^{\text {t }}$ COMB	Transparent Mode Delay ${ }^{[28]}$	Com'l \& Ind		1		3			ns
		Mil				3		5	
${ }_{\text {t }}$	Clock HIGH Time	Com'l \& Ind	7		8				ns
		Mil			8		9		
t_{CL}	Clock LOW Time	Com'l \& Ind	7		8				ns
		Mil			8		9		
${ }_{\text {IIC }}$	Asynchronous Clock Logic Delay	Com'l \& Ind		8		10			ns
		Mil				10		12	
$\mathrm{t}_{\text {ICS }}$	Synchronous Clock Delay	Com'l \& Ind		2		3			ns
		Mil				3		5	
t_{FD}	Feedback Delay	Com'l \& Ind		1		1			ns
		Mil				1		1	
$\mathrm{t}_{\text {PRE }}$	Asynchronous Register Preset Time	Com'l \& Ind		6		9			ns
		Mil				9		12	
$\mathrm{t}_{\text {CLR }}$	Asynchronous Register Clear Time	Com'l \& Ind		6		9			ns
		Mil				9		12	
trcw	Asynchronous Preset and Clear Pulse Width	Com'l \& Ind	5		7				ns
		Mil			7		9		
$\mathrm{t}_{\text {PCR }}$	Asynchronous Preset and Clear Recovery Time	Com'l \& Ind	5		7				ns
		Mil			7		9		

Notes:

27. Sample tested only for an output change of 500 mV .
28. This specification guarantees the maximum combinatorial delay associated with the macrocell register bypass when the macrocell is configured for combinatorial operation.

Switching Waveforms

External Combinatorial

External Asynchronous

Switching Waveforms (continued)

Internal Combinatorial

Internal Asynchronous

Internal Synchronous (Input Path)

Switching Waveforms (continued)
Internal Synchronous (Output Path)

Ordering Information

Speed (ns)	Ordering Code	Package Name	Operating Range	
20	CY7C344-20HC/HI	H64	28-Lead Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C344-20JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C344-20PC/PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C344-20WC/WI	W22	28-Lead Windowed CerDIP	
	CY7C344-25HC/HI	H64	28-Lead Windowed Leaded Chip Carrier	Commercial/Industrial
	CY7C344-25JC/JI	J64	28-Lead Plastic Leaded Chip Carrier	
	CY7C344-25PC/PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C344-25WC/WI	W22	28-Lead Windowed CerDIP	
	CY7C344-25HMB	H64	28-Lead Windowed Leaded Chip Carrier	Military
	CY7C344-25WMB	W22	28-Lead Windowed CerDIP	
35	CY7C344-35HMB	H64	28-Lead Windowed Leaded Chip Carrier	Military
	CY7C344-35WMB	W22	28-Lead Windowed CerDIP	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
$\mathrm{t}_{\mathrm{PD} 1}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PD} 2}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PD} 3}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{CO} 1}$	$7,8,9,10,11$
t_{s}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACO} 1}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ACO}}$	$7,8,9,10,11$
t_{AS}	$7,8,9,10,11$
t_{AH}	$7,8,9,10,11$

Document \#: 38-00127-C
-Skew-controlled OR output array

- Outputs are sum of states like PLA
- Security fuse
- Available in 28-pin slimline DIP and 28-pin HLCC
- UV-erasable and reprogrammable
- Programming and operation 100% testable

Product Characteristics

The CY7C361 is a CMOS erasable, programmable logic device (EPLD) with very high speed sequencing capabilities.
Applications includehigh-speed cache and I/O subsystems control, control of highspeed numeric processors, and high-speed arbitration between synchronous or asynchronous systems.

Features

- High speed: $\mathbf{1 2 5 - M H z}$ state machine output generation
-Token passing
-Multiple, concurrent processes
-Multiway branch or join
- One clock with programmable clock doubler
- Programmable miser bits for power savings
- 8 to 12 inputs with input macrocells
-Metastability hardened: 10-year MBTF
-0, 1, or 2 input registers
- 3 programmable clock enables
- 32 synchronous state macrocells
- 10 to 14 outputs

Ultra High Speed State Machine EPLD

A programmable on-board clock doubler allows the device to operate at 125 MHz internally based on a $62.5-\mathrm{MHz}$ input clock reference. The clock doubler is not a phase-locked loop. It produces an internal pulse on each edge of the external clock. The length of each internal pulse is determined by the intrinsic delays within the CY7C361. When the doubler is enabled, all macrocells in the CY7C361 are referenced to the doubled clock. If the clock doubler is disabled, a $125-\mathrm{MHz}$ inputclock can be connected to pin 4 , and it will be used as a clock to all macrocells.
The CY7C361 has two arrays, similar to those in a PLA except that the registers are placed between the two arrays so that the long feedback path of the PLA is eliminated.

Logic Blóck Diagram

c361-1

Pin Configurations

Selection Guide

Generic Part Number	$\mathbf{I}_{\text {CC }} \mathbf{~ m A}$ at $\mathbf{f}_{\text {MAX }}$		$\mathbf{f}_{\text {MAX }} \mathbf{M H z}$		$\mathbf{t}_{\text {IS }} \mathbf{n s}$		$\mathbf{t}_{\text {Co }} \mathbf{n s}$	
	Com	Mil	Com	Mil	Com	Mil	Com	Mil
	200		125.0		2		15	
CY7C361-100	200	200	100.0	100.0	3	3	19	19
CY7C361-83			83.3	83.3	5	5	23	23

Product Characteristics (continued)

In the CY7C361, the state information is contained in 32 state macrocells sandwiched between the input and output arrays. The current state information is fed back fast enough to achieve the $125-\mathrm{MHz}$ operating frequency. These state macrocells also have serial connections that allow state machines to be built using a to-ken-passing methodology similar to one hot encoding, but with the ability to support multiple active states at any given time.
The output array performs an OR function over the state macrocell outputs, allowing the control signals of the state machine to be produced directly. The signals from the output array are connected to the 14 device outputs (4 of which are bidirectional). In addition there are 3 sum terms that act as clock enables to the 3 groups of input macrocells. There are also 4 sum term output enables for the 4 bidirectional pins.

Input Macrocells

The CY7C361 has 12 input macrocells, shown in Figure 1. Each macrocell can be configured to have 0,1 , or 2 registers in the path of the input data. In the configuration where there is no input register, the set-up time required is the longest, because it includes the propagation delay through the input array plus the state register set-up time. In the single-registered configuration the set-up time is less than half of the unregistered case. The double-registered configuration is used to synchronize asynchronous inputs without causing metastable events.

Figure 1. Input Macrocell

Input Register Enables

The input macrocells are divided into 3 groups of 4 macrocells each. Each of these groups has a register clock enable coming from the output array. The assignment of enable signal node numbers to input macrocells is as follows:

Input Nodes	Enable Node
$3,5,6,9$	29
$10,11,12,13$	30
$1,2,14,15$	31

When the enable node is true, data is clocked into the registers of the input macrocells on the rising edge of the internal global clock.

Metastability Immunity

A high level of metastable immunity is afforded in the double-registered configuration. The CY7C361 registers are done in fast CMOS and they resolve inputs in a minimal amount of time. With all inputs switching at maximum frequency, one metastable event capable of violating the set-up time of a subsequent register occurs every 10 years. The probability of failure in a configured state machine is much lower than this calculation suggests, because there are more registers in the device and thus more decision time is allowed. No state machine failures due to metastable phenomena will be observed if the maximum frequency and double-registered operation frequency are used. This makes the CY7C361 ideally suited for constructing state machines requiring arbitration. For
more information on metastability, refer to the "Are Your PLDs Metastable?" application note in the Cypress Applications Handbook.

Input Array

The input array is based on the condition decoder, shown in Figure 2. In a conventional PLA or PLD device, only PRODUCT1 would be present in the first array and the output and the feedback would be encoded by a second programmable or fixed or array. The speed of state machines is limited mainly by the feedback path.

Figure 2. Condition Decoder
The condition decoder of the CY7C361 forms a product of a product and a sum over the input field. (The sum term is obtained by inverting the inputs to PRODUCT2.) Since there is immediate feedback information in the input field, multiway fork and join operations can be performed using this type of condition decoder. In other words, the condition decoder is used to control or gate the token being passed from macrocell to macrocell. In contrast, a traditional PLD or PLA requires more logic because the array is used to encode the states. In the CY7C361, state transitions can be made in half the time because there is no "state encoding" delay.
Each condition decoder has a miser bit in its sum term path. If the term is not used, the miser bit is automatically programmed. The miser bit completely disconnects the product term and replaces it with a logic HIGH. This results in a power savings.
The input array has 41 condition decoders: one global reset decoder, 8 local reset decoders, and 32 macrocell decoders. The array has 44 true/complement input pairs, 88 inputs total.
For speed reasons, the feedbacksignals aresegmented. This means that for each group of 8 macrocells, 2 have global feedback, 2 have intermediate feedback to 16 of the 32 macrocells, and 4 have local feedback within their group of 8 macrocells only. Segmenting the feedback reduces the number of inputs per decoder to 56 . Because the CY7C361 utilizes token passing, a large state machine will be effectively broken down into several smaller machines using 4 or less macrocells. The global and intermediate feedback is used to communicate between these smaller machines, and the local feedback is used within the smaller machines. For more information on the hot state encoding or token-passing design methodology, refer to the application notes titled "State Machine Design Considerations and Methodologies" and "Understanding the CY7C361" in the Cypress Applications Handbook.

State Machine Macrocells

The CY7C361 has 32 state macrocells. The state macrocells each have a single condition decode and share a common clock and global reset condition. The global reset is synchronous, and it lasts for two internal clock cycles. For each group of four state macrocells, there is a synchronous local reset condition.
All 32 of the macrocells are "daisy-chained." Each has a C_IN input that is connected to the C_OUT output of the previous macro-

CY7C361
cell, as shown in Figure 3. Configuration bit C2 is used in all state macrocells to select $\mathrm{C}_{-} \mathrm{IN}$ to be active $(\mathrm{C} 2=0)$ or inactive $(\mathrm{C} 2=1)$.

Figure 3. CY7C361 Macrocell
For the topmost macrocell (node 32), the C2 bit is used to specify a reset option. If the bit is 0 , then the C_IN for this macrocell will be true (1). If the C_{2} bit is 1 , then the $\mathrm{C}_{-} \mathrm{IN}$ for the macrocell will be false (0).

There are three state macrocell configurations: START, TOGGLE, and TERMINATE. The purpose of the START configuration is to create a "token" based on the condition decode. The TOGGLE configuration is used for building counters. The TERMINATE configuration is used to insert wait states in a process. It captures a token and holds it until a condition tells it to terminate the token.
Figure 4 shows a state macrocell in the START configuration. This configuration synchronously creates a token if C_IN or the condition decode is a logic HIGH. The token is represented by a true outputon the macrocell register going to the output array and back as feedback to the input array. A machine implemented in the CY7C361 will consist of multiple machines or processes running concurrently, each with zero, one or more tokens active at any given time. Put another way, each state macrocell in the CY7C361 can be thought of as a line of microcode that can execute concurrently.

Figure 4. Start Configuration
In addition to the main register going to the array, there is an R-S latch in the feedback path that is used to convert the input condition to a pulse.
In operation, the START macrocell starts from a reset condition (output array input = FALSE). When a condition decode "fires" or a token is carried in (C_IN), the register output (Q going to the array) goes true for exactly one cycle. The OR of the condition decode and the C_IN must go FALSE before the START configuration can fire again. Local resets have no effect on this configuration.

The TERMINATE macrocell (see Figure 5) captures a token via the C_IN path. The token is then held in the state register until the condition decoder fires, which causes the token to be terminated. Another way of saying this is that the TERMINATE macrocell is like a synchronous SR flip-flop. It is set by C_IN and reset by the condition decoder. Local resets have no effect on this configuration.

Figure 5. Terminate Configuration
The TOGGLE macrocell (see Figure 6) operates like a T-type flipflop. If C_IN or the condition decode is asserted, the state register will toggle on every rising edge of the internal clock. If neither the C_IN nor the condition decoder are asserted, the state register will retain its current state. The TOGGLE configuration is used to build counters. A local reset condition will synchronously reset the state register in this configuration.

Figure 6. Toggle Configuration

The Output Array

The output array is an OR-based array. The array inputs are the LOW-asserted outputs of the 32 state macrocells. There are five types of array outputs. The first type is the three clock enables for the input macrocells. Each enable is a programmable OR of asserted state macrocells; when one of the connected macrocells is asserted, the clock is enabled. Next are the four output enables of the bidirectional I/O pins. Again, the output enables are a programmable OR of the connected asserted state macrocells; when one of the connected macrocells is asserted, the output is enabled. The third type of array output is the "pure" device output. These six outputs are a functional OR of the Low-asserted outputs of the state registers. Next is the output path of the four bidirectional I/O pins, which is identical to that of the "pure" outputs. The last type of array output is the Mealy output macrocell. The CY7C361 has four of these outputs; they can be used as a fast combinatorial out-
put. The three device outputs are pictured in Figure 7. Note that the Mealy output is the only one that is configurable.

Figure 7. Output Configurations
In order to reduce output skew, the CY7C361 output array contains a set of self-timed latches in the output array path. These latches are controlled by an internal clock that has a delay equal to the worst-case path through the output array. While this delayed internal clock is LOW, the output array data is latched. When the delayed internal clock is HIGH, the latches become transparent, and the outputs change. These latches are the reason why the t_{CO} max is 15 ns with respect to the state registers, but the part can change its outputs every 7.5 ns . Since these latches cannot be accessed by the user, they have been left off of the block diagram.
The normal output signal from the device is a boolean sum of a subset of the state macrocell outputs. The subset selection is programmed into the output array. The number of state machines in the device, and the output mappings of each are determined by the
user. The architecture is thus "horizontally divisible" and offers advantages in coding efficiency and event response time over the nondivisible architectures found in most PLA and sequencer implementations.
An output pin is normally LOW-asserted. The output gate performs an OR function over the flip-flop outputs of the state macrocells. The OR function includes only the outputs that are programmed to be connected to the OR line in the output array. When none of the connected state macrocell flip-flops are in the true or set condition, the output is HIGH, or deasserted. If any connected macrocell flip-flop is asserted (true) then the OR gate function is true and the output pin is LOW.
Forcing a false condition is easily accomplished by disconnecting all of the state macrocells from the OR line. To force a true condition, the OR line is connected only to node 73 , which is labeled as V_{CC} in the block diagram. Any OR line connected to this node will be forced permanently true, which will cause any normal output to always be LOW.
The bidirectional outputs are I/O pins that may be used as either inputs or outputs. Under state machine control, these pins may be three-stated and used as inputs or outputs depending on how the OE term is programmed. If the OE is connected to node 73, the pin will always function as an output.
The Mealy outputs are designed to implement the fastest possible path between a device input and an output. Functions are available that combine the OR term and a specific input signal. These functions, XOR, AND, and OR, coupled with output polarity control are useful for data strobes and semaphore operations where signaling occurs based on the current state, but independent of a signal transition.
The AND and OR functions can be used to gate data strobe signals by the state. The XOR function can be used to implement twocycle signaling, which is used in self-timed systems to minimize signaling delays. If these functions are not needed, then the Mealy outputs can be configured as normal outputs.

Output Current into Outputs (LOW) 8 mA
UV Exposure . 7258 Wsec/cm²
Latch-Up Current $>200 \mathrm{~mA}$
Static Discharge Voltage . $>1500 \mathrm{~V}$
(per MIL-STD-883, Method 3015)

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots \ldots . . .65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(DIP Pins 7 or 22 to Pins 8,21 , or 23) $\ldots . .-0.5 \mathrm{~V}$ to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V
DC Voltage Applied to Outputs

DC Input Voltage 3.0 V to +7.0 V
DC Programming Voltage . 13.0V

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Level	Guaranteed HIGH Input, All Inputs ${ }^{[1]}$		2.2		V
$\mathrm{V}_{\text {IL }}$	Input LOW Level	Guaranteed LOW Input, All Inputs ${ }^{[1]}$			0.8	V
I_{IX}	Input Leakage Current	$\mathrm{V}_{\mathrm{SS}}<\mathrm{V}_{\mathrm{IN}}<\mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.		-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {SS }}<\mathrm{V}_{\text {OUT }}<\mathrm{V}_{\text {CC }}$		-40	+40	$\mu \mathrm{A}$
$\mathrm{ISC}^{\text {[2] }}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[3]}$		-30	-110	mA
$\mathrm{I}_{\mathrm{CC}}{ }^{[2,4]}$	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{IN}}=\mathrm{GND}$, Outputs Open, Operating at $f=f_{\text {MAX }}$	Commercial Military		200	mA

Notes:

1. These are absolute values with respect to device ground and all overshoots due to system or tester noise are included.
2. Tested initially and after any design or process changes that may affect this parameter.
3. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. Tested with device programmed as an 8-bit counter.

AC Test Loads and Waveforms

(a)

(b)

c361-12

Equivalent to: THÉVENIN EQUIVALENT

Test Waveforms

SEMICONDUCTOR
Commercial Switching Characteristics Over the Operating Range ${ }^{[5,6]}$

Parameter	Description	-125		-100		-83		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{PD}	Input to Mealy Output Delay	2	9	2	11	2	12	ns
$\mathrm{t}_{\mathrm{CO}}{ }^{[7]}$	Clock to Output Delay		15		19		23	ns
$\mathrm{t}_{\mathrm{CM}}{ }^{[7]}$	Clock to Mealy Output Delay		17		20		25	ns
t_{OH}	Output Stable Time	5		5		5		ns
$\mathrm{t}_{\text {IS }}$	Input Register Input Set-Up Time	2		3		5		ns
t_{IH}	Input Register Input Hold Time	3		4		5		ns
$\mathrm{ts}^{[8]}$	State Register Input Set-Up Time	7		9		12		ns
$\mathrm{t}_{\mathbf{H}}{ }^{[8]}$	State Register Input Hold Time	0		0		0		ns
$\mathrm{t}_{\text {DWH }}{ }^{[2,9,10]}$	Input Clock Pulse Width HIGH (Doubler Enabled)	6		7		9		ns
$\mathrm{t}_{\text {DWL }}{ }^{[2,9,10]}$	Input Clock Pulse Width LOW (Doubler Enabled)	6		7		9		ns
$\mathrm{t}_{\mathrm{D}}{ }^{[2,10]}$	Input Clock Period (Doubler Enabled)	15		20		24		ns
$\mathrm{twh}^{[2,9,11]}$	Input Clock Pulse Width HIGH	2		3		4		ns
$\mathrm{t}_{\mathrm{WL}}{ }^{[2,9,11]}$	Input Clock Pulse Width LOW	2		3		4		ns
$\mathrm{t}_{\mathrm{p}}{ }^{[2,11]}$	Input Clock Period	7.5		10		12		ns
$\mathrm{tsO}^{[12]}$	Output Skew		2		2		2	ns
$\mathrm{tsM}^{[13]}$	Mealy Output Skew		3		3		3	ns
$\mathrm{f}_{\text {MAXI }}{ }^{[2,11]}$	Input Maximum Frequency (Doubler Enabled)	62.5		50.0		41.7		MHz
$\mathrm{f}_{\text {MAX }}{ }^{[2,4]}$	Output Maximum Frequency	125.0		100.0		83.3		MHz
$\mathrm{t}_{\mathrm{CER}}{ }^{[2,6]}$	Clock to Output Disable Delay		16		20		22	ns
$\mathrm{t}_{\text {CEA }}{ }^{[2,14,15]}$	Clock to Output Enable Delay		16		20		22	ns

Notes:
5. Output reference point on AC measurements is 1.5 V , except as noted in Test Waveforms:
${ }^{t_{C E R(-)}}$ negative going is measured at $\mathrm{VOH}_{\mathrm{OH}}-0.5 \mathrm{~V}$.
${ }^{t_{C E R}(+)}$ positive going is measured at $\mathrm{V}_{\mathrm{OL}}+0.5 \mathrm{~V}$
6. Part (a) of AC Test Loads and Waveforms is used for all parameters except $t_{\text {CEA }}$ and $t_{\text {CER }}$. Part (b) of AC Test Loads and Waveforms is used for $t_{\text {CEA }}$ and $t_{\text {CER }}$.
7. This specification is guaranteed for the worst-case programmed pattern for which all device outputs are changing state on a given access or clock cycle.
8. Input register bypassed.
9. The clock input is tested to accommodate a $60 / 40$ duty cycle waveform at the maximum frequency.
10. This applies to the input clock when the doubler is enabled.
11. This applies to the input clock when the doubler is disabled.
12. This parameter specifies the maximum allowable t_{CO} clock to output delay difference, or skew, between any two outputs on the same device triggered by the same clock edge with all other device outputs changing state within the same clock cycle.
13. This parameter specifies the maximum allowable $t_{P D}$ difference between any two Mealy outputs on the same device triggered by the same or simultaneous input signals with all other device outputs changing state within the same access or clock cycle.
14. R 1 is disconnected for $\mathrm{t}_{\mathrm{CEA}(+)}$ positive going (open circuited). See part (b) of AC Test Loads and Waveforms.
15. R 2 is disconnected for $\mathrm{t}_{\mathrm{CEA}}(-)$ negative going (open circuited). See part (b) of AC Test Loads and Waveforms.

Military Switching Characteristics Over the Operating Range ${ }^{[5,6]}$

Parameter	Description	Military				Unit
		-100		-83		
		Min.	Max.	Min.	Max.	
t_{PD}	Input to Mealy Output Delay	1.5	11	1.5	13	ns
$\mathrm{t}_{\mathrm{CO}}{ }^{[7]}$	Clock to Output Delay		19		23	ns
$\mathrm{t}_{\mathrm{CM}^{[7]}}$	Clock to Mealy Output Delay		21		25	ns
t_{OH}	Output Stable Time	5		5		ns
$\mathrm{t}_{\text {IS }}$	Input Register Input Set-Up Time	3		5		ns
t_{IH}	Input Register Input Hold Time	4		5		ns
$\mathrm{t}^{\text {S }}{ }^{[8]}$	State Register Input Set-Up Time	9		12		ns
$\mathrm{t}_{\mathrm{H}}{ }^{[8]}$	State Register Input Hold Time	0		0		ns
$\mathrm{t}_{\text {DWH }}{ }^{[2,9,10]}$	Input Clock Pulse Width HIGH (Doubler Enabled)	7		9		ns
$\mathrm{t}_{\text {DWL }}{ }^{[2,9,10]}$	Input Clock Pulse Width LOW (Doubler Enabled)	7		9		ns
$\mathrm{t}_{\mathrm{DP}}{ }^{[2,10]}$	Input Clock Period (Doubler Enabled)	20		24		ns
$\mathrm{t}_{\mathrm{WH}}{ }^{[2,9,11]}$	Input Clock Pulse Width HIGH	3		4		ns
$\mathrm{t}_{\mathrm{WL}}{ }^{[2,9,11]}$	Input Clock Pulse Width LOW	3		4		ns
$\mathrm{tp}{ }^{[2,11]}$	Input Clock Period	10		12		ns
$\mathrm{t}_{\mathrm{SO}}{ }^{[12]}$	Output Skew		3		3	ns
$\mathrm{t}_{\mathrm{SM}}{ }^{[13]}$	Mealy Output Skew		4		4	ns
$\mathrm{f}_{\text {MAXI }}{ }^{[2,11]}$	Input Maximum Frequency (Doubler Enabled)	50		41.7		MHz
$\mathrm{f}_{\text {MAX }}{ }^{[2,4]}$	Output Maximum Frequency	100.0		83.3		MHz
$\mathrm{t}_{\mathrm{CER}}{ }^{[6]}$	Clock to Output Disable Delay		20		22	ns
$\mathrm{t}_{\mathrm{CEA}}[2,14,15]$	Clock to Output Enable Delay		20		22	ns

Switching Waveforms

Clock Doubler Inactive (Virgin State).
Nonregistered Input (Virgin State - C1, $\mathbf{C 0}=\mathbf{0 , 0}$).

Clock Doubler Enabled ($\mathbf{C 0}=1$)
Nonregistered Input (Virgin State - C1, $\mathbf{C 0}=\mathbf{0 , 0}$)

Switching Waveforms (continued)
Clock Doubler Inactive (Virgin State).
Single-Registered Input (C1,C0 = 0,1).

Clock Doubler Enabled ($\mathbf{C} 0=1$)

Switching Waveforms (continued)

Clock Doubler Inactive (Virgin State)
Double-Registered Input ($\mathbf{C}_{1}, \mathbf{C}_{0}=1, \mathrm{X}$)

CY7C361 Block Diagram (Lower Half)

Ordering Information

$\mathbf{I}_{\mathbf{C C}} \mathrm{mA}$	$\begin{aligned} & \mathbf{f}_{\mathrm{MAX}} \\ & \mathbf{M H z} \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
200	125.0	CY7C361-125HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
		CY7C361-125WC	W22	28-Lead (300-Mil) Windowed CerDIP	
	100.0	CY7C361-100HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
		CY7C361-100WC	W22	28-Lead (300-Mil) Windowed CerDIP	
		CY7C361-100HMB	H64	28-Pin Windowed Leaded Chip Carrier	Military
		CY7C361-100QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C361-100WMB	W22	28-Lead (300-Mil) Windowed CerDIP	
	83.3	CY7C361-83HC	H64	28-Pin Windowed Leaded Chip Carrier	Commercial
		CY7C361-83WC	W22	28-Lead (300-Mil) Windowed CerDIP	
		CY7C361-83HMB	H64	28-Pin Windowed Leaded Chip Carrier	Military
		CY7C361-83QMB	Q64	28-Pin Windowed Leadless Chip Carrier	
		CY7C361-83WMB	W22	28-Lead (300-Mil) Windowed CerDIP	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{PD}	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
t_{CM}	$7,8,9,10,11$
t_{OH}	$7,8,9,10,11$
t_{IS}	$7,8,9,10,11$
t_{IH}	$7,8,9,10,11$
t_{S}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$

Document \#: 38-00106-C

Features

- Flash erasable CMOS PLDs
- High density
-32-256 macrocells
-32-256 I/O pins
- Multiple clock pins
- High speed
$-t_{P D}=10-15 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{S}}=7.5-12 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{CO}}=7.5 \mathrm{~ns}-12 \mathrm{~ns}$
- Fast Programmable Interconnect Matrix (PIM)
- Uniform predictable delay, independent of routing
— No penalty for traversing PIM
- Intelligent product term allocator
- 0-16 product terms to any macrocell
- Provides product term steering on an individual basis
— Provides product term sharing among local macrocells
- Prevents wasting and stealing of neighboring product terms
- Simple timing model
- No fanout delays
- No expander delays
- No dedicated vs. I/O pin delays
— No additional delay through PIM
- No penalty for using full 16 product terms
— No delay for steering or sharing product terms
- Flexible clocking
-2-4 clock pins per device
-Clock polarity control
- Packages
-44-288 pins
- PLCC, LCC, PGA, and QFP packages
- Warp $2^{\text {m }}$
- Low-cost, text-based design tool, PLD compiler
- IEEE 1076-compliant VHDL
- Available on PC and Sun platforms
- Warp $3^{\text {m }}$ CAE development system
- VHDL input
—ViewLogic graphical user interface
- Schematic capture (ViewDraw)
- VHDL simulation (ViewSim)
-Available on PC and Sun platforms

General Description

The FLASH370 family of CMOS PLDs provides a range of high-density programmable logic solutions with unparalleled performance. Each member of the family is designed with Cypress's state-of-the-art 0.65 -micron Flash technology. All of the devices are electrically erasable and reprogrammable, simplifying product inventory and reducing costs.
The FLASH370 family is designed to bring the flexibility, ease of use and performance of the 22V10 to high-density PLDs. The architecture is based on a number of logic blocks that are connected by a Programmable Interconnect Matrix (PIM). Each logic block features its own product term array, product term allocator array, and 16 macrocells. The PIM distributes signals from one logic block to another as well as all inputs from pins.
The family features a wide variety of densities and pin counts to choose from. At each density there are two packaging options to choose from-one that is I/O intensive and another that is register intensive. For example, the CY7C374 and CY7C375 both feature 128 macrocells. On the CY7C374 half of the macrocells are buried and the device is available in 84 -pin packages. On the CY7C375 all of the macrocells are fed
to I/O pins and the device is available in 164-pin packages. Figure 1 shows a block diagram of the CY7C374/5.

Functional Description

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) consists of a completely global routing matrix for signals from I/O pins and feedbacks from the logic blocks. The PIM is an extremely robust interconnect that avoids fitting and density limitations which plague competing high-density solutions. Routing is automatically accomplished by software and the propagation delay through the PIM is transparent to the user. Signals from any pin or any logic block can be routed to any or all logic blocks.
The inputs to the PIM consist of all I/O and dedicated input pins and all macrocell feedbacks from within the logic blocks. The number of PIM inputs increases with pincount and the number of logic blocks. The outputs from the PIM are signals routed to the appropriate logic block(s). Each logic block receives 36 inputs from the PIM and their complements, allowing for 32 -bit operations to be implemented in a single pass through the device. The wide PIM-to-logic block interface also improves the routing capacity of the FLASH370 family.
An important feature of the PIM involves timing. The propagation delay through the PIM is accounted for in the timing specifications for each device. There is no additional delay for traveling through the PIM. In fact all inputs travel through the PIM. Likewise, there are no route-dependent timing parameters on the FLASH370 devices. The worst-case PIM delays are incorporated in all appropriate FLASH370 specifications.

FLASH370 Selection Guide

Device	Pins	Macrocells	Dedicated Inputs	I/O Pins	Flip-Flops	Speed (tyD)
371	44	32	6	32	44	10
372	44	64	6	32	76	12
373	84	64	6	64	76	12
374	84	128	6	64	140	12
375	160	128	6	128	140	12
376	160	256	6	128	268	15
377	288	256	6	256	268	15

Figure 1. CY7C374/5 Block Diagram

Functional Description (continued)

Finally, routing signals through the PIM is completely invisible to the user. All routing is accomplished 100% by software-no hand routing is necessary. Warp2 and third-party development packages automatically route designs for the FLASH370 family in a matter of minutes.

Logic Block

The logic block is the basic building block of the FLASH370 architecture. It consists of a product term array, an intelligent productterm allocator, 16 macrocells, and a number of I/O cells. The number of I/O cells varies depending on the device used.
There are two types of logic blocks in the FLASH370 family. The first type features an equal number (16) of I/O cells and macrocells and is shown in Figure 2. This architecture is best for I/O-intensive applications. The second type of logic block features a buried macrocell along with each I/O macrocell. In other words, in each logic block, there are eight macrocells that are connected to I/O cells and eight macrocells that are internally fed back to the PIM only. This organization is designed for register-intensive applications and is displayed in Figure 3. Note that at each FLASH370 density (except the smallest), an I/O intensive and a register-intensive device is available.

Product Term Array

Each logic block features a 72×86 programmable product term array. This array is fed with 36 inputs from the PIM, which originate from macrocell feedbacks and input pins. ActiveLOW and ac-
tive HIGH versions of each of these inputs are generated to create the full 72 -input field. The 86 product terms in the array can be created from any of the 72 inputs.
Of the 86 product terms, 80 are for general-purpose use for the 16 macrocells in the logic block. Four of the remaining six product terms in the logic block are output enable(OE) product terms. The OE product terms control 8 of the 16 macrocells and are selectable on an individual macrocell basis. In other words, each I/O cell can select between one of two OE product terms to control the output buffer. The final two product terms in each logic block are dedicated set and reset product terms.

Product Term Allocator

Through the product term allocator, software automatically distributes product terms among the 16 macrocells in the logic block as needed. A total of 80 product terms are available from the local product term array. The product term allocator provides two important capabilities without affecting performance: product term steering and product term sharing.

Product Term Steering

Product term steering is the process of steering product terms to macrocells as needed. For example, if one macrocell requires ten product terms while another needs just three, the product term allocator will "steer" ten product terms to one macrocell and three to the other. On FLASH370 devices, product terms are steered on an individual basis. Any number between 0 and 16 product terms can be steered to any macrocell. Note that 0 product terms is useful in

Figure 2. Logic Block for CY7C371, CY7C373, CY7C375, and CY7C377 (I/O Intensive)

Figure 3. Logic Block for CY7C372, CY7C374, and CY7C376 (Register Intensive)
cases where a particular macrocell is unused or used as an input register.

Product Term Sharing

Product term sharing is the process of using the same product term among multiple macrocells. For example, if more than one output has one or more product terms in its equation that are common to other outputs, those product terms are only programmed once. The FLASH370 product term allocator allows sharing across groups of four output macrocells in a variable fashion. The software automatically takes advantage of this capability-the user does not have to intervene. Note that greater usable density can often be achieved if the user "floats" the pin assignment. This allows the compiler to group macrocells that have common product terms adjacently.
One last thing to reiterate is that neither product term sharing nor product term steering have any effect on the speed of the product. Allworst-case steering and sharing configurations have beenincorporated in the timing specifications for the FLASH370 devices.

FLASH370Macrocell

I/O Macrocell

Within each logic block there are 8 or 16I/O macrocells depending on the device used. Figure 4 illustrates the architecture of the I/O macrocell. The macrocell features a register that can be configured as combinatorial, a D flip-flop, a T flip-flop, or a level-triggered latch.

The register can be asynchronously set or reset on a logic block basis with the separate set and reset product terms. Each of these product terms features programmable polarity. This allows the registers to be set or reset based on a single product term or sum term.

Clocking of the register is very flexible. Depending on the device, either two or four global synchronous clocks are available to clock the register. Furthermore, each clock features programmable polarity so that registers can be triggered off falling as well as rising edges (see the Dedicated/Clock Inputs section).
At the output of the macrocell, a polarity control mux is available to select active LOW or active HIGH signals. This has the added
advantage of allowing significant logic reduction to occur in many applications.
One last thing to note about the I/O macrocell on the FLASH370 family concerns feedback. The macrocell features a feedback path to the PIM separate from the I/O pin input path. This means that if the macrocell is buried (fed back internally only), the associated I/O pin can still be used as an input.

Buried Macrocell

Some of the devices in the FLASH370 family feature additional macrocells that do not feed individual I/O pins. Figure 5 displays the architecture of the I/O and buried macrocells for these devices. The I/O macrocell is identical to the one on devices without buried macrocells.
The buried macrocell is very similar to the I/O macrocell. Again, it includes a register that can be configured as combinatorial, as a D flip-flop, a T flip-flop, or a latch. The clock for this register has the same options as described for the I/O macrocell. The primary difference between the I/O macrocell and the buried macrocell is that the buried macrocell does not have the ability to output data directly to an I/O pin.
One additional difference on the buried macrocell is the addition of input register capability. The user can program the buried macrocell to act as an input register whose input comes from the I/O pin associated with the neighboring macrocell. The output of all buried macrocells is sent directly to the PIM regardless of its configuration.

FLASH370 I/O Cell

The I/O cell on the FLASH370 devices is illustrated along with the I/O macrocell in Figures 4 and 5. The user can program the I/O cell to change the way the three-state output buffer is enabled and/or disabled. Each output can be set permanently on (output only), permanently off (input only), or dynamically controlled by one of two OE product terms.

Dedicated/Clock Inputs

A number of pins on each member of the FLASH370 family are designated as input-only. There are two types of dedicated inputs on FLASH370 devices: input pins and input/clock pins. Figure 6 il-

Figure 4. I/O Macrocell

SEMICONDUCTOR
lustrates the architecture for input pins. Four input options are available for the user: combinatorial, registered, double-registered, or latched. If a registered or latched option is selected, any one of the input clocks can be selected for control. On double-registered inputs, a 10 -year MTBF is guaranteed when sampling asynchronous signals.

Figure 7 illustrates the architecture of input/clock pins. There are either two or four input/clock pins available, depending on the device selected. Like the input pins, input/clock pins can be combinatorial, registered, double registered, or latched. In addition, these pins feed the clocking structures throughout the device. The clock path at the input is user-configurable in polarity. The polarity of the clock signal can also be controlled by the user. Note that this

Figure 5. I/O and Buried Macrocells
INPUT PIN

Figure 6. Input Pins

Figure 7. Input/Clock Pins
polarity is separately controlled for input registers and output registers.

Timing Model

One of the most important features of the FLASH370 family is the simplicity of its timing. All delays are worst case and system performance is unaffected by the features used or not used on the parts. Figure 8 illustrates the true timing model for the 10 -ns devices. For combinatorial paths, any input to any output incurs a 10 -ns worstcase delay regardless of the amount of logic used. For synchronous systems, the input set-up time to the output macrocells for any input is 7.5 ns and the clock to output time is also 7.5 ns . Again, these measurements are for any output and clock, regardless of the logic used.
Stated another way, the FLASH370 features:

- no fanout delays
- no expander delays
- no dedicated vs. I/O pin delays
- no additional delay through PIM
- no penalty for using $0-16$ product terms
- no added delay for steering product terms
- no added delay for sharing product terms
- no routing delays
- no output bypass delays

REGISTERED SIGNAL

Figure 8. Timing Model for CY7C371

The simple timing model of the FLASH370 family eliminates unexpected performance penalties common in other high-density PLDs.

Development Software Support

Warp2

Warp 2 is a state-of-the-art VHDL compiler for designing with Cypress PLDs and PROMs. Warp 2 utilizes a proper subset of IEEE 1076 VHDL as its Hardware Description Language (HDL) for design entry. VHDL provides a number of significant benefits for the design entry. VHDL provides a number of significant benefits for the design engineer. Warp 2 accepts VHDL input, synthesizes and optimizes the entered design, and outputs a JEDEC map for the desired device. For simulation, Warp 2 provides the graphical waveform simulator from the PLD ToolKit.
VHDL (VHSIC Hardware Description Language) is an open, powerful, non-proprietarylanguage that is astandard for behavioral design entry and simulation. It is already mandated for use by the Department of Defense and supported by every major vendor of CAE tools. VHDL allows designers to learn a signle language that is useful for all facets of the design process.

Warp3

Warp 3 is a sophisticated design tool that is based on the latest version of ViewLogic's CAE design environment. Warp 3 features schematic capture (ViewDraw ${ }^{\text {m" }}$), VHDL waveform simulation (ViewSim ${ }^{\text {mp }}$), a VHDL debugger, and VHDL synthesis, all integrated in a graphical design environment. Warp3 is available on PCs using Windows 3.1 or subsequent versions and on Sun workstations.

Third-Party Software

Cypress maintains a very strong commitment to third-party design software vendors. All major third-party software vendors (includ-
 for the FLASH370 family of devices. To expedite this support, Cy press supplies vendors with all pertinent architectural information as well as design fitters for our products.

Programming

QuickPro II
The Warp 2 package includes the QuickPro II device programmer from Cypress. QuickPro II will program all Cypress PROMs and

CYPRESS

PLDs. QuickPro II is a standalone programmer that connects to any IBM-compatible PC via the printer port.

Data I/O, Logical Devices, Minato, SMS, and Stag) will support the FLASH370 family.

Third-Party Programmers

As with development software, Cypress strongly supports thirdparty programmers. Allmajor third-party programmers (including
Document \#: 38-00215-A

Warp2, Warp3, FLASH370, and QuickPro II are trademarks of Cypress Semiconductor Corporation.
ViewDraw and ViewSim are trademarks of ViewLogic Corporation.
ABEL is a trademark of Data I/O.
$\mathrm{LOG} / \mathrm{iC}$ is a trademark of Isdata.
CUPL is a trademark of Logical Devices Inc.

SEMICONDUCTOR

Features

- 32 macrocells in two logic blocks
- 32 I/O pins
- 6 dedicated inputs including 2 clock pins
- No hidden delays
- High speed
$-\mathrm{f}_{\mathrm{MAX}}=100 \mathrm{MHz}$
$-\mathbf{t}_{\mathrm{PD}}=10 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{s}}=7.5 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{CO}}=7.5 \mathrm{~ns}$
- Electrically alterable Flash technology
- Available in 44-pin PLCC, CLCC, and LCC packages
- Pin compatible with the CY7C372

Functional Description

The CY7C371 is a Flash Erasable Programmable Logic Device (EPLD) and is part of the FLASH370 family of high-density, high-speed PLDs. Like all members of the FLASH370 family, the CY7C371 is designed to bring the ease of use and high performance of the 22 V 10 to high-density PLDs.
The 32 macrocells in the CY7C371 are divided between two logic blocks. Each logic block includes 16 macrocells, a 72×86 product term array, and an intelligent product term allocator.
The logic blocks in the FLASH370 architecture are connected with an extremely fast and predictable routing resource-the Programmable Interconnect Matrix

32-Macrocell Flash PLD

Logic Block Diagram

Selection Guide

		7C371-100	7C371-83	7C371-66	7C371-50
Maximum Propagation Delay, ted (ns)		10	12	15	20
Maximum Operating Current, $\mathrm{I}_{\mathrm{CC} 2}(\mathrm{~mA})$	Commercial	240	240	240	
	Military	Mimamim	260	260	260
Maximum Standby Current, $\mathrm{I}_{\mathrm{CC} 1}(\mathrm{~mA})$	Commercial	Y/200	200	200	
	Military	\%	220	220	220

[^47]
Pin Configuration

Logic Block

The number of logic blocks distinguishes the members of the FLASH370 family. The CY7C371 includes two logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

Product Term Array

The product term array in the FLASH370 logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72×86. This large array in each logic block allows for very complex functions to be implemented in a single pass through the device.

Maximum Ratings

(Above which the usefullife may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V
DC Program Voltage
12.5 V

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product terms to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be assigned to any of the logic block macrocells (this is called product term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370 PLDs. Note that product term allocation is handled by software and is invisible to the user.

I/O Macrocell

Each of the macrocells on the CY7C371 has a separate associated I/O pin. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The macrocell includes a register that can be optionally bypassed. It also has polarity control, and two global clocks to trigger the register. The macrocell also features a separate feedback path to the PIM so that the register can be buried if the I / O pin is used as an input.

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) connects the two logic blocks on the CY7C371 to the inputs and to each other. All inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

Design Tools

Development software for the CY7C371 is available from Cypress's Warp $2^{2 m}$ and Warp $3^{m 4}$ software packages. Both of thse products are based on the IEEE-standard VHDL language. Cypress also actively supports third-party design tools such as $\mathrm{ABEL}^{m}{ }^{m}$, CUPL m, MINC, and LOG/iC ${ }^{\text {m }}$. Please contact your local Cypress representative for further information.

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Parameter	Description	Test Conditions		Min.	Max.	Unit
IIX	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-50	+50	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$		-30	-90	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Power Supply Current	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or $\mathrm{GND}, \mathrm{f}=40 \mathrm{MHz}$	Com'l		240	mA
			Mil		260	
$\mathrm{I}_{\mathrm{CC} 1}$	Power Supply Current (Standby)	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{f}=0 \mathrm{mHz}, \mathrm{~V}_{\mathrm{IN}}=\mathrm{GND}, \mathrm{~V}_{\mathrm{CC}} \end{aligned}$	Com'l		200	mA
			Mil		220	

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{OUT}}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$	12	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	7C371-100		7C371-83		7C371-66		7C371-50		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Combinatorial Mode Parameters										
$\mathrm{t}_{\text {PD }}$	Input to Combinatorial Output		10		12		15		20	ns
$\mathrm{t}_{\text {PDL }}$	Input to Output Through Transparent Input or Output Latch		12		14		17		22	ns
$\mathrm{t}_{\text {PDLL }}$	Input to Output Through Transparent Input and Output Latches		14		16		19		24	ns
t_{EA}	Input to Output Enable		14		16		19		24	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable		14		16		19		24	ns
Input Registered/Latched Mode Parameters										
$\mathrm{t}_{\text {WL }}$	Clock or Latch Enable Input LOW Time	4		5		6		8		ns
$\mathrm{t}_{\text {WH }}$	Clock or Latch Enable Input HIGH Time	4		5		6		8		ns
$\mathrm{t}_{\text {IS }}$	Input Register or Latch Set-Up Time	2		2		3		4		ns
t_{IH}	Input Register or Latch Hold Time	2		2		3		4		ns
$\mathrm{t}_{\mathrm{ICO}}$	Input Register Clock or Latch Enable to Combinatorial Output		14		16		19		24	ns
${ }^{\text {t }}$ COL	Input Register Clock or Latch Enable to Output Through Transparent Output Latch		16		18		21		26	ns
$\mathrm{f}_{\text {MAX1 }}$	Maximum Frequency of (2) CY7C371s in Input Registered Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{ICO}}+\mathrm{t}_{\mathrm{IS}}\right)$ and $1 /\left(\mathrm{twL}^{+}+\mathrm{t}_{\mathrm{WH}}\right)$)			55.5		45.4		35.7		MHz
$\mathrm{f}_{\text {MAX2 }}$	Maximum Frequency Data Path in Input Registered/Latched Mode (Least of $1 / \mathrm{t}_{\mathrm{ICO}}, 1 /\left(\mathrm{t}_{\mathrm{WL}}+\right.$ $\left.\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)$)			62.5		52.6		41.7		MHz
Output Registered/Latched Mode Parameters										
t_{CO}	Clock or Latch Enable to Output		7.5		9		12		15	ns
ts	Set-Up Time from Input to Clock or Latch Enable	7.5	1	9		12		15		ns
t_{H}	Register or Latch Data Hold Time	0	+13	0		0		0		ns
${ }^{\text {t }} \mathrm{CO} 2$	Output Clock or Latch Enable to Output Delay (Through Memory Array)		14		16		19		24	ns
${ }^{\text {t }}$ SS	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	10		12		15		20		ns
$\mathrm{t}_{\text {SL }}$	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch Enable	10		12		15		20		ns
t_{HL}	Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable	0		0		0		0		ns
$\mathrm{f}_{\text {MAX }}$	Maximum Frequency of (2) CY7C371s in Output Registered Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)$ and $1 /\left(\mathrm{tWL}^{+}+\mathrm{t}_{\mathrm{WH}}\right)$)	66.6		55.5		41.6		33.3		MHz
$\mathrm{f}_{\text {MAX4 }}$	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)$, $1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)$, or $\left.1 / \mathrm{t}_{\mathrm{CO}}\right)$	125		100		83.3		62.5		MHz
$\mathrm{f}_{\text {MAX } 5}$	Maximum Frequency with Internal Feedback in Output Registered Mode (Least of $1 / \mathrm{t}_{\mathrm{SCS}}$, $1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)$, or $\left.1 / \mathrm{t}_{\mathrm{CO}}\right)^{[4]}$	100		83.3		66.6		50		MHz
Pipelined Mode Parameters										
$\mathrm{t}_{\text {I CS }}$	Input Register Clock to Output Register Clock	10		12		15		20		ns
$\mathrm{f}_{\text {MAX6 }}$	Maximum Frequency in Pipelined Mode (Least of $1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{IS}}\right), 1 / \mathrm{t}_{\mathrm{ICS}}, 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)$, or $1 / \mathrm{tsCS}^{\text {) }}$	100		83.3		66.6		50.0		MHz

Shaded area contains advanced information.
Note:
5. All AC parameters are measured with 16 outputs switching.

Switching Characteristics Over the Operating Range ${ }^{[5]}$ (continued)

Parameter	Description	70371-100		7C371-83		7C371-66		7C371-50		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
Reset/Preset Parameters										
$\mathrm{t}_{\text {RW }}$	Asynchronous Reset Width	10		12		15		20		ns
trR	Asynchronous Reset Recovery Time	12	3	14		17		22		ns
tro	Asynchronous Reset to Output		16		18		21		26	ns
tpw	Asynchronous Preset Width	10		12		15		20		ns
$\mathrm{t}_{\text {PR }}$	Asynchronous Preset Recovery Time	12		14		17		22		ns
t_{PO}	Asynchronous Preset to Output		16		18		21		26	ns

Shaded area contains advanced information.

Switching Waveforms

Combinatorial Output

Latched Output

Switching Waveforms (continued)
Registered Input

Input Clock to Output Clock

Latched Input

Switching Waveforms (continued)

Latched Input and Output

Asynchronous Reset

Asynchronous Preset

PRELIMINARY

Switching Waveforms (continued)

Output Enable/Disable

Ordering Information

Speed $(\mathbf{M H z})$	Ordering Code	Package Name	Package Type	Operating Range
100	CY7C371-100JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
83	CY7C371-83JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C371-83LMB	L67	44-Square Leadless Chip Carrier	Military
66	CY7C371-66JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C371-66LMB	L67	44-Square Leadless Chip Carrier	Military
50	CY7C371-50LMB	L67	44-Square Leadless Chip Carrier	Military

Shaded areas contain advanced information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{PD}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PDL}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{PDLL}}$	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICO}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICOL}}$	$7,8,9,10,11$
t_{S}	$7,8,9,10,11$
t_{SL}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$
t_{HL}	$7,8,9,10,11$
t_{IS}	$7,8,9,10,11$
t_{IH}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICS}}$	$7,8,9,10,11$
t_{EA}	$7,8,9,10,11$
t_{ER}	$7,8,9,10,11$

Document \#: 38-00212-A
Warp2 and Warp3 are trademarks of Cypress Semiconductor Corporation.
$W A B E L$ is a trademark of Data I/O Corporation.
LOG/iC is a trademark of Isdata.
CUPL is a trademark of Logical Devices, Inc.

Features

- 64 macrocells in four logic blocks
- 32 I/O pins
- 6 dedicated inputs including 2 clock pins
- No hidden delays
- High speed
$-\mathbf{f}_{\text {MAX }}=100 \mathrm{MHz}$
$-t_{\text {PD }}=12 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{S}}=9 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{CO}}=9 \mathrm{~ns}$
- Electrically alterable Flash technology
- Available in 44-pin PLCC, CLCC, and LCC packages
- Pin compatible with the CY7C371

Functional Description

The CY7C372 is a Flash Erasable Programmable Logic Device (EPLD) and is part of the FLASH370 family of high-density, high-speed PLDs. Like all members of the FLASH370 family, the CY7C372 is designed to bring the ease of use and high performance of the 22 V 10 to high-density PLDs.
The 64 macrocells in the CY7C372 are divided between four logic blocks. Each logic block includes 16 macrocells, a 72×86 product term array, and an intelligent product term allocator.
The logic blocks in the FLASH370 architecture are connected with an extremely fast and predictable routing resource-the Programmable Interconnect Matrix
(PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.
Like all members of the FLASH370 family, the CY7C372 is rich in I/O resources. Every two macrocells in the device feature an associated I/O pin, resulting in 32 I/O pins on the CY7C372. In addition, there are four dedicated inputs and two input/ clock pins.
Finally, the CY7C372 features a very simple timing model. Unlike other high-density PLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C372 remain the same.

Logic Block Diagram

7c372-1

Selection Guide

		7C372-100	7C372-83	7C372-66
Maximum Propagation Delay tpd (ns)		12	15	20
Maximum Standby Current, $\mathrm{I}_{\mathrm{CC} 1}(\mathrm{~mA})$	Commercial	250	250	250
	Military		300	300
Maximum Operating Current, $\mathrm{I}_{\mathrm{CC} 2}(\mathrm{~mA})$	Commercial	280	280	280
	Military		330	330

Shaded area contains advanced information.

Pin Configuration

Functional Description (continued)

Logic Block

The number of logic blocks distinguishes the members of the FLASH370 family. The CY7C372 includes four logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

Product Term Array

The product term array in the FLASH370 logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72×86. This large array in each logic block allows for very complex functions to be implemented in a single pass through the device.

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product terms to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be as-

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature................
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V

DC Program Voltage . 12.5V
Output Current into Outputs 16 mA
signed to any of the logic block macrocells (this is called product term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370 PLDs. Note that product term allocation is handled by software and is invisible to the user.

I/O Macrocell

Half of the macrocells on the CY7C372 have separate I/O pins associated with them. In other words, each I/O pin is shared by two macrocells. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The macrocell includes a register that can be optionally bypassed. It also has polarity control, and two global clocks to trigger the register. The I/O macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input.
Buried Macrocell
The buried macrocell is very similar to the I/O macrocell. Again, it includes a register that can be configured as combinatorial, as a D flip-flop, a T flip-flop, or a latch. The clock for this register has the same options as described for the I/O macrocell. One difference on the buried macrocell is the addition of input register capability. The user can program the buried macrocell to act as an input register whose input comes from the I/O pin associated with the neighboring macrocell. The output of all buried macrocells is sent directly to the PIM regardless of its configuration.

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) connects the four logic blocks on the CY7C372 to the inputs and to each other. All inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

Development Tools

Development software for the CY7C372 is available from Cypress's Warp $2^{\text {m }}$ and Warp 3^{m} software packages. Both of these products are based on the IEEE standard VHDL language. Cypress also supports third-party vendors such as ABEL ${ }^{m \mathrm{~m}}$, CUPL $^{\mathrm{mm}}$, and $\mathrm{LOG} / \mathrm{iC}^{\mathrm{mm}}$. Please contact your local Cypress representative for further information.

Static Discharge Voltage . >2001V (per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$	12	pF

Notes:
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

	99Ω (com'l)	
	136Ω (mil)	2.08 V (com'l)
OUTPUT O-	$\cdots-0$	2.13 V (mil)

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	7C372-100		7C372-83		7C372-66		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Combinatorial Mode Parameters								
$\mathrm{t}_{\text {PD }}$	Input to Combinatorial Output		12		15		20	ns
tpDL	Input to Output Through Transparent Input or Output Latch		14		17		22	ns
$\mathrm{t}_{\text {PDLL }}$	Input to Output Through Transparent Input and Output Latches		16		19		24	ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable		16		19		24	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable		16		19		24	ns
Input Registered/Latched Mode Parameters								
$\mathrm{t}_{\text {WL }}$	Clock or Latch Enable Input LOW Time	5	34*	6		8		ns
$\mathrm{t}_{\text {WH }}$	Clock or Latch Enable Input HIGH Time	5		6		8		ns
$\mathrm{t}_{\text {IS }}$	Input Register or Latch Set-Up Time	2		3		4		ns
t_{IH}	Input Register or Latch Hold Time	2		3		4		ns
$\mathrm{t}_{\mathrm{ICO}}$	Input Register Clock or Latch Enable to Combinatorial Output	4	16		19		24	ns
$\mathrm{t}_{\text {ICOL }}$	Input Register Clock or Latch Enable to Output Through Transparent Output Latch		18		21		26	ns
$\mathrm{f}_{\text {MAX1 }}$	Maximum Frequency of (2) CY7C372s in Input Registered Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{ICO}}+\mathrm{t}_{\mathrm{IS}}\right)$ and $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)$)	55.5		45.5		35.7		MHz
$\mathrm{f}_{\text {MAX } 2}$	Maximum Frequency Data Path in Input Registered/Latched Mode (Least of $\left.1 / \mathrm{t}_{\mathrm{ICO}}, 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)\right)$	62.5		52.6		41.7		MHz
Output Registered/Latched Mode Parameters								
t_{CO}	Clock or Latch Enable to Output	,	9		12		15	ns
ts_{s}	Set-Up Time from Input to Clock or Latch Enable	9		12		15		ns
t_{H}	Register or Latch Data Hold Time	0		0		0		ns
${ }^{\text {che } 2}$	Output Clock or Latch Enable to Output Delay (Through Memory Array)		16		19		24	ns
$\mathrm{t}_{\mathrm{SCS}}$	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	10		12		15		ns
${ }^{\text {SLL }}$	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch Enable	12		15		20		ns
t_{HL}	Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable	0		0		0		ns
$\mathrm{f}_{\text {MAX3 }}$	Maximum Frequency of (2) CY7C372s in Output Registered Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)$ and $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)$)	55.5		41.7		33.3		MHz
$\mathrm{f}_{\mathrm{MAX} 4}$	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)$, or $1 / \mathrm{t}_{\mathrm{CO}}$)	100		83.3		62.5		MHz
$\mathrm{f}_{\text {MAX } 5}$	Maximum Frequency with Internal Feedback in Output Registered Mode (Least of $1 / \mathrm{t}_{\mathrm{SCS}}, 1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)$, or $\left.1 / \mathrm{t}_{\mathrm{CO}}\right)^{[4]}$	100		83		66		MHz
Pipelined Mode Parameters								
$\mathrm{t}_{\text {ICS }}$	Input Register Clock to Output Register Clock	12		15		20		ns
$\mathrm{f}_{\text {MAX6 }}$	Maximum Frequency in Pipelined Mode (Least of $1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{IS}}\right)$, $1 / \mathrm{t}_{\mathrm{ICS}}, 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)$, or $\left.1 / \mathrm{t}_{\mathrm{SCS}}\right)$	83.3		66.6		50.0		MHz

Shaded area contains advanced information.
Note:
5. All AC parameters are measured with 16 outputs switching.

Switching Characteristics Over the Operating Range ${ }^{[5]}$ (continued)

	Description	7c372-100		7C372-83		7C372-66		Unit
Parameter		Min.	Max.	Min.	Max.	Min.	Max.	
Reset/Preset Parameters								
$\mathrm{t}_{\text {RW }}$	Asynchronous Reset Width	12		15		20		ns
$\mathrm{t}_{\text {RR }}$	Asynchronous Reset Recovery Time	14		17		22		ns
t_{RO}	Asynchronous Reset to Output	-	18		21		26	ns
$t_{\text {PW }}$	Asynchronous Preset Width	12		15		20		ns
$\mathrm{t}_{\text {PR }}$	Asynchronous Preset Recovery Time	14		17		22		ns
t_{PO}	Asynchronous Preset to Output		18		21		26	ns

Shaded area contains advanced information.

Switching Waveforms

Combinatorial Output

Latched Output

Switching Waveforms (continued)
Registered Input

Input Clock to Output Clock

Latched Input

Switching Waveforms (continued)

Asynchronous Reset

Asynchronous Preset

Switching Waveforms (continued)

Output Enable/Disable

Ordering Information

Speed $(\mathbf{M H z})$	Ordering Code	Package Name	Package Type	Operating Range
$\mathbf{1 0 0}$	CY7C372-100JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
83	CY7C372-83JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C372-83LM	L67	44-Square Leadless Chip Carrier	Military
66	CY7C372-66JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C372-66LM	L67	44-Square Leadless Chip Carrier	Military

Shaded areas contain advanced information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{PD}	$7,8,9,10,11$
$\mathrm{t}_{\text {PDL }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PDLL }}$	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICO}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICOL}}$	$7,8,9,10,11$
t_{S}	$7,8,9,10,11$
t_{sL}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$
t_{HL}	$7,8,9,10,11$
t_{IS}	$7,8,9,10,11$
t_{IH}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICS}}$	$7,8,9,10,11$
t_{EA}	$7,8,9,10,11$
t_{ER}	$7,8,9,10,11$

Document \#: 38-00213-A
Warp2 and Warp3 are trademarks of Cypress Semiconductor Corporation.
ABEL is a trademark of Data I/O Corporation.
CUPL is a trademark of Logical Devices.
LOG/iC is a trademark of Isdata Corporation.

Features

- 64 macrocells in four logic blocks
- 64 I/O pins
- 6 dedicated inputs including 4 clock pins
- No hidden delays
- High speed
$-\mathrm{f}_{\mathrm{MAX}}=100 \mathrm{MHz}$
$-t_{\text {PD }}=12 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{S}}=9 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{CO}}=9 \mathrm{~ns}$
- Electrically alterable Flash technology
- Available in 84-pin PLCC, CLCC, and CPGA packages
- Pin compatible with the CY7C374

Functional Description

The CY7C373 is a Flash Erasable Programmable Logic Device (EPLD) and is part of the FLASH370 family of high-density, high-speed PLDs. Like all members of the FLASH370 family, the CY7C373 is de-
signed to bring the ease of use and high performance of the 22 V 10 to high-density PLDs.
The 64 macrocells in the CY7C373 are divided between four logicblocks. Each logic block includes 16 macrocells, a 72×86 product term array, and an intelligent product term allocator.
The logic blocks in the FLASH370 architecture are connected with an extremely fast and predictable routing resource-the Programmable Interconnect Matrix (PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.
Like all members of the FLASH370 family, the CY7C373 is rich in I/O resources. Every macrocell in the device features an associated I/O pin, resulting in $64 \mathrm{I} / \mathrm{O}$ pins on the CY7C373. In addition, there are four dedicated inputs and two input/clock pins.
Finally, the CY7C373 features a very simple timing model. Unlike other high-density PLD architectures, there are no hidden
speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C373 remain the same.

Logic Block

The number of logic blocks distinguishes the members of the FLASH370 family. The CY7C373 includes four logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

Product Term Array

The product term array in the FLASH370 logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72×86. This large array in each logic block allows for very complex functions to be implemented in single passes through the device.

Selection Guide

		7C373-100	7C373-83	7C373-66
Maximum Propagation Delay tpD (ns)		12	15	20
Maximum Standby Current, $\mathrm{I}_{\mathrm{CC} 1}(\mathrm{~mA})$	Commercial	250	250	250
	Military	\%	300	300
Maximum Operating Current, $\mathrm{I}_{\mathrm{CC} 2}$ (IIAA)	Commercial	280	280	280
	Military	-	330	330

[^48]
Pin Configuration

Functional Description (continued)

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product term resources to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be assigned to any of the logic block macrocells (this is called product term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370 PLDs. Note that the product term allocator is handled by software and is invisible to the user.

I/O Macrocell

Each of the macrocells on the CY7C373 has a separate I/O pin assoicated with it. In other words, each I/O pin is shared by two macrocells. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The macrocell includes a register that can be optionally bypassed, polarity control over the input sum-term, and two global clocks to trigger the register. The macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input.

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) connects the four logic blocks on the CY7C373 to the inputs and to each other. All inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

Development Tools

Development software for the CY7C373 is available from Cypress's Warp $2^{\text {m }}$ and Warp $3{ }^{\text {m/ }}$ software packages. Both of these
products are based on the IEEE standard VHDL language. Cypress also supports third-party vendors such as ABEL ${ }^{m}$, CUPL ${ }^{\mathrm{ms}}$, and LOG $/ \mathrm{iC}^{\mathrm{mm}}$. Please contact your local Cypress representative for further information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V

DC Program Voltage . 12.5 V
Output Current into Outputs 16 mA
Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$	12	pF

Notes:

2. See the last page of this specification for Group A subgroup testing information.
3. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(b) $7 \subset 373-3$
(a)

7C373-4

Equivalent to: THÉVENIN EQUIVALENT

	998 (COM'L)	
	136Ω (MIL)	2.08 V (COM'L)
OUTPUT O	m -	2.13 V (MIL)

CY7C373

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	7C373-100		7C373-83		7C373-66		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Combinatorial Mode Parameters								
$\mathrm{t}_{\text {PD }}$	Input to Combinatorial Output	1	12		15		20	ns
$\mathrm{t}_{\text {PDL }}$	Input to Output Through Transparent Input or Output Latch		14		17		22	ns
tpdLL $^{\text {d }}$	Input to Output Through Transparent Input and Output Latches		16		19		24	ns
$t_{\text {EA }}$	Input to Output Enable		16		19		24	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable		16		19		24	ns
Input Registered/Latched Mode Parameters								
${ }_{\text {t }}$ WL	Clock or Latch Enable Input LOW Time	5		6		8		ns
${ }^{\text {twh }}$	Clock or Latch Enable Input HIGH Time	5		6		8		ns
$\mathrm{t}_{\text {IS }}$	Input Register or Latch Set-Up Time	2	=	3		4		ns
t_{IH}	Input Register or Latch Hold Time	2		3		4		ns
$\mathrm{t}_{\mathrm{ICO}}$	Input Register Clock or Latch Enable to Combinatorial Output		16		19		24	ns
$\mathrm{t}_{\text {ICOL }}$	Input Register Clock or Latch Enable to Output Through Transparent Output Latch		18		21		26	ns
$\mathrm{f}_{\mathrm{MAX} 1}$	Maximum Frequency of (2) CY7C373s in Input Registered Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{ICO}}+\mathrm{t}_{\mathrm{IS}}\right)$ and $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)$)	55.5		45.5		35.7		MHz
$\mathrm{f}_{\text {MAX2 }}$	Maximum Frequency Data Path in Input Registered/Latched Mode (Least of $1 / \mathrm{t}_{\mathrm{ICO}}, 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)$)	62.5		52.6		41.7		MHz
Output Registered/Latched Mode Parameters								
t_{CO}	Clock or Latch Enable to Output		9		12		15	ns
$\mathrm{ts}^{\text {S }}$	Set-Up Time from Input to Clock or Latch Enable	9		12		15		ns
t_{H}	Register or Latch Data Hold Time	0	-	0		0		ns
${ }^{\text {t }} \mathrm{CO} 2$	Output Clock or Latch Enable to Output Delay (Through Memory Array)		16		19		24	ns
${ }^{\text {tscs }}$	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	10		12		15		ns
${ }^{\text {S SL }}$	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch Enable	12		15		20		ns
${ }^{\text {thL }}$	Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable	0		0		0		ns
$\mathrm{f}_{\text {MAX3 }}$	Maximum Frequency of (2) CY7C373s in Output Registered Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)$ and $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)$)	55.5		41.7		33.3		MHz
$\mathrm{f}_{\mathrm{MAX} 4}$	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)$, or $1 / \mathrm{t}_{\mathrm{CO}}$)	100		83.3		62.5		MHz
$\mathrm{f}_{\mathrm{MAX} 5}$	Maximum Frequency with Internal Feedback in Output Registered Mode (Least of $1 / \mathrm{t}_{\mathrm{SCS}}, 1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right.$), or $1 / \mathrm{t}_{\mathrm{CO}}$) ${ }^{[4]}$	100		83		66		MHz
Pipelined Mode Parameters								
tics	Input Register Clock to Output Register Clock	12		15		20		ns
$\mathrm{f}_{\text {MAX6 }}$	Maximum Frequency in Pipelined Mode (Least of $1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{IS}}\right)$, $1 / \mathrm{t}_{\mathrm{ICS}}, 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)$, or $\left.1 / \mathrm{t}_{\mathrm{SCS}}\right)$	83.3		66.6		50.0		MHz

Shaded area contains advanced information.
Note:
5. All AC parameters are measured with 16 outputs switching.

Switching Characteristics Over the Operating Range ${ }^{[5]}$ (continued)

	Description	7C373-100		7C373-83		7C373-66		Unit
Parameter		Min.	Max.	Min.	Max.	Min.	Max.	
Reset/Preset Parameters								
$\mathrm{t}_{\text {RW }}$	Asynchronous Reset Width	12		15		20		ns
t_{RR}	Asynchronous Reset Recovery Time	14		17		22		ns
$\mathrm{t}_{\text {RO }}$	Asynchronous Reset to Output		18		21		26	ns
${ }_{\text {t }}$	Asynchronous Preset Width	12		15		20		ns
$\mathrm{t}_{\text {PR }}$	Asynchronous Preset Recovery Time	14		17		22		ns
t_{PO}	Asynchronous Preset to Output		18		21		26	ns

Shaded area contains advanced information.

Switching Waveforms

Combinatorial Output

Latched Output

Switching Waveforms (continued)

Registered Input

Input Clock to Output Clock

Latched Input

Switching Waveforms (continued)

Latched Input and Output

Asynchronous Reset

Asynchronous Preset

Switching Waveforms (continued)

Output Enable/Disable

Ordering Information

$\begin{aligned} & \text { Speed } \\ & (\mathrm{MHz}) \end{aligned}$	Ordering Code	Package Type	Package Type	Operating Range
100	CY7C373-100GC	G84	84-PGA (Cavity Up)	Commercial
	CY7C373-100JC	J83	84-Lead Plastic Leaded Chip Carrier	
83	CY7C373-83GC	G84	84-PGA (Cavity Up)	Commercial
	CY7C373-83JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C373-83YMB	Y84	84-Pin Ceramic Leaded Chíp Carrier	Military
66	CY7C373-66GC	G84	84-PGA (Cavity Up)	Commercial
	CY7C373-66JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C373-66YMB	Y84	84-Pin Ceramic Leaded Chip Carrier	Military

Shaded areas contain advanced information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
$\mathrm{t}_{\text {PD }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PDL }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PDLL }}$	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICO}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICOL}}$	$7,8,9,10,11$
t_{s}	$7,8,9,10,11$
t_{SL}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$
t_{HL}	$7,8,9,10,11$
t_{IS}	$7,8,9,10,11$
t_{IH}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICS}}$	$7,8,9,10,11$
t_{EA}	$7,8,9,10,11$
t_{ER}	$7,8,9,10,11$

Document \#: 38-00216-A
Warp 2 and Warp 3 are trademarks of Cypress Semiconductor Corporation.
ABEL is a trademark of Data I/O Corporation.
LOG/iC is a trademark of Isdata Corporation.
CUPL is a trademark of Logical Devices, Inc.

Features

- 128 macrocells in eight logic blocks
- 64 I/O pins
- 6 dedicated inputs including 4 clock pins
- No hidden delays
- High speed
$-\mathbf{f}_{\mathrm{MAX}}=100 \mathrm{MHz}$
$-\mathbf{t}_{\text {PD }}=12 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{S}}=9 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{CO}}=9 \mathrm{~ns}$
- Electrically Alterable Flash technology
- Available in 84-pin PLCC, CLCC, and CPGA packages
- Pin compatible with the CY7C373

Functional Description

The CY7C374 is a Flash Erasable Programmable Logic Device (EPLD) and is part of the FLASH370 family of high-density, high-speed PLDs. Like all members of the FLASH370 family, the CY7C374 is de-
signed to bring the ease of use and high performance of the 22 V 10 to high-density PLDs.
The 128 macrocells in the CY7C374 are divided between eight logic blocks. Each logic block includes 16 macrocells, a 72×86 product term array, and an intelligent product term allocator.
The logic blocks in the FLASH370 architecture are connected with an extremely fast and predictable routing resource-the Programmable Interconnect Matrix (PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.
Like all members of the FLASH370 family, the CY7C374 is rich in I/O resources. Every two macrocells in the device feature an associated I/O pin, resulting in 64 I/O pins on the CY7C374. In addition, there are four dedicated inputs and two input/ clock pins.
Finally, the CY7C374 features a very simple timing model. Unlike otherhigh-density PLD architectures, there are no hidden
speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C374 remain the same.

Logic Block

The number of logic blocks distinguishes the members of the FLASH370 family. The CY7C374 includes eight logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

Product Term Array

The product term array in the FLASH370 logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72×86. This large array in each logic block allows for very complex functions to be implemented in single passes through the device.

Selection Guide

		7C374-100	7C374-83	7C374-66
Maximum Propagation Delay trD (ns)		12	15	20
Maximum Standby Current, $\mathrm{I}_{\mathrm{CC} 1}(\mathrm{~mA})$	Commercial	300	300	300
	Military		370	370
Maximum Operating Current, $\mathrm{I}_{\mathrm{CC} 2}(\mathrm{~mA})$	Commercial	330	330	330
	Military		744300 40	400

[^49]
Pin Configurations

PLCC/CLCC
 Top View

7C374-3

Functional Description (continued)

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product terms to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be assigned to any of the logic block macrocells (this is called product term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Product term steering and product term sharing help to increase the effective density of the FLASH370 PLDs. Note that product term allocation is handled by software and is invisible to the user.

I/O Macrocell

Half of the macrocells on the CY7C374 have I/O pins associated with them. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The I/O macrocell includes a register that can be optionally bypassed, polarity control over the input sum-term, and two global clocks to trigger the register. The macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input.

Buried Macrocell

The buried macrocell is very similar to the I/O macrocell. Again, it includes a register that can be configured as combinatorial, as a D flip-flop, a T flip-flop, or a latch. The clock for this register has the same options as described for the I/O macrocell. One difference on the buried macrocell is the addition of input register capability. The user can program the buried macrocell to act as an input register whose input comes from the I/O pin associated with the neigh-

boring macrocell. The ouptut of all buried macrocells is sent directly to the PIM regardless of its configuration.

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) connects the eight logic blocks on the CY7C374 to the inputs and to each other. All inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

Development Tools

Development software for the CY7C374 is available from Cypress's Warp $2{ }^{\text {m }}$ and Warp 3^{mm} software packages. Both of these products are based on the IEEE standard VHDL language. Cypress also supports third-party vendors such as ABEL ${ }^{\mathrm{mN}}$, CUPL ${ }^{\mathrm{mN}}$, and $\mathrm{LOG} / \mathrm{iC}^{\mathrm{Tm}}$. Please contact your local Cypress representative for further information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature.................
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V

DC Program Voltage . 12.5V
Output Current into Outputs 16 mA
Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

$$
\mathrm{R}
$$

-

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$	12	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT 99Ω (COM'L) 1360 (MIL) 2.00 V (CON'L)
OUTPUT O——~

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	7C374-100		7C374-83		7C374-66		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Combinatorial Mode Parameters								
$\mathrm{t}_{\text {PD }}$	Input to Combinatorial Output		12		15		20	ns
$\mathrm{t}_{\text {PDL }}$	Input to Output Through Transparent Input or Output Latch		14		17		22	ns
$\mathrm{t}_{\text {PDLL }}$	Input to Output Through Transparent Input and Output Latches		16		19		24	ns
$t_{\text {EA }}$	Input to Output Enable	,	16		19		24	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable	4	16		19		24	ns

Input Registered/Latched Mode Parameters

$\mathrm{t}_{\text {WL }}$	Clock or Latch Enable Input LOW Time	5		6		8		ns
$t_{\text {WH }}$	Clock or Latch Enable Input HIGH Time	5		6		8		ns
$\mathrm{t}_{\text {IS }}$	Input Register or Latch Set-Up Time	2		3		4		ns
t_{IH}	Input Register or Latch Hold Time	2		3		4		ns
$\mathrm{t}_{\mathrm{ICO}}$	Input Register Clock or Latch Enable to Combinatorial Output		16		19		24	ns
${ }^{\text {I ICOL }}$	Input Register Clock or Latch Enable to Output Through Transparent Output Latch		18		21		26	ns
$\mathrm{f}_{\text {MAX1 }}$	Maximum Frequency of (2) CY7C374s in Input Registered Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{ICO}}+\mathrm{t}_{\mathrm{IS}}\right)$ and $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)$)	55.5		45.5		35.7		MHz
$\mathrm{f}_{\mathrm{MAX} 2}$	Maximum Frequency Data Path in Input Registered/Latched Mode (Least of $1 / \mathrm{t}_{\mathrm{ICO}}, 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)$)	62.5		52.6		41.7		MHz

Output Registered/Latched Mode Parameters								
t_{CO}	Clock or Latch Enable to Output	de	9		12		15	ns
t_{S}	Set-Up Time from Input to Clock or Latch Enable	9	F	12		15		ns
t_{H}	Register or Latch Data Hold Time	0		0		0		ns
$\mathrm{t}_{\mathrm{CO} 2}$	Output Clock or Latch Enable to Output Delay (Through Memory Array)		16		19		24	ns
$\mathrm{t}_{\text {SCS }}$	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	10		12		15		ns
$\mathrm{t}_{\text {SL }}$	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch Enable	12		15		20		ns
t_{HL}	Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable	0		0		0		ns
$\mathrm{f}_{\mathrm{MAX} 3}$	Maximum Frequency of (2) CY7C374s in Output Registered Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{s}}\right)$ and $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)$)	55.5		41.7		33.3		MHz
$\mathrm{f}_{\text {MAX } 4}$	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)$, or $1 / \mathrm{t}_{\mathrm{CO}}$)	100		83.3		62.5		MHz
$\mathrm{f}_{\text {MAX5 }}$	Maximum Frequency with Internal Feedback in Output Registered Mode (Least of $1 / \mathrm{t}_{\mathrm{SCS}}, 1 /\left(\mathrm{ts}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right.$), or $1 / \mathrm{t}_{\mathrm{CO}}$) ${ }^{[4]}$	100		83		66		MHz

Pipelined Mode Parameters

$\mathrm{t}_{\mathrm{ICS}}$	Input Register Clock to Output Register Clock	12	15		20		ns	
$\mathrm{f}_{\mathrm{MAX} 6}$	Maximum Frequency in Pipelined Mode $\left(\right.$ Least of $1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{IS}}\right)$, $1 / \mathrm{t}_{\mathrm{ICS}}, 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)$, or $\left.1 / \mathrm{t}_{\mathrm{SCS}}\right)$	83.3		66.6		50.0		MHz

Shaded area contains advanced information.
Note:
5. All AC parameters are measured with 16 outputs switching.

Switching Characteristics Over the Operating Range ${ }^{[5]}$ (continued)

Parameter	Description	7C374-100		7C374-83		7C374-66		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Reset/Preset Parameters								
$t_{\text {RW }}$	Asynchronous Reset Width	12	\%	15		20		ns
t_{RR}	Asynchronous Reset Recovery Time	14	4	17		22		ns
t_{RO}	Asynchronous Reset to Output		18		21		26	ns
tpw	Asynchronous Preset Width	12		15		20		ns
$\mathrm{t}_{\text {PR }}$	Asynchronous Preset Recovery Time	14		17		22		ns
tPO	Asynchronous Preset to Output	4	18		21		26	ns

Shaded area contains advanced information.

Switching Waveforms

Combinatorial Output

Registered Output

Switching Waveforms (continued)
Registered Input

Input Clock to Output Clock

Latched Input

LATCH ENABLE

Switching Waveforms (continued)

Latched Input and Output

Asynchronous Reset

Asynchronous Preset

Switching Waveforms (continued)

Output Enable/Disable

7C374-15

Ordering Information

Speed (MHz)	Ordering Code	Package Name	Package Type	Operating Range
100	CY7C374-100GC	G84	84-PGA (Cavity Up)	Commercial
	CY7C374-100JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C374-83GC	G84	84-PGA (Cavity Up)	Commercial
	CY7C374-83JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C374-83YMB	Y84	84-Pin Ceramic Leaded Chip Carrier	Military
	CY7C374-66GC	G84	84-PGA (Cavity Up)	Commercial
	CY7C374-66JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C374-66YMB	Y84	84-Pin Ceramic Leaded Chip Carrier	Military

Shaded areas contain advanced information.
MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{PD}	$7,8,9,10,11$
$\mathrm{t}_{\text {PDL }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PDLL }}$	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICO}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICOL}}$	$7,8,9,10,11$
t_{S}	$7,8,9,10,11$
t_{SL}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$
t_{HL}	$7,8,9,10,11$
t_{IS}	$7,8,9,10,11$
t_{IH}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICS}}$	$7,8,9,10,11$
t_{EA}	$7,8,9,10,11$
t_{ER}	$7,8,9,10,11$

Document \#: 38-00214-A
Warp 2 and Warp 3 are trademarks of Cypress Semiconductor Corporation.
ABEL is a trademark of Data I/O Corporation.
LOG/iC is a trademark of Isdata Corporation.
CUPL is a trademark of Logical Devices, Inc.

Features

- 128 macrocells in eight logic blocks
- 128 I/O pins
- 6 dedicated inputs including 4 clock pins
- No hidden delays
- High speed
$-\mathbf{f}_{\text {MAX }}=100 \mathbf{~ M H z}$
$-\mathrm{t}_{\mathrm{PD}}=\mathbf{1 2 \mathrm { ns }}$
$-\mathrm{t}_{\mathrm{S}}=9 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{CO}}=9 \mathrm{~ns}$
- Electrically alterable FLASH technology
- Available in 160-pin PQFP and CPGA packages

Functional Description

The CY7C375 is a Flash Erasable Programmable Logic Device (EPLD) and is part of the FLASH370 family of high-density, high-speed PLDs. Like all members of the FLASH370 family, the CY7C375 is designed to bring the ease of use and high performance of the 22 V 10 to high-density PLDs.
The 128 macrocells in the CY7C375 are divided between eight logic blocks. Each logic block includes 16 macrocells, a 72×86 product term array, and an intelligent product term allocator.
The logic blocks in the FLASH370 architecture are connected with an extremely fast and predictable routing resource-the Programmable Interconnect Matrix
(PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.
Like all members of the FLASH370 family, the CY7C375 is rich in I/O resources. Every macrocell in the device features an associated I/O pin, resulting in $128 \mathrm{I} / \mathrm{O}$ pins on the CY7C375. In addition, there are four dedicated inputs and two input/ clock pins.
Finally, the CY7C375 features a very simple timing model. Unlike other high-density PLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C375 remain the same.

Logic Block Diagram

Selection Guide

		7C375-100	7C375-83	7C375-66
Maximum Propagation Delay (ns)		12	15	20
Maximum Standby Current, $\mathrm{I}_{\mathrm{CC} 1}(\mathrm{~mA})$	Commercial	- 300	300	300
	Military	Whem	370	370
Maximum Operating Current, $\mathrm{I}_{\mathrm{CC} 2}(\mathrm{~mA})$	Commercial	7\% 330	330	330
	Military	\%	400	400

Shaded area contains advanced information.

Pin Configuration

Ceramic Quad Flatpack (CQFP)

Top View

Functional Description (continued)

Logic Block

The number of logic blocks distinguishes the members of the FLASH370 family. The CY7C375 includes eight logic blocks. Each logic block is constructed of a product term array, a product term allocator, and 16 macrocells.

Product Term Array

The product term array in the FLASH370 logic block includes 36 inputs from the PIM and outputs 86 product terms to the product term allocator. The 36 inputs from the PIM are available in both positive and negative polarity, making the overall array size 72×86. This large array in each logic block allows for very complex functions to be implemented in single passes through the device.

Product Term Allocator

The product term allocator is a dynamic, configurable resource that shifts product terms to macrocells that require them. Any number of product terms between 0 and 16 inclusive can be assigned to any of the logic block macrocells (this is called product term steering). Furthermore, product terms can be shared among multiple macrocells. This means that product terms that are common to more than one output can be implemented in a single product term. Propduct term steering and product term sharing help to increase the effective density of the FLASH370 PLDs. Note that product term allocation is handled by software and is invisible to the user.

I/O Macrocell

Each of the macrocells on the CY7C375 has a separate I/O pin associated with it. The input to the macrocell is the sum of between 0 and 16 product terms from the product term allocator. The macrocell includes a register that can be optionally bypassed, polarity control over the input sum-term, and four global clocks to trigger the register. The macrocell also features a separate feedback path to the PIM so that the register can be buried if the I/O pin is used as an input.

Programmable Interconnect Matrix

The Programmable Interconnect Matrix (PIM) connects the eight logic blocks on the CY7C375 to the inputs and to each other. All
inputs (including feedbacks) travel through the PIM. There is no speed penalty incurred by signals traversing the PIM.

Development Tools

Development software for the CY7C375 is available from Cypress's Warp 2^{m} and Warp $3^{\text {m }}$ software packages. Both of these products are based on the IEEE standard VHDL language. Cypress also supports third-party vendors such as ABEL ${ }^{m \times}$, CUPL $^{\mathrm{mm}}$, and $\mathrm{LOG} / \mathrm{iC}^{\mathrm{m}}$. Please contact your local Cypress representative for further information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature - $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature with	
Power Applied	$55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V	
DC Voltage Applied to Outputs in High Z State	$-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}$
DC Input Voltage	0.5 V to +7.0 V
DC Program Voltage	12.5 V
Output Current into Outputs	16 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	$>2001 \mathrm{~V}$
Latch-Up Current	$>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\text {IN }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\text {OUT }}=2.0 \mathrm{~V}$ at $\mathrm{f}=1 \mathrm{MHz}$	12	pF

Notes:
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than one output should be tested at a time. Duration of the short circuit should not exceed 1 second. VOUT $=0.5 \mathrm{~V}$ has been chosen to avoid test problems caused by tester ground degradation.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

	998 (COM'L)	
	136Ω (MIL)	2.08 V (COM'L)
OUTPUT O-	$\cdots-\mathrm{O}$	2.13 V (MIL)

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	7C375-100		7C375-83		7C375-66		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Combinatorial Mode Parameters								
$\mathrm{t}_{\text {PD }}$	Input to Combinatorial Output		12		15		20	ns
$\mathrm{t}_{\text {PDL }}$	Input to Output Through Transparent Input or Output Latch	4	14		17		22	ns
tpdLL	Input to Output Through Transparent Input and Output Latches		16		19		24	ns
$\mathrm{t}_{\text {EA }}$	Input to Output Enable		16		19		24	ns
$\mathrm{t}_{\text {ER }}$	Input to Output Disable		16		19		24	ns
Input Registered/Latched Mode Parameters								
t_{WL}	Clock or Latch Enable Input LOW Time	5		6		8		ns
$\mathrm{t}_{\text {WH }}$	Clock or Latch Enable Input HIGH Time	5		6		8		ns
t_{IS}	Input Register or Latch Set-Up Time	2		3		4		ns
t_{IH}	Input Register or Latch Hold Time	2		3		4		ns
$\mathrm{t}_{\mathrm{ICO}}$	Input Register Clock or Latch Enable to Combinatorial Output		16		19		24	ns
$\mathrm{t}_{\text {ICOL }}$	Input Register Clock or Latch Enable to Output Through Transparent Output Latch		18		21		26	ns
$\mathrm{f}_{\mathrm{MAX1}}$	Maximum Frequency of (2) CY7C375s in Input Registered Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{ICO}}+\mathrm{t}_{\mathrm{IS}}\right)$ and $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)$)	55.5	\%	45.5		35.7		MHz
$\mathrm{f}_{\mathrm{MAX} 2}$	Maximum Frequency Data Path in Input Registered/Latched Mode (Least of $1 / \mathrm{t}_{\mathrm{ICO}}, 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)$)	62.5		52.6		41.7		MHz
Output Registered/Latched Mode Parameters								
t_{CO}	Clock or Latch Enable to Output		9		12		15	ns
t_{5}	Set-Up Time from Input to Clock or Latch Enable	9	\%	12		15		ns
t_{H}	Register or Latch Data Hold Time	0		0		0		ns
$\mathrm{t}_{\mathrm{CO} 2}$	Output Clock or Latch Enable to Output Delay (Through Memory Array)		16		19		24	ns
${ }^{\text {tSCS }}$	Output Clock or Latch Enable to Output Clock or Latch Enable (Through Memory Array)	10		12		15		ns
$\mathrm{t}_{\text {SL }}$	Set-Up Time from Input Through Transparent Latch to Output Register Clock or Latch Enable	12		15		20		ns
t_{HL}	Hold Time for Input Through Transparent Latch from Output Register Clock or Latch Enable	0		0		0		ns
$\mathrm{f}_{\text {MAX3 }}$	Maximum Frequency of (2) CY7C375s in Output Registered Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{S}}\right)$ and $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right)$)	55.5		41.7		33.3		MHz
$\mathrm{f}_{\mathrm{MAX} 4}$	Maximum Frequency Data Path in Output Registered/Latched Mode (Lesser of $1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)$, or $1 / \mathrm{t}_{\mathrm{CO}}$)	100		83.3		62.5		MHz
$\mathrm{f}_{\text {MAX5 }}$	Maximum Frequency with Internal Feedback in Output Registered Mode (Least of $1 / \mathrm{tsCS}, 1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{H}}\right)$, or $1 / \mathrm{t}_{\mathrm{CO}}$) ${ }^{[4]}$	100		83		66		MHz
Pipelined Mode Parameters								
$\mathrm{t}_{\text {ICS }}$	Input Register Clock to Output Register Clock	12		15		20		ns
$\mathrm{f}_{\text {MAX6 }}$	Maximum Frequency in Pipelined Mode (Least of $1 /\left(\mathrm{t}_{\mathrm{CO}}+\mathrm{t}_{\mathrm{IS}}\right)$, $1 / \mathrm{t}_{\mathrm{ICS}}, 1 /\left(\mathrm{t}_{\mathrm{WL}}+\mathrm{t}_{\mathrm{WH}}\right), 1 /\left(\mathrm{t}_{\mathrm{IS}}+\mathrm{t}_{\mathrm{IH}}\right)$, or $\left.1 / \mathrm{t}_{\mathrm{SCS}}\right)$	83.3		66.6		50.0		$\overline{\mathrm{MHz}}$

Shaded area contains advanced information.
Note:
5. All AC parameters are measured with 16 outputs switching.

Switching Characteristics Over the Operating Range ${ }^{[5]}$ (continued)

Parameter	Description	7C375-100		7C375-83		7C375-66		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Reset/Preset Parameters								
$\mathrm{t}_{\text {RW }}$	Asynchronous Reset Width	12		15		20		ns
t_{RR}	Asynchronous Reset Recovery Time	14		17		22		ns
tro	Asynchronous Reset to Output		18		21		26	ns
$\mathrm{t}_{\text {PW }}$	Asynchronous Preset Width	12	mam	15		20		ns
$t_{\text {PR }}$	Asynchronous Preset Recovery Time	14		17		22		ns
tPO	Asynchronous Preset to Output		18		21		26	ns

Shaded area contains advanced information.

Switching Waveforms

Combinatorial Output

Registered Output

Latched Output

Switching Waveforms (continued)
Registered Input

Input Clock to Output Clock

Latched Input

Switching Waveforms (continued)

Latched Input and Output

Asynchronous Reset

Asynchronous Preset

Switching Waveforms (continued)

Output Enable/Disable

Ordering Information

Speed $(\mathbf{M H z})$	Ordering Code	Package Name	Package Type	Operating Range
100	CY7C375-100NC	N160	160-Lead POFP	Commercial
83	CY7C375-83NC	N160	160-Lead PQFP	Commercial
	CY7C375-83GMB	G160	160-Pin PGA	Military
66	CY7C375-66NC	N160	160-Lead PQFP	Commercial
	CY7C375-66GMB	G160	160-Pin PGA	Military

Shaded areas contain advanced information.

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 2}$	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{PD}	$7,8,9,10,11$
$\mathrm{t}_{\text {PDL }}$	$7,8,9,10,11$
$\mathrm{t}_{\text {PDLL }}$	$7,8,9,10,11$
t_{CO}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICO}}$	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICOL}}$	$7,8,9,10,11$
t_{S}	$7,8,9,10,11$
t_{SL}	$7,8,9,10,11$
t_{H}	$7,8,9,10,11$
t_{HL}	$7,8,9,10,11$
t_{IS}	$7,8,9,10,11$
t_{IH}	$7,8,9,10,11$
$\mathrm{t}_{\mathrm{ICS}}$	$7,8,9,10,11$
t_{EA}	$7,8,9,10,11$
t_{ER}	$7,8,9,10,11$

Document \#: 38-00217-A

256-Macrocell Flash PLD

Features

- 256 macrocells in 16 logic blocks
- 128 I/O pins
- 6 dedicated inputs including 4 clock pins
- No hidden delays
- High speed
$-\mathrm{t}_{\mathrm{PD}}=15 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{S}}=12 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{CO}}=12 \mathrm{~ns}$
- Electrically alterable Flash technology
- Available in 160-pin PGA and PQFP packages
- Pin compatible with the CY7C375

Functional Description

The CY7C376 is a Flash Erasable Programmable Logic Device (EPLD) and is part of the FLASH370 family of high-density, high-speed PLDs. Like all members of the FLASH370 family, the CY7C376 is designed to bring the ease of use and high performance of the 22 V 10 to high-density PLDs.
The 256 macrocells in the CY7C376 are divided between sixteen logic blocks. Each logic block includes 16 macrocells, a 72 x 86 product term array, and an intelligent product term allocator.
The logic blocks in the FLASH370 architecture are connected with an extremely fast and predictable routing resourcethe Programmable Interconnect Matrix
(PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.
Like all members of the FLASH370 family, the CY7C376 is rich in I/O resources. Every two macrocells in the device feature an associated I/O pin, resulting in 128 I/O pins on the CY7C376. In addition, there are two dedicated inputs and four input/ clock pins.
Finally, the CY7C376 features a very simple timing model. Unlike other high-density PLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C376 remain the same.

Document \#: 38-00225

Features

- $\mathbf{2 5 6}$ macrocells in $\mathbf{1 6}$ logic blocks
- 256 I/O pins
- 6 dedicated inputs including 4 clock pins
- No hidden delays
- High speed
$-\mathbf{t}_{\text {PD }}=15 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{S}}=12 \mathrm{~ns}$
$-\mathrm{t}_{\mathrm{CO}}=12 \mathrm{~ns}$
- Electrically alterable Flash technology
- Available in 288-pin PGA and PQFP packages

Functional Description

The CY7C377 is a Flash Erasable Programmable Logic Device (EPLD) and is part of the FLASH370 family of high-density, high-speed PLDs. Like all members of the FLASH370 family, the CY7C377 is designed to bring the ease of use and high performance of the 22 V 10 to high-density PLDs.
The 256 macrocells in the CY7C377 are divided between sixteen logic blocks. Each logic block includes 16 macrocells, a 72 x 86 product term array, and an intelligent product term allocator.
The logic blocks in the FLASH370 architecture are connected with an extremely fast and predictable routing resource-the Programmable Interconnect Matrix
(PIM). The PIM brings flexibility, routability, speed, and a uniform delay to the interconnect.
Like all members of the FLASH370 family, the CY7C377 is rich in I/O resources. Every macrocell in the device features an associated I/O pin, resulting in $256 \mathrm{I} / \mathrm{O}$ pins on the CY7C377. In addition, there are two dedicated inputs and four input/ clock pins.
Finally, the CY7C377 features a very simple timing model. Unlike other high-density PLD architectures, there are no hidden speed delays such as fanout effects, interconnect delays, or expander delays. Regardless of the number of resources used or the type of application, the timing parameters on the CY7C377 remain the same.

Document \#: 38-00226

Very High Speed CMOS FPGAs

Features

- Very high speed
- Loadable counter frequencies greater than 100 MHz
- Chip-to-chip operating frequencies up to 85 MHz
- Input + logic cell + output delays under 9 ns
- High usable density
- Up to 4,000 "gate array" gates, equivalent to $12,000 \mathrm{EPLD}$ or LCA gates
- Technology migration path to 20,000 gates and above
- Low power, high output drive
-Standby current typically 2 mA
-16 -bit counter operating at 100 $\mathbf{M H z}$ consumes 50 mA
- Minimum I_{OL} and I_{OH} of 8 mA
- Flexible FPGA architecture
-Wide fan-in (up to 14 input gates)
- Multiple outputs in each cell
- Very low cell propagation delay (3.4 ns)
- Low-cost, easy-to-use design tools
-Designs entered in VHDL, schematics, or both
- Fast, fully automatic place and route
- Waveform simulation with back annotated net delays
- PC and workstation platforms
- Robust routing resources
- Fully automatic place and route of designs using up to $\mathbf{1 0 0}$ percent of logic resources
- Input hysteresis provides high noise immunity
- Thorough testability
-Built-in scan path permits 100 percent factory testing of logic and I/O cells
- Automatic Test Vector Generation (ATVG) software supports user testing after programming
- CMOS process with ViaLink ${ }^{\text {®N }}$ programming technology
- High-speed metal-to-metal link
- Non-volatile antifuse technology

Functional Description

The pASIC380 family of very high speed CMOS user-programmable ASIC devices is based on the first FPGA technology to combine high speed, high density, and low power in a single architecture.
All pASIC380 family devices are based on an array of highly flexible logic cells that have been optimized for efficient implementation of high-speed arithmetic, counter, data path, state machine, and glue logic functions. Logic cells are configured and interconnected by rows and columns of routing metal lines and ViaLink metal-to-metal programmable-via interconnect elements.
ViaLink technology provides a non-volatile, permanently programmedcustomlogic function capable of operating at speeds of over 100 MHz . Internal logic cell delays are under 4 ns and total input to output combinatorial logic delays are under 10 ns . This permits high-density programmable devices to be used with today's fastest CISC and RISC microprocessors, while
consuming a fraction of the power and board area of PALs ${ }^{(\mathbb{C}}$, GALs $^{(\infty)}$, and discrete logic elements.
pASIC380 Family devices range in density from 1000 "gate array" gates (3,000 EPLD/LCA gates) in 44- and 68-pin packages to $4,000(12,000)$ gates in 84 - and $144-$ pin packages.
All devices share a common architecture and CAE design software to allow easy transfer of designs from one product to another. The small size of the ViaLink programming element insures a technology migration path to devices of 20,000 gates or more.
Designs are entered into the pASIC380 Family devices on PC or workstation platforms using third-party, general-purpose design-entry and simulation CAE packages, together with Cypress device-specific place and route and programming tools. Sufficient on-chip routing channels are provided to allow fully automatic place and route of desings using up to 100 percent of the available logic cells.
All the necessary hardware, software, documentation and accessories required to complete a design, from entering a schematic to programming a device are included in Warp $3^{\left({ }^{(10}\right)}$, available from Cypress. Warp3 includes a schematic capture system together with a waveform-based timing simulator. In addition to schematic entry, users can describe designs using VHDL. All applications run under Microsoft Windows ${ }^{()^{\infty}}$ graphical user interface to insure a highly productive and easy-to-use design environment. Sun workstation and other UNIX platforms will also be available.

c380-2
Figure 1. Unprogrammed ViaLink Element

ViaLink Programming Element

Programmable devices implement customer-defined logic functions by interconnecting user-configurable logic cells through a variety of semiconductor switching elements. The maximum speed of operation is determined by the effective impedance of the switch in both programmed, ON, and unprogrammed, OFF, states.
In pASIC380 devices, the switch is called a ViaLink element. The ViaLink element is an antifuse formed in a via between the two layers of metal of a standard CMOS process. The direct metal-to-metal link created as a result of programming achieves a connection with resistance values as a low as 50 ohms. This is less than 5 percent of the resistance of an EPROM or SRAM switch and 10 percent of that of a dielectric antifuse. The capacitance of an unprogrammed ViaLink site is also lower than these alternative approaches. The resulting low RC time constant provides speeds two to three times faster than older generation technologies.
Figure 1 shows an unprogrammed ViaLink site. In a custom metal masked ASIC, such as a gate array, the top and bottom layers of metal make direct contact through the via. In a ViaLink programmable ASIC device, the two layers of metal are intially separated by an insulating semiconductor layer with resistence in excess of 1 gigaohm.
A programming pulse of 10 to 11 volts applied across the via forms a bidirectional conductive link connecting the top and bottom metal layers, as shown in Figure 2. The tight distribution of link resistance is shown in Figure 3.

Standard CMOS Process

pASIC380 devices are the first FPGA devices to be fabricated on a conventional high-volume CMOS process. Initially, the base

Figure 2. Programmed ViaLink Element
technology is a 1-micron, n-well CMOS technology with a single polysilicon layer and two layers of metal interconnect. The only deviation from the standard process flow occurs when the ViaLink module is inserted between the metal deposition steps.
As the size of a ViaLink is identical to that of a standard metal interconnect via, programmable elements can be packed very densely. The microphotograph in Figure 4 shows an array of ViaLink elements. The density is limited only by the minimum dimensions of the metal-line pitch. Migration of the current process from 1-micron to Cypress's 0.65 -micron process will allow the development of pASIC380 devices with tens of thousands of usable gates.

Figure 3. Distribution of Programmed Link Resistance

Figure 4. An Array of ViaLink Elements

Figure 5. A Matrix of Logic Cells and Wiring Channels

The pASIC380 device architecture consists of an array of user-configurable logic building blocks, called logic cells. Figure 5 shows a section of a pASIC380 device containing internal logic cells, input/ output cells, and dual-layer vertical and horizontal metal routing channels. Through ViaLink elements located at the wire intersections, the output of any cell may be programmed to connect to the input of any other cell.
The regularity and orthogonality of this interconnect, together with the capability to achieve 100 percent routability of logic cells makes the pASIC380 architecture closer in structure and performance to a metal-masked gate array than any other FPGA family. It also makes system operating speed far less sensitive to partitioning and placement decisions, thus minor revisions to a logic design usually result in only small changes in performance.

Organization

The pASIC380 Family of very high speed FPGAs contains devices covering a wide spectrum of I/O and density requirements. Four members, ranging from 1000 gates in 44 - and 68-lead packages to 4,000 gates in 84- and 144-lead packages, are shown in Figure 6. The single lines between logic cells represent channels containing up to twenty-two wires.

The key features of all five pASIC380 devices are listed in Table 1. See the individual product datasheets for more specific information on each device.
Individual part numbers indicate unique logic cell and I/O cell combinations. For example, the CY7C383 contains 192 logic cells and 56 I/O cells in a 68 -pin package. The CY7C384 also contains 192 logic cells, but it has 68 I/O cells and is packaged in 84- and 100 -pin packages. Note that at each pASIC380 density there is a density upgrade available in the same package. In other words, the CY7C383 features 2,000 gates in the same pinout as the 1,000-gate CY7C382. The same applies to the CY7C385A and CY7C384.
Gate counts for pASIC380 devices are based on the number of usable or "gate array" gates. Each of the internal logic cells has a total logic capacity of up to 30 gates. As a typical application will use 10 to 12 of these gates, the usable gate count is significantly lower than the total number of available gates. On the pASIC380 product family, Cypress uses the more conservative usable (gate array) gate method of specifying density. Total available gate densities may also be specified as EPLD/LCA gates.

CY7C381, 382

- //O/HIGH-DRIVE INPUT/ CLOCK CELLS
CY7C383, 384

CY7C385A, 386A

Figure 6. pASIC380 Family Members

Table 1. Key Features of pASIC380 Devices

Device	Logic Cells	I/O Cells	Dedicated Inputs	Usable Gates	EPLD/LCA Gates	Packages
7C381	96	32	8	1000	3000	44-Pin PLCC
7C382	96	56	8	1000	3000	68-Pin PLCC, PGA 100-Pin TQFP
7C383	192	56	8	2000	6000	68-Pin PLCC, PGA
7C384	192	68	8	2000	6000	84-Pin PLCC, PGA 100-Pin TQFP
7C385A	384	68	8	4000	12000	84-Pin PLCC, PGA 100-Pin TQFP
7C386A	384	114	8	4000	12000	144-Pin TQFP 145-Pin PGA

Figure 7. pASIC380 Internal Logic Cell

pASIC380 Internal Logic Cell

The pASIC380 internal logic cell, shown in Figure 7, is a generalpurpose building block that can implement most TTL and gate array macro library functions. It has been optimized to maintain the inherent speed advantage of the ViaLink technology while insuring maximum logic flexibility.
The logic cell consists of two 6-input AND gates, four 2-input AND gates, three 2-to-1 multiplexers and a D flip-flop. As noted above, each cell represents approximately 30 gate-equivalents of logic capability. The pASIC380 logic cell is unique among FPGA architectures in that it offers up to 14-input-wide gating functions. It can implement all possible Boolean transfer functions of up to three variables as well as many functions of up to 14 variables.
Glitch-free switching of the multiplexer is insured because the internal capacitance of the circuit maintains enough charge to hold the output in a steady state during input transitions. The multiplexer output feeds the D-type flip-flop, which can also be configured to provide JK-, SR-, or T-type functions as well as count with carry-
in. Two independent SET and RESET inputs can be used to asynchronously control the output condition. The combination of wide gating capability and a built-in register makes the pASIC380 logic cell particularly well suited to the design of high-speed state machines, shift registers, encoders, decoders, arbitration and arithmetic logic, as well as a wide variety of counters.
Each pASIC380 logic cell features five separate outputs. The existance of multiple outputsmakesiteasier topack independant functions into a single logic cell. For example, if one function requires a single register, both 6-input AND gates (A and F) are available for other uses. Logic packing is accomplished automatically by Warp 3 software.
The function of a logic cell is determined by the logic levels applied to the inputs of the AND gates. ViaLink sites located on signal wires tied to the gate inputs perform the dual role of configuring the logic function of a cell and establishing connections between cells.
The pASIC 380 macro library contains more than 200 of the most frequently used logic funcitons already optimized to fit the logic cell architecture. Adetailed understanding of the logic cell is therefore not necessary to successfully design with pASIC380 devices. CAE tools will automatically translate a conventional logic schematic and/or VHDL source code into a device and provide excellent performance and utilization.
Three types of input and output structures are provided on pASIC380 devices to configure buffering functions at the external pads. They are called the Bidirectional Input/Output (I/O) cell, the Dedicated Input (I) cell, and the Clock/Dedicated Input (CLK/I) cell.
The bidirectional I/O cell, shown in Figure 8, consists of a 2 -input OR gate connected to a pin buffer driver. The buffer output is controlled by a three-state enable line to allow the pad to also act as an input. The output may be configured as active HIGH, active LOW, or as an open drain inverting buffer.

Figure 8. Bidirectional I/O Cell

The Dedicated Input cell, shown in Figure9, conveys true and complement signals from the input pads into the array of logic cells. As these pads have nearly twice the current drive capability of the I/O
pads, they are useful for distributing high fanout signals across the device.

Figure 9. Dedicated Input High-Drive Cell

The Clock/Dedicated Input cell (Figure 10) drives a low-skew, fan-out-independent clock tree that can connect to the clock, set, or reset inputs of the logic cell flip-flops. The CY7C384, for example, has 68 I/O cells, 6 I cells, and 2 I/CLK cells.

Figure 10. Clock/Dedicated Input Cell

pASIC380 Interconnect Structure

Multiple logic cells are joined together to form a complex logic function by interconnection through the routing channels. To describe the organization of these routing channels, a hypothetical 14-pin device consisting of two logic cells is shown in Figure 11. This device contains the same architectural features as the members of the pASIC380 family.
Active logic functions are performed by the internal logic cells, the I/O cells (pins 2, 3, 7, 9, 10, and 14) and the I cells (pins 4, 6, 11, and
13). These cells are connected with vertical and horizontal wiring channels.
Three types ofsignalwires are employed: segmented wires, express wires, and clock wires. Segmented wires are predominantly used for local connections and have ViaLink elements known as a Cross Link (denoted by the open box symbol), at every crossover point. They may also be connected to the segmented wires of cells above and below through ViaLink elements, called Pass Links (denoted by the X symbol). Express lines are similar to segmented wires except that they are not divided by Pass Links. Dedicated clock wires are lightly loaded with only three links per cell to distribute highspeed clock edges to the flip-flop CLK, SET, and RESET inputs. Express wires may also be used to deliver clock signals into the multiplexer region of the cell for combinatorial gating. The automatic place and route software allocates signals to the appropriate wires to insure the optimum speed/density combination.
Vertical V_{CC} and GND wires are located close to the logic cell gate inputs to allow any input that is not driven by the output of another cell to be automatically tied to either V_{CC} or GND. All of the vertical wires (segmented, express, clock, and power) considered as a group are called vertical channels. These channels span the full height of the device and run to the left of each column of logic cells.
Horizontal wiring channels, called rows, provide connections, via cross links, to other columns of logic cells and to the periphery of the chip. Appropriate programming of ViaLink elements allows electrical connection to be made from any logic cell output to the input of any other logic or I/O cell. Ample wires are provided in the channels to permit automatic place and route of many designs using up to 100 percent of the device logic cells. Designs can be com-

Figure 11. pASIC380 Device Features
pleted automatically even with a high percentage of fixed user placement of internal cells and pin locations.
This information is presented to provide the user with inisght into how a logic function is implemented in pASIC380 devices. However , it is not necessary to develop a detailed understanding of the architecture in order to achieve efficient designs. All routine tasks are fully automatic. No manual wire routing is necessary, nor is it permitted by the software. Fully automatic placementof logicfunctions is also offered. But if it is necessary to achieve a specific pin configuration or register alignment, for example, manual placement is supported.

Power Consumption

Typical standby power supply current consumption, $\mathrm{I}_{\mathrm{CC} 1}$, of apASIC380 device is 2 mA . The worst-case limit for standby current ($\mathrm{I}_{\mathrm{CC} 1}$) over the full operating range of the pASIC380 devices is 10 $m A$. Formulas for calculating $I_{C C}$ under AC conditions ($\mathrm{I}_{\mathrm{CC} 2}$) are provided in the "pASIC380 Power vs. Operating Frequency" application note. As an example of the low-power consumption of pASIC380 devices, the 16-bit counter example detailed in the application note consumes just 50 mA at 100 MHz .

Programming and Testing

pASIC380 devices may be programmed and functionally tested on the Cypress Programmer supplied with the Warp3 software. The unit is completely self contained. No add-in boards are required. Programming signals are donwloaded from the PC over an RS232 link. Third-party programmers are being qualified.
All pASIC380 device have a built-in serial scan path linking the logic cell register functions (Figure 12). This is provided to improve factory test coverage and to permit testing by the user with automaticallygenerated testvectorsfollowing programming.Automatic Test Vector Generation software is included in Warp3. The Programmer permits a high degree of test coverage to be achieved conveniently and rapidly using test vectors optimized for the pASIC380 architecture.

Reliability

The pASIC380 Family is based on a 1-micron high-volume CMOS fabrication process with the VIALink programmable-via antifuse

Figure 12. Internal Serial Scan Path
technology inserted between the metal deposition steps. The base CMOS process has been qualified to meet the requirements of MIL-STD-883B, Revision C.
The ViaLink element exists in one of two states: a highly resistive unprogrammed state, OFF, and the low-impedance, conductive state, ON. It is connected between the output of one logic cell and the inputs of other logic cells directly or through other links. No DC current flows through either a programmed or an unprogrammed link during operation as a logic device. An unprogrammed link sees a worst-case voltage equal to V_{CC} biased across its terminals. A programmed link carries AC current caused by charging and discharging of device and interconnect capacitances during switching.
Study of test structures and complete pASIC380 devices has shown that an unprogrammed link under V_{CC} bias remains in the unprogrammed state over time. Similary tests on programmed links under current bias exhibit the same stability. The long-term reliability of the combined CMOS and ViaLink structure is similar to that of the base gate array process. For further details, see the pASIC380 Family Reliability Report.

Very High Speed $1 \mathrm{~K}(3 \mathrm{~K})$ Gate CMOS FPGA

Features

- Very high speed
- Loadable counter frequencies greater than 100 MHz
-Chip-to-chip operating frequencies up to 85 MHz
- Input + logic cell + output delays under 9 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
-8×12 array of 96 logic cells provides 3,000 total available gates
- 1,000 typically usable "gate array" gates in 44 - and 68 -pin PLCC/ CPGA packages
- Low power, high output drive
-Standby current typically 2 mA
- 16-bit counter operating at 100 $\mathbf{M H z}$ consumes 50 mA
- Minimum I_{OL} and I_{OH} of 8 mA
- Flexible logic cell architecture
-Wide fan-in (up to 14 input gates)
- Multiple outputs in each cell
- Very low cell propagation delay (3.4 ns)
- Low-cost, powerful design tools
- Designs entered in VHDL, schematics, or both
- Fast, fully automatic place and route
-Waveform simulation with back annotated net delays
- PC and workstation platforms
- Robust routing resources
-Fully automatic place and route of designs using up to $\mathbf{1 0 0}$ percent of logic resources
- No hand routing required
- 32 (CY7C381) to 56 (CY7C382) bidirectional input/output pins
- 6 dedicated input/high-drive pins
- 2 clock/dedicated input pins with fan-out-independent, low-skew nets
—Clock skew <1 ns
- Input hysteresis provides high noise immunity
- Thorough testability
-Built-in scan path permits 100 percent factory testing of logic and I/O cells
- Automatic Test Vector Generation (ATVG) software supports user testing after programming
- CMOS process with ViaLink ${ }^{(\mathbb{1 0})}$ programming technology
-High-speed metal-to-metal link
- Non-volatile antifuse technology
- 68-pin PLCC is compatible with EPLD 1800 and LCA 2064 industrystandard pinouts

Functional Description

The CY7C381 and CY7C382 are members of the pASIC380 family of very high speed CMOS user-programmable ASIC (pASIC) devices. The 96 logic cell fieldprogrammable gate array (FPGA) offers 1,000 typically usable "gate array" gates. This is equivalent to 3,000 EPLD or LCA gates. The CY7C381 is available in a 44-pin PLCC. The CY7C382 is available in a 68 -pin PLCC and CPGA.
Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 100 MHz with input and output delays under 4 ns . This permits highdensity programmable devices to be used with today's fastest CISC and RISC microprocessors.
Designs are entered into the CY7C381 and CY7C382 using Cypress Warp 3 software or one of several third-party tools. Warp 3 is a sophisticated CAE package that features schematic entry, waveform-based timing simulation, and VHDL design synthesis. The CY7C381 and CY7C382 feature ample on-chip routing channels for fast, fully automatic place and route of high gate utilization designs.
For detailed information about the pASIC380 architecture, see the pASIC380 Family datasheet.

ViaLink is a trademark of QuickLogic Corporation.

Pin Configurations

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Lead Temperature ... $300^{\circ} \mathrm{C}$
Supply Voltage -0.5 V to +7.0 V

ESD Pad Protection
$\pm 2000 \mathrm{~V}$
DC Input Voltage
$\pm 20 \mathrm{~mA}$
Latch-Up Current $\pm 100 \mathrm{~mA}$

PLCC
Top View

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Industrial	-40° to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Delay Factor (K)

Speed Grade	Industrial		Commercial	
	Min.	Max.	Min.	Max.
-0	0.4	1.67	0.46	1.55
-1	0.4	1.43	0.46	1.33
-2			0.46	1.25

Shaded area contains advanced information.

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	3.7		V
		$\mathrm{I}_{\mathrm{OH}}=-8.0 \mathrm{~mA}$	2.4		V
		$\mathrm{I}_{\mathrm{OH}}=-10.0 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.1$		V
V_{OL}	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
		$\mathrm{I}_{\mathrm{OL}}=10.0 \mu \mathrm{~A}$		0.1	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V
I_{I}	Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}$	-10	-80	mA
		$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$	30	140	mA
$\mathrm{I}_{\mathrm{CC} 1}$	Standby Supply Current	$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND		10	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Supply Current ${ }^{[1,2]}$	$\mathrm{f}=1.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND		20	mA

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{[3]}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
COUT	Output Capacitance		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	20
		pF		

Switching Characteristics Over the Operating Range

Parameter	Description	Propagation Delays ${ }^{[4]}$ with Fanout of					Unit
		1	2	3	4	8	
LOGIC CELLS							
t_{PD}	Combinatorial Delay ${ }^{[5]}$	3.4	3.8	4.2	4.8	8.1	ns
$\mathrm{t}_{\text {SU }}$	Set-Up Time ${ }^{[5]}$	3.7	3.7	3.7	3.7	3.7	ns
t_{H}	Hold Time	0.0	0.0	0.0	0.0	0.0	ns
$\mathrm{t}_{\text {CLK }}$	Clock to Q Delay	3.0	3.3	3.8	4.3	4.9	ns
$\mathrm{t}_{\text {SET }}$	Set Delay	2.7	3.1	3.5	4.1	7.4	ns
$\mathrm{t}_{\text {RESET }}$	Reset Delay	2.9	3.2	3.6	4.2	7.5	ns
$\mathrm{t}_{\text {CWHI }}$	Clock HIGH Time	2.0	2.0	2.0	2.0	2.0	ns
$\mathrm{t}_{\text {CWLO }}$	Clock LOW Time	3.6	3.6	3.6	3.6	3.6	ns
$\mathrm{t}_{\text {SW }}$	Set Width	2.1	2.1	2.1	2.1	2.1	ns
$\mathrm{t}_{\text {RW }}$	Reset Width	1.9	1.9	1.9	1.9	1.9	ns
INPUT CELLS							
$\mathrm{t}_{\text {IN }}$	Input Delay (HIGH Drive)	3.7	3.8	4.2	4.6	6.4	ns
$\mathrm{t}_{\mathrm{INI}}$	Input, Inverting Delay (HIGH Drive)	3.5	3.6	4.0	4.4	6.2	ns
t_{10}	Input Delay (Bidirectional Pad)	2.3	2.6	3.2	4.1	5.5	ns
$\mathrm{t}_{\mathrm{GCK}}$	Clock Buffer Delay ${ }^{[6]}$	4.4	4.5	4.6	4.6	5.0	ns
OUTPUT CELLS		Propagation Delays ${ }^{[4]}$ with Output Load Capacitance (pF) of					
touTlH	Output Delay LOW to HIGH	3.1	3.8	4.6	5.5	7.2	ns
touthl	Output Delay HIGH to LOW	3.1	3.9	5.0	6.1	8.3	ns
$\mathrm{t}_{\text {PZH }}$	Output Delay Three-State to HIGH	4.4	5.3	6.5	7.7	10.1	ns
$\mathrm{t}_{\text {PZL }}$	Output Delay Three-State to LOW	4.0	4.6	5.4	6.2	7.7	ns
tPHZ	Output Delay HIGH to Three-State ${ }^{[7]}$	3.3	3.3	3.3	3.3	3.3	ns
$\mathrm{t}_{\text {PLZ }}$	Output Delay LOW to Three-State ${ }^{[7]}$	3.7	3.7	3.7	3.7	3.7	ns

Notes:

1. Measured with six 16-bit counters configured internally and all outputs driving. To calculate power for your application, see the "pASIC380 Power vs. Operating Frequency" application note.
2. Guaranteed but not 100% tested.
3. $\mathrm{C}_{\mathrm{I}}=20 \mathrm{pF}$ max. on $\mathrm{pin} 32(7 \mathrm{C} 381)$ or $\operatorname{pin} 50(7 \mathrm{C} 382)$.
4. Worst-case propagation delay times over process variation at $\mathrm{V}_{\mathrm{CC}}=$ 5.0 V and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Mulitply by the appropriate delay factor, K , for speed grade to get worst-case parameters over full V_{CC} and temperature range as specified in the operating range. All inputs are TTL with $3-\mathrm{ns}$ linear transition time between 0 and 3 volts.
5. These limits are derived from worst-case values for a representative selection of the slowest paths through the pASIC logic cell including net delays. Guaranteed delay values for specific paths should be determined from simulation results.
6. Clock buffer fanout refers to the maximum number of flip-flops per half column. The number of half columns used does not affect clock buffer delay.
7. The following loads are used for $t_{P X Z}$:

High Drive Buffer

Parameter	Description	\# High Drives Wired	Propagation Delays ${ }^{[4]}$ with Fanout of					Unit
		Together	12	24	48	72	96	
$\mathrm{t}_{\text {IN }}$	High Drive Input Delay	1	7.9	11.2				ns
		2		8.0	9.7			ns
		3			8.6	10.4	11.8	ns
		4				9.4	10.8	ns
$\mathrm{t}_{\text {INI }}$	High Drive Input, Inverting Delay	1	7.5	10.8				ns
		2		7.5	9.3			ns
		3			8.2	10.0	11.8	ns
		4				9.0	10.8	ns

Switching Waveforms

Combinatorial Delay

Set-Up and Hold Times

SEMICONDUCTOR
Switching Waveforms (continued)

Typical AC Characteristics

Propagation delays depend on routing, fan-out, load capacitance, supply voltage, junction temperature, and process variation. The ACCharacteristics are a design guide to provide initial timing estimates at nominal conditions. Worst-case estimates are obtained when nominal propagation delays are multiplied by the appropriate Delay Factor, K, as specified by the speed grade in the Delay

Factor table. The effects of voltage and temperature variation are illustrated in the graphs below. Warp3 incorporates datasheet AC Characteristics into the design database for pre-place-and-route simulations. The Warp3 Delay Modeler extracts specific timing parameters for precise simulation results following place and route.

[^50]Combinatorial Delay Example (Load $=30 \mathrm{pF}$)

INPUT DELAY + COMBINATORIAL DELAY + OUTPUT DELAY $=8.8 \mathrm{~ns}$
c381-9
Sequential Delay Example (Load $=30 \mathrm{pF}$)

INPUT DELAY + REG SET-UP + CLOCK TO OUTPUT + OUTPUT DELAY = 12.1 ns
c381-10

High-Drive Delay Example

$$
\text { INPUT DELAY + COMBINATORIAL DELAY + OUTPUT DELAY = } 10.2 \mathrm{~ns}
$$

Ordering Information

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
2	CY7C381-2JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
1	CY7C381-1JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C381-1JI	J67	44-Lead Plastic Leaded Chip Carrier	Industrial
0	CY7C381-0JC	J67	44-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C381-0JI	J67	44-Lead Plastic Leaded Chip Carrier	Industrial

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
2	CY7C382-2GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7C382-2JC	J81	68-Lead Plastic Leaded Chip Carrier	
1	CY7C382-1GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7C382-1JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C382-1GI	G68	68-Pin Grid Array (Cavity Down)	Industrial
	CY7C382-1JI	J81	68-Lead Plastic Leaded Chip Carrier	
0	CY7C382-0GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7C382-0JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C382-0GI	G68	68-Pin Grid Array (Cavity Down)	Industrial
	CY7C382-0JI	J81	68-Lead Plastic Leaded Chip Carrier	

Shaded areas contain advanced information.

Document \#: 38-00207

Features

- Very high speed
- Loadable counter frequencies greater than 100 MHz
- Chip-to-chip operating frequencies up to 85 MHz
- Input + logic cell + output delays under 9 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
-12×16 array of 192 logic cells provides 6,000 total available gates
- 2,000 typically usable "gate array" gates in 68- and 84-pin PLCC/ CPGA packages
- Low power, high output drive
—Standby current typically 2 mA
- 16-bit counter operating at 100 $\mathbf{M H z}$ consumes 50 mA
—Minimum I_{OL} and I_{OH} of 8 mA
- Flexible logic cell architecture
—Wide fan-in (up to 14 input gates)
-Multiple outputs in each cell
- Very low cell propagation delay (3.4 ns)
- Low-cost, powerful design tools
- Designs entered in VHDL, schematics, or both
- Fast, fully automatic place and route
-Waveform simulation with back annotated net delays
- PC and workstation platforms
- Robust routing resources
- Fully automatic place and route of designs using up to 100 percent of logic resources
- No hand routing required
- 56 (CY7C383) to 68 (CY7C384) bidirectional input/output pins
- 6 dedicated input/high-drive pins
- 2 clock/dedicated input pins with fan-out-independent, low-skew nets
- Clock skew <1 ns
- Input hysteresis provides high noise immunity
- Thorough testability
-Built-in scan path permits 100 percent factory testing of logic and I/O cells
- Automatic Test Vector Generation (ATVG) software supports user testing after programming
- CMOS process with ViaLink ${ }^{(\mathbb{\infty}}$ programming technology
- High-speed metal-to-metal link
- Non-volatile antifuse technology
- 68-pin PLCC is compatible with CY7C382 footprint for easy upgrade
- 84-pin PLCC is compatible with ACT1020 power supply and ground pinouts

Very High Speed $2 \mathrm{~K}(6 \mathrm{~K})$ Gate CMOS FPGA

Functional Description

The CY7C383 and CY7C384 are members of the pASIC 380 family of very high speed CMOS user-programmable ASIC (pASIC) devices. The 192 logic cell fieldprogrammable gate array (FPGA) offers 2,000 typically usable "gate array" gates. This is equivalent to 6,000 EPLD or LCA gates. The CY7C383 is available in a 68 -pin PLCC. The CY7C384 is available in an 84-pin PLCC and CPGA.
Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 100 MHz with input and output delays under 4 ns . This permits highdensity programmable devices to be used with today's fastest CISC and RISC microprocessors.
Designs are entered into the CY7C383 and CY7C384 using Cypress Warp3 software or one of several third-party tools. Warp 3 is a sophisticated CAE package that features schematic entry, waveform-based timing simulation, and VHDL design synthesis. The CY7C383 and CY7C384 feature ample on-chip routing channels for fast, fully automatic place and route of high gate utilization designs.
For detailed information about the pASIC380 architecture, see the pASIC380 Family datasheet.

Logic Block Diagram

68 or 84 PINS, INCLUDING 68 I/O CELLS, 6 INPUT HIGH-DRIVE CELLS, 2 INPUT/CLK (HIGH-DRIVE) CELLS
ViaLink is a trademark of QuickLogic Corporation.

Pin Configurations

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature

Ceramic	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Plastic	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Lead Temperature	$300^{\circ} \mathrm{C}$
Supply Voltage	-0.5 V to +7.0 V
Input Voltage	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
ESD Pad Protection	. $\pm 2000 \mathrm{~V}$
DC Input Voltage	$\pm 20 \mathrm{~mA}$
Latch-Up Current	$\pm 100 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Industrial	-40° to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Delay Factor (K)

Speed Grade	Industrial		Commercial	
	Min.	Max.	Min.	Max.
-0	0.4	1.67	0.46	1.55
-1	0.4	1.43	0.46	1.33
-2			0.46	1.25

Shaded area contains advanced information.

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	3.7		V
		$\mathrm{I}_{\mathrm{OH}}=-8.0 \mathrm{~mA}$	2.4		V
		$\mathrm{I}_{\mathrm{OH}}=-10.0 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.1$		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
		$\mathrm{I}_{\mathrm{OL}}=10.0 \mu \mathrm{~A}$		0.1	V
V_{IH}	Input HIGH Voltage		2.0		V
V_{IL}	Input LOW Voltage			0.8	V
$\mathrm{I}_{\text {I }}$	Input Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$ or GND	-10	+10	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current	$\mathrm{V}_{\text {OUT }}=\mathrm{GND}$	-10	-80	mA
		$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$	30	140	mA
$\mathrm{I}_{\mathrm{CC1}}$	Standby Supply Current	$\mathrm{V}_{\mathrm{IN}}, \mathrm{V}_{\mathrm{I} / \mathrm{O}}=\mathrm{V}_{\mathrm{CC}}$ or GND		10	mA
$\mathrm{I}_{\mathrm{CC} 2}$	Supply Current ${ }^{[1,2]}$	$\mathrm{f}=1.0 \mathrm{MHz}, \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND		25	mA

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance ${ }^{[3]}$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	20	pF

Switching Characteristics Over the Operating Range

Parameter	Description	Propagation Delays ${ }^{[4]}$ with Fanout of					Unit
		1	2	3	4	8	
LOGIC CELLS							
$\mathrm{t}_{\text {PD }}$	Combinatorial Delay ${ }^{[5]}$	3.4	3.8	4.2	4.8	8.1	ns
$\mathrm{t}_{\text {SU }}$	Set-Up Time ${ }^{[5]}$	3.7	3.7	3.7	3.7	3.7	ns
t_{H}	Hold Time	0.0	0.0	0.0	0.0	0.0	ns
${ }^{\text {t }}$ CLK	Clock to Q Delay	3.0	3.3	3.8	4.3	4.9	ns
$\mathrm{t}_{\text {SET }}$	Set Delay	2.7	3.1	3.5	4.1	7.4	ns
$\mathrm{t}_{\text {RESET }}$	Reset Delay	2.9	3.2	3.6	4.2	7.5	ns
$\mathrm{t}_{\text {CWHI }}$	Clock HIGH Time	2.0	2.0	2.0	2.0	2.0	ns
$t_{\text {CWLO }}$	Clock LOW Time	3.6	3.6	3.6	3.6	3.6	ns
${ }_{\text {t }}$ W	Set Width	2.1	2.1	2.1	2.1	2.1	ns
$\mathrm{t}_{\text {RW }}$	Reset Width	1.9	1.9	1.9	1.9	1.9	ns
INPUT CELLS							
t_{IN}	Input Delay (HIGH Drive)	3.7	3.8	4.2	4.6	6.4	ns
$\mathrm{t}_{\text {INI }}$	Input, Inverting Delay (HIGH Drive)	3.5	3.6	4.0	4.4	6.2	ns
t_{IO}	Input Delay (Bidirectional Pad)	2.3	2.6	3.2	4.1	5.5	ns
$\mathrm{t}_{\mathrm{GCK}}$	Clock Buffer Delay ${ }^{[6]}$	4.4	4.5	4.6	4.6	5.0	ns
OUTPUT CELLS		Propagation Delays ${ }^{[4]}$ with Output Load Capacitance (pF) of					
		30	50	75	100	150	
toutlh	Output Delay LOW to HIGH	3.1	3.8	4.6	5.5	7.2	ns
touthe	Output Delay HIGH to LOW	3.1	3.9	5.0	6.1	8.3	ns
$\mathrm{t}_{\text {PZH }}$	Output Delay Three-State to HIGH	4.4	5.3	6.5	7.7	10.1	ns
$\mathrm{t}_{\text {PZL }}$	Output Delay Three-State to LOW	4.0	4.6	5.4	6.2	7.7	ns
tPHZ	Output Delay HIGH to Three-State ${ }^{[7]}$	3.3	3.3	3.3	3.3	3.3	ns
$\mathrm{t}_{\text {PLZ }}$	Output Delay LOW to Three-State ${ }^{[7]}$	3.7	3.7	3.7	3.7	3.7	ns

Notes:

1. Measured with twelve 16 -bit counters configured internally and all outputs driving. To calculate power for your application, see the "pASIC380 Power vs. Operating Frequency" application note.
2. Guaranteed but not 100% tested.
3. $\mathrm{C}_{\mathrm{I}}=20 \mathrm{pF}$ max. on pin 50 (7C383) or pin 63 (7C384.).
4. Worst-case propagation delay times over process variation at $\mathrm{V}_{\mathrm{CC}}=$ 5.0 V and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Mulitply by the appropriate delay factor, K , for speed grade to get worst-case parameters over full $V_{C C}$ and temperature range as specified in the operating range. All inputs are TTL with 3 -ns linear transition time between 0 and 3 volts.
5. These limits are derived from worst-case values for a representative selection of the slowest paths through the pASIC logic cell including net delays. Guaranteed delayvalues for specific paths should be determined from simulation results.
6. Clock buffer fanout refers to the maximum number of flip-flops per half column. The number of half columns used does not affect clock buffer delay.
7. The following loads are used for tpXZ:

High Drive Buffer

Parameter	Description	$\begin{array}{\|c} \hline \text { \# High Drives } \\ \text { Wired } \\ \text { Together } \\ \hline \end{array}$	Propagation Delays ${ }^{[4]}$ with Fanout of					Unit
			12	24	48	72	96	
$\mathrm{t}_{\text {IN }}$	High Drive Input Delay	1	7.9	11.2				ns
		2		8.0	9.7			ns
		3			8.6	10.4	11.8	ns
		4				9.4	10.8	ns
$\mathrm{t}_{\text {INI }}$	High Drive Input, Inverting Delay	1	7.5	10.8				ns
		2		7.5	9.3			ns
		3			8.2	10.0	11.8	ns
		4				9.0	10.8	ns

Switching Waveforms

CYPRESS

Switching Waveforms (continued)

Three-State Delay

Typical AC Characteristics

Propagation delays depend on routing, fan-out, load capacitance, supply voltage, junction temperature, and process variation. The ACCharacteristics are a design guide to provide initial timing estimates at nominal conditions. Worst-case estimates are obtained when nominal propagation delays are multiplied by the appropriate Delay Factor, K, as specified by the speed grade in the Delay

Factor table. The effects of voltage and temperature variation are illustrated in the graphs below. Warp 3 incorporates datasheet AC Characteristics into the design database for pre-place-and-route simulations. The Warp 3 Delay Modeler extracts specific timing parameters for precise simulation results following place and route.

Combinatorial Delay Example (Load $=30 \mathrm{pF}$)

INPUT DELAY + COMBINATORIAL DELAY + OUTPUT DELAY $=8.8 \mathrm{~ns}$

Sequential Delay Example (Load $=30 \mathrm{pF})$

High-Drive Delay Example

Ordering Information

Speed Grade	Ordering Code	Package Name	Package Type	Operating Range
2	CY7C383-2GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7C383-2JC	J81	68-Lead Plastic Leaded Chip Carrier	
1	CY7C383-1GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7C383-1JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C383-1GI	G68	68-Pin Grid Array (Cavity Down)	Industrial
	CY7C383-1JI	J81	68-Lead Plastic Leaded Chip Carrier	
0	CY7C383-0GC	G68	68-Pin Grid Array (Cavity Down)	Commercial
	CY7C383-0JC	J81	68-Lead Plastic Leaded Chip Carrier	
	CY7C383-0GI	G68	68-Pin Grid Array (Cavity Down)	Industrial
	CY7C383-0JI	J81	68-Lead Plastic Leaded Chip Carrier	
Speed Grade	Ordering Code	Package Name	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
	CY7C384-2GC	G84	84 -Pin Grid Array (Cavity Up)	Commercial
	CY7C384-21C	183	84 Lead Plastic Leaded Chip Carrier	
1	CY7C384-1GC	G84	84-Pin Grid Array (Cavity Up)	Commercial
	CY7C384-1JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C384-1GI	G84	84-Pin Grid Array (Cavity Up)	Industrial
	CY7C384-1JI	J83	84-Lead Plastic Leaded Chip Carrier	
0	CY7C384-0GC	G84	84-Pin Grid Array (Cavity Up)	Commercial
	CY7C384-0JC	J83	84-Lead Plastic Leaded Chip Carrier	
	CY7C384-0GI	G84	84-Pin Grid Array (Cavity Up)	Industrial
	CY7C384-0JI	J83	84-Lead Plastic Leaded Chip Carrier	

Shaded area contains advanced information.
Document \#: 38-00208-A

Very High Speed 4K (12K) Gate CMOS FPGA

Features

- Very high speed
- Loadable counter frequencies greater than 100 MHz
-Chip-to-chip operating frequencies up to 85 MHz
- Input + logic cell + output delays under 9 ns
- Unparalleled FPGA performance for counters, data path, state machines, arithmetic, and random logic
- High usable density
-16×24 array of 384 logic cells provides 12,000 total available gates
$-4,000$ typically usable "gate array" gates in 84-pin PLCC/CLCC and 144-pin PQFP packages
- Low power, high output drive
- Standby current typically 2 mA
- 16-bit counter operating at 100 $\mathbf{M H z}$ consumes 50 mA
- Minimum I_{OL} and I_{OH} of 8 mA
- Flexible logic cell architecture
—Wide fan-in (up to 14 input gates)
- Multiple outputs in each cell
- Very low cell propagation delay ($\mathbf{3} .4 \mathrm{~ns}$)
- Low-cost, powerful design tools
- Designs entered in VHDL, schematics, or both
- Fast, fully automatic place and route
-Waveform simulation with back annotated net delays
- PC and workstation platforms
- Robust routing resources
- Fully automatic place and route of designs using up to 100 percent of logic resources
- No hand routing required
- 68 (7C385A) to 114 (7C386A) bidirectional input/output pins
- 6 dedicated input/high-drive pins
- 2 clock/dedicated input pins with fan-out-independent, low-skew nets
- Clock skew <1 ns
- Input hysteresis provides high noise immunity
- Thorough testability
-Built-in scan path permits 100 percent factory testing of logic and I/O cells
- Automatic Test Vector Generation (ATVG) software supports user testing after programming
- 0.65μ CMOS process with ViaLink ${ }^{\text {® }}$ programming technology
- High-speed metal-to-metal link
- Non-volatile antifuse technology
- 84-pin PLCC is compatible with the CY7C384 footprint for easy upgrade

Functional Description

The CY7C385A and CY7C386A are members of the pASIC380 family of very high speed CMOS user-programmable ASIC (pASIC) devices. The 384 logic cell field-programmablegatearray(FPGA) offers 4,000 typically usable "gate array" gates. This is equivalent to 12,000 EPLD or LCA gates. The CY7C385A is available in a 84 -pin PLCC and CLCC. The CY7C386A is available in 144-pin PQFP and PGA packages.
Low-impedance, metal-to-metal ViaLink interconnect technology provides non-volatile custom logic capable of operating at speeds above 100 MHz with input and output delays under 4 ns . This permits highdensity programmable devices to be used with today's fastest CISC and RISC microprocessors.
Designs are entered into the CY7C385A and CY7C386A using Cypress Warp3 software or one of several third-party tools. Warp 3 is a sophisticated CAE package that features schematic entry, waveform-based timing simulation, and VHDL design synthesis. The CY7C385A and CY7C386A feature ample on-chip routing channels for fast, fully automatic place and route of high gate utilization designs.
For detailed information about the pASIC380 architecture, see the pASIC380 Family datasheet.

Logic Block Diagram

Vialink is a trademark of QuickLogic Corporation.
Document \#: 38-00209-A

PLD Programming Information

Introduction

PLDs, or programmable logic devices, provide an attractive alternative to logic implemented with discrete devices. Cypress Semiconductor is in the enviable position of being able to offer PLDs in several different process technologies, thus assuring our customers of a wide range of options for leading-edge speed as well as very low power consumption. Cypress optimizes the mix of technology and device architecture to insure that the programmable logic re-quirementsoftoday'shighest-performanceelectronicssystemscan be fully supported by a single PLD vendor.
Cypress offers a wide variety of PLDs based on our leading-edge CMOS EPROM process technology. This technology facilitates the lowest power consumption and the highest logic density of any nonvolatile PLD technology on the market today, at speeds that are nearly as fast as state-of-the-art bipolar technology would provide. Futhermore, these devices offer the user the option of device erasure and reprogrammability in windowed packages. Cypress also offers a number of PLDs based on our state-of-the-art BiCMOS and bipolar technologies. These PLDs are targeted at applications where power consumption and density are not as critical as leading-edge speed. And in, 1992 Cypress introduced PLDs based on CMOS Flash technology. Thus Cypress offers solutions for state-of-the-art systems regardless of what the optimal balance is between speed, power, and density for any particular system.

Programmable Technology

EPROM Process Technology

EPROM technology employs a floating or isolated gate between the normal control gate and the source/drain region of a transistor. This gate may be charged with electrons during the programming operation, permanently turning off the transistor. The state of the floating gate, charged or uncharged, is permanent because the gate is isolated in an extremely pure oxide. The charge may be removed if the device is irradiated with ultraviolet energy in the form of light. This ultraviolet light allows the electrons on the gate to recombine and discharge the gate. This process is repeatable and therefore can be used during the processing of the device, repeatedly if necessary, to assure programming function and performance.

Two Transistor Cells

Cypress uses a two-transistor EPROM cell. One transistor is optimized for reliable programming, and one transistor is optimized for high speed. The floating gates are connected such that charge injected on the floating gate of the programming transistor is conducted to the read transistor biasing it off.

BiCMOS and Bipolar Process Technology

In addition to CMOS, Cypress offers BiCMOS TTL and bipolar ECLI/O-compatible PLDs. The BiCMOS devices offer the advantages of CMOS (high density and low power) and bipolar (high speed). Both the BiCMOS and bipolar devices are one-time fuse programmable. The fuses are Ti-W and are connected directly to first metal. First metal is a reliable composite of Ti-TiW-AlSi-Ti to ensure excellent electromigration resistance, eliminate contact spiking, and minimize hillocking.

Flash Process Technology

In addition to offering PLDs based on EPROM, BiCMOS and high-performance bipolar technologies, Cypress introduced our
first PLDs based on CMOS Flash technology in 1992. The Flash cell is programmed in the same manner as the EPROM cell, and is electrically erased via Fowler-Nordheim tunneling. This next-generation PLD technology will combine a number of key advantages for future Cypress PLDs. The principal advantages will be leadingedge speed, low CMOS power consumption, and electrical alterability for simplified inventory management. In addition, Flash technology offers two inherent advantages for PLDs over the commonly used full-features EECMOS technology. One is its superior migratability to higher logic densities, due to the smaller Flash cell size. The second is superior reliability, due to the Flash cell's higher immunity to voltage transients and the accompanying risk of data corruption.

Programming Algorithm

Byte Addressing and Programming

Most Cypress programmable logic devices are addressed and programmed on a byte or extended byte basis where an extended byte is a filed that is as wide as the output path of the device. Each device or family of devices has a unique address map that is available in the product datasheet. Each byte or extended byte is written into the addressed location from the pins that serve as the output pins in normal operation. To program a cell, a 1 or HIGH is placed on the input pin and a 0 or LOW is placed on pins corresponding to cells that are not to be programmed. Data is also read from these pins in parallel for verification after programming. A 1 or HIGH during program verify operation indicates an unprogrammed cell, while a 0 or LOW indicates that the cell accessed has been programmed.

Blank Check

Before programming, all programmable logic devices may be checked in a conventional manner to determine that they have not been previously programmed. This is accomplished in a program verify mode of operation by reading the contents of the array. During this operation, a 1 orHIGH output indicates that the addressed cell is unprogrammed, while a 0 or LOW indicates a programmed cell.

Programming the Data Array

Programming is accomplished by applying a supervoltage to one pin of the device causing it to enter the programming mode of operation. This also provides the programming voltage for the cells to be programmed. In this mode of operation (except for the CY7C361), the address lines of the device are used to address each location to be programmed, and the data is presented on the pins normally used for reading the contents of the device. Each device has a read/write pin in the programming mode. This signal causes a write operation when switched to a supervoltage and a read operation when switched to a logic 0 or LOW. In the logic HIGH or 1 state, the device is in a program inhibit condition and the output pins are in a high-impedance state. During a write operation, the data on the output pins is written into the addressed array location. In a read operation, the contents of the addressed location are present on the output pins and may be verified. Programming therefore is accomplished by placing data on the output pins and writing it into the addressed location. Verification of data is accomplished by examining the information on the output pins during a read operation.
The timing for actual programming is supplied in the unique programming specification for each device.

PLD Programming Information

Phantom Operating Modes

All Cypress programmable logic devices except for the Flash PLDs contain a Phantom array for post assembly testing. This array is accessed, programmed, and operated in a special Phantom mode of operation. In this mode, the normal array is disconnected from control of the logic, and in its place the Phantom array is connected. In normal operation the Phantom array is disconnected and control is onlyvia the normal array. This special feature allows every device to be tested for both functionality and performance after packaging and, if desired, by the user before programming and use. The Phantom modes are entered through the use of supervoltages and are unique for each device or family of devices. See specific datasheets for details.

Special Features

Cypress programmable logic devices, depending on the device, have several special features. For example, the security mechanism defeats the verify operation and therefore secures the contents of the device against unauthorized tampering or access. In advanced devices such as the PALC22V10, PLDC20G10, and CY7C330, the macrocells are programmable through the use of the architecture bits. This allows users to more effectively tailor the device architecture to their unique system requirements. Specific programming is detailed in the device datasheet.

Programming Support

Programming support for Cypress programmable logic devices is available from a number of programmer manufacturers, some of which are listed here. They can be contacted directly for information regarding programming support of Cypress devices. Alternatively, all Cypress sales representatives and distributors have access to this information.
Cypress Semiconductor Inc.
3901 North First Street
San Jose, CA 95134
(408) 943-2600

Data I/O Corporation
10525 Willows Rd., N.E.
P.O. Box 97046

Redmond, WA 98073-9746
(206) 881-6444

Digelec Corporation
1602 Lawrence Ave.
Document \#: 38-00164-A

Suite 113
Ocean, NJ 07712
(201) 493-2420

Kontron Electronics
1230 Charleston Road
Mountain View, CA 94039-7230
(415) 965-7020

Logical Devices Inc.
1201 N.W. 65th Place
Ft. Lauderdale, FL 33309
(305) 974-0975

SMS Mikrocomputersysteme GmbH
Im Morgental 13, D-8994 Hergatz
Germany 5018
(49) 7522-5018 (phone)
(49) 7522-8929 (fax)

Stag Microsystems
1600 Wyatt Dr.
Santa Clara, CA 95054
(408) 988-1118

STAG ZL32 Rev. 30A03
Third-Party Development Software
ABEL ${ }^{(1)}$
Data I/O Corporation
10525 Willows Rd. N.E.
P.O. Box 97046

Redmond, WA 98073-9764
(206) 881-6444

CUPL ${ }^{\text {® }}$
Logical Devices Inc.
1201 N.W. 65th Place
Ft. Lauderdale, FL 33309
(305) 974-0975

LOG/iC ${ }^{(1)}$
ISDATA GmbH
Haid-und-Neu-Strasse 7
D-7500 Karlsruhe 1
Germany
(0721) 693092

[^51]INFO 1
SRAMs2
PROMs 3
PLDs 4
FIFOs 5
LOGIC 6
DATACOM 7
MODULES 8
ECL 9
BUS 10
MILITARY 11
TOOLS 12
QUALITY 13
PACKAGES 14

FIFOs

Device NumberCY7C401CY7C402
CY7C403
CY7C404
CY7C408ACY7C409ACY7C420CY7C421
CY7C424
CY7C425
CY7C428
CY7C429
CY7C421A
CY7C425A
CY7C429A
CY7C433A
CY7C432
CY7C433
CY7C439CY7C441CY7C443CY7C445CY7C446CY7C447
CY7C455
CY7C456
CY7C457CY7C451CY7C453
CY7C460
CY7C462
CY7C464
CY7C470
CY7C472
CY7C474

Page Number

Description

64×4 Cascadable FIFO . 5-1
64×5 Cascadable FIFO . 5-1
64×4 Cascadable FIFO with Output Enable .. 5-1
64×5 Cascadable FIFO with Output Enable .. 5-1
64×8 Cascadable FIFO . 5-12
64×9 Cascadable FIFO . 5-12
512×9 Cascadable FIFO $5-26$
512×9 Cascadable FIFO . 5-26
1Kx 9 Cascadable FIFO . 5-26
1K x 9 Cascadable FIFO . 5-26
2K x 9 High-Speed Cascadable FIFO . 5-26
2K x 9 High-Speed Cascadable FIFO . 5-26
512×9 High-Speed Cascadable FIFO . 5-44
1K x 9 High-Speed Cascadable FIFO . 5-44
2K x 9 High-Speed Cascadable FIFO . 5-53
4K x 9 High-Speed Cascadable FIFO . 5-53
4K x 9 Cascadable FIFO . 5-62
4K x 9 Cascadable FIFO 5-62
2K x 9 Bidirectional FIFO . 5-76
512×9 Clocked FIFO . 5-89
2K x 9 Clocked FIFO . 5-89
Cascadable Clocked 512×18 FIFO w/ Programmable Flags . 5-105
Cascadable Clocked 1K x 18 FIFO w/ Programmable Flags . 5-105
Cascadable Clocked 2K x 18 FIFO w/ Programmable Flags . 5-105
Cascadable Clocked 512x 18 FIFO w/ Programmable Flags . 5-105
Cascadable Clocked 1K x 18 FIFO w/ Programmable Flags . 5-105
Cascadable Clocked 2K x 18 FIFO w/ Programmable Flags . 5-105
512×9 Cascadable Clocked FIFO w/ Programmable Flags . 5-127
2K x 9 Cascadable Clocked FIFO w/ Programmable Flags . 5-127
8K x 9 Cascadable FIFO . 5-150
16K x 9 Cascadable FIFO . 5-150
32K x 9 Cascadable FIFO . 5-150
8K x 9 FIFO w/ Programmable Flags . 5-163
16K x 9 FIFO w/ Programmable Flags . 5-163
32K x 9 FIFO w/ Programmable Flags . 5-163

Cascadable 64 x 4 FIFO and
 64×5 FIFO

Features

- 64×4 (CY7C401 and CY7C403) 64×5 (CY7C402 and CY7C404) High-speed first-in first-out memory (FIFO)
- Processed with high-speed CMOS for optimum speed/power
- $25-\mathrm{MHz}$ data rates
- 50-ns bubble-through time- $\mathbf{2 5} \mathbf{~ M H z}$
- Expandable in word width and/or length
- 5-volt power supply $\pm 10 \%$ tolerance, both commercial and military
- Independent asynchronous inputs and outputs
- TTL-compatible interface
- Output enable function available on CY7C403 and CY7C404
- Capable of withstanding greater than 2001V electrostatic discharge
- Pin compatible with MMI 67401A/67402A

Functional Description

The CY7C401 and CY7C403 are asynchronous first-in first-out memories (FIFOs) organized as 64 four-bit words. The CY7C402 and CY7C404 are similar FIFOs organized as 64 five-bit words. Both the CY7C403 and CY7C404 have an output enable (OE) function.
The devices accept 4 - or 5 -bit words at the data input ($\mathrm{DI}_{0}-\mathrm{DI}_{\mathrm{n}}$) under the control of the shift in (SI) input. The stored words stack up at the output $\left(\mathrm{DO}_{0}-\mathrm{DO}_{\mathrm{n}}\right)$ in the order they were entered. A read command on the shift out (SO) input causes the next to last word to move to the output and all data shifts down once in the stack. The input ready (IR) signal acts as a flag to indicate when the input is ready to accept new data (HIGH), to indicate when the FIFO is full (LOW), and to provide a signal for cascading. The output ready (OR) signal is a flag to indicate the output contains valid data (HIGH), to indicate the FIFO is
empty (LOW), and to provide a signal for cascading.
Parallel expansion for wider words is accomplished by logically ANDing the IR and OR signals to form composite signals.
Serial expansion is accomplished by tying the data inputs of one device to the data outputs of the previous device. The IR pin of the receiving device is connected to the SO pin of the sending device, and the OR pin of the sending device is connected to the SI pin of the receiving device.
Reading and writing operations are completely asynchronous, allowing the FIFO to be used as a buffer between two digital machines of widely differing operating frequencies. The $25-\mathrm{MHz}$ operation makes these FIFOs ideal for high-speed communication and controller applications.

Selection Guide

		7C401/2-5	7C40X-10	7C40X $\mathbf{1 5}$	7C40X-25
Maximum Access Time (ns)	5	10	15	25	
Maximum Operating Current (mA)	Commercial	75	75	75	75
	Military		90	90	90

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots \ldots \ldots \ldots \ldots .{ }_{\text {a }}$ Ambient Temperature with	Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)		
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Latch-Up C		$>200 \mathrm{~mA}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V	Operating Range		
DC Voltage Applied to Outputs in High Z State . -0.5 V to +7.0 V DC Input Voltage -3.0 V to +7.0 V	Range	Ambient Temperature	$\mathbf{V}_{\text {CC }}$
Power Dissipation . 1.0W	Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Output Current, into Outputs (LOW) 20 mA	Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range (Unless Otherwise Noted) ${ }^{[2]}$

Parameters	Description	Test Conditions		7C40X-10, 15, 25		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~m}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.0	6.0	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
$\mathrm{V}_{\mathrm{CD}}{ }^{[3]}$	Input Diode Clamp Voltage ${ }^{[3]}$					
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{OUT}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}$ Output Disabled (CY7C403	$\begin{aligned} & =5.5 \mathrm{~V} \\ & \text { and } \mathrm{CY} 7 \mathrm{C} 404) \end{aligned}$	-50	+50	$\mu \mathrm{A}$
Ios	Output Short Circuit Current ${ }^{[4]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=$ GND			-90	mA
I_{CC}	Power Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Commercial		75	mA
			Military		90	mA

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$		5
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	pF	
			pF	

Notes

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. The CMOS process does not provide a clamp diode. However, the FIFO is insensitive to -3 V dc input levels and -5 V undershoot pulses of less than 10 ns (measured at 50% output).
4. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

 JIG AND SCOPE OUTPUT O-2
SCOPE

(a)
(b) $\quad \mathrm{C} 401-6$

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description	Test Conditions	$\begin{aligned} & \hline 7 \mathrm{C} 401-5 \\ & 7 \mathrm{C} 402-5 \end{aligned}$		7C40X-10		7C40X-15		7C40X-25 ${ }^{[7]}$		Units
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
f_{0}	Operating Frequency	Note 8		5		10		15		25	MHz
$\mathrm{t}_{\text {PHSI }}$	SI HIGH Time		20		20		20		11		ns
trLSI	SO LOW Time		45		30		25		20		ns
$\mathrm{t}_{\text {SSI }}$	Data Set-Up to SI	Note 9	0		0		0		0		ns
$\mathrm{t}_{\mathrm{HSI}}$	Data Hold from SI	Note 9	60		40		30		20		ns
$\mathrm{t}_{\text {DLIR }}$	Delay, SI HIGH to IR LOW			75		40		35		21/22	ns
$\mathrm{t}_{\text {DHIR }}$	Delay, SI LOW to IR HIGH			75		45		40		28/30	ns
tphso	SO HIGH Time		20		20		20		11		ns
$\mathrm{t}_{\text {PLSO }}$	SO LOW Time		45		25		25		20		ns
$\mathrm{t}_{\text {DLOR }}$	Delay, SO HIGH to OR LOW			75		40		35		19/21	ns
$\mathrm{t}_{\text {DHOR }}$	Delay, SO LOW to OR HIGH			80		55		40		34/37	ns
$\mathrm{t}_{\text {SOR }}$	Data Set-Up to OR HIGH		0		0		0		0		ns
$\mathrm{t}_{\mathrm{HSO}}$	Data Hold from SO LOW		5		5		5		5		ns
$\mathrm{t}_{\text {BT }}$	Bubble-Through Time			200	10	95	10	65	10	50/60	ns
$\mathrm{t}_{\text {SIR }}$	Data Set-Up to IR	Note 10	5		5		5		5		ns
${ }^{\text {thiR }}$	Data Hold from IR	Note 10	30		30		30		20		ns
$\mathrm{t}_{\text {PIR }}$	Input Ready Pulse HIGH		20		20		20		15		ns
$\mathrm{t}_{\text {POR }}$	Output Ready Pulse HIGH		20		20		20		15		ns
tPMR	MR Pulse Width		40		30		25		25		ns
$\mathrm{t}_{\text {DSI }}$	MR HIGH to SI HIGH		40		35		25		10		ns
$\mathrm{t}_{\text {DOR }}$	MR LOW to OR LOW			85		40		35		35	ns
$\mathrm{t}_{\text {DIR }}$	MR LOW to IR HIGH			85		40		35		35	ns
$\mathrm{t}_{\text {LZMR }}$	MR LOW to Output LOW	Note 11		50		40		35		25	ns
$\mathrm{t}_{\text {OOE }}$	Output Valid from OE LOW			-		35		30		20	ns
$\mathrm{t}_{\mathrm{HZOE}}$	Output High Z from OE HIGH	Note 12		-		30		25		15	ns

Notes:

6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / I_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance, as in part (a) of AC Test Loads and Waveforms.
7. Commercial/Military
8. $\quad \mathrm{I} / \mathrm{f}_{\mathrm{O}}>\mathrm{t}_{\text {PHSI }}+\mathrm{t}_{\mathrm{DHIR}}, \mathrm{I} / \mathrm{f}_{\mathrm{O}}>\mathrm{t}_{\text {PHSO }}+\mathrm{t}_{\text {DHOR }}$
9. $\mathrm{t}_{\mathrm{SSI}}$ and $\mathrm{t}_{\mathrm{HSI}}$ apply when memory is not full.
10. $\mathrm{t}_{\text {SIR }}$ and $\mathrm{t}_{\text {HIR }}$ apply when memory is full, SI is high and minimum bubble-through (t_{BT}) conditions exist.
11. All data outputs will be at LOW level after reset goes HIGH until data is entered into the FIFO.
12. HIGH-Z transitions are referenced to the steady-state $\mathrm{V}_{\mathrm{OH}}-500 \mathrm{mV}$ and $\mathrm{V}_{\mathrm{OL}}+500 \mathrm{mV}$ levels on the output. $\mathrm{t}_{\mathrm{HZOE}}$ is tested with 5-pFload capacitance as in part (b) of AC Test Loads and Waveforms.
be aware of a window of time which follows the initial rising edge of the OR signal, during which time the SO signal is not recognized. This condition exists only at high-speed operation where more than one SO may be generated inside the prohibited window. This condition does not inhibit the operation of the FIFO at full-frequency operation, but rather delays the full $25-\mathrm{MHz}$ operation until after the window has passed.
There are several implementation techniques for managing the window so that all SO signals are recognized:
13. The first involves delaying SO operation such that it does not occur in the critical window. This can be accomplished by causing a fixed delay of 40 ns "initiated by the SI signal only when the FIFO is empty" to inhibit or gate the SO activity. However, this requires that the SO operation be at least temporarily synchronized with the input SI operation. In synchronous applications this may well be possible and a valid solution.
14. Another solution not uncommon in synchronous applications is to only begin shifting data out of the FIFO when it is more than half full. This is a common method of FIFO application, as earlier FIFOs could not be operated at maximum frequency when near full or empty. Although Cypress FIFOs do not have this limitation, any system designed in this manner will not encounter the window condition described above.
15. The window may also be managed by not allowing the first SO signal to occur until the window in question has passed. This can be accomplished by delaying the SO 40 ns from the rising edge of the initial OR signal. This however involves the requirement that this only occurs on the first occurrence of data being loaded into the FIFO from an empty condition and therefore requires the knowledge of IR and SI conditions as well as SO.
16. Handshaking with the OR signal is a third method of avoiding the window in question. With this technique the rising edge of SO, or the fact that SO signal is HIGH, will cause the OR signal to go LOW. The SO signal is not taken LOW again, advancing the internal pointer to the next data, until the OR signal goes LOW. This ensures that the SO pulse that is initiated in the window will be automatically extended long enough to be recognized.
17. There remains the decision as to what signal will be used to latch the data from the output of the FIFO into the receiving source. The leading edge of the SO signal is most appropriate because data is guaranteed to be stable prior to and after the SO leading edge for each FIFO. This is a solution for any number of FIFOs in parallel.
Any of the above solutions will ensure the correct operation of a Cypress FIFO at 25 MHz . The specific implementation is left to the designer and is dependent on the specific application needs.

Switching Waveforms

Data In Timing Diagram

C401-9

Data Out Timing Diagram

C401-10

Bubble Through, Data Out To Data In Diagram

Switching Waveforms (continued)

Bubble Through, Data In To Data Out Diagram

Master Reset Timing Diagram

Output Enable Timing Diagram

Typical DC and AC Characteristics

C401-15

FIFO Expansion ${ }^{[13,14, ~ 15, ~ 16, ~ 17] ~}$
128×4 Application ${ }^{[18]}$

192×12 Application ${ }^{[19]}$

Notes:

13. When the memory is empty, the last word read will remain on the outputs until the master reset is strobed or a new data word bubbles through to the output. However, OR will remain LOW, indicating data at the output is not valid.
14. When the output data changes as a result of a pulse on SO, the OR signal always goes LOW before there is any change in output data, and stays LOW until the new data has appeared on the outputs. Anytime OR is HIGH, there is valid, stable data on the outputs.
15. If SO is held HIGH while the memory is empty and a word is written into the input, that word will ripple through the memory to the output. OR will go HIGH for one internal cycle (at least torL) and then go back LOW again. The stored word will remain on the outputs. If more words are written into the FIFO, they will line up behind the first word and will not appear on the outputs until SO has been brought LOW.
16. When the master reset is brought LOW, the outputs are cleared to LOW, IR goes HIGH and OR goes LOW. If SI is HIGH when the
master reset goes HIGH , then the data on the inputs will be written into the memory and IR will return to the LOW state until SI is brought LOW. If SI is LOW when the master reset is ended, then IR will go HIGH, but the data on the inputs will not enter the memory until SI goes HIGH.
17. All Cypress FIFOs will cascade with other Cypress FIFOs. However, hey may not cascade with pin-compatible FIFOs from other manufacturers.
18. FIFOs can be easily cascaded to any desired depth. The handshaking and associated timing between the FIFOs are handled by the inherent timing of the devices.
19. FIFOs are expandable in depth and width. However, in forming wider words two external gates are required to generate composite input and output ready flags. This need is due to the variation of delays of the FIFOs.

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
5	CY7C401-5PC	P1	16-Lead (300-Mil) Molded DIP	Commercial
10	CY7C401-10DC	D2	16-Lead (300-Mil) CerDIP	Commercial
	CY7C401-10PC	P1	16-Lead (300-Mil) Molded DIP	
	CY7C401-10DMB	D2	16-Lead (300-Mil) CerDIP	Military
	CY7C401-10LMB	L61	20-Pin Square Leadless Chip Carrier	
	CY7C401-15DC	D2	16-Lead (300-Mil) CerDIP	Commercial
	CY7C401-15PC	P1	16-Lead (300-Mil) Molded DIP	
	CY7C401-15DMB	D2	16-Lead (300-Mil) CerDIP	Military
	CY7C401-15LMB	L61	20-Pin Square Leadless Chip Carrier	
25	CY7C401-25DC	D2	16-Lead (300-Mil) CerDIP	Commercial
	CY7C401-25PC	P1	16-Lead (300-Mil) Molded DIP	Military
	CY7C401-25DMB	D2	16-Lead (300-Mil) CerDIP	
	CY7C401-25LMB	L61	20-Pin Square Leadless Chip Carrier	

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C403-10DC	D2	16-Lead (300-Mil) CerDIP	Commercial
	CY7C403-10PC	P1	16-Lead (300-Mil) Molded DIP	
	CY7C403-10DMB	D2	16-Lead (300-Mil) CerDIP	Military
	CY7C403-10LMB	L61	20-Pin Square Leadless Chip Carrier	
15	CY7C403-15DC	D2	16-Lead (300-Mil) CerDIP	Commercial
	CY7C403-15PC	P1	16-Lead (300-Mil) Molded DIP	
	CY7C403-15DMB	D2	16-Lead (300-Mil) CerDIP	Military
	CY7C403-15LMB	L61	20-Pin Square Leadless Chip Carrier	
25	CY7C403-25DC	D2	16-Lead (300-Mil) CerDIP	Commercial
	CY7C403-25PC	P1	16-Lead (300-Mil) Molded DIP	
	CY7C403-25DMB	D2	16-Lead (300-Mil) CerDIP	Military
	CY7C403-25LMB	L61	20-Pin Square Leadless Chip Carrier	

Speed (ns)	Ordering Code	Package Name	Operating Range	
10	CY7C404-10DC	D4	18-Lead (300-Mil) CerDIP	Commercial
	CY7C404-10PC	P3	18-Lead (300-Mil) Molded DIP	
	CY7C404-10DMB	D4	18-Lead (300-Mil) CerDIP	Military
	CY7C404-10LMB	L61	20-Pin Square Leadless Chip Carrier	
	CY7C404-15DC	D4	18-Lead (300-Mil) CerDIP	Commercial
	CY7C404-15PC	P3	18-Lead (300-Mil) Molded DIP	
	CY7C404-15DMB	D4	18-Lead (300-Mil) CerDIP	Military
	CY7C404-15LMB	L61	20-Pin Square Leadless Chip Carrier	
25	CY7C404-25DC	D4	18-Lead (300-Mil) CerDIP	Commercial
	CY7C404-25PC	P3	18-Lead (300-Mil) Molded DIP	
	CY7C404-25DMB	D4	18-Lead (300-Mil) CerDIP	Military
	CY7C404-25LMB	L61	20-Pin Square Leadless Chip Carrier	

MILITARY SPECIFICATIONS
Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
f_{O}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PHSI }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PLSI }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SSI }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {HSI }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DLIR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DHIR }}$	7, 8, 9, 10, 11
tPHSO	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PLSO }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DLOR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DHOR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SOR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{HSO}}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {BT }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SIR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{HIR}}$	7,8,9,10, 11
$\mathrm{t}_{\text {PIR }}$	7,8,9,10, 11
$\mathrm{tPOR}^{\text {Pr }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PMR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DSI }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{DOR}}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DIR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {LZMR }}$	7, 8, 9, 10, 11
tooe	7, 8, 9, 10, 11
$\mathrm{t}_{\text {HZOE }}$	7, 8, 9, 10, 11

Document \#: 38-00040-G

Cascadable 64×8 FIFO Cascadable 64×9 FIFO

Features

- 64×8 and 64×9 first-in first-out (FIFO) buffer memory
- 35-MHz shift in and shift out rates
- Almost Full/Almost Empty and Half Full flags
- Dual-port RAM architecture
- Fast ($\mathbf{5 0} 0 \mathrm{~ns}$) bubble-through
- Independent asynchronous inputs and outputs
- Output enable (CY7C408A)
- Expandable in word width and FIFO depth
- $\mathbf{5 V} \pm \mathbf{1 0 \%}$ supply
- TTL compatible
- Capable of withstanding greater than 2001V electrostatic discharge voltage
- 300-mil, 28-pin DIP

Functional Description

The CY7C408A and CY7C409A are 64 -word deep by 8 - or 9 -bit wide first-in first-out (FIFO) buffer memories. In addition to the industry-standard handshaking signals, almost full/almost empty (AFE) and half full (HF) flags are provided.

AFE is HIGH when the FIFO is almost full or almost empty, otherwise AFE is LOW. HF is HIGH when the FIFO is half full, otherwise HF is LOW.
The CY7C408A has an output enable (OE) function.
The memory accepts 8 - or 9 -bit parallel words at its inputs $\left(\mathrm{DI}_{0}-\mathrm{DI}_{8}\right)$ under the control of the shift in (SI) input when the input ready (IR) control signal is HIGH. The data is output, in the same order as it was stored, on the $\mathrm{DO}_{0}-\mathrm{DO}_{8}$ output pins under the control of the shift out (SO) input when the output ready (OR) control signal is HIGH. If the FIFO is full (IR LOW), pulses at the SI input are ignored; if the FIFO is empty (OR LOW), pulses at the SO input are ignored.
The IR and OR signals are also used to connect the FIFOs in parallel to make a wider word or in series to make a deeper buffer, or both.
Parallel expansion for wider words is implemented by logically ANDing the IR and OR outputs (respectively) of the individual FIFOs together (Figure 5). The AND operation insures that all of the FIFOs are either ready to accept more data (IR HIGH)
or ready to output data (OR HIGH) and thus compensate forvariations in propagation delay times between devices.
Serial expansion (cascading) for deeper buffer memories is accomplished by connecting the data outputs of the FIFO closest to the data source (upstream device) to the data inputs of the following (downstream) FIFO (Figure 4). In addition, to insure proper operation, the SO signal of the upstream FIFO must be connected to the IR output of the downstream FIFO and the SI signal of the downstream FIFO must be connected to the OR output of the upstream FIFO. In this serial expansion configuration, the IR and OR signals are used to pass data through the FIFOs.
Reading and writing operations are completely asynchronous, allowing the FIFO to be used as a buffer between two digital machines of widely differing operating frequencies. The high shift in and shift out rates of these FIFOs, and their high throughput rate due to the fast bubblethrough time, which is due to their dualport RAM architecture, make them ideal for high-speed communications and controllers.

Logic Block Diagram

Flag Definitions

HF	AFE	Words Stored
L	H	$0-8$
L	L	$9-31$
H	L	$32-55$
\widetilde{H}	H	$56-64$

Pin Configurations

AFE
HF
IR

Selection Guide

		7C408A-15 7C409A-15	7C408A-25 7C409A-25	7C408A-35 7C409A-35
Maximum Shift Rate (MHz)	15	25	35	
Maximum Operating Current (mA)				

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State (7C408A)
-0.5 V to +7.0 V

Power Dissipation . 1.0W

Output Current, into Outputs (Low) 20 mA Static Discharge Voltage $>2001 \mathrm{~V}$ (per MIL-STD-883, Method 3015)

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range (Unless Otherwise Noted) ${ }^{[3]}$

Capacitance ${ }^{[5]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	7	pF

Notes:

1. $\mathrm{I}_{\mathrm{CC}}=\mathrm{I}_{\mathrm{CCO}}+1 \mathrm{~mA} / \mathrm{MHz} \times\left(\mathrm{f}_{\mathrm{SI}}+\mathrm{f}_{\mathrm{SO}}\right) / 2$
2. T_{A} is the "instant on" case temperature.
3. See the last page of this specification for Group A subgroup testing information.
4. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
5. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b) $\quad \mathrm{C} 408 \mathrm{~A}-4$

ALL INPUT PULSES

C408A-5

Equivalent to: THÉVENIN EQUIVALENT

CYPRESS

Switching Characteristics Over the Operating Range ${ }^{[2,6]}$

Parameters	Description	Test Conditions	$\begin{aligned} & \text { 7C408A-15 } \\ & \text { 7C409A-15 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 408 \mathrm{~A}-25 \\ & 7 \mathrm{C} 409 \mathrm{~A}-25 \end{aligned}$		$\begin{aligned} & \text { 7C408A-35 } \\ & \text { 7C409A-35 } \end{aligned}$		Units
			Min.	Max.	Min.	Max.	Min.	Max.	
f_{O}	Operating Frequency	Note 7	.	15		25		35	MHz
tPHSI	SI HIGH Time	Note 7	23		11		9		ns
tPLSI	SI LOW Time	Note 7	25		24		17		ns
$\mathrm{t}_{\text {SSI }}$	Data Set-Up to SI	Note 8	0		0		0		ns
$\mathrm{t}_{\text {HSI }}$	Data Hold from SI	Note 8	30		20		12		ns
$\mathrm{t}_{\text {DLIR }}$	Delay, SI HIGH to IR LOW			35		21		15	ns
t DHIR	Delay, SI LOW to. IR HIGH			40		23		16	ns
tPHSO	SO HIGH Time	Note 7	23		11		9		ns
$\mathrm{t}_{\text {PLSO }}$	SO LOW Time	Note 7	25		24		17		ns
$\mathrm{t}_{\text {DLOR }}$	Delay, SO HIGH to OR LOW			35		21		15	ns
$\mathrm{t}_{\text {DHOR }}$	Delay, SO LOW to OR HIGH			40		23		16	ns
$\mathrm{t}_{\text {SOR }}$	Data Set-Up to OR HIGH		0		0		0		ns
$\mathrm{t}_{\mathrm{HSO}}$	Data Hold from SO LOW		0		0		0		ns
t_{BT}	Fall-through, Bubble-back Time		10	65	10	60	10	50	ns
$\mathrm{t}_{\text {SIR }}$	Data Set-Up to IR	Note 9	5		5		5		ns
$\mathrm{t}_{\text {HIR }}$	Data Hold from IR	Note 9	30		20		20		ns
$\mathrm{t}_{\text {PIR }}$	Input Ready Pulse HIGH	Note 10	6		6		6		ns
tPOR	Output Ready Pulse HIGH	Note 11	6		6		6		ns
$\mathrm{t}_{\text {dlzoe }}$	OE LOW to LOW Z (7C408A)	Note 12		35		30		25	ns
$\mathrm{t}_{\text {DHZOE }}$	OE HIGH to HIGH Z (7C408A)	Note 12		35		30		25	ns
$\mathrm{t}_{\text {DHHF }}$	SI LOW to HF HIGH			65		55		45	ns
$\mathrm{t}_{\text {DLHF }}$	SO LOW to HF LOW			65		55		45	ns
$\mathrm{t}_{\text {DLAFE }}$	SO or SI LOW to AFE LOW			65		55		45	ns
$\mathrm{t}_{\text {DHAFE }}$	SO or SI LOW to AFE HIGH			65		55		45	ns
$\mathrm{t}_{\text {PMR }}$	$\overline{\mathrm{MR}}$ Pulse Width		55		45		35		ns
$\mathrm{t}_{\text {DSI }}$	$\overline{\mathrm{MR}}$ HIGH to SI HIGH		25		10		10		ns
$\mathrm{t}_{\text {DOR }}$	$\overline{\text { MR }}$ LOW to OR LOW			55		45		35	ns
$\mathrm{t}_{\mathrm{DIR}}$	$\overline{\text { MR }}$ LOW to IR HIGH			55		45		35	ns
$\mathrm{t}_{\text {LZMR }}$	MR LOW to Output LOW	Note 13		55		45		35	ns
$\mathrm{t}_{\text {AFE }}$	$\overline{\text { MR LOW to AFE HIGH }}$			55		45		35	ns
t_{HF}	$\overline{\text { MR }}$ LOW to HF LOW			55		45		35	ns
$\mathrm{t}_{\text {OD }}$	SO LOW to Next Data Out Valid			28		20		16	ns

Notes:

6. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{O}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance, as in parts (a) and (b) of AC Test Loads and Waveforms.
7. $1 / \mathrm{f}_{\mathrm{O}} \geq\left(\mathrm{t}_{\text {PHSI }}+\mathrm{t}_{\text {PLSI }}\right), 1 / \mathrm{f}_{\mathrm{O}} \geq\left(\mathrm{t}_{\text {PHSO }}+\mathrm{t}_{\text {PLSO }}\right)$.
8. $\mathrm{t}_{\text {SII }}$ and $\mathrm{t}_{\mathrm{HSI}}$ apply when memory is not full.
9. tSIR and tHIR apply when memory is full, SI is high and minimum bubble-through (t_{BT}) conditions exist.
10. At any given operating condition $t_{\text {PIR }} \geq$ (tPHSO required).
11. At any given operating condition $t_{\text {POR }} \geq$ (tPHSI required).
12. $t_{\text {DHZOE }}$ and $\mathrm{t}_{\text {DLZOE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. $\mathrm{t}_{\text {DHZOE }}$ transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage. tDLZOE $^{\text {transition is measured } \pm 100 \mathrm{mV}}$ from steady-state voltage. These parameters are guaranteed and not 100% tested.
13. All data outputs will be at LOW level after reset goes HIGH until data is entered into the FIFO.

Switching Waveforms

Data In Timing Diagram

Data Out Timing Diagram

Notes:
14. FIFO contains 8 words.
15. FIFO contains 9 words.

Switching Waveforms (continued)

Data In Timing Diagram

Data Out Timing Diagram

Output Enable (CY7C408A only)

Notes:
16. FIFO contains 31 words.
17. FIFO contains 32 words.

Switching Waveforms (continued)
Data In Timing Diagram

Data Out Timing Diagram

Bubble-Back, Data Out To Data In Diagram

Notes:
18. FIFO contains 55 words.
19. FIFO contains 56 words.
20. FIFO contains 64 words.

Switching Waveforms (continued)

Fall-Through, Data In to Data Out Diagram

Master Reset Timing Diagram

Note:
21. FIFO is empty.

Architecture of the CY7C408A and CY7C409A

The CY7C408A and CY7C409A FIFOs consist of an array of 64 words of 8 or 9 bits each (which are implemented using a dual-port RAM cell), a write pointer, a read pointer, and the control logic necessary to generate the handshaking (SI/IR, SO/OR) signals as well as the almost full/almost empty (AFE) and half full(HF) flags. The handshaking signals operate in a manner identical to those of the industry standard CY7C401/402/403/404 FIFOs.

Dual-Port RAM

The dual-port RAM architecture refers to the basic memory cell used in the RAM. The cell itself enables the read and write operations to be independent of each other, which is necessary to achieve truly asynchronous operation of the inputs and outputs. A second benefit is that the time required to increment the read and write pointers is much less than the time that would be required for data to propagate through the memory, which it would have to do if the memory were implemented using the conventional register array architecture.

Fall-Through and Bubble-Back

The time required for data to propagate from the input to the output of an initially empty FIFO is defined as the fall-through time.
The time required for an empty location to propagate from the output to the input of an initially full FIFO is defined as the bubbleback time.
The maximum rate at which data can be passed through the FIFO (called the throughput) is limited by the fall-through time when it is empty (or near empty) and by the bubble-back time when it is full (or near full).
The conventional definitions of fall-through and bubble-back do not apply to the CY7C408A and CY7C409A FIFOs because the data is not physically propagated through the memory. The read and write pointers are incremented instead of moving the data. However, the parameter is specified because it does represent the worst-case propagation delay for the control signals. That is, the time required to increment the write pointer and propagate a signal from the SI input to the OR output of an empty FIFO or the time required to increment the read pointer and propagate a signal from the SO input to the IR output of a full FIFO.

Resetting the FIFO

Upon power-up, the FIFO must be reset with a master reset ($\overline{\mathrm{MR}}$) signal. This causes the device to enter the empty condition, which is signified by the OR signal being LOW at the same time that the IR signal is HIGH. In this condition, the data outputs $\left(\mathrm{DO}_{0}-\right.$ DO_{8}) will be LOW. The AFE flag will be HIGH and the HF flag will be LOW.

Shifting Data Into the FIFO

The availability of an empty location is indicated by the HIGH state of the input ready (IR) signal. When IR is HIGH a LOW to HIGH transition on the shift in (SI) pin will clock the data on the $\mathrm{DI}_{0}-\mathrm{DI}_{8}$ inputs into the FIFO. Data propagates through the device at the falling edge of SI.
The IR output will then go LOW, indicating that the data has been sampled. The HIGH-to-LOW transition of the SI signal initiates the LOW-to-HIGH transition of the IR signal if the FIFO is not full. If the FIFO is full, IR will remain LOW.

Shifting Data Out of the FIFO

The availability of data at the outputs of the FIFO is indicated by the HIGH state of the output ready (OR) signal. After the FIFO is reset all data outputs $\left(\mathrm{DO}_{0}-\mathrm{DO}_{8}\right)$ will be in the LOW state. As long as the FIFO remains empty, the OR signal will be LOW and all SO pulses applied to it will be ignored. After data is shifted into the FIFO, the OR signal will go HIGH. The external control logic (designed by the user) should use the HIGH state of the OR signal to generate a SO pulse. The data outputs of the FIFO should be sampled with edge-sensitive type Dflip-flops (or equivalent), using the SO signal as the clock input to the flip-flop.

AFE and HF Flags

Two flags, almost full/almost empty (AFE) and half full (HF), describe how many words are stored in the FIFO. AFE is HIGH when there are 8 or fewer or 56 or more words stored in the FIFO. Otherwise the AFE flag is LOW. HF is HIGH when there are 32 or more words stored in the FIFO, otherwise the HF flag is LOW. Flag transitions occur relative to the falling edges of SI and SO (Figures 1 and 2).
Due to the asynchronous nature of the SI and SO signals, it is possible to encounter specific timing relationships which may cause short pulses on the AFE and HF flags. These pulses are entirely due to the dynamic relationship of the SI and SO signals. The flags, however, will always settle to their correct state after the appropriate delay ($\mathrm{t}_{\mathrm{DHAFE}}, \mathrm{t}_{\mathrm{DLAFE}}, \mathrm{t}_{\mathrm{DHHF}}$ or $\mathrm{t}_{\mathrm{DLHF}}$). Therefore, use of level-sensitive rather than edge-sensitive flag detection devices is recommended to avoid false flag encoding.

Possible Minimum Pulse Width Violation at the Boundary

 ConditionsIf the handshaking signals IR and OR are not properly used to generate the SI and SO signals, it is possible to violate the minimum (effective) SI and SO positive pulse widths at the full and empty boundaries.

Figure 1. Shifting Words In

CY7C408A
CY7C409A

Cascading the 7C408/9A-35 Above 25 MHz

First, the capacity of N cascaded FIFOs is decreased from $\mathrm{N} \times 64$ to $(\mathrm{N} \times 63)+1$.
If cascaded FIFOs are to be operated with an external clock rate greater than 25 MHz , the interface IR signal must be inverted before being fed back to the interface SO pin (Figure 3). Two things should be noted when this configuration is implemented.
Secondly, the frequency at the cascade interface is less than the 35 MHz rate at which the external clocks may operate. There-
fore, the first device has its data shifted in faster than it is shifted out, and eventually this device becomes momentarily full. When this occurs, the maximum sustainable external clock frequency changes from 35 MHz to the cascade interface frequency. ${ }^{[28]}$
When data packets ${ }^{[29]}$ are transmitted, this phenomenon does not occur unless more than three FIFOs are depth cascaded. For example, if two FIFOs are cascaded, a packet of $127(=2 \times 63+1)$ words may be shifted in at up to 35 MHz and then the entire packet may be shifted out at up to 35 MHz .

Figure 2. Shifting Words Out

Figure 3. Cascaded Configuration Above $25 \mathbf{M H z}$
128×9 Configuration

Figure 4. Cascaded Configuration at or below $25 \mathbf{M H z}^{[22, ~ 23, ~ 24, ~ 25, ~ 26] ~}$
192×27 Configuration

Figure 5. Depth and Width Expansion $\left.{ }^{[23,} 24,25,26,27\right]$

Notes:

22. FIFOs can be easily cascaded to any desired depth. The handshaking and associated timing between the FIFOs are handled by the inherent timing of the devices.
23. When the memory is empty the last word read will remain on the outputs until the master reset is strobed or a new data word falls through to the output.
24. When the output data changes as a result of a pulse on SO, the OR signal always goes LOW before there is any change in output data and stays LOW until the new data has appeared on the outputs. Anytime OR is HIGH, there is valid stable data on the outputs.
25. If SO is held HIGH while the memory is empty and a word is written into the input, that word will fall through the memory to the output.

OR will go HIGH for one internal cycle (at least $t_{\text {POR }}$) and then go back LOW again. The stored word will remain on the outputs. If more words are written into the FIFO, they will line up behind the first word and will not appear on the outputs until SO has been brought LOW.
26. When the master reset is brought LOW, the outputs are cleared to LOW, IR goes HIGH, and OR goes LOW.
27. FIFOs are expandable in depth and width. However, in forming wider words, two external gates are required to generate composite input ready and output ready flags. This need is due to the variation of delays of the FIFOs.

If data is to be shifted out simultaneously with the data being shifted in, the concept of "virtual capacity" is introduced. Virtual capacity is simply how large a packet of data can be shifted in at a fixed frequency, e.g., 35 MHz , simultaneously with data being shifted out at any given frequency. Figure 6 is a graph of packet size ${ }^{[30]}$ vs. shift out frequency (fSOx) for two different values of shift in frequency ($\mathrm{f}_{\text {SIx }}$) when two FIFOs are cascaded.

The exact complement of this occurs if the FIFOs initially contain data and a high shift out frequency is to be maintained, i.e., a 35 $\mathrm{MHzf} \mathrm{SOx}_{\mathrm{x}}$ can be sustained when reading data packets from devices cascaded two or three deep. ${ }^{[31]}$ If data is shifted in simultaneously, Figure 6 applies with $\mathrm{f}_{\text {SIx }}$ and $\mathrm{f}_{\text {SOx }}$ interchanged.

OUTPUT RATE (fsox) OF BOTTOM FIFO (MHz) C408A-22

Figure 6. Virtual Capacity vs. Output Rate for Two FIFOs Cascaded Using an Inverter

Notes:

28. Because the data throughput in the cascade interface is dependent on the inverter delay, it is recommended that the fastest available inverter be used.
29. Transmission of data packets assumes that up to the maximum cumulative capacity of the FIFOs is shifted in without simultaneous shift out
clock occurring. The complement of this holds when data is shifted out as a packet.
30. These are typical packet sizes using an inverter whose delay is 4 ns .
31. Only devices with the same speed grade are specified to cascade together.

Typical DC and AC Characteristics

Ordering Information

$\begin{aligned} & \text { Frequency } \\ & \text { (MHz) } \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C408A-15DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C408A-15PC	P21	28-Lead ($300-\mathrm{Mil}$) Molded DIP	
	CY7C408A-15VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C408A-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C408A-15KMB	K74	28-Lead Rectangular CerPack	
	CY7C408A-15LMB	L64	28-Square Leadless Chip Carrier	
25	CY7C408A-25DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C408A-25PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C408A-25VC	V21	28-Lead ($300-\mathrm{Mil}$) Molded SOJ	
	CY7C408A-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C408A-25KMB	K74	28-Lead Rectangular CerPack	
	CY7C408A-25LMB	L64	28-Square Leadless Chip Carrier	
35	CY7C408A-35DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C408A-35PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C408A-35VC	V21	28-Lead (300-Mil) Molded SOJ	

$\begin{gathered} \text { Frequency } \\ \text { (MHz) } \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C409A-15DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C409A-15PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C409A-15VC	V21	28-Lead ($300-\mathrm{Mil}$) Molded SOJ	
	CY7C409A-15DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C409A-15KMB	K74	28-Lead Rectangular CerPack	
	CY7C409A-15LMB	L64	28-Square Leadless Chip Carrier	
25	CY7C409A-25DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C409A-25PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C409A-25VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C409A-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C409A-25KMB	K74	28-Lead Rectangular CerPack	
	CY7C409A-25LMB	L64	28-Square Leadless Chip Carrier	
35	CY7C409A-35DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C409A-35PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C409A-35VC	V21	28-Lead (300-Mil) Molded SOJ	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{OS}	$1,2,3$
$\mathrm{I}_{\mathrm{CCO}}$	$1,2,3$

Parameters	Subgroups
f_{O}	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PHSI }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PLSI }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SSI }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {HSI }}$	7, 8, 9, 10, 11
t DLIR	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DHIR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {PHSO }}$	7, 8, 9, 10, 11
telso	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DLOR }}$	7, 8, 9, 10, 11
t ${ }_{\text {DHOR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SOR }}$	7, 8, 9, 10, 11
thSo	7,8, 9, 10, 11
$\mathrm{t}_{\text {BT }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {SIR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\mathrm{HIR}}$	7,8, 9, 10,11
tpIR	7, 8, 9, 10, 11
$\mathrm{t}_{\text {POR }}$	7, 8, 9, 10, 11
${ }_{\text {t }}$ SIIR	7,8,9,10,11
$\mathrm{t}_{\text {SOOR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DLZOE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {dHzOE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DHHF }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DLHF }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DLAFE }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DHAFE }}$	7, 8, 9, 10, 11
t_{B}	7, 8, 9, 10, 11
tod	7, 8, 9, 10, 11
tPMR	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DSI }}$	7, 8, 9, 10, 11
t ${ }_{\text {DOR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {DIR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {LZMR }}$	7, 8, 9, 10, 11
$\mathrm{t}_{\text {AFE }}$	7, 8, 9, 10, 11
t_{HF}	7, 8, 9, 10, 11

Document \#: 38-00059-F

Cascadable 512×9 FIFO Cascadable $1 \mathrm{~K} \times 9$ FIFO Cascadable $2 \mathrm{~K} \times 9$ FIFO

Features

- $512 \times 9,1,024 \times 9,2,048 \times 9$ FIFO buffer memory
- Dual-port RAM cell
- Asynchronous read/write
- High-speed 33.3-MHz read/write independent of depth/width
- Low operating power
$-I_{C C}($ max. $)=142 \mathrm{~mA}$ (commercial)
$-I_{C C}($ max. $)=147 \mathrm{~mA}$ (military)
- Half Full flag in standalone
- Empty and Full flags
- Retransmit in standalone
- Expandable in width and depth
- Parallel cascade minimizes bubble-through
- $5 \mathrm{~V} \pm \mathbf{1 0 \%}$ supply
- 300-mil DIP packaging
- 300-mil SOJ packaging

- TTL compatible

- Three-state outputs
- Pin compatible and functional equivalent to IDT7201, IDT7202, and IDT7203

Functional Description

The CY7C420/CY7C421, CY7C424/ CY7C425, and CY7C428/CY7C429 are first-in first-out (FIFO) memories offered in 600 -mil wide and 300 -mil wide packages. They are, respectively, $512,1,024$, and 2,048 words by 9 -bits wide. Each FIFO memory is organized such that the data is read in the same sequential order that it was written. Full and Empty flags are provided to prevent overrun and underrun. Three additional pins are also provided to facilitate unlimited expansion in width, depth, or both. The depth expansion technique steers the control signals from one device to another in parallel, thus eliminating the serial addition of propagation delays, so that throughput is not reduced. Data is steered in a similar manner.
The read and write operations may be asynchronous; each can occur at a rate of
33.3 MHz. The write operation occurs when the write $(\overline{\mathrm{W}})$ signal is LOW. Read occurs when read (R) goes LOW. The nine data outputs go to the high-impedance state when $\overline{\mathrm{R}}$ is HIGH .

A Half Full ($\overline{\mathrm{HF}}$) output flag is provided that is valid in the standalone and width expansion configurations. In the depth expansion configuration, this pin provides the expansion out ($\overline{\mathrm{XO}}$) information that is used to tell the next FIFO that it will be activated.

In the standalone and width expansion configurations, a LOW on the retransmit ($\overline{\mathrm{RT}}$) input causes the FIFOs to retransmit the data. Read enable (\bar{R}) and write enable (W) must both be HIGH during retransmit, and then \bar{R} is used to access the data.

The CY7C420, CY7C421, CY7C424, CY7C425, CY7C428, and CY7C429 are fabricated using an advanced 0.8 -micron N-wellCMOS technology. InputESD protection is greater than 2000 V and latch-up is prevented by careful layout, guard rings, and a substrate bias generator.

Selection Guide

		$\begin{aligned} & \hline \mathrm{CC} 420-20 \\ & \text { 7C421-20 } \\ & \text { 7C424-20 } \\ & \text { 7C425-20 } \\ & \text { 7C428-20 } \\ & \text { 7C429-20 } \end{aligned}$	$\begin{aligned} & \text { 7C420-25 } \\ & \text { 7C421-25 } \\ & \text { 7C424-25 } \\ & \text { 7C425-25 } \\ & \text { 7C428-25 } \\ & \text { 7C429-25 } \end{aligned}$	$\begin{aligned} & \hline \text { 7C420-30 } \\ & \text { 7C421-30 } \\ & \text { 7C424-30 } \\ & \text { 7C425-30 } \\ & \text { 7C428-30 } \\ & \text { 7C429-30 } \end{aligned}$	$\begin{aligned} & \hline \text { 7C420-40 } \\ & \text { 7C421-40 } \\ & \text { 7C424-40 } \\ & \text { 7C425-40 } \\ & \text { 7C428-40 } \\ & \text { 7C429-40 } \end{aligned}$	$\begin{aligned} & \text { 7C420-65 } \\ & \text { 7C421-65 } \\ & \text { 7C424-65 } \\ & 7 \mathrm{C} 425-65 \\ & \text { 7C428-65 } \\ & \text { 7C429-65 } \end{aligned}$
Frequency (MHz)		33.3	28.5	25	20	12.5
Maximum Access Time (ns)		20	25	30	40	65
Maximum Operating Current (mA)	Commercial	142	132	125	115	100
	Military/Industrial		147	140	130	115

Maximum Rating

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
Power Dissipation
1.0 W

Output Current, into Outputs (LOW) 20 mA
Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Static Discharge Voltage . > 2001 V (per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature ${ }^{[1]}$	$V_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C421-20 } \\ & \text { 7C424-20 } \\ & \text { 7C425-20 } \\ & \text { 7C428-20 } \\ & \text { 7C429-20 } \end{aligned}$		$\begin{aligned} & \text { 7C421-25 } \\ & \text { 7C424-25 } \\ & \text { 7C425-25 } \\ & \text { 7C428-25 } \\ & \text { 7C429-25 } \end{aligned}$		$\begin{aligned} & \text { 7C420-30 } \\ & \text { 7C421-30 } \\ & \text { 7C424-30 } \\ & \text { 7С425-30 } \\ & \text { 7C428-30 } \\ & \text { 7C429-30 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2$.	mA	2.4		$2 . .4$		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		Com'l	2.0	V_{CC}	2.0	V_{CC}	2.0	V_{CC}	V
			Mil/Ind			2.2	V_{CC}	2.2	V_{CC}	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	V
IIX	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\overline{\mathbf{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com' ${ }^{\text {[3] }}$		142		132		125	mA
			Mil/Ind ${ }^{[4]}$				147		140	
$\mathrm{I}_{\text {SB1 }}$	Standby Current	All Inputs $=\mathrm{V}_{\text {IH }} \mathrm{Min}$.	Com'l		30		25		25	mA
			Mil/Ind				30		30	
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	AllInputs $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	Com'l		25		20		20	mA
			Mil/Ind				25		25	
Ios	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$			-90		-90		-90	mA

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.

where $f=$ the larger of the write or read operating frequency.
3. I_{CC} (military) $=115 \mathrm{~mA}+[(\overline{\mathrm{f}}-12.5) * 2 \mathrm{~mA} / \mathrm{MHz}]$
for $\bar{f} \geq 12.5 \mathrm{MHz}$
where $f=$ the larger of the write or read operating frequency.
4. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C420-40 } \\ & \text { 7C421-40 } \\ & \text { 7C424-40 } \\ & \text { 7C425-40 } \\ & \text { 7C428-40 } \\ & \text { 7C429-40 } \end{aligned}$		$\begin{aligned} & \hline \mathbf{7 C 4 2 0 - 6 5} \\ & \text { 7C421-65 } \\ & \text { 7C424-65 } \\ & \text { 7C425-65 } \\ & \text { 7C428-65 } \\ & \text { 7C429-65 } \end{aligned}$		Unit
				$\begin{array}{r} \text { Min. } \\ \hline 2.4 \end{array}$	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$				2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage		Com'l	2.0	V_{CC}	2.0	V_{CC}	V
			Mil/Ind	2.2	V_{CC}	2.2	V_{CC}	
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
IIX	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	OutputLeakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l $\left.{ }^{3}\right]$		115	.	100	mA
			Mil/Ind ${ }^{4]}$		130		115	
$\mathrm{I}_{\text {SB1 }}$	Standby Current	All Inputs $=\mathrm{V}_{\mathrm{IH}}$ Min.	Com'l		25		25	mA
			Mil		30		30	
ISB2	Power-Down Current	All Inputs $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	Com'I		20		20	mA
			Mil		25		25	
I_{OS}	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-90		-90	mA

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathbf{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	10	pF

Note:
6. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

$$
\text { OUTPUT } 0 \text { O }{ }_{2}^{2000}
$$

CYPRESS
SEMICONDUCTOR
Switching Characteristics Over the Operating Range ${ }^{[7,8]}$

Parameter	Description	7C420-207C421-207C424-207C425-207C428-207C429-20		$\begin{aligned} & \text { 7C420-25 } \\ & \text { 7C421-25 } \\ & \text { 7C424-25 } \\ & \text { 7C425-25 } \\ & \text { 7C428-25 } \\ & \text { 7C429-25 } \end{aligned}$		$\begin{aligned} & \text { 7C420-30 } \\ & \text { 7C421-30 } \\ & \text { 7C424-30 } \\ & \text { 7C425-30 } \\ & \text { 7C428-30 } \\ & \text { 7C429-30 } \end{aligned}$		$\begin{aligned} & \text { 7C420-40 } \\ & \text { 7C421-40 } \\ & \text { 7C424-40 } \\ & \text { 7C425-40 } \\ & \text { 7C428-40 } \\ & \text { 7C429-40 } \end{aligned}$		$\begin{aligned} & \text { 7C420-65 } \\ & \text { 7C421-65 } \\ & \text { 7C424-65 } \\ & \text { 7C425-65 } \\ & \text { 7C428-65 } \\ & \text { 7C429-65 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	30		35		40		50		80		ns
t_{A}	Access Time		20		25		30		40		65	ns
t_{RR}	Read Recovery Time	10		10		10		10		15		ns
t_{PR}	Read Pulse Width	20		25		30		40		65		ns
$\mathrm{t}_{\mathrm{LZR}}{ }^{[9]}$	Read LOW to Low Z	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{DVR}}{ }^{[9,10]}$	Data Valid After Read HIGH	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZR}}{ }^{[9,10]}$	Read HIGH to High Z		15		18		20		25		30	ns
$t_{\text {WC }}$	Write Cycle Time	30		35		40		50		80		ns
$\mathrm{t}_{\text {PW }}$	Write Pulse Width	20		25		30		40		65		ns
$\mathrm{t}_{\mathrm{HWZ}}{ }^{[9]}$	Write HIGH to Low Z	10		10		10		10		10		ns
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	10		10		10		10		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up Time	12		15		18		20		30		ns
t_{HD}	Data Hold Time	0		0		0		0		10		ns
$\mathrm{t}_{\text {MRSC }}$	$\overline{\mathrm{MR}}$ Cycle Time	30		35		40		50		80		ns
tPMR	$\overline{M R}$ Pulse Width	20		25		30		40		65		ns
$t_{\text {RMR }}$	$\overline{\text { MR Recovery Time }}$	10		10		10		10		15		ns
$\mathrm{t}_{\text {RPW }}$	Read HIGH to MR HIGH	20		25		30		40		65		ns
tWPW	Write HIGH to MR HIGH	20		25		30		40		65		ns
$\mathrm{t}_{\text {RTC }}$	Retransmit Cycle Time	30		35		40		50		80		ns
tPRT	Retransmit Pulse Width	20		25		30		40		65		ns
$\mathrm{t}_{\text {RTR }}$	Retransmit Recovery Time	10		10		10		10		15		ns
$\mathrm{t}_{\mathrm{EFL}}$	MR to EF LOW		30		35		40		50		80	ns
$\mathrm{t}_{\mathrm{HFH}}$	$\overline{\text { MR }}$ to HF HIGH		30		35		40		50		80	ns
$\mathrm{t}_{\mathrm{FFH}}$	$\overline{\text { MR }}$ to $\overline{\mathrm{FF}} \mathrm{HIGH}$		30		35		40		50		80	ns
$\mathrm{t}_{\text {REF }}$	Read LOW to EF LOW		25		25		30		35		60	ns
$\mathrm{t}_{\text {RFF }}$	Read HIGH to FF HIGH		25		25		30		35		60	ns
$\mathrm{t}_{\text {WEF }}$	Write HIGH to EF HIGH		25		25		30		35		60	ns
$\mathrm{t}_{\text {WFF }}$	Write LOW to FF LOW		25		25		30		35		60	ns
$\mathrm{t}_{\text {WHF }}$	Write LOW to $\overline{\mathrm{HF}}$ LOW		30		35		40		50		80	ns
$\mathrm{t}_{\text {RHF }}$	Read HIGH to HF HIGH		30		35		40		50		80	ns
$t_{\text {RAE }}$	Effective Read from Write HIGH		20		25		30		35		60	ns
$\mathrm{t}_{\text {RPE }}$	Effective Read Pulse Width After EF HIGH	20		25		30		40		65		ns
${ }^{\text {twaF }}$	Effective Write from Read HIGH		20		25		30		35		60	ns
$t_{\text {WPF }}$	Effective Write Pulse Width After $\overline{\mathrm{FF}} \mathrm{HIGH}$	20		25		30		40		65		ns
${ }^{\text {t }}$ XOL	Expansion Out LOW Delay from Clock		20		25		30		40		65	ns
${ }^{\text {t }}$ XOH	Expansion Out HIGH Delay from Clock		20		25		30		40		65	ns

Switching Waveforms

Asynchronous Read and Write

C420.7

Master Reset

Half-Full Flag

C420-9

[^52]9. thZR transition ismeasured at +500 mV from $V_{O L}$ and -500 mV from \mathbf{V}_{OH}. $\mathrm{t}_{\mathrm{DVR}}$ transition is measured at the 1.5 V level. t_{HW} and $\mathrm{t}_{\mathrm{LZR}}$ transition is measured at $\pm 100 \mathrm{mV}$ from the steady state.
10. $t_{H Z R}$ and $t_{\text {DVR }}$ use capacitance loading as in part (b) of ACTest Load and Waveforms.
11. \mathbf{W} and $\overline{\mathbf{R}} \geq \mathrm{V}_{\mathrm{IH}}$ around the rising edge of $\overline{\mathrm{MR}}$.
12. I $_{\text {MRSC }}=\mathrm{t}_{\mathrm{PMR}}+\mathrm{t}_{\mathrm{RMR}}$.

Switching Waveforms (continued)

Last Write to First Read Full Flag

Last Read to First Write Empty Flag

Retransmit ${ }^{[13]}$

C420-12

Notes:

[^53]
Switching Waveforms (continued)

Empty Flag and Read Data Flow-Through Mode

Full Flag and Write Data Flow-Through Mode

Switching Waveforms (continued)

Expansion Timing Diagrams

[^54]CY7C420, CY7C421, CY7C424 CY7C425, CY7C428, CY7C429

Architecture

The CY7C420/421/424/425/428/429 FIFOs consist of an array of 512/1024/2048 words of 9 bits each (implemented by an array of dual-port RAM cells), a read pointer, a write pointer, control sig-
 flags.

Dual-Port RAM

The dual-port RAM architecture refers to the basic memory cell used in the RAM. The cell itself enables the read and write operations to be independent of each other, which isnecessary to achieve truly asynchronous operation of the inputs and outputs. A second benefit is that the time required to increment the read and write pointers is much less than the time that would be required for data propagation through the memory, which would be the case if the memory were implemented using the conventional register array architecture.

Resetting the FIFO

Upon power-up, the FIFO must be reset with a Master Reset (MR) cycle. This causes the FIFO to enter the empty condition signified by the Empty flag (EF) being LOW, and both the Half Full (HF) and Full flags ($\overline{\mathrm{FF}}$) being HIGH. Read ($\overline{\mathrm{R}}$) and write ($\overline{\mathrm{W}}$) must be HIGH $\mathrm{t}_{\mathrm{RPW}} / \mathrm{t}_{\mathrm{WPW}}$ before and $\mathrm{t}_{\text {RMR }}$ after the rising edge of $\overline{M R}$ for a valid reset cycle. If reading from the FIFO after a reset cycle is attempted, the outputs will all be in the high-impedance state.

Writing Data to the FIFO

The availability of at least one empty location is indicated by a HIGH $\overline{\mathrm{FF}}$. The falling edge of $\overline{\mathrm{W}}$ initiates a write cycle. Data appearing at the inputs $\left(D_{0}-D_{8}\right) t_{S D}$ before and $t_{H D}$ after the rising edge of \bar{W} will be stored sequentially in the FIFO.
The $\overline{\mathrm{EF}}$ LOW-to-HIGH transition occurs tweF after the first LOW-to-HIGH transition of \bar{W} for an emptyFIFO. HF goesLOW twHF after the falling edge of \bar{W} following the FIFO actually being Half Full. Therefore, the $\overline{H F}$ is active once the FIFO is filled to half its capacity plus one word. $\overline{\text { HF }}$ will remainLOW while less than one half of total memory is available for writing. The LOW-to-HIGH transition of $\overline{\mathrm{HF}}$ occurs $t_{\text {RHF }}$ after the rising edge of $\overline{\mathrm{R}}$ when the FIFO goes from half full +1 to half full. HF is available in standalone and width expansion modes. FF goes LOW twFF after the falling edge of $\overline{\mathbb{W}}$, during the cycle in which the last available location is filled. Internal logic prevents overrunning a full FIFO. Writes to a full FIFO are ignored and the write pointer is not incremented. FF goes HIGH $t_{\text {REF }}$ after a read from a full FIFO.

Reading Data from the FIFO

The falling edge of \bar{R} initiates a read cycle if the $\overline{\mathrm{EF}}$ is not LOW. Data outputs ($\mathbf{Q}_{0}-\mathbf{Q}_{8}$) are in a high-impedance condition between read operations ($\overline{\mathrm{R}}$ HIGH) when the FIFO is empty, or when the FIFO is not the active device in the depth expansion mode.

When one word is in the FIFO, the falling edge of $\overline{\mathrm{R}}$ initiates a HIGH-to-LOW transition of EF. When the FIFO is empty, the outputs are in a high-impedance state. Reads to an empty FIFO are ignored and do not increment the read pointer. From the empty condition, the FIFO can be read tWEF after a valid write.

Retransmit

The retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be acknowledged by the receiver and retransmitted if necessary.
The Retransmit ($\overline{\mathrm{RT}}$) inputis active in the standalone and widthexpansion modes. The retransmit feature is intended for use when a number of writes equal to or less than the depth of the FIFO have occurred since the last MR cycle. ALOW pulse on RT resets the internal read pointer to the first physical location of the FIFO. $\overline{\mathbf{R}}$ and \bar{W} must both be HIGH while and $t_{R T R}$ after retransmit is LOW. With every read cycle after retransmit, previously accessed data is read and the read pointer is incremented until it is equal to the write pointer. Full, Half Full, and Empty flags are governed by the relative locations of the read and write pointers and are updated during a retransmit cycle. Data written to the FIFO after activation of $\overline{\mathrm{RT}}$ are transmitted also.
The full depth of the FIFO can be repeatedly transmitted.

Standalone/Width Expansion Modes

Standalone and width expansion modes are set by grounding Expansion In (XI) and tying First Load (FL) to VCC. FIFOs can be expanded in width to provide word widths greater than nine in increments of nine. During width expansion mode, all controlline inputs are common to all devices, and flag outputs from any device can be monitored.

Depth Expansion Mode (see Figure 1)

Depth expansionmodeisenteredwhen, duringa $\overline{M R}$ cycle,Expansion Out (XO) of one device is connected to Expansion In (XI) of the next device, with XO of the last device connected to $\overline{X I}$ of the first device. In the depth expansion mode the First Load (FL) input, when grounded, indicates that this part is the first to be loaded. All other devices must have this pin HIGH. To enable the correct FIFO, XO is pulsed LOW when the last physical location of the previous FIFO is written to and pulsed LOW again when the last physical location is read. Only one FIFO is enabled for read and one for write at any given time. All other devices are in standby.
FIFOs can also be expanded simultaneously in depth and width. Consequently, any depth or width FIFO can be created of word widths in increments of 9 . When expanding in depth, a composite
 posite $\overline{\mathrm{EF}}$ is created by ORing the $\overline{\mathrm{EF}}$ s together. $\overline{\mathrm{HF}}$ and $\overline{\mathrm{RT}}$ functions are not available in depth expansion mode.

Figure 1. Depth Expansion

Typical DC and AC Characteristics

Ordering Information

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
20	CY7C420-20DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C420-20PC	P15	28-Lead (600-Mil) Molded DIP	
25	CY7C420-25DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C420-25PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C420-25PI	P15	28-Lead (600-Mil) Molded DIP	Industrial
	CY7C420-25DMB	D16	28-Lead (600-Mil) CerDIP	Military
30	CY7C420-30DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C420-30PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C420-30PI	P15	28-Lead (600-Mil) Molded DIP	Industrial
	CY7C420-30DMB	D16	28-Lead (600-Mil) CerDIP	Military
40	CY7C420-40DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C420-40PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C420-40PI	P15	28-Lead (600-Mil) Molded DIP	Industry
	CY7C420-40DMB	D16	28-Lead (600-Mil) CerDIP	Military
65	CY7C420-65DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C420-65PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C420-65PI	P15	28-Lead (600-Mil) Molded DIP	Industrial
	CY7C420-65DMB	D16	28-Lead (600-Mil) CerDIP	Military

Ordering Information (continued)

$\underset{\substack{\text { Speed } \\ \text { (ns) }}}{\text { (20) }}$	Ordering Code	Package Type	Package Type	Operating Range
20	CY7C421-20DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C421-20JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C421-20PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C421-20VC	V21	28 -Lead (300-Mil) Molded SOJ	
25	CY7C421-25DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C421-25JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C421-25PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C421-25VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C421-25JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C421-25PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C421-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C421-25KMB	K74	28-Lead Rectangular Cerpack	
	CY7C421-25LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
30	CY7C421-30DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C421-30JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C421-30PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C421-30VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C421-30Jİ	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C421-30PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C421-30DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C421-30KMB	K74	28-Lead Rectangular Cerpack	
	CY7C421-30LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
40	CY7C421-40DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C421-40JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C421-40PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C421-40VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C421-40JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C421-40PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C421-40DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C421-40KMB	K74	28-Lead Rectangular Cerpack	
	CY7C421-40LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
65	CY7C421-65DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C421-65JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C421-65PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C421-65VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C421-65JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C421-65PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C421-65DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C421-65KMB	K74	28-Lead Rectangular Cerpack	
	CY7C421-65LMB	L55	32-Pin Rectangular Leadless Chip Carrier	

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
20	CY7C424-20DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C424-20PC	P15	28-Lead (600-Mil) Molded DIP	
25	CY7C424-25DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C424-25PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C424-25PI	P15	28-Lead (600-Mil) Molded DIP	Industrial
	CY7C424-25DMB	D16	28-Lead (600-Mil) CerDIP	Military
30	CY7C424-30DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C424-30PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C424-30PI	P15	28-Lead (600-Mil) Molded DIP	Industrial
	CY7C424-30DMB	D16	28-Lead (600-Mil) CerDIP	Military
40	CY7C424-40DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C424-40PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C424-40PI	P15	28-Lead (600-Mil) Molded DIP	Industrial
	CY7C424-40DMB	D16	28-Lead (600-Mil) CerDIP	Military
65	CY7C424-65DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C424-65PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C424-65PI	P15	28-Lead (600-Mil) Molded DIP	Industrial
	CY7C424-65DMB	D16	28-Lead (600-Mil) CerDIP	Military

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
20	CY7C425-20DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C425-20JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C425-20PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C425-20VC	V21	28-Lead (300-Mil) Molded SOJ	
25	CY7C425-25DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C425-25JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C425-25PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C425-25VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C425-25JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C425-25PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C425-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C425-25KMB	K74	28-Lead Rectangular Cerpack	
	CY7C425-25LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
30	CY7C425-30DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C425-30JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C425-30PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C425-30VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C425-30JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C425-30PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C425-30DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C425-30KMB	K74	28-Lead Rectangular Cerpack	
	CY7C425-30LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
40	CY7C425-40DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C425-40JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C425-40PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C425-40VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C425-40JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C425-40PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C425-40DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C425-40KMB	K74	28-Lead Rectangular Cerpack	
	CY7C425-40LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
65	CY7C425-65DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C425-65JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C425-65PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C425-65VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C425-65JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C425-65PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C425-65DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C425-65KMB	K74	28-Lead Rectangular Cerpack	
	CY7C425-65LMB	L55	32-Pin Rectangular Leadless Chip Carrier	

CYPRESS
SEMICONDUCTOR
Ordering Information (continued)

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
20	CY7C428-20DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C428-20PC	P15	28-Lead (600-Mil) Molded DIP	
25	CY7C428-25DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C428-25PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C428-25PI	P15	28-Lead (600-Mil) Molded DIP	Industrial
	CY7C428-25DMB	D16	28-Lead (600-Mil) CerDIP	Military
30	CY7C428-30DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C428-30PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C428-30PI	P15	28-Lead (600-Mil) Molded DIP	Industrial
	CY7C428-30DMB	D16	28-Lead (600-Mil) CerDIP	Military
40	CY7C428-40DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C428-40PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C428-40PI	P15	28-Lead (600-Mil) Molded DIP	Industrial
	CY7C428-40DMB	D16	28-Lead (600-Mil) CerDIP	Military
65	CY7C428-65DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C428-65PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C428-65PI	P15	28-Lead (600-Mil) Molded DIP	Industrial
	CY7C428-65DMB	D16	28-Lead (600-Mil) CerDIP	Military

CYPRESS
SEMICONDUCTOR
Ordering Information (continued)

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
20	CY7C429-20DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C429-20JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C429-20PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C429-20VC	V21	28-Lead (300-Mil) Molded SOJ	
25	CY7C429-25DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C429-25JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C429-25PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C429-25VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C429-25JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C429-25PI	P21	28-Lead (300-Mil) Molded DİP	
	CY7C429-25DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C429-25KMB	K74	28-Lead Rectangular Cerpack	
	CY7C429-25LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
30	CY7C429-30DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C429-30JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C429-30PC	P21	28-Lead ($300-\mathrm{Mil}$) Molded DIP	
	CY7C429-30VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C429-30JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C429-30PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C429-30DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C429-30KMB	K74	28-Lead Rectangular Cerpack	
	CY7C429-30LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
40	CY7C429-40DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C429-40JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C429-40PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C429-40VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C429-40JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C429-40PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C429-40DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C429-40KMB	K74	28-Lead Rectangular Cerpack	
	CY7C429-40LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
65	CY7C429-65DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C429-65JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C429-65PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C429-65VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C429-65JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C429-65PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C429-65DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C429-65KMB	K74	28-Lead Rectangular Cerpack	
	CY7C429-65LMB	L55	32-Pin Rectangular Leadless Chip Carrier	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
I_{OS}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{RC}	$9,10,11$
t_{A}	
t_{RR}	$9,10,11$
t_{PR}	$9,10,11$
$\mathrm{t}_{\mathrm{LZR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{DVR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HZR}}$	$9,10,11$
\mathbf{t}_{WC}	$9,10,11$
\mathbf{t}_{PW}	$9,10,11$
$\mathbf{t}_{\mathrm{HWZ}}$	$9,10,11$
\mathbf{t}_{WR}	$9,10,11$
\mathbf{t}_{SD}	$9,10,11$
\mathbf{t}_{HD}	$9,10,11$
	$9,10,11$

Features

- 512×9 and $1 \mathrm{~K} \times 9$ FIFO buffer memory
- Dual-port RAM cell
- Asynchronous read/write
- High-speed 66.6-MHz read/write independent of depth/width
- 10-ns access time
- Half Full flag in standalone
- Empty and Full flags
- Retransmit in standalone mode
- Expandable in width and depth
- Parallel cascade minimizes bubble-through
- $\mathbf{5 V} \pm \mathbf{1 0 \%}$ supply
- 300-mil 28-pin DIP and 32-pin PLCC packaging
- TTL compatible
- Three-state outputs
- Pin compatible and functional equivalent to IDT7201 and IDT7202

Functional Description

The CY7C421A and CY7C425A are first-infirst-out(FIFO) memories. They are, respectively, 512 and 1,024 words by 9 -bits wide. Each FIFO memory is organized such that the data is read in the same sequential order that it was written. Full and Empty flags are provided to prevent overrun and underrun. Three additional pins are also provided to facilitate unlimitedexpansion in width, depth, or both. The depth expansion technique steers the control signals from one device to another in parallel, thus eliminating the serial addition of propagation delays, so that throughput is not reduced. Data is steered in a similar manner.

The read and write operations may be asynchronous; each can occur at a rate of 66.6 MHz. The write operation occurs when the write (\bar{W}) signal is LOW. Read occurs when read. (R) goes LOW. The nine data outputs go to the high-impedance state when $\overline{\mathrm{R}}$ is HIGH.

A Half Full (HF) output flag is provided that is valid in the standalone and width expansion configurations. In the depth expansion configuration, this pin provides the expansionout (XO) information that is used to tell the next FIFO that it will be activated.

In the standalone and width expansion configurations, a LOW on the retransmit (RT) input causes the FIFOs to retransmit the data. Read enable $(\overline{\mathrm{R}})$ and write enable (\bar{W}) must both be HIGH during retransmit , and then $\overline{\mathbf{R}}$ is used to access the data.

Selection Guide

		7C421A-10	7C421A-15
Frequency (MHz)	7C425A-10	66.6	40
Maximum Access Time (ns)	Commercial	10	15
Maximum Operating Current (mA)	10	15	

Maximum Rating

(Above which the useful life maybe impaired. For user guidelines, not tested.)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V

Power Dissipation . 1.0W
Output Current, into Outputs (LOW) 20 mA
Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	V $_{\text {CC }}$
C	$5 \mathrm{~V} \pm 10 \%$	

Electrical Characteristics Over the Operating Range ${ }^{2]}$

Parameter	Description	Test Conditions		$\begin{aligned} & 7 \mathrm{C} 421 \mathrm{~A}-10 \\ & 7 \mathrm{C} 425 \mathrm{~A}-10 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 421 \mathrm{~A}-15 \\ & 7 \mathrm{C} 425 \mathrm{~A}-15 \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2$		2.4		$2 . .4$		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~m}$			0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		Com'l	2.0	V_{CC}	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}$	Max.	-1	+1	-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\overline{\mathbf{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}$	CC= Max.	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		180		120	mA
$\mathrm{I}_{\text {SB1 }}$	Standby Current	All Inputs $=\mathrm{V}_{\text {IH }}$ Min.	Com'l		15		15	mA
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	All Inputs $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	Com'l		5		5	mA
I_{OS}	$\begin{aligned} & \text { Output Short } \\ & \text { Circuit Current }{ }^{[3]} \end{aligned}$	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-90		-90	mA

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		7	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

Equivalent to:
 $\leq 3 \mathrm{~ns}$ 421A-5

Switching Characteristics Over the Operating Range ${ }^{[5,6]}$

Parameter	Description	$\begin{aligned} & 7 \mathrm{C} 421 \mathrm{~A}-10 \\ & 7 \mathrm{C} 425 \mathrm{~A}-10 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 421 \mathrm{~A}-15 \\ & 7 \mathrm{C} 425 \mathrm{~A}-15 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	15		25		ns
t_{A}	Access Time		10		15	ns
trR	Read Recovery Time	5		10		ns
t_{PR}	Read Pulse Width	10		15		ns
$\mathrm{t}_{\mathrm{DVR}}{ }^{[7]}$	Data Valid After Read HIGH	5		5		ns
$\mathrm{t}_{\mathrm{HZR}}{ }^{[7]}$	Read HIGH to High Z		15		15	ns
$t_{\text {WC }}$	Write Cycle Time	15		25		ns
$\mathrm{t}_{\text {PW }}$	Write Pulse Width	10		15		ns
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	5		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up Time	8		10		ns
t_{HD}	Data Hold Time	0		0		ns
$\mathrm{t}_{\text {MRSC }}$	$\overline{\text { MR Cycle Time }}$	15		25		ns
$\mathrm{t}_{\text {PMR }}$	MR Pulse Width	10		15		ns
$\mathrm{t}_{\text {RMR }}$	$\overline{\mathrm{MR}}$ Recovery Time	5		10		ns
$\mathrm{t}_{\text {RTC }}$	Retransmit Cycle Time	15		25		ns
$\mathrm{t}_{\text {PRT }}$	Retransmit Pulse Width	10		15		ns
$\mathrm{t}_{\text {RTR }}$	Retransmit Recovery Time	5		10		ns
$\mathrm{t}_{\text {EFL }}$	$\overline{M R}$ to EF LOW		10		15	ns
$\mathrm{t}_{\mathrm{HFH}}$	$\overline{\text { MR }}$ to $\overline{\mathrm{HF}} \mathrm{HIGH}$		10		15	ns
$\mathrm{t}_{\text {FFH }}$	$\overline{\mathrm{MR}}$ to FF HIGH		10		15	ns
$\mathrm{t}_{\text {REF }}$	Read LOW to EFF LOW		10		15	ns
$\mathrm{t}_{\text {RFF }}$	Read HIGH to $\overline{\text { FF }}$ HIGH		10		15	ns
$\mathrm{t}_{\text {WEF }}$	Write HIGH to EF HIGH		10		15	ns
$\mathrm{t}_{\text {WFF }}$	Write LOW to FF LOW		10		15	ns
$\mathrm{t}_{\text {WHF }}$	Write LOW to HF LOW		10		15	ns
$\mathrm{t}_{\text {RHF }}$	Read HIGH to HF HIGH		10		15	ns
$\mathrm{t}_{\mathrm{XOL}}$	Expansion Out LOW Delay from Clock		12		15	ns
$\mathrm{t}_{\mathrm{XOH}}$	Expansion Out HIGH Delay from Clock		12		15	ns
$\mathrm{t}_{\text {LZR }}$	Read LOW to Low Z	1		1		ns
$\mathrm{t}_{\text {HWZ }}$	Write HIGH to Low Z	5		5		ns
$\mathrm{t}_{\text {RPW }}$	Read HIGH to MR HIGH	10		15		ns
$\mathrm{t}_{\text {WPW }}$	Write HIGH to MR HIGH	10		15		ns
$\mathrm{t}_{\text {RAE }}$	Effective Read from Write HIGH		10		15	ns
$\mathrm{t}_{\text {RPE }}$	Effective Read Pulse Width After $\overline{\text { FF }}$ HIGH	10		15		ns
$t_{\text {WAF }}$	Effective Write from Read HIGH		10		15	ns
$\mathrm{t}_{\text {WPF }}$	Effective Read Pulse Width After FF HIGH	10		15		ns

Switching Waveforms

Asynchronous Read and Write

Master Reset

Half-Full Flag

Notes:

5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance, as in AC Test Load and Waveforms, unless otherwise specified.
6. See the last page of this specification for GroupA subgroup testing information.
7. tHZR transition is measured at +500 mV from V_{OL} and -500 mV from $\mathrm{V}_{\mathrm{OH}} \cdot \mathrm{t}_{\mathrm{DVR}}$ transition is measured at the 1.5 V level. $\mathrm{t}_{\mathrm{HWZ}}$ and $\mathrm{t}_{\mathrm{LZR}}$ transition is measured at $\pm 100 \mathrm{mV}$ from the steady state.
8. W and $\bar{R} \geq V_{I H}$ around the rising edge of $\overline{M R}$.
9. $\mathrm{t}_{\mathrm{MRSC}}=\mathrm{t}_{\mathrm{PMR}}+\mathrm{t}_{\mathrm{RMR}}$.

Switching Waveforms (continued)

Last Write to First Read Full Flag

421A-9
Last Read to First Write Empty Flag

Retransmit ${ }^{[10]}$

421A-11

Notes:

10. $\overline{E F}, \overline{H F}$ and $\overline{F F}$ maychange state during retransmit as a result of the off- $\quad 11 . t_{\text {RTC }}=t_{\text {PRT }}+t_{\text {RTR }}$.
set of the read and write pointers, but flags will be valid at $t_{R T C}$

Switching Waveforms (continued)

Empty Flag and Empty Boundary Timing Diagram

Full Flag and Full Boundary Timing Diagram

Switching Waveforms (continued)

Expansion Timing Diagrams

421A-14

Note:
12. Expansion Out of device $1\left(\mathbf{X O}_{1}\right)$ is connected to Expansion In of device $2\left(\mathbf{X I}_{2}\right)$.

Architecture

The CY7C421A/425A FIFOs consist of an array of $512 / 1024$ words of 9 bits each (implemented by an array of dual-port RAM cells), a read pointer, a write pointer, control signals ($\overline{\mathbf{W}}, \overline{\mathbf{R}}, \overline{\mathbf{X I}}, \mathbf{X O}$, FL, RT, MR), and Full, Half Full, and Empty flags.

Dual-Port RAM

The dual-port RAM architecture refers to the basic memory cell used in the RAM. The cell itself enables the read and write operations to be independent of each other, which isnecessary to achieve truly asynchronous operation of the inputs and outputs. A second benefit is that the time required to increment the read and write pointers is much less than the time that would be required for data propagation through the memory, which would be the case if the memory were implemented using the conventional register array architecture.

Resetting the FIFO

Upon power-up, the FIFO mustbe reset with a Master Reset (MR) cycle. This causes the FIFO to enter the empty condition signified by the Empty flag ($\overline{\mathrm{EF}}$) being LOW, and both the Half Full ($\overline{\mathrm{HF}}$) and Full flags (FF) being HIGH. Read (\bar{R}) and write ($\overline{\mathbf{W}}$) must be HIGH $\mathrm{t}_{\mathrm{RPW}} / \mathrm{t}_{\mathrm{WPW}}$ before and $\mathrm{t}_{\text {RMR }}$ after the rising edge of $\overline{M R}$ for a valid reset cycle. If reading from the FIFO after a reset cycle is attempted, the outputs will all be in the high-impedance state.

Writing Data to the FIFO

The availability of at least one empty location is indicated by a HIGH FF. The falling edge of \bar{W} initiates a write cycle. Data appearing at the inputs $\left(\mathrm{D}_{0}-\mathrm{D}_{8}\right) \mathrm{t}_{\mathrm{SD}}$ before and t_{HD} after the rising edge of \bar{W} will be stored sequentially in the FIFO.
The EF LOW-to-HIGH transition occurs tWEF after the first LOW-to-HIGH transition of \bar{W} for an emptyFIFO. $\overline{\mathrm{HF}}$ goes LOW $\mathrm{t}_{\text {WHF }}$ after the falling edge of $\overline{\mathrm{W}}$ following the FIFO actually being Halffull. Therefore, the HF is active once the FIFO is filled to half its capacity plus one word. HF will remain LOW while less than one half of total memory is available for writing. The LOW-to-HIGH transition of $\overline{\mathrm{HF}}$ occurs $\mathrm{t}_{\text {RHF }}$ after the rising edge of $\overline{\mathrm{R}}$ when the FIFO goes from half full +1 to half full. $\overline{\mathrm{HF}}$ is available in standalone and width expansion modes. $\overline{\text { FF }}$ goes LOW tWFF after the falling edge of $\overline{\mathrm{W}}$, during the cycle in which the last available location is filled. Internal logic prevents overrunning a full FIFO. Writes to a full FIFO are ignored and the write pointer is not incremented. FF goes HIGH $t_{\text {REF }}$ after a read from a full FIFO.

Reading Data from the FIFO

The falling edge of $\overline{\mathrm{R}}$ initiates a read cycle if the $\overline{\mathrm{EF}}$ is not LOW. Data outputs ($\mathrm{Q}_{0}-\mathrm{Q}_{8}$) are in a high-impedance condition between read operations ($\overline{\mathrm{R}}$ HIGH) when the FIFO is empty, or when the FIFO is not the active device in the depth expansion mode.

When one word is in the FIFO, the falling edge of $\overline{\mathrm{R}}$ initiates a HIGH-to-LOW transition of EF. When the FIFO is empty, the outputs are in a high-impedance state. Reads to an empty FIFO are ignored and do not increment the read pointer. From the empty condition, the FIFO can be read $\mathrm{t}_{\text {WEF }}$ after a valid write.

Retransmit

The retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be acknowledged by the receiver and retransmitted if necessary.
The Retransmit ($(\overline{\mathbf{R T}})$ input is active in the standalone and width expansion modes. The retransmit feature is intended for use when a number of writes equal to or less than the depth of the FIFO have occurred since the last $\overline{\mathrm{MR}}$ cycle. A LOW pulse on $\overline{\mathrm{RT}}$ resets the internal read pointer to the first physical location of the FIFO. \bar{R} and \bar{W} must both be HIGH while and $t_{R T R}$ after retransmit is LOW. With every read cycle after retransmit, previously accessed data is read and the read pointer is incremented until it is equal to the write pointer. Full, Half Full, and Empty flags are governed by the relative locations of the read and write pointers and are updated during a retransmit cycle. Data written to the FIFO after activation of RT are transmitted also.
The full depth of the FIFO can be repeatedly transmitted.
Standalone/Width Expansion Modes
Standalone and width expansion modes are set by grounding Expansion In (XI) and tying First Load (FL) to V_{CC}. FIFOs can be expanded in width to provide word widths greater than nine in increments of nine. During width expansion mode, all controlline inputs are common to all devices, and flag outputs from any device can be monitored.

Depth Expansion Mode (see Figure 1)

Depth expansionmode isenteredwhen, during a $\overline{M R}$ cycle, Expansion Out (XO) of one device is connected to Expansion In (XI) of the next device, with XO of the last device connected to XI of the first device. In the depth expansion mode the First Load (FL) input, when grounded, indicates that this partis the first to be loaded. All other devices must have this pin HIGH. To enable the correct FIFO, XO is pulsed LOW when the last physical location of the previous FIFO is written to and pulsed LOW again when the last physical location is read. Only one FIFO is enabled for read and one for write at any given time. All other devices are in standby.
FIFOs can also be expanded simultaneously in depth and width. Consequently, any depth or width FIFO can be created of word widths in increments of 9 . When expanding in depth, a composite $\overline{\mathrm{FF}}$ must be created by ORing the FFs together. Likewise, a composite $\overline{E F}$ is created by ORing the EFs together. $\overline{\mathrm{HF}}$ and $\overline{\mathrm{RT}}$ functions are not available in depth expansion mode.

SEMICONDUCTOR

Figure 1. Depth Expansion
Ordering Information

Speed (ns)	Ordering Code	Package Type	Operating Range
10	CY7C421A-10JC	J65	Commercial
	CY7C421A-10PC	P21	
15	CY7C421A-15JC	J65	Commercial
	CY7C421A-15PC	P21	
Speed (ns)	Ordering Code	Package Type	Operating Range
	CY7C425A-10JC	J65	Commercial
	CY7C425A-10PC	P21	
15	CY7C425A-15JC	J65	Commercial
	CY7C425A-15PC	P21	

Document \#: 38-00248

Features

- $2,048 \times 9$ and $4,096 \times 9$ FIFO buffer memory
- Dual-port RAM cell
- Asynchronous read/write
- High-speed 66.6-MHz read/write independent of depth/width
- 10-ns access time
- Half Full flag in standalone
- Empty and Full flags
- Retransmit in standalone mode
- Expandable in width and depth
- Parallel cascade minimizes bubble-through
- $5 \mathrm{~V} \pm 10 \%$ supply
- 300-mil 28-pin DIP and 32-pin PLCC packaging
- TTL compatible
- Three-state outputs
- Pin compatible and functional equivalent to IDT7203 and IDT7204

Functional Description

The CY7C429A and CY7C433A are first-infirst-out(FIFO) memories. Theyare, respectively, 2,048 and 4,096 words by 9 -bits wide. Each FIFO memory is organized such that the data is read in the same sequential order that it was written. Full and Empty flags are provided to prevent overrun and underrun. Three additional pins are also provided to facilitate unlimited expansion in width, depth, or both. The depth expansion technique steers the control signals from one device to another in parallel, thus eliminating the serial addition of propagation delays, so that throughput is not reduced. Data is steered in a similar manner.

The read and write operations may be asynchronous; each can occur at a rate of 66.6 MHz. The write operation occurs when the write $(\overline{\mathrm{W}})$ signal is LOW. Read occurs when read $(\overline{\mathrm{R}})$ goes LOW. The nine data outputs go to the high-impedance state when $\overline{\mathrm{R}}$ is HIGH.

A Half Full $(\overline{\mathrm{HF}})$ output flag is provided that is valid in the standalone and width expansion configurations. In the depth expansion configuration, this pin provides the expansion out $(\overline{\mathrm{XO}})$ information that is used to tell the next FIFO that it will be activated.

In the standalone and width expansion configurations, a LOW on the retransmit ($\overline{\mathrm{RT}}$) input causes the FIFOs to retransmit the data. Read enable ($\overline{\mathrm{R}}$) and write enable ($\overline{\mathrm{W}}$) must both be HIGH during retransmit, and then $\overline{\mathrm{R}}$ is used to access the data.

Selection Guide

	7C429A-10 $\mathbf{7 C 4 3 3 A}-10$	7C429A-15 7C433A-15	
Frequency (MHz)	66	40	
Maximum Access Time (ns)	10	15	
Maximum Operating Current (mA)	Commercial	180	120

Maximum Rating

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad
Supply Voltage to Ground Potential
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
. -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V

Power Dissipation 1.0W

Output Current, into Outputs (LOW) 20 mA
Static Discharge Voltage . >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature ${ }^{[1]}$	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C429A-10 } \\ & \text { 7C433A-10 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 429 \mathrm{~A}-15 \\ & \text { 7C433A-15 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0$		2.4		$2 . .4$		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~m}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage		Com'l	2.0	V_{CC}	2.0	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}$	Max.	-1	+1	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}^{\prime}$	$\mathrm{V}_{\mathrm{CC}}=$ Max.	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l		180		120	mA
$\mathrm{I}_{\text {SB1 }}$	Standby Current	All Inputs $=\mathrm{V}_{\text {IH }}$ Min.	Com'l		15		15	mA
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	All Inputs $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	Com'l		5		5	mA
I_{OS}	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-50		-50	mA

Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	5	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	7	pF

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

$$
2=
$$

ms

Switching Characteristics Over the Operating Range ${ }^{[5,6]}$

Parameter	Description	$\begin{aligned} & 7 \mathrm{C} 429 \mathrm{~A}-10 \\ & 7 \mathrm{C} 433 \mathrm{~A}-10 \end{aligned}$		$\begin{array}{r} 7 \mathrm{C} 429 \mathrm{~A}-15 \\ \text { 7C433A-15 } \\ \hline \end{array}$		Unit
		Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	15		25		ns
t_{A}	Access Time		10		15	ns
t_{RR}	Read Recovery Time	5		10		ns
t_{PR}	Read Pulse Width	10		15		ns
$\mathrm{t}_{\mathrm{DVR}}{ }^{[7]}$	Data Valid After Read HIGH	5		5		ns
$\mathrm{t}_{\mathrm{HZR}}{ }^{[7]}$	Read HIGH to High Z		15		15	ns
t_{WC}	Write Cycle Time	15		25		ns
$\mathrm{t}_{\text {PW }}$	Write Pulse Width	10		15		ns
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	5		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up Time	8		10		ns
t_{HD}	Data Hold Time	0		0		ns
$\mathrm{t}_{\text {MRSC }}$	$\overline{\mathrm{MR}}$ Cycle Time	15		25		ns
tPMR	$\overline{\text { MR Pulse Width }}$	10		15		ns
$\mathrm{t}_{\text {RMR }}$	$\overline{\text { MR Recovery Time }}$	5		10		ns
$\mathrm{t}_{\text {RTC }}$	Retransmit Cycle Time	15		25		ns
tert	Retransmit Pulse Width	10		15		ns
$\mathrm{t}_{\text {RTR }}$	Retransmit Recovery Time	5		10		ns
$\mathrm{t}_{\text {EFL }}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{EF}}$ LOW		10		15	ns
${ }^{\text {thFH }}$	$\overline{\text { MR }}$ to $\overline{\text { HF }} \mathrm{HIGH}$		10		15	ns
$\mathrm{t}_{\text {FFH }}$	$\overline{\text { MR }}$ to $\overline{\mathrm{FF}} \mathrm{HIGH}$		10		15	ns
$t_{\text {REF }}$	Read LOW to EFF LOW		10		15	ns
$\mathrm{t}_{\text {RFF }}$	Read HIGH to $\overline{\text { FF }}$ HIGH		10		15	ns
tweF	Write HIGH to EF EIGH		10		15	ns
twFF	Write LOW to $\overline{\mathrm{FF}}$ LOW		10		15	ns
$\mathrm{t}_{\text {WHF }}$	Write LOW to $\overline{\text { HF }}$ LOW		10		15	ns
$\mathrm{t}_{\text {RHF }}$	Read HIGH to $\overline{\text { HF HIGH }}$		10		15	ns
$\mathrm{t}_{\mathrm{XOL}}$	Expansion Out LOW Delay from Clock		12		15	ns
${ }^{\text {t }} \mathrm{COH}$	Expansion Out HIGH Delay from Clock		12		15	ns
$\mathrm{t}_{\text {LZR }}$	Read LOW to Low Z	1		1		ns
$\mathrm{t}_{\text {HWZ }}$	Write HIGH to Low Z	5		5		ns
$\mathrm{t}_{\text {RPW }}$	Read HIGH to MR HIGH	10		15		ns
tWPW	Write HIGH to MR HIGH	10		15		ns
$\mathrm{t}_{\text {RAE }}$	Effective Read from Write HIGH		10		15	ns
$\mathrm{t}_{\text {RPE }}$	Effective Read Pulse Width After $\overline{\overline{F F}}$ HIGH	10		15		ns
$\mathrm{t}_{\text {WAF }}$	Effective Write from Read HIGH		10		15	ns
tWPF	Effective Read Pulse Width After FFF HIGH	10		15		ns

Switching Waveforms

Asynchronous Read and Write

Master Reset

Half-Full Flag

429A-8

Notes:

5. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance, as in AC Test Load and Waveforms, unless otherwise specified.
6. See the last page of this specification for Group A subgroup testing information.
7. $t_{H Z R}$ transition is measured at +500 mV from V_{OL} and -500 mV from $\mathrm{V}_{\mathrm{OH}} \cdot \mathrm{t}_{\mathrm{DVR}}$ transition is measured at the 1.5 V level. $\mathrm{t}_{\mathrm{HWZ}}$ and $\mathrm{t}_{\mathrm{LZR}}$ transition is measured at $\pm 100 \mathrm{mV}$ from the steady state.
8. $\overline{\mathrm{W}}$ and $\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}$ around the rising edge of $\overline{\mathrm{MR}}$.
9. $\mathrm{t}_{\mathrm{MRSC}}=\mathrm{t}_{\mathrm{PMR}}+\mathrm{t}_{\mathrm{RMR}}$.

Switching Waveforms (continued)

Last Write to First Read Full Flag

Last Read to First Write Empty Flag

Retransmit ${ }^{[10]}$

[^55]Notes:
No. $\overline{\mathrm{EF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}}$ may change state during retransmit as a result of the off- \quad 11. $\mathrm{t}_{\mathrm{RTC}}=\mathrm{t}_{\mathrm{PRT}}+\mathrm{t}_{\mathrm{RTR}}$.
set of the read and write pointers, but flags will be valid at t_{RTC}.

Switching Waveforms (continued)

Empty Flag and Empty Boundary Timing Diagram

Full Flag and Full Boundary Timing Diagram

SEMICONDUCTOR

Switching Waveforms (continued)

Expansion Timing Diagrams

Note:
12 Expansion Out of device $1\left(\overline{\mathrm{XO}}_{1}\right)$ is connected to Expansion In of device $2\left(\mathrm{XI}_{2}\right)$.

CY7C429A

When one word is in the FIFO, the falling edge of $\overline{\mathrm{R}}$ initiates a HIGH-to-LOW transition of EF. When the FIFO is empty, the outputs are in a high-impedance state. Reads to an empty FIFO are ignored and do not increment the read pointer. From the empty condition, the FIFO can be read $\mathrm{t}_{\text {WEF }}$ after a valid write.

Retransmit

The retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be acknowledged by the receiver and retransmitted if necessary.
The Retransmit ($\overline{\mathrm{RT}}$) input is active in the standalone and width expansion modes. The retransmit feature is intended for use when a number of writes equal to or less than the depth of the FIFO have occurred since the last $\overline{\mathrm{MR}}$ cycle. A LOW pulse on $\overline{\mathrm{RT}}$ resets the internal read pointer to the first physical location of the FIFO. $\overline{\mathrm{R}}$ and \bar{W} must both be HIGH while and $t_{\text {RTR }}$ after retransmit is LOW. With every read cycle after retransmit, previously accessed data is read and the read pointer is incremented until it is equal to the write pointer. Full, Half Full, and Empty flags are governed by the relative locations of the read and write pointers and are updated during a retransmit cycle. Data written to the FIFO after activation of $\overline{R T}$ are transmitted also.

The full depth of the FIFO can be repeatedly transmitted.

Standalone/Width Expansion Modes

Standalone and width expansion modes are set by grounding Expansion In ($\overline{\mathrm{XI}}$) and tying First Load ($\overline{\mathrm{FL}}$) to V_{CC}. FIFOs can be expanded in width to provide word widths greater than nine in increments of nine. During width expansion mode, all control line inputs are common to all devices, and flag outputs from any device can be monitored.

Depth Expansion Mode (see Figure 1)

Depth expansion mode is entered when, during a $\overline{\mathrm{MR}}$ cycle, Expansion Out ($\overline{\mathrm{XO}}$) of one device is connected to Expansion In (XI) of the next device, with $\overline{\mathrm{XO}}$ of the last device connected to $\overline{\mathrm{XI}}$ of the first device. In the depth expansion mode the First Load ($\overline{\mathrm{FL}}$) input, when grounded, indicates that this part is the first to be loaded. All other devices must have this pin HIGH. To enable the correct FIFO, $\overline{\mathrm{XO}}$ is pulsed LOW when the last physical location of the previous FIFO is written to and pulsed LOW again when the last physical location is read. Only one FIFO is enabled for read and one for write at any given time. All other devices are in standby.
FIFOs can also be expanded simultaneously in depth and width. Consequently, any depth or width FIFO can be created of word widths in increments of 9 . When expanding in depth, a composite $\overline{\mathrm{FF}}$ must be created by ORing the FFs together. Likewise, a composite $\overline{\mathrm{EF}}$ is created by ORing the $\overline{\mathrm{EF}}$ together. $\overline{\mathrm{HF}}$ and $\overline{\mathrm{RT}}$ functions are not available in depth expansion mode.

Figure 1. Depth Expansion

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
10	CY7C429A-10JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C429A-10PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C433A-10JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C433A-10PC	P21	28-Lead (300-Mil) Molded DIP	
15	CY7C429A-15JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C429A-15PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C433A-15JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C433A-15PC	P21	28-Lead (300-Mil) Molded DIP	

Document \#: 38-00249

Features

- 4096×9 FIFO buffer memory
- Dual-port RAM cell
- Asynchronous read/write
- High-speed 28.5-MHz read/write independent of depth/width
- 25-ns access time
- Low operating power
$-I_{C C}($ max. $)=142 \mathrm{~mA}$ commercial
$-I_{\text {CC }}($ max. $)=155 \mathrm{~mA}$ military
- Half Full flag in standalone
- Empty and Full flags
- Expandable in width and depth
- Retransmit in standalone
- Parallel cascade minimizes bubble-through
- $5 \mathrm{~V} \pm \mathbf{1 0 \%}$ supply
- 300-mil DIP packaging
- 300-mil SOJ packaging
- TTL compatible
- Three-state outputs
- Pin compatible and functionally equivalent to IDT7204

Functional Description

The CY7C432 and CY7C433 are first-in first-out (FIFO) memories offered in 600 -mil-wide and 300 -mil-wide packages, respectively. They are 4096 words by 9 bits wide. Each FIFO memory is organized so that the data is read in the same sequential order that it was written. Full and Empty flags are provided to prevent overrun and underrun. Three additional pins are also provided to facilitate unlimited expansion in width, depth, or both. The depth expansion technique steers the control signals from one device to another in parallel, thus eliminating the serial addition of propagation delays so that throughput is not reduced. Data is steered in a similar manner. The read and write operations may be asynchronous; each can occur at a rate of 28.5 MHz . The write operation occurs when the write $(\overline{\mathrm{W}})$ signal is LOW. Read occurs when read $(\overline{\mathrm{R}})$ goes LOW. The 9 data outputs go to the high-impedance state when $\overline{\mathrm{R}}$ is HIGH.

Cascadable 4K x 9 FIFO

A Half Full ($\overline{\mathrm{HF}}$) output flag is provided that is valid in the standalone and width expansion configurations. In the depth expansion configuration, this pin provides the expansion out $(\overline{\mathrm{XO}})$ information that is used to tell the next FIFO that it will be activated.
In the standalone and width expansion configurations, a LOW on the retransmit ($\overline{\mathrm{RT}}$) input causes the FIFOs to retransmit the data. Read enable $(\overline{\mathrm{R}})$ and write enable ($\overline{\mathrm{W}}$) must both be HIGH during a retransmit cycle, and then $\overline{\mathrm{R}}$ is used to access the data.
The CY7C432 and CY7C433 are fabricated using advanced 0.8 -micron N -well CMOS technology. Input ESD protection is greater than 2000 V and latch-up is prevented by careful layout, guard rings, and a substrate bias generator.

Selection Guide

		$\begin{aligned} & \text { 7C432-25 } \\ & 7 \mathrm{C} 433-25 \end{aligned}$	$\begin{aligned} & 7 \mathbf{C 4 3 2 - 3 0} \\ & \text { 7C433-30 } \end{aligned}$	$\begin{aligned} & \hline \text { 7C432-40 } \\ & 7 \mathrm{C} 433-40 \end{aligned}$	$\begin{aligned} & \hline 7 \mathrm{C} 432-65 \\ & 7 \mathrm{C} 433-65 \end{aligned}$
Frequency (MHz)		28.5	25	20	12.5
Access Time (ns)		25	30	40	65
Maximum Operating Current (mA)	Commercial	142	135	125	110
	Military/Industrial		155	145	130

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad
Ambient Temperature with
Power Applied \qquad

DC Voltage Applied to Outputs
in High Z State \qquad -0.5 V to +7.0 V
DC Input Voltage

$$
-3.0 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Power Dissipation

$$
0.88 \mathrm{~W}
$$

Output Current, into Outputs (LOW) 20 mA

Static Discharge Voltage >2001V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		$\begin{aligned} & 7 \mathrm{C432-25} \\ & 7 \mathrm{C} 433-25 \end{aligned}$		$\begin{aligned} & 7 \mathbf{C 4 3 2 - 3 0} \\ & \text { 7C433-30 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		$2 . .4$		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		Com'l	2.0	V_{CC}	2.0	V_{CC}	V
			Mil/Ind			2.2	V_{CC}	
V_{IL}	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'1 ${ }^{[3]}$		140		135	mA
			Mil/Ind ${ }^{[4]}$				155	
$\mathrm{I}_{\text {SB1 }}$	Standby Current	All Inputs $=\mathrm{V}_{\mathrm{IH}}$ Min.	Com'l		25		25	mA
			Mil/Ind				30	
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	All Inputs $\geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	Com'l		20		20	mA
			Mil/Ind				25	
$\mathrm{I}_{\text {OS }}$	Output Short Circuit Current ${ }^{[5]}$	$\mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$			-90		-90	mA

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\mathrm{I}_{\mathrm{CC}}($ commercial $)=110 \mathrm{~mA}+[(\overline{\mathrm{f}}-12.5) \cdot 2 \mathrm{~mA} / \mathrm{MHz}]$ for $\overline{\mathrm{f}} \geq 12.5 \mathrm{MHz}$
where $\bar{f}=$ the larger of the write or read operating frequency.
4. $\mathrm{I}_{\mathrm{CC}}($ military $)=130 \mathrm{~mA}+[(\overline{\mathrm{f}}-12.5) \cdot 2 \mathrm{~mA} / \mathrm{MHz}]$ for $\mathrm{f} \geq 12.5 \mathrm{MHz}$
where $\bar{f}=$ the larger of the write or read operating frequency.
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.

Electrical Characteristics Over the Operating Range ${ }^{[2]}$ (continued)

Parameter	Description	Test Conditions		$\begin{aligned} & \hline 77 \mathrm{C} 432-40 \\ & \text { 77C433-40 } \end{aligned}$		$\begin{aligned} & \hline 77 \mathrm{C} 432-65 \\ & 77 \mathrm{C} 433-65 \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$		2.4		$2 . .4$		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage		Com'l	2.0	V_{CC}	2.0	V_{CC}	V
			Mil/Ind	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} . \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com' ${ }^{[3]}$		125		110	mA
			Mil/Ind ${ }^{[4]}$		145		130	
$\mathrm{I}_{\text {SB1 }}$	Standby Current	$\text { All Inputs }=\mathrm{V}_{\mathrm{IH}} \text { Min. }$	Com'l		25		25	mA
			Mil/Ind		30		30	
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	$\text { All Inputs } \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	Com'l		20		20	mA
			Mil/Ind		25		25	
$\mathrm{I} \mathrm{OS}^{\prime}$	Output Short Circuit Current ${ }^{5]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$			-90		-90	mA

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	10	pF
			10	

Note:
6. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[7,8]}$

Parameter	Description	$\begin{aligned} & \text { 7C432-25 } \\ & \text { 7C433-25 } \end{aligned}$		$\begin{aligned} & \text { 7C432-30 } \\ & \text { 7C433-30 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 432-40 \\ & 7 \mathrm{C} 433-40 \end{aligned}$		$\begin{aligned} & \hline \text { 7C432-65 } \\ & 7 \mathrm{C} 433-65 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	35		40		50		80		ns
t_{A}	Access Time		25		30		40		65	ns
t_{RR}	Read Recovery Time	10		10		10		15		ns
$t_{\text {PR }}$	Read Pulse Width	25		30		40		65		ns
$\mathrm{t}_{\mathrm{LZR}}{ }^{[9]}$	Read LOW to Low Z	3		3		3		3		ns
$\mathrm{t}_{\mathrm{DVR}}{ }^{[9,10]}$	Read HIGH to Data Valid	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZR}}{ }^{[9,10]}$	Read HIGH to High Z		18		20		25		30	ns
${ }^{\text {W }}$ W	Write Cycle Time	35		40		50		80		ns
tPW	Write Pulse Width	25		30		40		65		ns
$\mathrm{t}_{\mathrm{HWZ}}{ }^{[9]}$	Write HIGH to Low Z	10		10		10		10		ns
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	10		10		10		15		ns
${ }^{\text {tSD }}$	Data Set-Up Time	15		18		20		30		ns
t_{HD}	Data Hold Time	0		0		0		10		ns

Notes:
7. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance, as in part (a) of AC Test Loads, unless otherwise specified.
8. See the last page of this specification for Group A subgroup testing information.
9. $\mathrm{t}_{\mathrm{HZR}}$ transition is measured at +500 mV from $\mathrm{VOL}_{\mathrm{OL}}$ and -500 mV from $\mathrm{V}_{\mathrm{OH}} \cdot \mathrm{t}_{\text {DVR }}$ transition is measured at the 1.5 V level. $\mathrm{t}_{\mathrm{HWZ}}$ and $\mathrm{t}_{\mathrm{LZR}}$ transition is measured at $\pm 100 \mathrm{mV}$ from the steady state.
10. $\mathrm{t}_{\mathrm{HZR}}$ and $\mathrm{t}_{\text {DVR }}$ use capacitance loading as in part (a) of AC Test Loads.

Switching Waveforms

Asynchronous Read and Write

Master Reset

Half-Full Flag

[^56]
Switching Waveforms (continued)

Last Write to First Read Full Flag

C432-10
Last Read to First Write Empty Flag

Retransmit ${ }^{[13]}$

Notes:

13. $\overline{\mathrm{EF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}}$ may change state during retransmit as a result of the off-
set of the read and write pointers, but flags will be valid at trTC.
14. $\mathrm{t}_{\mathrm{RTC}}=\mathrm{t}_{\mathrm{PRT}}+\mathrm{t}_{\mathrm{RTR}}$.

Switching Waveforms (continued)

Empty Flag and Read Data Flow-Through Mode

Full Flag and Write Data Flow-Through Mode

C432-14

Switching Waveforms (continued)
Expansion

C432-16

[^57]
Architecture

The CY77C432/33 FIFOs consist of an array of 4096 words of 9 bits each (implemented by an array of dual-port RAM cells), a read pointer, a write pointer, control signals ($\overline{\mathrm{W}}, \overline{\mathrm{R}}, \overline{\mathrm{XI}}, \overline{\mathrm{XO}}, \overline{\mathrm{FL}}, \overline{\mathrm{RT}}$, $\overline{\mathrm{MR}}$), and Full, Half Full, and Empty flags.

Dual-Port RAM

The dual-port RAM architecture refers to the basic memory cell used in the RAM. The cell itself enables the read and write operations to be independent of each other, which is necessary to achieve truly asynchronous operations of the inputs and outputs. A second benefit is that the time required to increment the read and write pointers is much less than the time that would be required for data to propagate through the memory, which would be the case if the memory were implemented using the conventional register array architecture.

Resetting the FIFO

Upon power-up, the FIFO must be reset with a master reset ($\overline{\mathrm{MR}}$) cycle. This causes the FIFO to enter the empty condition signified by the empty flag ($\overline{\mathrm{EF}}$) being LOW, and both the Half Full ($\overline{\mathrm{HF}}$) and Full flag ($\overline{\mathrm{FF}}$) resetting to HIGH. Read ($\overline{\mathrm{R}}$) and write ($(\overline{\mathrm{W}})$ must be HIGH $t_{\text {RPW }} / \mathrm{t}_{\text {WPW }}$ nanoseconds before and $\mathrm{t}_{\mathrm{RMR}}$ nanoseconds after the rising edge of $\overline{\mathrm{MR}}$ for a valid reset cycle.

Writing Data to the FIFO

The availability of an empty location is indicated by the HIGH state of the Full flag ($\overline{\mathrm{FF}}$). A falling edge of write ($\overline{\mathrm{W}}$) initiates a write cycle. Data appearing at the inputs $\left(\mathrm{D}_{0}-\mathrm{D}_{8}\right)$ tsD before and t_{HD} after the rising edge of $\overline{\mathrm{W}}$ will be stored sequentially in the FIFO.
The Empty flag ($\overline{\mathrm{EF}}$) LOW-to-HIGH transition occurs tweF nanoseconds after the first LOW-to-HIGH transition on the write clock of an empty FIFO. The Half Full flag ($\overline{\mathrm{HF}}$) will go LOW on the falling edge of the write clock following the occurrence of half full. $\overline{\mathrm{HF}}$ will remain LOW while less than one half of the total memory of this device is available for writing. The LOW-to-HIGH transition of the $\overline{\mathrm{HF}}$ flag occurs on the rising edge of read $(\overline{\mathrm{R}}) \cdot \overline{\mathrm{HF}}$ is available in single device mode only. The Full flag ($\overline{\mathrm{FF}}$) goes LOW on the falling edge of $\overline{\mathrm{W}}$ during the cycle in which the last available location in the FIFO is written, prohibiting overflow. $\overline{\mathrm{FF}}$ goes HIGH $\mathrm{t}_{\mathrm{RFF}}$ after the completion of a valid read of a full FIFO.

Reading Data from the FIFO

The falling edge of read $(\overline{\mathrm{R}})$ initiates a read cycle if the Empty flag ($\overline{\mathrm{EF}}$) is not LOW. Data outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{8}\right)$ are in a high-impedance condition between read operations ($\overline{\mathrm{R}}$ HIGH), when the FIFO is empty, or when the FIFO is in the depth expansion mode but is not the active device.

The falling edge of $\overline{\mathrm{R}}$ during the last read cycle before the empty condition triggers a HIGH-to-LOW transition of EF, prohibiting any further read operations until tWEF after a valid write.

Retransmit

The retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be interrogated by the receiver and retransmitted if necessary.
The retransmit ($\overline{\mathrm{RT}}$) input is active in the single device mode only. The retransmit feature is intended for use when 4096 or less writes have occurred since the previous MR cycle. A LOW pulse on RT resets the internal read pointer to the first physical location of the FIFO. The write pointer is unaffected. $\overline{\mathrm{R}}$ and $\overline{\mathrm{W}}$ must both be HIGH during a retransmit cycle. Full, Half Full, and Empty flags are governed by the relative locations of the read and write pointers and will be updated by a retransmit operation.
After a retransmit cycle, previously read data may be reaccessed using $\overline{\mathrm{R}}$ to initiate standard read cycles beginning with the first physical location.

Single Device/Width Expansion Modes

Single device and width expansion modes are entered by connecting XI to ground prior to an $\overline{\mathrm{MR}}$ cycle. During these modes the $\overline{\mathrm{HF}}$ and $\overline{\text { RT }}$ features are available. FIFOs can be expanded in width to provide word widths greater than 9 in increments of 9 . During width expansion mode all control line inputs are common to all devices and flag outputs from any device can be monitored.

Depth Expansion Mode (see Figure 1)

Depth expansion mode is entered when, during a $\overline{\mathrm{MR}}$ cycle, expansion Out ($\overline{\mathrm{XO}}$) of one device is connected to expansion in (XI) of the next device, with $\overline{\mathrm{XO}}$ of the last device connected to $\overline{\mathrm{XI}}$ of the first device. In the depth expansion mode the first load ($\overline{\mathrm{FL}})$ input, when grounded, indicates that this part is the first part to be loaded. All other devices must have this pin HIGH. To enable the correct FIFO, XO is pulsed LOW when the last physical location of the previous FIFO is written to and is pulsed LOW again when the last physical location is read. Only one FIFO is enabled for read and one is enabled for write at any given time. All other devices are in standby.
FIFOs can also be expanded simultaneously in depth and width. Consequently, any depth or width FIFO can be created of word widths in increments of 9 . When expanding in depth, a composite $\overline{\mathrm{FF}}$ must be created by ORing the FFs together. Likewise, a composite $\overline{\mathrm{EF}}$ is created by ORing the $\overline{\mathrm{EF}}$ s together. $\overline{\mathrm{HF}}$ and $\overline{\mathrm{RT}}$ functions are not available in depth expansion mode.

Figure 1. Depth Expansion

Typical DC and AC Characteristics

SUPPLY VOLTAGE (V)

AMBIENT TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

OUTPUT SOURCE CURRENT vs. OUTPUT VOLTAGE

OUTPUT SINK CURRENT
vs. OUTPUT VOLTAGE

OUTPUT VOLTAGE (V)

TYPICAL ACCESS TIME CHANGE vs. OUTPUT LOADING

NORMALIZED I CC vs. CYCLE TIME

Ordering Information

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	Package Name	Package Type	$\begin{aligned} & \hline \text { Operating } \\ & \text { Range } \end{aligned}$
25	CY7C432-25DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C432-25PC	P15	28-Lead (600-Mil) Molded DIP	
30	CY7C432-30DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C432-30PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C432-30PI	P15	28-Lead (600-Mil) Molded DIP	Industrial
	CY7C432-30DMB	D16	28-Lead (600-Mil) CerDIP	Military
40	CY7C432-40DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C432-40PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C432-40PI	P15	28-Lead (600-Mil) Molded DIP	Industrial
	CY7C432-40DMB	D16	28-Lead (600-Mil) CerDIP	Military
65	CY7C432-65DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C432-65PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C432-65PI	P15	28-Lead (600-Mil) Molded DIP	Industrial
	CY7C432-65DMB	D16		Military

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CY7C433-25DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C433-25JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C433-25PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C433-25VC	V21	28 -Lead (300-Mil) Molded SOJ	
30	CY7C433-30DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C433-30JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C433-30PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C433-30VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C433-30JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C433-30PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C433-30DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C433-30KMB	K74	28-Lead Rectangular Cerpack	
	CY7C433-30LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
40	CY7C433-40DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C433-40JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C433-40PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C433-40VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C433-40JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C433-40PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C433-40DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C433-40KMB	K74	28-Lead Rectangular Cerpack	
	CY7C433-40LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
65	CY7C433-65DC	D22	28-Lead (300-Mil) CerDIP	Commercial
	CY7C433-65JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C433-65PC	P21	28-Lead (300-Mil) Molded DIP	
	CY7C433-65VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C433-65JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C433-65PI	P21	28-Lead (300-Mil) Molded DIP	
	CY7C433-65DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C433-65KMB	K74	28-Lead Rectangular Cerpack	
	CY7C433-65LMB	L55	32-Pin Rectangular Leadless Chip Carrier	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
I_{OS}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{RC}	$9,10,11$
t_{A}	$9,10,11$
t_{RR}	$9,10,11$
t_{PR}	$9,10,11$
$\mathrm{t}_{\mathrm{LZR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{DVR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HZR}}$	$9,10,11$
t_{WC}	$9,10,11$
t_{PW}	$9,10,11$
$\mathrm{t}_{\mathrm{HWZ}}$	$9,10,11$
t_{WR}	$9,10,11$
t_{SD}	$9,10,11$
t_{HD}	$9,10,11$

Features

- 2048×9 FIFO buffer memory
- Bidirectional operation
- High-speed 28.5-MHz asynchronous reads and writes
- Simple control interface
- Registered and transparent bypass modes
- Flags indicate Empty, Full, and Half Full conditions
- $\mathbf{5 V} \pm \mathbf{1 0 \%}$ supply
- Available in 300-mil DIP, PLCC, LCC, and SOJ packages
- TTL compatible

Functional Description

The CY7C439 is a 2048×9 FIFO memory capable of bidirectional operation. As the term first-in first-out (FIFO) implies, data becomes available to the output port in the same order that it was presented to the input port. There are two pins that indicate the amount of data contained within the FIFO block- $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ (Empty/Full) and $\overline{\mathrm{HF}}$ (Half Full). These pins can be decoded to determine one of four states. Two 9 -bit data ports are provided. The direction selected for the FIFO determines the input and output ports. The FIFO direction can be programmed by the user at any time through the use of the reset pin ($\overline{\mathrm{MR}}$) and the bypass/direction pin (BYPA). There are no control or status registers on the CY7C439, making the part simple to use
while meeting the needs of the majority of bidirectional FIFO applications.
FIFO read and write operations mayoccur simultaneously, and each can occur at up to 28.5 MHz . The port designated as the write port drives its strobe pin (STBX, X = A or B) LOW to initiate the write operation. The port designated as the read port drives its strobe pin LOW to initiate the read operation. Output port pins go to a high-impedance state when the associated strobe pin is HIGH. All normal FIFO operations require the bypass control pin ($\overline{\mathrm{BYPX}}, \mathrm{X}=\mathrm{A}$ or B) to remain HIGH.
In addtion to the FIFO, two other data paths are provided; registered bypass and transparentbypass. Registeredbypasscan beconsideredas asingle-wordFIFOinthe reverse direction to the main FIFO. The

Pin Configurations

C439-2
DIP Top View

C439-3

Selection Guide

		7C439-25	7C439-30	7C439-40	7C439-65
Frequency (MHz)	28.5	25	20	12.5	
Maximum Access Time (ns)	25	30	40	65	
Maximum Operating Current (mA)	Commercial	147	140	130	115
	Military		170	160	145

Functional Description (continued)

bypass register provides a means of sending a 9 -bit status or control word to the FIFO-write port. The bypass data available pin ($\overline{\mathrm{BDA}}$) indicates whether the bypass register is full or empty. The direction of the bypass register is always opposite to that of the main FIFO. The port designated to write to the bypass register drives its bypass control pin (BYPX) LOW. The other port detects the presence of data by monitoring $\overline{\mathrm{BDA}}$ and reads the data by driving its bypass control pin ($\overline{\text { BYPX }})$ LOW. Registered bypass operations require that the associated FIFO strobe pin (STBX) remains HIGH. Registered bypass operations do not affect data residing in the FIFO, or FIFO operations at the other port.
Transparent bypass provides a means of transferring a single word (9 bits) of data immediately in either direction. This feature allows the device to act as a simple 9 -bit bidirectional buffer. This is useful

Maximum Ratings

(Above which the usefullife may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V

Power Dissipation . 1.0 W
Output Current into Outputs (LOW) 20 mA
for allowing the controlling circuitry to access a dumb peripheral for control/programming information.
For transparent bypass, the port wishing to send immediate data to the other side drives both its bypass and its strobe pins LOW simultaneously. This causes the buffered data to be driven out of the other port. On-chip circuitry detects conflicting use of the control pins and causes both data ports to enter a high-impedance state until the conflict is resolved.
Additionally, a Test mode is offered on the CY7C439. This mode allows the user to load data into the FIFO and then read it back out of the same port. Built-In Self Test (BIST) and diagnostic functions can take advantage of these features.
The CY7C439 is fabricated using an advanced $0.8 \mu \mathrm{~N}$-well CMOS technology. Input ESD protection is greater than 2000 V and latchup is prevented by reliable layout techniques, guard rings, and a substrate bias generator.

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

Pin Definitions

Signal Name	I/O	Description
$\mathrm{A}_{(8-0)}$	I / O	Data Port Associated with $\overline{\mathrm{BYPA}}$ and $\overline{\text { STBA }}$
$\mathrm{B}_{(8-0)}$	I / O	Data Port Associated with $\overline{\mathrm{BYPB}}$ and $\overline{\text { STBB }}$
$\overline{\mathrm{BYPA}}$	I	Registered Bypass Mode Select for A Side
$\overline{\mathrm{BYPB}}$	I	Registered Bypass Mode Selectr for B Side
$\overline{\mathrm{BDA}}$	O	Bypass Data Available Flag
$\overline{\text { STBA }}$	I	Data Strobe for A Side
$\overline{\text { STBB }}$	I	Data Strobe for B Side
$\overline{\mathrm{E} / \overline{\mathrm{F}}}$	O	Encoded Empty/Full Flag
$\overline{\mathrm{HF}}$	O	Half Full Flag
$\overline{\mathrm{MR}}$	I	Master Reset

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		7C439-25		7C439-30		7C439-40		7C439-65		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	$\begin{array}{\|l} \hline \text { Output HIGH } \\ \text { Voltage } \end{array}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Min., } \mathrm{I}_{\mathrm{OH}}=-2.0 \\ & \mathrm{~mA} \end{aligned}$		2.4		2.4		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		Com'l	2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
			Mil			2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	-3.0	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \text { STBX } \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}} \\ & \hline \end{aligned}$		-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l ${ }^{[3]}$		147		140		130		115	mA
			Mil ${ }^{[4]}$				170		160		145	
ISB1	Standby Current	$\begin{aligned} & \text { All Inputs }=\mathrm{V}_{\mathrm{IH}} \\ & \text { Min. } \end{aligned}$	Com'l		40		40		40		40	mA
			Mil				45		45		45	
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	$\begin{array}{\|l\|} \hline \text { All Inputs } \\ \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{array}$	Com'l		20		20		20		20	mA
			Mil				25		25		25	
IOS	$\begin{aligned} & \text { Output Short } \\ & \text { Circuit Current }{ }^{[5]} \\ & \hline \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\text {OUT }}=\mathrm{GND}$			-90		-90		-90		-90	mA

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
CoUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	10	pF

Notes:

2. See the last page of this specification for Group A subgroup testing information.
3. $\begin{aligned} \text { I } & \text { (cCommercial }) \\ \text { f } & =115 \mathrm{~mA}+[(\overline{\mathrm{f}}-12.5) \cdot 2 \mathrm{~mA} / \mathrm{MHz}] \text { for }\end{aligned}$ where $\bar{f}=$ the larger of the write or read operating frequency.
4. I_{CC} (military) $=145 \mathrm{~mA}+[(\overline{\mathrm{f}}-12.5) \cdot 2 \mathrm{~mA} / \mathrm{MHz}]$ for
where $\bar{f}=\frac{\mathrm{f}}{\mathrm{f}}=$ the larger of the write or read operating frequency.
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 30 seconds.
6. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveform

Switching Characteristics Over the Operating Range ${ }^{7,8]}$

Parameter	Description	7C439-25		7C439-30		7C439-40		7C439-65		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	35		40		50		80		ns
t_{A}	Access Time		25		30		40		65	ns
t_{RR}	Read Recovery Time	10		10		10		15		ns
$\mathrm{t}_{\text {PR }}$	Read Pulse Width	25		30		40		65		ns
$\mathrm{t}_{\mathrm{LZR}}{ }^{[9,10]}$	Read LOW to Low Z	3		3		3		3		ns
$\mathrm{t}_{\mathrm{DVR}}{ }^{[9,10]}$	Data Valid from Read HIGH	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZR}}{ }^{[9,10]}$	Read HIGH to High Z		18		20		25		30	ns
t_{WC}	Write Cycle Time	35		40		50		80		ns
$t_{\text {PW }}$	Write Pulse Width	25		30		40		65		ns
$\mathrm{t}_{\mathrm{HWZ}}{ }^{[9,10]}$	Write HIGH to Low Z	10		10		10		10		ns
t_{WR}	Write Recovery Time	10		10		10		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up Time	15		18		20		30		ns
t_{HD}	Data Hold Time	0		0		0		10		ns
$\mathrm{t}_{\text {MRSC }}$	$\overline{\mathrm{MR}}$ Cycle Time	35		40		50		80		ns
tPMR	$\overline{\text { MR Pulse Width }}$	25		30		40		65		ns
$\mathrm{t}_{\text {RMR }}$	$\overline{\mathrm{MR}}$ Recovery Time	10		10		10		15		ns
$\mathrm{t}_{\text {RPS }}$	$\overline{\text { STBX }} \mathrm{HIGH}$ to $\overline{\mathrm{MR}} \mathrm{HIGH}$	25		30		40		65		ns
trPBS	$\overline{\text { BYPA }}$ to $\overline{\mathrm{MR}} \mathrm{HIGH}$	10		10		15		20		ns
$\mathrm{t}_{\text {RPBH }}$	$\overline{\text { BYPA }}$ Hold after MR HIGH	0		0		0		0		ns
$\mathrm{t}_{\text {BDH }}$	$\overline{\text { MR }}$ LOW to $\overline{\text { BDA }}$ HIGH		35		40		50		80	ns
$\mathrm{t}_{\text {BSR }}$	STBX HIGH to BYPA LOW	10		10		10		15		ns
$\mathrm{t}_{\text {EFL }}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ LOW		35		40		50		80	ns
$\mathrm{t}_{\mathrm{HFH}}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{HF}} \mathrm{HIGH}$		35		40		50		80	ns
$\mathrm{t}_{\text {BRS }}$	BYPX HIGH to STBX LOW	10		10		10		15		ns
$\mathrm{t}_{\text {REF }}$	$\overline{\text { STBX }}$ LOW to $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ LOW (Read)		25		30		35		60	ns
$\mathrm{t}_{\text {RFF }}$	STBX HIGH to E/F/F HIGH (Read)		25		30		35		60	ns
$\mathrm{t}_{\text {WEF }}$	$\overline{\text { STBX }}$ HIGH to $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ HIGH (Write)		25		30		35		60	ns
$\mathrm{t}_{\text {WFF }}$	STBX LOW to $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ LOW (Write)		25		30		35		60	ns
$\mathrm{t}_{\text {BDA }}$	$\overline{\text { BYPX HIGH to } \overline{\text { BDA }} \text { LOW (Write) }}$		25		30		35		60	ns
$t_{\text {BDB }}$	$\overline{\text { BYPX }} \mathrm{HIGH}$ to $\overline{\text { BDA }}$ HIGH (Read)		25		30		35		60	ns
t_{BA}	BYPX LOW to Data Valid (Read)		30		30		40		60	ns
$\mathrm{t}_{\mathrm{BHZ}}{ }^{[9,10]}$	$\overline{\overline{B Y P X}} \mathrm{HIGH}$ to High Z (Read)		18		20		25		30	ns
$\mathrm{t}_{\text {TSB }}$	STBX HIGH to BYPX LOW Set-Up	10		10		10		15		ns
${ }^{\text {t }}$ TBS	STBX LOW after BYPX LOW	0	10	0	10	0	10	0	10	ns
$\mathrm{t}_{\text {TSN }}$	STBX HIGH Recovery Time	10		10		10		15		ns
$\mathrm{t}_{\text {TSD }}{ }^{[9,10]}$	STBX HIGH to Data High Z		18		20		25		30	ns
$\mathrm{t}_{\text {TBN }}$	BYPX HIGH Recovery Time	10		10		10		15		ns
$\mathrm{t}_{\text {TBD }}$	$\overline{\text { BYPX HIGH to Data High Z }}$		18		20		25		30	ns

Switching Characteristics Over the Operating Range ${ }^{[7,8]}$ (continued)

Parameter	Description	7C439-25		7C439-30		7C439-40		7C439-65		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {TPD }}{ }^{[9,10]}$	STBX LOW to Data Valid		20		20		30		55	ns
$\mathrm{t}_{\text {DL }}$	Transparent Propagation Delay		20		20		25		30	ns
$\mathrm{t}_{\text {ESD }}{ }^{[9,10]}$	STBX LOW to High Z		18		20		25		30	ns
$\mathrm{t}_{\text {EBD }}{ }^{[9,10]}$	$\overline{\text { BYPX LOW to High } \mathrm{Z}}$		18		20		25		30	ns
teds	STBX HIGH to Low Z		18		20		25		30	ns
$\mathrm{t}_{\text {EDB }}$	BYPX HIGH to Low Z		18		20		25		30	ns
$\mathrm{t}_{\text {BPW }}$	BYPX Pulse Width (Trans.)	25		30		40		65		ns
$\mathrm{t}_{\text {TSP }}$	STBX Pulse Width (Trans.)	20		20		30		55		ns
$\mathrm{t}_{\mathrm{BLZ}}{ }^{[9,10]}$	$\overline{\text { BYPX LOW to Low Z (Read) }}$	10		10		10		10		ns
$\mathrm{t}_{\text {BDV }}$	BYPX HIGH to Data Invalid (Read)	3		3		3		3		ns
twhF	$\overline{\text { STBX LOW to } \overline{\mathrm{HF}} \text { LOW (Write) }}$		35		40		50		80	ns
$\mathrm{t}_{\text {RHF }}$	STBX HIGH to MF HIGH (Read)		35		40		50		80	ns
$\mathrm{t}_{\text {RAE }}$	Effective Read from Write HIGH		25		30		35		60	ns
$\mathrm{t}_{\text {RPE }}$	Effective Read Pulse Width after $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ HIGH	25		30		40		65		ns
${ }_{\text {twaF }}$	Effective Write from Read HIGH		25		30		35		60	ns
$t_{\text {WPF }}$	Effective Write Pulse Width after $\overline{\mathrm{E}} / \overline{\mathbf{F}}$ HIGH	25		30		40		65		ns
$\mathrm{t}_{\text {BSU }}$	Bypass Data Set-Up Time	15		18		20		30		ns
$\mathrm{t}_{\text {BHL }}$	Bypass Data Hold Time	0		0		0		10		ns

Notes:
7. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance as in part (a) of AC Test Loads, unless otherwise specified.
8. See the last page of this specification for Group A subgroup testing information.
9. $\mathrm{t}_{\mathrm{DVR}}, \mathrm{t}_{\mathrm{BDV}}, \mathrm{t}_{\mathrm{HZR}}, \mathrm{t}_{\mathrm{TBD}}, \mathrm{t}_{\mathrm{BHZ}}, \mathrm{t}_{\mathrm{EBD}}, \mathrm{t}_{\mathrm{ESD}}, \mathrm{t}_{\mathrm{TSD}}, \mathrm{t}_{\mathrm{LZR}}, \mathrm{t}_{\mathrm{HWZ}}$, and $\mathrm{t}_{\mathrm{BLZ}}$ use capacitance loading as in part (b) of AC Test Loads.
10. $\mathrm{t}_{\mathrm{HZR}}, \mathrm{t}_{\mathrm{TBD}}, \mathrm{t}_{\mathrm{BHZ}}, \mathrm{t}_{\mathrm{EBD}}, \mathrm{t}_{\mathrm{ESD}}$, and $\mathrm{t}_{\text {TSD }}$ transition is measured $\mathrm{t}+500$ mV from V_{OL} and -500 mV from $\mathrm{V}_{\mathrm{OH}} \cdot \mathrm{t}_{\mathrm{DVR}}$ and $\mathrm{t}_{\mathrm{BDV}}$ transition is measured at the 1.5 V level. $\mathrm{t}_{\mathrm{LZR}}, \mathrm{t}_{\mathrm{H} W \mathrm{Z}}$, and $\mathrm{t}_{\mathrm{BLZ}}$ transition is measured at $\pm 100 \mathrm{mV}$ from the steady state.

Switching Waveforms

Asynchronous Read and Write Timing Diagram

Switching Waveforms (continued)

Half-Full Flag Timing Diagram ${ }^{[12]}$

Last Write to First Read Empty/Full Flag Timing Diagram ${ }^{[12]}$

Notes:
11. Direction selected Port A to Port B.
12. Direction selected as A to B.

Switching Waveforms (continued)

Last Read to First Write Empty/Full Flag Timing Diagram ${ }^{[12]}$

Empty/Full Flag and Read Bubble-Through Mode Timing Diagram ${ }^{[12]}$

Empty/Full Flag and Write Bubble-Through Mode Timing Diagram ${ }^{[12]}$

Switching Waveforms (continued)

Registered Bypass Read Timing Diagram ${ }^{[13]}$

Registered Bypass Write Timing Diagram ${ }^{[14]}$

Transparent Bypass Read Timing Diagram ${ }^{[15]}$

Notes:

13. Port B selected to read bypass register (FIFO direction Port B to Port A).
14. Port A selected to write bypass register (FIFO direction Port B to Port A.
15. Diagram shows transparent bypass initiated by Port A. Times are identical if initiated by Port B.

CY7C439

Switching Waveforms (continued)

C439-16
Exception Condition Timing Diagram ${ }^{[15]}$

Architecture

The CY7C439 consists of a 2048 by 9-bit dual-ported RAM array, a read pointer, a write pointer, data switching circuitry, buffers, a bypass register, controlsignals(STBA, $\overline{\mathrm{STBB}}, \overline{\mathrm{BYPA}}, \overline{\mathrm{BYPB}}, \overline{\mathrm{MR}}$), and flags ($\overline{\mathrm{E}} / \overline{\mathrm{F}}, \overline{\mathrm{HF}}, \overline{\mathrm{BDA}}$).

Operation at Power-On

Upon power-up, the FIFO must be reset with a Master Reset (MR) cycle. During an MR cycle, the user can initialize the device by choosing the direction of FIFO operation (see Table 1). There is a minimum LOW period for $\overline{M R}$, but no maximum time. The state of $\overline{\text { BYPA }}$ is latched internally by the rising edge of $\overline{\mathrm{MR}}$ and used to determine the direction of subsequent data operations.

Resetting the FIFO

During the reset condition (see Table 1), the FIFO three-states the data ports, sets $\overline{\mathrm{BDA}}$ and $\overline{\mathrm{HF}}$ HIGH, $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ LOW, and ignores the state of $\overline{B Y P A} / \bar{B}$ and STBA $/ \bar{B}$. The bypass registers are initialized to zero. During this time the user is expected to set the direction of the FIFO by driving BYPA HIGH or LOW, and BYPB, STBA, and STBB HIGH. If BYPA is LOW (selecting direction $B>A$), the FIFO will then remain in a reset condition until the user terminates the reset operstion by driving $\overline{\mathrm{BYPA}} \mathrm{HIGH}$. if $\overline{B Y P A}$ is HIGH (selecting direction $\mathrm{A}>\mathrm{B}$), the reset condition ter-
minates after the rising edge of $\overline{\mathrm{MR}}$. The entire reset phase can be accomplished in one cycle time of t_{RC}.

FIFO Operation

The operation of the FIFO requires only one control pin per port (STBX). The user determines the direction of the FIFO data flow by initiating an MR cycle (see Table 1), which clears the FIFO and bypass register and sets the data path and control signal multiplexers. The bypass register is configured in the opposite direction to the FIFO data flow. The FIFO direction can be reversed at any time by initiating another $\overline{M R}$ cycle. Data is written into the FIFO on the rising edge of the input, STBX, and read from the FIFO by a low level at the output, STBX. The two ports are asynchronous and independent. If the user attempts to read the FIFO when it is empty, no action takes place (the read pointer is not incremented) until the other port writes to the FIFO. Then a bubble-through read takes place, in which the read strobe is generated internally and the data becomes available at the read port shortly thereafter if the read strobe (STBX) is still LOW. Similarly, for an attempted write operation when the FIFO is full, no internal operation takes place until the other port performs a read operation, at which time the bubble-through write is performed if the write strobe (STBX) is still LOW.

Registered Bypass Operation

The registered bypass feature provides a means of transferring one 9-bit word of data in the opposite direction to normal data flow without affecting either the FIFO contents or the FIFO write operations at the other port. The bypass register is configured during reset to provide a data path in the opposite direction to that of the FIFO (see Table 1). For example, if port A is writing data to the FIFO (hence port B is reading data from the FIFO) then $\overline{\mathrm{BYPB}}$ is used to write to the bypass register at port B, and BYPA is used to read a single word from the bypass register at port A . The bypass data available flag ($\overline{\mathrm{BDA}})$ is generated to notify port A that bypass data is available. BDA goes true on the trailing edge of the BYPX write operation and false upon the trailing edge of the BYPX read operation.
Data is written on the rising edge of $\overline{\text { BYPX }}$ into the bypass register for later retrieval by the other port, regardless of the state of BDA. The bypass register is read by a low level at $\overline{B Y P X}$, regardless of the state of BDA.

Transparent Bypass Operation

The transparent bypass feature provides a means of sendingimmediate data "around" the FIFO in either direction. The FIFO contents are not affected by the use of transparent bypass, but the control signals for transparent bypass are shared with those of the normal FIFO operation. Hence there are limitations on the use of transparent bypass to ensure that data integrity and ease of use are preserved. The port wishing to send immediate data must ensure that the other port will not attempt a FIFO read or write during the transparent bypass cycle. If this is not possible, registered bypass or external circuitry should be used.
Transparent bypass mode is initiated by bringing both $\overline{\text { BYPA }}$ and STBA LOW together. Care should be taken to observe the following constraints on the timing relationships. Since STBA is used for
normal FIFO operations, it must follow $\overline{\text { BYPA }}$ falling edge by $\mathrm{t}_{\text {TBS }}$ to prevent erroneous FIFO read or write operations. Since BYPA is used alone to initiate registered bypass read and write, it is internally delayed before initiating registered bypass. If $\overline{\text { STBA }}$ falls during this time, delay registered bypass is averted, and transparent bypass is initiated. Identical arguments apply to BYPB and STBB.
If a transparent bypass sequence is successfully accomplished, data presented to the initiating port (port A in the above discussion) will be buffered to the other (port B) after $t_{\text {DL }}$. Either port can initiate a transparent bypass operation at any time, but if the control signals (STBA/B, BYPA/B) are in conflict (exception condition), internal circuitry will switch both ports to high-impedance until the conflict is resolved.

Test Mode Operation

The Test mode feature provides a means of reading the FIFO contents from the same port that the data was written to the FIFO. This feature is useful for Built-In Self Test (BIST) and diagnostic functions. To utilize this capability, initialize FIFO direction A to B and load data into the FIFO using normal write timing. In order to read data back out of the same port (port A), initiate a $\overline{M R}$ cycle with both $\overline{B Y P A}$ and $\overline{\text { BYPB LOW (see Test Mode Timing dia- }}$ gram). After completing the cycle, the data can be read out of port A in FIFO order. Data will be inverted when read out of the device. Also, flags are not valid when reading data.

Flag Operation

There are two flags, Empty/Full ($\overline{\mathrm{E}} / \overline{\mathrm{F}}$) and Half Full ($\overline{\mathrm{HF}})$, which are used to decode four FIFO states (see Table 4). The states are empty, 1-1024 locations full, 1025-2047 locations full, and full. Note that two conditions cause the $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ pin to go LOW, Empty and Full, hence both flag pins must be used to resolve the two conditions.

Table 1. FIFO Direction Select Truth Table

$\overline{\mathbf{M R}}$	$\overline{\mathbf{B Y P A}}$	$\overline{\mathbf{B Y P B}}$	$\overline{\mathbf{S T B A}}$	$\overline{\mathbf{S T B B}}$	Action
1	X	X	X	X	Normal Operation
Γ	1	1	1	1	FIFO Direction A to B, Registered Bypass Direction B to A
Γ	0	1	1	1	FIFO Direction B to A, Registered Bypass Direction A to B
0	X	X	X	X	Reset Condition

Table 2. Bypass Operation Truth Table

Direction	STBA	$\overline{\text { BYPA }}$	$\overline{\text { STBB }}$	$\overline{\text { BYPB }}$	Action
$A \geqslant B$	\square	1	■	1	Normal FIFO Operations, Write at A, Read at B
$A>B$	1	\square]	1	Normal FIFO Read at B, Bypass Register Read at A
$A \stackrel{B}{ }$	\square	1	1	\square	Normal FIFO Write at A, Bypass Register Write at B
B ${ }^{\text {A }}$	\square	1	\square	1	Normal FIFO Operations, Write at B, Read at A
B ${ }^{\text {A }}$	1	చ	\square	1	Normal FIFO Write at B, Bypass Register Write at A
B ${ }^{\text {A }}$	\square	1	1	■	Normal FIFO Read at A, Bypass Register Read at B
X	0	0	1	1	No FIFO Operations, Transparent Data A to B
X	1	1	0	0	No FIFO Operations, Transparent Data B to A

Table 3. Exception Conditions: Operation Not Defined

Direction	$\overline{\mathbf{S T B A}}$	$\overline{\mathbf{B Y P A}}$	$\overline{\mathbf{S T B B}}$	$\overline{\mathbf{B Y B P}}$	
\mathbf{X}	0	1	0	0	Action
\mathbf{X}	1	0	0	0	Data Buses High Impedance
\mathbf{X}	0	0	0	0	Data Buses High Impedance
\mathbf{X}	0	0	1	0	Data Buses High Impedance
\mathbf{X}	0	0	0	$\mathbf{1}$	Data Buses High Impedance

Table 4. Flag Truth Table

$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\mathbf{H F}}$	
0	1	Empty
1	1	$1-1024$ Locations Full
1	0	$1025-2047$ Locations Full
0	0	Full

Typical DC and AC Characteristics

NORMALIZED $_{\text {t }}$
vs. AMBIENT TEMPERATURE

Typical DC and AC Characteristics (continued)

Ordering Information

$\begin{gathered} \text { Speed } \\ (\mathrm{ns}) \end{gathered}$	Ordering Code	Package Name	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
25	CY7C439-25PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C439-25JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C439-25VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C439-25DC	D22	28-Lead (300-Mil) CerDIP	
30	CY7C439-30PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C439-30JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C439-30VC	V21	28-Lead (300-Mil) Molded SO	
	CY7C439-30DC	D22	28-Lead (300-Mil) CerDIP	
	CY7C439-30DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C439-30LMB	L55	32-PinRectangularLeadlessChipCarrier	
40	CY7C439-40PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C439-40JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C439-40VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C439-40DC	D22	28-Lead (300-Mil) CerDIP	
	CY7C439-40DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C439-40LMB	L55	32-PinRectangularLeadlessChipCarrier	
65	CY7C439-65PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C439-65JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C439-65VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C439-65DC	D22	28-Lead (300-Mil) CerDIP	
	CY7C439-65DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C439-65LMB	L55	32-PinRectangularLeadlessChipCarrier	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
I_{OS}	$1,2,3$
I_{OZ}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
t_{RC}	$9,10,11$
t_{A}	$9,10,11$
t_{RR}	$9,10,11$
t_{PR}	$9,10,11$
$\mathrm{t}_{\mathrm{LZR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{DVR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HZR}}$	$9,10,11$
t_{WC}	$9,10,11$
t_{PW}	$9,10,11$
$\mathrm{t}_{\mathrm{HWZ}}$	$9,10,11$
t_{WR}	$9,10,11$
t_{SD}	$9,10,11$
t_{HD}	$9,10,11$
$\mathrm{t}_{\mathrm{MRSC}}$	$9,10,11$
$\mathrm{t}_{\mathrm{PMR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{RMR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{RPS}}$	$9,10,11$
$\mathrm{t}_{\mathrm{RPBS}}$	$9,10,11$
$\mathrm{t}_{\mathrm{RPBH}}$	$9,10,11$
$\mathrm{t}_{\mathrm{BDH}}$	$9,10,11$
$\mathrm{t}_{\mathrm{BSR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{EFL}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HFH}}$	$9,10,11$
$\mathrm{t}_{\mathrm{BRS}}$	$9,10,11$
$\mathrm{t}_{\mathrm{REF}}$	$9,10,11$
$\mathrm{t}_{\mathrm{RFF}}$	$9,10,11$
$\mathrm{t}_{\mathrm{WEF}}$	$9,10,11$
$\mathrm{t}_{\mathrm{WFF}}$	$9,10,11$
$\mathrm{t}_{\mathrm{WHF}}$	$9,10,11$
$\mathrm{t}_{\mathrm{RHF}}$	$9,10,11$
$\mathrm{t}_{\mathrm{RAE}}$	$9,10,11$
$\mathrm{t}_{\mathrm{RPE}}$	$9,10,11$

$\mathrm{t}_{\mathrm{WAF}}$	$9,10,11$
$\mathrm{t}_{\mathrm{WPF}}$	$9,10,11$
$\mathrm{t}_{\mathrm{BSU}}$	$9,10,11$
$\mathrm{t}_{\mathrm{BHL}}$	$9,10,11$
$\mathrm{t}_{\mathrm{BDA}}$	$9,10,11$
$\mathrm{t}_{\mathrm{BDB}}$	$9,10,11$
t_{BA}	$9,10,11$
$\mathrm{t}_{\mathrm{BHZ}}$	$9,10,11$
$\mathrm{t}_{\mathrm{TSB}}$	$9,10,11$
$\mathrm{t}_{\mathrm{TBS}}$	$9,10,11$
$\mathrm{t}_{\mathrm{TSN}}$	$9,10,11$
$\mathrm{t}_{\mathrm{TSD}}$	$9,10,11$
$\mathrm{t}_{\mathrm{TBN}}$	$9,10,11$
$\mathrm{t}_{\mathrm{TBD}}$	$9,10,11$
$\mathrm{t}_{\mathrm{TPD}}$	$9,10,11$
t_{DL}	$9,10,11$
$\mathrm{t}_{\mathrm{ESD}}$	$9,10,11$
$\mathrm{t}_{\mathrm{EBD}}$	$9,10,11$
$\mathrm{t}_{\mathrm{EDS}}$	$9,10,11$
$\mathrm{t}_{\mathrm{EDB}}$	$9,10,11$
$\mathrm{t}_{\mathrm{BPW}}$	$9,10,11$
$\mathrm{t}_{\mathrm{TSP}}$	$9,10,11$
$\mathrm{t}_{\mathrm{BLZ}}$	$9,10,11$
$\mathrm{t}_{\mathrm{BDV}}$	$9,10,11$

Document \#: 38-00126-C

Features

- 512×9 (CY7C441) and $2,048 \times 9$ (CY7C443) FIFO buffer memory
- High-speed 70-MHz operation
- Supports free-running 50\% duty cycle clock inputs
- Empty, Almost Empty, and Almost Full status flags
- Fully asynchronous and simultaneous read and write operation
- Width expandable
- Independent read and write enable pins
- Center power and ground pins for reduced noise
- Available in 300-mil 28-pin DIP, PLCC, LCC, and SOJ packages
- Proprietary 0.8μ CMOS technology
- TTL compatible
- Low power - $\mathrm{I}_{\mathrm{CC}}=70 \mathrm{~mA}$

Functional Description

The CY7C441 and CY7C443 are highspeed, low-power, first-in first-out (FIFO) memories with clocked read and write interfaces. Both FIFOs are 9 bits wide. The CY7C441 has a 512 word by 9 bit memory array, while the CY7C443 has a 2048 word by 9 bit memory array. These devices provide solutions for a wide variety of data buffering needs, including high-speed data acquisition, multiprocessor interfaces, and communications buffering.
Both FIFOs have 9-bit input and output ports that are controlled by separate clock and enable signals. The input port is controlled by a free-running clock (CKW) and a write enable pin (ENW). When ENW is asserted, data is written into the FIFO on the rising edge of the CKW signal. While ENW is held active, data is continually written into the FIFO on each CKW cycle. The output port is controlled in a similar manner by a free-running read clock (CKR) and a read enable pin (ENR). The read (CKR) and write (CKW) clocks may be tied together for single-clock operation
or the two clocks may be run independently for asynchronous read/write applications. Clock frequencies up to 71.4 MHz are acceptable.
The CY7C441 and CY7C443 clocked FIFOs provide two status flag pins (F1 and F2). These flags are decoded to determine one of four states: Empty, Almost Empty, Intermediate, and Almost Full (Table 1). The flags are synchronous, i.e., theychange state relative to either the read clock (CKR) or the write clock (CKW). The Empty and Almost Empty states are updated exclusivelyby the CKR while Almost Full is updated exclusively by CKW. The synchronous flag architecture guarantees that the flagsmaintain their statusfor some minimum time.

The CY7C441 and the CY7C443 use center power and ground for reduced noise. Bothconfigurationsarefabricatedusingan advanced $0.8 \mu \mathrm{~N}$-well CMOS technology. Input ESD protection is greater than 2001 V , and latch-up is prevented by reliable layout techniques, guard rings, and a substrate bias generator.

Pin Configurations

Selection Guide

	7C441-14 $\mathbf{7 C 4 4 3 - 1 4}$	$\mathbf{7 C 4 4 1 - 2 0}$ $\mathbf{7 C 4 4 3 - 2 0}$	$\mathbf{7 C 4 4 1 - 3 0}$ $\mathbf{7 C 4 4 3 - 3 0}$
Maximum Frequency (MHz)	71.4	50	33.3
Maximum Access Time (ns)	10	15	20
Minimum Cycle Time (ns)	$\mathbf{1 4}$	20	30
Minimum Clock HIGH Time (ns)	6.5	9	$\mathbf{1 2}$
Minimum Clock LOW Time (ns)	6.5	9	$\mathbf{1 2}$
Minimum Data or Enable Set-Up (ns)	7	9	$\mathbf{1 2}$
Minimum Data or Enable Hold (ns)	0	0	0
Maximum Flag Delay (ns)	10	15	20
Maximum Current (mA)	140	120	100

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $\ldots \ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Input Voltage -3.0 V to +7.0 V
Output Current into Outputs (LOW) 20 mA

Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)

Pin Definitions

Signal Name	I/O	Description
D_{0-8}	I	Data Inputs: when the FIFO is not full and ENW is active, CKW (rising edge) writes data ($\mathrm{D}_{0}-\mathrm{D}_{8}$) into the FIFO's memory
Q_{0-8}	O	Data Outputs: when the FIFO is notempty and $\overline{\text { ENR }}$ is active, CKR (rising edge) reads data $\left(\mathrm{Q}_{0}-\mathrm{Q}_{8}\right)$ out of the FIFO's memory
ENW	I	Enable Write: enables the CKW input
ENR	I	Enable Read: enables the CKR input
CKW	I	Write Clock: the rising edge clocks data into the FIFO when ENW is LOW and updates the Almost Full flag state
CKR	I	Read Clock: the rising edge clocks data out of the FIFO when $\overline{\text { ENR }}$ is LOW and updates the Almost Empty and Empty flag states
F1	O	Flag 1: is used in conjunction with Flag 2 to decode which state the FIFO is in (see Table 1)
F2	O	Flag 2: is used in conjunction with Flag 1 to decode which state the FIFO is in (see Table 1)
$\overline{\mathrm{MR}}$	I	Master Reset: resets the device to an empty condition

[^58]Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		$\begin{aligned} & \hline \text { 7C441-14 } \\ & \text { 7C443-14 } \end{aligned}$		$\begin{aligned} & \hline \mathbf{C 4 4 1 - 2 0} \\ & 7 \mathrm{C} 443-20 \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 441-30 \\ & 7 \mathrm{C} 443-30 \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-3.0	0.8	-3.0	0.8	-3.0	0.8	V
I_{IX}	Input Leakage Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}_{\mathrm{I}} \\ & \mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$		-10	+10	- 10	+10	-10	+10	$\mu \mathrm{A}$
$\mathrm{IOS}^{[3]}$	Output Short Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-90		-90		-90		mA
$\mathrm{I}_{\mathrm{CC1}}{ }^{[4]}$	Operating Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Com'l		140		120		100	mA
			Mil/Ind		150		130		110	mA
$\mathrm{I}_{\mathrm{CC} 2}{ }^{[5]}$	Operating Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Com'l		70		70		70	mA
			Mil/Ind		80		80		80	mA
$\mathrm{I}_{\text {SB }}{ }^{[6]}$	Standby Current	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}$	Com'l		30		30		30	mA
			Mil/Ind		30		30		30	mA

Capacitance ${ }^{[7]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$, $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

2. See the last page of this specification for Group A subgroup testing information.
3. Test no more than one output at a time and do not test any output for more than one second.
4. Input signals switch from 0 V to 3 V with a rise/fall time of 3 ns or less, clocks and clock enables switch at maximum frequency ($\mathrm{f}_{\mathrm{MAX}}$), while data inputs switch at $\mathrm{f}_{\text {MAX }} / 2$. Outputs are unloaded.
5. Input signals switch from 0 V to 3 V with a rise/fall time less than 3 ns , clocks and clock enables switch at 20 MHz , while the data inputs switch at 10 MHz . Outputs are unloaded.
6. All inputs signals are connected to V_{CC}. All outputs are unloaded. Read and write clocks switch at maximum frequency ($\mathrm{f}_{\mathrm{MAX}}$).
7. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveform ${ }^{[8,9]}$

Switching Characteristics Over the Operating Range ${ }^{[2,10]}$

Parameter	Description	$\begin{aligned} & \text { 7C441-14 } \\ & \text { 7C443-14 } \end{aligned}$		$\begin{aligned} & \text { 7C441-20 } \\ & \text { 7C443-20 } \end{aligned}$		$\begin{aligned} & \text { 7C441-30 } \\ & \text { 7C443-30 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {CKW }}$	Write Clock Cycle	14		20		30		ns
$\mathrm{t}_{\text {CKR }}$	Read Clock Cycle	14		20		30		ns
$\mathrm{t}_{\text {CKH }}$	Clock HIGH	6.5		9		12		ns
$\mathrm{t}_{\mathrm{CKL}}$	Clock LOW	6.5		9		12		ns
$\mathrm{t}_{\mathrm{A}}{ }^{[11]}$	Data Access Time		10		15		20	ns
t_{OH}	Previous Output Data Hold After Read HIGH	0		0		0		ns
t_{FH}	Previous Flag Hold After Read/Write HIGH	0		0		0		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up	7		9		12		ns
t_{HD}	Data Hold	0		0		0		ns
$\mathrm{t}_{\text {SEN }}$	Enable Set-Up	7		9		12		ns
$\mathrm{t}_{\text {HEN }}$	Enable Hold	0		0		0		ns
t_{FD}	Flag Delay		10		15		20	ns
$\mathrm{t}_{\text {SKEW } 1}{ }^{[12]}$	Opposite Clock After Clock	0		0		0		ns
$\mathrm{t}_{\text {SKEW } 2}{ }^{[13]}$	Opposite Clock Before Clock	14		20		30		ns
$\mathrm{t}_{\text {PMR }}$	Master Reset Pulse Width (MR LOW)	14		20		30		ns
tsCMR	Last Valid Clock LOW Set-Up to $\overline{\text { MR }}$ LOW	0		0		0		ns
tohmr	Data Hold From MR LOW	0		0		0		ns
$\mathrm{t}_{\text {MRR }}$	Master Reset Recovery ($\overline{\mathrm{MR}}$ HIGH Set-Up to First Enabled Write/Read)	14		20		30		ns
$\mathrm{t}_{\text {MRF }}$	$\overline{\text { MR HIGH to Flags Valid }}$		14		20		30	ns
$\mathrm{t}_{\text {AMR }}$	$\overline{\text { MR }}$ HIGH to Data Outputs LOW		14		20		30	ns

Notes:
8. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ for all AC parameters.
9. All AC measurements are referenced to 1.5 V .
10. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , and output loading as shown in the AC Test Loads and Waveforms and capacitance as in note 6, unless otherwise specified.
11. Access time includes all data outputs switching simultaneously.
12. $\mathrm{t}_{\mathrm{SKEW}}$ is the minimum time an opposite clock can occur after a clock and still be guaranteed not to be included in the current clock cycle (for purposes of flag update). If the opposite clock occurs less than tSKEW1 after the clock, the decision of whether or not to include the opposite
clock in the current clock cycle is arbitrary. Note: The opposite clock is the signal to which a flag is not synchronized; i.e., CKW is the opposite clock for Empty and Almost Empty flags, CKR is the the opposite clock for the Almost Full flag. The clock is the signal to which a flag is synchronized;i.e., CKW is the clock for the Almost Full flag, CKR is the clock for Empty and Almost Empty flags.
13. $\mathrm{t}_{\text {SKEW } 2}$ is the minimum time an opposite clock can occurbefore a clock and still be guaranteed to be included in the current clock cycle (for purposes of flag update). If the opposite clock occurs less than tSKEW2 before the clock, the decision of whether or not to include the opposite clock in the current clock cycle is abritrary. See Note 12 for definition of clock and opposite clock.

Switching Waveforms

Write Clock Timing Diagram

Read Clock Timing Diagram

CY7C441

CY7C443

Switching Waveforms (continued)

Read to Empty Timing Diagram ${ }^{[18,20,21]}$

Read to Empty Timing Diagram with Free-Running Clocks ${ }^{[18,19,20]}$

Notes:

14. ENW or CKW must be inactive while $\overline{\mathrm{MR}}$ is LOW.
15. $\overline{\text { ENR }}$ or CKR must be inactive while $\overline{M R}$ is LOW.
16. All data outputs $\left(Q_{0-8}\right)$ go LOW as a result of the rising edge of $\overline{M R}$.
17. In this example, Q_{0-8} will remain valid until $t_{O H M R}$ if the first read shown did not occur or if the read occurred soon enough such that the valid data was caused by it.
18. "Count" is the number of words in the FIFO.
19. R 2 is ignored because the FIFO is empty (count $=0$). It is important to note that R3 is also ignored because W3, the first enabled write after empty, occurs less than tSkEw 2 before R3. Therefore, the FIFO still appears empty when R3 occurs. Because W3 occurs greater than ${ }^{\mathrm{t}}$ SKEW2 2 before R4, R4 includes W3 in the flag update.
20. CKR is clock and CKW is opposite clock.
21. R3 updates the flags to the Empty state by bringing F1 LOW. Because W1 occurs greater than tSKEW1 after R3, R3 does not recognize W1 when updating flag status. But because W1 occurs greater than tSKEW2 before R4, R4 includes W1 in the flag update and therefore updates the FIFO to the Almost Empty state. It is important to note that R4 is a latent cycle; i.e., it only updates the flag status, regardless of the state of ENR. It does not change the count or the FIFO's data outputs.

Switching Waveforms (continued)

Read to Almost Empty Timing Diagram with Free-Running Clocks ${ }^{[18,20]}$

Read to Almost Empty Timing Diagram with Read Flag Update Cycle and Free-Running Clocks ${ }^{[18,20,22,23]}$

Notes:
22. R4 only updates the flag status. It does not affect the count because ENR is HIGH.
23. When making the transition from Almost Empty to Intermediate, the count must increase by two ($16 \uparrow 18$; two enabled writes: W2, W3) before a read (R4) can update flags to the Intermediate state.

Switching Waveforms (continued)
Write to Almost Full Timing Diagram ${ }^{[18,24,25,26,27]}$

Write to Almost Full Timing Diagram with Free-Running Clocks ${ }^{[18,24,25]}$

Notes:

24. CKW is clock and CKR is opposite clock.
25. Count $=2032$ indicates Almost Full for CY7C443 and count $=496$ indicates Almost Full for CY7C441. Values for the CY7C441 count are shown in brackets.
26. The dashed lines show W3 as flag update write rather than an enabled write because ENW is deasserted.
27. W2 updates the flags to the Almost Full state by bringing F1 LOW. Because R1 occurs greater than tSKEW1 after W2, W2 does not recognize R1 when updating the flag status. W3 includes R2 in the flag update because R2 occurs greater than tSKEW2 before W3. Note that W3 does not have to be enabled to update flags.
28. When making the transition from Almost Full to Intermediate, the count must decrease by two (2032 \$ 2030; two enabled reads: R2, R3) before a write (W4) can update flags to Intermediate state.

Switching Waveforms (continued)

Write to Almost Full Timing Diagram with Write Flag Update Cycle and Free-Running Clock ${ }^{[18,24,25,28]}$

Architecture

The CY7C441/443 consist of an array of 512/2048 words of 9 bits each (implemented by an array of dual-port RAM cells), a read pointer, a write pointer, control signals (CKR, CKW, $\overline{\mathrm{ENR}}, \overline{\mathrm{ENW}}$, $\overline{M R}$), and flags (F1, F2).

Resetting the FIFO

Upon power-up, the FIFO must be reset with a Master Reset (MR) cycle. This causes the FIFO to enter the Empty condition signified by both flags F1 and F2 being LOW. All data outputs $\left(\mathrm{Q}_{0-8}\right)$ go LOW at the rising edge of $\overline{M R}$. In order for the FIFO to reset to its default state, a falling edge must occur on $\overline{M R}$ and the user must not read or write while MR is LOW (unless ENR and/or ENW are HIGH). Upon completion of the Master Reset cycle, all data outputs will go LOW $\mathrm{t}_{\mathrm{AMR}}$ after $\overline{\mathrm{MR}}$ is deasserted. F_{1} and F_{2} are guaranteed to be valid $\mathrm{t}_{\mathrm{MRF}}$ after $\overline{\mathrm{MR}}$ is taken HIGH.

FIFO Operation

When the ENW signal is active (LOW), data on the D_{0-8} pins is written into the FIFO on each rising edge of the CKW signal. Similarly, when the ENR signal is active, data in the FIFO memory will be presented on the Q_{0-8} outputs. New data will be presented on each rising edge of CKR while ENR is active. $\overline{\mathrm{ENR}}$ must set up $t_{\text {SEN }}$ before CKR for it to be a valid read duration. ENW must occur tsEN before CKW for it to be a valid write function.
The FIFO contains overflow circuitry to disallow additional writes when the FIFO is full, and underflow circuitry to disallow additional reads when the FIFO is empty. An empty FIFO maintains the data of the last valid read on its Q_{0-8} outputs even after additional reads occur.

Flag Operation

The CY7C441/3 provide two flags, F1 and F2, which are used to decode four FIFO states (see Table 1). All flags are synchronous,
meaning that the change of states is relative to one of the clocks (CKR or CKW, as appropriate; see Figure 1). The synchronous architecture guarantees some minimum valid time for the flags.
The Empty and Almost Empty flag states are exclusively updated by each rising edge of the read clock (CKR). For example, when the FIFO contains 1 word, the next read (rising edge of CKR while $\overline{\mathrm{ENR}}=\mathrm{LOW}$) causes the F 1 and F 2 pins to output a state signifying the Empty condition. The Almost Full flag is updated exclusively by the write clock (CKW). For example, if the CY7C443 FIFO contains 2031 words (2032 words or greater indicates Almost Full in the CY7C443), the next write (rising edge of CKW while $\overline{\mathrm{ENW}}=\mathrm{LOW}$) causes the F1 and F2 pins to output the Almost Full state.
Since the flags denoting emptiness (Empty, Almost Empty) are only updated by CKR and the Almost Full flag is only updated by the CKW, careful attention must be given to the flag operation. The user must be aware that if a flag boundary (Empty, Almost Empty, and Almost Full) is crossed due to an operation from a clock that the flag is not synchronized to (i.e.,CKR does not effect Almost Full), a flag update is necessary to represent the FIFO's new state. This signal to which a flag is not synchronized will be referred to as the opposite clock (CKW is opposite clock for Empty and Almost Empty flags; CKR is the opposite clock for the Almost Full flag).

Table 1. Flag Truth Table

F1	F2	State	CY7C441 Number of Words in FIFO	CY7C443 Number of Words in FIFO
0	0	Empty	0	0
1	0	Almost Empty	$1-16$	$1-16$
1	1	Intermediate Range	$17-495$	$17-2031$
0	1	Almost Full or Full	$496-512$	$2032-2048$

Figure 1. Flag Logic Diagram

Flag Operation (continued)

Until the flag update cycle is executed, the synchronous flags do not show the true state of the FIFO. For example, if 2,040 writes are performed to an empty CY7C443 without a single read, F1 and F2 will still exhibit an Empty flag. This is because F2 is exclusively updated by the CKR, therefore, a single read (flag update cycle) is necessary to update flags to Almost Full state. It should be noted that this flag update read does not require ENR $=$ LOW, so a free-running read clock will initiate the flag update cycle.
When updating the flags, the CY7C441/443 decide whether or not the opposite clock was recognized when a clock updates the flag. For example, if a write occurs at least tSKEW1 after a read when updating the Empty flag, the write is guaranteed not to be included when CKR updates the flag. If a write occurs at least ${ }^{\text {t SKEW2 }}$ before a read, the write is guaranteed to be included when CKR updates the flag. If a write occurs within tSKEW $/ \mathrm{t}_{\text {SKEW }}$ after or before CKR, then the decision of whether or not to include the write when the flag is updated by CKR is arbitrary.
The update cycle for non-boundary flags (Almost Empty, Almost Full) is different from that used to update the boundary flag (Empty). Both operations are described below.

Boundary Flag (Empty)

The Empty flag is synchronized to the CKR signal. The Empty flag can only be updated by a clock pulse on the CKR pin. An empty FIFO that is written to will be described with an Empty flag state until a clock pulse is presented on the CKR pin. When making the transition from Empty to Almost Empty (or Empty to Intermediate or Empty to Almost Full), a clock cycle on the CKR is necessary to update the flags to the current state. Such a state (flags displaying empty even though data has been written to the FIFO) would require two read cycles to read data out of FIFO. The first read serves only to update the flags to the Almost Empty, Intermediate, or Almost Full state, and the second read outputs the data. This first read cycle is known as the latent or flag update cycle because it does not affect the data in the FIFO or the count (number of words in FIFO). It simply deasserts the Empty flag. The flags are updated regardless of the ENR state. Therefore the update occurs even when ENR is deasserted (HIGH) so that a valid read is not necessary to update the flags to correctly describe the FIFO. With a free-ruming clock coñected to CKR, the flag up-
dates with each cycle. Table 2 shows sample operations that update the Empty flag.
Although a Full flag is not supplied externally on the CY7C441/CY7C443, a Full flag exists internally. The operation of the FIFO at the Full boundary is analogous to its operation at the Empty boundary. See the text section "Boundary Flags (Full)" in the CY7C451/CY7C453 datasheet.

Non-Boundary Flags (Almost Empty, Almost Full)

The flag status pins, F_{1} and F_{2}, exhibit the Almost Empty status when both the CY7C441 and the CY7C443 contain 16 words or less. The Almost Full Flag becomes active when the FIFO contains 16 or less empty locations. The CY7C441 becomes Almost Full when it contains 496 words. The CY7C443 becomes Almost Full when it contains 2032 words. The Almost Empty flag (like the Empty flag) is synchronous to the CKR signal, whereas the Almost Full flag is synchronous to the CKW signal. Non-boundary flags employ flag update cycles similar to the boundary flag latent cycles in order to update the FIFO state. For example, if the FIFO just reaches the Almost Empty state (16 words) and then two words are written, a read clock (CKR) will be required to update the flags to the Intermediate state. However, unlike the boundary (Empty) flag's update cycle, the state of the enable pin (ENR in this case) affects theoperation. Therefore, ENR set-up ($\mathrm{t}_{\text {SEN }}$) andhold ($\mathrm{t}_{\text {HEN }}$) times must be met. If ENR is asserted (ENR=LOW) during the latent cycle, the count and data update in addition to F1 and F2. If $\overline{\mathrm{ENR}}$ is not active $(\overline{\mathrm{ENR}}=1)$ during the flag update cycle, only the flag is updated.
The same principles apply for updating the flags when a transition from the Almost Full to the Intermediate state occurs. If the CY7C443 just reaches the Almost Full state (2032 words) and then two words are read, a write clock (CKW) will be required to update the flag to the Intermediate state. If ENW is LOW during the flag update cycle, the count and data update in addition to the flags. If $\overline{\text { ENW }}$ is HIGH, only the flag is updated. Therefore, ENW set-up ($\mathrm{t}_{\text {SEN }}$) and hold ($\mathrm{t}_{\text {HEN }}$) times must be met. Tables 3 and 4 show examples for a sequence of operations that affect the Almost Empty and Almost Full flags, respectively.

Width Expansion

The CY7C441/3 can be expanded in width to provide word width greater than 9 in increments of 9 . During width expansion mode, all control inputs are common. When the FIFO is being read near
the Empty boundary, it is important to note that both sets of flags should be checked to see if they have been updated to the Not Empty condition on all devices.
Checking all sets of flags is critical so that data is not read from the FIFOs "staggered" by one clock cycle. This situation could occur when the first write to an empty FIFO and a read are very close together. If the readoccurs less than $\mathbf{S K E W}_{2}$ after the firstwrite totwo width expanded devices (A and B), device A maygo Almost Empty (read recognized as flag update) while device B stays Empty (read
ignored).The first write occurs because a read within tSKEW 2 of the first write is onlyguaranteed to be either recognized or ignored, but which of the two is not guaranteed. The next read cycle outputs the first half of the first word on device A while device B updates its flags to Almost Empty. Subsequent reads will continue to outpout "staggered" data assuming more data has been written to the FIFOs.
In the width expansion configuration, any of the devices' flags may be monitored for the composite Almost Full status.

Table 2. Empty Flag Operation Example ${ }^{[29]}$

Status Before Operation				Operation	Next State of FIFO	Status After Operation			
Current State of FIFO	F1	F2	Number of Words in FIFO			F1	F2	Number of Words in FIFO	Comments
Empty	0	0	0	$\begin{aligned} & \text { Write } \\ & \text { (ENW = LOW) } \end{aligned}$	Empty	0	0	1	Write
Empty	0	0	1	$\begin{aligned} & \text { Write } \\ & \text { (ENW }=\text { LOW }) \end{aligned}$	Empty	0	0	2	Write
Empty	0	0	2	$\overline{\mathrm{Read}}=\mathrm{HIGH})$	AE	1	0	2	Flag Update
AE	1	0	2	$\begin{aligned} & \mathrm{Read} \\ & (\overline{\mathrm{ENR}}=\mathrm{LOW}) \end{aligned}$	AE	1	0	1	Read
AE	1	0	1	$\begin{aligned} & \text { Read } \\ & (\overline{\text { ENR }}=\text { LOW }) \end{aligned}$	Empty	0	0	0	Read (Transition for Almost Empty to Empty)
Empty	0	0	0	$\begin{aligned} & \text { Write } \\ & \text { (ENW }=\text { LOW }) \end{aligned}$	Empty	0	0	1	Write
Empty	0	0	1	$\begin{aligned} & \text { Read } \\ & \text { ENR }=\mathrm{X}) \\ & \hline \end{aligned}$	AE	1	0	1	Flag Update
AE	1	0	1	$\begin{aligned} & \text { Read } \\ & (\overline{\text { ENR }}=\mathrm{LOW}) \end{aligned}$	Empty	0	0	0	Read(Transition from Almost Empty to Empty)

Table 3. Almost Empty Flag Operation Example ${ }^{[29]}$

Status Before Operation				Operation	Next State of FIFO	Status After Operation			
$\begin{aligned} & \text { Current State } \\ & \text { of FIFO } \end{aligned}$	F1	F2	Number of Words in FIFO			F1	F2	$\begin{aligned} & \hline \text { Number of } \\ & \text { Words in } \\ & \text { FIFO } \end{aligned}$	Comments
AE	1	0	16	$\begin{aligned} & \text { Write } \\ & (\text { ENW }=\text { LOW }) \end{aligned}$	AE	1	0	17	Write
AE	1	0	17	$\begin{aligned} & \text { Write } \\ & (\overline{\text { ENW }}=\text { LOW }) \end{aligned}$	AE	1	0	18	Write
AE	1	0	18	$(\overline{\mathrm{ENR}}=\mathrm{LOW})$	Intermediate	1	1	17	Flag Update and Read
Intermediate	1	1	17	$(\overline{\mathrm{ENR}}=\mathrm{LOW})$	AE	1	0	16	Read (Transition from Intermediate to Almost Empty)
AE	1	0	16	$\begin{aligned} & \text { Read } \\ & (\overline{\mathrm{ENR}}=\mathrm{HIGH}) \end{aligned}$	AE	1	0	16	Ignored Read

CYPRESS
SEMICONDUCTOR
Table 4. Almost Full Flag Operation Example ${ }^{[30,31]}$

Status Before Operation					Operation	Next State of FIFO	Status After Operation				
Current State of FIFO	F1	F2	Number of Words in FIFO CY7C441	Number of Words in FIFO CY7C443			F1	F2	$\begin{aligned} & \hline \text { Number of } \\ & \text { Words in } \\ & \text { FIFO } \\ & \text { CY7C441 } \end{aligned}$	$\begin{aligned} & \text { Number of } \\ & \text { Words in } \\ & \text { FIFO } \\ & \text { CY7C443 } \end{aligned}$	Comments
AF	0	1	496	2032	$\begin{aligned} & \text { Read } \\ & \text { (ENR=LOW) } \end{aligned}$	AF	0	1	495	2031	Read
AF	0	1	495	2031	$\begin{aligned} & \mathrm{Read} \\ & \text { (ENR=LOW) } \\ & \hline \end{aligned}$	AF	0	1	494	2030	Read
AF	0	1	494	2030	$\begin{aligned} & \text { Write } \\ & (\mathrm{ENW}=\mathrm{HIGH}) \end{aligned}$	Intermediate	1	1	494	2030	Flag Update
Intermediate	1	1	494	2030	$\begin{aligned} & \text { Write } \\ & \text { (ENW }=\text { LOW }) \end{aligned}$	Intermediate	1	1	495	2031	Write
Intermediate	1	1	495	2031	$\begin{aligned} & \text { Write } \\ & (\mathrm{ENW}=\mathrm{LOW}) \end{aligned}$	AF	0	1	496	2032	Write (Transition from Intermediate to Almost Full)

Notes:
29. Applies to both the CY7C441 and CY7C443 operations.
30. The CY7C441 Almost Full state is represented by 496 or more words.
31. The CY7C443 Almost Full state is represented by 2032 or more words.

CY7C441
CY7C443

OUTPUT SINK CURRENT vs.
OUTPUT VOLTAGE

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
14	CY7C441-14PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C441-14JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C441-14VC	V21	28-Lead ($300-\mathrm{Mil}$) Molded SOJ	
	CY7C441-14DC	D22	28-Lead (300-Mil) CerDIP	
	CY7C441-14PI	P21	28-Lead (300-Mil) Molded DIP	Industrial
	CY7C441-14JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C441-14DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C441-14LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C441-14KMB	K74	28-Lead Rectangular Cerpack	
20	CY7C441-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C441-20JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C441-20VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C441-20DC	D22	28-Lead (300-Mil) CerDIP	
	CY7C441-20PI	P21	28-Lead (300-Mil) Molded DIP	Industrial
	CY7C441-20JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C441-20DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C441-20LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C441-20KMB	K74	28-Lead Rectangular Cerpack	
30	CY7C441-30PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C441-30JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C441-30VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C441-30DC	D22	28-Lead (300-Mil) CerDIP	
	CY7C441-30PI	P21	28-Lead (300-Mil) Molded DIP	Industrial
	CY7C441-30JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C441-30DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C441-30LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C441-30KMB	K74	28-Lead Rectangular Cerpack	

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
14	CY7C443-14PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C443-14JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C443-14VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C443-14DC	D22	28-Lead (300-Mil) CerDIP	
	CY7C443-14PI	P21	28-Lead (300-Mil) Molded DIP	Industrial
	CY7C443-14JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C443-14DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C443-14LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C443-14KMB	K74	28-Lead Rectangular Cerpack	
20	CY7C443-20PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C443-20JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C443-20VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C443-20DC	D22	28-Lead (300-Mil) CerDIP	
	CY7C443-20PI	P21	28-Lead (300-Mil) Molded DIP	Industrial
	CY7C443-20JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C443-20DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C443-20LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C443-20KMB	K74	28-Lead Rectangular Cerpack	
30	CY7C443-30PC	P21	28-Lead (300-Mil) Molded DIP	Commercial
	CY7C443-30JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C443-30VC	V21	28-Lead (300-Mil) Molded SOJ	
	CY7C443-30DC	D22	28-Lead (300-Mil) CerDIP	
	CY7C443-30PI	P21	28-Lead (300-Mil) Molded DIP	Industrial
	CY7C443-30JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C443-30DMB	D22	28-Lead (300-Mil) CerDIP	Military
	CY7C443-30LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7C443-30KMB	K74	28-Lead Rectangular Cerpack	

MILITARY SPECIFICATIONS
Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 2}$	$1,2,3$
I_{SB}	$1,2,3$
I_{OS}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
$\mathrm{t}_{\mathrm{CKR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CKW}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CKH}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CKL}}$	$9,10,11$
t_{A}	$9,10,11$
t_{OH}	$9,10,11$
t_{FH}	$9,10,11$
t_{SD}	$9,10,11$
t_{HD}	$9,10,11$
$\mathrm{t}_{\mathrm{SEN}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HEN}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HENR}}$	$9,10,11$
t_{FD}	$9,10,11$
$\mathrm{t}_{\mathrm{SKEW}}$	$9,10,11$
$\mathrm{t}_{\mathrm{SKEW}}$	$9,10,11$
$\mathrm{t}_{\mathrm{PMR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{SCMR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{OHMR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{MRR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{MRF}}$	$9,10,11$
$\mathrm{t}_{\mathrm{AMR}}$	$9,10,11$

Document \#: 38-00124-E

Features

- 512×18 (CY 7C445and CY7C455), 1,024 x 18 (CY7C446 and CY7C456), 2,048 x 18 (CY7C447 and CY7C457) FIFO buffer memory
- Expandable in width
- CY7C455, CY7C456, and CY7C457 expandable in depth
- High-speed 70-MHz standalone; $50-\mathrm{MHz}$ cascaded
- Supports free-running 50\% duty cycle clock inputs
- Empty, Full, Half Full, and programmable Almost Empty and Almost Full status flags
- Parity generation/checking
- Fully asynchronous and simultaneous read and write operation
- Output Enable ($\overline{\mathrm{OE}})$ pin on CY7C455, CY7C456, and CY7C457
- Independent read and write enable pins
- Center power and ground pins for reduced noise
- 52-pin PLCC (CY7C45X) or 48-pin

600-mil DIP (CY7C44X)

- Proprietary 0.8 μ CMOS technology
- TTL compatible

Functional Description

The CY7C445, CY7C446, CY7C447, CY7C455, CY7C456, and CY7C457 are high-speed, low-power, first-in first-out (FIFO) memories with clocked read and write interfaces. All are 18 bits wide. The CY7C445 and CY7C455 have a 512 -word memory array, the CY7C446 and CY7C456 have a 1,024 -word memory array, and the CY7C447 and CY7C457 have a 2,048 -word memory array. The CY7C455, CY7C456, and CY7C457 can be cascaded to increase FIFO depth. Programmable features include Almost Full/ Empty flags and generation/checking of parity. These FIFOs provide solutions for a wide variety of data buffering needs, in-cludinghigh-speed data acquisition, multiprocessor interfaces, and communications buffering.
These FIFOs have 18-bit input and output ports that are controlled by separate clock and enable signals. The input port is con-
trolled by a free-running clock (CKW) and a write enable pin (ENW).
When ENW is asserted, data is written into the FIFO on the rising edge of the CKW signal. While ENW is held active, data is continually written into the FIFO on each CKW cycle. The output port is controlled in a similar manner by a freerunning read clock (CKR) and a read enable pin (ENR). In addition, the CY7C455, CY7C456, and CY7C457 have an output enable pin ($\overline{\mathrm{OE}}$). The read (CKR) and write (CKW) clocks may be tied together for single-clock operation or the two clocks may be run independently for asynchronous read/write applications. Clock frequencies up to 71.4 MHz are achievable in the standalone configuration, and up to 50 MHz is achievable when FIFOs are cascaded for depth expansion.
Depth expansion is possible using the cascade input ($\overline{\mathrm{XI}}$), cascade output ($\overline{\mathrm{XO}}$), and First Load (FL) pins. The XO pin is connected to the XI pin of the next device, and the $\overline{\mathrm{XO}}$ pin of the last device should be connected to the XI pin of the first device. The $\overline{F L}$ pin of the first device is tied to $V_{S S}$.

Pin Configurations (continued)

Functional Description (continued)

The CY7C445, CY7C446, CY7C447, CY7C455, CY7C456, and CY7C457 provide three status pins. These pins are decoded to determine one of six states: Empty, Almost Empty, Less than or Equal to Half Full, Greater than Half Full, Almost Full, and Full (see Table 1). The Almost Empty/Full flag ($\overline{\mathrm{PAFE}}$) shares the XO pin on the CY7C455, CY7C456, and CY7C457. This flag is valid in the standalone and width-expansion configurations. In the depth expansion, this pin provides the expansion out ($\overline{\mathrm{XO}})$ information that is used to signal the next FIFO when it will be activated.
The flags are synchronous, i.e., they change state relative to either the read clock (CKR) or the write clock (CKW). When entering or exiting the Empty and Almost Empty states, the flags are updated
exclusively by the CKR. The flags denoting Half Full, Almost Full, and Full states are updated exclusively by CKW. The synchronous flag architecture guarantees that the flags maintain their status for some minimum time. This time is typically equal to approximately one cycle time.
The CY7C44X and CY7C45X use center power and ground for reduced noise. All configurations are fabricated using an advanced $0.8 \mu \mathrm{~N}$-well CMOS technology. Input ESD protection is greater than 2001 V , and latch-up is prevented by the use of guard rings and a substrate bias generator.

Selection Guide

Note:

1. $71.4-\mathrm{MHz}$ operation is available only in the standalone configuration.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
Output Current into Outputs (LOW)
20 mA

Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[2]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Pin Definitions

Signal Name	I/O	Description
D_{0-17}	I	Data Inputs: When the FIFO is not full and $\overline{\text { ENW }}$ is active, CKW (rising edge) writes data ($\mathrm{D}_{0}-17$) into the FIFO's memory. If $\overline{M R}$ is asserted at the rising edge of CKW, data is written into the FIFO's programming register. $\mathrm{D}_{8}, 17$ are ignored if the device is configured for parity generation.
$\begin{aligned} & \mathrm{Q}_{0-7} \\ & \mathrm{Q}_{9-16} \end{aligned}$	O	Data Outputs: When the FIFO is not empty and $\overline{\text { ENR }}$ is active, CKR (rising edge) reads data $\left(Q_{0-7}, Q_{9}-16\right)$ out of the FIFO's memory. If $\overline{M R}$ is active at the rising edge of CKR, data is read from the programming register.
$\begin{aligned} & \mathrm{Q}_{8} / \mathrm{PG} 1 / \overline{\mathrm{PE1}} \\ & \mathrm{Q}_{17} / \mathrm{PG} 2 / \mathrm{PE} 2 \end{aligned}$	0	Function varies according to mode: Parity disabled - same function as Q_{0-7} and Q_{9-16} Parity enabled, generation - parity generation bit $\left(\mathrm{PG}_{\mathrm{x}}\right)$ Parity enabled, check - Parity Error Flag ($\overline{\mathrm{PE}_{\mathrm{x}}}$)
ENW	I	Enable Write: Enables the CKW input (for both non-program and program modes).
$\overline{\text { ENR }}$	I	Enable Read: Enables the CKR input (for both non-program and program modes).
CKW	I	Write Clock: The rising edge clocks data into the FIFO when $\overline{\text { ENW }}$ is LOW; updates Half Full, Almost Full, and Full flag states. When MR is asserted, CKW writes data into the program register.
CKR	I	Read Clock: The rising edge clocks data out of the FIFO when $\overline{\text { ENR }}$ is LOW; updates the Empty and Almost Empty flag states. When $\overline{M R}$ is asserted, CKR reads data out of the program register.
$\overline{\mathrm{HF}}$	O	Half Full Flag: Synchronized to CKW.
$\overline{\mathrm{E}} / \overline{\mathrm{F}}$	0	Empty or Full Flag: $\overline{\mathrm{E}}$ is synchronized to CKR; $\overline{\mathrm{F}}$ is synchronized to CKW.
$\overline{\text { PAFE/XO }}$	O	Dual-Mode Pin: Not Cascaded - programmable Almost Full is synchronized to CKW;Programmable Almost Empty is synchronized to CKR. Cascaded - expansion out signal, connected to $\overline{\mathrm{XI}}$ of next device.
$\overline{\mathrm{XI}}$	I	Expansion-In Pin: Not Cascaded $-\overline{\mathrm{XI}}$ is tied to V_{SS}. Cascaded - expansion Input, connected to $\overline{\mathrm{XO}}$ of previous device.
$\overline{\mathrm{FL}}$	I	First Load Pin: Cascaded - the first device in the daisy chain will have $\overline{\mathrm{FL}}$ tied to V_{SS}; all other devices will have $\overline{\mathrm{FL}}$ tied to V_{CC} (Figure 1). Not Cascaded - tied to V_{CC}.
$\overline{\text { MR }}$	I	Master Reset: Resets device to empty condition. Non-Programming Mode: Program register is reset to default condition of no parity and $\overline{\text { PAFE }}$ active at 16 or less locations from Full/Empty. Programming Mode: Data present on D_{0-8} is written into the programmable register on the rising edge of CKW. Program register contents appear on Q_{0-8} after the rising edge of CKR.
$\overline{\mathrm{OE}}$	I	Output Enable for $\mathrm{Q}_{0-7}, \mathrm{Q}_{9-16}, \mathrm{Q}_{8} / \mathrm{PG} 1 / \overline{\mathrm{PE1}}$ and $\mathrm{Q}_{17} / \mathrm{PG} 2 / \overline{\mathrm{PE} 2}$ pins.

Note:

2. T_{A} is the "instant on" case temperature.

Electrical Characteristics Over the Operating Range ${ }^{[3]}$

Capacitance ${ }^{[7]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	12	pF

AC Test Loads and Waveforms ${ }^{[8,9,10, ~ 11, ~ 12] ~}$

THÉVENIN EQUIVALENT

\qquad

c445-5

Equivalent to:

Notes:
3. See the last page of this specification for Group A subgroup testing information.
4. The V_{IH} and $\mathrm{V}_{\text {IL }}$ specifications apply for all inputs except $\overline{\mathrm{XI}}$ and $\overline{\mathrm{FL}}$. The XI pin is not a TTL input. It is connected to either XO of the previous device or $\mathrm{V}_{\mathrm{SS}} . \overline{\mathrm{FL}}$ must be connected to either V_{SS} or V_{CC}.
5. Test no more than one output at a time for not more than one second.
6. Input signals switch from 0 V to 3 V with a rise/fall time of less than 3 ns, clocks and clock enables switch at maximum frequency ($f_{\text {MAX }}$), while data inputs switch at $\mathrm{f}_{\mathrm{MAX}} / 2$. Outputs are unloaded.
7. Tested initially and after any design or process changes that may affect these parameters
8. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ for all AC parameters except for $\mathrm{t}_{\mathrm{OHZ}}$.
9. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for $\mathrm{t}_{\mathrm{OHZ}}$.
10. All AC measurements are referenced to 1.5 V except $\mathrm{t}_{\mathrm{OE}}, \mathrm{t}_{\mathrm{OLZ}}$, and toHz.
11. t_{OE} and $\mathrm{t}_{\mathrm{OLZ}}$ are measured $\mathrm{at} \pm 100 \mathrm{mV}$ from the steady state.
12. t_{OHZ} is measured at +500 mV from V_{OL} and -500 mV from V_{OH}.

Switching Characteristics Over the Operating Range ${ }^{[3,13]}$

Parameter	Description	$\begin{aligned} & \text { 7C44X-14 } \\ & 7 \mathrm{C} 45 \mathrm{X}-14 \end{aligned}$		$\begin{array}{\|l\|} \hline 7 \mathrm{C} 44 \mathrm{X}-20 \\ \text { 7C45X-20 } \\ \hline \end{array}$		$\begin{aligned} & \text { 7C44X-30 } \\ & 7 \mathrm{C} 45 \mathrm{X}-30 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {CKW }}$	Write Clock Cycle	14		20		30		ns
$\mathrm{t}_{\text {CKR }}$	Read Clock Cycle	14		20		30		ns
${ }^{\text {t }}$ CKH	Clock HIGH	6.5		9		12		ns
${ }^{\text {t }}$ CKL	Clock LOW	6.5		9		12		ns
t_{A}	Data Access Time		10		15		20	ns
t_{OH}	Previous Output Data Hold After Read HIGH	0		0		0		ns
t_{FH}	Previous Flag Hold After Read/Write HIGH	0		0		0		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up	5		7		9		ns
t_{HD}	Data Hold	1		1		1		ns
tsen	Enable Set-Up	5		7		9		ns
$\mathrm{t}_{\text {HEN }}$	Enable Hold	1		1		1		ns
toe	$\overline{\text { OE LOW to Output Data Valid }}$		10		15		20	ns
$\mathrm{t}_{\text {OLZ }}{ }^{[7,14]}$	$\overline{\text { OE }}$ LOW to Output Data in Low Z	0		0		0		ns
$\mathrm{t}_{\mathrm{OHZ}}{ }^{[7,14]}$	$\overline{\text { OE HIGH to Output Data in High Z }}$		10		15		20	ns
$\mathrm{t}_{\text {PG }}$	Read HIGH to Parity Generation		10		15		20	ns
$\mathrm{t}_{\text {PE }}$	Read HIGH to Parity Error Flag		10		15		20	ns
t_{FD}	Flag Delay		10		15		20	ns
$\mathrm{t}_{\text {SKEW } 1}{ }^{15]}$	Opposite Clock After Clock	0		0		0		ns
$\mathrm{t}_{\text {SKEW2 }}{ }^{[16]}$	Opposite Clock Before Clock	14		20		30		ns
$\mathrm{t}_{\text {PMR }}$	Master Reset Pulse Width (MR LOW)	14		20		30		ns
${ }^{\text {t }}$ SCMR	Last Valid Clock LOW Set-Up to MR LOW	0		0		0		ns
tohmr	Data Hold From $\overline{\text { MR }}$ LOW	0		0		0		ns
$\mathrm{t}_{\text {MRR }}$	Master Reset Recovery (MR HIGH Set-Up to First Enabled Write/Read)	14		20		30		ns
$\mathrm{t}_{\text {MRF }}$	$\overline{\text { MR }}$ HIGH to Flags Valid		14		20		30	ns
$\mathrm{t}_{\text {AMR }}$	$\overline{\text { MR HIGH to Data Outputs LOW }}$		14		20		30	ns
tsMRP	Program Mode-MR LOW Set-Up	14		20		30		ns
thMRP	Program Mode-- MR LOW Hold	10		15		20		ns
$\mathrm{t}_{\text {FTP }}$	Program Mode-Write HIGH to Read HIGH	14		20		30		ns
t_{AP}	Program Mode-Data Access Time		14		20		30	ns
${ }^{\text {tohP }}$	Program Mode-Data Hold Time from पर् MIGH	0		0		0		ns

Notes:

13. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , and output loading as shown in AC Test Loads and Waveforms and capacitance as in notes 5 and 9 , unless otherwise specified.
14. At any given temperature and voltage condition, $t_{O L Z}$ is greater than $\mathbf{t}_{\mathrm{OHZ}}$ for any given device.
15. $\mathrm{t}_{\text {SKEW } 1}$ is the minimum time an opposite clock can occur after a clock and still be guaranteed not to be included in the current clock cycle (for purposes of flag update). If the opposite clock occurs less than tSKEW1 after the clock, the decision of whether or not to include the opposite clock in the current clock cycle is arbitrary. Note: The opposite clock is the signal to which a flag is not synchronized; i.e., CKW is the opposite
clock for Empty and Almost Empty flags, and CKR is the the opposite clock for the Almost Full, Half Full, and Full flags. The clock is the signal to which a flag is synchronized; i.e., CKW is the clock for the Half Full, Almost Full, and Full flags, and CKR is the clock for Empty and Almost Empty flags.
16. $\mathrm{t}_{\text {SKEW } 2}$ is the minimum time an opposite clock can occur before a clock and still be guaranteed to be included in the current clock cycle (for purposes of flag update). If the opposite clock occurs less than tSKEW2 before the clock, the decision of whether or not to include the opposite clock in the current clock cycle is arbitrary. See Note 15 for definition of clock and opposite clock.

Switching Waveforms

Write Clock Timing Diagram

Read Clock Timing Diagram

Master Reset (Default with Free-Running Clocks) Timing Diagram ${ }^{[17,18, ~ 19, ~ 20] ~}$

Switching Waveforms (continued)
Master Reset (Programming Mode) Timing Diagram ${ }^{[19,20]}$

Master Reset (Programming Mode with Free-Running Clocks) Timing Diagram ${ }^{[19,}$ 20]

c445-10

Notes:

17. To only perform reset (no programming), the following criteria must be met: ENW or CKW must be inactive while MR is LOW.
18. To only perform reset (no programming), the following criteria must be met: ENR or CKR must be inactive while $\overline{M R}$ is LOW.
19. All data outputs $\left(Q_{0-17}\right)$ go LOW as a result of the rising edge of $\overline{M R}$ after $t_{\text {AMR }}$.
20. In this example, Q_{0-17} will remain valid until toHMR if either the first read shown did not occur or if the read occurred soon enough such that the valid data was caused by it.

Switching Waveforms (continued)
Read to Empty Timing Diagram ${ }^{[21,24,25]}$

c445-12

Read to Empty Timing Diagram with Free-Running Clocks ${ }^{[21,22,23,24]}$

Notes:

21. "Count" is the number of words in the FIFO.
22. The FIFO is assumed to be programmed with $\mathrm{P}>0$ (i.e., $\overline{\mathrm{PAFE}}$ does not transition at Empty or Full).
23. R 2 is ignored because the FIFO is empty (count $=0$). It is important to note that R3 is also ignored because W3, the first enabled write after empty, occurs less than $\mathrm{t}_{\text {SKEW }}$ before R3. Therefore, the FIFO still appears empty when R3 occurs. Because W3 occurs greater than $\mathrm{t}_{\text {SKEW2 }}$ before R4, R4 includes W3 in the flag update.
24. CKR is clock and CKW is opposite clock.
25. R3 updates the flag to the Empty state by asserting $\overline{\mathrm{E}} / \overline{\mathrm{F}}$. Because W1 occurs greater than tSKEW1 after R3, R3 does not recognize W1 when updating flag status. But because W1 occurs tskew 2 before R4, R4 includes W1 in the flag update and, therefore, updates FIFO to Almost Empty state. It is important to note that R4 is a latent cycle; i.e., it only updates the flag status regardless of the state of ENR. It does not change the count or the FIFO's data outputs.

Switching Waveforms (continued)

Read to Almost Empty Timing Diagram with Free-Running Clocks ${ }^{[21, ~ 24, ~ 26] ~}$

Read to Almost Empty Timing Diagram with Read Flag Update Cycle with Free-Running Clocks ${ }^{[21,24,26, ~ 27, ~ 28] ~}$

Notes:

26. The FIFO in this example is assumed to be programmed to its default flag values. Almost Empty is 16 words from Empty; Almost Full is 16 locations from Full.
27. R4 only updates the flag status. It does not affect the count because $\overline{\mathrm{ENR}}$ is HIGH.
28. When making the transition from Almost Empty to Intermediate, the count must increase by two (16 18; two enabled writes: W2, W3) before a read (R4) can update flags to the Less Than Half Full state.

Switching Waveforms (continued)
Write to Half Full Timing Diagram with Free-Running Clocks ${ }^{[21, ~ 29, ~ 30, ~ 31] ~}$

Write to Half Full Timing Diagram with Write Flag Update Cycle with Free-Running Clocks ${ }^{[21,29,30,31,32,33]}$

Notes:

29. CKW is clock and CKR is opposite clock.
30. Count $=1,025$ indicates Half Full for the CY7C446 and CY7C456. Count $=513$ indicates Half Full for the CY7C447 and CY7C457. Count $=257$ indicates Half Full for the CY7C448 and CY7C458.
31. When the FIFO contains 1,024 [512] [256] words, the rising edge of the next enabled write causes the $\overline{\mathrm{HF}}$ to be true (LOW).
32. The $\overline{\mathrm{HF}}$ write flag update cycle does not affect the count because $\overline{\mathrm{ENW}}$ is HIGH. It only updates $\overline{\mathrm{HF}}$ to HIGH.
33. When making the transition from Half Full to Less Than Half Full, the count must decrease by two (i.e., $1,025 \$ 1,023$; two enabled reads: R2 and R3) before a write (W4) can update flags to less than Half Full.

Switching Waveforms (continued)
Write to Almost Full Timing Diagram ${ }^{[21,26, ~ 29, ~ 34, ~ 35] ~}$

Write to Almost Full Timing Diagram with Free-Running Clocks ${ }^{[21,26, ~ 29]}$

Notes:

34. W2 updates the flag to the Almost Full state by asserting PAFE. Because R1 occurs greater than tSKEW1 after W2, W2 does not recognize R1 when updating flag status. W3 includes R2 in the flag update because R2 occurs greater than tSKEW2 before W3. Note that W3 does not have to be enabled to update flags.
35. The dashed linesshowW3 as a flag update write rather than an enabled write because ENW is HIGH.

Switching Waveforms (continued)
Write to Almost Full Timing Diagram with Write Flag Update Cycle and Free-Running Clocks[21, 26, 29]

Write to Full Flag Timing Diagram with Free-Running Clocks ${ }^{[21,29,36]}$

Note:

36. W2 is ignored because the FIFO is full (count $=2,048[1,024][512]$). It is important to note that W3 is also ignored because R3, the first enabled read after full, occurs less than tSKEW2 before W3. Therefore,
the FIFO still appears full when W3 occurs. Because R3 occurs greater than $\mathrm{t}_{\text {SKEW2 }}$ before W4, W4 includes R3 in the flag update.

Switching Waveforms (continued)
Even Parity Generation Timing Diagram ${ }^{[37,38]}$

Even Parity Generation Timing Diagram ${ }^{[37,39]}$

Notes:
37. In this example, the FIFO is assumed to be programmed to generate even parity. The Q_{0-7} word is shown. The example is similar for the Q9-16 word.
38. If Q_{0-7} "new word" also has an even number of 1 s , then PG1 stays LOW.
39. If Q_{0-7} "newword" also has odd number of 1s, then PG1 stays HIGH.

Switching Waveforms (continued)
Even Parity Checking ${ }^{[40]}$

Output Enable Timing ${ }^{[41,42]}$

Notes:

40. In this example, the FIFO is assumed to be programmed to check for even parity. The Q_{0-7} word is shown.
41. This example assumes that the time from the CKR rising edge to valid word $\mathrm{M}+1 \geq \mathrm{t}_{\mathrm{A}}$. The Q_{0-7} word is shown.
42. If $\overline{E N R}$ was HIGH around the rising edge of CKR (i.e., read disabled), the valid data at the far right would once again be word M instead of word $\mathrm{M}+1$.
rising edge and held $\mathrm{t}_{\mathrm{HMRP}}$ after the program write falling edge. The user has the ability to also perform a program read during the master reset cycle. This will occur at the rising edge of CKR when $\overline{M R}$ and ENR are asserted. The program read must be performed a minimum of $t_{\text {FTP }}$ after a program write, and the program word will be available $\mathrm{t}_{\mathrm{A} P}$ after the read occurs. If a program write does not occur, a program read may occur a minimum of tSMRP after $\overline{\mathrm{MR}}$ is asserted. This will read the default program value.
When free-running clocks are tied to CKW and CKR, programming can still occur during a master reset cycle with the adherence to a few additional timing parameters. The enable pins must be setup tsEN before the rising edge of CKW or CKR. Hold times of then must also be met for ENW and ENR. $_{\text {EN }}$
 mine the distance from Empty (Full) that the Almost Empty (Almost Full) flags will become active. See Table 1 for a description of the six possible FIFO states. P in Table 1 refers to the decimal equivalent of the binary number represented by $D_{0}-9,10$ or 11 . Programming options for the CY7C44X and CY7C45X are listed in Table 5.
The programmable $\overline{\text { PAFE function on the CY7C45X is only valid }}$ when not cascaded. If the user elects not to program the FIFO's flags, the default is as follows: the Almost Empty condition (Almost Full condition) is activated when the FIFO contains 16 or less words (empty locations).
Parity is programmed with the D_{15-17} bits. See Table 5 for a summary of the various parity programming options. Data present on D_{15-17} during a program write will determine whether the FIFO will generate or check even/odd parity for the data present on D_{0-7} and D_{9-16} thereafter. If the user elects not to program the FIFO, the parity function is disabled. Flag operation and parity are described in greater detail in subsequent sections.

Flag Operation

The CY7C44X and CY7C45X provide three status pins when not cascaded. The three pins, $\overline{\mathrm{E}} / \mathrm{P}, \mathrm{PAFE}$, and $\overline{\mathrm{HF}}$, allow decoding of six FIFO states (Table 1). $\overline{\text { PAFE }}$ is not available when the CY7C45X is cascaded fordepth expansion. All flags are synchronous, meaning that the change of states is relative to one of the clocks (CKR or CKW, as appropriate). ${ }^{[44]}$ The Empty and Almost Empty flag states are exclusively updated by each rising edge of the read clock (CKR). For example, when the FIFO contains 1 word, the next read (rising edge of CKR while $\overline{E N R}=L O W$) causes the flag pins to output a state that represents Empty. The Half Full, Almost Full, and Full flag states are updated exclusively by the write clock
D_{0-17} pins is written into the FIFO on each rising edge of the CKW signal. Similarly, when the ENR signal is active, data in the FIFO memory will be presented on the $\mathrm{Q}_{0}-17$ outputs. New data will be presented on each rising edge of CKR while ENR is active. ENR must set up tsEN before CKR for it to be a valid read function. ENW must occur tsEN before CKW for it to be a valid write function.
An output enable (OE) pin is provided on the CY7C45X to threestate the Q_{0-17} outputs when $\overline{\mathrm{OE}}$ is asserted. When $\overline{\mathrm{OE}}$ is enabled (low), data in the output register will be available to the Q_{0-17} outputs after toe. If devices are cascaded, the $\overline{\mathrm{OE}}$ function will only output data on the FIFO that is read enabled.
The FIFO contains overflow circuitry to disallow additional writes when the FIFO is full, and underflow circuitry to disallow additional reads when the FIFO is empty. An empty FIFO maintains the data of the last valid read onits Q_{0-17} outputs even after additional reads occur.

Programming

The CY7C44X and CY7C45X are programmed during a master reset cycle. If MR and ENW are LOW, a rising edge on CKW will write the $D_{0}-9,10$ or 11 inputs into the programming register ${ }^{[43]}$. $\overline{M R}$ must be set up a minimum of tSMRP before the program write

Table 1. Flag Truth Table ${ }^{[45]}$

$\overline{\mathbf{E}} / \mathbf{F}$	$\overline{\text { PAFE }}$	$\overline{\mathrm{HF}}$	State	7C445, 7C455 Words in FIFO	$7 \mathrm{C} 446,7 \mathrm{C} 456$ Words in FIFO	7C447, 7C457 Words in FIFO
0	0	1	Empty	0	0	0
1	0	1	Almost Empty	$1{ }^{1} \mathrm{P}$	$1{ }^{1} \mathrm{P}$	11P
1	1	1	Less than or Equal to Half Full	$\mathrm{P}+1{ }^{\text {¢ }} 256$	$\mathrm{P}+1{ }^{\text {¢ }} 512$	P + 1 \$ 1024
1	1	0	Greater than Half Full	257-511-P	513.1023-P	1025 $2047-\mathrm{P}$
1	0	0	Almost Full	$512-\mathrm{P} \$ 511$	1024-P11023	2048-P12047
0	0	0	Full	512	1024	2048

Notes:

43. For the CY7C445 and CY7C455 the CKW will write to D_{0-9}, for the CY7C446 and CY7C456 it will write to D_{0-10}, and for the CY7C447 and CY7C457 it will write to D_{0-11}.
44. The synchronous architecture guarantees the flags valid for approximately one cycle of the clock they are synchronized to.
45. P is the decimal value of the binary number represented by D_{0-9} for the CY7C445 and CY7C455, $\mathrm{D}_{0}-10$ for the CY7C446 and CY7C456, and D_{0-11} for the CY7C447 and CY7C457. $\mathrm{P}=0$ signifies that the Almost Empty state $=$ Empty state.

Flag Operation (continued)

(CKW). For example, if the CY7C457 contains 2,047 words (2,048 words indicate Full for the CY7C457), the next write (rising edge of CKW while $E N W=$ LOW) causes the flag pins to output a state that is decoded as Full.
Since the flags denoting emptiness (Empty, Almost Empty) are only updated by CKR and the flags signifying fullness (Half Full, Almost Full, Full) are exclusively updated by CKW, careful attention must be given to the flag operation. The user must be aware that if a boundary (Empty, Almost Empty, Half Full, Almost Full, or Full) is crossed due to an operation from a clock that the flag is not synchronized to (i.e., CKW does not affect Empty or Almost Empty), a flag update cycle is necessary to represent the FIFO's new state. The signal to which a flag is not synchronized will be referred to as the opposite clock (CKW is opposite clock for Empty and Almost Empty flags; CKR is the opposite clock for Half Full, Almost Full, and Full flags). Until a proper flag update cycle is executed, the synchronous flags will not show the new state of the FIFO.
When updating flags, the FIFO must make a decision as to whether or not the opposite clock was recognized when a clock updates the flag. For example (when updating the Empty flag), if a write occurs at least tSKEW1 after a read, the write is guaranteed not to be included when CKR updates the flag. If a write occurs at least tSKEW 2 before a read, the write is guaranteed to be included when CKR updates flag. If a write occurs within tSKEW1 after or tSKEW2 before CKR, then the decision of whether or not to include the write when the flag is updated by CKR is arbitrary.
The update cycle for non-boundary flags (Almost Empty, Half Full, Almost Full) is different from that used to update the boundary flags (Empty, Full). Both operations are described below.

Boundary and Non-Boundary Flags

Boundary Flags (Empty)

The Empty flag is synchronized to the CKR signal (i.e., the Empty flag can only be updated by a clock pulse on the CKR pin). An empty FIFO that is written to will be described with an Empty flag state until a rising edge is presented to the CKR pin. When making the transition from Empty to Almost Empty (or Empty to Less than or Equal to Half Full), a clock cycle on CKR is necessary to update the flags to the current state. In such a state (flags showing Empty even though data has been written to the FIFO), two read clock cycles are required to read data out of the FIFO. The first read serves only to update the flags to the Almost Empty or Less than or Equal to Half Full state, while the second read outputs the data. This first read cycle is known as the latent or flag update cycle because it does not affect the data in the FIFO or the count (numberof words in FIFO). It simply deasserts the Empty flag. The flag is updated regardless of the ENR state. Therefore, the update occurs even when ENR is deasserted (HIGH), so that a valid read is notnecessary toupdate the flags to correctly describe the FIFO. In this example, the write must occur at least tSKEW2 before the flag update cycle in order for the FIFO to guarantee that the write will be included in the count when CKR updates the flags. When a freerunning clock is connected to CKR, the flag is updated each cycle. Table 2 shows an example of a sequence of operations that update the Empty flag.

Boundary Flags (Full)

The Full flag is synchronized to the CKW signal (i.e., the Full flag canonly be updated by a clock pulse on the CKW pin). A full FIFO that is read will be described with a Full flag until a rising edge is presented to the CKW pin. When making the transition from Full
to Almost Full (or Full to Greater Than Half Full), a clock cycle on CKW is necessary to update the flags to the current state. In such a state (flags showing Full even through data has been read from the FIFO), two write cycles are required to write data into the FIFO. The first write serves only to update the flags to the Almost Full or Greater Than Half Full state, while the second write inputs the data. This first write cycle is known as the latent or flagupdate cycle because it does not affect the data in the FIFO or the count (number of words in the FIFO). It simply deasserts the Fullflag. The flag is updated regardless of the ENW state. Therefore, the update occurs even when ENW is deasserted (HIGH), so that a valid write is not necessary to update the flags to correctly describe the FIFO. In this example, the read must occur at least tSKEW 2 before the flag update cycle in order for the FIFO to guarantee that the read will be included in the count when CKW updates the flags. When a free-running clock is connected to CKW, the flag updates each cycle. Full flag operation is similar to the Empty flag operation described in Table 2.

Non-Boundary Flags (Almost Empty, Half Full, Almost Full)

The CY7C44X and CY7C45X feature programmable Almost Empty and Almost Full flags. Each flag can be programmed a specific distance from the corresponding boundary flags (Empty or Full). The flags can be programmed to be activated at the Empty or Full boundary, or at any distance from the Empty/Full boundary. When the FIFO contains the number of words or fewer for which the flags have been programmed, the PAFE flag will be asserted signifying that the FIFO is Almost Empty. When the FIFO is within that same number of empty locations from being Full, the PAFE will also be asserted signifying that the FIFO is Almost Full. The $\overline{\mathrm{HF}}$ flag is decoded to distinguish the states.
The default distance from where PAFE becomes active to the boundary (Empty, Full) is 16 words/locations. The Almost Full and Almost Empty flags can be programmed so that they are only active at Full and Empty boundaries. However, the operation will remain consistent with the non-boundary flag operation that is discussed below.
Almost Empty is only updated by CKR while Half Full and Almost Full are updated by CKW. Non-boundary flags employ flag update cycles similar to the boundary flag latent cycles in order to update the FIFO status. For example, if the FIFO just reaches the Greater than Half Full state, and then two words are read from the FIFO, a write clock (CKW) will be required to update the flags to the Less than Half Full state. However, unlike the boundary flag latent cycle, the state of the enable pin (ENW in this case) affects the operation. Therefore, set-up and hold times for the enable pins must be met ($\mathrm{t}_{\text {SEN }}$ and $\mathrm{t}_{\text {HEN }}$). If the enable pin is active during the flag update cycle, the count and data are updated in addition to PAFE and $\overline{\mathrm{HF}}$. If the enable pin is not asserted during the flag update cycle, only the flags are updated. Tables 3 and 4 show an example of a sequence of operations that update the Almost Empty and Almost Full flags.
The CY7C44X and CY7C45X also feature even or odd parity checking and generation. D_{15-17} are used during a program write to describe the parity option desired. Table 5 summarizes programmable parity options. If the user elects not to program the device, then parity is disabled. Parity information is provided on two multimode output pins ($\mathrm{Q}_{8} / \mathrm{PG} 1 / \overline{\mathrm{PE} 1}$ and $\mathrm{Q}_{17} / \mathrm{PG} 2 / \mathrm{PE} 2$). The three possible modes are described in the following paragraphs.

Table 2. Empty Flag (Boundary Flag) Operation Example

Status Before Operation					Operation	Status After Operation					Comments
Current State of FIFO	$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { AFE }}$	$\overline{\mathbf{H F}}$	Number of Words in FIFO		Next State of FIFO	$\overline{\mathbf{E}} / \mathbf{F}$	$\overline{\text { AFE }}$	$\overline{\mathbf{H F}}$	Number of words in FIFO	
Empty	0	0	1	0	$\begin{array}{\|l} \hline \text { Write } \\ (\overline{\text { ENW }}=0) \\ \hline \end{array}$	Empty	0	0	1	1	Write
Empty	0	0	1	1	$\begin{array}{\|l\|} \hline \text { Write } \\ (\overline{\text { ENW }}=0) \\ \hline \end{array}$	Empty	0	0	1	2	Write
Empty	0	0	1	2	$\begin{aligned} & \mathrm{Read} \\ & (\overline{\mathrm{ENR}}=\mathrm{X}) \end{aligned}$	AE	1	0	1	2	Flag Update
AE	1	0	1	2	$\begin{aligned} & \mathrm{Read} \\ & (\mathrm{ENR}=0) \\ & \hline \end{aligned}$	AE	1	0	1	1	Read
AE	1	0	1	1	$\begin{array}{\|l\|} \hline \text { Read } \\ (\overline{\mathrm{ENR}}=0) \\ \hline \end{array}$	Empty	0	0	1	0	Read (transition from Almost Empty to Empty)
Empty	0	0	1	0	$\begin{array}{\|l\|} \hline \text { Write } \\ (\overline{E N R}=0) \end{array}$	Empty	0	0	1	1	Write
Empty	1	0	1	1	$\begin{aligned} & \mathrm{Read} \\ & (\overline{\mathrm{ENR}}=\mathrm{X}) \end{aligned}$	AE	1	0	1	1	Flag Update
AE	1	0	1	1	$\begin{aligned} & \left.\hline \begin{array}{l} \text { Read } \\ (\mathrm{ENR} \end{array}=0\right) \end{aligned}$	Empty	0	0	1	0	Read (transition from Almost Empty to Empty)

Programmable Parity

Parity Disabled ($\mathrm{Q}_{8} / \mathrm{Q}_{17}$ mode)

When parity is disabled (or the user does not program parity option) the FIFO stores all 18 bits present on D_{0-17} inputs internally and will output all 18 bits on Q_{0} - 17 .

Parity Generate (PG mode)

This mode is used to generate either even or odd parity (as programmed) from D_{0-7} and $D_{9-16} \cdot D_{8}$ and D_{17} inputs are ignored. The parity bits are stored internally as D_{8} and D_{17}, and during a subsequent read will be available on the PG1 and PG2 pins along with the data words from which the parity was generated ($\mathrm{Q}_{0}-7$ and $\left.Q_{9}-16\right)$. For example, if parity generate is set to ODD and the D_{0-7} inputs have an EVEN number of 1s, PG1 will be HIGH.

Parity Check ($\overline{\mathrm{PE}}$ mode)

If the FIFO is programmed for parity checking, it will compare the parity of D_{0-8} and D_{9-17} with the program register. For example, D_{8} and D_{17} will be set according to the result of the parity check on each word. When these words are later read, $\overline{\mathrm{PE}}_{1}$ and $\overline{\mathrm{PE}}_{2}$ will reflect the result of the parity check. If a parity error occurs in $\mathrm{D}_{0}-\frac{8}{\mathrm{P}}, \mathrm{D}_{8}$ will be set LOW internally. When this word is later read, $\overline{\mathrm{PE}} 1$ will be LOW.

Width Expansion Modes

During width expansion allflags (programmable and nonprogrammable) are available. These FIFOs can be expanded in width to provide word width greater than 18 in increments of 18 . During width expansion mode all control line inputs are common. When the FIFO is being read near the Empty (Full) boundary, it is important to note that both sets of flags should be checked to see if they have been updated to the Not Empty (Not Full) condition to insure that the next read (write) will perform the same operation on all devices.
Checking all sets of flags is critical so that data is not read from the FIFOs "staggered" by one clock cycle. This situation could occur when the first write to an empty FIFO and a read are very close together. If the read occurs less than $\mathrm{t}_{\mathrm{SKEW}} 2$ after the first write to two width-expanded devices, A and B, device A may go Almost

Empty (read recognized as flag update) while device Bstays Empty (read ignored). This occurs because a read can be either recognized or ignored if it occurs within tSKEW2 of a write. The next read cycle outputs the first half of the firstword on device A while device B updates its flags to Almost Empty. Subsequent reads will continue to output "staggered" data assuming more data has been written to FIFOs.

Depth Expansion Mode

The CY7C45X can operate up to 50 MHz when cascaded. Depth expansion is accomplished by connecting expansion out ($\overline{\mathrm{XO}})$ of the first device to expansion in ($\overline{\mathrm{XI}}$) of the next device, with $\overline{\mathrm{XO}}$ of the last device connected to $\overline{\mathrm{XI}}$ of the first device. The first device has its first load pin ($\overline{\mathrm{FL}}$) tied to $\mathrm{V}_{\text {SS }}$ while all other devices must have this pin tied to V_{CC}. The first device will be the first to be write and read enabled after a master reset.

Proper operation also requires that all cascaded devices have common CKW, CKR, $\overline{E N W}, \overline{E N R}, \mathrm{D}_{0-17}, \mathrm{Q}_{0-17}$, and $\overline{\mathrm{MR}}$ pins. When cascaded, one device at a time will be read enabled so as to avoid bus contention. By asserting XO when appropriate, the currently enabled FIFO alerts the next FIFO that it should be enabled. The next rising edge on CKR puts Q_{0-17} outputs of the first device into a high-impedance state. This occurs regardless of the state of ENR or the next FIFO's Empty flag. Therefore, if the next FIFO is empty or undergoing a latent cycle, the Q_{0-17} bus will be in a high-impedance state until the next device receives its first read, which brings its data to the Q_{0-17} bus.

Program Write/Read of Cascaded Devices

Programming of cascaded FIFOs is the same as for a single device. Because the controls of the FIFOs are in parallel when cascaded, they all get programmed the same. During program mode, only parity is programmed since Almost Full and Almost Empty flags are not available when CY7C45X is cascaded. Only the "first device" (FIFO with $\overline{\mathrm{FL}}=\mathrm{LOW}$) will output its program register contents on Q_{0-17} during a program read. Q_{0-17} of all other devices will remain in a high-impedance state to avoid bus contention.

Figure 1. Depth Expansion with CY7C45X

Table 3. Almost Empty Flag (Non-Boundary Flag) Operation Example ${ }^{[46]}$

Status Before Operation					Operation	Status After Operation					Comments
$\begin{gathered} \text { Current State } \\ \text { of FIFO } \end{gathered}$	E/F/	$\overline{\text { AFE }}$	$\overline{\mathbf{H F}}$	Number of Words in FIFO		Next State of FIFO	$\overline{\mathbf{E}} / \mathbf{F}$	$\overline{\text { PAFE }}$	$\overline{\mathrm{HF}}$	Number of words in FIFO	
AE	1	0	1	32	$\begin{aligned} & \left.\begin{array}{l} \text { Write } \\ (E N W \end{array}=0\right) \end{aligned}$	AE	1	0	1	33	Write
AE	1	0	1	33	$\begin{aligned} & \text { Write } \\ & (E N W=0) \end{aligned}$	AE	1	0	1	34	Write
AE	1	0	1	34	$\begin{aligned} & \text { Read } \\ & (\mathrm{ENR}=0) \end{aligned}$	< HF	1	1	1	33	Flag Update and Read
< HF	1	1	1	33	$\begin{aligned} & \text { Read } \\ & (\mathrm{ENR}=1) \\ & \hline \end{aligned}$	< HF	1	1	1	33	$\begin{array}{\|l} \hline \text { Ignored Read } \\ (\text { ENR }=1) \\ \hline \end{array}$
< HF	1	1	1	33	$\begin{aligned} & \mathrm{Read} \\ & (\mathrm{ENR}=0) \end{aligned}$	AE	1	0	1	32	$\begin{aligned} & \text { Read (transition from } \\ & <\text { HF to AE) } \end{aligned}$

Note:
46. Applies toboth CY7C44X and CY7C45Xoperationswhen devices are programmed so that Almost Empty becomes active when the FIFO contains 32 or fewer words.

Table 4. Almost Full Flag Operation Example ${ }^{[47]}$

Status Before Operation							Operation
Current State of FIFO	$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { AFE }}$	$\overline{\mathrm{HF}}$	Number of Words in FIFO 7 C 445	Number of Words in FIFO 7 C446	Number of Words in FIFO 7 C 447	
AF	1	0	0	496	1008	2032	$\begin{aligned} & \mathrm{Read} \\ & (\mathrm{ENR}=0) \end{aligned}$
AF	1	0	0	495	1007	2031	$\begin{aligned} & \mathrm{Read} \\ & (\mathrm{ENR}=0) \\ & \hline \end{aligned}$
AF	1	0	0	494	1006	2030	$\begin{aligned} & \text { Write } \\ & (\mathrm{ENW}=1) \end{aligned}$
$>\mathrm{HF}$	1	1	0	494	1006	2030	$\left.\begin{array}{l} \text { Write } \\ \text { ENW } \end{array}=0\right)$
> HF	1	1	0	495	1007	2031	$\begin{aligned} & \left.\begin{array}{l} \text { Write } \\ \text { ENW } \end{array}=0\right) \\ & \hline \end{aligned}$

Status After Operation							Comments
Next State of FIFO	$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	PAFE	$\overline{\mathbf{H F}}$	Number of Words in FIFO 7C445	$\begin{gathered} \text { Number of } \\ \text { Words in FIFO } \\ 7 \mathrm{C} 446 \end{gathered}$	Number of Words in FIFO 7 C 447	
AF	1	0	0	495	1007	2031	Read
AF	1	0	0	494	1006	2030	Read
> HF	1	1	0	494	1006	2030	Flag Update
$>$ HF	1	1	0	495	1007	2031	Write
AF	1	0	0	496	1008	2032	Write (transition from $>\mathrm{HF}$ to AF)

Table 5. Programmable Parity Options

D17	D16	D15	Condition
0	X	X	Parity disabled.
1	0	0	Generate even parity on PG output pin.
1	0	1	Generate odd parity on PG output pin.
1	1	0	Check for even parity. Indicate error on $\overline{\text { PE }}$ output pin.
1	1	1	Check for odd parity. Indicate error on $\overline{\mathrm{PE}}$ output pin.

Note:

47. Default condition or programmed so that Almost Full becomes active when the FIFO contains 16 or less empty locations.

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
14	CY7C445-14DC	D26	48-Lead (600-Mil) Sidebraze DIP	Commercial
	CY7C445-14PC	P25	48-Lead (600-Mil) Molded DIP	
	CY7C445-14PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C445-14DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
20	CY7C445-20DC	D26	48-Lead (600-Mil) Sidebraze DIP	Commercial
	CY7C445-20PC	P25	48-Lead (600-Mil) Molded DIP	
	CY7C445-20PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C445-20DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
30	CY7C445-30DC	D26	48-Lead (600-Mil) Sidebraze DIP	Commercial
	CY7C445-30PC	P25	48-Lead ($600-\mathrm{Mil}$) Molded DIP	
	CY7C445-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C445-30DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
14	CY7C446-14DC	D26	48-Lead (600-Mil) Sidebraze DIP	Commercial
	CY7C446-14PC	P25	48-Lead (600-Mil) Molded DIP	
	CY7C446-14PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C446-14DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
20	CY7C446-20DC	D26	48-Lead (600-Mil) Sidebraze DIP	Commercial
	CY7C446-20PC	P25	48-Lead (600-Mil) Molded DIP	
	CY7C446-20PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C446-20DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
30	CY7C446-30DC	D26	48-Lead (600-Mil) Sidebraze DIP	Commercial
	CY7C446-30PC	P25	48-Lead (600-Mil) Molded DIP	
	CY7C446-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C446-30DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
14	CY7C447-14DC	D26	48-Lead (600-Mil) Sidebraze DIP	Commercial
	CY7C447-14PC	P25	48-Lead (600-Mil) Molded DIP	
	CY7C447-14PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C447-14DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
20	CY7C447-20DC	D26	48-Lead (600-Mil) Sidebraze DIP	Commercial
	CY7C447-20PC	P25	48-Lead (600-Mil) Molded DIP	
	CY7C447-20PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C447-20DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military
30	CY7C447-30DC	D26	48-Lead (600-Mil) Sidebraze DIP	Commercial
	CY7C447-30PC	P25	48-Lead (600-Mil) Molded DIP	
	CY7C447-30PI	P25	48-Lead (600-Mil) Molded DIP	Industrial
	CY7C447-30DMB	D26	48-Lead (600-Mil) Sidebraze DIP	Military

SEMICONDUCTOR
Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
14	CY7C455-14JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C455-14JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C455-14LMB	L69	52-Square Leadless Chip Carrier	Military
	CY7C455-20JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C455-20JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C455-20LMB	L69	52-Square Leadless Chip Carrier	Military
	CY7C455-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C455-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C455-30LMB	L69	52-Square Leadless Chip Carrier	Military

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
14	CY7C456-14JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C456-14JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C456-14LMB	L69	52-Square Leadless Chip Carrier	Military
	CY7C456-20JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C456-20JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C456-20LMB	L69	52-Square Leadless Chip Carrier	Military
30	CY7C456-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C456-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C456-30LMB	L69	52-Square Leadless Chip Carrier	Military

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
14	CY7C457-14JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C457-14LC	L69	52-Square Leadless Chip Carrier	
	CY7C457-14JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C457-14LMB	L69	52-Square Leadless Chip Carrier	Military
	CY7C457-20JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C457-20JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C457-20LMB	L69	52-Square Leadless Chip Carrier	Military
30	CY7C457-30JC	J69	52-Lead Plastic Leaded Chip Carrier	Commercial
	CY7C457-30JI	J69	52-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C457-30LMB	L69	52-Square Leadless Chip Carrier	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameters	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
I_{CC}	$1,2,3$
I_{OS}	$1,2,3$
I_{OZ}	$1,2,3$

Switching Characteristics

Parameters	Subgroups
${ }_{\text {t }}$	9, 10, 11
$\mathrm{t}_{\text {CKR }}$	9, 10, 11
$\mathrm{t}_{\text {cKh }}$	9, 10, 11
${ }_{\text {t }}$	9, 10, 11
t_{A}	9, 10, 11
${ }^{\text {toH }}$	9, 10, 11
$\mathrm{t}_{\text {FH }}$	9, 10, 11
$\mathrm{t}_{\text {SD }}$	9, 10, 11
t_{HD}	9, 10, 11
$\mathrm{t}_{\text {SEN }}$	9, 10, 11
$\mathrm{t}_{\text {HEN }}$	9, 10, 11
t_{OE}	9, 10, 11
$\mathrm{t}_{\text {PG }}$	9, 10, 11
$\mathrm{t}_{\text {PE }}$	9, 10, 11
t_{FD}	9, 10, 11
$\mathrm{t}_{\text {SkEW1 }}$	9, 10, 11
$\mathrm{t}_{\text {SKEW2 }}$	9, 10, 11
$\mathrm{t}_{\text {PMR }}$	9, 10, 11
$\mathrm{t}_{\text {SCMR }}$	9, 10, 11
tohmr	9, 10, 11
$\mathrm{t}_{\text {MRR }}$	9, 10, 11
$\mathrm{t}_{\text {MRF }}$	9, 10, 11
$\mathrm{t}_{\text {AMR }}$	9, 10, 11
$\mathrm{t}_{\text {SMRP }}$	9, 10, 11
$\mathrm{t}_{\text {HMRP }}$	9, 10, 11
$\mathrm{t}_{\text {FTP }}$	9, 10, 11.
$\mathrm{t}_{\text {AP }}$	9, 10, 11
$\mathrm{t}_{\text {OHP }}$	9, 10, 11

Document \#: 38-00211-A

Cascadable Clocked 512×9 and Cascadable Clocked $2 \mathrm{~K} \times 9$ FIFOs with Programmable Flags

Features

- 512×9 (CY7C451) and $2,048 \times 9$ (CY7C453) FIFO buffer memory
- Expandable in width and depth
- High-speed 70-MHz standalone; 50-MHz cascaded
- Supports free-running $\mathbf{5 0 \%}$ duty cycle clock inputs
- Empty, Almost Empty, Half Full, Almost Full, and Full status flags
- Programmable Almost Full/Empty flags
- Parity generation/checking
- Fully asynchronous and simultaneous read and write operation
- Output Enable ($\overline{\mathbf{O E}}$)
- Independent read and write enable pins
- Center power and ground pins for reduced noise
- Available in 300-mil 32-pin DIP, PLCC, and LCC packages
- Proprietary 0.8μ CMOS technology
- Low power
$-I_{C C}=70 \mathrm{~mA}$
manner by a free-running read clock (CKR) and a read enable pin ($\overline{\mathrm{ENR}}$). The read (CKR) and write (CKW) clocks may be tied together for single-clock operation or the two clocks may be run independently for asynchronous read/write applications. Clock frequencies up to 71.4 MHz are acceptable in the standalone configuration, and up to 50 MHz is acceptable when FIFOs are cascaded for depth expansion.
Depth expansion is possible using the cascade input ($\overline{\mathrm{XI}}$) and cascade output $(\overline{\mathrm{XO}})$. The $\overline{\mathrm{XO}}$ signal is connected to the $\overline{\mathrm{XI}}$ of the next device, and the XO of the last device should be connected to the $\overline{\mathrm{XI}}$ of the first device. In standalone mode, the input ($\overline{\mathrm{XI}}$) pin is simply tied to V_{SS}.
The CY7C451 and CY7C453 provide three status pins to the user. These pins are decoded to determine one of six states: Empty, Almost Empty, Less than or Equal to Half Full, Greater than Half Full, Almost Full, and Full (see Table 1). The Almost Empty/ Full flag ($\overline{\mathrm{PAFE}}$) and $\overline{\mathrm{XO}}$ functions share the same pin. The Almost Empty/Full flag is
valid in the standalone and width
lutions for a wide variety of data buffering lutions for a wide variety of data buffering
needs, including high-speed data acquisilutions for a wide variety of data buffering
needs, including high-speed data acquisition, multiprocessor interfaces, and communications buffering.
Both FIFOs have 9-bit input and output ports that are controlled by separate clock
and enable signals. The input port is conports that are controlled by separate clock trolled by a free-running clock (CKW) and
a write enable pin (ENW). When ENW is a write enable pin (ENW). When ENW is asserted, data is written into the FIFO on
the rising edge of the CKW signal. While the rising edge of the CKW signal. While $\overline{\text { ENW }}$ is held active, data is continually written into the FIFO on each CKW cycle. The output port is controlled in a similar

Functional Description

The CY7C451 and CY7C453 are highspeed, low-power, first-in first-out (FIFO) memories with clocked read and write interfaces. Both FIFOs are 9 bits wide. The CY7C451 has a 512 -word by 9 -bit memory array, while the CY7C453 has a 2,048 -word by 9 -bit memory array. Devices can be cascaded to increase FIFO depth. Programmable features include Almost Full/Empty flags and generation/ checking of parity. These FIFOs provide so-

Functional Description (continued)
expansion configurations. In the depth expansion, this pin provides the expansion out ($\overline{\mathrm{XO}}$) information that is used to signal the next FIFO when it will be activated.
The flags are synchronous, i.e., they change state relative to either the read clock (CKR) or the write clock (CKW). When entering or exiting the Empty and Almost Empty states, the flags are updated exclusively by the CKR. The flags denoting Half Full, Almost Full, and Full states are updated exclusively by CKW. The synchronous
flag architecture guarantees that the flags maintain their status for some minimum time.
The CY7C451 and the CY7C453 use center power and ground for reduced noise. Both configurations are fabricated using an advanced $0.8 \mu \mathrm{~N}$-well CMOS technology. Input ESD protection is greater than 2001 V , and latch-up is prevented by the use of reliable layout techniques, guard rings, and a substrate bias generator.

Selection Guide

	$\mathbf{7 C 4 5 1 - 1 4}$ $\mathbf{7 C 4 5 3 - 1 4}$	$\mathbf{7 C 4 5 1 - 2 0}$ $\mathbf{7 C 4 5 3 - 2 0}$	$\mathbf{7 C 4 5 1 - 3 0}$ $\mathbf{7 C 4 5 3 - 3 0}$
Maximum Frequency (MHz)	$71.4^{[1]}$	50	33.3
Maximum Cascadable Frequency	$\mathrm{N} / \mathrm{A}^{[2]}$	50	33.3
Maximum Access Time (ns)	10	15	20
Minimum Cycle Time (ns)	14	20	30
Minimum Clock HIGH Time (ns)	6.5	9	12
Minimum Clock LOW Time (ns)	6.5	9	12
Minimum Data or Enable Set-Up (ns)	7	9	$\mathbf{1 2}$
Minimum Data or Enable Hold (ns)	0	0	0
Maximum Flag Delay (ns)	10	15	20
Maximum Current (mA)	140	120	100

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V
DC Input Voltage . -3.0 V to +7.0 V
Output Current into Outputs (LOW) 20 mA

[^59]Static Discharge Voltage . > 2001 V
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[3]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

3. T_{A} is the "instant on" case temperature.

Pin Definitions

Signal Name	I/O	Description
D_{0-8}	I	Data Inputs: When the FIFO is not full and $\overline{\text { ENW }}$ is active, CKW (rising edge) writes data ($\mathrm{D}_{0}-8$) into the FIFO's memory. If $\overline{M R}$ is asserted at the rising edge of CKW then data is written into the FIFO's programming register. D_{8} is ignored if the device is configured for parity generation.
Q_{0-7}	O	Data Outputs: When the FIFO is not empty and $\overline{\text { ENR }}$ is active, CKR (rising edge) reads data $\left(\mathrm{Q}_{0}-7\right)$ out of the FIFO's memory. If $\overline{M R}$ is active at the rising edge of CKR then data is read from the programming register.
$\mathrm{Q}_{8} / \mathrm{PG} / \overline{\mathrm{PE}}$	O	Function varies according to mode: Parity disabled - same function as $\mathrm{Q}_{0}-7$ Parity enabled, generation - parity generation bit (PG) Parity enabled, check - Parity Error Flag ($\overline{\mathrm{PE}}$)
ENW	I	Enable Write: enables the CKW input (for both non-program and program modes)
ENR	I	Enable Read: enables the CKR input (for both non-program and program modes)
CKW	I	Write Clock: the rising edge clocks data into the FIFO when $\overline{\text { ENW }}$ is LOW; updates Half Full, Almost Full, and Full flag states. When MR is asserted, CKW writes data into the program register.
CKR	I	Read Clock: the rising edge clocks data out of the FIFO when ENR is LOW; updates the Empty and Almost Empty flag states. When MR is asserted, CKR reads data out of the program register.
$\overline{\mathrm{HF}}$	0	Half Full Flag - synchronized to CKW.
$\overline{\mathrm{E}} / \overline{\mathrm{F}}$	0	Empty or Full Flag - $\overline{\mathrm{E}}$ is synchronized to CKR; $\overline{\mathrm{F}}$ is synchronized to CKW
$\overline{\text { PAFE/ } / \overline{\mathrm{XO}}}$	O	Dual-Mode Pin: Not Cascaded - Programmable Almost Full is synchronized to CKW;Programmable Almost Empty is synchronized to CKR Cascaded - Expansion Out signal, connected to $\overline{\mathrm{XI}}$ of next device
$\overline{\text { XI }}$	I	Not Cascaded - $\overline{\mathrm{XI}}$ is tied to V_{SS} Cascaded - Expansion Input, connected to $\overline{\mathrm{XO}}$ of previous device
$\overline{\mathrm{FL}}$	I	First Load Pin: Cascaded - the first device in the daisy chain will have $\overline{\mathrm{FL}}$ tied to V_{SS}; all other devices will have $\overline{\mathrm{FL}}$ tied to V_{CC} (Figure2) Not Cascaded - tied to V_{CC}
$\overline{\mathrm{MR}}$	I	Master Reset: resets device to empty condition. Non-Programming Mode: program register is reset to default condition of no parity and $\overline{\text { PAFE }}$ active at 16 or less locations from Full/Empty. Programming Mode: Data present on D_{0-8} is written into the programmable register on the rising edge of CKW. Program register contents appear on Q_{0-8} after the rising edge of CKR.
$\overline{\mathrm{OE}}$	I	Output Enable for Q_{0-7} and $\mathrm{Q}_{8} / \mathrm{PG} / \overline{\mathrm{PE}}$ pins

Electrical Characteristics Over the Operating Rangee ${ }^{[4]}$

Capacitance ${ }^{10]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	12	pF

AC Test Loads and Waveforms ${ }^{[11,12,13,14,15]}$

Equivalent to:
THÉVENIN EQUIVALENT

$$
\text { OUTPUT } \circ \text { OL } 200 \Omega
$$

Notes:
4. See the last page of this specification for Group A subgroup testing information.
5. The $V_{I H}$ and $V_{\text {IL }}$ specifications apply for all inputs except $\overline{X I}$ and $\overline{\mathrm{FL}}$. The XI pin is not a TTL input. It is connected to either XO of the previous device or V_{SS}. $\overline{\mathrm{FL}}$ must be connected to either V_{SS} or V_{CC}.
6. Test no more than one output at a time for not more than one second.
7. Input signals switch from 0 V to 3 V with a rise/fall time of 3 ns or less, clocks and clock enables switch at maximum frequency ($\mathrm{f}_{\mathrm{MAX}}$), while data inputs switch at $\mathrm{f}_{\mathrm{MAX}} / 2$. Outputs are unloaded.
8. Input signals switch from 0 V to 3 V with a rise/fall time less than 3 ns , clocks and clock enables switch at 20 MHz , while the data inputs switch at 10 MHz . Outputs are unloaded.

ALL INPUT PULSES

C451-5

Switching Characteristics Over the Operating Range ${ }^{[2,16]}$

Parameter	Description	$\begin{aligned} & \text { 7C451-14 } \\ & 7 \mathrm{C} 453-14 \end{aligned}$		$\begin{aligned} & \text { 7C451-20 } \\ & 7 \mathrm{C} 453-20 \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 451-30 \\ & 7 \mathrm{C} 453-30 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {CKW }}$	Write Clock Cycle	14		20		30		ns
$\mathrm{t}_{\text {CKR }}$	Read Clock Cycle	14		20		30		ns
$\mathrm{t}^{\text {CKH }}$	Clock HIGH	6.5		9		12		ns
$\mathrm{t}_{\text {CKL }}$	Clock LOW	6.5		9		12		ns
$\mathrm{t}_{\mathrm{A}}{ }^{\text {[17] }}$	Data Access Time		10		15		20	ns
t_{OH}	Previous Output Data Hold After Read HIGH	0		0		0		ns
t_{FH}	Previous Flag Hold After Read/Write HIGH	0		0		0		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up	7		9		12		ns
t_{HD}	Data Hold	0		0		0		ns
tsen	Enable Set-Up	7		9		12		ns
$\mathrm{t}_{\text {HEN }}$	Enable Hold	0		0		0		ns
t_{OE}	$\overline{\mathrm{OE}}$ LOW to Output Data Valid		10		15		20	ns
$\mathrm{t}_{\mathrm{OLZ}}{ }^{[6]}$	$\overline{\text { OE }}$ LOW to Output Data in Low Z	0		0		0		ns
$\mathrm{t}_{\mathrm{OHZ}}{ }^{[6]}$	$\overline{\mathrm{OE}}$ HIGH to Output Data in High Z		10		15		20	ns
$\mathrm{t}_{\text {PG }}$	Read HIGH to Parity Generation		10		15		20	ns
$\mathrm{t}_{\text {PE }}$	Read HIGH to Parity Error Flag		10		15		20	ns
t_{FD}	Flag Delay		10		15		20	ns
$\mathrm{t}_{\text {SKEW1 }}{ }^{\text {[18] }}$	Opposite Clock After Clock	0		0		0	-	ns
tSKEW2 $^{\text {[19] }}$	Opposite Clock Before Clock	14		20		30		ns
tPMR	Master Reset Pulse Width (MR LOW)	14		20		30		ns
$\mathrm{t}_{\text {SCMR }}$	Last Valid Clock LOW Set-Up to $\overline{\text { MR }}$ LOW	0		0		0		ns
$\mathrm{t}_{\text {OHMR }}$	Data Hold From MR LOW	0		0		0		ns
$\mathrm{t}_{\text {MRR }}$	Master Reset Recovery (MR HIGH Set-Up to First Enabled Write/Read)	14		20		30		ns
$\mathrm{t}_{\text {MRF }}$	$\overline{\text { MR }}$ HIGH to Flags Valid		14		20		30	ns
$\mathrm{t}_{\text {AMR }}$	$\overline{\mathrm{MR}}$ HIGH to Data Outputs LOW		14		20		30	ns
tsMRP	Program Mode--MR LOW Set-Up	14		20		30		ns
tHMRP	Program Mode-MR LOW Hold	10		15		25		ns
$\mathrm{t}_{\text {FTP }}$	Program Mode-Write HIGH to Read HIGH	14		20		30		ns
t_{AP}	Program Mode-Data Access Time		14		20		30	ns
$\mathrm{t}_{\text {OHP }}$	Program Mode-Data Hold Time from MR HIGH	0		0		0		ns

Notes:

16. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , and output loading as shown in AC Test Loads and Waveforms and capacitance as in notes 6 and 12, unless otherwise specified.
17. Access time includes all data outputs switching simultaneously.
18. $\mathrm{t}_{\text {SKEW } 1}$ is the minimum time an opposite clock can occur after a clock and still be guaranteed not to be included in the current clock cycle (for purposes of flag update). If the opposite clock occurs less than tSKEW1 after the clock, the decision of whether or not to include the opposite clock in the current clock cycle is arbitrary. Note: The opposite clock is the signal to which a flag is not synchronized; i.e., CKW is the opposite
clock for Empty and Almost Empty flags, CKR is the the opposite clock for the Almost Full, Half Full, and Full flags. The clock is the signal to which a flag is synchronized; i.e., CKW is the clock for the Half Full, Almost Full, and Full flags, CKR is the clock for Empty and Almost Empty flags.
19. $\mathrm{t}_{\text {SKEW } 2}$ is the minimum time an opposite clock can occurbefore a clock and still be guaranteed to be included in the current clock cycle (for purposes of flag update). If the opposite clock occurs less than tSKEW2 before the clock, the decision of whether or not to include the opposite clock in the current clock cycle is arbitrary. See Note 18 for definition of clock and opposite clock.

Switching Waveforms

Master Reset (Default with Free-Running Clocks) Timing Diagram ${ }^{[20,21, ~ 22, ~ 23] ~}$

CY7C451
CY7C453

Switching Waveforms (continued)
Master Reset (Programming Mode) Timing Diagram ${ }^{\text {[22, 23] }}$

Master Reset (Programming Mode with Free-Running Clocks) Timing Diagram ${ }^{\text {[22, 23] }}$

Notes:

20. To only perform reset (no programming), the following criteria must be met: ENW or CKW must be inactive while MR is LOW.
21. To only perform reset (no programming), the following criteria must be met: ENR or CKR must be inactive while MR is LOW.
22. All data outputs ($\mathrm{Q}_{0}-8$) go LOW as a result of the rising edge of $\overline{\mathrm{MR}}$ after $t_{\text {AMR }}$.
23. In this example, Q_{0-8} will remain valid until toHMR if either the first read shown did not occur or if the read occurred soon enough such that the valid data was caused by it.

Switching Waveforms (continued)

Read to Empty Timing Diagram ${ }^{[24, ~ 27, ~ 28] ~}$
PAFE \qquad

Read to Empty Timing Diagram with Free-Running Clocks ${ }^{[24, ~ 25, ~ 26, ~ 27] ~}$

PAFE
LOW

Notes:

24. "Count" is the number of words in the FIFO.
25. The FIFO is assumed to be programmed with $\mathrm{P}>0$ (i.e., $\overline{\mathrm{PAFE}}$ does not transition at Empty or Full).
26. R 2 is ignored because the FIFO is empty (count $=0$). It is important to note that R3 is also ignored because W3, the first enabled write after empty, occurs less than tSKEW2 before R3. Therefore, the FIFO still appears empty when R3 occurs. Because W3 occurs greater than tSKEW2 2 before R4, R4 includes W3 in the flag update.
27. CKR is clock; CKW is opposite clock.
28. R3 updates the flag to the Empty state by asserting $\overline{\mathrm{E}} / \mathrm{F}$. Because W1 occurs greater than tsKEw1 after R3, R3 does not recognize W1 when updating flag status. But because W 1 occurs greater than $\mathrm{t}_{\mathrm{SKEW}} 2$ before R4, R4 includes W1 in the flag update and, therefore, updates FIFO to Almost Empty state. It is important to note that R4 is a latent cycle; i.e., it only updates the flag status regardless of the state of ENR. It does not change the count or the FIFO's data outputs.

Switching Waveforms (continued)

Read to Almost Empty Timing Diagram with Free-Running Clocks ${ }^{[24, ~ 27, ~ 29] ~}$

Read to Almost Empty Timing Diagram with Read Flag Update Cycle and Free-Running Clocks[24, 27, 29, 30, 31]

Notes:

29. The FIFO in this example is assumed to be programmed to its default flag values. Almost Empty is 16 words from Empty; Almost Full is 16 locations from Full.
30. R4 only updates the flag status. It does not affect the count because ENR is HIGH.
31. When making the transition from Almost Empty to Intermediate, the count must increase by two (16 18; two enabled writes: W2, W3) before a read (R4) can update flags to the Less Than Half Full state.

Switching Waveforms (continued)

Write to Half Full Timing Diagram with Free-Running Clocks[24, 32, 33, 34]

Write to Half Full Timing Diagram with Write Flag Update Cycle with Free-Running Clocks ${ }^{[24,32,33,34, ~ 35, ~ 36] ~}$

PAFE \qquad
HIGH

Notes:

32. CKW is clock and CKR is opposite clock.
33. Count $=1,025$ indicates Half Full for the CY7C453 and count $=257$ indicates Half Full for the CY7C451. Values for CY7C451 count are shown in brackets.
34. When the FIFO contains 1,024 [256] words, the rising edge of the next enabled write causes the $\overline{\mathrm{HF}}$ to be true (LOW).
35. The $\overline{\mathrm{HF}}$ write flag update cycle does not affect the count because $\overline{\mathrm{ENW}}$ is HIGH. It only updates $\overline{\mathrm{HF}}$ to HIGH.
36. When making the transition from Half Full to Less Than Half Full, the count musi decrease by two ($1,0,0251,023$; two enabied reads: $\overline{\mathrm{K}} 2$ and R3) before a write (W4) can update flags to less than Half Full.

Switching Waveforms (continued)

Write to Almost Full Timing Diagram [24, 29, 32, 37, 38]

Write to Almost Full Timing Diagram with Free-Running Clocks ${ }^{[24,29,32]}$

Notes:

37. W2 updates the flag to the Almost Full state by asserting $\overline{\text { PAFE. Be- }}$ cause R1 occurs greater than tSKEW1 after W2, W2 does not recognize R1 when updating the flag status. W3 includes R2 in the flag update because R2 occurs greater than tSKEW2 before W3. Note that W3 does not have to be enabled to update flags.
38. The dashed linesshow W3 as a flag update write rather than an enabled write because ENW is deasserted.

CY7C451

Switching Waveforms (continued)
Write to Almost Full Timing Diagram with Write Flag Update Cycle and Free-Running Clocks ${ }^{\text {[24, 29, 32] }}$

Write to Full Flag Timing Diagram with Free-Running Clocks[24, 25, 32, 39]

Notes:
39. W2 is ignored because the FIFO is full (count $=2,048$ [512]). It is important to note that W3 is also ignored because R3, the first enabled read after full, occurs less than tSKEW2 before W3. Therefore, the

FIFO still appears full when W3 occurs. Because R3 occurs greater than $\mathrm{t}_{\text {SKEW2 }}$ before W 4 , W4 includes R3 in the flag update.

Switching Waveforms (continued)

Even Parity Generation Timing Diagram ${ }^{[40, ~ 41]}$

Even Parity Generation Timing Diagram ${ }^{[40,42]}$

Notes:

40. In this example, the FIFO is assumed to be programmed to generate even parity.
41. If $\mathrm{Q}_{0}-7$ "new word" also has an odd number of 1 s , then PG stays HIGH.

Switching Waveforms (continued)

Even Parity Checking ${ }^{[43]}$

CKW

 C451-23

Output Enable Timing ${ }^{[44,45]}$

Notes:

43. In this example, the FIFO is assumed to be programmed to check for even parity.
44. This example assumes that the time from the CKR rising edge to valid word $\mathrm{M}+1 \geq \mathrm{t}_{\mathrm{A}}$.
45. If $\overline{E N R}$ was HIGH around the rising edge of CKR (i.e., read disabled), the valid data at the far right would once again be word M instead of word $\mathrm{M}+1$.

Architecture

The CY7C451 and CY7C453 consist of an array of 512/2048 words of 9 bits each (implemented by an array of dual-port RAM cells), a read pointer, a write pointer, control signals (CKR, CKW, ENR, $\overline{\mathrm{ENW}}, \overline{\mathrm{MR}}, \overline{\mathrm{OE}}, \overline{\mathrm{FL}}, \overline{\mathrm{XI}}, \overline{\mathrm{XO}}$), and flags ($\overline{\mathrm{HF}}, \overline{\mathrm{E}} / \overline{\mathrm{F}}, \overline{\mathrm{PAFE}}$).

Resetting the FIFO

Upon power-up, the FIFO must be reset with a Master Reset (MR) cycle. This causes the FIFO to enter the Empty condition signified by $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ and $\overline{\text { PAFE }}$ being LOW and $\overline{\mathrm{HF}}$ being HIGH. All data outputs $\left(Q_{0}-8\right)$ go low at the rising edge of $\overline{M R}$. In order for the FIFO to reset to its default state, a falling edge must occur on $\overline{\mathrm{MR}}$ and the user must not read or write while MR is LOW (unless $\overline{\text { ENR }}$ and/or $\overline{\text { ENW }}$ are HIGH or unless the device is being programmed). Upon completion of the Master Reset cycle, all data outputs will go LOW $\mathrm{t}_{\mathrm{AMR}}$ after $\overline{\mathrm{MR}}$ is deasserted. All flags are guaranteed to be valid $\mathrm{t}_{\mathrm{MRF}}$ after $\overline{\mathrm{MR}}$ is taken HIGH.

FIFO Operation

When the ENW signal is active (LOW), data present on the D_{0-8} pins is written into the FIFO on each rising edge of the CKW signal. Similarly, when the ENR signal is active, data in the FIFO memory will be presented on the Q_{0-8} outputs. New data will be presented on each rising edge of CKR while ENR is active. ENR must set up tsEn before CKR for it to be a valid read function. ENW must occur tSEN $^{\text {EN }}$ before CKW for it to be a valid write function.
An output enable $(\overline{\mathrm{OE}})$ pin is provided to tri-state the Q_{0-8} outputs when $\overline{\mathrm{OE}}$ is not asserted. When $\overline{\mathrm{OE}}$ is enabled, data in the output register will be available to Q_{0-8} outputs after t_{OE}. If devices are cascaded, the $\overline{\mathrm{OE}}$ function will only output data on the FIFO that is read enabled.
The FIFO contains overflow circuitry to disallow additional writes when the FIFO is full, and underflow circuitry to disallow additional reads when the FIFO is empty. An empty FIFO maintains the data of the lastvalid read on its Q_{0-8} outputs even after additional reads occur.

Programming

The CY7C451 and CY7C453 are programmed during a master reset cycle. If $\overline{M R}$ and $\overline{E N W}$ are LOW, a rising edge on CKW will write D_{0-8} inputs into the programming register. MR must be set up a minimum of tsMRP before the program write rising edge and held $t_{\text {HMRP }}$ after the program write falling edge. The user has the ability to also perform a program read during the master reset cycle. This will occur at the rising edge of CKR when $\overline{M R}$ and $\overline{E N R}$ are asserted. The program read must be performed a minimum of $\mathrm{t}_{\text {FTP }}$ after a program write, and the program word will be available $t_{A P}$ after the read occurs. If a program write does not occur, a program read may occur a minimum of tSMRP after $\overline{M R}$ is asserted. This will read the default program value.
When free-running clocks are tied to CKW and CKR, programming can still occur during a master reset cycle with the adherence to a few additional timing parameters. The enable pins must be set -up $\mathrm{t}_{\text {SEN }}$ before the rising edge of CKW or CKR. Hold times of $\mathrm{t}_{\text {HEN }}$ must also be met for ENW and ENR.
Data present on D_{0-5} during a program write will determine the distance from Empty (Full) that the Almost Empty (Almost Full) flags will become active. See Table 1 for a description of the six possible FIFO states. P in Table 1 refers to the decimal equivalent of the binary number represented by D_{0-5}. Programming options for the CY7C451 and CY7C453 are listed in Table 5. Programming resolution is 16 words for either device.

The programmable $\overline{\text { PAFE }}$ function is only valid when the CY7C451/453 are not cascaded. If the user elects not to program the FIFO's flags, the default $(\mathbf{P}=1)$ is as follows: Almost Empty condition (Almost Full condition) is activated when the CY7C451/453 contain 16 or less words (empty locations).
Parity is programmed with the D_{6-8} bits. See Table 1 for a summary of the various parity programming options. Data present on D_{6-8} during a program write will determine whether the FIFO will generate or check even/odd parity for the data present on D_{0-8} thereafter. If the user elects not to program the FIFO, the parity function is disabled. Flag operation and parity are described in greater detail in subsequent sections.

Flag Operation

The CY7C451/453 provide three status pins when not cascaded. The three pins, $\overline{\mathrm{E}} / \overrightarrow{\mathrm{F}}, \overline{\mathrm{PAFE}}$, and $\overline{\mathrm{HF}}$, allow decoding of six FIFO states (Table 1). $\overline{\text { PAFE }}$ is not available when FIFOs are cascaded for depth expansion. All flags are synchronous, meaning that the change of states is relative to one of the clocks (CKR or CKW, as appropriate. See Figure 1.). The synchronous architecture guarantees some minimum valid time for the flags. The Empty and Almost Empty flag states are exclusively updated by each rising edge of the read clock (CKR). For example, when the FIFO contains 1 word, the next read (rising edge of CKR while $\overline{\mathrm{ENR}}=\mathrm{LOW}$) causes the flag pins to output a state that represents Empty. The Half Full, Almost Full, and Full flag states are updated exclusively by the write clock (CKW). For example, if the CY7C453 FIFO contains 2047 words (2048 words indicate Full for the CY7C453), the next write (rising edge of CKW while $\overline{E N W}=L O W$) causes the flag pins to output a state that is decoded as Full.

Table 1. Flag Truth Table ${ }^{[46]}$

$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { PAFE }}$	$\overline{\mathbf{H F}}$	State	$\begin{gathered} \hline \text { CY7C451 } \\ 512 \times 9 \end{gathered}$ Number of Words in FIFO	$\begin{gathered} \hline \text { CY7C453 } \\ 2 \mathrm{~K} \times 9 \end{gathered}$ Number of Words in FIFO
0	0	1	Empty	0	0
1	0	1	Almost Empty	1 - $(16 \cdot \mathrm{P})$	1 - $(16 \cdot \mathrm{P})$
1	1	1	Less than or Equal to Half Full	${ }_{256}^{(16 \cdot P)+1}$	$\begin{aligned} & (16 \cdot P)+1 \\ & 1024 \end{aligned}$
1	1	0	Greater than Half Full	$\begin{aligned} & 257.511- \\ & (16 \cdot \mathrm{P}) \end{aligned}$	$\begin{aligned} & 1025 \\ & 2047-16 \cdot P \end{aligned}$
1	0	0	$\begin{gathered} \hline \text { Almost } \\ \text { Full } \end{gathered}$	$\begin{aligned} & 512-(16 \bullet \\ & \mathrm{P}){ }^{-16} \end{aligned}$	$\begin{aligned} & \hline 2048-(16 \cdot \\ & \mathrm{P}) \$ 2047 \end{aligned}$
0	0	0	Full	512	2048

Note:
46. P is the decimal value of the binary number represented by D_{0-5}. When programming the CY7C451/53, P can have values from 0 to 15 for the CY7C451 and values from 0 to 63 for the CY7C453. See Table 5 for $\mathrm{D}_{0}-5$ representation. $\mathrm{P}=0$ signifies Almost Empty state $=$ Empty state.

SEMICONDUCTOR

Figure 1. Flag Logic Diagram

Flag Operation (continued)

Since the flags denoting emptiness (Empty, Almost Empty) are only updated by CKR and the flags signifying fullness (Half Full, Almost Full, Full) are exclusively updated by CKW, careful attention must be given to the flag operation. The user must be aware that if a boundary (Empty, Almost Empty, Half Full, Almost Full, or Full) is crossed due to an operation from a clock that the flag is not synchronized to (i.e., CKW does not affect Empty or Almost Empty), a flag update cycle is necessary to represent the FIFO's new state. The signal to which a flag is not synchronized will be referred to as the opposite clock (CKW is opposite clock for Empty and Almost Empty flags; CKR is the opposite clock for Half Full, Almost Full, and Full flags). Until a proper flag update cycle is executed, the synchronous flags will not show the new state of the FIFO.
When updating flags, the CY7C451/453 must make a decision as to whether or not the opposite clock was recognized when a clock updates the flag. For example (when updating the Empty flag), if a write occurs at least tsKEW1 after a read, the write is guaranteed not to be included when CKR updates the flag. If a write occurs at least tSKEW2 2 before a read, the write is guaranteed to be included when CKR updates flag. If a write occurs within tSKEW $_{1} /$ SKEW $_{2}$ after or before CKR, then the decision of whether or not to include the write when the flag is updated by CKR is arbitrary.
The update cycle for non-boundary flags (Almost Empty, Half Full, Almost Full) is different from that used to update the boundary flags (Empty, Full). Both operations are described below.

Boundary and Non-Boundary Flags

Boundary Flags (Empty)

The Empty flag is synchronized to the CKR signal (i.e., the Empty flag can only be updated by a clock pulse on the CKR pin). An empty FIFO that is written to will be described with an Empty flag state until a rising edge is presented to the CKR pin. When making the transition from Empty to Almost Empty (or Empty to Less than or Equal to Half Full), a clock cycle on the CKR is necessary to update the flags to the current state. In such a state (flags showing Empty even though data has been written to the FIFO), two read cycles are required to read data out of FIFO. The first read serves only to update the flags to the Almost Empty or Less than or Equal to Half Full state, while the second read outputs the data. This first read cycle is known as the latent or flag update cycle because it does not affect the data in the FIFO or the count (number of words in FIFO). It simply deasserts the Empty flag. The flag is updated regardless of the ENR state. Therefore, the update occurs even when ENR is unasserted (HIGH), so that a valid read is not necessary to update the flags to correctly describe the FIFO. In this example, the write must occur at least $\mathrm{t}_{\text {SKEW }}$ before the flag update cycle in order for the FIFO to guarantee that the write will be included in the count when CKR updates the flags. When a freerunning clock is connected to CKR, the flag is updated each cycle. Table 2 shows an example of a sequence of operations that update the Empty flag.

Boundary Flags (Full)

The Full flag is synchronized to the CKW signal (i.e., the Full flag can only be updated by a clock pulse on the CKW pin). A full FIFO that is read will be described with a Full flag until a rising edge is presented to the CKW pin. When making the transition from Full to Almost Full (or Full to Greater Than Half Full), a clock cycle on the CKW is necessary to update the flags to the current state. In such a state (flags showing Full even through data has been read from the FIFO), two write cycles are required to write data into the FIFO. The first write serves only to update the flags to the Almost Full or Greater Than Half Full state, while the second write inputs the data. This first write cycle is known as the latent or flag update cycle because it does not affect the data in the FIFO or the count (number of words in the FIFO). It simply deasserts the Full flag. The flag is updated regardless of the ENW state. Therefore, the update occurs even when ENW is deasserted (HIGH), so that a valid write is not necessary to update the flags to correctly describe the FIFO. In this example, the read must occur at least tSKEW2 before the flag update cycle in order for the FIFO to guarantee that the read will be included in the count when CKW updates the flags. When a free-running clock is connected to CKW, the flag updates each cycle. Full flag operation is similar to the Empty flag operation described in Table 2.

Non-Boundary Flags (Almost Empty, Half Full, Almost Full)

The CY7C451/453 feature programmable Almost Empty and Almost Full flags. Each flag can be programmed a specific distance from the corresponding boundary flags (Empty or Full). The flags can be programmed to be activated at the Empty or Full boundary, or at a distance of up to 1008 words/locations for the CY7C453 (240 words/locations for the CY7C451) from the Empty/Full boundary. The programming resolution is 16 words/locations. When the FIFO contains the number of words or fewer for which the flags have been programmed, the PAFE flag will be asserted signifying that the FIFO is Almost Empty. When the FIFO is within that same number of empty locations from being Full, the PAFE will also be asserted signifying that the FIFO is Almost Full. The $\overline{\mathrm{HF}}$ flag is decoded to distinguish the states.

Table 2. Empty Flag (Boundary Flag) Operation Example

Status Before Operation					Operation	Status After Operation					Comments
Current State of FIFO	$\overline{\mathbf{E} / \mathbf{F}}$	$\overline{\text { AFE }}$	$\overline{\mathbf{H F}}$	Number of Words in FIFO		Next State of FIFO	$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { AFE }}$	$\overline{\text { HF }}$	Number of words in FIFO	
Empty	0	0	1	0	$\begin{array}{\|l\|} \hline \text { Write } \\ (\overline{E N W}=0) \end{array}$	Empty	0	0	1	1	Write
Empty	0	0	1	1	$\begin{array}{\|l} \hline \text { Write } \\ \text { (ENW }=0) \\ \hline \end{array}$	Empty	0	0	1	2	Write
Empty	0	0	1	2	$\begin{aligned} & \text { Read } \\ & (\overline{\mathrm{ENR}}=\mathrm{X}) \end{aligned}$	AE	1	0	1	2	Flag Update
AE	1	0	1	2	$\begin{aligned} & \text { Read } \\ & (\mathrm{ENR}=0) \end{aligned}$	AE	1	0	1	1	Read
AE	1	0	1	1	$\begin{aligned} & \text { Read } \\ & (\mathrm{ENR}=0) \end{aligned}$	Empty	0	0	1	0	Read(transition fromA1most Empty to Empty)
Empty	0	0	1	0	$\begin{aligned} & \text { Write } \\ & (\mathrm{ENR}=0) \end{aligned}$	Empty	0	0	1	1	Write
Empty	1	0	1	1	$\begin{aligned} & \mathrm{Read} \\ & (\overline{\mathrm{ENR}}=\mathrm{X}) \end{aligned}$	AE	1	0	1	1	Flag Update
AE	1	0	1	1	$\begin{aligned} & \mathrm{Read} \\ & (\mathrm{ENR}=0) \end{aligned}$	Empty	0	0	1	0	Read(transition fromAlmost Empty to Empty)

The default distance (CY7C451/453 not programmed) from where PAFE becomes active to the boundary (Empty, Full) is 16 words/ locations. The Almost Full and Almost Empty flags can be programmed so that they are only active at Full and Empty boundaries. However, the operation will remain consistent with the non-boundary flag operation that is discussed below.
Almost Empty is only updated by CKR while Half Full and Almost Full are updated by CKW. Non-boundary flags employ flag update cycles similar to the boundary flag latent cycles in order to update the FIFO status. For example, if the FIFO just reaches the Greater than Half Full state, and then two words are read from the FIFO, a write clock (CKW) will be required to update the flags to the Less than Half Full state. However, unlike the boundary flag latent cycle, the state of the enable pin (ENW in this case) affects the operation. Therefore, set-up and hold times for the enable pins must be met (tSEN and $\mathrm{t}_{\text {HEN }}$). If the enable pin is active during the flag update cycle, the count and data are updated in addition to PAFE and $\overline{\mathrm{HF}}$. If the enable pin is not asserted during the flag update cycle, only the flags are updated. Tables 3 and 4 show an example of a sequence of operations that update the Almost Empty and Almost Full flags.

Programmable Parity

The CY7C451/453 also features even or odd parity checking and generation. D_{6-8} are used during a program write to describe the parity option desired. Table 6 gives a summary of programmable parity options. If user elects not to program the device, then parity is disabled. Parity information is provided on one multi-mode output pin (Q8/PG/PE). The three possible modes are described in the following paragraphs. Regardless of the mode selected, the $\overline{\mathrm{OE}}$ pin retains tri-state control of all $9 \mathrm{Q}_{0-8}$ bits.

Parity Disabled (Q8 mode)

When parity is disabled (or user does not program parity option) the CY7C451/453 stores all 9 bits present on D_{0-8} inputs internally and will output all 9 bits on Q_{0-8}.

Parity Generate (PG mode)

This mode is used to generate either even or odd parity (as programmed) from $\mathrm{D}_{0-7} . \mathrm{D}_{8}$ input is ignored. The parity bit is stored internally as D_{8} and during a subsequent read will be available on
the PG pin along with the data word from which the parity was generated $\left(\mathrm{Q}_{0}-7\right)$. For example, if parity generate is set to ODD and the D_{0-7} inputs have an EVEN number of 1s, PG will be HIGH.

Parity Check ($\overline{\mathbf{P E}}$ mode)

If the CY7C451/453 is programmed for parity checking, the FIFO will compare the parity of D_{0-8} with the program register. If the expected parity is present, D_{8} will be set HIGH internally. When this word is later read, $\overline{\mathrm{PE}}$ will be HIGH . If a parity error occurs, D_{8} will be set LOW internally. When this word is later read, PE will be LOW. For example, if parity check is set to odd and D_{0-8} have an even number of 1 s , a parity error occurs. When that word is later read, $\overline{\text { PE }}$ will be asserted (LOW).

Width Expansion Modes

During width expansion all flags (programmable and nonprogrammable) are available. The CY7C451/453 can be expanded in width to provide word width greater than 9 in increments of 9 . During width expansion mode all control line inputs are common. When the FIFO is being read near the Empty (Full) boundary, it is important to note that both sets of flags should be checked to see if they have been updated to the Not Empty (Not Full) condition to insure that the next read (write) will perform the same operation on all devices.
Checking all sets of flags is critical so that data is not read from the FIFOs "staggered" by one clock cycle. This situation could occur when the first write to an empty FIFO and a read are very close together. If the read occurs less than tSKEW2 after the first write to two width-expanded devices, A and B, device A may go Almost Empty (read recognized as flag update) while device Bstays Empty (read ignored). This occurs because a read can be either recognized or ignored if it occurs within tSKEW2 of a write. The next read cycle outputs the first half of the first word on device A while device B updates its flags to Almost Empty. Subsequent reads will continue to output "staggered" data assuming more data has been written to FIFOs.

Depth Expansion Mode

The CY7C451/453 can operate up to 50 MHz when cascaded. Depth expansion is accomplished by connecting expansion out ($\overline{\mathrm{XO}}$) of the first device to expansion in $(\overline{\mathrm{XI}})$ of the next device, with
impedance state until the next device receives its first read, which brings its data to the Q_{0-8} bus.

Program Write/Read of Cascaded Devices

Programming of cascaded FIFOs is the same as for a single device. Because the controls of the FIFOs are in parallel when cascaded, they all get programmed the same. During program mode, only parity is programmed since Almost Full and Almost Empty flags are not available when CY7C451/453 are cascaded. Only the "first device" (FIFO with $\overline{\mathrm{FL}}=\mathrm{LOW}$) will output its program register contents on Q_{0-8} during a program read. Q_{0-8} of all other devices will remain in a high-impedance state to avoid bus contention.
$\overline{\mathrm{XO}}$ of the last device connected to $\overline{\mathrm{XI}}$ of the first device. The first device has its first load pin (FL) tied to $\mathrm{V}_{\text {SS }}$ while all other devices must have this pin tied to $V_{C C}$. The first device will be the first to be write and read enabled after a master reset.
Proper operation also requires that all cascaded devices have common CKW, CKR, ENW, ENR, $\mathrm{D}_{0-8}, \mathrm{Q}_{0-8}$, and $\overline{\text { MR }}$ pins. When cascaded, one device at a time will be read enabled so as to avoid bus contention. By asserting XO when appropriate, the currently enabled FIFO alerts the next FIFO that it should be enabled. The next rising edge on CKR puts Q_{0-8} outputs of the first device into a high-impedance state. This occurs regardless of the state of ENR or the next FIFO's Empty flag. Therefore, if the next FIFO is empty or undergoing a latent cycle, the Q_{0-8} bus will be in a high-

Figure 2. Depth Expansion with CY7C451/3

Table 3. Almost Empty Flag (Non-Boundary Flag) Operation Example ${ }^{[47]}$

Status Before Operation					Operation	Status After Operation					Comments
$\begin{gathered} \text { Current State } \\ \text { of FIFO } \end{gathered}$	$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { AFE }}$	$\overline{\mathbf{H F}}$	Number of Words in FIFO		Next State of FIFO	$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { PAFE }}$	$\overline{\mathrm{HF}}$	Number of words in FIFO	
AE	1	0	1	32	$\begin{array}{\|l} \hline \text { Write } \\ (\overline{\text { ENW }}=0) \end{array}$	AE	1	0	1	33	Write
AE	1	0	1	33	$\begin{array}{\|l} \hline \text { Write } \\ (\text { ENW }=0) \end{array}$	AE	1	0	1	34	Write
AE	1	0	1	34	$\begin{aligned} & \mathrm{Read} \\ & (\mathrm{ENR}=0) \end{aligned}$	< HF	1	1	1	33	Flag Update and Read
< HF	1	1	1	33	$\begin{aligned} & \mathrm{Read} \\ & (\mathrm{ENR}=1) \end{aligned}$	< HF	1	1	1	33	$\begin{aligned} & \text { Ignored Read } \\ & (\mathrm{ENR}=1) \end{aligned}$
< HF	1	1	1	33	$\begin{aligned} & \mathrm{Read} \\ & (\overline{\mathrm{ENR}}=0) \end{aligned}$	AE	1	0	1	32	Read (Transition from $<\mathrm{HF}$ to AE)

Table 4. Almost Full Flag Operation Example ${ }^{[48]}$

Status Before Operation						Operation	Status After Operation						Comments
$\begin{aligned} & \text { Current } \\ & \text { State of } \\ & \text { FIFO } \end{aligned}$	$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { AFE }}$	$\overline{\mathbf{H F}}$	Number of Words in FIFO CY7C451	Number of Words in FIFO CY7C453		Next State of FIFO	$\overline{\mathbf{E}} / \overline{\mathbf{F}}$	$\overline{\text { PAFE }}$	$\overline{\mathbf{H F}}$	Number of Words in FIFO CY7C451	Number of Words in FIFO CY7C453	
AF	1	0	0	496	2032	$\begin{aligned} & \text { Read } \\ & (\overline{\mathrm{ENR}}=0) \end{aligned}$	AF	1	0	0	495	2031	Read
AF	1	0	0	495	2031	$\begin{aligned} & \text { Read } \\ & (\overline{E N R}=0) \end{aligned}$	AF	1	0	0	494	2030	Read
AF	1	0	0	494	2030	$\begin{aligned} & \text { Write } \\ & (\overline{\mathrm{ENW}}=1) \end{aligned}$	> HF	1	1	0	494	2030	Flag Update
>HF	1	1	0	494	2030	$\begin{aligned} & \text { Write } \\ & (\mathrm{ENW}=0) \end{aligned}$	> HF	1	1	0	495	2031	Write
> HF	1	1	0	495	2031	$\begin{aligned} & \text { Write } \\ & (\mathrm{ENW}=0) \end{aligned}$	AF	1	0	0	496	2032	Write (Transition from $>\mathrm{HF}$ to AF)

Table 5. Programmable Almost Full/Almost Empty Options - CY7C451/CY7C453[49]

D5	D4	D3	D2	D1	D0	PAFE Active when CY7C451/453 is:	$\mathbf{P}^{[50]}$
0	0	0	0	0	0	Completely Full and Empty.	0
0	0	0	0	0	1	16 or less locations from Empty/Full (default)	1
0	0	0	0	1	0	32 or less locations from Empty/Full	2
0	0	0	0	1	1	48 or less locations from Empty/Full	3
:		:	:	:	:	\vdots	:
0	0	1	1	1	0	224 or less locations from Empty/Full	14
0	0	1	1	1	1	240 or less locations from Empty/Full	15
:	:	:	:		\vdots		:
1	1	1	1	1	0	992 or less locations from Empty/Full	62
1	1	1	1	1	1	1008 or less locations from Empty/Full	63

Table 6. Programmable Parity Options

D8	D7	D6	
0	X	X	Parity disabled.
1	0	0	Generate even parity on PG output pin.
1	0	1	Generate odd parity on PG output pin.
1	1	0	Check for even parity. Indicate error on $\overline{\mathrm{PE}}$ output pin.
1	1	1	Check for odd parity. Indicate error on $\overline{\mathrm{PE}}$ output pin.

Notes:
47. Applies to both CY7C451 and CY7C453 operations when devices are
49. D4 and D5 are don't care for CY7C451. programmed so that Almost Empty becomes active when the FIFO
50. Referenced in Table 1.
48. Programmed so that Almost Full becomes active when the FIFO contains 16 or less empty locations.

Typical DC and AC Characteristics

NORMALIZED t $_{\mathrm{A}}$ vs.
SUPPLY VOLTAGE

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

NORMALIZED t $_{A}$ vs. AMBIENT TEMPERATURE

NORMALIZED SUPPLY
CURRENT vs. FREQUENCY

TYPICAL t ${ }_{A}$ CHANGE vs. OUTPUT LOADING

OUTPUT SINK CURRENT vs. OUTPUT VOLTAGE

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
14	CY7C451-14DC	D32	32-Lead (300-Mil) CerDIP	Commercial
	CY7C451-14JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C451-14JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C451-14DMB	D32	32-Lead (300-Mil) CerDIP	Military
	CY7C451-14LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
20	CY7C451-20DC	D32	32-Lead (300-Mil) CerDIP	Commercial
	CY7C451-20JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C451-20JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C451-20DMB	D32	32-Lead (300-Mil) CerDIP	Military
	CY7C451-20LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
30	CY7C451-30DC	D32	32-Lead (300-Mil) CerDIP	Commercial
	CY7C451-30JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C451-30JI	D32	32-Lead (300-Mil) CerDIP	Industrial
	CY7C451-30DMB	D32	32-Lead (300-Mil) CerDIP	Military
	CY7C451-30LMB	L55	32-Pin Rectangular Leadless Chip Carrier	

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
14	CY7C453-14DC	D32	32-Lead (300-Mil) CerDIP	Commercial
	CY7C453-14JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C453-14JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C453-14DMB	D32	32-Lead (300-Mil) CerDIP	Military
	CY7C453-14LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
20	CY7C453-20DC	D32	32-Lead (300-Mil) CerDIP	Commercial
	CY7C453-20JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C453-20JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C453-20DMB	D32	32-Lead (300-Mil) CerDIP	Military
	CY7C453-20LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
30	CY7C453-30DC	D32	32-Lead (300-Mil) CerDIP	Commercial
	CY7C453-30JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C453-30JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C453-30DMB	D32	32-Lead (300-Mil) CerDIP	Military
	CY7C453-30LMB	L55	32-Pin Rectangular Leadless Chip Carrier	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
I_{IX}	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{CC} 2}$	$1,2,3$
I_{SB}	$1,2,3$
I_{OS}	$1,2,3$
I_{OZ}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
$\mathrm{t}_{\mathrm{CKW}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CKR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CKH}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CKL}}$	$9,10,11$
t_{A}	$9,10,11$
t_{OH}	$9,10,11$
t_{FH}	$9,10,11$
t_{SD}	$9,10,11$
t_{HD}	$9,10,11$
$\mathrm{t}_{\mathrm{SEN}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HEN}}$	$9,10,11$
t_{OE}	$9,10,11$
t_{tG}	$9,10,11$
t_{PE}	$9,10,11$
t_{FD}	$9,10,11$
$\mathrm{t}_{\mathrm{SKEW}}$	$9,10,11$
$\mathrm{t}_{\mathrm{SKEW}}$	$9,10,11$
$\mathrm{t}_{\mathrm{PMR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{SCMR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{OHMR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{MRR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{MRF}}$	$9,10,11$
$\mathrm{t}_{\mathrm{AMR}}$	$9,10,11$
$\mathrm{t}_{\text {SMRP }}$	$9,10,11$
$\mathrm{t}_{\mathrm{HMRP}}$	$9,10,11$
$\mathrm{t}_{\mathrm{FTP}}$	$9,10,11$
t_{AP}	$9,10,11$
$\mathrm{t}_{\mathrm{OHP}}$	$9,10,11$

Document \#: 38-00125-E

Cascadable 8 K x 9 FIFO Cascadable 16 K x 9 FIFO Cascadable 32 K x 9 FIFO

Features

- $8 \mathrm{~K} \times 9,16 \mathrm{~K} \times 9,32 \mathrm{~K} \times 9$ FIFO buffer memory
- Asynchronous read/write
- High-speed 33.3-MHz read/write independent of depth/width
- Low operating power
$-I_{C C}(\max)=160 \mathrm{~mA}$ (commercial)
$-\mathrm{I}_{\mathrm{CC}}$ (max.) $=165 \mathrm{~mA}$ (military)
- Half Full flag in standalone
- Empty and Full flags
- Retransmit in standalone
- Expandable in width and depth
- 5V $\pm 10 \%$ supply
- PLCC, LCC, and 600-mil DIP packaging
- TTL compatible
- Three-state outputs
- Pin compatible to IDT7205 and IDT7206

Functional Description

The CY7C460, CY7C462, and CY7C464 are respectively, $8 \mathrm{~K}, 16 \mathrm{~K}$, and 32 K words by 9 -bit wide first-in-first-out (FIFO) memories. Each FIFO memory is organized such that the data is read in the same sequential order that it was written. Full and Empty flags are provided to prevent overrun and underrun. Three additional pins are also provided to facilitate unlimited expansion in width, depth, or both. The depth expansion technique steers the control signals from one device to another in parallel, thus eliminating the serial addition of propagation delays, so that throughput is not reduced. Data is steered in a similar manner.
The read and write operations may be asynchronous; each can occur at a rate of 33.3 MHz . The write operation occurs when the write ($\overline{\mathrm{W}}$) signal is LOW. Read occurs when read $(\overline{\mathbf{R}})$ goes LOW. The nine
data outputs go to the high-impedance state when $\overline{\mathrm{R}}$ is HIGH.
A Half Full ($\overline{\mathrm{HF}}$) output flag is provided that is valid in the standalone (single device) and width expansion configurations. In the depth expansion configuration, this pin provides the expansion out ($\overline{\mathrm{XO}}$) information that is used to tell the next FIFO that it will be activated.
In the standalone and width expansion configurations, a LOW on the retransmit ($\overline{\mathrm{RT}}$) input causes the FIFOs to retransmit the data. Read enable ($\overline{\mathrm{R}}$) and write enable $(\overline{\mathrm{W}})$ must both be HIGH during a retransmit cycle, and then $\overline{\mathrm{R}}$ is used to access the data.
The CY7C460, CY7C462, and CY7C464 are fabricated using an advanced $0.8-\mathrm{mi}$ cron N -well CMOS technology. InputESD protection is greater than 2000 V and latchup is prevented by careful layout, guard rings, and a substrate bias generator.

PRELIMINARY

Selection Guide

		$\begin{aligned} & \text { 7C460-15 } \\ & \text { 7C462-15 } \\ & \text { 7C464-15 } \end{aligned}$	$\begin{aligned} & \hline \text { 7C460-20 } \\ & \text { 7C462-20 } \\ & \text { 7C464-20 } \end{aligned}$	$\begin{aligned} & \text { 7C460-25 } \\ & \text { 7C462-25 } \\ & \text { 7C464-25 } \end{aligned}$	$\begin{aligned} & \hline \text { 7C460-40 } \\ & \text { 7C462-40 } \\ & \text { 7C464-40 } \end{aligned}$
Frequency (MHz)		33.3	33.3	28.5	20
Maximum Access Time (ns)		15	20	25	40
Maximum Operating Current (mA)	Commercial	160		145	125
	Military		165	165	145

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $\ldots-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
Power Dissipation
1.0W

Output Current, into Outputs (LOW) 20 mA
Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		$\begin{aligned} & \text { 7C460-15 } \\ & \text { 7C462-15 } \\ & \text { 7C464-15 } \end{aligned}$		$\begin{aligned} & \text { 7C460-20 } \\ & \text { 7C462-20 } \\ & \text { 7C464-20 } \end{aligned}$		$\begin{aligned} & \text { 7C460-25 } \\ & \text { 7C462-25 } \\ & \text { 7C464-25 } \end{aligned}$		$\begin{aligned} & \hline 7 \mathrm{C} 460-40 \\ & \text { 7C462-40 } \\ & \text { 7C464-40 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
VOH	$\begin{aligned} & \text { Output HIGH } \\ & \text { Voltage } \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=$ Min., I_{O}	$-2.0 \mathrm{~mA}$	2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., I_{0}	$=8.0 \mathrm{~mA}$		0.4		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		Com'l	2.0				2.0		2.0		V
			Mil/Ind			2.2		2.2		2.2		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8		0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
ICC	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. } \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com' ${ }^{3}{ }^{3}$		160				145		125	mA
			Mi//Ind ${ }^{[4]}$				165		165		145	
$\mathrm{I}_{\text {SB1 }}$	Standby Current	$\begin{aligned} & \text { All Inputs = } \\ & \mathrm{V}_{\mathrm{IH}} \text { Min. } \end{aligned}$	Com'l		25				25		25	mA
			Mil/Ind				30		30		30	
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	$\begin{array}{\|l} \hline \text { All Inputs } \\ \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{array}$	Com'1		20				20		20	mA
			Mil/Ind				25		25		25	
IOS	$\begin{aligned} & \hline \text { Output Short } \\ & \text { Circuit Current }{ }^{[5]} \end{aligned}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND}$			-90		-90		-90		-90	mA

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\mathrm{I}_{\mathrm{CC}}($ commercial $)=125 \mathrm{~mA}+[(\mathrm{f}-20) * 2.5 \mathrm{~mA} / \mathrm{MHz}]$
for $\mathrm{f} \geq 20 \mathrm{MHz}$
where $f=$ the larger of the write or read operating frequency.
4. $\quad I_{C C}($ military $)=$
$130 \mathrm{~mA}+[(\mathrm{f}-20) * 2.5 \mathrm{~mA} / \mathrm{MHz}]$ for $\mathrm{f} \geq 20 \mathrm{MHz}$
where $\bar{f}=$ the larger of the write or read operating frequency.
5. For test purposes, not more than one output at a time should be shorted. Short circuit test duration should not exceed 1 second.
6. Tested initially and after any design or process changes that may affect these parameters.

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

AC Test Loads and Waveforms

Equivalent to: THEVENIN EQUIVALENT

Switching Characteristics Over the Operating Range $[2,7]$

Parameter	Description	$\begin{aligned} & \hline \text { 7C460-15 } \\ & \text { 7C462-15 } \\ & \text { 7C464-15 } \end{aligned}$		$\begin{aligned} & 7 \mathbf{C 4 6 0 - 2 0} \\ & 7 \mathbf{C 4 6 2 - 2 0} \\ & 7 \mathbf{C 4 6 4 - 2 0} \end{aligned}$		$\begin{aligned} & \text { 7C460-25 } \\ & \text { 7C462-25 } \\ & \text { 7C464-25 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C460-40 } \\ & 7 \mathrm{C} 462-40 \\ & 7 \mathrm{C} 464-40 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	30		30		35		50		ns
t_{A}	Access Time		15		20		25		40	ns
$\mathrm{t}_{\text {RR }}$	Read Recovery Time	10		10		10		10		ns
t_{PR}	Read Pulse Width	15		20		25		40		ns
$\mathrm{t}_{\text {LZR }}$	Read LOW to Low Z	3		3		3		3		ns
$\mathrm{t}_{\mathrm{DVR}}{ }^{[8]}$	Data Valid After Read HIGH	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZR}}{ }^{[8]}$	Read HIGH to High Z		15		15		18		25	ns
$\mathrm{t}_{\mathrm{W}} \mathrm{C}$	Write Cycle Time	30		30		35		50		ns
tPW	Write Pulse Width	15		20		25		40		ns
$\mathrm{t}_{\mathrm{HWZ}}$	Write HIGH to Low Z	5		5		5		5		ns
$\mathrm{t}_{\text {WR }}$	Write Recovery Time	10		10		10		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up Time	11		12		15		20		ns
t_{HD}	Data Hold Time	0		0		0		0		ns
$\mathrm{t}_{\text {MRSC }}$	$\overline{\text { MR Cycle Time }}$	30		30		35		50		ns
$t_{\text {PMR }}$	$\overline{\text { MR Pulse Width }}$	15		20		25		40		ns
$\mathrm{t}_{\text {RMR }}$	$\overline{\text { MR Recovery Time }}$	10		10		10		10		ns
$t_{\text {RPW }}$	Read HIGH to MR HIGH	15		20		25		40		ns
$t_{\text {WPW }}$	Write HIGH to MR HIGH	15		20		25		40		ns
$\mathrm{t}_{\text {RTC }}$	Retansmit Cycle Time	30		30		35		50		ns
$\mathrm{t}_{\text {PRT }}$	Retransmit Pulse Width	15		20		25		40		ns
$\mathrm{t}_{\text {RTR }}$	Retransmit Recovery Time	10		10		10		10		ns
$\mathrm{t}_{\mathrm{EFL}}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{EF}}$ LOW		25		30		35		50	ns
$t_{\text {HFH }}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{HF}} \mathrm{HIGH}$		25		30		35		50	ns
$\mathrm{t}_{\text {FFH }}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{FF}} \mathrm{HIGH}$		25		30		35		50	ns

Switching Characteristics Over the Operating Range ${ }^{[2,7]}$ (continued)

Parameter	Description	$\begin{aligned} & \text { 7C460-15 } \\ & \text { 7C462-15 } \\ & 7 \mathrm{C} 464-15 \end{aligned}$		$\begin{aligned} & \text { 7C460-20 } \\ & \text { 7C462-20 } \\ & \text { 7C464-20 } \end{aligned}$		$\begin{aligned} & 7 \mathrm{C} 460-25 \\ & 7 \mathrm{C} 462-25 \\ & 7 \mathrm{C} 464-25 \end{aligned}$		$\begin{aligned} & 7 \mathbf{C 4 6 0 - 4 0} \\ & \text { 7C462-40 } \\ & 7 \mathbf{C 4 6 4 - 4 0} \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {REF }}$	Read LOW to $\overline{\text { EF }}$ LOW		15		20		25		40	ns
$\mathrm{t}_{\text {RFF }}$	Read HIGH to $\overline{\mathrm{FF}}$ HIGH		15		20		25		40	ns
$t_{\text {WEF }}$	Write HIGH to EF HIGH		15		20		25		40	ns
$\mathrm{t}_{\text {WFF }}$	Write LOW to $\overline{\mathrm{FF}}$ LOW		15		20		25		40	ns
$\mathrm{t}_{\text {WHF }}$	Write LOW to $\overline{\text { HF }}$ LOW		25		30		35		50	ns
$\mathrm{t}_{\text {RHF }}$	Read HIGH to $\overline{\text { HF HIGH }}$		25		30		35		50	ns
$\mathrm{t}_{\text {RAE }}$	Effective Read from Write HIGH		15		20		25		40	ns
$\mathrm{t}_{\text {RPE }}$	Effective Read Pulse Width After EF HIGH	15		20		25		40		ns
$\mathrm{t}_{\text {WAF }}$	Effective Write from Read HIGH		15		20		25		40	ns
$\mathrm{t}_{\text {WPF }}$	Effective Write Pulse Width After FFF HIGH	15		20		25		40		ns
${ }^{\text {t }}$ (${ }^{\text {(}}$	Expansion Out LOW Delay from Clock		15		20		25		40	ns
$\mathrm{t}_{\mathrm{XOH}}$	Expansion Out HIGH Delay from Clock		30		35		35		50	ns

Switching Waveforms ${ }^{[9]}$

Master Reset

C460-8

Notes:

7. Test conditions assume signal transmission time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance, as in part (a) of AC Test Load, unless otherwise specified.
8. $t_{H Z R}$ and $t_{\text {DVR }}$ use capacitance loading as in part (b) of AC Test Load.
9. A HIGH-to-LOW transition of either the write or read strobe causes a HIGH-to-LOW transition of the responding flag. Correspondingly, a low-to-high strobe transition causes aLOW-to-HIGH flag transition.
10. $\overline{\mathbf{W}}$ and $\overline{\mathbf{R}}=\mathrm{V}_{\mathrm{IH}}$ around the rising edge of $\overline{\mathrm{MR}}$.
11. $t_{\text {MRSC }}=t_{P M R}+t_{\text {RMR }}$.

Switching Waveforms

Half Full Flag

C460-9

Last Write to First Read Full Flag

C460-10

Last READ to First WRITE Empty Flag

C460-11

Retransmit ${ }^{[12,13]}$

Notes:
12. $\mathrm{t}_{\mathrm{RTC}}=\mathrm{t}_{\mathrm{PRT}}+\mathrm{t}_{\mathrm{RTR}}$.
13. $\overline{\mathrm{EF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}}$ may change state during retransmit as a result of the offset of the read and write pointers, but flags will be valid at $t_{R T C}$.

Switching Waveforms (continued)
Empty Flag and Read Data Flow-Through Mode

Full Flag and Write Data Flow-Through Mode

Switching Waveforms (continued)

Expansion Timing Diagrams

Note:
14. Expansion out of device $1\left(\overline{\mathrm{XO}}_{1}\right)$ is connected to expansion in of device $2\left(\overline{\mathrm{XI}}_{2}\right)$.

Architecture

Resetting the FIFO

Upon power up, the FIFO must be reset with a master reset ($\overline{\mathrm{MR}}$) cycle. This causes the FIFO to enter the empty condition signified by the Empty flag ($\overline{\mathrm{EF}}$) being LOW, and both the Half Full ($\overline{\mathrm{HF}}$), and Full flags ($\overline{\mathrm{FF}}$) being HIGH. Read $(\overline{\mathrm{R}})$ and write $(\overline{\mathrm{W}})$ must be HIGH $\mathrm{t}_{\text {RPW }} / \mathrm{t}_{\mathrm{WPW}}$ before and $\mathrm{t}_{\mathrm{RMR}}$ after the rising edge of $\overline{M R}$ for a valid reset cycle. If reading from the FIFO after a reset cycle is attempted, the outputs will all be in the high-impedance state.

Writing Data to the FIFO

The availability of at least one empty location is indicated by a HIGH $\overline{\mathrm{FF}}$. The falling edge of $\overline{\mathrm{W}}$ initiates a write cycle. Data appearing at the inputs $\left(\mathrm{D}_{0}-\mathrm{D}_{8}\right) \mathrm{t}_{\mathrm{SD}}$ before and t_{HD} after the rising edge of \bar{W} will be stored sequentially in the FIFO.
The $\overline{\text { EF }}$ LOW-to-HIGH transition occurs twEF after the first LOW-to-HIGH transition of \bar{W} for an empty FIFO. $\overline{\mathrm{HF}}$ goes LOW tWHF after the falling edge of \bar{W} following the FIFO actually being half full. Therefore, the HF is active once the FIFO is filled to half its capacity plus one word. $\overline{\mathrm{HF}}$ will remain LOW while less than one half of total memory is available for writing. The LOW-to-HIGH transition of $\overline{\mathrm{HF}}$ occurs $\mathrm{t}_{\text {RHF }}$ after the rising edge of $\overline{\mathrm{R}}$ when the FIFO goes from half full +1 to half full. $\overline{\mathrm{HF}}$ is available in standalone and width expansion modes. $\overline{\mathrm{FF}}$ goes LOW $t_{\text {WFF }}$ after the falling edge of \bar{W}, during the cycle in which the last available location is filled. Internal logic prevents overrunning a full FIFO. Writes to a full FIFO are ignored and the write pointer is not incremented. $\overline{\mathrm{FF}}$ goes HIGH trFF $^{\text {RFter a read from a full }}$ FIFO.

Reading Data from the FIFO

The falling edge of $\overline{\mathrm{R}}$ initiates a read cycle if the $\overline{\mathrm{EF}}$ is not LOW. Data outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{8}\right)$ are in a high-impedance condition between read operations ($\overline{\mathrm{R}}$ HIGH), when the FIFO is empty, or when the FIFO is not the active device in the depth expansion mode.
When one word is in the FIFO, the falling edge of $\overline{\mathrm{R}}$ initiates a HIGH-to-LOW transition of EF. When the FIFO is empty, the outputs are in a high-impedance state. Reads to an empty FIFO are ignored and do not increment the read pointer. From the empty condition, the FIFO can be read $t_{\text {WEF }}$ after a valid write.

Retransmit

The retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be acknowledged by the receiver and retransmitted if necessary. The retransmit ($\overline{\mathrm{RT}})$ input is active in the standalone and width expansion modes. The retransmit feature is intended for use when a number of writes equal-to-or-less-than the depth of the FIFO have occurred since the last $\overline{\mathrm{MR}}$ cycle. A LOW pulse on $\overline{\mathrm{RT}}$ resets the internal read pointer to the first physical location of the FIFO. $\overline{\mathbf{R}}$ and $\overline{\mathbf{W}}$ must both be HIGH while and $\mathrm{t}_{\text {RTR }}$ after retransmit is LOW. With every read cycle after retransmit, previously accessed data is read and the read pointer incremented until equal to the write pointer. Full, Half Full, and Empty flags are governed by the relative locations of the read and write pointers and are updated during a retransmit cycle. Data written to the FIFO after activation of RT are transmitted also.
The full depth of the FIFO can be repeatedly retransmitted.

Standalone/Width Expansion Modes

Standalone and width expansion modes are set by grounding expansion in ($\overline{\mathrm{XI}}$) and tying first load ($\overline{\mathrm{FL}}$) to V_{CC} prior to a $\overline{\mathrm{MR}}$ cycle. FIFOs can be expanded in width to provide word widths greater than nine in increments of nine. During width expansion mode, all control line inputs are common to all devices, and flag outputs from any device can be monitored.

Depth Expansion Mode (see Figure 1)

Depth expansion mode is entered when, during a $\overline{\mathrm{MR}}$ cycle, expansion out ($\overline{\mathrm{XO}}$) of one device is connected to expansion in ($\overline{\mathrm{XI})}$ of the next device, with $\overline{\mathrm{XO}}$ of the last device connected to $\overline{\mathrm{XI}}$ of the first device. In the depth expansion mode, the first load ($\overline{\mathrm{FL}})$ input, when grounded, indicates that this is the first part to be loaded. All other devices must have this pin HIGH. To enable the correct FIFO, XO is pulsed LOW when the last physical location of the previous FIFO is written to and is pulsed LOW again when the last physical location is read. Only one FIFO is enabled for read and one is enabled for write at any given time. All other devices are in standby.
FIFOs can also be expanded simultaneously in depth and width. Consequently, any depth or width FIFO can be created with word widths in increments of nine. When expanding in depth, a composite $\overline{\mathrm{FF}}$ is created by ORing the $\overline{\mathrm{FFs}}$ together. Likewise, a compostie $\overline{\mathrm{EF}}$ is created by ORing $\overline{\mathrm{EF}}$ s together. $\overline{\mathrm{HF}}$ and $\overline{\mathrm{RT}}$ functions are not available in depth expansion mode.

Figure 1. Depth Expansion

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
15	CY7C460-15DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C460-15JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C460-15PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C460-15JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C460-15PI	P15	28-Lead (600-Mil) Molded DIP	
20	CY7C460-20DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C460-20LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
25	CY7C460-25DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C460-25JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C460-25PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C460-25JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C460-25PI	P15	28-Lead (600-Mil) Molded DIP	
	CY7C460-25DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C460-25LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
40	CY7C460-40DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C460-40JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C460-40PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C460-40JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C460-40PI	P15	28-Lead (600-Mil) Molded DIP	
	CY7C460-40DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C460-40LMB	L55	32-Pin Rectangular Leadless Chip Carrier	

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C462-15DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C462-15JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C462-15PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C462-15JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C462-15PI	P15	28-Lead (600-Mil) Molded DIP	
20	CY7C462-20DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C462-20LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
25	CY7C462-25DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C462-25JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C462-25PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C462-25JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C462-25PI	P15	28-Lead (600-Mil) Molded DIP	
	CY7C462-25DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C462-25LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
40	CY7C462-40DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C462-40JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C462-40PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C462-40JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C462-40PI	P15	28-Lead (600-Mil) Molded DIP	
	CY7C462-40DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C462-40LMB	L55	32-Pin Rectangular Leadless Chip Carrier	

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C464-15DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C464-15JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C464-15PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C464-15JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C464-15PI	P15	28-Lead (600-Mil) Molded DIP	
20	CY7C464-20DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C464-20LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
25	CY7C464-25DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C464-25JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C464-25PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C464-25JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C464-25PI	P15	28-Lead (600-Mil) Molded DIP	
	CY7C464-25DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C464-25LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
40	CY7C464-40DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C464-40JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C464-40PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C464-40JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7C464-40PI	P15	28-Lead (600-Mil) Molded DIP	
	CY7C464-40DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C464-40LMB	L55	32-Pin Rectangular Leadless Chip Carrier	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{CC}	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 1}$	$1,2,3$
$\mathrm{I}_{\mathrm{SB} 2}$	$1,2,3$
I_{OS}	$1,2,3$
I_{OZ}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{RC}	9, 10, 11
t_{A}	9,10, 11
t_{RR}	9, 10, 11
t_{PR}	9, 10, 11
$\mathrm{t}_{\text {LZR }}$	9,10, 11
$\mathrm{t}_{\text {DVR }}$	9,10,11
$\mathrm{t}_{\mathrm{HZR}}$	9,10,11
$t_{\text {WC }}$	9,10,11
tpw	9,10,11
$\mathrm{t}_{\text {HWZ }}$	9,10,11
$\mathrm{t}_{\text {WR }}$	9, 10, 11
t_{SD}	9,10,11
t_{HD}	9,10,11
$\mathrm{t}_{\text {MRSC }}$	9, 10, 11
$\mathrm{t}_{\text {PMR }}$	9, 10, 11
$\mathrm{t}_{\text {RMR }}$	9, 10, 11
$\mathrm{t}_{\text {RPW }}$	9,10,11
$\mathrm{t}_{\text {WPW }}$	9,10,11
$\mathrm{t}_{\text {RTC }}$	9,10,11
$\mathrm{t}_{\text {PRT }}$	9, 10, 11
$\mathrm{t}_{\text {RTR }}$	9,10,11
$\mathrm{t}_{\text {EFL }}$	9, 10, 11
$\mathrm{t}_{\mathrm{HFH}}$	9, 10, 11
$\mathrm{t}_{\text {FFH }}$	9, 10, 11
$\mathrm{t}_{\text {REF }}$	9, 10, 11
$\mathrm{t}_{\text {RFF }}$	9, 10, 11
$t_{\text {WEF }}$	9, 10, 11
$\mathrm{t}_{\text {WFF }}$	9, 10, 11
$\mathrm{t}_{\text {WHF }}$	9, 10, 11
$\mathrm{t}_{\text {RHF }}$	9, 10, 11
$\mathrm{t}_{\text {RAE }}$	9, 10, 11
$\mathrm{t}_{\text {RPE }}$	9, 10, 11
$\mathrm{t}_{\text {WAF }}$	9, 10, 11
$\mathrm{t}_{\text {WPF }}$	9, 10, 11
${ }^{\text {t }}$ XOL	9,10, 11
$\mathrm{t}_{\mathrm{XOH}}$	9,10, 11

Document \#: 38-00141-D

32K x 9 FIFO with Programmable Flags

Features

- $8 \mathrm{~K} \times 9,16 \mathrm{~K} \times 9$, and $32 \mathrm{~K} \times 9$ FIFO buffer memory
- Asynchronous read/write
- High-speed 33.3-MHz read/write independent of depth/width
- Low operating power
$-I_{C C}($ max. $)=160 \mathrm{~mA}$ (commercial)
$-I_{\text {CC }}($ max. $)=165 \mathrm{~mA}$ (military)
- Programmable Almost Full/Empty flag
- Empty, Almost Empty, Half Full, Almost Full, and Full status flags
- Programmable retransmit
- Expandable in width
- $5 \mathrm{~V} \pm 10 \%$ supply
- TTL compatible
- Three-state outputs
- Proprietary 0.8-micron CMOS technology

Functional Description

The CYC47X FIFO series consists of high-speed, low-power, first-in first-out (FIFO) memories with programmable flags and retransmit mark. The CY7C470, CY7C472, and CY7C474 are $8 \mathrm{~K}, 16 \mathrm{~K}$, and 32 K words by 9 bits wide, respectively. They are offered in 600 -mil DIP, PLCC, and LCC packages. Each FIFO memory is organized such that the data is read in the same sequential order that it was written. Three status pins-Empty/ Full ($\overline{\mathrm{E}} / \overline{\mathrm{F}}$), Programmable Almost Full/ Empty ($\overline{\mathrm{PAFE}}$), and Half Full ($\overline{\mathrm{HF}}$)-are provided to the user. These pins are decoded to determine one of six states: Empty, Almost Empty, Less than Half Full, Greater than Half Full, Almost Full, and Full.
The read and write operations may be asynchronous; each can occur at a rate of 33.3 MHz . The write operation occurs
when the write $(\overline{\mathrm{W}})$ signal goes LOW. Read occurs when read $(\overline{\mathbf{R}})$ goes LOW. The nine data outputs go into a high-impedance state when $\overline{\mathrm{R}}$ is HIGH.
The user can store the value of the read pointer for retransmit by using the MARK pin. A LOW on the retransmit ($\overline{\mathrm{RT}}$) input causes the FIFO to resend data by resetting the read pointer to the value stored in the mark pointer.
In the standalone and width expansion configurations, a LOW on the retransmit ($\overline{\mathrm{RT}}$) input causes the FIFO to resend the data. With the mark feature, retransmit can start from any word in the FIFO.
The CYC47X series is fabricated using a proprietary 0.8 -micron N -well CMOS technology. Input ESD protection is greater than 2001 V and latch-up is prevented by the use of reliable layout techniques, guard rings, and a substrate bias generator.

CYPRESS
SEMICONDUCTOR
PRELIMINARY

Selection Guide

		7C470-15 7C472-15 7C474-15	7C470-20 7C472-20 7C474-20	7C470-25 7C472-25 7C474-25	7C470-40 7C472-40 7C474-40
Frequency (MHz)	33.3	33.3	28.5	20	
Maximum Access Time (ns)	15	20	25	40	
Maximum Operating Current (mA)	Commercial	160		145	125
	Military/Industrial		165	165	145

Maximum Ratings

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DCVoltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-3.0 V to +7.0 V
Power Dissipation
. 1.0W
Output Current, into Outputs (LOW)
20 mA
Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions		$\begin{aligned} & \hline \text { 7C470-15 } \\ & \text { 7C472-15 } \\ & \text { 7C474-15 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C470-20 } \\ & \text { 7C472-20 } \\ & \text { 7C474-20 } \end{aligned}$		$\begin{aligned} & \text { 7C470-25 } \\ & \text { 7C472-25 } \\ & 7 \mathbf{C 4 7 4 - 2 5} \end{aligned}$		$\begin{aligned} & \hline \text { 7C470-40 } \\ & \text { 7C472-40 } \\ & \text { 7C474-40 } \end{aligned}$		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	$\begin{aligned} & \text { Output HIGH } \\ & \text { Voltage } \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \\ & \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~m} \end{aligned}$		2.4		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		Com'l	2.0				2.0		2.0		V
			Mil/Ind			2.2		2.2		2.2		
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage				0.8		0.8		0.8		0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\begin{aligned} & \overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}},{ }_{\mathrm{GND}} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$		-10	+10	-10	+10	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \end{aligned}$	Com'l ${ }^{3]}$		160				145		125	mA
			Mil ${ }^{[4] / \text { Ind }}$				165		165		145	
$\mathrm{I}_{\text {SB1 }}$	Standby Current	$\begin{aligned} & \text { All Inputs = } \\ & \text { V }_{\text {IH }} \text { Min. } \end{aligned}$	Com'1		25				25		25	mA
			Mil/Ind				30		30		30	
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	$\begin{aligned} & \hline \text { All Inputs }= \\ & \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \end{aligned}$	Com'l		20				20		20	mA
			Mil/Ind				25		25		25	
$\mathrm{I}_{0 S}{ }^{[5]}$	Output Short Circuit Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{V}_{\mathrm{OUT}}=\mathrm{GND} \\ & \hline \end{aligned}$			-90		-90		-90		-90	mA

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. $\mathrm{I}_{\mathrm{CC}}($ commercial $)=125 \mathrm{~mA}+(\mathrm{f}-20) \cdot 2.5 \mathrm{~mA} / \mathrm{MHz}$ for $\mathrm{f} \geq 20 \mathrm{MHz}$
where $\bar{f}=$ the larger of the write or read operating frequency.
4. $\mathrm{I}_{\mathrm{CC}}($ military $)=130 \mathrm{~mA}+(\mathrm{f}-20) \cdot 2.5 \mathrm{~mA} / \mathrm{MHz}$ for $\mathrm{f} \geq 20 \mathrm{MHz}$
where $\bar{f}=$ the larger of the write or read operating frequency.
5. Not more than one output should be tested at a time. Duration of the short circuit should not be more than one second.

Capacitance ${ }^{[6]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	10	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	12	pF

AC Test Loads and Waveforms

(a)

(b)

7C470-6

Equivalent to: THEVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[7,8]}$

Parameter	Description	$\begin{aligned} & \text { 7C470-15 } \\ & \text { 7C472-15 } \\ & \text { 7C474-15 } \end{aligned}$		$\begin{aligned} & \hline \text { 7C470-20 } \\ & 7 \mathrm{C} 472-20 \\ & 7 \mathrm{C} 474-20 \end{aligned}$		$\begin{aligned} & \hline \text { 7C470-25 } \\ & 7 \mathrm{C} 472-25 \\ & 7 \mathrm{C} 474-25 \end{aligned}$		$\begin{aligned} & \hline \text { 7C470-40 } \\ & \text { 7C472-40 } \\ & \text { 7C474-40 } \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{CY}	Cycle Time	30		30		35		50		ns
t_{A}	Access Time		15		20		25		40	ns
t_{RV}	Recovery Time	10		10		10		10		ns
$\mathrm{t}_{\text {PW }}$	Pulse Width	15		20		25		40		ns
$\mathrm{t}_{\text {LZR }}$	Read LOW to Low Z	3		3		3		3		ns
$\mathrm{t}_{\text {DVR }}{ }^{[9]}$	Valid Data from Read HIGH	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZR}}{ }^{[9]}$	Read HIGH to High Z		15		15		18		25	ns
$\mathrm{t}_{\mathrm{HWZ}}$	Write HIGH to Low Z	5		5		5		5		ns
${ }_{\text {t }}$ S	Data Set-Up Time	11		12		15		20		ns
t_{HD}	Data Hold Time	0		0		0		0		ns
$\mathrm{t}_{\text {EFD }}$	$\overline{\mathrm{E}} / \overline{\mathrm{F}}$ Delay		15		20		25		40	ns
$\mathrm{t}_{\text {EFL }}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{E}} / \overline{\mathrm{F}}$ LOW		25		30		35		50	ns
$\mathrm{t}_{\mathrm{HFD}}$	$\overline{\text { HF }}$ Delay		25		30		35		50	ns
$\mathrm{t}_{\text {AFED }}$	PAFE Delay		25		30		35		50	ns
$t_{\text {RAE }}$	Effective Read from Write HIGH	15		20		25		40		ns
$\mathrm{t}_{\text {WAF }}$	Effective Write from Read HIGH	15		20		25		40		ns

Notes:

6. Tested initially and after any design or process changes that may affect these parameters.
7. Test conditions assume signal transmission time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance, as in part (a) of AC Test Load and Waveforms, unless otherwise specified.
8. See the last page of this specification for Group A subgroup testing information.
9. $t_{H Z R}$ and $t_{\text {DVR }}$ use capacitance loading as in part (b) of ACTest Loads. $t_{\text {HZR }}$ transition is measured at +500 mV from V_{OL} and -500 mV from $\mathrm{V}_{\mathrm{OH}} \cdot \mathrm{t}_{\mathrm{DVR}}$ transition is measured at the 1.5 V level. $\mathrm{t}_{\mathrm{HWZ}}$ and $\mathrm{t}_{\mathrm{LZR}}$ transition is measured at $\pm 100 \mathrm{mV}$ from the steady state.

Switching Waveforms

Asynchronous Read and Write

Master Reset (No Write to Programmable Flag Register)

Master Reset (Write to Programmable Flag Register) ${ }^{[10]}$

Note:

10. Waveform labels in parentheses pertain to writing the programmable flag register from the output port $\left(\mathrm{Q}_{0}-\mathrm{Q}_{8}\right)$.

Switching Waveforms (continued)
$\overline{\text { E }} / \overline{\mathbf{F}}$ Flag (Last Write to First Read Full Flag)

$\overline{\mathbf{E}} / \overline{\mathrm{F}}$ Flag (Last Read to First Write Empty Flag)

$\overline{\mathrm{HF}} \mathrm{HIGH} \longrightarrow$

Half Full Flag

Switching Waveforms (continued)
$\overline{\text { PAFE Flag (Almost Full) }}$

HF LOW

$\overline{\text { PAFE Flag (Almost Empty) }}$

HF HIGH

Retransmit

Switching Waveforms (continued)

Mark

Empty Flag and Read Data Flow-Through Mode

Switching Waveforms (continued)

Full Flag and Write Data Flow-Through Mode

Architecture

The CY7C470, CY7C472, and CY7C474FIFOs consist of an array of $8,192,16,384$, and 32,768 words of 9 bits each, respectively. The control consists of a read pointer, a write pointer, a retransmit pointer, controlsignals(i.e., write, read, mark, retransmit, and master reset), and flags (i.e., Empty/Full, HalfFull, and Programmable Almost Full/Empty).

Resetting the FIFO

Upon power up, the FIFO must be reset with a master reset ($\overline{\mathrm{MR}}$) cycle. This causes the FIFO to enter the empty condition signified by the Empty flag ($\overline{\mathrm{E}} / \overline{\mathrm{F}}$) and Almost Full/Empty flag ($\overline{\mathrm{PAFE}}$) being LOW, andHalfFullflag $(\overline{\mathrm{HF}})$ beingHIGH. The read pointer, write pointer, and retransmit pointer are reset to zero. For a valid reset, $\operatorname{read}(\overline{\mathrm{R}})$ and write $(\overline{\mathrm{W}})$ must be $\mathrm{HIGH} \mathrm{t}_{\mathrm{RPW}} / \mathrm{t}_{\mathrm{WPW}}$ before the falling edge and $t_{R M R}$ after the rising edge of MR.

Writing Data to the FIFO

Data can be written to the FIFO when it is not FULL ${ }^{[11]}$. A falling edge of $\overline{\mathbf{W}}$ initiates a write cycle. Data appearing at the inputs $\left(D_{0}-D_{8}\right)$ t $_{S D}$ before and $t_{H D}$ after the rising edge of \bar{W} will be stored sequentially in the FIFO.

Reading Data from the FIFO

Data can be read from the FIFO when it is not empty ${ }^{[12]}$. A falling edge of \bar{R} initiates a read cycle. Data outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{8}\right)$ are in a high-impedance condition when the FIFO is empty and between read operations ($\overline{\mathrm{R}} \mathrm{HIGH}$). The falling edge of $\overline{\mathrm{R}}$ during the last read cycle before the empty condition triggers a high-to-low transition of $\bar{E} / \overline{\mathrm{F}}$, prohibiting any further read operations until $\mathrm{t}_{\mathrm{RFF}}$ after a valid write.

Retransmit

The retransmit feature is beneficial when transferring packets of data. It enables the receipt of data to be acknowledged by the receiver and resent if necessary. Retransmission can start from anywhere in the FIFO and be repeated without limitation.
The retransmit methodology is as follows: mark the current value of the read pointer, after an error in subsequent read operations return to that location and resume reading. This effectively resends all of the data from the mark point. When MARK is LOW, the current value of the read pointer is stored. This operation marks the beginning of the packet to be resent. When RT is LOW, the read pointer is updated with the mark location. During each subsequent read cycle, data is read and the read pointer incremented.
Care must be taken when using the retransmit feature. Use the mark function such that the write pointer does not pass the mark pointer, because further write operations will overwrite data.

Programmable Almost Full/Empty Flag

The CY7C470/2/4 offer a variable offset for the Almost Empty and the Almost Full condition. The offset is loaded into the programmable flag register (PFR) during a master reset cycle. While MR is LOW, the PFR can be loaded from $\mathrm{Q}_{8}-\mathrm{Q}_{0}$ by pulsing $\overline{\mathrm{R}}$ LOW or from $\mathrm{D}_{8}-\mathrm{D}_{0}$ by pulsing $\overline{\mathrm{W}}$ LOW. The offset options are listed in Table 2. See Table 1 for a description of the six FIFO states. If the PFR is not loaded during master reset ($\overline{\mathrm{R}}$ and $\overline{\mathrm{W}} \mathrm{HIGH}$) the default offset will be 256 words from Full and Empty.

Notes:

11. When the FIFO is less than half full, the flags make a LOW-to-HIGH transition on the rising edge of \bar{W} and make the HIGH-to-LOW transition on the falling edge of R . If the FIFO is more than half full, the flags make the LOW-to-HIGH transition on the rising edge of $\overline{\mathrm{R}}$ and HIGH-to-LOW transition on the falling edge of $\overline{\mathrm{W}}$. transition on the rising edge of W and make the HIGH-to-LOW transi-
12. Full and empty states can be decoded from the Half-Full ($\overline{\mathrm{HF}}$) and Empty/Full ($\overline{\mathbf{E}} / \overline{\mathbf{F}}$) flags.

Table 1. Flag Truth Table ${ }^{[13]}$

$\overline{\mathbf{H F}}$	$\overline{\mathbf{E} / \mathbf{F}}$	$\overline{\text { PAFE }}$	State	CY77C470 (8K x 9) Number of Words in FIFO	CY77C472 (16K x9) Number of Words in FIFO	CY77C474 (32K x9) Number of Words in FIFO
1	0	0	Empty	0	0	0
1	1	0	Almost Empty	$1 \rightarrow(\mathrm{P}-1)$	$1 \rightarrow(\mathrm{P}-1)$	$1 \rightarrow(\mathrm{P}-1)$
1	1	1	Less than Half Full	$\mathrm{P} \rightarrow 4096$	$\mathrm{P} \rightarrow 8192$	$\mathrm{P} \rightarrow 16384$
0	1	1	Greater than Half Full	$4097 \rightarrow(8192-\mathrm{P})$	$8193 \rightarrow(16384-\mathrm{P})$	$16385 \rightarrow(32768-\mathrm{P})$
0	1	0	Almost Full	$(8192-\mathrm{P}+1) \rightarrow 8191$	$(16384-\mathrm{P}+1) \rightarrow 16383$	$(32768-\mathrm{P}+1) \rightarrow 32767$
0	0	0	Full	8192	16384	32768

Table 2. Programmable Almost Full/Empty Empty Options ${ }^{[14]}$

D3	D2	D1	D0	PAFE Active when:	P
0	0	0	0	256 or less locations from Empty/Full (default)	256
0	0	0	1	16 or less locations from Empty/Full	16
0	0	1	0	32 or less locations from Empty/Full	32
0	0	1	1	64 or less locations from Empty/Full	64
0	1	0	0	128 or less locations from Empty/Full	128
0	1	0	1	256 or less locations from Empty/Full (default)	256
0	1	1	0	512 or less locations from Empty/Full	512
0	1	1	1	1024 or less locations from Empty/Full	1024
1	0	0	0	2048 or less locations from Empty/Full	2048
1	0	0	1	4098 or less locations from Empty/Full[15]	4098
1	0	1	0	8192 or less locations from Empty/Full[16]	8192

Notes:
13. See Table 2 for P values.
14. Almost flags default to 256 locations from Empty/Full.
15. Only for CY7C472 and CY7C474.
16. Only for CY7C470.

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
15	CY7C470-15DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C470-15JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C470-15PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C470-15DI	D16	28-Lead (600-Mil) CerDIP	Industrial
	CY7C470-15JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C470-15PI	P15	28-Lead (600-Mil) Molded DIP	
20	CY7C470-20DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C470-20LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
25	CY7C470-25DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C470-25JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C470-25PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C470-25DI	D16	28-Lead (600-Mil) CerDIP	Industrial
	CY7C470-25JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C470-25PI	P15	28-Lead (600-Mil) Molded DIP	
	CY7C470-25DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C470-25LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
40	CY7C470-40DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C470-40JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C470-40PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C470-40DI	D16	28-Lead (600-Mil) CerDIP	Industrial
	CY7C470-40JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C470-40PI	P15	28-Lead (600-Mil) Molded DIP	
	CY7C470-40DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C470-40LMB	L55	32-Pin Rectangular Leadless Chip Carrier	

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
15	CY7C472-15DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C472-15JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C472-15PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C472-15DI	D16	28-Lead (600-Mil) CerDIP	Industrial
	CY7C472-15JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C472-15PI	P15	28-Lead (600-Mil) Molded DIP	
20	CY7C472-20DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C472-20LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
25	CY7C472-25DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C472-25JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C472-25PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C472-25DI	D16	28-Lead (600-Mil) CerDIP	Industrial
	CY7C472-25JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C472-25PI	P15	28-Lead (600-Mil) Molded DIP	
	CY7C472-25DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C472-25LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
40	CY7C472-40DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C472-40JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C472-40PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C472-40DI	D16	28-Lead (600-Mil) CerDIP	Industrial
	CY7C472-40JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C472-40PI	P15	28-Lead (600-Mil) Molded DIP	
	CY7C472-40DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C472-40LMB	L55	32-Pin Rectangular Leadless Chip Carrier	

Ordering Information (continued)

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C474-15DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C474-15JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C474-15PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C474-15DI	D16	28-Lead (600-Mil) CerDIP	Industrial
	CY7C474-15JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C474-15PI	P15	28-Lead (600-Mil) Molded DIP	
20	CY7C474-20DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C474-20LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
25	CY7C474-25DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C474-25JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C474-25PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C474-25DI	D16	28-Lead (600-Mil) CerDIP	Industrial
	CY7C474-25JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C474-25PI	P15	28-Lead (600-Mil) Molded DIP	
	CY7C474-25DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C474-25LMB	L55	32-Pin Rectangular Leadless Chip Carrier	
40	CY7C474-40DC	D16	28-Lead (600-Mil) CerDIP	Commercial
	CY7C474-40JC	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C474-40PC	P15	28-Lead (600-Mil) Molded DIP	
	CY7C474-40DI	D16	28-Lead (600-Mil) CerDIP	Industrial
	CY7C474-40JI	J65	32-Lead Plastic Leaded Chip Carrier	
	CY7C474-40PI	P15	28-Lead (600-Mil) Molded DIP	
	CY7C474-40DMB	D16	28-Lead (600-Mil) CerDIP	Military
	CY7C474-40LMB	L55	32-Pin Rectangular Leadless Chip Carrier	

MILITARY SPECIFICATIONS

Group A Subgroup Testing
DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OS}	$1,2,3$
I_{CC}	$1,2,3$

Switching Characteristics

Parameter	Subgroups
t_{CY}	$9,10,11$
t_{A}	$9,10,11$
t_{RV}	$9,10,11$
t_{PW}	$9,10,11$
$\mathrm{t}_{\mathrm{LZR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{DVR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HZR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HWZ}}$	$9,10,11$
t_{SD}	$9,10,11$
t_{HD}	$9,10,11$
$\mathrm{t}_{\mathrm{EFD}}$	$9,10,11$
$\mathrm{t}_{\mathrm{HFD}}$	$9,10,11$
$\mathrm{t}_{\mathrm{AFED}}$	$9,10,11$
$\mathrm{t}_{\mathrm{RAE}}$	$9,10,11$
$\mathrm{t}_{\mathrm{WAF}}$	$9,10,11$

Document \#: 38-00142-E
INFO "
SRAMs 2
PROMs 3
PLDs 4
FIFOs 5
LOGIC 6
DATACOM 7
MODULES 8
ECL 9
BUS 10
MILITARY 11
TOOLS 12
QUALITY 13
PACKAGES 14

Logic

Device Number

CY7C611A
CY7C915
CY7B991
CY7B992
CY7C9101

Page Number

Description

32-Bit RISC Controller ... 6-1
1K x 42 SmartCAM
6-8
Programmable Skew Clock Buffer (PSCB) . 6-11
Programmable Skew Clock Buffer (PSCB) . 6-11
CMOS 16-Bit Slice
6-22

CY7C611A

32-Bit RISC Controller

Features

- SPARC ${ }^{\circledR}{ }^{\circledR}$ processor optimized for embedded control applications
- Reduced Instruction Set Computer (RISC) architecture
- Simple format instructions
- Most instructions execute in a single cycle
- Very high performance
-40-ns instruction cycle with 4 -stage pipeline
-18 sustained MIPS at 25 MHz
- 240 -ns worst-case interrupt response
- 136 32-bit registers
—Eight overlapping windows of 24 registers each
-Dividing registers into seperate register banks allows fast context switching
-8 global registers
- Hardware pipeline interlocks
- $\mathbf{1 6}$ prioritized interrupts levels
- Large address space
-24-bit address space
- 3-bit address space indentifier
- Multitasking support
— User/supervisor modes

- Privileged instructions

- Artificial intelligence support
- Multiprocessing support
- High-performance floating-point processor interface
- Concurrent execution of float-
ing-point instructions
- 0.8-micron 2-layer metal CMOS technology
- 160-pin quad flat package
- Power
-3 watts maximum

Logic Block Diagram

Pin Configuration

Selection Guide

	CY7C611A-25	
Maximum Operating Current (mA)	Commercial	600

[^60]
Overview

The CY7C611A controller is a high-speed CMOS implementation of the SPARC 32-bit RISC architecture processor optimized for embedded control applications. RISC architecture makes possible the creation of a processor which can execute instructions at a rate of one instruction per processor clock. The CY7C611A supports a tightly-coupled floating-point coprocessor capable of executing at a rate of 4 to 5 MFLOPS. The CY7C611A SPARC controller provides the following features:
Simple instruction format. All instructions are 32 bits wide and aligned on 32-bit boundaries in memory. Three basic instruction formats feature uniform placement of opcode and address fields.
Register intensive architecture. Most instructions operate on either two registers or one register and a constant, and place the result in a third register. Only load and store instructions access off-chip memory.
Large windowed register file. The processor has 136 on-chip 32-bit general purpose registers. Eight of these are global registers. The remaining 128 registers can be configured as four separate non-overlapping register banks or as eight overlapping sets of 24 registers each. The first configuration allows for extremely fast context switch times and the second provides for very low overhead procedure calls. The actual configuration and use of the registers is determined by the user's application.
Delayed control transfer. The processor always fetches the next instruction after a control transfer, and either executes it or annuls it depending on the state of a bit in the control transfer instruction. This feature allows compilers to rearrange code to place a useful instruction after a delayed control transfer and thereby take better advantage of the processor pipeline.
Concurrent floating point. Floating-point instructions can execute concurrently with each other and with non-floating-point instructions.
Fast interrupt response. Interrupt inputs are sampled on every clock cycle and can be acknowledged in one to three cycles. The first instruction of an interrupt service routine can be executed within six to eight cycles of receiving the interrupt request.

The 7C600 Family

The SPARC processor family consists of the CY7C601A and CY7C611A integer units and the CY7C602A floating-point unit. The CY7C601A and CY7C611A integer units are a high-speed implementation of the SPARC architecture, and are binary compatible with all SPARC processors. The CY7C602A is a high-performance floating-point unit that allows floating-point instructions to execute concurrently with the CY7C601A or the CY7C611A.

The CY7C611A is designed for embedded control and application specific systems. The CY7C611A communicates with external memory via a 24 -bit address bus and a 32-bit data/instruction bus. In many dedicated controller applications, the CY7C611A can function by itself with high-speed local memory. The CY7C611A retains the signals supplied on the CY7C601A for discrete implementations of cache systems. The CY7C157A cache storage unit can be used with the CY7C611A to provide a zero wait-state memory system with no glue logic. The CY7C289 registered PROM provides a zero wait-state PROM memory for most accesses and requires no glue logic for interfacing to the CY7C611A.

Floating-Point Coprocessor Interface

The CY7C611A is the basic processing engine which executes all of the instruction set except for floating-point operations. The CY7C602A and CY7C611A operate concurrently. The CY7C602A recognizes floating-point instructions and places them in a queue while the CY7C611A continues to execute non-floating point instructions. If the CY7C602A encounters an instruction which will not fit in its queue, the CY7C602A holds the CY7C611A until the instruction can be stored. The CY7C602A contains its own set of registers on which it operates. The contents of these registers are transferred to and from external memory under control of the CY7C611A via floating-point load/store instructions. Processor interlock hardware hides floating-point concurrency from the compiler or assembly language programmer. A program containing floating-point computations generates the same results as if instructions were executed sequentially.

Multitasking Support

The CY7C611A supports a multitasking operating system by providing user and supervisor modes. Some instructions are privileged and can only be executed while the processor is in supervisor mode. Changing from user to supervisor mode requires taking a hardware interrupt or executing a trap instruction.

Interrupts and Traps

The CY7C611A supports both asynchronous traps (interrupts) and synchronous traps (error conditions and trap instructions). The occurrence of a trap causes the CY7C611A to fetch the beginning address of the trap routine from a trap table. The base address of the trap table is specified by a trap base register and the offset is a function of the trap type. After fetching the trap routine address, program control jumps to the trap routine. Traps are taken before the current instruction is executed and can therefore be considered to occur between instructions.

Registers

The following sections provide an overview of the CY7C611A registers. The CY7C611A has two types of registers; working registers (r registers), and control registers. The r registers provide storage for processes, and the control registers keep track of and control the state of the CY7C611A.
Special r Registers. The utilization of four r registers is partially fixed by the instruction set. Global register $r[0]$ is dummy register; it returns the value " 0 " when it is used as a source register, and it is not modified when used as a destination register. This feature makes the most common value easily available and eliminates the need for a clear register instruction. Another r register fixed by the instruction set is r[15]. Upon executing a CALL instruction, the address of the CALL instruction is written into $\mathrm{r}[15]$. Upon entering a trap routine, registers r[17] and r[18] contain the PCand nPC.
r Register Addressing. r registers r 8 through r 31 are addressed internally using the register number and current window pointer (CWP) field of the processor status register (PSR; see next section). The CWP is essentially an index field for r register addressing, and acts as a pointer to a group of 24 registers. Figure 1

SEMICONDUCTOR

Figure 1. CWP Register Addressing

Registers (continued)

illustrates r register addressing using the CWP. Incrementing or decrementing the CWP changes the register offset by 16 , thereby causing the register addressing to overlap by eight registers. Thisallows r24 through r31 of the current window to act as r8 through r15 of the previous window. Registers r0 through r7 do not use the CWP to address them, therefore they are global in nature.

The window invalid mask register (WIM) is used to disallow selected CWP values. Each bit of the least significant byte of the WIM register corresponds to a register window or CWP value. Incrementing or decrementing the CWP to a window invalidated by the WIM register causes the CY7C611A to cause a window underflow or window overflow trap. This is used in a register window environment to set the boundaries for software. The WIM register can also be used to set boundaries for register banks in a bank switching environment.

CY7C611A Control Registers. The CY7C611A's control registers contain various addresses and pointers used by the system to control its internal state. They include the program counters (PC and nPC), the processor state register (PSR), the window invalid mask register (WIM), the trap base register (TBR), and the Y register. The following paragraphs briefly describe each:

Processor Status Register (PSR). The processor status register contains fields that describe and control the state of the CY7C611A. Figure 2 illustrates the bit assignments for the PSR.

IU Implementation and IU Version Numbers. These are read-only fields in the PSR. The version number is set to " 0001 " and the implementation number is set to binary " 0011 ".
Integer Condition Codes. The integer condition codes consist of four flags: negative, zero, overflow, and carry. These flags are set by the conditions occurring during integer logic and arithmetic operations.

Enable Floating-Point Unit (EF bit). This bit is used to enable the floating-point unit. If a floating-point operation (FPop) is encountered and the EF bit is cleared (i.e., FPU disabled), a floating-point disabled trap is generated.

Processor Interrupt Level (PIL). This four bit field sets the CY7C611A interrupt level. The CY7C611A will only acknowledge interrupts greater than the level indicated by the PIL field. Bit 11 is the MSB; bit 8 is the LSB.

Supervisor Mode (S). $\mathrm{S}=1$ indicates that the CY7C611A is in supervisor mode. Supervisor mode can only be entered by a software or hardware trap.
Previous Supervisor Mode (PS). This bit indicates the state of the supervisor bit before the most recent trap.
Trap Enable (ET). This bit enables or disables the CY7C611A traps. This bit is automatically set to 0 (traps disabled) upon entering a trap. When $\mathrm{ET}=0$, all asynchronous traps are ignored.

If a synchronous trap occurs when $\mathrm{ET}=0$, the CY7C611A enters error mode.
Current Window Pointer (CWP). The r registers are addressed by the Current Window Pointer (CWP), a field of the Processor Status Register (PSR) that points to the 24 active local registers. It is incremented by a RESTORE instruction and decremented by a SAVE instruction. Note that the globals are always accessible regardless of the CWP. In the overlapping configuration each window shares its ins and outs with adjacent windows. The outs from a previous window (CWP +1) are the ins of the current window, and the outs from the current window are the ins for the next window (CWP -1). In both the windowed and register bank configurations globals are equally available and the locals are unique to each window.

Figure 2. Processor State Register

Program Counters (PC and nPC). The program counter (PC) holds the address of the instruction being executed, and the next program counter (nPC) holds the address of the next instruction to be executed.

Trap Base Register (TBR). The trap base register contains the base address of the trap table and a field that provides a pointer into the trap table.

Reserved	Trap Base Address	Trap Type (tt).	Reserved
9	11	8	4
$31 \quad 23$	22	11	30

Figure 3. Trap Base Register

Window Invalid Mask Register (WIM). The window invalid mask register determines which windows are valid and which window accesses cause window_overflow and window_underflow traps.
\mathbf{Y} register. The Y register is used to hold the partial product during execution of the multiply-step instruction (MULSCC).

Pin Description

The integer unit's external signals fall into three categories: 1. memory subsystem interface signals,
2. floating-point unit interface signals, and
3. miscellaneous I/O signals.

Figure 4. Window Invalid Mask
These are described in the following sections. Paragraphs after the tables describe each signal. Signals that are active LOW are marked with an overbar; all others are active HIGH. For example, $\overline{\text { WE }}$ is active LOW, while RD is active HIGH.

Memory Subsystem Interface Signals

The memory interface signals consist of 27 bits of address (24 bits of address and a three-bit address space identifier), 32 bits of bidirectional data lines, and two bits to identify the size (byte, halfword, word, or double word) of data bus transactions.
A[23:0]-These 24 bits are the addresses of instructions or data and they are sent out "unlatched" by the CY7C611A. Assertion of the MAO signal during a cache miss will force the integer unit to put the previous (missed) address on the address bus. A [23:0] pins are three-stated if the TOE signal is deasserted.
ASI[2:0]-These three bits are the address space identifier for an instruction or data access to the memory. ASI[2:0] are sent out "unlatched" by the integer unit. The value on these pins during any given cycle is the address space identifier corresponding to the memory address on the A[23:0] pins at that cycle. Assertion of the MAO signal during a cache miss will force the integer unit to put the previous address space identifier on the ASI[2:0] pins. ASI[2:0] pins are three-stated if the TOE signal is deasserted. Normally, the encoding of the ASI bits is as shown in Table 1. The remaining codes are software generated.

Table 1. ASI Bit Assignment

Address Space Identifier (ASI)	Address Space
000	User Instruction
010	User Data
001	Supervisor Instruction
011	Supervisor Data

$\mathbf{D}[31: 0]-\mathrm{D}[31: 0]$ is the bidirectional data bus to and from the integer unit. The data bus is driven by the integer unit during the execution of integer store instructions and the store cycle of atomic load/store instructions. Similarly, the data bus is driven by the floating-point unit only during the execution of floating-pointstore instructions. The store data is sent out unlatched and must be latched externally before it is used. Once latched, store data is valid during the second data cycle of a store single access, the second and third data cycle of a store double access, and the third data cycle of an atomic load store access. The alignment for load and store instructions is done inside the processor. A double word is aligned on an eight-byte boundary, a word is aligned on a four-byte boundary, and a half word is aligned on a two-byte boundary. $\mathrm{D}(31)$ corresponds to the most significant bit of the least
significant byte of the 32 -bit word. If a double-word, word, or half-word load or store instruction generates an improperly aligned address, a memory address not aligned trap will occur.

Memory Subsystem Interface Signals (continued)

Instructions and operands are always expected to be fetched from a 32-bit wide memory.
SIZE[1:0]. These two bits specify the data size associated with a data or instruction fetch. Size bits are sent out "unlatched" by the CY7C611A. The value on these pins at any given cycle is the data size corresponding to the memory address on the A[23:0] pins in that cycle. SIZE[1:0] remains valid on the bus during all data cycles of loads, stores, load_doubles, store_doubles and atomic load stores. Since all instructions are 32-bits long, SIZE[1:0] is set to " 10 " during all instruction fetch cycles. Encoding of the SIZE[1:0] bits is shown in Table 2.

Table 2. Size Bit Assignment

SIZE1	SIZE0	Data Transfer Type
0	0	Byte
0	1	Halfword
1	0	Word
1	1	Word (Load/Store Double)

$\overline{\text { MHOLDA }}$ or MHOLDB. The processor pipeline will be frozen while MHOLDA is asserted and the CY7C611A outputs will revert to and maintain the value they had at the rising edge of the clock in the cycle before MHOLDA was asserted. MHOLDA is used to freeze the clock to both the integer and floating-point units during a cache miss (for systems with cache) or when a slow memory is accessed. This signal must be presented to the processor chip at the beginning of each processor clock cycle and be stable during the high time of the processor clock. Either MHOLDA or MHOLDB can be used for stopping the processor during a cache miss or memory exception. MHOLDB has the same definition as MHOLDA. The processor hardware uses the logical "OR" of all hold signals (i.e., MHOLDA, MHOLDB, and $\overline{\mathrm{BHOLD}}$) togenerate a final hold signal for freezing the processor pipeline. All HOLD signals are latched (transparent latch) in the CY7C611A before they are used.

BHOLD. $\overline{\text { BHOLD }}$ is asserted by the I/O controller when an external bus master requests the data bus. Assertion of this signal will freeze the processor pipeline. External logic should guarantee that after deassertion of BHOLD, the data at all inputs to the chip is the same as what it was before BHOLD was asserted. This signal must be presented to the processor chip at the beginning of each processor clock cycle and be stable during the high time of the processor clock since the CY7C611A processes the BHOLD input through a transparent latch before it is used. BHOLD should be used only for bus access requests by an external device since the MDS and MEXC signals are not recognized while this input is active. $\overline{\text { BHOLD }}$ should not be deasserted while LOCK is asserted.
$\overline{\text { MDS. }}$. Assertion of this signal will enable the clock input to the on-chip instruction register (during an instruction fetch) or to the load result register (during a data fetch). In a system with cache, $\overline{\text { MDS }}$ is used to signal the processor when the missed data (cache miss) is ready on the bus. In a system with slow memories, $\overline{\text { MDS }}$ is
used to signal the processor when the read data is available on the bus. MDS must be asserted only while the processor is frozen by either the $\overline{M H O L D A}$ or $\overline{M H O L D B}$ input signals. The CY7C611A samples the MDS signal via an on-chip transparent latch before it is used. The MDS signal is also used for strobing memory exceptions. In other words, MDS should be asserted whenever MEXC is asserted (see MEXC definition).
$\overline{\text { MEXC }}$. This signal is asserted by the memory (or cache) controller to initiate an instruction (or data) exception trap. MEXC is latched in the processor at the rising edge of CLK and is used in the following cycle. If MEXC is asserted during an instruction fetch cycle, an instruction access exception is generated, and if MEXC is asserted during a data fetch cycle, a data access exception trap is generated. The MEXC signal is used during (MHOLD) in conjunction with the MDS signal to indicate to the CY7C611A that the memory system was unable to supply valid instruction or data. If MDS is applied without MEXC, the CY7C611A accepts the contents of the data bus as valid information, but when MDS is applied with MEXC an exception trap is generated and the contents of the data bus is ignored by the CY7C611A. (In other words, MHOLD and MDS must be LOW when MEXC is asserted.) MEXC must be deasserted in the same clock cycle in which MHOLD is released.
RD. This signal specifies whether the current memory access is a read or write operation. It is sent out "unlatched" by the integer unit and must be latched externally before it is used. RD is set to " 0 " only during address cycles of store instructions including the store cycles of atomic load store instructions. This signal, when used in conjunction with SIZE[1:0] and LDSTO, can be used to check access rights of bus transactions. In addition, the RD signal may be used to turn off the output drivers of data RAMs during a store operation. For atomic load store instructions the RD signal is " 1 " during the first address cycle (read cycle), and " 0 " during the second and third address cycles (write cycle).
$\overline{\mathbf{W E}}$. This signal is asserted by the integer unit during the second address cycle of store single instructions, the second and third address cycles of store double instructions, and the the third data cycle of atomic load/store instructions. The $\overline{\mathrm{WE}}$ signal is sent out "unlatched" and must be latched externally before it is used. The WE signal may be externally qualified by HOLD signals (i.e., $\overline{M H O L D A}$ and MHOLDB $)$ to avoid writing into the memory during memory exceptions.
WRT. This signal is asserted (set to " 1 ") by the processor during the first address cycle of single or double integer store instructions, the first data cycle of single or double floating-point store instructions, and the second data cycle of atomic load/store instructions. WRT is sent out "unlatched" and must be latched externally before it is used.
LDSTO. This signal is asserted by the integer unit during the data cycles of atomic load store operations. LDSTO is sent out "unlatched" by the integer unit and must be latched externally before it is used.
LOCK. This signal is set to " 1 " when the processor needs the bus for multiple cycle transactions such as atomic load/store, double loads and double stores. The LOCK signal is sent "unlatched" and should be latched externally before it is used. The bus may not be granted to another bus master as long as the LOCK signal is asserted (i.e., BHOLD should not be asserted in the following processor clock cycle when LOCK=1).
INULL. Assertion of INULL indicates that the current memory

Memory Subsystem Interface Signals (continued)

access (whose address is held in an external latch) is to be nullifiedby the processor. INULL is intended to be used to disable cachemisses (in systems with cache) and to disable memory exceptiongeneration for the currentmemoryaccess(i.e., MDS and MEXC should not be asserted for a memory access when INULL=1). INULL is a latched output and is active during the same cycle as the address which it nullifies. INULL is asserted under the following conditions: During the second cycle of a store instruction, or whenever the CY7C611A address is invalid due to an external or internal exception. If a floating-point unit or coprocessor unit is present in the system INULL should be ORed with the FNULL and CNULL signals from these units.

Floating-Point Interface Signals

The floating-point/coprocessor unit interface is a dedicated group of connections between the CY7C611A and the CY7C602A. Note that no external circuits are required between the CY7C611A and the CY7C602A; all traces should connect directly. The interface consists of the following signals:
$\overline{\mathbf{F P}}$. This signal indicates whether or not a floating-point unit exists in the system. The $\overline{\mathrm{FP}}$ signal is normally pulled up to VDD by a resistor. It is grounded when the CY7C602A chip is present. The integer unit generates a floating-point disable trap if $\overline{\mathrm{FP}}=1$ during the execution of a floating-point instruction, FBfcc instruction or floating-point load and store instructions.
FCC[1:0]. These bits are taken as the current condition code bits of the CY7C602A. They are considered valid if $\mathrm{FCCV}=1$. During the execution of the FBfccinstruction, the processor uses these bits to determine whether the branch should be taken or not. FCC[1:0] are latched by the processor before they are used.

FCCV. This signal should be asserted only when the FCC[1:0] bits are valid. The floating-point unit deasserts FCCV if pending floating-point compare instructions exist in the floating-point queue. FCCV is reasserted when the compare instruction is completed and the floating-point condition codes FCC[1:0] are valid. The integer unit will enter a wait state if FCCV is deasserted (i.e., $\mathrm{FCCV}=$ " 0 "). The FCCV signal is latched (transparentlatch) in the CY7C611A before it is used.
FHOLD. This signal is asserted by the floating-point unit if a situation arises in which the CY7C602A cannot continue execution. The floating-point unit checks all dependencies in the Decode stage of the instruction and asserts FHOLD (if necessary) in the next cycle. This signal is used by the integer unit to freeze the instruction pipeline in the same cycle. The CY7C602A must eventually deassert $\overline{\text { FHOLD }}$ in order to unfreeze the integer unit's pipeline. The FHOLD signal is latched (transparent latch) in the CY7C611A before it is used.

FEXC. Assertion of this signal indicates that a floating-point exception has occurred. FEXC must remain asserted until the integer unit takes the trap and acknowledges the CY7C602A via FXACK signal. Floating-point exceptions are taken only during the execution of floating-point instructions, FBfcc instruction and floating-point load and store instructions. FEXC is latched in the integer unit before it is used. The CY7C602A should deassert FHOLD if it detects an exception while FHOLD is asserted. In this case $\overline{\text { FEXC }}$ should be asserted a cycle before $\overline{\text { FHOLD }}$ is deasserted.

INST. This signal is asserted by the integer unit whenever a new instruction is being fetched. It is used by the CY7C602A to latch the instruction on the $\mathrm{D}[31: 0]$ bus into the CY7C602A instruction buffer. The CY7C602A needs two instruction buffers (D1 and D2) to save the last two fetched instructions. When INST is asserted a new instruction enters into the D1 buffer and the old instruction in D1 enters into the D2 buffer.
FLUSH. This signal is asserted by the integer unit and is used by the CY7C602A to flush the instructions in its instruction registers. This may happen when a trap is taken by the integer unit. Instructions that have entered into the floating-point queue may continue their execution if FLUSH is raised as a result of a trap or exception other than floating-point exceptions.
FINS1. This signal is asserted by the integer init during the decode stage of a CY7C602A instruction if the instruction is in the D1 buffer of the CY7C602A chip. The CY7C602A uses this signal to latch the instruction in D1 buffer into its execute stage instruction register.
FINS2-This signal is asserted by the integer unit during the decode stage of a CY7C602A instruction if the instruction is in the D2 buffer of the CY7C602A chip. The CY7C602A uses this signal to latch the instruction in D2 buffer into its execute stage instruction register.
FXACK-This signal is asserted by the integer unit in order to acknowledge to the CY7C602A that the current FEXC trap is taken. The CY7C602A must deassert FEXC after it receives an asserted level of FXACK signal so that the next floating-point instruction does not cause a "repeated" floating-point exception trap.

Miscellaneous I/O Signals

These signals are used by the CY7C611A to control external events or to receive input from external events. This interface consists of the following signals:
IRL [3:0]. The data on these pins defines the external interrupt level. IRL[3:0] $=0000$ indicates that no external interrupts are pending. The integer unituses two on-chipsynchronizinglatches to sample these signals on the rising edge of CLK. A given interrupt level must remain valid for at least two consecutive cycles to be recognized by the integer unit. IRL[3:0]=1111 signifies an non-maskable interrupt. Allother interrupt levels are maskable by the PIL field of the Processor State Register (PSR). External interrupts should be latched and prioritized by the external logic before they are passed to the integer unit. The external interrupt latches should keep the interrupts pending until they are taken (and acknowledged) by the integer unit. External interrupts can be acknowledged by software or by the Interrupt Acknowledge (INTACK) output.
INTACK-This signal is asserted by the integer unit when an external interrupt is taken.
RESET-Assertion of this pin will reset the integer unit. The RESET signal must be asserted for a minimum of eight processor clock cycles. After a reset, the integer unit will start fetching from address 0 . The RESET signal is latched by the integer unit before it is used.
ERROR-This signal is asserted by the integer unit when a trap is encountered while traps are disabled via the ET bit in the PSR.

CY7C611A

Miscellaneous I/O Signals (continued)

In this situation the integer unit saves the PC and nPC registers, sets the tt value in the TBR, enters into an error state, asserts the ERROR signal and then halts. The only way to restart the processor trapped in the error state, is to trigger a reset by asserting the RESET signal.
$\overline{\mathbf{T O E}}$-This signal is used to force all output drivers of the processor chip into a high-impedance state. It is used to isolate the chip from the rest of the system for debugging purposes. This pin should be tied LOW for normal operation.

FPSYN-This pin is a mode pin which is used to allow execution of additional instructions in future designs. It should be normally kept deasserted (FPSYN=0) to disable the execution of these instructions.

Document \#: 38-R-10003-A

CLK-CLK is a 50% duty-cycle clock used for clocking the CY7C611A's pipeline registers. It is HIGH during the first half of the processor cycle, and LOW during the second half. The rising edge of CLK defines the beginning of each pipeline stage in the CY7C611A chip.

- An

Features

- 1024×42 fully associative processor
- 1024 single-bit ALUs; one ALU per CAM entry
- User-friendly instruction set
- Binary and Quad compare modes
- Supports "don't care" and "never match" states
- Match length expandable in 42-bit entry increments
- 32-bit data bus
- Full cascade support
- 80-pin PQFP, 68-pin PLCC
- Advanced CMOS process

Functional Overview

The CY7C915 SmartCAM is a high-performance associative processor. It consists of a 1024×42 CAM array and a Row Logic section containing 1024 single-bit ALUs. Under program control, data patterns supplied by external logic via the 32 data lines are compared against the contents of the CAM array. The match result is then processed by the ALUs in the Row Logic. Individual bit positions in the data pattern can be removed from the match process by setting the corresponding bits in the mask pattern. Mask patterns can be supplied externally or generated on-chip.
Two types of matches are supported by the CY7C915: binary match and quad match. In a binary match, the contents of the CAM array is compared against the external data pattern on a bit-by-bit basis. In a quad match, the 42 bits in each CAM

1K x 42 SmartCAM ${ }^{\left({ }^{(1)}\right.}$

entry are paired to form 21 quad values. The four states in a quad value are logic one, logic zero, don't care, and never match. These quad values are compared against quad-value patterns from external logic.
If the data pattern is longer than 42 bits, multiple adjacent CAM entries can be linked to form a multiword storage unit. On-chip logic supports multiword match and collation.
Twelve instructions are supported. They control operations such as match, read/ write CAM entries, and data flow within a SmartCAM, as well as data flow between cascaded SmartCAMs.
The CY7C915 is designed for data-intensive applications such as pattern recognition, database systems, neural networks, text processing, and digital noise suppresion.

Logic Block Diagram

C915-1

[^61]
Functional Description

Communications between the CY7C915 SmartCAM and external logic are conductedvia the 32 datalines. Data patterns supplied externally are stored in the Data ${ }_{\text {IN }}$ register before they are compared against the contents of the CAM array. If a match is detected, the MATCH output will be asserted. In case multiple matches are found, the Multiple Response (MR) output will be asserted as well. An on-chip Multiple Response Resolver (MRR) prioritizes all matched CAM entries and points to the first matched location.

Individual bit positions of the externally supplied data pattern can be removed from the match process by setting the corresponding bit positionsin the Mask register. BitssetHIGH in the Mask register force a match between corresponding bits in the Data $_{\text {IN }}$ register and the CAM array. During CAM update operations, the same Mask register can be used to specify which of the 42 columns in the CAM array are to be updated. Besideswriting externally generated mask patterns into the Mask register, the user can select internally generated mask patterns via the "Msksrc" field of the instruction.

After a match operation, the 1024 match results (one from each CAM entry) can be stored in one of three 1024-bit-long Response registers in the row logic function block. These registers are labelled as R1, R2, and R3. R1 is a multipurpose register. Besides being a storage for match results, R 1 also serves as the input register feeding the MRR, as well as the chip-wide bidirectional shift register. Cascading multiple SmartCAMs is accomplished by connecting the top-most and the bottom-most bits of R1 to the upper and lower devicesin the cascadechain, respectively. Response registers R2 and R3 are used to store match results only.

The CY7C915 SmartCAM contains 1024 single-bit ALUs. The contents of the three Response registers are inputs to the ALUs. Each ALU is capable of performing 256 Boolean operations on the three sets of inputs and storing the processed data back into one of the Response registers. The Boolean operation to be performed is selected by the 8 -bit "GPLBterms" field in the instruction.

Two types of matches are supported: binary match and quad match. In a binary match, the binary contents of the CAM array are compared against the contents of the Data ${ }_{\mathrm{IN}}$ register on a bit-by-bit basis. Bit positions masked out by the mask pattern are not compared. In a quad match, the 42 bits in each CAM entry are pairedup toform 21 quadvalues. The fourstatesineach quadvalue are zero (0), one (1), don'tcare (X), and never match (N). In a similar manner, the contents of the Data ${ }_{I N}$ register and the Mask register are encodedinto 21 quadvalues. Table 1 illustrates how the quad values are matched against each other; a 1 indicates a match, a 0 in dicates a miss. Note that a don't care (X) can match anyvalue, while a never match (N) will match only don't cares.

Table 1. Truth Table

	0	1	\mathbf{X}	\mathbf{N}
0	1	0	1	0
1	0	1	1	0
\mathbf{X}	1	1	1	1
\mathbf{N}	0	0	1	0

Instructions

Twelve instructions are supported in the CY7C915.
Match: Starts a compare operation.
Move: Copies data from one location to another.
Read: Moves the contents of the selected CAM entry into the Data
Readshift: Moves the contents of the selected CAM entry into the Data out register or to the 32 data lines. After the data move, the contents of R1 are shifted one bit position in the direction specified in the instruction.

Readsnext: Moves the contents of the selected CAM entry into the Dataout register or to the 32 data lines. After the data move, the top-most non-zero entry in R1 is reset to zero.

Shift: The contents of R1 are shifted one bit position in the direction specified in the instruction.

Snext: The top-most non-zero entry in R1 is reset to zero.
Write: The data in the specified source is written into the selected CAM entry.

Writeshift: The data in the specified source is written into the selected CAM entry. After the write, the contents of R1 are shifted one bit position in the direction specified in the instruction.

Writesnext: The data in the specified source is written into the selected CAM entry. After the write, the top-most non-zero entry in R1 is reset to zero.

Writecol: A column in the selected CAM entry is loaded with data from a source specified in the instruction.

NOP: No operation.

Instruction Format

The 32-bit instruction contains 11 fields (see Figure 1).
Opcode: Selects one of the twelve instructions.
Respreg: Selects one of the three response registers.
Selvect: Specifies the pointer into the CAM array for reads and writes.

Datasrc: Specifies the data source for writing and matching.
Msksrc: Specifies the mask source for writing and matching.
Dir: Specifies the direction of the shift operation.
GPLBterms: An 8 -bit field selecting 1 of the 256 Boolean operations to be performed.
Mpat: Selects one of the two types of internally generated mask patterns.

Mpatbit: Location control bit for the internally generated mask patterns.

Bitpos: Pattern control bits for the internally generated mask patterns.

Resv: Reserved for future use.

$31 \quad 27$	$26 \quad 25$	23	2221	20	918	17	169	8	7	6	5
OPCODE	RESPREG	SELVECT	DATASRC	RESV	MSKSRC	DIR	GPLBTERMS	MPAT	MPATBIT	RESV	BITPOS

Figure 1. Instruction Format

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground
Potential \qquad
DC Voltage Applied to Outputs
in High Z State.
-0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V

Static Discharge Voltage
$>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameters	Description	Test Conditions		CY7C915		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{IOH}=-3.0 \mathrm{~m}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=6.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage			2.2	$\begin{aligned} & \hline \text { Vcc } \\ & +0.3 \end{aligned}$	V
V_{IL}	Input LOW Voltage			-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{CC}}$		-1	+1	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-5	+5	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[3]}$	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=\mathrm{GND}$			TBD	mA
I_{CC}	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$	Com'l		TBD	mA
			Mil			
$\mathrm{I}_{\text {SB }}$	Automatic CE Power-Down Current	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}$	Com'l		TBD	mA
			Mil			

Capacitance ${ }^{[4]}$

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	TBD	pF
COUT	Output Capacitance		$\mathrm{V}=5.0 \mathrm{~V}$	TBD
		pF		

Notes:

1. T_{A} is the "instant on" case temperature.
2. See the last page of this specification for Group A subgroup testing information.
3. Duration of the short circuit should not exceed 30 seconds.
4. Tested initially and after any design or process changes that may affect these parameters.

Document \#: 38-00206

Features

- Output pair skew < 100 ps typical (250 max.)
- All outputs skew <250 ps typical (500 max.)
- 3.75- to $80-\mathrm{MHz}$ output operation
- User-selectable output functions
- Selectable skew to 18 ns
- Inverted and non-inverted
- Operation at $1 / 2$ and $1 / 4$ input frequency
-Operation at $2 x$ and $4 x$ input frequency (input as low as 3.75 MHz)
- Zero input to output delay
- $\mathbf{5 0 \%}$ duty-cycle outputs
- Outputs drive 50Ω terminated lines
- Low operating current
- 32-pin PLCC/LCC package
- Jitter < 0.5\% peak to peak
- Compatible with the Pentium ${ }^{\circledR 1}$ processor

Programmable Skew Clock Buffer (PSCB)

Functional Description

The CY7B991 and CY7B992 Programmable Skew Clock Buffers (PSCB) offer user-selectable control over system clock functions. These multiple-output clock drivers provide the system integrator with functions necessary to optimize the timing of high-performance computer systems. Eight individual drivers, arranged as four pairs of user-controllable outputs, can each drive terminated transmission lines with impedances as low as 50Ω while delivering minimal and specified output skews and full-swing logic levels (CY7B991 TTL or CY7B992 CMOS).
Each output can be hardwired to one of nine delay or function configurations. Delay increments of 0.7 to 1.5 ns are determined by the operating frequency with
outputs able to skew up to ± 6 time units from their nominal "zero" skew position. The completely integrated PLL allows external load and transmission line delay effects to be canceled. When this "zero delay" capability of the PSCB is combined with the selectable output skew functions, the user can create output-to-output delays of up to ± 12 time units.
Divide-by-two and divide-by-four output functions are provided for additional flexibility in designing complex clock systems. When combined with the internal PLL, these divide functions allow distribution of a low-frequency clock that can be multiplied by two or four at the clock destination. This facility minimizes clock distribution difficulty while allowing maximum system clock speed and flexibility.

Logic Block Diagram

Pin Configuration

PLCC/LCC

7B991-1

[^62]
Pin Definitions

Signal Name		
REF	I	Description
FB	I	Reference frequency input. This input supplies the frequency and timing against which all functional variation measured.
FS	I	Threedback input (typically connected to one of the eight outputs).
1F0, 1F1	I	Three-level frequency range select. See Table 1.
2F0, 2F1	I	Three-level function select inputs for output pair 1 (1Q0, 1Q1). See Table 2.
3F0, 3F1	I	Three-level function select inputs for output pair 2 (2Q0, 2Q1). See Table 2. pair 3 (3Q0, 3Q1). See Table 2.
4F0, 4F1	I	Three-level function select inputs for output pair 4 (4Q0, 4Q1). See Table 2.
TEST	I	Three-level select. See test mode section under the block diagram descriptions.
1Q0, 1Q1	O	Output pair 1. See Table 2.
2Q0, 2Q1	O	Output pair 2. See Table 2.
3Q0, 3Q1	O	Output pair 3. See Table 2.
4Q0, 4Q1	O	Output pair 4. See Table 2.
VCCN	PWR	Power supply for output drivers.
VCCQ	PWR	Power supply for internal circuitry.
GND	PWR	Ground.

Block Diagram Description

Phase Frequency Detector and Filter

These two blocks accept inputs from the reference frequency (REF) input and the feedback (FB) input and generate correction information to control the frequency of the Voltage-Controlled Oscillator (VCO). These blocks, along with the VCO, form a Phase-Locked Loop (PLL) that tracks the incoming REF signal.

VCO and Time Unit Generator

The VCO accepts analog control inputs from the PLL filter block and generates a frequency that is used by the time unit generator to create discrete time units that are selected in the skew select matrix. The operational range of the VCO is determined by the FS control pin. The time unit $\left(\mathrm{t}_{\mathrm{U}}\right)$ is determined by the operating frequency of the device and the level of the FS pin as shown in Table 1.

Table 1. Frequency Range Select and t_{U} Calculation ${ }^{[1]}$

FS ${ }^{[2]}$	$\begin{gathered} \hline \mathbf{f}_{\mathrm{NOM}} \\ (\mathbf{M H z}) \end{gathered}$		$\begin{gathered} \mathbf{t}_{\mathrm{U}}=\frac{1}{\mathbf{f}_{\text {NOM }} \times \mathbf{N}} \\ \text { where } \mathbf{N}= \end{gathered}$	Approximate Frequency (MHz) At Which $\mathrm{t}_{\mathrm{U}}=1.0 \mathrm{~ns}$
	Min.	Max.		
LOW	15	30	44	22.7
MID	25	50	26	38.5
HIGH	40	80	16	62.5

Skew Select Matrix

The skew select matrix is comprised of four independent sections. Each section has two low-skew, high-fanout drivers ($\mathrm{xQ} 0, \mathrm{xQ} 1$), and two corresponding three-level.function select ($\mathrm{xF} 0, \mathrm{xF1}$) inputs. Table 2 below shows the nine possible output functions for each section as determined by the function select inputs. All
times are measured with respect to the REF input assuming that the output connected to the FB input has $0 \mathrm{t}_{\mathrm{U}}$ selected.

Table 2. Programmable Skew Configurations ${ }^{[1]}$

Function Selects		Output Functions		
1F1, 2F1, 3F1, 4F1	1F0, 2F0, 3F0, 4F0	1Q0, 1Q1, 2Q0, 2Q1	3Q0, 3Q1	4Q0, 4Q1
LOW	LOW	$-4 t_{\mathrm{U}}$	Divide by 2	Divide by 2
LOW	MID	$-3 \mathrm{t}_{\mathrm{U}}$	$-6 \mathrm{t}_{\mathrm{U}}$	$-6 \mathrm{t}_{\mathrm{U}}$
LOW	HIGH	$-2 \mathrm{t}_{\mathrm{U}}$	$-4 \mathrm{t}_{\mathrm{U}}$	$-4 \mathrm{t}_{\mathrm{U}}$
MID	LOW	$-1 \mathrm{t}_{\mathrm{U}}$	$-2 \mathrm{t}_{\mathrm{U}}$	$-2 \mathrm{t}_{\mathrm{U}}$
MID	MID	$0 \mathrm{t}_{\mathrm{U}}$	$0 \mathrm{t}_{\mathrm{U}}$	$0 \mathrm{t}_{\mathrm{U}}$
MID	HIGH	$+1 \mathrm{t}_{\mathrm{U}}$	$+2 \mathrm{t}_{\mathrm{U}}$	$+2 \mathrm{t}_{\mathrm{U}}$
HIGH	LOW	$+2 \mathrm{t}_{\mathrm{U}}$	$+4 \mathrm{t}_{\mathrm{U}}$	$+4 \mathrm{t}_{\mathrm{U}}$
HIGH	MID	$+3 \mathrm{t}_{\mathrm{U}}$	$+6 \mathrm{t}_{\mathrm{U}}$	$+6 \mathrm{t}_{\mathrm{U}}$
HIGH	HIGH	$+4 \mathrm{t}_{\mathrm{U}}$	Divide by 4	Inverted

Note:

1. For all three-state inputs, HIGH indicates a connection to V_{CC}, LOW indicates a connection to GND, and MID indicates an open connection. Internal termination circuitry holds an unconnected input to V_{Cd} 2.
2. The level to be set on $\mathbf{F S}$ is determined by the "normal" operating frequency ($f_{\text {NOM }}$) of the $V_{\text {CO }}$ and Time Unit Generator (see Logic Block Diagram). Nominal frequency ($\mathrm{f}_{\text {NOM }}$) always appears at $1 Q 0$ and the other outputs when they are operated in their undivided modes (see Table 2). The frequency appearing at the REF and FB inputs will be $\mathrm{f}_{\mathrm{NOM}}$ when the output connected to FB is undivided. The frequency of the REF and FB inputs will be $\mathrm{f}_{\mathrm{NOM}} / 2$ or $\mathrm{f}_{\mathrm{NOM}} / 4$ when the part is configured for a frequency multiplication by using a divided output as the FB input.

SEMICONDUCTOR

Figure 1. Typical Outputs with FB Connected to a Zero-Skew Output ${ }^{[3]}$

Test Mode

The TEST input is a three-level input. In normal system operation, this pin is connected to ground, allowing the CY7B991/CY7B992 to operate as explained briefly above (for testing purposes, any of the three-level inputs can have a removable jumper to ground, or be tied LOW through a 100Ω resistor. This will allow an external tester to change the state of these pins.)
If the TEST input is forced to its MID or HIGH state, the device will operate with its internal phase locked loop disconnected, and input levels supplied to REF will directly control all outputs. Relative output to output functions are the same as in normal mode.
In contrast with normal operation (TEST tied LOW). All outputs will function based only on the connection of their own function select inputs (xF 0 and xF 1) and the waveform characteristics of the REF input.

Maximum Ratings

(Above which the useful life maybe impaired. For user guidelines, not tested.)

Storage Temperature \qquad
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V

Output Current into Outputs (LOW) 64 mA
Static Discharge Voltage . $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current $>200 \mathrm{~mA}$
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[4]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

[^63]Electrical Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	Test Conditions	CY7B991		CY7B992		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-16 \mathrm{~mA}$	2.4				V
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-40 \mathrm{~mA}$			$\mathrm{V}_{\mathrm{CC}}-0.75$		
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{IOL}=46 \mathrm{~mA}$		0.45			V
		$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=46 \mathrm{~mA}$				0.45	
V_{IH}	$\begin{aligned} & \text { Input HIGH Voltage } \\ & \text { (REF and FB inputs only) } \end{aligned}$		2.0	V_{CC}	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}} \\ -1.35 \end{gathered}$	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage (REF and FB inputs only)		-0.5	0.8	-0.5	1.35	V
$\mathrm{V}_{\text {IHH }}$	Three-Level Input HIGH Voltage (Test, FS, xFn) ${ }^{[6]}$	Min. $\leq \mathrm{V}_{\mathrm{CC}} \leq$ Max.	$\begin{aligned} & \bar{V}_{C C} \\ & -1 \mathrm{~V} \end{aligned}$	V_{CC}	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \\ & -1 \mathrm{~V} \end{aligned}$	V_{CC}	V
$\mathrm{V}_{\text {IMM }}$	$\begin{aligned} & \text { Three-Level Input MID } \\ & \text { Voltage (Test, FS, xFn) }{ }^{[6]} \end{aligned}$	Min. $\leq \mathrm{V}_{\mathrm{CC}} \leq$ Max.	$\begin{aligned} & \hline \mathrm{VCO}_{\mathrm{CO}} 2- \\ & 500 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} / 2+ \\ & 500 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cd}} 2- \\ & 500 \mathrm{mV} \end{aligned}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{cd}} / 2+ \\ & 500 \mathrm{mV} \end{aligned}$	V
$\mathrm{V}_{\text {ILL }}$	Three-Level Input LOW Voltage (Test, FS, xFn) ${ }^{[6]}$	Min. $\leq \mathrm{V}_{\mathrm{CC}} \leq$ Max.	0.0	1.0	0.0	1.0	V
I_{IH}	Input HIGHLeakage Current (REF and FB inputs only)	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=$ Max.		10		10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Leakage Current (REF and FB inputs only)	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {IN }}=0.4 \mathrm{~V}$	- 500		- 500		$\mu \mathrm{A}$
$\mathrm{I}_{\text {IHH }}$	Input HIGH Current (Test, FS, xFn)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$		200		200	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IMM }}$	Input MID Current (Test, FS, xFn)	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}} / 2$	-50	50	-50	50	$\mu \mathrm{A}$
$\mathrm{I}_{\text {ILL }}$	Input LOW Current (Test, FS, xFn)	$\mathrm{V}_{\text {IN }}=\mathrm{GND}$		-200		-200	$\mu \mathrm{A}$
I_{OS}	Output Short Circuit Current ${ }^{[7]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{V}_{\text {OUT }} \\ & =\text { GND }\left(25^{\circ} \mathrm{C} \text { only }\right) \end{aligned}$		-250			mA
$\mathrm{I}_{\mathrm{CCQ}}$	Operating Current Used by Internal Circuitry	$V_{C C N}=V_{C C Q}=\text { Max. }$ All Input Selects Open		80		80	mA
$\mathrm{I}_{\mathrm{CCN}}$	Output Buffer Current per Output Pair ${ }^{[8]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CCN}}=\mathrm{V}_{\mathrm{CCQ}}=\mathrm{Max} ., \\ & \mathrm{C}=50 \mathrm{pf}, \mathrm{Z}=50 \Omega \\ & \text { Input Selects Open, } \mathrm{f}_{\mathrm{MAX}} \end{aligned}$		45		57	mA
PD	Power Dissipation per Output Pair ${ }^{9]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CCN}}=\mathrm{V}_{\mathrm{CCQ}}=\mathrm{Max} ., \\ & \mathrm{C}=50 \mathrm{pf}, \mathrm{Z}=50 \Omega, \\ & \text { Input Selects Open, } \mathrm{f}_{\mathrm{MAX}} \\ & \hline \end{aligned}$		171		$148{ }^{[10]}$	mW

Capacitance ${ }^{[11]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \quad:$	10	pF

Notes:
5. See the last page of this specification for Group A subgroup testing information.
6. These inputs are normally wired to $\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$, or left unconnected (actual threshold voltages vary as a percentage of V_{CC}). Internal termination resistors hold unconnected inputs at V_{CC} 2. If these inputs are switched, the function and timing of the outputs may glitch and the PLL may require an additional $\mathrm{t}_{\text {LOCK }}$ time before all datasheet limits are achieved.
7. Tested one output at a time, output shorted for less than one second, less than 10% duty cycle. Room temperature only.
8. I $\mathrm{I}_{\mathrm{CCN}}$ can be approximated by the following expressions:

CY7B991:
$\mathrm{I}_{\mathrm{CCN}}=(2+0.11 \mathrm{~F})+[((835-3 \mathrm{~F}) / \mathrm{Z})+(.0022 \mathrm{FC})] \mathrm{N}$
CY7B992:

$$
I_{\mathrm{CCN}}=(1.5+1.7 \mathrm{~F})+[((1160-2.8 \mathrm{~F}) / \mathrm{Z})+(.0025 \mathrm{FC})] \mathrm{N}
$$

Where
$\mathrm{F}=$ frequency in MHz
$\mathrm{C}=$ capacitive load in pF
$\mathrm{Z}=$ line impedance in ohms
$\mathrm{N}=$ number of loaded outputs; 0,1 , or 2
$\mathrm{FC}=\mathrm{F} * \mathrm{C}$
9. Power dissipation can be approximated by the following expressions: CY7B991:
$\mathrm{PD}=(11+0.61 \mathrm{~F})+[((1550-2.7 \mathrm{~F}) / \mathrm{Z})+(.0125 \mathrm{FC})] \mathrm{N}$ CY7B992:
$\mathrm{PD}=(8.25+0.94 \mathrm{~F})+[((700+6 \mathrm{~F}) / \mathrm{Z})+(.017 \mathrm{FC})] \mathrm{N}$
See note 8 for variable definition.
10. CMOS output buffer current and power dissipation specified at $50-\mathrm{MHz}$ reference frequency.
11. Applies to REF andFB inputsonly. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

TTL AC Test Load (CY7B991)

CMOS AC Test Load (CY7B992)

7B991-5
TTL Input Test Waveform (CY7B991)

7B991-7
CMOS Input Test Waveform (CY7B992)

Switching Characteristics Over the Operating Range ${ }^{[2,12]}$

Parameter	Description		CY7B991-5			CY7B992-5			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
$\mathrm{f}_{\mathrm{NOM}}$	Operating Clock Frequency in MHz	FS $=\mathrm{LOW}^{[1,2]}$	15		30	15		30	MHz
		FS $=$ MID ${ }^{[1,2]}$	25		50	25		50	
		FS $=\mathrm{HIGH}^{[1,2]}$	40		80	40		$80^{[13]}$	
trPWH	REF Pulse Width HIGH		5.0			5.0			ns
$\mathrm{t}_{\text {RPWL }}$	REF Pulse Width LOW		5.0			5.0			ns
t_{U}	Programmable Skew Unit		See Table 1						
tue	Programmable Skew Unit Error ${ }^{[14]}$			0.0	± 0.5		0.0	± 0.5	ns
${ }^{\text {tSKEWPR }}$	Zero Output Matched-PairXQ1) ${ }^{[15,16]}$			0.1	0.25		0.1	0.25	ns
tsKEW0	Zero Output Skew (All Outputs) ${ }^{[15,17]}$			0.25	0.5		0.25	0.5	ns
tskEW1	Output Skew (Rise-Rise, Fall-Fall, Same Class Outputs) ${ }^{[15,18]}$			0.6	0.7		0.6	0.7	ns
${ }_{\text {tSKEW2 }}$	Output Skew (Rise-Fall, Nominal-Inverted, Divided-Divided) ${ }^{[15,18]}$			0.6	1.2		0.6	1.2	ns
tskew3	Output Skew (Rise-Rise, Fall-Fall, Different Class Outputs) ${ }^{[15,18]}$			0.6	1.0		0.6	1.0	ns
tskew4	Output Skew (Rise-Fall, Nominal-Divided, Divided-Inverted) ${ }^{[15,18]}$			0.6	1.3		0.6	1.3	ns
tSKEW5	Device-to-Device Skew ${ }^{[19]}$				0.2			0.2	ns
$\mathrm{t}_{\text {PD }}$	Propagation Delay, REF Rise to FB Rise		-0.5	0.0	+0.5	-0.5	0.0	+0.5	ns
todCV	Output Duty Cycle Variation ${ }^{[20]}$		-1.0	0.0	+1.0	-1.0	0.0	+1.0	ns
tpWH	Output HIGH Time Deviation from 50\% ${ }^{[21,24]}$				2.5			3.5	ns
tPWL	Output LOW Time Deviation from $50 \%{ }^{[21,24]}$				3			3.5	ns
torise	Output Rise Time ${ }^{[21,25]}$		0.15	1.0	1.5	0.5	2.0	2.5	ns
tofall	Output Fall Time ${ }^{[21,25]}$		0.15	1.0	1.5	0.5	2.0	2.5	ns
$\mathrm{t}_{\text {LOCK }}$	PLL Lock Time ${ }^{[22]}$				0.5			0.5	ms
t_{JR}	Cycle-to-Cycle Output Jitter, Peak to Peak ${ }^{[23]}$				0.5			0.5	\%

Switching Characteristics Over the Operating Range ${ }^{[2,12]}$ (continued)

Parameter	Description		CY7B991-7			CY7B992-7			Unit
			Min.	Typ.	Max.	Min.	Typ.	Max.	
$\mathrm{f}_{\text {NOM }}$	Operating Clock Frequency in MHz	FS $=$ LOW ${ }^{[1,2]}$	15		30	15		30	MHz
		FS $=$ MID ${ }^{[1,2]}$	25		50	25		50	
		$\mathrm{FS}=\mathrm{HIGH}^{[1,2]}$	40		80	40		50	
$\mathrm{t}_{\text {RPWH }}$	REF Pulse Width HIGH		5.0			5.0			ns
$\mathrm{t}_{\text {RPWL }}$	REF Pulse Width LOW		5.0			5.0			ns
t_{U}	Programmable Skew Unit		See Table 1						
tue	Programmable Skew Unit Error ${ }^{[14]}$			0.0	± 0.7		0.0	± 0.7	ns
tskewPr $^{\text {d }}$	$\begin{array}{\|l} \hline \text { Zero Output Matched-Pair Skew (XQ0, } \\ \text { XQ1) } \end{array}$			0.1	0.25		0.1	0.25	ns
tskew0	Zero Output Skew (All Outputs) ${ }^{[15,17]}$			0.3	0.75		0.3	0.75	ns
tSKEW1	OutputSkew(Rise-Rise, Fall-Fall, Same Class Outputs) ${ }^{[15,18]}$			0.6	1.0		0.6	1.0	ns
tSKEW2	Output Skew (Rise-Fall, Nominal-Inverted, Divided-Divided) ${ }^{[15, ~ 18]}$			1.0	1.5		1.0	1.5	ns
${ }^{\text {tSKEW3 }}$	Output Skew (Rise-Rise, Fall-Fall, Different Class Outputs) ${ }^{[15,18]}$			0.7	1.2		0.7	1.2	ns
${ }_{\text {tSKEW4 }}$	Output Skew (Rise-Fall, Nominal-Divided, Divided-Inverted) ${ }^{[15,18]}$			1.2	1.7		1.2	1.7	ns
tsKEW5	Device-to-Device Skew ${ }^{19]}$				0.2		0.2		ns
t_{PD}	Propagation Delay, REF Rise to FB Rise		-0.7	0.0	+0.7	-0.7	0.0	+0.7	ns
todCV	Output Duty Cycle Variation ${ }^{[20]}$		-1.2	0.0	+1.2	-1.2	0.0	+1.2	ns
$\mathrm{t}_{\text {PWH }}$	Output HIGH Time Deviation from 50\% ${ }^{[21,24]}$				3			5.5	ns
$\mathrm{t}_{\text {PWL }}$	Output LOWTime Deviation from $50 \%{ }^{[21,24]}$				3.5			5.5	ns
torise	Output Rise Time ${ }^{[21,25]}$		0.15	1.5	2.5	0.5	3.0	5.0	ns
tofall	Output Fall Time ${ }^{[21,25]}$		0.15	1.5	2.5	0.5	3.0	5.0	ns
$\mathrm{t}_{\text {LOCK }}$	PLL Lock Time ${ }^{[22]}$				0.5			0.5	ms
t_{JR}	Cycle-to-Cycle Output Jitter, Peak to Peak ${ }^{[23]}$			0.5			0.5		\%

Notes:
12. Test measurement levels for the CY7B991 are TTL levels $(1.5 \mathrm{~V}$ to 1.5 V). Test measurement levels for the CY7B992 are CMOS levels (V_{CC} 2 to $\mathrm{V}_{\mathrm{CC}} / 2$). Test conditions assume signal transition times of 2 ns or less and output loading as shown in the AC Test Loads and Waveforms unless otherwise specified.
13. Except as noted, all CY7B992-5 timing parameters are specified to $80-\mathrm{MHz}$ with a $30-\mathrm{pF}$ load.
14. t_{UE} is a measure of the timing error from t_{U} as calculated in Table 1. The major contributors to this error include output edge variations, cross talk, and load-induced variations between package pins and between signal lines external to the chip. tUE is not cumulative across multiple t_{U} delays.
15. SKEW is defined as the time between the earliest and the latest output transition among all outputs for which the same t_{U} delay has been selected when all are loaded with 50 pF and terminated with 50Ω to 2.06 V (CY7B991) or $\mathrm{V}_{\mathrm{CC}} 2$ (CY7B992).
16. tSKEWPR is defined as the skew between a pair of outputs (XQ0 and $\mathrm{XQ} 1)$ when all eight outputs are selected for $0 \mathrm{t}_{\mathrm{U}}$.
17. $\mathrm{t}_{\text {SKEW }}$ is defined as the skew between outputs when they are selected for $0 \mathrm{t}_{\mathrm{U}}$. Other outputs are divided or inverted but not shifted.
18. There are three classes of outputs: Nominal (multiple of t_{U} delay), Inverted (4 Q 0 and 4 Q 1 only with $4 \mathrm{~F} 0=4 \mathrm{~F} 1=\mathrm{HIGH}$), and Divided (3Qx and 4Qx only in Divide-by-2 or Divide-by-4 mode).
19. tSKEW5 is the output-to-output skew between the outputs used as the FB input of two or more devices operating under the same conditions
(V_{CC}, ambient temperature, air flow, etc.). The maximum variation between two pins on different parts is tSKEW $^{\text {S }}$ plus the skews associated with each part.
20. toDCV is the deviation of the output from a 50% duty cycle. Output pulse width variations are included in tSKEW 2 and tSKEW4 specifications.
21. Specified with outputs loaded with 30 pF for the CY7B99X-5 devices and 50 pF for the CY7B99X-7 devices. Devices are terminated through 50Ω to 2.06 V (CY7B991) or $\mathrm{V}_{\mathrm{CC}} / 2$ (CY7B992).
22. ${ }^{t}$ LOCK is the time that is required before synchronization is achieved. This specification is valid only after V_{CC} is stable and within normal operating limits. This parameter is measured from the application of a new signal or frequency at REF or $F B$ until $t_{P D}$ is within specified limits.
23. Tested initially and after any design or process changes that may affect these parameters.
24. $t_{\text {PWH }}$ is measured at 2.0 V for the CY7B991 and $0.8 \mathrm{~V}_{\mathrm{CC}}$ for the CY7B992. tPWL is measured at 0.8 V for the CY7B991 and $0.2 \mathrm{~V}_{\mathrm{CC}}$ for the CY7B992.
25. torise and tofalL measured between 0.8 V and 2.0 V for the CY7B991 or $0.8 \mathrm{~V}_{\mathrm{CC}}$ and $0.2 \mathrm{~V}_{\mathrm{CC}}$ for the CY7B992.

AC Timing Diagrams

7B991-8

Operational Mode Descriptions

Figure 2. Zero-Skew and/or Zero-Delay Clock Driver

Figure 2 shows the PSCB configured as a zero-skew clock buffer. In this mode the 7B991/992 can be used as the basis for a lowskew clock distribution tree. When all of the function select inputs ($\mathrm{xF} 0, \mathrm{xF} 1$) are left open, the outputs are aligned and may each drive a terminated transmission line to an independent load.

The FB input can be tied to any output in this configuration and the operating frequency range is selected with the FS pin. The low-skew specification, coupled with the ability to drive terminated transmission lines (with impedances as low as 50 ohms), allows efficient printed circuit board design.

Figure 3. Programmable-Skew Clock Driver

Figure 3 shows a configuration to equalize skew between metal traces of different lengths. In addition to low skew between outputs, the PSCB can be programmed to stagger the timing of its outputs. The four groups of output pairs can each be programmed to different output timing. Skew timing can be adjusted over a wide range in small increments with the appropriate strapping of the function select pins. In this configuration the 4 Q 0 output is fed back to FB and configured for zero skew. The other three pairs of outputs are programmed to yield different skews relative to the feedback. By advancing the clock signal on the longer traces or retarding the clock signal on shorter traces, all loads can receive the clock pulse at the same time.
In this illustration the FB input is connected to an output with 0 -ns skew ($\mathrm{xF} 1, \mathrm{xF} 0=\mathrm{MID}$) selected. The internal PLL synchro-
nizes the FB and REF inputs and aligns their rising edges to insure that all outputs have precise phase alignment.
Clock skews can be advanced by ± 6 time units (t_{U}) when using an output selected for zero skew as the feedback. A wider range of delays is possible if the output connected to FB is also skewed. Since "Zero Skew", $+\mathrm{t}_{\mathrm{U}}$, and $-\mathrm{t}_{\mathrm{U}}$ are defined relative to output groups, and since the PLL aligns the rising edges of REF and FB, it is possible to create wider output skews by proper selection of the xFn inputs. For example a $+10 \mathrm{t}_{\mathrm{U}}$ between REF and 3Qx can be achieved by connecting 1 Q 0 to FB and setting $1 \mathrm{~F} 0=1 \mathrm{~F} 1=$ GND, 3F0 $=$ MID, and 3F1 $=$ High. (Since FB aligns at $-4 \mathrm{t}_{\mathrm{U}}$ and 3 Qx skews to $+6 \mathrm{t}_{\mathrm{U}}$, a total of $+10 \mathrm{t}_{\mathrm{U}}$ skew is realized.) Many other configurations can be realized by skewing both the output used as the FB input and skewing the other outputs.

7B991-11
Figure 4. Inverted Output Connections
Figure 4 shows an example of the invert function of the PSCB. In this example the 4 Q 0 output used as the FB input is programmed for invert $(4 \mathrm{~F} 0=4 \mathrm{~F} 1=\mathrm{HIGH})$ while the other three pairs of outputs are programmed for zero skew. When 4F0 and 4F1 are tied high, 4Q0 and 4Q1 become inverted zero phase outputs. The PLL aligns the rising edge of the FB input with the rising edge of the REF. This causes the 1Q, 2Q, and 3Q outputs to become the "inverted" outputs with respect to the REF input. By selecting which output is connect to FB, it is possible to have 2 inverted and 6 non-inverted outputs or 6 inverted and 2 non-inverted outputs. The correct configuration would be determined by the need for more (or fewer) inverted outputs. $1 \mathrm{Q}, 2 \mathrm{Q}$, and 3 Q outputs can also be skewed to compensate for varying trace delays independent of inversion on 4Q.
Figure 5 illustrates the PSCB configured as a clock multiplier. The 3Q0 output is programmed to divide by four and is fed back to FB . This causes the PLL to increase its frequency until the 3 Q 0 and 3Q1 outputs are locked at 20 MHz while the 1 Qx and 2Qx outputs run at 80 MHz . The 4 Q 0 and 4 Q 1 outputs are programmed to divide by two, which results in a $40-\mathrm{MHz}$ waveform at these outputs. Note that the $20-$ and $40-\mathrm{MHz}$ clocks fall simultaneously and are out of phase on their rising edge. This will al-

Figure 5. Frequency Multiplier with Skew Connections
low the designer to use the rising edges of the $1 / 2$ frequency and $1 / 4$ frequency outputs without concern for rising-edge skew. The $2 \mathrm{Q} 0,2 \mathrm{Q} 1,1 \mathrm{Q} 0$, and 1 Q 1 outputs run at 80 MHz and are skewed by programming their select inputs accordingly. Note that the FS pin is wired for $80-\mathrm{MHz}$ operation because that is the frequency of the fastest output.
Figure 6 demonstrates the PSCB in a clock divider application. 2 Q 0 is fed back to the FB input and programmed for zero skew. 3 Qx is programmed to divide by four. 4 Qx is programmed to divide by two. Note that the falling edges of the 4 Qx and 3 Qx outputs are aligned. This allows use of the rising edges of the $1 / 2$ frequency and $1 / 4$ frequency without concern for skew mismatch. The 1Qx outputs are programmed to zero skew and are aligned with the 2 Qx outputs. In this example, the FS input is grounded to configure the device in the 15 - to $30-\mathrm{MHz}$ range since the highest frequency output is running at 20 MHz .
Figure 7 shows some of the functions that are selectable on the 3 Qx and 4 Qx outputs. These include inverted outputs and outputs that offer divide-by-2 and divide-by-4 timing. An inverted output allows the system designer to clock different subsystems on opposite edges, without suffering from the pulse asymmetry typical of non-ideal loading. This function allows the two subsystems to each be clocked 180 degrees out of phase, but still to be aligned within the skew spec.
The divided outputs offer a zero-delay divider for portions of the system that need the clock to be divided by either two or four, and still remain within a narrow skew of the " 1 X " clock. Without this feature, an external divider would need to be added, and the propagation delay of the divider would add to the skew between the different clock signals.
These divided outputs, coupled with the Phase Locked Loop, allow the PSCB to multiply the clock rate at the REF input by either two or four. This mode will enable the designer to distribute a low-frequency clock between various portions of the system, and then locally multiply the clock rate to a more suitable frequency, while still maintaining the low-skew characteristics of the clock driver. The PSCB can perform all of the functions described above at the same time. It can multiply by two and four or divide by two (and four) at the same time that it is shifting its outputs over a wide range or maintaining zero skew between selected outputs.

Figure 6. Frequency Divider Connections

Figure 7. Multi-Function Clock Driver

Figure 8. Board-to-Board Clock Distribution
7B991-15

Figure 8 shows the CY7B991/992 connected in series to construct a zero-skew clock distribution tree between boards. Delays of the downstream clock buffers can be programmed to compensate for the wire length (i.e., select negative skew equal to the wire delay) necessary to connect them to the master clock source, approxi-
mating a zero-delay clock tree. Cascaded clock buffers will accumulate low-frequency jitter because of the non-ideal filtering characteristics of the PLL filter. It is not recommended that more than two clock buffers be connected in series.

Ordering Information

Accuracy $(\mathbf{p s})$	Ordering Code	Package Name	Package Type	Operating Range
500	CY7B991-5JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B991-5LC	L55	32-Pin Rectangular Leadless Chip Carrier	

$\underset{(\mathrm{ps})}{\text { Accuracy }}$	Ordering Code	Package Name	Package Type	Operating Range
750	CY7B991-7JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B991-7LC	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7B991-7JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7B991-7LI	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7B991-7LMB	L55	32-Pin Rectangular Leadless Chip Carrier	Military

Accuracy $(\mathbf{p s})$	Ordering Code	Package Name	Package Type	Operating Range
500	CY7B992-5JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B992-5LC	L55	32-Pin Rectangular Leadless Chip Carrier	

$\begin{gathered} \text { Accuracy } \\ (\mathrm{ps}) \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
750	CY7B992-7JC	J65	32-Lead Plastic Leaded Chip Carrier	Commercial
	CY7B992-7LC	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7B992-7JI	J65	32-Lead Plastic Leaded Chip Carrier	Industrial
	CY7B992-7LI	L55	32-Pin Rectangular Leadless Chip Carrier	
	CY7B992-7LMB	L55	32-Pin Rectangular Leadless Chip Carrier	Military

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IHH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IMM}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{ILL}}$	$1,2,3$
I_{IH}	$1,2,3$
I_{IL}	$1,2,3$
$\mathrm{I}_{\mathrm{IHH}}$	$1,2,3$
$\mathrm{I}_{\mathrm{IMM}}$	$1,2,3$
$\mathrm{I}_{\mathrm{ILL}}$	$1,2,3$
I_{OS}	1
$\mathrm{I}_{\mathrm{CCQ}}$	$1,2,3$
$\mathrm{I}_{\mathrm{CCN}}$	$1,2,3$
PD	$1,2,3$

Document \#: 38-00188-B

Switching Characteristics

Parameter	Subgroups
$\mathrm{t}_{\text {REF }}$	9, 10, 11
$\mathrm{t}_{\text {RPWH }}$	9, 10, 11
$\mathrm{t}_{\text {RPWL }}$	9, 10, 11
t_{U}	9,10, 11
t_{UE}	9, 10, 11
$\mathrm{t}_{\text {SKEWPR }}$	9,10, 11
tSKEW0	9,10, 11
$\mathrm{t}_{\text {SKEW1 }}$	9,10, 11
$\mathrm{t}_{\text {SKEW2 }}$	9,10, 11
$\mathrm{t}_{\text {SKEW }}$	9,10, 11
$\mathrm{t}_{\text {SKEW }}$	9,10, 11
$\mathrm{t}_{\text {SKEW5 }}$	9,10, 11
t_{PD}	9,10, 11
todCV	9, 10, 11
$\mathrm{t}_{\text {PWH }}$	9,10,11
tpWL	9,10, 11
$\mathrm{t}_{\text {QRISE }}$	9,10, 11
$\mathrm{t}_{\text {QFALL }}$	9,10, 11
$\mathrm{t}_{\text {LOCK }}$	9,10, 11

Features

- Fast
- CY7C9101-30 has a 30-ns (max.) clock cycle (commercial)
- CY7C9101-35 has a 35-ns (max.) clock cycle (military)
- Low power
- ICC (max. at 10 MHz$)=\mathbf{6 0} \mathrm{mA}$ (commercial)
$-\mathrm{I}_{\mathrm{CC}}($ max. at 10 MHz$)=85 \mathrm{~mA}$ (military)
- \mathbf{V}_{CC} margin of $5 \mathrm{~V} \pm \mathbf{1 0 \%}$
- All parameters guaranteed over commercial and military operating temperature range
- Replaces four 2901s with carry lookahead logic
- Eight-function ALU performs three arithmetic and five logical operations on two 16-bit operands
- Infinitely expandable in 16-bit increments
- Four status flags: carry, overflow, negative, zero
- Capable of withstanding greater than 2001V static discharge voltage
- Pin compatible and functional equivalent to AM29C101

Functional Description

The CY7C9101 is a high-speed, expandable, 16 -bit-wide ALU slice that can be used to implement the arithmetic section of a CPU, peripheral controller, or programmable controller. The instruction set of the CY7C9101 is basic, yet so versatile that it can emulate the ALU of almost any digital computer.
The CY7C9101, as shown in the logic block diagram, consists of a 16 -word by 16-bit dual-port RAM register file, a 16-bit

ALU, and the necessary data manipulation and control logic.
The function performed is determined by 9 -bit instruction word (I_{8} to I_{0}), which is usually input via a micro-instruction register.
The CY7C9101 is expandable in 16-bit increments, has three-state data outputs as well as flag outputs, and can implement either a full look-ahead carry or a ripple carry.
The CY7C9101 is a pin-compatible, functional equivalent for the Am29C101 with improved performance. The 7C9101 replaces four 2901s and includes on-chip carry look-ahead logic.
Fabricated in an advanced 1.2-micron CMOS process, the CY7C9101 eliminates latch-up, has ESD protection greater than 2000 V , and achieves superior performance with low power dissipation.

Pin Configurations (continued)

	PGA Top View									
	${ }^{51}$	$\begin{gathered} 50 \\ Y_{2} \\ \hline \end{gathered}$	r_{4}^{48}	$\begin{array}{\|c\|} \hline 46 \\ Y_{6} \\ \hline \end{array}$	$\begin{gathered} 44 \\ \text { } \end{gathered}$	$\begin{gathered} 42 \\ \mathrm{NC} \end{gathered}$	$\begin{gathered} 40 \\ Y_{8} \\ \hline \end{gathered}$	$\begin{gathered} 38 \\ \gamma_{10} \\ \hline \end{gathered}$	$\begin{array}{r} 36 \\ Y_{12} \\ \hline \end{array}$	
$\begin{array}{r} 53 \\ F=0 \end{array}$	$\begin{aligned} & 52 \\ & Y_{0} \end{aligned}$	$\begin{gathered} 49 \\ \gamma_{3} \end{gathered}$	$\begin{array}{r} 47 \\ Y_{5} \end{array}$	$\begin{gathered} 45 \\ Y_{7} \\ \hline \end{gathered}$	$\begin{gathered} 43 \\ v_{s s} \end{gathered}$	$\begin{array}{r} 41 \\ V_{S S} \end{array}$	$\begin{gathered} 39 \\ Y_{9} \\ \hline \end{gathered}$	$\begin{array}{r} 37 \\ Y_{11} \\ \hline \end{array}$	$\begin{array}{r} 35 \\ Y_{13} \\ \hline \end{array}$	$\begin{array}{r} 34 \\ Y_{14} \\ \hline \end{array}$
${ }_{1_{2}}^{55}$	c_{n}^{54}								32 $\mathrm{~F}_{15}$	33 Y_{15}
${ }_{10}^{57}$	${ }_{1}{ }^{56}$								[$\begin{array}{r}30 \\ C_{n+16}\end{array}$	31 OVR
${ }_{7}^{59}$	${ }_{18}^{58}$								${ }^{28}$	29
$\begin{gathered} 61 \\ Q_{0} \end{gathered}$	$\begin{aligned} & 60 \\ & I_{6} \end{aligned}$								${ }_{14}^{26}$	$\begin{gathered} 27 \\ 1_{5}^{27} \end{gathered}$
${ }^{63}$	(RAM_{0}								${ }^{24}$	$\begin{aligned} & 25 \\ & 1_{3} \end{aligned}$
$\begin{gathered} 65 \\ B_{2} \end{gathered}$	$\begin{gathered} 64 \\ B_{3} \end{gathered}$								${ }^{22}{ }^{22}$	$\begin{array}{r} 23 \\ \text { RAM }_{15} \\ \hline \end{array}$
$\begin{gathered} 67 \\ \mathrm{~B}_{0} \end{gathered}$	$\begin{aligned} & 66 \\ & B_{1} \end{aligned}$								$\begin{gathered} 20 \\ A_{1} \end{gathered}$	${ }^{21} \mathbf{A}_{2}$
$\begin{gathered} 68 \\ D_{0} \end{gathered}$	$\begin{gathered} 69 \\ D_{1} \end{gathered}$	$\begin{aligned} & 71 \\ & D_{3} \end{aligned}$	$\begin{gathered} 73 \\ D_{5} \end{gathered}$	$\begin{gathered} 75 \\ \mathrm{D}_{7} \end{gathered}$	$\begin{gathered} 77 \\ \mathrm{NC} \end{gathered}$	$\begin{gathered} 79 \\ \mathrm{D}_{8} \end{gathered}$	$\begin{array}{r} 81 \\ D_{10} \end{array}$	$\begin{gathered} 83 \\ \mathrm{D}_{12} \end{gathered}$	$\begin{gathered} 18 \\ D_{15} \end{gathered}$	A_{0}^{19}
	$\begin{gathered} 70 \\ \mathrm{D}_{2} \end{gathered}$	$\begin{gathered} 72 \\ \mathrm{D}_{4} \end{gathered}$	$\begin{gathered} 74 \\ D_{6} \end{gathered}$	$\begin{array}{r} 76 \\ v_{c c} \end{array}$	$\begin{array}{r} 78 \\ v_{c c} \\ \hline \end{array}$	$\begin{gathered} 80 \\ \mathrm{D}_{9} \end{gathered}$	$\begin{gathered} B 2 \\ D_{11} \end{gathered}$	$\begin{array}{r} 84 \\ D_{13} \\ \hline \end{array}$	$\begin{array}{r} 17 \\ \mathrm{D}_{14} \\ \hline \end{array}$	

Selection Guide

		CY7C9101-30 CY7C9101-35	CY7C9101-40 CY7C9101-45
Minimum Clock Cycle (ns)	Commercial	30	40
	Military	35	45
Maximum Operating Current at $10 \mathrm{MHz}(\mathrm{mA})$	Commercial	60	60
	Military	85	85

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V
DC Input Voltage . -3.0 V to +7.0 V
Output Current into Outputs (LOW)
30 mA

Pin Definitions

Signal Name	I/O	Description
$\mathrm{A}_{3}-\mathrm{A}_{0}$	I	RAM Address A. This 4-bit address word selects one of the 16 registers in the register file for output on the (internal) A port.
$\mathrm{B}_{3}-\mathrm{B}_{0}$	I	RAM Address B. This 4-bit address word selects one of the 16 registers in the register file for output on the (internal) B port. When data is written back to the register file, this is the destination address.
$\mathrm{I}_{8}-\mathrm{I}_{0}$	I	Instruction Word. This 9-bit word is decoded to determine the ALU data sources ($\mathrm{I}_{0,1,2}$), the ALU operation ($I_{3,4,5}$), and the data to be written to the Q register or register file $\left(\mathrm{I}_{6,7,8}\right)$.
$\mathrm{D}_{15}-\mathrm{D}_{0}$	I	Direct Data Input. This 16 -bit data word may be selected by the $\mathrm{I}_{0,1,2}$ lines as an input to the ALU.
$\mathrm{Y}_{15}-\mathrm{Y}_{0}$	O	Data Output. These are three-state data output lines that, when enabled, output either the output of the ALU or the data in the A latch, as determined by the code on the $\mathrm{I}_{6,7,8}$ lines.
$\overline{\mathrm{OE}}$	I	Output Enable. This is an active LOW input that controls the $\mathrm{Y}_{15}-\mathrm{Y}_{0}$ outputs. A HIGH level on this signal places the output drivers at the high-impedance state.
CP	I	Clock. The LOW level of CP is used to write data to the RAM register file. A HIGH level of CP writes data from the dual-port RAM to the A and B latches. The operation of the Q register is similar; data is entered into the master latch on the LOW level of CP and transferred from master to slave during $\mathrm{CP}=$ HIGH.
Q15 RAM $_{15}$	I/O	These two lines are bidirectional and are controlled by $\mathrm{I}_{6,7,8}$. They are three-state output drivers connected to the TTL-compatible CMOS inputs.

Static Discharge Voltage . >2001V
(Per MIL-STD-883 Method 3015)
Latch-Up Current (Outputs) . > 200 mA

Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military $[1]$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Note:

1. T_{A} is the "instant on" case temperature.

Signal Name	I/O	Description
Q_{15} RAM $_{15}$ (cont.)	I/O	Output Mode: When the destination code on lines $I_{6,7,8}$ indicates a left shift (UP) operation, the three-state outputs are enabled and the MSB of the Q register is output on the Q_{15} pin and likewise, the MSB of the ALU output (F_{15}) is output on the RAM_{15} pin.
		Input Mode: When the destination code indicates a right shift (DOWN), the pins are the data inputs to the MSB of the Q register and the MSB of the RAM, respectively.
Q_{0} RAM_{0}	I/O	These two lines are bidirectional and function similarly to the Q_{15} and RAM_{15} lines. The Q_{0} and RAM_{0} lines are the LSB of the Q register and the RAM.
C_{n}	I	Carry In. The carry in to the internal ALU.
$\mathrm{C}_{\mathrm{n}}+16$	O	Carry Out. The carry out from the internal ALU.
$\overline{\mathrm{G}}, \overline{\mathrm{P}}$	0	Carry Generate, Carry Propagate. Outputs from the ALU that may be used to perform a carry look-ahead operation over the 16 bits of the ALU.
OVR	O	Overflow. This signal is the logical exclusiveOR of the carry in and the carry out of the MSB of the ALU. This indicates when the result of the ALU operation has exceeded the capacity of the ALU's two's complement number range.
$\mathrm{F}=0$	O	Zero Detect. Open drain output that goes HIGH when the data on outputs $\left(\mathrm{F}_{15}-\mathrm{F}_{0}\right)$ are all LOW. It indicates that the result of an ALU operation is zero (positive logic assumed).
F_{15}	O	Sign. The MSB of the ALU output.

Description of Architecture

General Description

The CY7C9101 general block diagram is shown on the first page of this datasheet, in the Logic Block Diagram section. Detailed block diagrams (Figures 1 through 3) show the operation of specific sections as described below. The device is a 16 -bit slice consisting of a register file (16 -word by 16 -bit dual-port RAM), the ALU, the Q register, and the necessary control logic. It is expandable in 16-bit increments.

Register File

The dual-port RAM is addressed by two 4-bit address fields (A_{3} $A_{0}, B_{3}-B_{0}$) that cause the data to simultaneously appear at the A or B (internal) ports. If the A and B addresses are the same, the data at the A and B ports will be identical.
Data to be written to RAM is applied to the D inputs of the 7C9101 and is passed (unchanged) through the ALU to the RAM location
specified by the B-address word. New data is written into the RAM by specifying a B address while RAM write enable (RAM EN) is active and the clock input is LOW. RAM EN is an internal signal decoded from the signals $\mathrm{I}_{6,7,8}$. As shown in Figure 1, each of the 16 RAM inputs is driven by a three-input multiplexer that allows the ALU output ($\mathrm{F}_{15}-\mathrm{F}_{0}$) to be shifted one bit position to the left or right, or not shifted at all. The RAM_{15} and $\mathrm{RAM}_{0} \mathrm{I} / \mathrm{O}$ pins are also inputs to the 16 -bit, 3 -input multiplexer.
During the left-shift (upshift) operation, the RAM $_{15}$ output buffer and RAM_{0} input multiplexer are enabled. For the right-shift (downshift) operation, the RAM ${ }_{0}$ output buffer and the RAM ${ }_{15}$ input multiplexer are enabled.
The A and B outputs of the RAM drive separate 16-bit latches that are enabled when the clock is HIGH. The outputs of the A latch go to the three multiplexers that feed the two ALU inputs $\left(\mathrm{R}_{15}-\mathrm{R}_{\mathbf{0}}\right.$ and $\mathrm{S}_{15}-\mathrm{S}_{0}$) and the chip output $\left(\mathrm{Y}_{15}-\mathrm{Y}_{0}\right)$. The B latch outputs are directed to the multiplexer that feeds the S input to the ALU.

Figure 1. Register File

Description of Architecture (continued)

Q Register

The Q register is mainly intended for use as a separate working register for multiplication and division routines. It may also function as an accumulator or temporary storage register. Sixteen masterslave latches are used to implement the Q register. As shown in Figure 2, the Q-register inputs are driven by the outputs of the Q shifter (sixteen 3-input multiplexers, under the control of $\mathrm{I}_{6,7,8}$). The function of the Q register input multiplexers is to allow the Q register to be shifted either left or right, or loaded with the ALU output ($\mathrm{F}_{15}-\mathrm{F}_{0}$). The Q_{15} and Q_{0} pins (I/O) function similarly to the RAM_{15} and RAM_{0} pins described earlier. Data is entered into the master latches when the clock is LOW and is transferred to the slave (output) at the clock LOW-to-HIGH transition.

ALU (Arithmetic Logic Unit)

The ALU can perform three arithmetic and five logical operations on the two 16 -bit input operands, R and S . The R input multiplexer selects between data from the RAMA port and data at the external data input, $\mathrm{D}_{15}-\mathrm{D}_{0}$. The Sinput multiplexer selects between data from the RAM A port, the RAM B port, and the Q register. The R and S multiplexers are controlled by the $\mathrm{I}_{0,1,2}$ inputs as shown in Table 1. The R and S input multiplexers each have an "inhibit capability," offering a state where no data is passed. This is equivalent
to a source operand consisting of all zeros. The R and S ALU source multiplexers are configured to allow eight pairs of combinations of A, B, D, Q, and " 0 " to be selected as ALU input operands.
The ALU input functions, which are controlled by $\mathrm{I}_{3,4,5}$, are shown in Table 2. Carry look-ahead logic is resident on the 7C9101, using the ALU carry in $\left(\mathrm{C}_{\mathrm{n}}\right)$ input and the ALU carry propagate $(\overline{\mathrm{P}})$, carry generate $(\overline{\mathrm{G}})$, carry out $\left(\mathrm{C}_{\mathrm{n}}+16\right)$, and overflow outputs to implement carry look-ahead arithmetic and determine if arithmetic overflow has occurred. Note that the carry in $\left(\mathrm{C}_{\mathrm{n}}\right)$ signal affects the arithmetic result and internal flags only; it has no effect on the logical operations.
Control signals $\mathrm{I}_{6,7,8}$ route the ALU data output $\left(\mathrm{F}_{15}-\mathrm{F}_{0}\right)$ to the RAM, the Q register inputs, and the Y outputs as shown in Table 3. The ALU result MSB $\left(\mathrm{F}_{15}\right)$ is output so the user may examine the sign bit without needing to enable the three-state outputs. The F = 0 output, used for zero detection, is HIGH when all bits of the F output are LOW. It is an open drain output that may be wire ORed across multiple 7C9101 processor slices. Figure 3 shows ablock diagram of the ALU.
The ALU source operands and ALU function matrix are summarized in Table 4 and separated by logic operation or arithmetic operation in Tables 5 and 6, respectively. The $\mathrm{I}_{0,1,2}$ lines select eight pairs of source operands and the $\mathrm{I}_{3,4}, 5$ lines select the operation to be performed.

Figure 2. Q Register

Description of Architecture (continued)

Conventional Addition and Pass-Increment/Decrement

When the carry in is HIGH and either a conventional addition or a PASS operation is performed, one (1) is added to the result. If the DECREMENT operation is performed when the carry in is LOW, the value of the operand is reduced by one. However, when the same operation is performed when the carry in is HIGH, it nullifies the DECREMENT operation so that the result is equivalent to the PASS operation. In logical operations, the carry in $\left(\mathrm{C}_{\mathrm{n}}\right)$ will not affect the ALU output.

Subtraction

Recall that in two's complement integer coding - 1 is equal to all ones, and that in one's complement integer coding zero is equal to all ones. To convert a positive integer to its two's complement (negative) equivalent, invert (complement) the number and add 1 to it; i.e., TWC $=\mathrm{ONC}+1$. In Table 6 the symbol -Q represents the two's complement of Q, so the one's complement of Q is then $-Q$ -1 .

Table 1. ALU Source Operand Control

Mnemonic	Micro Code				ALU SourceOperands	
	I_{2}	I_{1}	I_{0}	Octal Code	R	S
AQ	L	L	L	0	A	Q
AB	L	L	H	1	A	B
ZQ	L	H	L	2	O	Q
ZB	L	H	H	3	O	B
ZA	H	L	L	4	O	A
DA	H	L	H	5	D	A
DQ	H	H	L	6	D	Q
DZ	H	H	H	7	D	O

Table 2. ALU Function Control

Mnemonic	Micro Code				ALU Function	Symbol
	15	I_{4}	I_{3}	Octal Code		
ADD	L	L	L	0	R Plus S	R + S
SUBR	L	L	H	1	S Minus R	$\mathrm{S}-\mathrm{R}$
SUBS	L	H	L	2	R Minus S	R-S
OR	L	H	H	3	R OR S	$R \vee S$
AND	H	L	L	4	R AND S	$\mathrm{R} \wedge \mathrm{S}$
NOTRS	H	L	H	5	$\overline{\mathrm{R}}$ AND S	$\overline{\mathrm{R}} \wedge \mathrm{S}$
XOR	H	H	L	6	R XOR S	$\mathrm{R} \forall \mathrm{S}$
XNOR	H	H	H	7	R XNOR S	$\overline{\mathrm{R} \forall \mathrm{S}}$

Table 3. ALU Destination Control

Mnemonic	Micro Code				RAM Function		Q-Reg. Function		$\underset{\text { Output }}{\mathbf{Y}}$	RAM Shifter		Q Shifter	
	I_{8}	I_{7}	I_{6}	Octal Code	Shift	Load	Shift	Load		$\mathbf{R A M}_{0}$	RAM ${ }_{15}$	$\mathbf{Q u}_{0}$	Q15
QREG	L	L	L	0	X	None	None	F ${ }^{\text {Q }}$	F	X	X	X	X
NOP	L	L	H	1	X	None	X	None	F	X	X	X	X
RAMA	L	H	L	2	None	F B	X	None	A	X	X	X	X
RAMF	L	H	H	3	None	F B	X	None	F	X	X	X	X
RAMQD	H	L	L	4	DOWN	F/2 B	DOWN	Q/2 ${ }^{\text {Q }}$	F	F_{0}	IN_{15}	Q_{0}	IN_{15}
RAMD	H	L	H	5	DOWN	F/2 B	X	None	F	F_{0}	IN_{15}	Q_{0}	X
RAMQU	H	H	L	6	UP	2 F - ${ }^{\text {B }}$	UP	2Q-Q	F	IN_{0}	F_{15}	IN_{0}	Q_{15}
RAMU	H	H	H	7	UP	2 F B	X	None	F	IN_{0}	F_{15}	X	Q_{15}

[^64]Description of Architecture (continued)

Figure 3. ALU

Table 4. Source Operand and ALU Function Matrix

$\begin{array}{\|l\|l\|} \hline \text { Octal } \\ \mathbf{I}_{543} \end{array}$	I_{210} Octal	0	1	2	3	4	5	6	7
	ALU Source	A	A	0	0	0	D	D	D
	ALU Function	Q	B	Q	B	A	A	Q	0
0	$\mathrm{C}_{\mathrm{n}}=\mathrm{L}$ R_{C} plus S $C_{n}=H$	$\begin{gathered} \mathrm{A}+\mathrm{Q} \\ \mathrm{~A}+\mathrm{Q}+1 \end{gathered}$	$\begin{gathered} A+B \\ A+B+1 \end{gathered}$	$\begin{gathered} Q \\ Q+1 \end{gathered}$	$\begin{gathered} \mathrm{B} \\ \mathrm{~B}+1 \end{gathered}$	$\begin{gathered} \mathrm{A} \\ \mathrm{~A}+1 \end{gathered}$	$\begin{gathered} D+A \\ D+A+1 \end{gathered}$	$\begin{gathered} D+Q \\ D+Q+1 \end{gathered}$	$\begin{gathered} \mathrm{D} \\ \mathrm{D}+1 \end{gathered}$
1	$\begin{aligned} & \mathrm{C}_{\mathrm{n}}=\mathrm{L} \\ & S_{\text {minus }} R \\ & \mathrm{C}_{\mathrm{n}}=\mathrm{H} \end{aligned}$	$\begin{gathered} Q-A-1 \\ Q-A \end{gathered}$	$\begin{gathered} \mathrm{B}-\mathrm{A}-1 \\ \mathrm{~B}-\mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{Q}-1 \\ \mathrm{Q} \end{gathered}$	$\begin{gathered} \mathrm{B}-1 \\ \mathrm{~B} \end{gathered}$	$\begin{gathered} \mathrm{A}-1 \\ \mathrm{~A} \end{gathered}$	$\begin{gathered} A-D-1 \\ A-D \end{gathered}$	$\begin{gathered} \mathrm{Q}-\mathrm{D}-1 \\ \mathrm{Q}-\mathrm{D} \end{gathered}$	$\begin{gathered} -D-1 \\ -D \end{gathered}$
2	$\begin{aligned} & \mathbf{C}_{\mathrm{n}}=\mathrm{L} \\ & \mathrm{R} \text { minus } \mathrm{S} \\ & \mathrm{C}_{\mathrm{n}}=\mathrm{H} \end{aligned}$	$\begin{gathered} A-Q-1 \\ A-Q \end{gathered}$	$\begin{gathered} A-B-1 \\ A-B \end{gathered}$	$\begin{gathered} -Q-1 \\ -Q \end{gathered}$	$\begin{gathered} -\mathrm{B}-1 \\ -\mathrm{B} \end{gathered}$	$\begin{gathered} -\mathrm{A}-1 \\ -\mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{D}-\mathrm{A}-1 \\ \mathrm{D}-\mathrm{A} \end{gathered}$	$\begin{gathered} \mathrm{D}-\mathrm{Q}-1 \\ \mathrm{D}-\mathrm{Q} \end{gathered}$	$\begin{gathered} \mathrm{D}-1 \\ \mathrm{D} \end{gathered}$
3	R OR S	$\mathrm{A} \vee \mathrm{Q}$	$\mathrm{A} \vee \mathrm{B}$	Q	B	A	D \vee A	D \vee Q	D
4	R AND S	$A \wedge Q$	$A \wedge B$	0	0	0	D \wedge A	$\mathrm{D} \wedge \mathrm{Q}$	0
5	$\overline{\mathbf{R}}$ AND S	$\overline{\bar{A}} \wedge \mathrm{Q}$	$\overline{\mathrm{A}} \wedge \mathrm{B}$	Q	B	A	$\overline{\mathrm{D}} \wedge \mathrm{A}$	$\overline{\mathrm{D}} \wedge \mathrm{Q}$	0
6	R EX-OR S	$A \forall Q$	$A \forall B$	Q	B	A	D $\forall \mathrm{A}$	D $\forall \mathrm{Q}$	D
7	R EX-NOR S	$\overline{\mathrm{A} \forall \mathrm{Q}}$	$\overline{\mathrm{A} \forall \mathrm{B}}$	$\overline{\mathbf{Q}}$	$\overline{\mathbf{B}}$	$\overline{\mathrm{A}}$	$\overline{\mathrm{D} \forall \mathrm{A}}$	$\overline{\mathrm{D} \forall \mathrm{Q}}$	$\overline{\mathrm{D}}$

[^65]SEMICONDUCTOR
Description of Architecture (continued)

Table 5. ALU Logic Mode Functions

$\begin{gathered} \text { Octal } \\ \mathbf{I}_{543}, \mathbf{I}_{210} \end{gathered}$	Group	Function
40	AND	$A \wedge Q$
41		$A \wedge B$
45		$\mathrm{D} \wedge \mathrm{A}$
46		$\mathrm{D} \wedge \mathrm{Q}$
30	OR	$A \vee Q$
31		A $\vee B$
35		D $\vee \mathrm{A}$
36		D $\vee \mathrm{Q}$
60	XOR	$A \forall Q$
61		$A \forall B$
65		D $\forall \mathrm{A}$
66		D $\forall \mathrm{Q}$
70	XNOR	$\overline{\mathrm{A} \forall \mathrm{Q}}$
71		$\overline{\mathrm{A} \forall \mathrm{B}}$
75		$\overline{\mathrm{D} \forall \mathrm{A}}$
76		$\overline{\mathrm{D} \forall \mathrm{Q}}$
72	INVERT	$\overline{\mathrm{Q}}$
73		\bar{B}
74		$\overline{\text { A }}$
77		$\overline{\mathrm{D}}$
62	PASS	Q
63		B
64		A
67		D
32	PASS	Q
33		B
34		A
37		D
42	"ZERO"	0
43		0
44		0
47		0
50	MASK	$\overline{\mathrm{A}} \wedge \mathrm{Q}$
51		$\overline{\mathrm{A}} \wedge \mathrm{B}$
55		$\overline{\mathrm{D}} \wedge \cdot \mathrm{A}$
56		$\overline{\mathrm{D}} \wedge \mathrm{Q}$

Table 6. ALU Arithmetic Mode Functions

$\begin{gathered} \text { Octal } \\ \mathbf{I}_{\mathbf{5 4 3}}, \mathrm{I}_{\mathbf{2 1 0}} \end{gathered}$	$\mathrm{C}_{\mathrm{n}}=0$ (LOW)		$\mathrm{C}_{\mathrm{n}}=1$ (HIGH)	
	Group	Function	Group	Function
00	ADD	A + Q	ADD plus	$\mathrm{A}+\mathrm{Q}+1$
01		A + B	one	$\mathbf{A}+\mathbf{B + 1}$
05		D + A		D + A + 1
06		$\mathrm{D}+\mathrm{Q}$		$\mathrm{D}+\mathrm{Q}+1$
02	PASS	Q	Increment	Q + 1
03		B		$\mathrm{B}+1$
04		A		A +1
07		D		D +1
12	Decrement	Q-1	PASS	Q
13		B-1		B
14		A - 1		A
27		D - 1		D
22	1's Comp.	- Q - 1	2's Comp.	- Q
23		- B-1	(Negate)	- B
24		- A - 1		- A
17		- D-1		- D
10	Subtract	Q - A - 1	Subtract	Q - A
11	(1's Comp.)	B - A - 1	(2's Comp.)	B-A
15		A - D - 1		A - D
16		Q - D - 1		Q - D
20		A-Q-1		A-Q
21		A-B-1		A - B
25		D - A - 1		D - A
26		D - Q - 1		D - Q

Electrical Characteristics Over Commercial and Military Operating Range ${ }^{[2]}$
V_{CC} Min. $=4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}} \mathrm{Max} .=5.5 \mathrm{~V}$

Capacitance ${ }^{[5]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	8	pF
CoUT	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		10	pF

Output Loads Used for AC Performance Characteristics ${ }^{[6,7]}$

All Outputs Except Open Drain

Notes:
2. See the last page of this specification for Group A subgroup testing information.
3. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second.
4. Two quiescent figures are given for different input voltage ranges. To calculate I_{CC} at any given frequency, use $\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{1}\right)+\mathrm{I}_{\mathrm{CC}}(\mathrm{AC})$ where $\operatorname{Icc}\left(\mathrm{Q}_{1}\right)$ is shown above and $\mathrm{I}_{\mathrm{CC}}(\mathrm{AC})=(3 \mathrm{~mA} / \mathrm{MHz}) \times$ Clock Fre-

Open Drain ($\mathbf{F}=\mathbf{0}$)
quency for the commercial temperature. $\mathrm{I}_{\mathrm{CC}}(\mathrm{AC})=(5 \mathrm{~mA} / \mathrm{MHz}) \times$ Clock Frequency for military temperature range.
5. Tested initially and after any design or process changes that may affect these parameters.
6. $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ includes scope probe, wiring, and stray capacitance.
7. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ for output disable tests.

Table 7. Logic Functions for CARRY and OVERFLOW Conditions

I_{543}	Function	$\overline{\mathbf{P}}$	$\overline{\mathbf{G}}$	$\mathrm{C}_{\mathrm{n}+16}$	OVR
0	R + S	$\overline{\mathrm{P}_{0}-\mathrm{P}_{15}}$	$\overline{\mathrm{G}_{15}+\mathrm{P}_{15} \mathrm{G}_{14}+\mathrm{P}_{15} \mathrm{P}_{14} \mathrm{G}_{13}+\ldots+\mathrm{P}_{1}-\mathrm{P}_{15} \mathrm{G}_{0}}$	C_{16}	$\mathrm{C}_{16} \forall \mathrm{C}_{15}$
1	S-R	4	Same as $\mathrm{R}+\mathrm{S}$ equations, but substitute $\overline{\mathrm{R}}_{\mathrm{i}}$ for R_{i} in definitions		
2	$\mathrm{R}-\mathrm{S}$	-	Same as $\mathrm{R}+\mathrm{S}$ equations, but substitute $\overline{\mathrm{S}}_{\mathrm{i}}$ for S_{i} in definitions		
3	$\mathrm{R} \vee \mathrm{S}$	HIGH	HIGH	LOW	LOW
4	$\mathrm{R} \wedge \mathrm{S}$				
5	$\overline{\mathrm{R}} \wedge \mathrm{S}$				
6	$\overline{\mathrm{R} \forall \mathrm{S}}$				
7	R $\forall \mathrm{S}$				

Definitions ($+=\mathbf{O R}$)

$$
\begin{aligned}
\mathrm{P}_{0}-\mathrm{P}_{15}=\mathrm{P}_{15} \mathrm{P}_{14} \mathrm{P}_{13} \mathrm{P}_{12} \mathrm{P}_{11} \mathrm{P}_{10} \mathrm{P}_{9} \mathrm{P}_{8} \mathrm{P}_{7} \mathrm{P}_{6} \mathrm{P}_{5} \mathrm{P}_{4} \mathrm{P}_{3} \mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \\
\mathrm{P}_{0}=\mathrm{R}_{0}+\mathrm{S}_{0} \\
\mathrm{P}_{1}=\mathrm{R}_{1}+\mathrm{S}_{1} \\
\mathrm{P}_{2}=\mathrm{R}_{2}+\mathrm{S}_{2} \\
\mathrm{P}_{3}=\mathrm{R}_{3}+\mathrm{S}_{3}, \text { etc. }
\end{aligned}
$$

CY7C9101-30 and CY7C9101-40 Guaranteed Commercial Range AC Performance Characteristics

The tables below specify the guaranteed AC performance of these devices over the commercial $\left(0^{\circ} \mathrm{C}\right.$ to $\left.70^{\circ} \mathrm{C}\right)$ operating temperature range with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels. The inputs switch between 0 V and 3 V with signal transition rates of 1 V per nanosecond. All outputs have maximum DC current loads. See the Electrical Characteristics section for loading circuit information.

This data applies to parts with the following numbers:
CY7C9101-30PC CY7C9101-30JC CY7C9101-30GC CY7C9101-40PC CY7C9101-40JC
CY7C9101-40GC
$\begin{aligned} & \mathrm{G}_{0}-\mathrm{G}_{15}=\mathrm{G}_{15} \mathrm{G}_{14} \mathrm{G}_{13} \mathrm{G}_{12} \mathrm{G}_{11} \mathrm{G}_{10} \mathrm{G}_{9} \mathrm{G}_{8} \mathrm{G}_{7} \mathrm{G}_{6} \mathrm{G}_{5} \mathrm{G}_{4} \mathrm{G}_{3} \mathrm{G}_{2} \mathrm{G}_{1} \mathrm{G}_{0} \\ & \mathrm{G}_{0}=\mathrm{R}_{0} \mathrm{~S}_{0} \\ & \mathrm{G}_{1}=\mathrm{R}_{1} \mathrm{~S}_{1} \\ & \mathrm{G}_{2}=\mathrm{R}_{2} \mathrm{~S}_{2} \\ & \mathrm{G}_{3}=\mathrm{R}_{3} \mathrm{~S}_{3}, \text { etc. } \\ & \mathrm{C}_{16}=\mathrm{G}_{15}+\mathrm{P}_{15} \mathrm{G}_{14}+\mathrm{P}_{15} \mathrm{P}_{14} \mathrm{G}_{13}+\ldots+\mathrm{P}_{0}-\mathrm{P}_{15} \mathrm{C}_{\mathrm{n}} \\ & \mathrm{C}_{15}=\mathrm{G}_{14}+\mathrm{P}_{14} \mathrm{G}_{13}+\mathrm{P}_{14} \mathrm{P}_{13} \mathrm{G}_{12}+\ldots+\mathrm{P}_{0}-\mathrm{P}_{14} \mathrm{C}_{\mathrm{n}}\end{aligned}$

Cycle Time and Clock Characteristics

CY7C9101	$\mathbf{- 3 0}$	$\mathbf{- 4 0}$
Read-Modify-Write Cycle (from selection of A, B registers to end of cycle)	30 ns	40 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, I = 432 or 632)	33 MHz	25 MHz
Minimum Clock LOW Time	20 ns	25 ns
Minimum Clock HIGH Time	10 ns	15 ns
Minimum Clock Period	30 ns	40 ns

Combinatorial Propagation Delays $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)^{[8]}$

To Output	Y		F_{15}		$\mathrm{C}_{\mathrm{n}+16}$		$\overline{\mathbf{G}}, \overline{\mathbf{P}}$		F $=0$		OVR		RAM_{0}		Q	
From Input	Y		F_{15}		$\mathrm{C}_{\mathrm{n}+16}$		$\overline{\mathbf{G}}, \overline{\mathbf{P}}$		F $=0$		OVR		RAM_{15}		Q15	
Speed (ns)	30	40	30	40	30	40	30	40	30	40	30	40	30	40	30	40
A, B Address	37	47	36	47	35	44	32	41	35	46	32	42	32	40	-	-
D	29	34	28	34	25	32	25	30	29	36	21	26	27	33	-	-
C_{n}	22	27	22	27	20	25	-	-	22	26	22	26	24	30	-	-
I_{012}	32	40	32	40	30	38	28	36	34	42	26	32	27	35	-	-
I_{345}	34	43	33	42	33	42	27	35	34	40	32	42	29	38	-	-
I_{678}	19	22	-	-	-	-	-	-	-	-	-	-	22	26	22	26
A Bypass ALU ($\mathrm{I}=2 \mathrm{XX}$)	25	30	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Clock (LOW to HIGH)	31	40	30	39	30	38	27	34	28	37	34	34	27	35	20	23

Note:

8. A dash indicates a propagation delay path or set-up time constraint does not exist.

Set-Up and Hold Times Relative to Clock (CP) Input ${ }^{[8]}$

			Hold Time After $\mathrm{H} \\| \mathrm{L}$		Set-Up Time Before $\mathrm{L} \\| \mathrm{H}$		Hold Time After L $\downarrow \mathbf{H}$	
Speed (ns)	30	40	30	40	30	40	30	40
A, B Source Address	10	15	$3^{[9]}$	$3^{[9]}$	$30^{10]}$	$40^{[10]}$	0	0
B Destination Address	10	15	4	Do N	nge ${ }^{[11]}$		0	0
Data	-	-	-	-	22	28	0	0
C_{n}	-	-	-	-	16	22	0	0
$\mathrm{I}_{0}, 1,2$	-	-	-	-	26	35	0	0
$\mathrm{I}_{3,4,5}$	-	-	-	-	29	37	0	0
$\mathrm{I}_{6}, 7,8$	10	12	4	Do N	nge ${ }^{[11]}$	+	0	0
$\mathrm{RAM}_{0,} \mathrm{RAM}_{15}, \mathrm{Q}_{0}, \mathrm{Q}_{15}$	-	-	-	-	11	14	0	0

Output Enable/Disable Times

Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Device	Input	Output	Enable	Disable
CY7C9101-30	$\overline{\mathrm{OE}}$	Y	18	16
CY7C9101-40	$\overline{\mathrm{OE}}$	Y	22	19

Notes:
9. Source addresses must be stable prior to the clock HigH-to-LOW transition to allow time to access the source data before the latches close. The A address may then be changed. The B address could be changed if it is not a destination; i.e., if data is not being written back into the RAM. Normally A and B are not changed during the clock LOW time.
10. The set-up time prior to the clock LOW-to-HIGH transition is to allow time for data to be accessed, passed through the ALU, and returned to
the RAM. It includes all the time from stable A and B addresses to the clock LOW-to-HIGH transition, regardless of when the clock HIGH-to-LOW transition occurs.
11. Certain signals must be stable during the entire clock LOW time to avoid erroneous operation. This is indicated by the phrase "do not change."

Cycle Time and Clock Characteristics ${ }^{[2]}$

CY7C9101-35 and CY7C9101-45 Guaranteed Military Range AC Performance Characteristics

The tables below specify the guaranteed AC performance of these devices over the military ($-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$) operating temperature range with V_{CC} varying from 4.5 V to 5.5 V . All times are in nanoseconds and are measured between the 1.5 V signal levels. The inputs switch between 0 V and 3 V with signal transition rates of 1 V per nanosecond. All outputs have maximum DC current loads. See the Electrical Characteristics section for loading circuit information.
This data applies to parts with the following numbers:
CY7C9101 35DMB CY7C9101-35LMB CY7C9101-35GMB

CY7C9101	$\mathbf{- 3 5}$	$\mathbf{- 4 5}$
Read-Modify-Write Cycle (from selection of A, B registers to end of cycle)	35 ns	45 ns
Maximum Clock Frequency to shift Q (50\% duty cycle, I $=432$ or 632)	28 MHz	22 MHz
Minimum Clock LOW Time	23 ns	28 ns
Minimum Clock HIGH Time	12 ns	17 ns
Minimum Clock Period	35 ns	45 ns

CY7C9101-45DMB CY7C9101-45LMB CY7C9101-45GMB
Combinatorial Propagation Delays $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}\right)^{[2,8]}$

To Output	Y		F_{15}		$\mathrm{C}_{\mathrm{n}+16}$		$\overline{\mathbf{G}}, \overline{\mathbf{P}}$		$\mathrm{F}=0$		OVR		$\mathbf{R A M}_{\mathbf{0}}$		Q	
From Input	Y		F_{15}		$\mathrm{C}_{\mathrm{n}+16}$		$\overline{\mathbf{G}}, \overline{\mathbf{P}}$		$\mathrm{F}=0$		OVR		RAM_{15}		Q15	
Speed (ns)	35	45	35	45	35	45	35	45	35	45	35	45	35	45	35	45
A, B Address	41	52	40	51	38	48	37	45	40	48	36	46	36	43	-	-
D	31	37	31	36	29	36	28	32	33	40	23	32	30	35	-	-
C_{n}	25	30	24	29	23	27	-	-	24	29	23	27	26	31	-	-
I_{012}	36	44	35	43	33	41	31	38	38	46	29	38	30	38	-	-
I_{345}	38	48	37	47	37	46	31	38	38	45	36	45	33	41	-	-
I_{678}	21	24	-	-	-	-	-	-	-	-	-	-	24	28	24	28
A Bypass ALU ($\mathrm{I}=2 \mathrm{XX}$)	28	33	-	-	-	-	-	-	-	-	-	-	-	-	-	-
Clock (LOW to HIGH)	35	44	34	43	34	42	30	37	34	40	28	38	30	37	21	25

Set-Up and Hold Times Relative to Clock (CP) Input ${ }^{[2, ~ 8]}$

	CP: Set-Up Time Before H		Hold Time After H:L				Hold Time After L $\gg \mathbf{H}$	
Speed (ns)	35	45	35	45	35	45	35	45
A, B Source Address	12	17	$3{ }^{[9]}$	$3{ }^{[9]}$	$35[10]$	$45^{[10]}$	0	0
B Destination Address	12	17	-	Do Not	ange ${ }^{[11]}$	-	1	1
D	-	-	-	-	25	30	0	0
C_{n}	-	-	-	-	19	24	0	0
I_{012}	-	-	-	-	30	37	0	0
I_{345}	-	-	-	-	33	40	0	0
I_{678}	12	16	-	Do No	ange ${ }^{[11]}$	-	0	0
$\mathrm{RAM}_{0}, \mathrm{RAM}_{15}, \mathrm{Q}_{0}, \mathrm{Q}_{15}$	-	-	-	-	13	15	1	1

Output Enable/Disable Times ${ }^{[2]}$
Output disable tests performed with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ and measured to 0.5 V change of output voltage level.

Device	Input	Output	Enable	Disable
CY7C9101-35	$\overline{\mathrm{OE}}$	Y	20	17
CY7C9101-45	$\overline{\mathrm{OE}}$	Y	23	20

Applications

Minimum Cycle Time Calculations for 16-Bit Systems

Speed used in calculations for parts other than CY7C9101 and CY7C910 are representative for available MSI parts.

7C9101-10
Pipelined System, Add Without Simultaneous Shift

	Data Loop		Control Loop		
CY7C245	Clock to Output	12	CY7C245	Clock to Output	12
CY7C901	A, B to Y, $\mathrm{C}_{\mathrm{n}+16}$, OVR	37	MUX	Select to Output	12
Register	Set-Up	4	CY7C910	CC to Output	22
		$\overline{53} \mathrm{~ns}$	CY7C245	Access Time	$\frac{20}{66} \mathrm{~ns}$

7C9101-11
Pipelined System, Simultaneous Add and Shift Down (Right)

Data Loop			Control Loop		
CY7C245	Clock to Output	12	CY7C245	Clock to Output	12
CY7C9101	A, B to Y, $\mathrm{C}_{\mathrm{n}+16}, \mathrm{OVR}$	37	MUX	Select to Output	12
XOR and MUX	Prop. Delay, Select to	20	CY7C910	CC to Output	22
	Output		CY7C245	Access Time	20
CY7C9101	RAM_{15} Set-Up	$\frac{11}{80} \mathrm{~ns}$			$\overline{66} \mathrm{~ns}$

Typical DC and AC Characteristics

SUPPLY VOLTAGE (V)

NORMALIZED SUPPLY CURRENT vs. AMBIENT TEMPERATURE

AMBIENT TEMPERATURE $\left({ }^{\circ} \mathrm{C}\right)$

OUTPUT SOURCE CURRENT vs. VOLTAGE

OUTPUT VOLTAGE (V)

TYPICAL OUTPUT DELAY
CHANGE vs. OUTPUT LOADING

NORMALIZED ICC vs. FREQUENCY

7C9101-12

Ordering Information

$\left.$| Speed (ns) | Ordering Code | Package
 Name | Package Type | |
| :---: | :--- | :---: | :--- | :--- | | Operating |
| :---: |
| Range | \right\rvert\,

MILITARY SPECIFICATIONS
Group A Subgroup Testing

DC Characteristics

Parameter	Subgroups
V_{OH}	$1,2,3$
$\mathrm{~V}_{\mathrm{OL}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IH}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IL}}$ Max.	$1,2,3$
I_{IX}	$1,2,3$
I_{OZ}	$1,2,3$
I_{SC}	$1,2,3$
$\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{1}\right)$	$1,2,3$
$\mathrm{I}_{\mathrm{CC}}\left(\mathrm{Q}_{2}\right)$	$1,2,3$
$\mathrm{I}_{\mathrm{CC}}(\mathrm{Max})$	$1,2,3$

Combinational Propagation Delays

Parameter	Subgroups
From A, B Address to Y	$7,8,9,10,11$
From A, B Address to F_{15}	$7,8,9,10,11$
From A, B Address to $\mathrm{C}_{\mathrm{n}}+16$	$7,8,9,10,11$
From A, B Address to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	$7,8,9,10,11$
From A, B Address to $\mathrm{F}=0$	$7,8,9,10,11$
From A, B Address to OVR	$7,8,9,10,11$
From A, B Address to $\mathrm{RAM}_{0,15}$	$7,8,9,10,11$
From D to Y	$7,8,9,10,11$
From D to F_{15}	$7,8,9,10,11$
From D to $\mathrm{C}_{\mathrm{n}}+16$	$7,8,9,10,11$
From D to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	$7,8,9,10,11$
From D to $\mathrm{F}=0$	$7,8,9,10,11$
From D to OVR	$7,8,9,10,11$
From D to RAM	
From C_{n} to Y	$7,8,9,10,11$
From C_{n} to F_{15}	$7,8,9,10,11$
From C_{n} to $\mathrm{C}_{\mathrm{n}}+16$	$7,8,9,10,11$

Combinational Propagation Delays (continued)

Parameter	Subgroups
From C_{n} to $\mathrm{F}=0$	7, 8, 9, 10, 11
From C_{n} to OVR	7,8, 9, 10, 11
From C_{n} to $\mathrm{RAM}_{0,15}$	7, 8, 9, 10, 11
From $\mathrm{I}_{0,1,2}$ to Y	7, 8, 9, 10, 11
From $\mathrm{I}_{0,1,2}$ to F_{15}	7, 8, 9, 10, 11
From $\mathrm{I}_{0,1,2}$ to $\mathrm{C}_{\mathrm{n}+16}$	7, 8, 9, 10, 11
From $\mathrm{I}_{0,1,2}$ to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	7, 8, 9, 10, 11
From $\mathrm{I}_{0,1,2}$ to $\mathrm{F}=0$	7, 8, 9, 10, 11
From $\mathrm{I}_{0,1,2}$ to OVR	7, 8, 9, 10, 11
From $\mathrm{I}_{0,1,2}$ to $\mathrm{RAM}_{0,15}$	7, 8, 9, 10, 11
From $\mathrm{I}_{3,4,5}$ to Y	7, 8, 9, 10, 11
From $\mathrm{I}_{3,4,5}$ to F_{15}	7, 8, 9, 10, 11
From $\mathrm{I}_{3,4,5}$ to $\mathrm{C}_{\mathrm{n}}+16$	7, 8, 9, 10, 11
From $\mathrm{I}_{3,4,5}$ to $\overline{\mathbf{G}}, \overline{\mathrm{P}}$	7, 8, 9, 10, 11
From $\mathrm{I}_{3,4,5}$ to $\mathrm{F}=0$	7, 8, 9, 10, 11
From $\mathrm{I}_{3,4,5}$ to OVR	7, 8, 9, 10, 11
From $\mathrm{I}_{3,4,5}$ to $\mathrm{RAM}_{0,15}$	7, 8, 9, 10, 11
From $\mathrm{I}_{6,7,8}$ to Y	7, 8, 9, 10, 11
From $\mathrm{I}_{6,7,8}$ to $\mathrm{RAM}_{0,15}$	7, 8, 9, 10, 11
From $\mathrm{I}_{6,7,8}$ to $\mathrm{Q}_{0,15}$	7, 8, 9, 10, 11
From A Bypass ALU to Y (I = 2XX)	7, 8, 9, 10, 11
From Clock LOW to HIGH to Y	7, 8, 9, 10, 11
From Clock LOW to HIGH to F_{15}	7, 8, 9, 10, 11
From Clock LOW to HIGH to $\mathrm{C}_{\mathrm{n}}+16$	7, 8, 9, 10, 11
From Clock LOW to HIGH to $\overline{\mathrm{G}}, \overline{\mathrm{P}}$	7, 8, 9, 10, 11
From Clock LOW to HIGH to F $=0$	7, 8, 9, 10, 11
From Clock LOW to HIGH to OVR	7, 8, 9, 10, 11
From Clock LOW to HIGH to RAM ${ }_{0,15}$	7, 8, 9, 10, 11
From Clock LOW to HIGH to $\mathrm{Q}_{0,15}$	7, 8, 9, 10, 11

Set-Up and Hold Times Relative to Clock (CP) Input

Parameter	Subgroups
A, B Source Address Set-Up Time Before $\mathrm{H} \downarrow \mathrm{L}$	7, 8, 9, 10, 11
A, B Source Address Hold Time After H ${ }^{\text {L }}$	7, 8, 9, 10, 11
A, B Source Address Set-Up Time Before L 1 H	7, 8, 9, 10, 11
A, B Source Address Hold Time After L $\quad \mathrm{H}$	7, 8, 9, 10, 11
B Destination Address Set-Up Time Before H $\$$	7, 8, 9, 10, 11
B Destination Address Hold Time After H ${ }^{\text {L }}$	7, 8, 9, 10, 11
B Destination Address Set-Up Time Before L H	7, 8, 9, 10, 11
B Destination Address Hold Time After L H	7, 8, 9, 10, 11
D Set-Up Time Before L H	7, 8, 9, 10, 11
D Hold Time After L $\quad \mathrm{H}$	7, 8, 9, 10, 11
C_{n} Set-Up Time Before L ¢ H	7, 8, 9, 10, 11
C_{n} Hold Time After L $\quad \mathrm{H}$	7, 8, 9, 10, 11
I_{012} Set-Up Time Before L $\quad \mathrm{H}$	7, 8, 9, 10, 11
I_{012} Hold Time After L H	7, 8, 9, 10, 11
I_{345} Set-Up Time Before L $\quad \mathrm{H}$	7, 8, 9, 10, 11
I_{345} Hold Time After L H	7, 8, 9, 10, 11
I_{678} Set-Up Time Before H ¢ L	7, 8, 9, 10, 11
I_{678} Hold Time After H $\mathrm{L}^{\text {L }}$	7, 8, 9, 10, 11
I_{678} Set-Up Time Before L $\dagger \mathrm{H}$	7, 8, 9, 10, 11
I_{678}. Hold Time After L $\mathrm{H}^{\text {d }}$	7, 8, 9, 10, 11
$\mathrm{RAM}_{0}, \mathrm{RAM}_{15}, \mathrm{Q}_{0}, \mathrm{Q}_{15}$ Set-Up Time Before $\mathrm{L} \mid \mathrm{H}$	7,8, 9, 10, 11
RAM $_{0}$, RAM $_{15}, \mathrm{Q}_{0}, \mathrm{Q}_{15}$ Hold Time After L H	7, 8, 9, 10, 11

Document \#: 38-00017-D
INFO

SRAMs2
PROMs 3
PLDs 4
FIFOs 5
LOGIC 6
DATACOM 7
MODULES 8
ECL 9
BUS 10
MILITARY 11
TOOLS 12
QUALITY 13
PACKAGES 14

Data Communications Products

Page Number

Device Number	Description	
CY7B923	HOTLink Transmitter/Receiver	7-1
CY7B933	HOTLink Transmitter/Receiver	7-1
CY9266-C	HOTLink Evaluation Board	7-26
CY9266-F	HOTLink Evaluation Board	7-26

Features

- Fibre Channel compliant
- IBM ESCON ${ }^{\text {® }}$ compliant
- ATM Compatible
- 8B/10B-coded or 10-bit unencoded
- 160- to 330-Mbps data rate
- TTL synchronous I/O
- No external PLL components
- Triple ECL 100K serial outputs
- Dual ECL 100K serial inputs
- Low power: 350 mW (Tx), 650 mW (Rx)
- Compatible with fiber optic modules, coaxial cable, and twisted pair media
- Built-In Self-Test
- Single +5 V supply
- 28-pin DIP/PLCC/LCC
- $0.8 \mu \mathrm{BiCMOS}$

Functional Description

The CY7B923 HOTLink Transmitter and CY7B933 HOTLink Receiver are point-to-point communications building blocks that transfer data over high-speed serial links (fiber, coax, and twisted pair) at 160 to $330 \mathrm{Mbits} / \mathrm{sec}$. Cl . Figure 1 illustrates typical connections to host systems or controllers.
Eight bits of user data or protocol information are loaded into the HOTLink transmitter and are encoded. Serial data is shifted out of the three differential Pseudo ECL (PECL) serial ports at the bit rate (which is 10 times the byte rate).
The HOTLink receiver accepts the serial bitstream at its differentialline receiverinputs, and using a completely integrated PLL clock synchronizer recovers the timing information necessary for data reconstruction. The bit stream is deserialized,

HOTLink ${ }^{(1)}$ Transmitter/Receiver

decoded, and checked for transmission errors. The recovered byte is presented in parallel to the receiving host along with a byte rate clock.
The 8B/10B encoder/decoder can be disabled in systems that already encode or scramble the transmitted data. I/Os are available to create a seamless interface with both asynchronous FIFOs (i.e., CY7C42X) and clocked FIFOs (i.e., CY7C44X). A Built-In Self-Test pattern generator and checker allows testing of the transmitter, receiver, and the connecting link as a part of a system diagnostic check.
HOTLink devices are ideal for a variety of applications where a parallel interface can be replaced with a high-speed point-topoint serial link. Applications include interconnecting workstations, servers, mass storage, and video transmission equipment.

CY7B923 Transmitter Logic Block Diagram

CY7B933 Receiver Logic Block Diagram

Figure 1. HOTLink System Connections
HOTLink is a trademark of Cypress Semiconductor Corporation.
ESCON is a registered trademark of IBM.

CY7B923 Transmitter Pin Configurations

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

CY7B933 Receiver Pin Configurations

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Case Temperature	$5 \mathrm{~V} \pm 10 \%$

Pin Descriptions

CY7B923 HOTLink Transmitter

Name	I/O	Description
$\begin{aligned} & \mathrm{D}_{0-7} \\ & \left(\mathrm{D}_{\mathrm{b}}-\mathrm{h}\right) \end{aligned}$	TTL In	Parallel Data Input. Data is clocked into the Transmitter on the rising edge of CKW if ENA is LOW (or on the next rising CKW with ENN LOW). If ENA and ENN are HIGH, a Null character (K28.5) is sent. When MODE is HIGH, $\mathrm{D}_{0,1, \ldots}, . .7$ become $\mathrm{D}_{\mathrm{b}, \mathrm{c}, \ldots \mathrm{h}}$ respectively.
$\begin{aligned} & \begin{array}{l} \mathrm{SC} / \overline{\mathrm{D}} \\ \left(\mathrm{D}_{\mathrm{a}}\right) \end{array} \end{aligned}$	TTL In	Special Character/Data Select. A HIGH on SC/ $\overline{\mathrm{D}}$ when CKW rises causes the transmitter to encode the pattern on D_{0-7} as a control code (Special Character), while a LOW causes the data to be coded using the $8 \mathrm{~B} / 10 \mathrm{~B}$ data alphabet. When MODE is HIGH, SC/D $\left(\mathrm{D}_{\mathrm{a}}\right)$ acts as D_{a} input.
$\begin{aligned} & \hline \text { SVS } \\ & \left(\mathrm{D}_{\mathrm{j}}\right) \end{aligned}$	TTL In	Send Violation Symbol. If SVS is HIGH when CKW rises, a Violation symbol is encoded and sent while the data on the parallel inputs is ignored. If SVS is LOW, the state of D_{0-7} and SC/D determines the code sent. In normal or test mode, this pin overrides the BIST generator and forces the transmission of a Violation code. When MODE is HIGH, SVS $\left(D_{j}\right)$ acts as D_{j} input.
$\overline{\text { ENA }}$	TTL In	Enable Parallel Data. If $\overline{\text { ENA }}$ is LOW on the rising edge of CKW, the data is loaded, encoded, and sent. If ENA is HIGH, the data inputs are ignored and the Transmitter will insert a Null character (K28.5) to fill the space between user data. ENA may be held HIGH/LOW continuously or it may be pulsed with each data byte to be sent. If ENA is being used for data control, $\overline{\mathrm{ENN}}$ will normally be strapped HIGH , but can be used for BIST function control.
$\overline{\text { ENN }}$	TTL In	Enable Next Parallel Data. If ENN is LOW, the data appearing on D_{0-7} at the next rising edge of CKW is loaded, encoded, and sent. If $\overline{E N N}$ is HIGH , the data appearing on $\mathrm{D}_{0 \rightarrow 7}$ at the next rising edge of CKW will be ignored and the Transmitter will insert a Null character to fill the space between user data. ENN may be held HIGH/LOW continuously or it may be pulsed with each data byte sent. If ENN is being used for data control, ENA will normally be strapped HIGH, but can be used for BIST function control.
CKW	TTL In	Clock Write. CKW is both the clock frequency reference for the multiplying PLL that generates the highspeed transmit clock, and the byte rate write signal that synchronizes the parallel data input. CKW must be connected to a crystal controlled time base that runs within the specified frequency range of the Transmitter and Receiver.
FOTO	TTL In	Fiber Optic Transmitter Off. FOTO determines the function of two of the three ECL transmitter output pairs. If FOTO is LOW, the data encoded by the Transmitter will appear at the outputs continuously. If FOTO is HIGH, OUTA \pm and OUTB \pm are forced to their "logic zero" state (OUT $+=$ LOW and OUT $-=$ HIGH), causing a fiber optic transmit module to extinguish its light output. OUTC is unaffected by the level on FOTO, and can be used as a loop-back signal source for board-level diagnostic testing.
OUT A \pm OUT B \pm OUT C \pm	ECL Out	Differential Serial Data Outputs. These ECL 100K outputs (+5 V referenced) are capable of driving terminated transmission lines or commercial fiber optic transmitter modules. Unused pairs of outputscan be wired to V_{CC} to reduce power if the output is not required. OUTA \pm and OUTB \pm are controlled by the level on FOTO, and will remain at their "logical zero" states when FOTO is asserted. OUTC \pm is unaffected by the level on FOTO. (OUTA+ and OUTB+ are used as a differential test clock input while in Test mode, i.e., MODE=UNCONNECTED.)
MODE	$\begin{aligned} & \hline \text { 3-Level } \\ & \text { In } \end{aligned}$	Encoder Mode Select. The level on MODE determines the encoding method to be used. When wired to GND, MODE selects $8 \mathrm{~B} / 10 \mathrm{~B}$ encoding. When wired to V_{CC}, data inputs bypass the encoder and the bit pattern on $\mathrm{D}_{\mathrm{a}-\mathrm{j}}$ goes directly to the shifter. When left floating (internal resistors hold the input at $\mathrm{V}_{\mathrm{CO}} / 2$) the internal bit-clock generator is disabled and OUTA+/OUTB + become the differential bit clock to be used for factory test. In typical applications MODE is wired to V_{CC} or GND.
$\overline{\text { BISTEN }}$	TTL In	Built-In Self-Test Enable. When BISTEN is LOW and $\overline{\text { ENA }}$ and $\overline{\text { ENN }}$ are HIGH, the transmitter sends an alternating 1-0 pattern (D10.2 or D21.5). When either ENA or ENN is set LOW the transmitter begins a repeating test sequence that allows the Transmitter and Receiver to work together to test the function of the entire link. In normal use this input is held HIGH or wired to V_{CC}. The BIST generator is a free-running pattern generator that need not be initialized, but if required, the BIST sequence can be initialized by momentarily asserting SVS while BISTEN is LOW.
$\overline{\mathbf{R P}}$	TTL Out	Read Pulse. $\overline{\mathrm{RP}}$ is a 60% LOWduty-cycle byte-rate pulse train suitable for the read pulse in CY7C42X FIFOs. The frequency on $\overline{R P}$ is the same as CKW when enabled by ENA, and duty cycle is independent of the CKW duty cycle. Pulse widths are set by logic internal to the transmitter. In BIST mode, $\overline{\mathrm{RP}}$ will remain HIGH for all but the last byte of a test loop. $\overline{\mathrm{RP}}$ will pulse LOW one byte time per BIST loop.
$\mathrm{V}_{\mathrm{CCN}}$		Power for output drivers.
$\mathrm{V}_{\text {CCQ }}$		Power for internal circuitry.
GND		Ground.

CY7B933 HOTLink Receiver

Name	I/O	Description
$\begin{aligned} & \mathrm{Q}_{0-7} \\ & \left(\mathrm{Q}_{b-h}\right) \end{aligned}$	TTL Out	Q_{0-7} ParallelData Output. Q_{0-7} contain the most recently received data. These outputs change synchronously with CKR. When mode is HIGH, $\mathrm{Q}_{0,1, \ldots 7}$ become $\mathrm{Q}_{\mathrm{b}, \mathrm{c}, \ldots \mathrm{h}}$ respectively.
$\mathrm{SC} \overline{\mathrm{D}}\left(\mathrm{Q}_{\mathrm{a}}\right)$	TTL Out	Special Character/Data Select. SC/ $\overline{\mathbf{D}}$ indicates the context of received data. HIGH indicates a Control (Special Character) code, LOW indicates a Data character. When MODE is HIGH, SC/D acts as Q_{a} output.
RVS (O_{j})	TTL Out	Received Violation Symbol. A HIGH on RVS indicates that a code rule violation has been detected in the received data stream. A LOW shows that no error has been detected. In BIST mode, a LOW on RVS indicates correct operation of the Transmitter, Receiver, and link on a byte-by-byte basis. When MODE is HIGH, RVS acts as Q_{j} output.
$\overline{\text { RDY }}$	TTL Out	Data Output Ready. A LOW pulse on $\overline{\text { RDY indicates that new data has been received and is ready to be }}$ delivered. A missing pulse on RDY shows that the received data is the Null character (normally inserted by the transmitter as a pad between data inputs). In BIST mode RDY will remain LOW for all but the last byte of a test loop and will pulse HIGH one byte time per BIST loop.
CKR	TTL Out	Clock Read. This byte rate clock output is phase and frequency aligned to the incoming serial data stream. $\overline{\mathrm{RDY}}, \mathrm{Q}_{0-7}, \mathrm{SC} / \overline{\mathrm{D}}$, and RVS all switch synchronously with the rising edge of this output.
$\mathrm{A} / \overline{\mathrm{B}}$.	ECL in	Serial Data Input Select. This ECL 100 K (+5 V referenced) input selects INA or INB as the active data input. If $\mathrm{A} / \overline{\mathrm{B}}$ is HIGH, INA is connected to the shifter and signals connected to INA will be decoded. If A / B is LOW INB is selected.
INA \pm	Diff In	Serial Data Input A. The differential signal at the receiver end of the communication link may be connected to the differential input pairs INA \pm or INB \pm. Either the INA pair or the INB pair can be used as the main data input and the other can be used as a loopback channel or as an alternative data input selected by the state of A / B.
$\begin{aligned} & \hline \text { INB } \\ & \text { (INB+) } \end{aligned}$	$\begin{aligned} & \text { ECL in } \\ & (\text { Diff In) } \end{aligned}$	Serial Data Input B. This pin is either a single-ended ECL data receiver (INB) or half of the INB of the differential pair. If SOO is wired to V_{CC}, then INB \pm can be used as differential line receiver interchangeably with INA \pm. If SO is normally connected and loaded, INB becomes a single-ended ECL 100 K (+5 V referenced) serial data input. INB is used as the test clock while in Test mode.
$\begin{aligned} & \hline \text { (INB-) } \end{aligned}$	$\begin{aligned} & \hline \text { ECLin } \\ & (\text { Diff In) } \end{aligned}$	Status Input. This pin is either a single-ended ECL status monitor input (SI) or half of the INB of the differential pair. If $S O$ is wired to V_{CC}, then $\mathrm{INB} \pm$ can be used as differential line receiver interchangeably with INA \pm. If SO is normally connected and loaded, SI becomes a single-ended ECL 100 K (+5 V referenced) status monitor input.
So	TTL Out	Status Out. SO is the TTL-translated output of SI. It is typically used to translate the Carrier Detect output from a fiber-optic receiver. When this pin is normally connected and loaded (without any external pull-up resistor), SO will assume the same logical level as SI and INB will become a single-ended ECL serial data input. If the status monitor translation is not desired, then SO may be wired to V_{CC} and the $\mathrm{INB} \pm$ pair may be. used as a differential serial data input.
RF	TTL In	Reframe Enable. RF controls the Framer logic in the Receiver. When RF is held HIGH, each SYNC (K28.5) symbol detected in the shifter will frame the data that follows. When RF is held LOW, the reframing logic is disabled. The incoming data stream is then continuously deserialized and decoded using byte boundaries set by the internal byte counter. Bit errors in the data stream will not cause alias SYNC characters to reframe the data erroneously.
REFCLK	TTL In	Reference Clock. REFCLK is the clock frequency reference for the clock/data synchronizing PLL. REFCLK sets the approximate center frequency for the internal PLL to track the incoming bit stream. REFCLK must be connected to a crystal-controlled time base that runs within the frequency limits of the $T x / R x p a i r$, and the frequency must be the same as the transmitter CKW frequency (within CKW $\pm 0.1 \%$).
MODE	3-Level In	Decoder Mode Select. The level on the MODE pin determines the decoding method to be used. When wired to $G N D$, MODE selects $8 \mathrm{~B} / 10 \mathrm{~B}$ decoding. When wired to V_{CC}, registered shifter contents bypass the decoder and are sent to $\mathrm{Q}_{\mathrm{a}-\mathrm{j}}$ directly. When left floating (internal resistors hold the MODE pin at V_{CC} 2) the internal bit clock generator is disabled and INB becomes the bit rate test clock to be used for factory test. In typical applications, MODE is wired to V_{CC} or GND.
$\overline{\text { BISTEN }}$	TTL In	Built-In Self-Test Enable. When BISTEN is LOW the Receiver awaits a D0.0 (sent once per BIST loop) character and begins a continuous test sequence that tests the functionality of the Transmitter, the Receiver, and the link connecting them. In BIST mode the status of the test can be monitored with RDY and RVS outputs. In normal use BISTEN is held HIGH or wired to $V_{C C}$.
$\mathrm{V}_{\mathrm{CCN}}$		Power for output drivers.
$\mathrm{V}_{\text {CCQ }}$		Power for internal circuitry.
GND		Ground

CY7B923 HOTLink Transmitter Block Diagram Description

Input Register

The Input register holds the data to be processed by the HOTLink transmitter and allows the input timing to be made consistent with standard FIFOs. The Input register is clocked by CKW and loaded with information on the $\mathrm{D}_{0-7}, \mathrm{SC} / \overline{\mathrm{D}}$, and SVS pins. Two enable inputs ($\overline{\mathrm{ENA}}$ and $\overline{\mathrm{ENN}}$) allow the user to choose when data is to be sent. Asserting ENA (Enable, active LOW) causes the inputs to be loaded on the rising edge of CKW. If ENN (Enable Next, active LOW) is asserted when CKW rises, the data present on the inputs on the next rising edge of CKW will be loaded into the input register. These two inputs allow proper timing and function for compatibility with either asynchronous FIFOs or clocked FIFOs without external logic, as shown in Figure 2.
In BIST mode, the Input register becomes the signature pattern generator by logically converting the parallel input register into a Linear Feedback Shift Register (LFSR). When enabled, thisLFSR will generate a 511 -byte sequence that includes all Data and Special Character codes, including the explicit violation symbols. This pattern provides a predictable but pseudo-random sequence that can be matched to an identical LFSR in the Receiver.

Encoder

The Encoder transforms the input data held by the Input register into a form more suitable for transmission on a serial interface link. The code used is specified by ANSI X3T9.3 (Fibre Channel) and the IBM ESCON channel (code tables are at the end of this datasheet). The eight D_{0-7} data inputs are converted to either a Data symbol or a Special Character, depending upon the state of the $\mathrm{SC} / \overline{\mathrm{D}}$ input. If $\mathrm{SC} / \overline{\mathrm{D}}$ is HIGH , the data inputs represent a control code and are encoded using the Special Character code tables. If SC/D is LOW, the data inputs are converted using the Data code table. If a byte time passes with the inputs disabled, the Encoder will output a Special Character Comma K28.5 (or SYNC) that will maintain link synchronization. SVS input forces the transmission of a specified Violation symbol to allow the user to check error handling system logic in the controller.
The $8 \mathrm{~B} / 10 \mathrm{~B}$ coding function of the Encoder can be bypassed for systems that include an external coder or scrambler function as part of the controller. This bypass is controlled by setting the MODE select pin HIGH. When in bypass mode, D_{a-j} (note that bit order is specified in Fibre Channel 8B/10B code) become the ten inputs to the Shifter, with D_{a} being the first bit to be shifted out.

Shifter

The Shifter accepts parallel data from the Encoder once each byte time and shifts it to the serial interface output buffers using a PLL multiplied bit clock that runs at ten (10) times the byte clock rate. Timing for the parallel transfer is controlled by the counter included in the Clock Generator and is not affected by signallevels or timing at the input pins.

OutA, OutB, OutC

The serial interface ECL output buffers (100 K referenced to +5 v) are the drivers for the serial media. They are all connected to the Shifter and contain the same serial data. Two of the output pairs (OUTA \pm and OUTB \pm) are controllable by the FOTO input and can be disabled by the system controller to force a logical zero (i.e., "light off") at the outputs. The third output pair (OUTC \pm) is not affected by FOTO and will supply a continuous data stream suitable for loop-back testing of the subsystem.
OUTA \pm and OUTB \pm will respond to FOTO input changeswithin a few bit times. However, since FOTO is not synchronized with the
transmitter data stream, the outputs will be forced off or turned on at arbitrary points in a transmitted byte. This function is intended to augment an external laser safety controller and as an aid for Re ceiver PLL testing.
In wire-based systems, control of the outputs may not be required, and FOTO can be strapped LOW. The three outputs are intended to add system and architectural flexibility by offering identical serial bit streams with separate interfaces for redundant connections or for multiple destinations. Unneeded outputs can be wired to V_{CC} to disable and power down the unused output circuitry.

Clock Generator

The clock generator is an embedded phase-locked loop (PLL) that takes a byte-rate reference clock (CKW) and multiplies by ten (10) to create a bit rate clock for driving the serial shifter. The byte rate reference comes from CKW, the rising edge of which clocks data into the Input register. This clock must be a crystal referenced pulse stream that has a frequency between the minimum and maximum specified for the HOTLink Transmitter/Receiver pair. Signals controlled by this block form the bit clock and the timing signals that control internal data transfers between the Input register and the Shifter.
The read pulse ($\overline{\mathrm{RP}}$) is derived from the feedback counter used in the PLL multiplier. It is a byte-rate pulse stream with the proper phase and pulse widths to allow transfer of data from an asynchronous FIFO. Pulse width is independent of CKW duty cycle, since proper phase and duty cycle is maintained by the PLL. The RP pulse stream will insure correct data transfers between asynchronous FIFOs and the transmitter input latch with no external logic.

Test Logic

Test logic includes the initialization and control for the Built-In Self-Test (BIST) generator, the multiplexer for Testmode clock distribution, and control logic to properly select the data encoding. Test logic is discussed in more detail in the CY7B923 HOTLink Transmitter Operating Mode Description.

CY7B933 HOTLink Receiver Block Diagram Description

Serial Data Inputs

This pair of differential line receivers are the inputs for the serial data stream. INA \pm or INB \pm can be selected with the A / \bar{B} input. INA \pm is selected with A / \bar{B} HIGH and INB \pm is selected with A / \bar{B} LOW. The threshold of A / \bar{B} is compatible with the ECL 100 K signals from ECL fiber optic interface modules. TTL logic elements can be used to select the A or B inputs by adding a resistor pull-up to the TTL driver connected to $\mathrm{A} / \overline{\mathrm{B}}$. The differential threshold of INA \pm and $\mathrm{INB} \pm$ will accommodate wire interconnect with filtering losses or transmission line attenuation greater than 20 db ($V_{\text {DIF }} \geq 50 \mathrm{mv}$) or can be directly connected to fiber optic interface modules (any ECL logic family, not limited to ECL 100K) with up to 1.2 volts of differential signal. The common mode tolerance will accommodate a wide range of signal termination voltages. The highest HIGH input that can be tolerated is $\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$, and the lowest LOW input that can be interpreted correctly is $\mathrm{V}_{\mathrm{IN}}=$ GND +2.0 V .

ECL-TTL Translator

The function of the INB(INB+) input and the $\operatorname{SI}($ INB -) input is defined by the connections on the SO output pin. If the ECL/TTL translator function is not required, the SO output is wired to V_{CC}. A sensor circuit will detect this connection and cause the inputs to become INB \pm (a differentialline-receiverserial-data input). If the ECL/TTL translator function is required, the SO output is connected to its normal TTL load (typically one or more TTL inputs,
but no pull-up resistor) and the inputs become INB (single-ended ECL-100K serial-data input) and SI (single-ended ECL-100K status input).
This positive-referenced ECL-to-TTL translator is provided to eliminate external logic between an ECL fiber-optic interface module "carrier detect" output and the TTL input in the control logic. The input threshold is compatible with ECL 100 K levels (+5 V referenced). It can also be used as part of the link status indication logic for wire connected systems.

Clock Sync

The Clock Synchronizer function is performed by an embedded phase-locked loop (PLL) that tracks the frequency of the incoming bit stream and aligns the phase of its internal bit rate clock to the serial data transitions. This block contains the logic to transfer the data from the Shifter to the Decode register once every byte. The counter that controls this transfer is initialized by the Framer logic. CKR is a buffered output derived from the bit counter used to control Decode register and Output register transfers.
Clock output logic is designed so that when reframing causes the counter sequence to be interrupted, the period and pulse width of CKR will neverbe less than normal. Reframing may stretch the period of CKR by up to 90%, and either CKR Pulse Width HIGH or Pulse Width LOW may be stretched, depending on when reframe occurs.
The REFCLK input provides a byte-rate reference frequency to improve PLL acquisition time and limit unlocked frequency excursions of the CKR when no data is present at the serial inputs. The frequency of REFCLK is required to be within $\pm 0.1 \%$ of the frequency of the clock that drives the transmitter CKW pin.

Framer

Framer logic checks the incoming bit stream for the pattern that defines the byte boundaries. This combinatorial logic filter looks for the X3T9.3 symbol defined as a Special Character Comma (K28.5). When it is found, the free-running bit counter in the Clock Sync block is synchronously reset to its initial state, thus framing the data correctly on the correct byte boundaries.
Random errors that occur in the serial data can corrupt some data patterns into a bit pattern identical to a K28.5, and thus cause an erroneous data-framing error. The RF input prevents this by inhibiting reframing during times when normal message data is present. When RF is held LOW, the HOTLink receiver will deserialize the incoming data without trying to reframe the data to incoming patterns. When RF rises, $\overline{\text { RDY }}$ will be inhibited until a K28.5 has been detected, after which $\overline{\mathrm{RDY}}$ will resume its normal function. While RF is HIGH, it is possible that an error could cause misframing, after which all data will be corrupted. Likewise, a K28.7 followed by D11.x, D20.x, or an SVS (C0.7) followed by D11.x will cause erroneous framing. These sequences must be avoided while RF is HIGH.
If RF remains HIGH for greater than 2048 bytes, the framer converts to double-byte framing, requiring two K 28.5 within 5 bytes.

Shifter

The Shifter accepts serial inputs from the Serial Data inputs one bit at a time, as clocked by the Clock Sync logic. Data is transferred to the Framer on each bit, and to the Decode register once per byte.

Decode Register

The Decode register accepts data from the Shifter once per byte as determined by the logic in the Clock Sync block. It is presented to the Decoder and held until it is transferred to the output latch.

Decoder

Parallel data is transformed from ANSI X3T9.38B/10B codesback to "raw data" in the Decoder. This block uses the standard decoder patterns shown in the Valid Data Characters and Valid Special Character Codes and Sequences sections of this datasheet. Data patterns are signaled by a LOW on the SC/ $\overline{\mathrm{D}}$ output and Special Character patterns are signaled by a HIGH on the SC/D output. Unused patterns or disparity errors are signaled as errors by a HIGH on the RVS output and by specific Special Character codes.

Output Register

The Output register holds the recovered data ($\mathrm{Q}_{0-7}, \mathrm{SC} / \overline{\mathrm{D}}$, and RVS) and aligns it with the recovered byte clock (CKR). This synchronization insures proper timing to match a FIFO interface or other logic that requires glitch free and specified output behavior. Outputs are changed synchronously with the rising edge of CKR.
In BIST mode, this register becomes the signature pattern generator and checker by logically converting the parallel output register into a Linear Feedback Shift Register (LFSR) pattern generator. When enabled, this LFSR will generate a 511-byte sequence that includes all Data and Special Character codes, including the explicit violation symbols. This pattern provides a predictable but pseu-do-random sequence that can be matched to an identical LFSR in the Transmitter. When synchronized, it checks each byte in the Decoder with each byte generated by the LFSR and shows errors at RVS. Patterns generated by the LFSR are compared after being buffered to the output pins and then fed back to the comparators, allowing test of the entire receive function.
In BIST mode, the LFSR is initialized by the first occurrence of the transmitter BIST loop start code D0.0 (D0.0 is sent only once per BIST loop). Once the BIST loop has been started, RVS will be HIGH for pattern mismatches between the received sequence and the internally generated sequence. Code rule violations or running disparity errors that occur as part of the BIST loop will not cause an error indication. $\overline{\text { RDY }}$ will pulse HIGH once per BIST loop and can be used to check test pattern progress. The receiver BIST generator can be reinitialized by leaving and re-entering BIST mode.

Test Logic

Test logic includes the initialization and control for the Built-In Self-Test(BIST) generator, the multiplexerfor Test mode clock distribution, and control logic for the decoder. Test logic is discussed in more detail in the CY7B933 HOTLink Receiver Operating Mode Description.

CY7B923/CY7B933 Electrical Characteristics Over the Operating Range ${ }^{[1]}$

Parameter	Description	Test Conditions	Min.	Max.	Unit
Transmitter TTL-Compatible Pins: D_{0-7}, SC/ $\overline{\mathrm{D}}$, SVS, $\overline{\text { ENA }}, \overline{\text { ENN }}$, CKW, FOTO, $\overline{\text { BISTEN }}, \overline{\text { RP }}$ Receiver TTL-Compatible Pins: $\mathbf{Q}_{0-7}, \mathbf{S C} / \overline{\mathbf{D}}$, RVS, $\overline{\text { RDY }}, \mathbf{C K R}$, REFCLK, RF, $\overline{\text { BISTEN, }}$,					
VOHT	Output HIGH Voltage	$\mathrm{I}_{\mathrm{OH}}=-2 \mathrm{~mA}$	2.4		V
V OLT	Output LOW Voltage	$\mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$		0.45	V
IOST	Output Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}^{[2]}$	-15	-90	mA
$\mathrm{V}_{\text {IHT }}$	Input HIGH Voltage		2.0	V_{CC}	V
$\mathrm{V}_{\text {ILT }}$	Input LOW Voltage		-0.5	0.8	V
$\mathrm{I}_{\mathrm{IHT}}$	Input HIGH Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{CC}}$	-10	+10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {ILT }}$	Input LOW Current	$\mathrm{V}_{\text {IN }}=0.0 \mathrm{~V}$		-500	$\mu \mathrm{A}$

Transmitter ECL-Compatible Output Pins: OUTA+, OUTA-, OUTB + , OUTB-, OUTC+, OUTC-

$\mathrm{V}_{\mathrm{OHE}}{ }^{[3]}$	Output HIGH Voltage (V_{CC} referenced)	Load $=50$ ohms to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}-1.03$	$\mathrm{V}_{\mathrm{CC}}-0.83$	V
$V_{\text {OLE }}$	Output LOW Voltage (V_{CC} referenced)	Load $=50$ ohms to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}}-1.81$	$\mathrm{V}_{\mathrm{CC}}-1.68$	V
$\mathrm{V}_{\text {ODIF }}$	Output Differential Voltage (OUT $+_{\text {HIGH }}$) to (OUT-LOW) or (OUT $+_{\text {LOW }}$) to (OUT- ${ }_{\text {HIGH }}$)	Load $=50$ ohms to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$	0.6		V

Receiver ECL-Compatible Input Pins: $\mathbf{A} / \overline{\mathbf{B}}$, SI, INB

$\mathrm{V}_{\mathrm{IHE}}$	Input HIGH Voltage		$\mathrm{V}_{\mathrm{CC}}-1.17$	$\mathrm{~V}_{\mathrm{CC}}$	V
$\mathrm{V}_{\mathrm{ILE}}$	Input LOW Voltage		2.0	$\mathrm{~V}_{\mathrm{CC}}-1.48$	V
$\mathrm{I}_{\mathrm{IHE}}{ }^{[4]}$	Input HIGH Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IHE}}$ Max.		+500	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{ILE}}{ }^{[4]}$	Input LOW Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{ILL}}$ Min.	+0.5		$\mu \mathrm{~A}$

Differential Line Receiver Input Pins: INA+, INA-, INB+, INB-

$\mathrm{V}_{\text {DIFF }}$	Input Differential Voltage $\|(\mathrm{IN}+)-(\mathrm{IN}-)\|$	50	1200	mV	
$\mathrm{V}_{\text {IHH }}$	Highest Input HIGH Voltage			V_{CC}	V
$\mathrm{V}_{\text {ILL }}$	Lowest Input LOW Voltage		2.0		V
$\mathrm{I}_{\text {IHH }}$	Input HIGH Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IHH }}$ Max.		750	$\mu \mathrm{~A}$
$\mathrm{I}_{\text {ILL }}{ }^{[5]}$	Input LOW Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {ILL }}$ Min.	-200		$\mu \mathrm{~A}$

Miscellaneous

$\mathrm{I}_{\mathrm{CCT}}{ }^{[6]}$	Transmitter Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{~T}_{\mathrm{A}}=\text { Max. } \\ & \text { Freq. }=\text { Max. (One ECLoutput pair } \\ & \text { loaded with } 50 \text { ohms to } \\ & \mathrm{V}_{\mathrm{CC}}-2.0 \mathrm{~V} \text {, ohers tied to } \mathrm{V}_{\mathrm{CC}} \text {) } \end{aligned}$	85	mA
$\mathrm{I}_{\text {CCR }}$	Receiver Power Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \mathrm{T}_{\mathrm{A}}=\text { Max., } \\ & \text { Freq. }=\text { Max., } \mathrm{RF}=\text { LOW } \end{aligned}$	155	mA

Capacitance ${ }^{[7]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}_{0}=1 \mathrm{MHz}, \mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	10	pF

Notes:

1. See the last page of this specification for Group A subgroup testing information.
2. Tested one output at a time, output shorted for less than one second, less than 10% duty cycle.
3. Specified only for temperatures above $0^{\circ} \mathrm{C}$.
4. Applies to $\mathrm{A} / \overline{\mathrm{B}}$ only.
5. Input currents are always positive at all voltages above $\mathrm{V}_{\mathrm{CO}} / 2$.
6. $I_{C C T}$ includes current into $\mathrm{V}_{\mathrm{CCO}}$ (pin 9 and pin 22) only. Current into $V_{C C N}$ is determined by ECL load currents, typically 30 mA with 50 ohms to $\mathrm{V}_{\mathrm{CC}}-2 \mathrm{~V}$. Each additional enabled ECL pair adds 5 mA to $\mathrm{I}_{\mathrm{CCT}}$ and additional load current to $\mathrm{V}_{\mathrm{CCN}}$ as described.
7. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms

(a) TTL AC Test Load ${ }^{[8]}$

(b) ECL AC Test Load ${ }^{[8]}$

8923-5

(d) ECL Input Test Waveform

Transmitter Switching Characteristics Over the Operating Range ${ }^{[1]}$

Parameter	Description	7B923		Unit
		Min.	Max.	
$\mathrm{t}_{\text {CKW }}$	Write Clock Cycle	30.3	62.5	ns
t_{B}	Bit Time ${ }^{[9]}$	3.03	6.25	ns
$\mathrm{t}_{\text {CPWH }}$	CKW Pulse Width HIGH	5		ns
$\mathrm{t}_{\text {CPWL }}$	CKW Pulse Width LOW	5		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up Time ${ }^{[10]}$	5		ns
t_{HD}	Data Hold Time ${ }^{[10]}$	0		ns
tsenp	Enable Set-Up Time (to insure correct $\overline{\mathrm{RP}}$) ${ }^{[11]}$	$6 \mathrm{t}_{\mathrm{B}}+8$	$10 \mathrm{t}_{\mathrm{B}}$	ns
$\mathrm{t}_{\text {HENP }}$	Enable Hold Time (to insure correct $\overline{\mathrm{RP}}$) ${ }^{[11]}$	0		ns
$\mathrm{t}_{\text {PDR }}$	Read Pulse Rise Alignment ${ }^{[12]}$	-4	2	ns
tPPWH	Read Pulse HIGH ${ }^{[12]}$	$4 \mathrm{t}_{\mathrm{B}}-3$		ns
tPDF	Read Pulse Fall Alignment ${ }^{[12]}$	$6 \mathrm{t}_{\mathrm{B}}-3$		ns
$\mathrm{t}_{\text {RISE }}$	ECL Output Rise Time 20-80\% (ECL Test Load)		1.2	ns
$\mathrm{t}_{\text {FALL }}$	ECL Output Fall Time 80-20\% (ECL Test Load)		1.2	ns

Notes:

8. Cypress uses constant current (ATE) load configurations and forcing functions. This figure is for reference only.
9. Transmitter t_{B} is calculated as $t_{C K W} / 10$. The byte rate is one tenth of the bit rate.
10. Data includes $\mathrm{D}_{0-7}, \mathrm{SC} / \overline{\mathrm{D}}, \mathrm{SVS}, \overline{\mathrm{ENA}}, \overline{\mathrm{ENN}}$, and $\overline{\text { BISTEN. }} \mathrm{t}_{\mathrm{SD}}$ and ${ }^{\text {thD }}$ minimum timing assures correct data load on rising edge of CKW , but not $\overline{R P}$ function or timing.
11. $\mathrm{t}_{\text {SENP }}$ and $\mathrm{t}_{\text {HENP }}$ timing insures correct $\overline{\mathrm{RP}}$ function and correct data load on the rising edge of CKW.
12. Loading on $\overline{\mathrm{RP}} \mathrm{pin}$ is $\leq 2 \mathrm{~mA}$ and $\leq 15 \mathrm{pF}$.

Receiver Switching Characteristics Over the Operating Range ${ }^{[1]}$

Parameter	Description	7B933		Unit
		Min.	Max.	
$\mathrm{t}_{\text {CKR }}$	Read Clock Period (No Serial Data Input), REFCLK as Reference ${ }^{[13]}$	-1	+1	\%
t_{B}	Bit Time ${ }^{[14]}$	3.03	6.25	ns
$\mathrm{t}_{\text {CPRH }}$	Read Clock Pulse HIGH	$5 \mathrm{t}_{\mathrm{B}}-3$		ns
$\mathrm{t}_{\text {CPRL }}$	Read Clock Pulse LOW	$5 t_{B}-3$		ns
t_{RH}	$\overline{\mathrm{RDY}}$ Hold Time	$\mathrm{t}_{\mathrm{B}}-3$		ns
tprF	RDY Pulse Fall to CKR Rise	$5 t_{B}-3$		ns
$\mathrm{t}_{\text {PRH }}$	RDY Pulse Width HIGH	$4 t_{B}-3$		ns
t_{A}	Data Access Time ${ }^{15,16]}$	$2 t_{B}-3$	$2 \mathrm{t}_{\mathrm{B}}+3$	ns
$\mathrm{t}_{\mathrm{ROH}}$	Data Hold Time ${ }^{[15,16]}$	$\mathrm{t}_{\mathrm{B}}-3$		ns
$\mathrm{t}_{\text {CKX }}$	REFCLK Clock Period Referenced to CKW of Transmitter ${ }^{[17]}$	-0.1	+0.1	\%
$\mathrm{t}_{\text {CPXH }}$	REFCLK Clock Pulse HIGH	5		ns
$\mathrm{t}_{\text {CPXL }}$	REFCLK Clock Pulse LOW	5		ns
t_{DS}	Propagation Delay SI to SO (note ECL and TTL thresholds) ${ }^{\text {[18] }}$		20	ns

Notes:
13. The period of $t_{C K R}$ will match the period of the transmitter CKW when the receiver is receiving serial data. When data is interrupted, CKR may drift to one of the range limits above.
14. Receiver t_{B} is calculated as $\mathrm{t}_{\mathrm{CKR}} / 10$ if no data is being received, or $\mathrm{t}_{\mathrm{CKW}} / 10$ if data is being received. See note 9 .
15. Data includes $\mathrm{Q}_{0-7}, \mathrm{SC} / \overline{\mathrm{D}}$, and RVS.
16. t_{A} and $\mathrm{t}_{\mathrm{ROH}}$ specifications are only valid if all outputs (CKR, $\overline{\mathrm{RDY}}$, $\mathrm{Q}_{0-7}, \mathrm{SC} / \mathrm{D}$, and RVS) are loaded with similar DC and $A C$ loads.
17. REFCLK has no phase or frequency relationship with CKR and only acts as a centering reference to reduce clock synchronization time. REFCLK must be within 0.1% of the transmitter CKW frequency, necessitating a $\pm 500-\mathrm{PPM}$ crystal.
18. The ECL switching threshold is the midpoint between the ECLV_{OH}, and V_{OL} specification (approximately $\mathrm{V}_{\mathrm{CC}}-1.35 \mathrm{~V}$). The TTL switching threshold is 1.5 V .

Switching Waveforms for the CY7B923 HOTlink Transmitter

B923-9

Switching Waveforms for the CY7B933 HOTlink Receiver

B923-12

The CY7B923 Transmitter operating with the CY7B933 Receiver forms a general-purpose data communication subsystem capable of transporting user data at up to 33 Mbytes per second over several types of serial interface media. In normal operation, the Transmitter can operate in either of two modes. The Encoded mode allows a user to send and receive eight (8) bit data and control information without first converting it to transmission characters. The Bypass mode is used for systems in which the encoding and decoding is performed in an external protocol controller.
In either mode, data is loaded into the input register of the Transmitter on the rising edge of CKW. The input timing and functional response of the Transmitter input can be made to match timing and function of either an asynchronous FIFO or a clocked FIFO by an appropriate connection of input signals (See Figure 2). Proper operation of the FIFO interface depends upon various FIFO-specific access and response specifications.

Encoded Mode Operation

In Encoded mode the input data is interpreted as eight bits of data ($\mathrm{D}_{0}-\mathrm{D}_{7}$), a context control bit (SC/ $\overline{\mathrm{D}}$), and a system diagnostic input bit (SVS). If the context of the data is to be normal message data, the SC/D input will be LOW, and the data will be encoded using the valid data character set described in the Valid Data Characters section of this datasheet. If the context of the data is to be control or protocol information, the SC/D inputwill be HIGH , and the data will be encoded using the valid special character set described in the Valid Special Character Codes and Sequences section. Special characters include all protocol characters necessary to encode packets for Fibre Channel, ESCON, proprietary systems, and diagnostic purposes.
The diagnostic characters and sequences available as SpecialCharacters include those for Fibre Channel link testing, as well as codes to be used for testing system response to link errors and timing. A Violation symbol can be explicitly sent as part of a user data packet (i.e., send $\mathrm{C} 0.7 ; \mathrm{D}_{7-0}=11100000$ and $\mathrm{SC} / \overline{\mathrm{D}}=1$), or it can be sent in response to an external system using the SVS input. This will allow system diagnostic logic to evaluate the errors in an unambiguous manner, and will not require any modification to the transmission interface to force transmission errors for testing purposes.

Figure 2. Seamless FIFO Interface

Bypass Mode Operation

In Bypass mode the input data is interpreted as ten (10) bits $\left(D_{b-h}\right), S C / \bar{D}\left(D_{a}\right)$, and SVS $\left(D_{j}\right)$ of pre-encoded transmission data to be serialized and sent over the link. This data can use any encoding method suitable to the designer. The only restrictions upon the data encoding method is that it contain suitable transition density for the Receiver PLL data synchronizer (one per byte), and that it be compatible with the transmission media.
Data loaded into the Input register on the rising edge of CKW will be loaded into the Shifter on the subsequent rising edges of CKW. It will then be shifted to the outputs one bit at a time using the internal clock generated by the clock generator. The first bit of the transmission character $\left(\mathrm{D}_{\mathrm{a}}\right)$ will appear at the output (OUTA \pm, OUTB \pm, and OUTC \pm) after the next CKW edge.
While in either the Encoded mode or Bypass mode, if a CKW edge arrives when the inputs are not enabled (ENA and ENN both HIGH), the Encoder will insert a pad character K28.5 (e.g., C5.0) to maintain proper link synchronization (in Bypass mode the proper sense of running disparity cannot be guaranteed for the first pad character, but is correct for all pad characters that follow). This automatic insertion of pad characters can be inhibited by insuring that the Transmitter is always enabled (i.e., $\overline{\text { ENA }} / \overline{\mathrm{ENN}}$ is hardwired LOW).

ECL Output Functional and Connection Options

The three pairs of ECL outputs all contain the same information and are intended for use in systems with multiple connections. Each output pair may be connected to a different serial media, each of which may be a different length, link type, or interface technology. For systems that do not require all three output pairs, the unused pairs should be wired to $V_{C C}$ to minimize the power dissipated by the output circuit, and to minimize unwanted noise generation.
In systems that require the outputs to be shut off during some periods when link transmission is prohibited (e.g., for laser safety functions), the FOTO input can be asserted. While it is possible to insure that the output state of the ECL drivers is LOW (i.e., light is off) by sending all 0's in Bypass mode, it is often inconvenient to insert this level of control into the data transmission channel, and it is impossible in Encoded mode. FOTO is provided to simplify and augment this control function (typically found in laser-based transmission systems). FOTO will force OUTA + and OUTB + to go LOW, OUTA- and OUTB - to go HIGH, while allowing OUTC \pm to continue to function normally (OUTC is typically used as a diagnostic feedback and cannot be disabled). This separation of function allows various system configurations without undue load on the control function or data channel logic.

Transmitter Serial Data Characteristics

The CY7B923 HOTLink Transmitter serial outputconforms to the requirements of the Fibre Channel specification. The serial data output is controlled by an internal Phase-Locked Loop that multiplies the frequency of CKW by ten (10) to maintain the proper bit clock frequency. The jitter characteristics (including both PLL and logic components) are shown below:

Deterministic Jitter $\left(\mathrm{D}_{\mathrm{j}}\right)<8 \%$ of t_{B}. Typically measured while sending a continuous K 28.5 (C5.0).
Random Jitter $\left(\mathrm{R}_{\mathrm{j}}\right)<8 \%$ of t_{B}. Typically measured while sending a continuous K28.7 (C7.0).

Transmitter Test Mode Description

The CY7B923 Transmitter offers two types of test mode operation, BIST mode and Test mode. In a normal system application, the

Built-InSelf-Test(BIST) mode can be used tocheck the functionality of the Transmitter, the Receiver, and the link connecting them. This mode is available with minimal impact on user system logic, and can be used as part of the normal system diagnostics. Typical connections and timing are shown in Figure 3.

BIST Mode

BIST mode functions as follows:

1. Set BISTENLOW to begin test patterngeneration. Transmitter begins sending bit rate ...1010...
2. Set either ENA or ENN LOW to begin pattern sequence generation (use of the Enable pin not being used for normal FIFO or system interface can minimize logic delays between the controller and transmitter).
3. Allow the Transmitter to run through several BIST loops or until the Receiver test is complete. $\overline{\mathrm{RP}}$ will pulse LOW once per BIST loop, and can be used by an external counter to monitor the number of test pattern loops.
4. When testing is completed, set BISTEN HIGH and ENA and ENN HIGH and resume normal function.
Note: It may be advisable to send violation characters to test the RVS output in the Receiver. This can be done by explicitly sending a violation with the SVS input, or allowing the transmitter BIST loop to run while the Receiver runs in normal mode. The BIST loop includes deliberate violation symbols and will adequately test the RVS function.
BIST mode is intended to check the entire function of the Transmitter (except the Transmitter input pins and the bypass function in the Encoder), the seriallink, and the Receiver. It augments normal factory ATE testing and provides the designer with a rigorous test mechanism tocheck the link transmission system without requiring any significant system overhead.
While in Bypass mode, the BIST logic will function in the same way as in the Encoded mode. MODE $=$ HIGH and BISTEN $=$ LOW causes the Transmitter to switch to Encoded mode and begin sending the BIST pattern, as if MODE $=$ LOW. When BISTEN returns to HIGH, the Transmitter resumes normal BYPASS operation. In Test mode the BIST function works as in the Normal mode.

Test Mode

The MODE input pin selects between three transmitter functional modes. When wired to V_{CC}, the $\mathrm{D}_{(\mathrm{a}-\mathrm{j})}$ inputs bypass the Encoder and load directly from the Input register into the Shifter. When wired to GND, the inputs $\mathrm{D}_{0-7}, \mathrm{SVS}$, and $\mathrm{SC} / \overline{\mathrm{D}}$ are encoded using the Fibre Channel 8B/10B codes and sequences (shown at the end of this datasheet). Since the Transmitter is usually hard wired to Encoded or Bypass mode and not switched between them, a third function is provided for the MODE pin. Test mode is selected by floating the MODE pin (internal resistors hold the MODE pin at $\mathrm{V}_{\mathrm{CO}}{ }^{2}$). Test mode is used for factory or incoming device test.
Test mode causes the Transmitter to function in its Encoded mode, but with OutA+/OutB+ (used as a differential test clock input) as the bit rate clock input instead of the internal PLL-generated bit clock. In this mode, inputs are clocked by CKW and transfers between the Input register and Shifter are timed by the internal counters. The phase and pulse width of $\overline{\mathrm{RP}}$ are controlled by phases of the bit counter (PLL feedback counter) as in Normal mode. Input and output patterns can be synchronized with internal logic by observing the state of $\overline{\mathrm{RP}}$ or the device can be initialized to match an ATE test pattern using the following technique:

1. Assert Test mode for several test clock cycles to initialize internal logic.
2. Assert BISTEN for one or more test clock cycles.

Figure 3. Built-In Self-Test Illustration
3. Deassert $\overline{\text { BISTEN }}$ and the next test clock cycle will reset the counter.
4. Proceed with pattern, voltage, and timing tests.

Test mode is intended to allow logical, $\mathbf{D C}$, and AC testing of the Transmitter without requiring that the tester check output data patterns at the bit rate, or accommodate the PLL lock, tracking,
and frequency range characteristics that are required when the HOTLink part operates in its normal mode. To use OutA+/OutB+ as the test clock input, the FOTO input is held HIGH while in Test mode. This forces the two outputs to go to an "ECL LOW," which can be ignored while the test system creates a differential input signal at some higher voltage. SEMICONDUCTOR

CY7B933 HOTlink Receiver Operating Mode Description

The CY7B933 Receiver operating with the CY7B923 Transmitter forms a general-purpose data communication subsystem capable of transporting user data at up to 33 Mbytes per second over several types of serial interface media. In normal user operation, the Receiver can operate in either of two modes. The Encoded mode allows a user system to send and receive 8 -bit data and control information without first converting it to transmission characters. The Bypass mode is used for systems in which the encoding and decoding is performed by an external protocol controller.
In either mode, serial data is received at one of the differential line receiver inputs and routed to the Shifter and the Clock Synchronizer. The PLL in the Clock Sync aligns the internally generated bit rate clock with the incoming data stream and clocks the data into the shifter. At the end of a byte time (ten bit times), the data accumulated in the shifter is transferred to the Decode register.
To properly align the incoming bit stream to the intended byte boundaries, the bit counter in Clock Sync must be initialized. The Framer logic block checks the incoming bit stream for the unique pattern that defines the byte boundaries. This combinatorial logic filter looks for the X3T9.3 symbol defined as "Special Character Comma" (K28.5). Once K28.5 is found, the free running bit counter in the Clock Sync block is synchronously reset to its initial state, thus "framing" the data to the correct byte boundaries.
Since noise-induced errors can cause the incoming data to be corrupted, and since many combinations of error and legal data can create an alias K28.5, an option is included to disable resynchronization of the bit counter. The Framer will be inhibited when the RF input is held LOW. When RF rises, $\overline{\text { RDY }}$ will be inhibited until a K 28.5 has been detected, and RDY will resume its normal function. Data will continue to flow through the Receiver while $\overline{R D Y}$ is inhibited.

Encoded Mode Operation

In Encoded mode the serial input data is decoded into eight bits of data ($\mathrm{Q}_{0}-\mathrm{Q}_{7}$), a context control bit ($\mathrm{SC} / \overline{\mathrm{D}}$), and a system diagnostic output bit (RVS). If the pattern in the Decode register is found in the Valid Data Characters table, the context of the data is decoded as normal message data and the SC/ $\overline{\mathrm{D}}$ output will be LOW. If the incoming bit pattern is found in the Valid Special Character Codes and Sequences table, it is interpreted as "control" or "protocol information," and the SC/D output will be HIGH. Special characters include all protocol characters defined for use in packets for Fibre Channel, ESCON, and other proprietary and diagnostic purposes.
The Violation symbol that can be explicitly sent as part of a user data packet (i.e., Transmitter sending C0.7; $\mathrm{D}_{7-0}=11100000$ and $\mathrm{SC} / \overline{\mathrm{D}}=1$; or SVS $=1$) will be decoded and indicated in exactly the same way as a noise-induced error in the transmission link. This function will allow system diagnostics to evaluate the error in an unambiguous manner, and will not require any modification to the receiver data interface for error-testing purposes.

Bypass Mode Operation

In Bypass mode the serial input data is not decoded, and is transferred directly from the Decode register to the Output register's 10 bits $\left(\mathrm{Q}_{(\mathrm{a}-\mathrm{j})}\right)$. It is assumed that the data has been pre-encoded prior to transmission, and will be decoded in subsequent logic external to HOTLink. This data can use any encoding method suitable to the designer. The only restrictions upon the data encoding method is that it contain suitable transition density for the Receiver PLL data synchronizer (one per byte) and that it be compatible with the transmission media.

The framer function in Bypass mode is identical to Encoded mode, so a K28.5 pattern can still be used to re-frame the serial bit stream.

Parallel Output Function

The 10 outputs ($\mathrm{Q}_{0-7}, \mathrm{SC} / \overline{\mathrm{D}}$, and RVS) all transition simultaneously, and are aligned with $\overline{\text { RDY }}$ and CKR with timing allowances to interface directly with either an asynchronous FIFO or a clocked FIFO. Typical FIFO connections are shown in Figure 2.
Data outputs can be clocked into the system using either the rising or falling edge of CKR, or the rising or falling edge of RDY. If CKR is used, $\overline{\mathrm{RDY}}$ can be used as an enable for the receiving logic. A LOW pulse on RDY shows that new data has been received and is ready to be delivered. The signal on $\overline{\mathrm{RDY}}$ is a $60 \%-$ LOW duty cycle byte-rate pulse train suitable for the write pulse in asynchronous FIFOs such as the CY7C42X, or the enable write input on Clocked FIFOs such as the CY7C44X. HIGH on RDY shows that the received data appearing at the outputs is the null character (normally inserted by the transmitter as a pad between data inputs) and should be ignored.
When the Transmitter is disabled it will continuously send pad characters (K28.5). To assure that the receive FIFO will not be overfilled with these dummy bytes, the RDY pulse output is inhibited during fill strings. Data at the Q_{0-7} outputs will reflect the correct received data, but will not appear to change, since a string of K 28.5 s all are decoded as $\mathrm{Q}_{7-0}=00000101$ and $\mathrm{SC} / \overline{\mathrm{D}}=1$ (C5.0). When new data appears (not K28.5), the $\overline{\text { RDY }}$ output will resume normal function. The "last" K28.5 will be accompanied by a normal RDY pulse.
Fill characters are defined as any K 28.5 followed by another K 28.5 . All fill characters will not cause RDY to pulse. Any K28.5 followed by any other character (including violation or illegal characters) will be interpreted as usable data and will cause RDY to pulse.
As noted above, $\overline{\text { RDY }}$ can also be used as an indication of correct framing of received data. While the Receiver is awaiting receipt of a K28.5 with RF HIGH, the RDY outputs will be inhibited. When RDY resumes, the received data will be properly framed and will be decoded correctly. In Bypass mode with RF HIGH, $\overline{\text { RDY }}$ will pulse once for each K28.5 received.
Code rule violations and reception errors will be indicated as follows:

RVS SC/ $\overline{\mathbf{D}}$ Oouts Name

1. Good Data code received with good RD
$0 \quad 0 \quad 00-$ FF D $0.0-31.7$
2. Good Special Character
code received with good RD $\begin{array}{llll}0 & 1 & 00-0 \mathrm{~B} \mathrm{C} \\ \mathrm{C} .0-11.0\end{array}$
3. K28.7 immediately following

K28.1 (ESCON Connect_SOF)0 $1 \quad 27 \quad$ C7.1
4. K28.7 immediately following

K28.5 (ESCON Passive_SOF) $0 \quad 1 \quad 47 \quad$ C7.2
5. Unassigned code received $1 \quad 1 \quad$ E0 \quad C0.7
6. $-\mathrm{K} 28.5+$ received when RD was +
$\begin{array}{llll}1 & 1 & \text { E1 } & \text { C1.7 }\end{array}$
7. +K28.5- received when RD was -
8. Good code received with wrong RD

Receiver Serial Data Requirements

The CY7B933HOTLink Receiverserial input capability conforms to the requirements of the Fibre Channel specification. The serial data input is tracked by an internal Phase-Locked Loop that is used to recover the clock phase and to extract the data from the serial bit
stream. Jitter tolerance characteristics (including both PLL and logic component requirements) are shown below:

Deterministic Jitter tolerance $\left(\mathrm{D}_{\mathrm{j}}\right)>31 \%$ of t_{B}. Typically measured while receiving data carried by a bandwidth-limited channel (e.g., a coaxial transmission line) while maintaining a Bit Error Rate (BER) $<10^{-12}$.
Random Jitter tolerance $\left(\mathrm{R}_{\mathrm{j}}\right)>42 \%$ of t_{B}. Typically measured while receiving data carried by a random-noise-limited channel (e.g., a fiber-optic transmission system with low light levels) while maintaining a Bit Error Rate (BER) $<10^{-12}$.
Total Jitter tolerance $>70 \%$ of t_{B}. Total of $\mathrm{D}_{\mathrm{j}}+\mathrm{R}_{\mathrm{j}}$.
PLL-Acquisition time < 2500-bit timesfromworst-case phase or frequency change in the serial input data stream, to receiving data within BER objective of 10^{-12}. Stable power supplies within specifications, stable REFCLK input frequency and normal data framing protocols are assumed.

Receiver Test Mode Description

The CY7B933 Receiver offers two types of test mode operation, BIST mode and Test mode. In a normal system application, the Built-InSelf-Test(BIST) mode can be used to check the functionality of the Transmitter, the Receiver and the link connecting them. This mode is available with minimal impact on user system logic, and can be used as part of the normal system diagnostics. Typical connections and timing are shown in Figure 3.

BIST Mode

BIST Mode function is as follows:

1. Set BISTEN LOW to enable self-test generation and await RDY LOW indicating that the initialization code has been received.
2. Monitor RVS and check for any byte time with the pin HIGH to detect pattern mismatches. RDY will pulse HIGH once per BIST loop, and can be used by an external counter to monitor test pattern progress. Q_{0-7} and $\mathrm{SC} / \overline{\mathrm{D}}$ will show the expected pattern and may be useful for debug purposes.
3. When testing is completed, setBISTEN HIGH and resume normal function.
Note: A specific test of the RVS output may be required to assure an adequate test. To perform this test, it is only necessary to have the Transmitter send violation (SVS = HIGH) for a few bytes before beginning the BIST test sequence. Alternatively, the Receiver could enter BIST mode after the Transmitter has begun sending BIST loop data, or be removed before the Transmitter finishes sending BISTloops, each of which contain several deliberate violations and should cause RVS to pulse HIGH.
BIST mode is intended to check the entire function of the Transmitter, serial link, and Receiver. It augments normal factory ATE testing and provides the user system with a rigorous test mechanism to check the link transmission system, without requiring any significant system overhead.
When in Bypass mode, the BIST logic will function in the same way as in the Encoded mode. MODE $=$ HIGH and BISTEN $=$ LOW causes the Receiver to switch to Encoded mode and begin checking the decoded received data of the BIST pattern, as if MODE = LOW. When BISTEN returns toHIGH, the Receiver resumes normal Bypass operation. In Test mode the BIST function works as in the normal mode.

Test Mode

The MODE input pin selects between three receiver functional modes. Whenwiredto V_{CC}, the Shifter contentsbypass the Decod-
er and go directly from the Decoder latch to the Q_{a-j} inputs of the Output latch. When wired to GND, the outputs are decoded using the $8 B / 10 B$ codes shown at the end of this datasheet and become Q_{0-7}, RVS, and $S C / \overline{\mathrm{D}}$. The third function is Test mode, used for factory or incoming device test. This mode can be selected by leaving the MODE pin open (internal circuitry forces the open pin to V_{CC} 2).
Test mode causes the Receiver to function in its Encoded mode, but with INB (INB+) as the bit rate Test clock instead of the Internal PLL generated bit clock. In this mode, transfers between the Shifter, Decoder register and Output register are controlled by their normal logic, but with an external bit rate clock instead of the PLL(the recoveredbitclock). Internallogicand test patterninputs can be synchronized by sending a SYNC pattern and allowing the Framer to align the logic to the bit stream. The flow is as follows:

1. Assert Test mode for several test clock cycles to establish normal counter sequence.
2. Assert RF to enable reframing.
3. Input a repeating sequence of bits representing K28.5 (Sync).
4. $\overline{\mathrm{RDY}}$ falling shows the byte boundary established by the K28.5 input pattern.
5. Proceed with pattern, voltage and timing tests as is convenient for the test program and tester to be used.
(While in Test mode and in BIST mode with RF HIGH, the Q_{0-7}, RVS, and SC/ $\overline{\mathrm{D}}$ outputs reflect various internallogic states and not the received data.)
Test mode is intended to allow logical, DC, and AC testing of the Receiver without requiring that the tester generate input data at the bit rate or accommodate the PLL lock, tracking and frequency range characteristics that are required when the part operates in its normal mode.

X3T9.3 Codes and Notation Conventions

Information to be transmittedover a serial link is encoded eight bits at a time into a 10 -bit Transmission Character and then sent serially, bit by bit. Information received over a serial link is collected ten bits at a time, and those Transmission Characters that are used fordata (Data Characters) are decoded into the correct eight-bit codes. The 10-bit Transmission Code supports all 256 8 -bit combinations. Some of the remaining Transmission Characters (Special Characters) are used for functions other than data transmission.
The primary rationale for use of a Transmission Code is to improve the transmission characteristics of a serial link. The encoding defined by the Transmission Code ensures that sufficient transitions are present in the serial bit stream to make clock recovery possible at the Receiver. Such encoding also greatly increases the likelihood of detecting any single or multiple bit errors that may occur during transmission and reception of information. In addition, some Special Characters of the Transmission Code selected by Fibre Channel Standard consist of a distinct and easily recognizable bitpattern (the Special Character Comma) that assists a Receiver in achieving word alignment on the incoming bit stream.

Notation Conventions

The documentation for the 8B/10B Transmission Code uses letter notation for the bits in an 8-bit byte. Fibre Channel Standard notation uses a bit notation of A, B, C, D, E, F, G, H for the 8 -bit byte for the raw 8-bit data, and the letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{i}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{j}$ for encoded 10-bit data. There is a correspondence between bit A and bit a, B and b, C and c, D and d, E and e, F and f, G and g, and H and
h. Bits i and j are derived, respectively, from (A,B,C,D,E) and (F,G,H).
The bit labeled A in the description of the 8B/10B Transmission Code corresponds to bit 0 in the numbering scheme of the FC-2 specification, \mathbf{B} corresponds to bit 1 , as shown below.

FC-2 bit designation-	7	6	5	4	3	2	1	0
HOTLink D/Q designation-7	6	5	4	3	2	1	0	
8B/10B bit designation-	H	G	F	E	D	C	B	A

To clarify this correspondence, the following example shows the conversion from an FC-2 Valid Data Byte to a Transmission Character (using 8B/10B Transmission Code notation)

$$
\begin{array}{ll}
\text { FC-2 } & 45 \\
\quad \text { Bits }: \frac{7654}{0100} \frac{3210}{0101}
\end{array}
$$

Converted to 8B/10B notation (note carefully that the order of bits is reversed):

$$
\begin{aligned}
& \text { Data Byte Name D5.2 } \\
& \text { Bits: ABCDE FGH } \\
& 10100010
\end{aligned}
$$

Translated to a transmission Character in the 8B/10B Transmission Code:

$$
\text { Bits }: \frac{\text { abcdei }}{101001} \frac{\text { fghj }}{0101}
$$

Each valid Transmission Character of the $8 \mathrm{~B} / 10 \mathrm{~B}$ Transmission Code has been given a name using the following convention: cxx.y, where c is used to show whether the Transmission Character is a Data Character (c is set to D , and the SC/D pin is LOW) or a Special Character (c is set to K, and the SC/ $\overline{\mathrm{D}}$ pin is HIGH). When c is set to $D, x x$ is the decimal value of the binary number composed of the bits E, D, C, B, and A in that order, and the y is the decimal value of the binary number composed of the bits H, G, and F in that order. When c is set to K, xx and y are derived by comparing the encoded bit patterns of the Special Character to those patterns derived from encoded Valid Data bytes and selecting the names of the patterns most similar to the encoded bit patterns of the Special Character.
Under the above conventions, the Transmission Character used for the examples above, is referred to by the name D5.2. The Special Character K29.7 is so named because the first six bits (abcdei) of this character make up a bit pattern similar to that resulting from the encoding of the unencoded 11101 pattern (29), and because the second four bits (fghj) make up a bit pattern similar to that resulting from the encoding of the unencoded 111 pattern (7).
Note: This definition of the 10-bit Transmission Code is based on (and is in basic agreement with) the following references, which describe the same 10 -bit transmission code.
A.X. Widmer and P.A. Franaszek. "A DC-Balanced, PartitionedBlock, 8B/10B Transmission Code" IBM Journal of Research and Development, 27, No. 5: 440-451 (September, 1983).
U.S. Patent 4,488,739. Peter A. Franaszek and Albert X. Widmer. "Byte-Oriented DC Balanced (0.4) 8B/10B Partitioned Block Transmission Code" (December 4, 1984).
Fibre Channel Physical Level (FC_PH/92-001R3.0, X3T9.3/92-092). Working draft proposed for Ämerican National Standard for Information Systems, Rev 3.0 June 16, 1992.
IBM Enterprise Systems Architecture/390 ESCON I/O Interface (document number SA22-7202).

8B/10B Transmission Code

The following information describes how the tables shall be used for both generating valid Transmission Characters (encoding) and checking the validity of received Transmission Characters (decoding). It also specifies the ordering rules to be followed when transmitting the bits within a character and the characters within the higher-level constructs specified by the standard.

Transmission Order

Within the definition of the $8 \mathrm{~B} / 10 \mathrm{~B}$ Transmission Code, the bit positions of the Transmission Characters are labeled a, b, c, d, e, i, $\mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{j}$. Bit "a" shall be transmitted first followed by bits b, c, d, e, $\mathrm{i}, \mathrm{f}, \mathrm{g}, \mathrm{h}$, and j in that order. (Note that bit i shall be transmitted between bit e and bit f, rather than in alphabetical order.)

Valid and Invalid Transmission Characters

The following tables define the valid Data Characters and valid Special Characters (K characters), respectively. The tables are used for bothgeneratingvalidTransmission Characters (encoding) and checking the validity of received Transmission Characters (decoding). In the tables, each Valid-Data-byte or Special-Charactercode entry has two columns that represent two (not necessarily different) Transmission Characters. The two columns correspond to the current value of the running disparity ("Current RD-" or "Current RD+"). Running disparity is a binary parameter with either the value negative (-) or the value positive (+).
After powering on, the Transmitter may assume either a positive or negative value for its initial running disparity. Upon transmission of any Transmission Character, the transmitter will select the proper version of the Transmission Character based on the current running disparity value, and the Transmitter shall calculate a new value for its running disparity based on the contents of the transmitted character. Special Character codes C1.7 and C2.7 can be used to force the transmission of a specific Special Character with a specific running disparity as required for some special sequences in X3T9.3.
After powering on, the Receiver may assume either a positive or negative value for its initial running disparity. Upon reception of any Transmission Character, the Receiver shall decide whether the Transmission Character is valid or invalid according to the following rules and tables and shall calculate a new value for its Running Disparity based on the contents of the received character.
The following rules for running disparity shall be used to calculate the new running-disparity value for Transmission Characters that have been transmitted (Transmitter's running disparity) and that have been received (Receiver's running disparity).
Running disparity for a Transmission Charactershall be calculated from sub-blocks, where the first six bits (abcdei) form one subblock and the second four bits (fghj) form the other sub-block. Running disparity at the beginning of the 6 -bit sub-block is the running disparity at the end of the previous Transmission Character. Running disparity at the beginning of the 4-bit sub-block is the running disparity at the end of the 6-bit sub-block. Running disparity at the end of the Transmission Character is the running disparity at the end of the 4-bit sub-block.
Running disparity for the sub-blocks shall be calculated as follows:

1. Running disparity at the end of any sub-block is positive if the sub-block contains more ones than zeros. It is also positive at the end of the 6-bit sub-block if the 6-bit sub-block is 000111 , and it is positive at the end of the 4-bit sub-block if the 4-bit subblock is 0011 .
2. Running disparity at the end of any sub-block is negative if the sub-block contains more zeros than ones. It is also negative at
the end of the 6-bit sub-block if the 6-bit sub-block is 111000 , and it is negative at the end of the 4-bit sub-block if the 4-bit sub-block is 1100 .
3. Otherwise, running disparity at the end of the sub-block is the same as at the beginning of the sub-block.

Use of the Tables for Generating Transmission Characters

The appropriate entry in the table shall be found for the Valid Data byte or the Special Character byte for which a Transmission Character is to be generated (encoded). The current value of the Transmitter's running disparity shall be used to select the Transmission Character from its corresponding column. For each Transmission Character transmitted, a newvalue of the running disparityshall be calculated. This new value shall be used as the Transmitter's current running disparity for the next Valid Data byte or Special Character byte to be encoded and transmitted. Table 1 shows naming notations and examples of valid transmission characters.

Table 1. Valid Transmission Characters

Data			
Byte Name	D IN or Qout		
	$\mathbf{7 6 5}$	$\mathbf{4 3 2 1 0}$	Hex Value
	000	00000	
D1.0	000	00001	01
D2.0	000	00010	02
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
D5.2	010	000101	45
\cdot	\cdot	\cdot	\cdot
\cdot	\cdot	\cdot	\cdot
D30.7	111	11110	FE
D31.7	111	11111	FF

Use of the Tables for Checking the Validity of Received Transmission Characters

The column corresponding to the current value of the Receiver's running disparity shall be searched for the received Transmission Character. If the received Transmission Character is found in the proper column, then the Transmission Character is valid and the associated Data byte or Special Character code is determined (decoded). If the received Transmission Character is not found in that column, then the Transmission Character is invalid. This is called a code violation. Independent of the Transmission Character'svalidity, the received Transmission Character shall be used to calculate a new value of running disparity. The new value shall be used as the Receiver's current running disparity for the next received Transmission Character.
Detection of a code violation does not necessarily show that the Transmission Character in which the code violation was detected is in error. Code violations may result from a prior error that altered the running disparity of the bit stream which did not result in a detectable error at the Transmission Character in which the error occurred. Table 2 shows an example of this behavior.

Table 2. Code Violations Resulting from Prior Errors

	RD	Character	RD	Character	RD	Character	RD
Transmitted data character	-	D21.1	-	D10.2	-	D23.5	+
Transmitted bit stream	-	1010101001	-	0101010101	-	1110101010	+
Bit stream after error	-	1010101011	+	0101010101	+	1110101010	+
Decoded data character	-	D21.0	+	D10.2	+	Code Violation	+

Valid Data Characters (SC/ $\overline{\mathrm{D}}=$ LOW)

Data Byte Name	Bits		Current RD-		Current RD+	
	HGF	EDCBA	abcdei	fghj	abcdei	fghj
D0.0	000	00000	100111	0100	011000	1011
D1.0	000	00001	011101	0100	100010	1011
D2.0	000	00010	101101	0100	010010	1011
D3.0	000	00011	110001	1011	110001	0100
D4.0	000	00100	110101	0100	001010	1011
D5.0	000	00101	101001	1011	101001	0100
D6.0	000	00110	011001	1011	011001	0100
D7.0	000	00111	111000	1011	000111	0100
D8.0	000	01000	111001	0100	000110	1011
D9.0	000	01001	100101	1011	100101	0100
D10.0	000	01010	010101	1011	010101	0100
D11.0	000	01011	110100	1011	110100	0100
D12.0	000	01100	001101	1011	001101	0100
D13.0	000	01101	101100	1011	101100	0100
D14.0	000	01110	011100	1011	011100	0100
D15.0	000	01111	010111	0100	101000	1011
D16.0	000	10000	011011	0100	100100	1011
D17.0	000	10001	100011	1011	100011	0100
D18.0	000	10010	010011	1011	010011	0100
D19.0	000	10011	110010	1011	110010	0100
D20.0	000	10100	001011	1011	001011	0100
D21.0	000	10101	101010	1011	101010	0100
D22.0	000	10110	011010	1011	011010	0100
D23.0	000	10111	111010	0100	000101	1011
D24.0	000	11000	110011	0100	001100	1011
D25.0	000	11001	100110	1011	100110	0100
D26.0	000	11010	010110	1011	010110	0100
D27.0	000	11011	110110	0100	001001	1011
D28.0	000	11100	001110	1011	001110	0100
D29.0	000	11101	101110	0100	010001	1011
D30.0	000	11110	011110	0100	100001	1011
D31.0	000	11111	101011	0100	010100	1011

Data Byte Name	Bits		Current RD-		Current RD+	
	HGF	EDCBA	abcdei	fghj	abcdei	fghj
D0.1	001	00000	100111	1001	011000	1001
D1.1	001	00001	011101	1001	100010	1001
D2. 1	001	00010	101101	1001	010010	1001
D3.1	001	00011	110001	1001	110001	1001
D4.1	001	00100	110101	1001	001010	1001
D5.1	001	00101	101001	1001	101001	1001
D6. 1	001	00110	011001	1001	011001	1001
D7.1	001	00111	111000	1001	000111	1001
D8.1	001	01000	111001	1001	000110	1001
D9.1	001	01001	100101	1001	100101	1001
D10.1	001	01010	010101	1001	010101	1001
D11.1	001	01011	110100	1001	110100	1001
D12.1	001	01100	001101	1001	001101	1001
D13.1	001	01101	101100	1001	10110	1001
D14.1	001	01110	011100	1001	011100	1001
D15.1	001	01111	010111	1001	101000	1001
D16.1	001	10000	011011	1001	100100	1001
D17.1	001	10001	100011	1001	100011	1001
D18.1	001	10010	010011	1001	010011	1001
D19.1	001	10011	110010	1001	110010	1001
D20.1	001	10100	001011	1001	001011	1001
D21.1	001	10101	101010	1001	101010	1001
D22.1	001	10110	011010	1001	011010	1001
D23.1	001	10111	111010	1001	000101	1001
D24.1	001	11000	110011	1001	001100	1001
D25.1	001	11001	100110	1001	100110	1001
D26.1	001	11010	010110	1001	010110	1001
D27.1	001	11011	110110	1001	001001	1001
D28.1	001	11100	001110	1001	001110	1001
D29.1	001	11101	101110	1001	010001	1001
D30.1	001	11110	011110	1001	100001	1001
D31.1	001	11111	101011	1001	010100	1001

Valid Data Characters (SC/ $\overline{\mathrm{D}}=\mathrm{LOW}$) (continued)

Data Byte Name	Bits		Current RD-		Current RD+	
	HGF	EDCBA	abcdei	fghj	abcdei	fghj
D0. 2	010	00000	100111	0101	011000	0101
D1. 2	010	00001	011101	0101	100010	0101
D2. 2	010	00010	101101	0101	010010	0101
D3.2	010	00011	110001	0101	110001	0101
D4. 2	010	00100	110101	0101	001010	0101
D5. 2	010	00101	101001	0101	101001	0101
D6. 2	010	00110	011001	0101	011001	0101
D7. 2	010	00111	111000	0101	000111	0101
D8. 2	010	01000	111001	0101	000110	0101
D9.2	010	01001	100101	0101	100101	0101
D10.2	010	01010	010101	0101	010101	0101
D11.2	010	01011	110100	0101	110100	0101
D12.2	010	01100	001101	0101	001101	0101
D13.2	010	01101	101100	0101	101100	0101
D14.2	010	01110	011100	0101	011100	0101
D15.2	010	01111	010111	0101	101000	0101
D16.2	010	10000	011011	0101	100100	0101
D17.2	010	10001	100011	0101	100011	0101
D18.2	010	10010	010011	0101	010011	0101
D19.2	010	10011	110010	0101	110010	0101
D20.2	010	10100	001011	0101	001011	0101
D21.2	010	10101	101010	0101	101010	0101
D22.2	010	10110	011010	0101	011010	0101
D23. 2	010	10111	111010	0101	000101	0101
D24.2	010	11000	110011	0101	001100	0101
D25.2	010	11001	100110	0101	100110	0101
D26.2	010	11010	010110	0101	010110	0101
D27.2	010	11011	110110	0101	001001	0101
D28. 2	010	11100	001110	0101	001110	0101
D29.2	010	11101	101110	0101	010001	0101
D30.2	010	11110	011110	0101	100001	0101
D31.2	010	11111	101011	0101	010100	0101

Data Byte Name	Bits		Current RD-		Current RD+	
DGF	EDCBA	abcdei	fghj	abcdei	fghj	
D1.3	011	00000	100111	0011	011000	1100
D2.3	011	00001	00010	101101	0011	010010
D3.3	011	00011	110001	1100	110001	0011
D4.3	011	00100	110101	0011	001010	1100
D5.3	011	00101	101001	1100	101001	0011
D6.3	011	00110	011001	1100	011001	0011
D7.3	011	00111	111000	1100	000111	0011
D8.3	011	01000	111001	0011	000110	1100
D9.3	011	01001	100101	1100	100101	0011
D10.3	011	01010	010101	1100	010101	0011
D11.3	011	01011	110100	1100	110100	0011
D12.3	011	01100	001101	1100	001101	0011
D13.3	011	01101	101100	1100	101100	0011
D14.3	011	01110	011100	1100	011100	0011
D15.3	011	01111	010111	0011	101000	1100
D16.3	011	10000	011011	0011	100100	1100
D17.3	011	10001	100011	1100	100011	0011
D18.3	011	10010	010011	1100	010011	0011
D19.3	011	10011	110010	1100	110010	0011
D20.3	011	10100	001011	1100	001011	0011
D21.3	011	10101	101010	1100	101010	0011
D22.3	011	10110	011010	1100	011010	0011
D23.3	011	10111	111010	0011	000101	1100
D24.3	011	11000	110011	0011	001100	1100
D25.3	011	11001	100110	1100	100110	0011
D26.3	011	11010	010110	1100	010110	0011
D27.3	011	11011	110110	0011	001001	1100
D28.3	011	11100	001110	1100	001110	0011
D29.3	011	11101	101110	0011	010001	1100
011	11110	011110	0011	100001	1100	
D311	11111	101011	0011	010100	1100	

Valid Data Characters (SC/ $\overline{\mathbf{D}}=$ LOW) (continued)

Data Byte	Bits		Current RD-		Current RD+	
Name	HGF	EDCBA	abcdei	fghj	abcdei	fghj
D0.4	100	00000	100111	0010	011000	1101
D1.4	100	00001	011101	0010	100010	1101
D2.4	100	00010	101101	0010	010010	1101
D3.4	100	00011	110001	1101	110001	0010
D4.4	100	00100	110101	0010	001010	1101
D5.4	100	00101	101001	1101	101001	0010
D6.4	100	00110	011001	1101	011001	0010
D7.4	100	00111	111000	1101	000111	0010
D8.4	100	01000	111001	0010	000110	1101
D9.4	100	01001	100101	1101	100101	0010
D10.4	100	01010	010101	1101	010101	0010
D11.4	100	01011	110100	1101	110100	0010
D12.4	100	01100	001101	1101	001101	0010
D13.4	100	01101	101100	1101	101100	0010
D14.4	100	01110	011100	1101	011100	0010
D15.4	100	01111	010111	0010	101000	1101
D16.4	100	10000	011011	0010	100100	1101
D17.4	100	10001	100011	1101	100011	0010
D18.4	100	10010	010011	1101	010011	0010
D19.4	100	10011	110010	1101	110010	0010
D20.4	100	10100	001011	1101	001011	0010
D21.4	100	10101	101010	1101	101010	0010
D22.4	100	10110	011010	1101	011010	0010
D23.4	100	10111	111010	0010	000101	1101
D24.4	100	11000	110011	0010	001100	1101
D31.4	100	11111	101011	0010	010100	1101
D25.4	100	11001	100110	1101	100110	0010
D26.4	100	11010	010110	1101	010110	0010
D27.4	100	11011	110110	0010	001001	1101
D28.4	100	11100	001110	1101	001110	0010
D29.4	100	11101	101110	0010	010001	1101
	100	11110	011110	0010	100001	1101
D0						

Data Byte Name	Bits		Current RD-		Current RD+	
D0.5	EDCBA	abcdei	fghj	abcdei	fghj	
D1.5	101	00000	100111	1010	011000	1010
D2.5	101	00010	101101	1010	010010	1010
D3.5	101	00011	110001	1010	110001	1010
D4.5	101	00100	110101	1010	001010	1010
D5.5	101	00101	101001	1010	101001	1010
D6.5	101	00110	011001	1010	011001	1010
D7.5	101	00111	111000	1010	000111	1010
D8.5	101	01000	111001	1010	000110	1010
D9.5	101	01001	100101	1010	100101	1010
D10.5	101	01010	010101	1010	010101	1010
D11.5	101	01011	110100	1010	110100	1010
D12.5	101	01100	001101	1010	001101	1010
D13.5	101	01101	101100	1010	101100	1010
D14.5	101	01110	011100	1010	011100	1010
D15.5	101	01111	010111	1010	101000	1010
D16.5	101	10000	011011	1010	100100	1010
D17.5	101	10001	100011	1010	100011	1010
D18.5	101	10010	010011	1010	010011	1010
D19.5	101	10011	110010	1010	110010	1010
D20.5	101	10100	001011	1010	001011	1010
D21.5	101	10101	101010	1010	101010	1010
D22.5	101	10110	011010	1010	011010	1010
D23.5	101	10111	111010	1010	000101	1010
D24.5	101	11000	110011	1010	001100	1010
D25.5	101	11001	100110	1010	100110	1010
D26.5	101	11010	010110	1010	010110	1010
D27.5	101	11011	110110	1010	001001	1010
D28.5	101	11100	001110	1010	001110	1010
D29	101	11101	101110	1010	010001	1010
	11110	011110	1010	100001	1010	
	101011	1010	010100	1010		

Valid Data Characters (SC//D=LOW) (continued)

Data Byte Name	Bits		Current RD-		Current RD+	
	HGF	EDCBA	abcdei	fghj	abcdei	fghj
D0.6	110	00000	100111	0110	011000	0110
D1.6	110	00001	011101	0110	100010	0110
D2. 6	110	00010	101101	0110	010010	0110
D3. 6	110	00011	110001	0110	110001	0110
D4. 6	110	00100	110101	0110	001010	0110
D5. 6	110	00101	101001	0110	101001	0110
D6. 6	110	00110	011001	0110	011001	0110
D7. 6	110	00111	111000	0110	000111	0110
D8. 6	110	01000	111001	0110	000110	0110
D9. 6	110	01001	100101	0110	100101	0110
D10.6	110	01010	010101	0110	010101	0110
D11.6	110	01011	110100	0110	110100	0110
D12.6	110	01100	001101	0110	001101	0110
D13.6	110	01101	101100	0110	101100	0110
D14.6	110	01110	011100	0110	011100	0110
D15.6	110	01111	010111	0110	101000	0110
D16.6	110	10000	011011	0110	100100	0110
D17.6	110	10001	100011	0110	100011	0110
D18.6	110	10010	010011	0110	010011	0110
D19.6	110	10011	110010	0110	110010	0110
D20.6	110	10100	001011	0110	001011	0110
D21.6	110	10101	101010	0110	101010	0110
D22.6	110	10110	011010	0110	011010	0110
D23.6	110	10111	111010	0110	000101	0110
D24.6	110	11000	110011	0110	001100	0110
D25.6	110	11001	100110	0110	100110	0110
D26.6	110	11010	010110	0110	010110	0110
D27.6	110	11011	110110	0110	001001	0110
D28.6	110	11100	001110	0110	001110	0110
D29.6	110	11101	101110	0110	010001	0110
D30.6	110	11110	011110	0110	100001	0110
D31.6	110	11111	101011	0110	010100	0110

Data Byte Name	Bits		Current RD-		Current RD+	
	HGF	EDCBA	abcdei	fghj	abcdei	fghj
D0.7	111	00000	100111	0001	011000	1110
D1.7	111	00001	011101	0001	100010	1110
D2.7	111	00010	101101	0001	010010	1110
D3.7	111	00011	110001	1110	110001	0001
D4.7	111	00100	110101	0001	001010	1110
D5.7	111	00101	101001	1110	101001	0001
D6. 7	111	00110	011001	1110	011001	0001
D7.7	111	00111	111000	1110	000111	0001
D8.7	111	01000	111001	0001	000110	1110
D9.7	111	01001	100101	1110	100101	0001
D10.7	111	01010	010101	1110	010101	0001
D11.7	111	01011	110100	1110	110100	1000
D12.7	111	01100	001101	1110	001101	0001
D13.7	111	01101	101100	1110	101100	1000
D14.7	111	01110	011100	1110	011100	1000
D15.7	111	01111	010111	0001	101000	1110
D16.7	111	10000	011011	0001	100100	1110
D17.7	111	10001	100011	0111	100011	0001
D18.7	111	10010	010011	0111	010011	0001
D19.7	111	10011	110010	1110	110010	0001
D20.7	111	10100	001011	0111	001011	0001
D21.7	111	10101	101010	1110	101010	0001
D22.7	111	10110	011010	1110	011010	0001
D23.7	111	10111	111010	0001	000101	1110
D24.7	111	11000	110011	0001	001100	1110
D25.7	111	11001	100110	1110	100110	0001
D26.7	111	11010	010110	1110	010110	0001
D27.7	111	11011	110110	0001	001001	1110
D28.7	111	11100	001110	1110	001110	0001
D29.7	111	11101	101110	0001	010001	1110
D30.7	111	11110	011110	0001	100001	1110
D31.7	111	11111	101011	0001	010100	1110

Valid Special Character Codes and Sequences (SC/ $\overline{\mathbf{D}}=\mathbf{H I G H})^{[19,}{ }^{20]}$

S.C. Byte Name	S.C. Code Name		Bits		Current RD-		Current RD+	
			HGF	EDCBA	abcdei	fghj	abcdei	fghj
K28.0	C0.0	(C00)	000	00000	001111	0100	110000	1011
K28.1	C1.0	(C01)	000	00001	001111	1001	110000	0110
K28.2	C2.0	(C02)	000	00010	001111	0101	110000	1010
K28.3	C3.0	(C03)	000	00011	001111	0011	110000	1100
K28.4	C4.0	(C04)	000	00100	001111	0010	110000	1101
K28.5	C5.0	(C05)	000	00101	001111	1010	110000	0101
K28.6	C6.0	(c06)	000	00110	001111	0110	110000	1001
K28.7	C7.0	(C07)	000	00111	001111	1000	110000	0111
K23.7	C8.0	(C08)	000	01000	111010	1000	000101	0111
K27.7	C9.0	(C09)	000	01001	110110	1000	001001	0111
K29.7	C10.0	(COA)	000	01010	101110	1000	010001	0111
K30.7	C11.0	(COB)	000	01011	011110	1000	100001	0111
Idle	C0.1	(C20)	001	00000	-K28.5+, D21.4, D21.5, D21.5, repeat ${ }^{[21]}$			
R_RDY	C1. 1	(C21)	001	00001	-K28.5+,D21.4, D10.2, D10.2, repeat ${ }^{[22]}$			
EOFxx	C2. 1	(C22)	001	00010	-K28.5,	. $\times \times \times 0^{[23]}$	+K28.5, Dn	$\mathrm{xxx1}{ }^{[23]}$
Follows K28.1 for ESCON Connect-SOF (Rx indication only)								
C-SOF	C7. 1	(C27)	001	00111	001111	1000	110000	0111
Follows K28.5 for ESCON Passive-SOF (Rx indication only)								
P-SOF	C7. 2	(C47)	010	00111	001111	1000	110000	0111
				Code Rule Violation and SVS Tx Pattern				
Exception	C0. 7	(CEO)	111	00000	100111	$1000^{[24]}$	011000	0111 ${ }^{[24]}$
-K28.5	C1. 7	(CE1)	111	00001	001111	$1010{ }^{[25]}$	001111	1010[25]
+K28.5	C2. 7	(CE2)	111	00010	110000	$0101{ }^{[26]}$	110000	0101 ${ }^{[26]}$
					Running Disparity Violation Pattern			
Exception	C4. 7	(CE4)	111	00100	110111	$0101{ }^{[27]}$	001000	$1010{ }^{[27]}$

Notes:

19. All codes not shown are reserved.
20. Notation for Special Character Byte Name is consistent with Fibre Channel and ESCON naming conventions. Special Character Code Name is intended to describe binary information present on I/O pins. Common usage for the name can either be in the form used for describing Data patterns (i.e., C0.0 through C31.7), or in hex notation (i.e., Cnn where $\mathrm{nn}=$ the specified value between 00 and FF).
21. C $0.1=$ Transmit Negative K28.5 ($-\mathrm{K} 28.5+$) disregarding Current RD when input is held for only one byte time. If held longer, transmit-
ter begins sending the repeating transmit sequence $-\mathrm{K} 28.5+$, D21.4, D21.5, D21.5, (repeat all four bytes)... defined in X3T9.3 as the primitive signal "Idle word." This Special Character input must be held for four (4) byte times or multiples of four bytes or it will be truncated by the new data.
The receiver will never output this Special Character, since K28.5 is decoded as C5.0, C1.7, or C2.7, and the subsequent bytes are decoded as data.

Notes (continued):
22. $\mathrm{C} 1.1=$ Transmit Negative K28.5 (-K28.5+) disregarding Current RD when input is held for only one byte time. If held longer, transmitter begins sending the repeating transmit sequence -K28.5+, D21.4, D10.2, D10.2,(repeat all four bytes)... defined in X3T9.3 as the primitive signal "Receiver_Ready (R_RDY)." This Special Character input must be held for four (4) byte times or multiples of four bytes or it will be truncated by the new data.
The receiver will never output this Special Character, since K28.5 is decoded as C5.0, C1.7, or C2.7 and the subsequent bytes are decoded as data.
23. C2.1 = Transmit either $-\mathrm{K} 28.5+$ or $+\mathrm{K} 28.5-$ as determined by Current RD and modify the Transmission Character that follows, by setting its least significant bit to 1 or 0 . If Current RD at the start of the following character is plus (+) the LSB is set to 0 , and if Current RD is minus $(-)$ the LSB becomes 1 . This modification allows construction of X3T9.3 "EOF" frame delimiters wherein the second data byte is determined by the Current RD.
For example, to send "EOFdt" the controller could issue the sequence C2.1-D21.4-D21.4-D21.4, and the HOTLink Transmitter will send either K28.5-D21.4-D21.4-D21.4 or K28.5-D21.5-D21.4-D21.4 based on Current RD. Likewise to send "EOFdti" the controller could issue the sequence C2.1-D10.4-D21.4-D21.4, and the HOTLink Transmitter will send either K28.5-D10.4-D21.4D21.4 or K28.5-D10.5-D21.4- D21.4 based on Current RD.
The receiver will never output this Special Character, since K28.5 is decoded as C5.0, C1.7, or C2.7, and the subsequent bytes are decoded as data.
24. $\mathrm{C} 0.7=$ Transmit a deliberate code rule violation. The code chosen for this function follows the normal Running Disparity rules. Transmission of this Special Character has the same effect as asserting SVS $=$ HIGH
The receiver will only output this Special Character if the Transmission Character being decoded is not found in the tables.
25. C 1.7 = Transmit Negative K28.5 (-K28.5+) disregarding Current RD.
The receiver will only output this Special Character if K28.5 is received with the wrong running disparity. The receiver will output C1. 7 if -K 28.5 is received with $\mathrm{RD}+$, otherwise K 28.5 is decoded as C5.0 or C2.7.
26. C2.7 = Transmit Positive K28.5 (+K28.5-) disregarding Current RD.
The receiver will only output this Special Character if K28.5 is received with the wrong running disparity. The receiver will output C2.7 if +K 28.5 is received with RD-, otherwise K28.5 is decoded as C5.0 or C1.7.
27. $\mathrm{C} 4.7=$ Transmit a deliberate code rule violation to indicate a Running Disparity violation.
The receiver will only output this Special Character if the Transmission Character being decoded is found in the tables, but Running Disparity does not match. This might indicate that an error occurred in a prior byte.

Ordering Information

Ordering Code	Package Name	Package Type	Operating Range
CY7B923-DC	D22	28-Lead (300-Mil) CerDIP	Commercial
CY7B923-JC	J64	28-Lead Plastic Leaded Chip Carrier	
CY7B923-LC	L64	28-Square Leadless Chip Carrier	
CY7B923-PC	P21	28-Lead (300-Mil) Molded DIP	
CY7B923-JI	J64	28-Lead Plastic Leaded Chip Carrier	
CY7B923-PI	P21	28-Lead (300-Mil) Molded DIP	
CY7B923-DMB	D22	28-Lead (300-Mil) CerDIP	Military
CY7B923-LMB	L64	28-Square Leadless Chip Carrier	

Ordering Code	Package Name	Package Type	Operating Range
CY7B933-DC	D22	28-Lead (300-Mil) CerDIP	Commercial
CY7B933-JC	J64	28-Lead Plastic Leaded Chip Carrier	
CY7B933-LC	L64	28-Square Leadless Chip Carrier	
CY7B933-PC	P21	28-Lead (300-Mil) Molded DIP	
CY7B933-JI	J64	28-Lead Plastic Leaded Chip Carrier	Industrial
CY7B933-PI	P21	28-Lead (300-Mil) Molded DIP	
CY7B933-DMB	D22	28-Lead (300-Mil) CerDIP	Military
CY7B933-LMB	L64	28-Square Leadless Chip Carrier	

MILITARY SPECIFICATIONS

Group A Subgroup Testing

DC Characteristics

Parameter	Subgroup
$\mathrm{V}_{\mathrm{OHT}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{OLT}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{OHE}}$	1,2
$\mathrm{~V}_{\mathrm{OLE}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{ODIF}}$	$1,2,3$
$\mathrm{I}_{\mathrm{OST}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IHT}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{ILT}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{IHE}}$	$1,2,3$
$\mathrm{~V}_{\mathrm{ILE}}$	$1,2,3$
$\mathrm{I}_{\mathrm{IHT}}$	$1,2,3$
$\mathrm{I}_{\mathrm{ILT}}$	$1,2,3$
$\mathrm{I}_{\mathrm{IHE}}$	$1,2,3$
$\mathrm{I}_{\mathrm{ILE}}$	$1,2,3$
I_{IC}	$1,2,3$
$\mathrm{~V}_{\mathrm{DIFF}}$	$1,2,3$
$\mathrm{~V}_{\text {IHH }}$	$1,2,3$
$\mathrm{~V}_{\mathrm{ILL}}$	$1,2,3$

Switching Characteristics

Parameter	Subgroup
$\mathrm{t}_{\mathrm{CKW}}$	$9,10,11$
t_{B}	$9,10,11$
$\mathrm{t}_{\mathrm{CPWH}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CPWL}}$	$9,10,11$
t_{SD}	$9,10,11$
t_{HD}	$9,10,11$
$\mathrm{t}_{\text {SENP }}$	$9,10,11$
$\mathrm{t}_{\mathrm{HENP}}$	$9,10,11$
$\mathrm{t}_{\text {PDR }}$	$9,10,11$
$\mathrm{t}_{\text {PPWH }}$	$9,10,11$
$\mathrm{t}_{\mathrm{PDF}}$	$9,10,11$
$\mathrm{t}_{\mathrm{RISE}}$	$9,10,11$
$\mathrm{t}_{\mathrm{FALL}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CKR}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CPRH}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CPRL}}$	$9,10,11$
t_{RH}	$9,10,11$
$\mathrm{t}_{\mathrm{PRF}}$	$9,10,11$
$\mathrm{t}_{\text {PRH }}$	$9,10,11$
t_{A}	$9,10,11$
$\mathrm{t}_{\mathrm{ROH}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CKX}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CPXH}}$	$9,10,11$
$\mathrm{t}_{\mathrm{CPXL}}$	$9,10,11$
t_{DS}	$9,10,11$

Features

- 160 to 330 Mbps point-to-point serial data link
- Parallel-to-serial and serial-to-parallel I/O
- 10-bit-wide 8B/10B encode, decode or unencoded
- Compliant with ESCON, Fiber Channel and ATM standards
- Compatible with Fiber Channel FC-0 specification (CY9266-C):
-25-TV-EL-S
-25-MI-EL-S
$-25-T P-E L-S ~$
- Compatible with Fiber Channel FC-0 specification (CY9266-F):
-25-M6-LE-I
- Development tool for proprietary networks
- Full system diagnostics with Built-In-Self-Test (BIST)
- Two-digit error display for BER analysis
- Multiple host interface:
-48-pin connector (IBM OLC-266 compatible)
-60-pin edge connector
- 60-pin two-row right-angle connector
- Socket for optional on-board crystal oscillator
- Multiple system configurations via DIP switch
- Multilayer board with surface-mount technology

Figure 1. Copper Media Interface Evaluation Board CY9266-C

Figure 2. Fiber-Optic Interface Evaluation Board CY9266-F

Specification

Board Dimensions
Two media types:

CY9266-C	Mini-coax or twisted-pair cables using two pin 0.25" sq x $0.1^{\prime \prime}$ header or right-angle BNC connectors
CY9266-F	LED based fiber optic using SC connector
Power Supply	$+5 \mathrm{~V} \pm 5 \%$
Maximum Clock Rate	33 MHz
Maximum Data Rate	330 Mbps
Parallel I/O	TTL
Serial I/O	Coax or twisted pair (CY9266-C) or
	Fiber optic with SC connector (CY9266-F)

General Description

The HOTLink Evaluation Board (CY9266) is a system development tool that facilitates the design and evaluation of the Cypress HOTLink transmitter (CY7B923) and receiver (CY7B933) devices. The CY9266 Evaluation Board is offered with two serial media interface options: CY9266-C (copper) and CY9266-F (fiber). The CY9266-C offers a low cost $1 / 4^{\prime \prime}$ coaxial connection while the CY9266-F interfaces with a longwave (1300 nm) LED optical transceiver and SC fiber optics connector.

The CY9266 accepts data and control commands from the host via the parallel interface ports (available in three connectors). The 48 -pin header connector allows interoperability with the IBM OLC-266 interface. The two $60-$ pin connectors are functionally equivalent. The vertical pin connector is used for probing and monitoring the appropriate signals, while the edge connector can be connected to a flat ribbon cable as a direct host communication interface.
In a typical point-to-point link, the host downloads parallel data to the CY9266 Evaluation Board. Parallel data can be formatted as pre-encoded 10 bit patterns or 8 -bit data/special characters to be encoded by the HOTLink transmitter. The data is then encoded (optionally) and serialized by CY7B923 HOTLink Transmitter. Serial data is then transmitted via coax or fiber.
In the receive operation, serial data is sent from a remote source (via copper/fiber) and transferred to the CY7B933 HOTLink receiver. The serialized data is converted to parallel and then optionally decoded. Parallel data is transferred to the host system along with various status and synchronizing signals. All I/O operations are performed between the host and the Evaluation Board using simple handshakes.
The CY9266 Evaluation Board can also operate in self-diagnostic mode and indicate errors in the serial transmission stream using a built-in two-digit, seven-segment LED display.

Document \#: 38-00236

IBM OLC-266 is a trademark of International Business Machines Corporation. HP HOLC-0266 is a trademark of Hewlett-Packard Corporation.
INFO 1
SRAMs 2
PROMs 3
PLDs 4
FIFOs 5
LOGIC 6
DATACOM 7
MODULES 8
ECL 9
BUS 10
MILITARY 11
TOOLS 12
QUALITY 13
PACKAGES 14

Modules
Page Number
Custom Module Capabilities
8-1

Device Number Description

CYM1420
$128 \mathrm{~K} \times 8$ Static RAM Module
8-5
CYM1441
256 K x 8 Static RAM Module
8-11
CYM1464
CYM1465
CYM1471
CYM1481
CYM1560
$512 \mathrm{~K} \times 8$ Static RAM Module
8-16

CYM1622
CYM1720
$512 \mathrm{~K} \times 8$ Static RAM Module
8-22
1024K x 8 Static RAM Module . 8-28
2048K x 8 Static RAM Module . 8-28
$1024 \mathrm{~K} \times 9$ Buffered Static RAM Module with Separate I/O 8-34
64K x 16 Static RAM Module . 8-39
32K x 24 Static RAM Module . 8-44
CYM1730 64K x 24 Static RAM Module ... 8-49
CYM1821
CYM1828
CYM1831
CYM1832
16K x 32 Static RAM Module . 8-54
32K x 32 Static RAM Module . 8-61

CYM1836
64K x 32 Static RAM Module . 8-68
$64 \mathrm{~K} \times 32$ Static RAM Module . 8-73

CYM1838
128K x 32 Static RAM Module . 8-78

CYM1840
$128 \mathrm{~K} \times 32$ Static RAM Module
8-83
$256 \mathrm{~K} \times 32$ Static RAM Module
8-88
CYM1841 256K x 32 Static RAM Module 8 . 94
CYM1851
CYM4208
$1024 \mathrm{~K} \times 32$ Static RAM Module
8-100
CYM4209
CYM7232
Cascadable $64 \mathrm{~K} \times 9$ FIFO
8-105

CYM7264
Cascadable $128 \mathrm{~K} \times 9$ FIFO
8-105
DRAM Accelerator Module
8-114
CYM7485
DRAM Accelerator Module
8-114
CYM7490
CYM7491
128K Write-Through Secondary Cache Module
8-194
i486 Level II Cache Module Family
8-211
CYM7492
i486 Level II Cache Module Family
8-211
i486 Level II Cache Module Family . 8-211

Custom Module Capabilities

Introduction

Cypress's Multichip Products group is a leading supplier of custom memory and/or logic modules. This turnkey capability provides designers with a fast, low-risk solution for when they require the ultimate in system performance and density. Detailed information on standard modules can be found in the Static RAM, FIFO, and Module sections of this book.

Packaging Guidelines

High-density memory modules are now available in a wide variety of package styles that satisfy a variety of needs for high-performance system design. Since board space is a primary concern, the choice of a package style is important in meeting layout constraints as well as thermal and mechanical design objectives.
Multichip Products currently supports several commonly used module technologies including plasticcomponents on FR4 or polyimide substrate, and ceramic components mounted on ceramic substrates. Advanced technologies suitable for the demands of higher integration components are also available.
The plastic technology employs plastic encapsulated, surfacemount components and an epoxy laminate (FR4 or polyimide) substrate. The plastic components can be SOJ, SOIC, VSOP, TSOP, QFP, or other surface-mount packages. Die can also be mounted directly to the substrate and wire bonded to the substrate.
The ceramic technology employs hermetic, ceramic-packaged devices mounted on a ceramic substrate. The components are typically leadless chip carriers, but may include other package types. The ceramic substrate has a custom interconnect for the particular components it carries. The ceramic substrate and components offer improved thermal characteristics over the plasticmodules. This makes these modules suitable for extended temperature range operation, such as in military applications.

Common Packaging Options

This section describes several common module packaging options available from Cypress. A summary table (Table 1) compares relative board areas of each option based on a module with eight 28-pin components.

SIP

The single in-line pin package, or SIP, is a vertically mounted module with a single row of pins along one edge for through-hole mounting. The SIP configuration is typically constructed with plas-tic-encapsulated components mounted on an FR4 or polyimide substrate, although ceramic SIPs are also used. The pins are on a 100 -mil pitch. The vertical orientation and the mounting of compo-
nents on both sides of the module can increase the component density by a factor of four or more.

Flat SIP

The flat single in-line pin package, or FSIP, is virtually identical to the SIP except that the substrate is mounted in the horizontal rather than the vertical direction. When mounted to a circuit board, the flat SIP lies close and parallel to the board. Flat SIP modules save board area since they, like other modules, employ fine lead pitch surface-mount components on a high-density substrate. The flat SIP density approximates double-sided surface-mounted boards with the advantage of a very low profile and improved mechanical stability over the vertical SIP.

ZIP

The zigzag in-line pin package, or ZIP, is vertically mounted and is usually built with plastic encapsulated components on an FR4 or polyimide substrate. The ZIP module has pins along both sides of the substrate and the pins on alternate sides are staggered by 50 mils. Adjacent pins on the same side of the substrate are separated by 100 mils. The dual row of staggered pins allows a higher connection density than that of the SIP while maintaining $100-$ mil minimum spacing between any adjacent pins. The ZIP is especially useful in large pin count devices where the host board is designed with through-hole design rules.

SIMM

The single in-line memory module, or SIMM, is similar to the ZIP except that there are no pins for through-hole mounting. Instead, the bottom edge of the module is equipped with edge connector contacts that are plated to the substrate. The SIMM is designed to plug into motherboard sockets. The contacts are on both sides of the substrate, and contacts directly opposite each other are connected together. SIMM edge connector contacts are on a $50-\mathrm{mil}$ or 100 -mil pitch. SIMMs allow greater system functionality and flexibility by allowing easy use of multiple densities and speed grades.
Some module devices are available in both ZIP and SIMM packages with the same form factor. The pin out is designed so that the pinout and footprint of the SIMM socket matches the footprint of the ZIP module allowing ZIPs or SIMMs to be used interchangeably with only one board layout. The SIMM may be used in prototyping to test different speed versions of a system and then replaced with a companion ZIP for production, or SIMMs may be used in production for flexibility in memory size or memory speed.

VDIP

The VDIP, or vertical dual in-line pin package, is a vertically mounted module with two rows of pins on 100 -mil centers. Row to row spacing is 100 mils, with pins of the two rows aligned directly across from one another. The dual row of pins allows a higher connection density than that of the SIP while maintaining 100 -mil minimum spacing between any adjacent pins. VDIP may be either plastic or ceramic. The VDIP is useful in large pin count devices where the host board is designed with through-hole design rules.

DIP

The DIP, or dual in-line pin module, is a low-profile package with excellent mechanical ruggedness. The ceramicDIP is ideallysuited for military applications. Plastic DIPs are often used when a low vertical profile is required. In some cases, the DIP device is intended to have an identical footprint and similar form factor to standard integrated circuit components and can provide larger memory capacity in the same footprint.

PGA

The PGA, or pin grid array, has an array of pins that are perpendicular to the package plane. These pins are arranged in a matrix on a

100 -mil grid. Most of the matrix is filled with pins except for a central square that is normally devoid of pins.

QUIP

The QUIP, or quad in-line pin package, is very similar to the DIP package except that there is a dual row of pins along the package edge. In-row and row-to-row pin spacing is 100 mils with pins in adjacent rows aligned directly across form one another. The QUIP is a low-profile package with excellent mechanical ruggedness, with the added advantage of higher pin density for the same package length.

QFP

The QFP, or quad flat pack, is a surface-mounted module. Gull wing pins extend out from the square package on all four sides and are formed to be coplanar with the package bottom. Lead pitches are typically 50 mils or smaller.

Package Summary

Table 1 summarizes the various characteristics of the packages discussed above.

Table 1. Package Types

Package Type	Typical PinCount Count		$\begin{gathered} \text { Typical }{ }^{[1]} \\ \text { Height }{ }^{1]} \end{gathered}$		Mil ${ }^{[2]}$	Advantages	Disadvantages	$\begin{array}{\|c} \text { Board Space } \\ \text { (sq. in.) } \end{array}$	
	Min.	Max.	Min.	Max.				FR4	Cer
SIP	24	50	0.5	0.9	N	Vertical orientation. FR4 or ceramic technology.	Limited pin count.	1.2	0.9
FSIP	24	50	0.2	0.4	N	Very low profile. Mechanical stability. FR4 or ceramic technology.	Lower density due to horizontal orientation.	2.7	2.4
ZIP	24	100	0.5	0.9	N	Vertical orientation. JEDECstandard pinouts. Pinout compatible with SIMM.		1.2	N/A
SIMM	24	100	0.5	0.9	N	Vertical orientation. Socket mounting. Pinout compatible with ZIP.		1.2	N/A
VDIP	36	104	0.5	0.95	Y	Vertical orientation.		1.2	0.9
DIP	24	60	0.17	0.37	Y	Low profile. Excellent mechanical ruggedness.	Horizontal orientation.	2.9	2.9
QUIP	48	200			Y	Low profile. Excellent mechanical ruggedness. Increased number of pins.	Horizontal orientation.	2.9	2.9
QFP	68	144			Y	Surface mount. Low profile. Excellent mechanical ruggedness. Large number of pins in small area.	Surface-mount technology required. Horizontal orientation. Components on one side only.	3.1	3.1
PGA	68	144			Y	Large number of pins in thruhole technology. Low profile. Excellent mechanical ruggedness.	Multilayer boards. Horizontal orientation. Components on one side only.	2.9	2.9

Notes:

1. Minimum and maximum height are given in inches.
2. The Mil entry contains a $Y(e s)$ or $N(o)$ indicating if the package type is suitable for military applications.
3. Board space roughly quantifies the main board area, in square inches, taken up by the module when the module contains eight, 28 -pin components.

Component Selection

Cypress's Multichip Products group handles many types of components to build custom modules. Typically, any digital component that is available in surface-mount packaging can be used, but the module is not limited to this. Standard and custommodules include SRAM, FIFOs, dual ports, EPROM, Flash, and E²PROM devices, combined or mixed. Logic may also be employed to provide decoding, pipelined storage, or extra drive capability. The CYM1461 and the CYM1540 are examples of such devices. In the CYM1461, sixteen $32 \mathrm{~K} \times 8$ RAMs are arranged to form a $512 \mathrm{~K} \times 8$ module and the individual SRAMs are selected by an on board decode. The CYM1540 provides address and control buffering for a 256 K x 9 static RAM module so that only a single device load and capacitance is presented to the system. Other custom modules provide for unusual memory word widths. The CYM1720 is a memory module specifically designed for 24 -bit-wide DSP processors.
ECL is also a logic family suitable for collecting into a module. Unless the system is largely ECL, it makes sense to place the ECL components onto a module that is optimized for performance. Delivered as a tested component, the ECL module can be assembled into the system with high confidence of proper functionality. Typical examples of custom ECL modules include wide ECL-to-TTL translators and deep and/or wide ECL PROM or RAM memory arrays.
More complex functions may also be integrated onto a custom module; e.g., processor subsystems, embedded within a system that are dedicated to specific functions. These functions may include several forms of memory, a microprocessor or DSP, communication ports, and bus interface circuitry with possibly shared memory control. A custom module may also include an ASIC designed especially to implement the desired function. One example of such a device is the CYM4241 deep FIFO. This device includes three high-speed SRAMs, a surface-mount $50-\mathrm{MHz}$ crystal oscillator, and a wire-bonded ASIC die on substrate that integrates the RAM interface control and port access arbitration. This combination of components yields a 64 K by 9 FIFO in a single 28 -pin DIP. By simply changing the memory content, the device can be extended to 256 K by 9 .
Modules undergo complete characterization and qualification before being released to production. Characterization includes the following: AC and DC characterization over voltage and temperature, andcomplete custom specification review. Release to production requires a verified test program with test hardware and correlation samples, complete assembly drawings and approved parts list, production and test travelers, a formal design review, and customer approval.Inproduction, custom (andstandard) modules are built using fully tested components, and are rigorously tested before they are shipped. As an example of the rigorous production testing, memory modules are tested for all DC parametrics, all AC parametrics, and functionality. Functional testing includes a select set of memorypattern sensitivity tests. This complete testing allows the module to be treated by the user as a true component with a set of specifications that are guaranteed by the manufacturer. This saves time and effort during system manufacture and provides a degree of reliability not obtainable from operations focused on only assembly.

Future Technologies

The ultimate in multichip technology is multiple die on a substrate that offers highly efficient interconnect and the densest multichip assembly technology. The technology is available now for multi-
chip configurations with silicon chips on ceramic, epoxy laminate, and silicon substrates.

Introduction to Modules for the New User

The use of modules is growing rapidly since it is a vehicle for obtaining high integration and high performance with minimal impact on cost. Almost every personal computer now has main memory as plug in SIMM packages constructed from surfacemount DRAM components. High-performance RISC and CISC CPU subsystems are available as modules where the supplier has optimized the component I/O design and the substrate layout for maximum performance amongst the tightly coupled components.
Size is one obvious advantage of modules; their small size allows a function to fit into a very small space. Consider the economics of having a large memory array together with the system CPU on a single card in contrast to the cost of multiple memory cards connected via a backplane bus and the resulting performance loss. In many cases, the module approach is a considerable savings in materials and manufacturing cost by reducing the total number of system cards.
Applying the tight design rules of modules has its limitations. A module has line widths and spacings that support close packing of VSOP and die components, and these spacing/width design rules are at the limit of what can be handled by capable volume production substrate producers. The use of fully tested modules gives the density gain of tight design rules at economically attractive system manufacturing yields. Therefore in the manufacturing process, the module exhibits the characteristics of a monolithic device: high integration, ease of application, and high system manufacturing yield. The module brings high-density surface-mount technology to the through-hole manufacturing environment.
Performance is another significant gain obtainable from module application. Unfortunately this is the most difficult gain to quantify. Consider a memory subsystem collected tightly around a CPU versus the same memory capacity spread over one or more boards. It seems intuitively plausible that the larger subsystem will be slower: the distance to travel is longer, and the memory address and data bus lines have larger capacitance due to their longer length and the larger number of stubs on the lines. This is indeed the case. Many of the custom modules include buffers for reduced loading, registers for data pipelining, and simple or specialized decoders to ease system bus interfacing. Taken as a component, these modules typically exhibit higher capacitance than a monolithic component and incur about 5 ns additional delay for on board decoders or buffers. However, the module is from four to sixteen times as dense as through-hole monolithic devices and consequently achieve a net performance advantage.

Custom Module Development Flow

Multichip's focus is on providing turnkey memory modules. Figure 1 illustrates the tasks performed during the development of the module.
Module development commences with the generation of a detailed Objective Specification. The module is designed to this specification, and once in production it will be guaranteed to perform as indicated in the Objective Specification.
Components are selected while the specification is being generated. In many cases, the spec is designed such that multiple sources of components can be utilized. Once the spec is complete and the components are selected, a schematic for the module is generated. The netlist from the schematic is used to drive the circuit simulator.

Custom Module Development Flow (continued)

During simulation, several types of analyses are performed. A function simulation is used to ensure that the module's logic is designed properly. Timing simulation is run to verify that the module will function when subjected to the worst-case timing delays of the components. Finally, thermal analysis may be performed to determine the thermal characteristics of the module.
The layout of the module is also netlist driven. An autorouter may be used, depending on the complexity and density of the module. Design rule checks are run to ensure that the layout does not violate any electrical or mechanical design rules. Finally, the layout output is used to generate the module substrate.
The layout output is also used to drive the pick and place equipment. This ensures consistency between design and manufacturing. While the module prototypes are being assembled, the test program is generated and the test fixture is constructed. Test program generation is largely automated, using as inputs the simulation outputs and pre-defined test program subroutines for common configurations.
Once prototypes have been generated, the standard release procedure is initiated. This procedure includes steps such as bench testing, module characterization and qualification, and fine tuning of the test program. Following customer approval of the module, it is released to production.

Quoting Information

In order to prepare a quotation or proposal, we need as much as possible of the following information:

- Circuit schematic
- Functional description
- Mechanical dimensions required
- Speed and power requirements
- Prototype and production deadlines
- Production quantity estimates
- An engineering contact to answer questions

Once the above information is received, a budgetary quotation will typically be provided within one to two weeks.

Figure 1. Custom Module Flow

CYM1420

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 20 ns
- 32-pin, 0.6-inch-wide DIP package
- Low active power
- 1.2W (max.)
- Hermetic or plastic SMD technology
- TTL-compatible inputs and outputs
- JEDEC-compatible pinout
- Commercial and military temperature ranges

Functional Description

The CYM1420 is a very high performance 1-megabit static RAM module organized as 128 K words by 8 bits. This module is constructed using four $32 \mathrm{~K} \times 8$ static RAMs mounted onto a substrate. A decoder is used to interpret the higher-order addresses A_{15} and A_{16} and to select one of the four RAMs.
Writing to the memory module is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable (\bar{W}) inputs are both LOW. Data on the eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) of the device is written into
the memory location specified on the address pins (A_{0} through A_{16}).
Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) and output enable (OE) LOW, while WE remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the eight input/output pins.
The input/output pins remain in a high-impedance state unless the module is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.

Logic Block Diagram

Pin Configuration

NC 1*	32	V_{CC}
$\mathrm{A}_{16} \square$	31	$\square A_{15}$
$\mathrm{A}_{14} \square^{-}$	30	NC
A_{12}	29	$\overline{W E}$
$A_{7} \square^{\square}$	28	A_{13}
$A_{6} \square 6$	27	$]_{8}$
A_{5}	26	$\square A_{9}$
$\mathrm{A}_{4} \square$	25] A_{11}
$\mathrm{A}_{3} \square$	24	$\square \overline{O E}$
$\mathrm{A}_{2} \square_{10}$	23	$\square A_{10}$
$\mathrm{A}_{1} \square_{11}$	22	$\square \overline{C S}$
$A_{0} \square^{12}$	21	$\square 1 / O_{7}$
$1 / \mathrm{O}_{0} \square^{13}$	20	$\underline{l} / \mathrm{O}_{6}$
$1 / \mathrm{O}_{1} \square^{-14}$	19	$\square \mathrm{I} / \mathrm{O}_{5}$
$1 / \mathrm{O}_{2} \square^{15}$	18	$\square \mathrm{I} / \mathrm{O}_{4}$
GND 16	17	- $\mathrm{I} / \mathrm{O}_{3}$

Selection Guide

		$\mathbf{1 4 2 0} \mathbf{- 2 0}$	$\mathbf{1 4 2 0} \mathbf{- 2 5}$	$\mathbf{1 4 2 0} \mathbf{- 3 0}$	$\mathbf{1 4 2 0} \mathbf{- 3 5}$	$\mathbf{1 4 2 0} \mathbf{- 4 5}$	$\mathbf{1 4 2 0} \mathbf{- 5 5}$
Maximum Access Time (ns)	20	25	30	35	45	55	
Maximum Operating Current (mA)	Commercial	210	210	210	210	210	210
	Military			210	210	210	210
Maximum Standby Current (mA)	Commercial	140	140	140	140	140	140
	Military			140	140	140	140

Shaded area contains preliminary information.

Output Current into Outputs (LOW) 20 mA

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Operating Range
.

Maximum Ratings
(Above which the useful life may be impaired.)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with..$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ (Commercial)
Power Applied
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	CYM1420		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	V
V_{IL}	Input LOW Voltage		-0.5	0.8	V
I_{IX}	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZ }}$	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-10	+10	$\mu \mathrm{A}$
I_{0}	Output Short Circuit Current ${ }^{[1]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max}^{\text {., }} \mathrm{V}_{\text {OUT }}=$ GND		-300	mA
$\mathrm{I}_{\text {CC }}$	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \overline{\mathrm{CS}} \leq \mathrm{V}_{\text {IL }}$		210	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CS Power-Down Current ${ }^{2]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		140	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \overline{\mathrm{~V}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		80	mA

Capacitance ${ }^{[3]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$	35	pF
COUT	Output Capacitance			
		40	pF	

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $\mathrm{V}_{\text {CC }}$ power-up, otherwise I_{SB} will exceed values given.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

CYPRESS

Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameters	Description	$1420-20$		$1420-25$		$1420-30$		
	Min.	Max.	Min.	Max.	Min.	Max.	Units	

READ CYCLE

t_{RC}	Read Cycle Time	20		25		30		ns
t_{AA}	Address to Data Valid		20		25		30	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\mathrm{ACS}}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		20		25		30	ns
$\mathrm{t}_{\mathrm{DOE}}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		10		10		15	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE }}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE }}$ HIGH to High Z		10		10		20	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[5]}$	3		3		5		ns
$\mathrm{t}_{\text {HZCS }}$	$\overline{\mathrm{CS}}$ HIGH to High Z							

WRITE CYCLE ${ }^{[7]}$

t_{WC}	Write Cycle Time	20		25		30		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	15		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	15		20		25		ns
t_{HA}	Address Hold from Write End	2		2		5		ns
t_{SA}	Address Set-Up to Write Start	5		5		5		ns
tPWE	WE Pulse Width	15		20		25		ns
t_{SD}	Data Set-Up to Write End	10		12		18		ns
t_{HD}	Data Hold from Write End	2		2		3		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z	0		0		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6]}$	0	8	0	10	0	15	ns

Notes:
4. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
5. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $t_{\text {LZCS }}$ for any given device. These parameters are guaranteed and not 100% tested.
6. $\mathrm{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steadystate voltage.
7. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Characteristics Over the Operating Range (continued) ${ }^{[4]}$

Parameters	Description	1420-35		1420-45		1420-55		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	35		45		55		ns
t_{AA}	Address to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		18		25		30	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High Z		20		20		25	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[5]}$	3		5		5		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\mathrm{CS}}$ HIGH to High Z ${ }^{[5,6]}$		20		20		25	ns
WRITE CYCLE ${ }^{[7]}$								
t_{WC}	Write Cycle Time	35		45		55		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\text { CS }}$ LOW to Write End	30		40		45		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	30		40		45		ns
t_{HA}	Address Hold from Write End	5		5		5		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	5		5		5		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	25		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	18		20		25		ns
t_{HD}	Data Hold from Write End	3		5		5		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	5		5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6]}$	0	15	0	15	0	25	ns

Switching Waveforms

Read Cycle No. ${ }^{[8,9]}$

Notes:

8. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
9. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.

CYM1420
SEMICONDUCTOR
Switching Waveforms (continued)
Read Cycle No. ${ }^{[8,10]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[7,11]}$

Notes:
10. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW
11. Data I / O is high impedance if $\mathrm{OE}=\mathrm{V}_{\mathrm{IH}}$.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[7,11,12]}$

Note:

12. If $\overline{C S}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{W E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	L	H	Data Out	Read
L	X	L	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
20	CYM1420PD-20C	PD05	52-Pin DIP Module	Commercial
25	CYM1420HD-25C	HD04	32-Pin DIP Module	Commercial
	CYM1420PD-25C	PD05	52-Pin DIP Module	
30	CYM1420HD-30C	HD04	32-Pin DIP Module	Commercial
	CYM1420PD-30C	PD05	52-Pin DIP Module	
35	CYM1420HD-35C	HD04	32-Pin DIP Module	Commercial
	CYM1420PD-35C	PD05	52-Pin DIP Module	
	CYM1420HD-35MB	HD04	32-Pin DIP Module	Military
45	CYM1420HD-45C	HD04	32-Pin DIP Module	Commercial
	CYM1420PD -45 C	PD05	52-Pin DIP Module	
	CYM1420HD-45MB	HD04	32-Pin DIP Module	Military
55	CYM1420HD-55C	HD04	32-Pin DIP Module	Commercial
	CYM1420PD-55C	PD05	52-Pin DIP Module	
	CYM1420HD-55MB	HD04	32-Pin DIP Module	Military

Document \#: 38-M-00001-D

Features

- High-density 2-megabit SRAM module
- High-speed CMOS SRAMs
-Access time of 25 ns
- Low active power
-5.3W (max.)
- SMD technology
- Separate data I/O
- 60-pin ZIP package
- TTL-compatible inputs and outputs
- Low profile
- Max. height of 0.5 in .
- Small PCB footprint
-1.14 sq. in.

Functional Description

The CYM1441 is a very high performance 2-megabit static RAM module organized as 256 K words by 8 bits. The module is constructed using eight $256 \mathrm{~K} \times 1$ static RAMs in SOJ packages mounted onto an epoxy laminate substrate with pins. Two chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{L}}\right.$ and $\left.\overline{\mathrm{CS}}_{\mathrm{U}}\right)$ are used to independently enable the upper and lower 4 bits of the data word.
Writing to the memory module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input pins (DI_{0} through DI_{7}) is written into the memory location specified on the address pins (A_{0} through A_{17}).

Reading the device is accomplished by taking chip select ($\overline{\mathrm{CS}}$) LOW while write enable ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the appropriate data output pins $\left(\mathrm{DO}_{0}\right.$ through $\left.\mathrm{DO}_{7}\right)$.
The data output pins remain in a highimpedance state unless the module is selected and write enable ($\overline{\mathrm{WE}}$) is HIGH.
Two pins (PD_{0} and PD_{1}) are used to identify module memory density in applications where alternate versions of the JE-DEC-standard modules can be interchanged.

Pin Configuration
ZIP
Top View

1441-1
Logic Block Diagram

Selection Guide

	$\mathbf{1 4 4 1 - 2 5}$	$\mathbf{1 4 4 1 - 3 5}$	$\mathbf{1 4 4 1 - 4 5}$
Maximum Access Time (ns)	25	35	45
Maximum Operating Current (mA)	960	960	960
Maximum Standby Current (mA)	320	320	320

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	CYM1441		Unit
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=12.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-80	+80	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-50	+50	$\mu \mathrm{A}$
I_{CC}	V ${ }_{\text {CC }}$ Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \overline{\mathrm{CS}} \leq \mathrm{V}_{\text {IL }}$		960	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \overline{\mathrm{V}}_{\mathrm{IH}}, \\ & \text { Min. Duty } \mathrm{Cycle}=100 \% \end{aligned}$		320	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		160	mA

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	60	pF
CouT	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		15	pF

Notes:

1. $\quad \mathrm{V}_{\mathrm{IN}(\min .)}=-3.0 \mathrm{~V}$ for pulse widths less than 20 ns .
2. Tested on a sample basis.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

CYM1441

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	1441-25		1441-35		1441-45		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		ns
$t_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\overline{C S}}$ LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\text { CS }}$ HIGH to High $\mathrm{Z}^{[4]}$		15		25		30	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CS }}$ LOW to Power-Up	0		0		0		ns
$t_{\text {PD }}$	$\overline{\text { CS HIGH to Power-Down }}$		25		35		45	ns

WRITE CYCLE ${ }^{[5]}$

t_{WC}	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	20		30		35		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		30		35		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		2		ns
tPWE	$\overline{\text { WE Pulse Width }}$	20		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		20		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	3		3		3		ns
$\mathrm{t}_{\mathrm{HZWE}}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[4]}$	0	15	0	20	0	25	ns

Notes

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. $\mathrm{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH . The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
6. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
7. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms

Read Cycle No. $1^{[6,7]}$

-

Switching Waveforms (continued)
Read Cycle No. $2^{[6,8]}$

Write Cycle No. 1 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[5]}$

Write Cycle No. 2 ($\overline{\text { CS }}$ Controlled) ${ }^{[5,9]}$

Notes:

8. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
9. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}$ HIGH, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	Input/Output	Mode
H	\mathbf{X}	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write
L	H	High Z	Deselect

Ordering Information

Speed	Ordering Code	Package Name	Package Type	Operating Range
25	CYM1441PZ-25C	PZ04	60-Pin ZIP Module	Commercial
35	CYM1441PZ-35C	PZ04	60 -Pin ZIP Module	Commercial
45	CYM1441PZ-45C	PZ04	60 -Pin ZIP Module	Commercial

Document \#: 38-M-00020-A

CYM1464

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs - Access time of 20 ns
- Low active power
- 1.93W (max.)
- JEDEC-compatible pinout
- 32-pin, 0.6-inch-wide DIP package
- TTL-compatible inputs and outputs
- Low profile
- Max. height of 0.34 inches

Functional Description

The CYM1464 is a high-performance 4-megabit static RAM module organized as 512 K words by 8 bits. This module is constructed using four $256 \mathrm{~K} \times 4$ static RAMs in SOJ packages mounted on an epoxy laminate substrate with pins.
Writing to the module is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) of the device is written into the memory location specified on the address
pins (A_{0} through A_{18}). Reading the device is accomplished by taking chip select and output enable ($\overline{\mathrm{OE}}$) LOW, while write enable ($\overline{\mathrm{WE}}$) remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} through A_{18}) will appear on the eight appropriate data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$).
The input/output pins remain in a high-impedance state unless the module is selected, outputs are enabled, and write enable (WE) is HIGH.

Logic Block Diagram

Pin Configuration

Selection Guide

	$\mathbf{1 4 6 4 - 2 0}$	$\mathbf{1 4 6 4 - 2 2}$	$\mathbf{1 4 6 4 - 2 5}$	$\mathbf{1 4 6 4 - 3 0}$	$\mathbf{1 4 6 4 - 3 5}$	$\mathbf{1 4 6 4 - 4 5}$	$\mathbf{1 4 6 4 - 5 5}$
Maximum Access Time (ns)	20	22	25	30	35	45	55
Maximum Operating Current (mA)	350	350	350	300	300	300	300
Maximum Standby Current (mA)	240	240	240	240	240	240	240

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied

$$
-10^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

DC Input Voltage

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	1464-20, 22, 25		1464-30, 35, 45, 55		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{IL}	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{0} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{CS} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		350		300	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		240		240	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{CS}}>\mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		10		10	mA

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	40	pF
$\mathrm{C}_{\mathrm{OUT}}$	Output Capacitance			
			30	pF

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\mathrm{Min} .)}=-3.0 \mathrm{~V}$ for pulse widths less than 20 ns .
2. Tested on a sample basis.

AC Test Loads and Waveforms

(a)

(b) $1464-3$

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT $\mathrm{O}-\underbrace{167 \Omega} \longrightarrow 1.73 \mathrm{~V}$

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	1464-20		1464-22		1464-25		1464-30		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	20		22		25		30		ns
t_{AA}	Address to Data Valid		20		22		25		30	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	5		5		5		5		ns
$\mathrm{t}_{\mathrm{ACS}}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		20		22		25		30	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		13		13		15		15	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		0		ns
t $^{\text {HZOE }}$	$\overline{\text { OE HIGH to High Z }}$	0	10	0	10	0	10	0	10	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low Z	5		5		5		10		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\text { CS }}$ HIGH to High $\mathrm{Z}^{[4]}$	0	15	0	15	0	15	0	20	ns
WRITE CYCLE ${ }^{[5]}$										
$\mathrm{t}_{\text {WC }}$	Write Cycle Time	20		22		25		30		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\text { CS }}$ LOW to Write End	15		17		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	15		15		20		25		ns
t_{HA}	Address Hold from Write End	3		3		3		3		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	5		5		5		5		ns
$t_{\text {PWE }}$	$\overline{\text { WE }}$ Pulse Width	15		15		15		20		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	12		12		15		15		ns
t_{HD}	Data Hold from Write End	2		2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	0		0		0		0		ns
$\mathbf{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[4]}$		15		15		15		15	ns

Notes:
3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. $\mathrm{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steadystate voltage.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Characteristics Over the Operating Range (continued) ${ }^{[3]}$

Parameter	Description	1464-35		1464-45		1464-55		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	35		45		55		ns
t_{AA}	Address to Data Valid		35		45		55	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		20		25		30	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE }}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE HIGH to High } \mathrm{Z}}$	0	15	0	15	0	15	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low Z	10		10		10		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[4]}$	0	20	0	20	0	20	ns
WRITE CYCLE ${ }^{[5]}$								
t_{WC}	Write Cycle Time	35		45		55		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\text { CS LOW to Write End }}$	30		40		50		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	30		40		50		ns
$t_{\text {HA }}$	Address Hold from Write End	3		3		3		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	6		5		5		ns
$t_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	25		35		40		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	20		25		35		ns
t_{HD}	Data Hold from Write End	2		3		3		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH to Low } \mathrm{Z}}$	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathbf{Z}^{[4]}$		15		15		20	ns

Switching Waveforms

Read Cycle No. $1^{[6,7]}$

Notes:

6. WE is HIGH for read cycle.
7. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[5]}$

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[5,9]}$

Nōtes:

8. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
9. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Output	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read Word
L	L	X	Data In	Write Word
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
20	CYM1464PD-20C	PD02	32-Pin DIP Module	Commercial
22	CYM1464PD-22C	PD02	32-Pin DIP Module	Commercial
25	CYM1464PD-25C	PD02	32-Pin DIP Module	Commercial
30	CYM1464PD-30C	PD02	32-Pin DIP Module	Commercial
35	CYM1464PD-35C	PD02	32-Pin DIP Module	Commercial
45	CYM1464PD-45C	PD02	32-Pin DIP Module	Commercial
55	CYM1464PD-55C	PD02	32-Pin DIP Module	Commercial

Document \#: 38-M-00030-C

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
-Access time of 70 ns
- Low active power
-605 mW (max.)
- JEDEC-compatible pinout
- 32-pin, 0.6-inch-wide DIP package
- TTL-compatible inputs and outputs
- Low profile
- Max. height of 0.27 in .
- Small PCB footprint
-0.98 sq. in.

Functional Description

The CYM1465 is a high-performance 4-megabit static RAM module organized as 512 K words by 8 bits. This module is constructed using four $128 \mathrm{~K} \times 8$ RAMs mounted on a substrate with pins. A decoder is used to interpret the higher-order addresses $\left(\mathrm{A}_{17}\right.$ and $\left.\mathrm{A}_{18}\right)$ and to select one of the four RAMs.

Writing to the module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the eight input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) of the device is written into the
memory location specified on the address pins (A_{0} through A_{18}). Reading the device is accomplished by taking chip select and output enable (OE) LOW while write enable remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins (A_{0} through A_{18}) will appear on the eight appropriate data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$).
The input/output pins remain in a high-impedance state unless the module is selected, outputs are enabled, and write enable is HIGH.

Logic Block Diagram

Pin Configuration

Selection Guide

	$\mathbf{1 4 6 5 - 7 0}$	$\mathbf{1 4 6 5 - 8 5}$	$\mathbf{1 4 6 5 - 1 0 0}$	$\mathbf{1 4 6 5 - 1 2 0}$	$\mathbf{1 4 6 5 - 1 5 0}$
Maximum Access Time (ns)	70	85	100	$\mathbf{1 2 0}$	150
Maximum Operating Current (mA)	110	110	110	$\mathbf{1 1 0}$	110
Maximum Standby Current (mA)	12	12	12	12	12

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature \qquad $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC Voltage Applied to Outputs in High Z State	
	OV
DC Input Voltage	0.5 V to +7.0 V

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		1465		Unit
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=2.1 \mathrm{~mA}$			0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disab		-20	+20	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \overline{\mathrm{CS}} \leq \mathrm{V}^{\text {d }}$			110	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$			12	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	Standard Version		8	mA
			L Version		420	$\mu \mathrm{A}$

Capacitance ${ }^{[1]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	45	pF
CouT	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$			
		Output Capacitance		45

AC Test Loads and Waveforms

(a)

(b)

Equivalent to: THÉVENIN EQUIVALENT

Notes:

1. Tested on a sample basis.
2. Test conditions assume signal transition times of 10 ns or less, timing reference levels of 1.5 V , input levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $100-\mathrm{pF}$ load capacitance for $85-, 100-, 120-$, and $150-\mathrm{ns}$ speeds. $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ for $70-\mathrm{ns}$ speed. SEMICONDUCTOR

Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	1465-70		1465-85		1465-100		1465-120		1465-150		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE

t_{RC}	Read Cycle Time	70		85		100		120		150		ns
t_{AA}	Address to Data Valid		70		85		100		120		150	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	10		10		10		10		10		ns
$\mathrm{t}_{\mathrm{ACS}}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		70		85		100		120		150	ns
$\mathrm{t}_{\mathrm{DOE}}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		35		45		50		60		75	ns
$\mathrm{t}_{\mathrm{LZOE}}$	$\overline{\mathrm{OE}}$ LOW to Low Z	5		5		5		5		5		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[3]}$		25		30		35		45		55	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low Z	10		10		10		10		10		ns
$\mathrm{t}_{\text {HZCS }}$	$\overline{\mathrm{CS}}$ HIGH to High Z ${ }^{[3]}$		30		30		35		45		60	ns

WRITE CYCLE ${ }^{[4]}$

t_{WC}	Write Cycle Time	70		85		100		120		150		ns
$\mathrm{t}_{\mathrm{SCS}}$	$\overline{\mathrm{CS}}$ LOW to Write End	65		75		90		100		115		ns
t_{AW}	Address Set-Up to Write End	65		75		90		100		110		ns
t_{HA}	Address Hold from Write End	0		5		5		5		5		ns
t_{SA}	Address Set-Up to Write Start	0		5		5		5		5		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	55		65		75		85		95		ns
t_{SD}	Data Set-Up to Write End	30		35		40		45		50		ns
t_{HD}	Data Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\mathrm{LZWE}}$	$\overline{\mathrm{WE}}$ HIGH to Low Z	5		5		5		5		5		ns
$\mathrm{t}_{\mathrm{HZWE}}$	$\overline{\text { WE }} \mathbf{~ L O W ~ t o ~ H i g h ~ Z ~}$											

Data Retention Characteristics Over the Operating Range (L Version Only)

Parameter	Description	Test Conditions	Commercial		Industrial		Unit
			Min.	Max.	Min.	Max.	
V_{DR}	V_{CC} for Retention Data	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	2		2		V
$\mathrm{I}_{\text {CCDR3 }}$	Data Retention Current	$\begin{aligned} & \mathrm{V}_{\mathrm{DR}}=3.0 \mathrm{~V}, \\ & \mathrm{CS} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		50		150	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[5]}$	Chip Deselect to Data Retention Time		0		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[5]}$	Operation Recovery Time		5		5		ms

Notes:
3. $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
4. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
5. Guaranteed, not tested.

Data Retention Waveform

Switching Waveforms

Read Cycle No. 2 ${ }^{[6,8]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[4]}$

Notes:

6. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
7. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathrm{CS}}$ Controlled) ${ }^{[4,9]}$

Note:
9. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

Inputs				
$\overline{\mathbf{C S}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{W E}}$	Output	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read Word
L	L	X	Data In	Write Word
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CYM1465PD-70C	PD03	32-Pin DIP Module	Commercial
	CYM1465LPD-70C			
85	CYM1465PD-85C	PD03	32-Pin DIP Module	Commercial
	CYM1465LPD-85C			
	CYM1465PD-85I	PD03	32-Pin DIP Module	Industrial
	CYM1465LPD-85I			
100	CYM1465PD-100C	PD03	32-Pin DIP Module	Commercial
	CYM1465LPD-100C			
	CYM1465PD-100I	PD03	32-Pin DIP Module	Industrial
	CYM1465LPD-100I			
120	CYM1465PD-120C	PD03	32-Pin DIP Module	Commercial
	CYM1465LPD-120C			
	CYM1465PD-120I	PD03	32-Pin DIP Module	Industrial
	CYM1465LPD-120I			
150	CYM1465PD-150C	PD03	32-Pin DIP Module	Commercial
	CYM1465LPD-150C			
	CYM1465PD-150I	PD03	32-Pin DIP Module	Industrial
	CYM1465LPD-150I			

Document \#: 38-M-00036-C

1024K x 8 SRAM Module 2048K x 8 SRAM Module

Features

- High-density 8-/16-megabit SRAM modules
- High-speed CMOS SRAMs
-Access time of $85 \mathbf{n s}$
- Low active power
-605 mW (max.), 2M x 8
- Double-sided SMD technology
- TTL-compatible inputs and outputs
- Very low profile version (PF) - Max. height of 0.205 in .
- Small footprint SIP version (PS)
- PCB layout area of 0.72 sq . in.
- 2 V data retention (L version)
- Compatible with CYM1460/CYM1461

Functional Description

The CYM1471 and CYM1481 are highperformance 8 -megabit and 16 -megabit static RAM modules organized as 1024 K words (1471) or 2048 K words (1481) by 8 bits. These modules are constructed from eight (1471) or sixteen (1481) $128 \mathrm{~K} \times 8$ SRAMs in plastic surface-mount packages on an epoxy laminate board with pins. Two choices of pins are available for vertical (PS) or horizontal (PF) through-hole mounting. On-board decoding selects one of the SRAMs from the high-order address lines, keeping the remaining devices in standby mode for minimum power consumption.

An active LOW write enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When MS and WE inputs are both LOW, data on the eight data input/ output pins is written into the memory location specified on the address pins. Reading the device is accomplished by selecting the device and enabling the outputs MS and $\overline{O E}$ active LOW while $\overline{W E}$ remains inactive or HIGH. Under these conditions, the content of the location addressed by the information on the address pins is present on the eight data input/output pins.
The input/output pins remain in a high-impedance state unless the module is selected, outputs are enabled, and write enable ($\overline{\mathrm{WE}}$) is HIGH.

Selection Guide

	CYM1471			CYM1481		
Maximum Access Time (ns)	85	100	120	85	100	120
Maximum Operating Current (mA)	95	95	95	110	110	110
Maximum Standby Current (mA)	16	16	16	32	32	32

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied . $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.3 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.3 V to +7.0 V
DC Input Voltage
-0.3 V to +7.0 V
Output Current into Outputs (LOW) 20 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions		1471		1481		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-1.0 \mathrm{~mA}$		2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=2.0 \mathrm{~mA}$			0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.0	$\mathrm{V}_{\mathrm{CC}}+0.3$	2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
V_{IL}	Input LOW Voltage			-0.3	0.8	-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$		-20	+20	-20	+20	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-20	+20	-20	+20	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\overline{\mathrm{MS}} \leq \mathrm{V}_{\text {IL }}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$			95		110	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{MS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{MS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$			16		32	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{MS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{MS}} \geq \mathrm{V}_{\mathrm{CC}}- \\ & 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	Standard L Version		16 250		32 500	mA

Capacitance ${ }^{[1]}$

Parameter	Description	Test Conditions	$\begin{aligned} & \text { CYM1471 } \\ & \text { Max. } \end{aligned}$	$\begin{aligned} & \hline \text { CYM1481 } \\ & \text { Max. } \end{aligned}$	Unit
$\mathrm{C}_{\text {INA }}$	Input Capacitance ($\mathrm{A}_{0-16}, \overline{\mathrm{OE}}, \overline{\mathrm{WE}}$)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	75	125	pF
$\mathrm{C}_{\text {INB }}$	Input Capacitance ($\mathrm{A}_{17-20}, \overline{\mathrm{MS}}$)		25	25	pF
COUT	Output Capacitance		95	165	pF

Note:

1. Tested on a sample basis.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	$\begin{aligned} & 1471-85 \\ & 1481-85 \end{aligned}$		$\begin{aligned} & 1471-100 \\ & 1481-100 \end{aligned}$		$\begin{aligned} & \hline 1471-120 \\ & 1481-120 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE

t_{RC}	Read Cycle Time	85		100		120		ns
t_{AA}	Address to Data Valid		85		100		120	ns
toha	Data Hold from Address Change	10		10		10		ns
$\mathrm{t}_{\text {AMS }}$	$\overline{\text { MS }}$ LOW to Data Valid		85		100		120	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE LOW to Data Valid }}$		45		50		60	ns
${ }^{\text {t }}$ LZOE	$\overline{\mathrm{OE}}$ LOW to Low Z	5		5		5		ns
thzoe	$\overline{\mathrm{OE}}$ HIGH to High Z ${ }^{[3]}$		30		35		45	ns
$\mathrm{t}_{\text {LZMS }}$	$\overline{\mathrm{MS}}$ LOW to Low $\mathrm{Z}^{[4]}$	10		10		10		ns
thZMS	$\overline{\text { MS }}$ HIGH to High $\mathrm{Z}^{[3,4]}$		30		35		45	ns

WRITE CYCLE ${ }^{[5]}$

twC	Write Cycle Time	85		100		120		ns
tsMs	$\overline{\text { MS }}$ LOW to Write End	75		90		100		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	75		90		100		ns
t_{HA}	Address Hold from Write End	7		7		7		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	5		5		5		ns
tpwe	$\overline{\text { WE Pulse Width }}$	65		75		85		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	35		40		45		ns
t_{HD}	Data Hold from Write End	5		5		5		ns
thZWE	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[3]}$		30		35		40	ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH }}$ to Low Z	5		5		5		ns

Data Retention Characteristics (L Version Only)

Parameter	Description	Test Conditions	1471-85		$\begin{aligned} & 1471-100 \\ & 1471-120 \end{aligned}$		1481-85		$\begin{aligned} & 1481-100 \\ & 1481-120 \end{aligned}$		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
V_{DR}	V_{CC} for Retention Data	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}, \\ & \mathrm{MS} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$	2		2		2		2		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current			400		125		800		250	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}}{ }^{[6]}$	Chip Deselect to Data Retention Time		0		0		0		0		ns
t_{R}	Operation Recovery Time		5		5		5		5		ns

Notes:
2. Test conditions assume signal transition time of $10 \mu s$ or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , output loading of 1 TTL load, and $100-\mathrm{pF}$ load capacitance.
3. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZMS}}$, and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
4. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZMS}}$ is less than ${ }^{\text {t LZMS }}$ for any given device. These parameters are guaranteed and not 100% tested.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{MS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
6. Guaranteed, not tested.

Data Retention Waveform

1471-5

Switching Waveforms

Read Cycle No. $1^{[7,8]}$

Read Cycle No. $2[8,9]$

Notes:

7. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{MS}}=\mathrm{V}_{\mathrm{IL}}$.
8. Address valid prior to or coincident with $\overline{\mathrm{MS}}$ transition LOW
9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.

Switching Waveforms (continued)

Write Cycle No. $1^{[5,10]}$

Write Cycle No. ${ }^{[5,10,11]}$

Notes:
10. Data I/O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.
11. If $\overline{\mathrm{MS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{M S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
85	CYM1471PF-85C	PF05	36-Pin Flat SIP Module	Commercial
	CYM1471LPF-85C			
	CYM1471PS-85C	PS08	36-Pin SIP Module	
	CYM1471LPS-85C			
100	CYM1471PF-100C	PF05	36-Pin Flat SIP Module	Commercial
	CYM1471LPF-100C			
	CYM1471PS-100C	PS08	36-Pin SIP Module	
	CYM1471LPS-100C			
120	CYM1471PF-120C	PF05	36-Pin Flat SIP Module	Commercial
	CYM1471LPF-120C			
	CYM1471PS-120C	PS08	36-Pin SIP Module	
	CYM1471LPS-120C			
85	CYM1481PF-85C	PF04	36-Pin Flat SIP Module	Commercial
	CYM1481LPF-85C			
	CYM1481PS-85C	PS06	36-Pin SIP Module	
	CYM1481LPS-85C			
100	CYM1481PF-100C	PF04	36-Pin Flat SIP Module	Commercial
	CYM1481LPF-100C			
	CYM1481PS-100C	PS06	36-Pin SIP Module	
	CYM1481LPS-100C			
120	CYM1481PF-120C	PF04	36-Pin Flat SIP Module	Commercial
	CYM1481LPF-120C			
	CYM1481PS-120C	PS06	36-Pin SIP Module	
	CYM1481LPS-120C			

[^66]
1024K x 9 Buffered SRAM Module with Separate I/O

Features

- High-density 8-megabit SRAM module plus parity
- High-speed CMOS SRAMs - Access time of 30 ns
- Buffered address and control inputs
- Low active power
-6.2W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
— Max. height of 0.53 in .
- Small PCB footprint
-1.5 sq. in.

Functional Description

The CYM1560 is a very high performance 8 -megabit static RAM module organized as 1024 K words by 9 bits. This module is constructed using nine $1024 \mathrm{~K} \times 1$ static RAMs in SOJ packages mounted on an epoxy laminate board with pins. Input buffers are provided on the address and control lines to reduce input capacitance and loading.
Writing to the module is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable (WE) inputs are both LOW. Data on the
data input pins $\left(\mathrm{DI}_{0}\right.$ through $\left.\mathrm{DI}_{8}\right)$ of the device is written into the memory location specified on the address pins (A_{0} through A_{19}). Reading the device is accomplished by taking chip select LOW while write enable remains inactive or HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the appropriate data output pins.
The data output pins remain in a high-impedance state when chip select is HIGH or when write enable is LOW.

Logic Block Diagram

Selection Guide

	CYM1560-30	CYM1560-35	CYM1560-45
Maximum Access Time (ns)	30	35	45
Maximum Operating Current (mA)	1125	1125	1125
Maximum Standby Current (mA)	350	350	350

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature
$45^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.3 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions	CYM1560		Units
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	6.0	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.3	0.8	V
$\mathrm{V}_{\text {IK }}$	Input Clamp Level, $\mathrm{A}_{0}-\mathrm{A}_{19}, \overline{\mathrm{CS}}, \overline{\mathrm{WE}}$	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\text {IN }}=-18 \mathrm{~mA}$		-1.2	V
$\mathrm{I}_{\text {IL }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-10	+10	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\overline{\mathrm{CS}} \leq \mathrm{V}_{\text {IL }}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$		1125	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		350	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		230	mA

Capacitance ${ }^{[2]}$

Parameters	Description	Test Conditions	Max.	Units
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	15	pF
CouT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		20
		pF		

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during power-up, otherwise $I_{\text {SB }}$ will exceed values given.
2. Tested on a sample basis.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameters	Description	1560-30		1560-35		1560-45		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	30		35		45		ns
t_{AA}	Address to Data Valid		30		35		45	ns
toha	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		30		35		45	ns
$t_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low Z	5		5		5		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\text { CS HIGH to High } \mathrm{Z}^{[4]}}$	2	20	2	20	2	20	ns
t_{PU}	$\overline{\text { CS LOW to Power-Up }}$	3		3		3		ns
$t_{\text {PD }}$	$\overline{\text { CS HIGH to Power-Down }}$		30		35		45	ns

WRITE CYCLE ${ }^{[5]}$

t_{WC}	Write Cycle Time	30		35		45		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\text { CS }}$ LOW to Write End	20		25		35		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		35		ns
t_{HA}	Address Hold from Write End	5		5		5		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up from Write Start	5		5		5		ns
$t_{\text {PWE }}$	$\overline{\mathrm{WE}}$ Pulse Width	20		25		35		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		25		ns
t_{HD}	Data Hold from Write End	5		5		5		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH }}$ to Low Z	2		2		2		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[4]}$	2	20	2	20	2	20	ns

Notes:
3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and $30-\mathrm{pF}$ load capacitance.
4. $\mathrm{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steadystate voltage.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
6. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
7. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms

Read Cycle No. $1^{[6,7]}$

Switching Waveforms (continued)

Read Cycle No. ${ }^{[6,8]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[5]}$

Write Cycle No. 2 ($\overline{\text { CS }}$ Controlled) ${ }^{[5,9]}$

Notes:

8. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
9. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

CS	$\overline{\text { WE }}$	Data In	Data Out	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	X	Data Out $_{0-8}$	Read
L	L	Data In $_{0-8}$	High Z	Write

Ordering Information

Speed	Ordering Code	Package Name	Package Type	Operating Range
30	CYM1560PF-30C	PF06	44-Pin Flat SIP Module	Commercial
	CYM1560PS-30C	PS07	44-Pin Plastic SIP Module	
35	CYM1560PF-35C	PF06	44-Pin Flat SIP Module	Commercial
	CYM1560PS-35C	PS07	44-Pin Plastic SIP Module	
45	CYM1560PF-45C	PF06	44-Pin Flat SIP Module	Commercial
	CYM1560PS-45C	PS07	44-Pin Plastic SIP Module	

Document \#: 38-M-00043-A

CYM1622

Features

－High－density 1－megabit SRAM module
－High－speed CMOS SRAMs
－Access time of 25 ns
－Low active power
－2．2W（max．）
－SMD technology
－TTL－compatible inputs and outputs
－Pinout compatible with CYM1611
－Low profile
－Max．height of ． 50 in．
－Small PCB footprint
－ 0.68 sq．in．

Functional Description

The CYM1622 is a very high performance 1－megabit static RAM module organized as 64 K words by 16 bits．The module is constructed using four $64 \mathrm{~K} \times 4$ static RAMs mounted onto a vertical substrate with pins．The pinout of this module is compatible with another Cypress module （CYM1611）tomaximize systemflexibility．
Writing to the memory module is accom－ plished when the chip select（ $\overline{\mathrm{CS}}$ ）and write enable（ $\overline{\mathrm{WE}}$ ）inputs are both LOW．Data on the sixteen input／output pins（ $\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{15}$ ）of the device is written into
the memory location specified on the ad－ dress pins（ A_{0} through A_{15} ）．
Reading the device is accomplished by tak－ ing chip select（ $\overline{\mathrm{CS}}$ ）and output enable （OE）LOW，while write enable（ $\overline{\mathrm{WE} \text { ）re－}}$ mains inactive or HIGH．Under these con－ ditions，the contents of the memory loca－ tion specified on the address pins will ap－ pear on the appropriate data input／output pins．
The input／output pins remain in a high－im－ pedance state unless the module is se－ lected，outputs are enabled，and write en－ able（ $\overline{\mathrm{WE}}$ ）is HIGH．

Logic Block Diagram

Pin Configuration

会淢	7
	¢

1622－2

Selection Guide

	$\mathbf{1 6 2 2 - 2 5}$	$\mathbf{1 6 2 2 - 3 0}$	$\mathbf{1 6 2 2 - 3 5}$	$\mathbf{1 6 2 2 - 4 5}$
Maximum Access Time（ns）	25	30	35	45
Maximum Operating Current（mA）	400	400	400	400
Maximum Standby Current（mA）	140	140	140	140

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
Supply Voltage to Ground Potential
$-10^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$

DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V

Output Current into Outputs (LOW) \qquad
\qquad 20 mA

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	CYM1622		Unit
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	V_{CC}	V
V_{IL}	Input LOW Voltage ${ }^{11]}$		-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	+20	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-10	+10	$\mu \mathrm{A}$
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \overline{\mathrm{CS}} \leq \mathrm{V}_{\text {IL }}$		400	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		140	mA
ISB2	Automatic $\overline{\text { CS }}$ Power-Down Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \end{aligned}$		80	mA

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	35	pF
C $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		15	pF	

Notes:

1. $\mathrm{V}_{\mathrm{IL}(\min .)}=-3.0 \mathrm{~V}$ for pulse widths less than $20 \mathrm{~ns} . \quad$ 2. Tested on a sample basis.

AC Test Loads and Waveforms

SCOPE

(b)

1622-4

Equivalent to: THÉVENIN EQUIVALENT

SEMICONDUCTOR
Switching Characteristics Over the Operating Range ${ }^{[3]}$

	Description	1622-25		1622-30		1622-35		1622-45		Unit
Parameter		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE

t_{RC}	Read Cycle Time	25		30		35		45		ns
t_{AA}	Address to Data Valid	25		30		35		45		ns
toha	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\text { CS }}$ LOW to Data Valid	25		30		35		45		ns
$t_{\text {doe }}$	$\overline{\text { OE LOW to Data Valid }}$		15		20		25		30	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	0		0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE HIGH to High Z }}$		15		20		20		20	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low Z	3		3		3		3		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[4]}$		15		20		20		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CS }}$ LOW to Power-Up	0	25	0	30	0	35	0	45	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CS }}$ HIGH to Power-Down		25		30		35		45	ns

WRITE CYCLE ${ }^{[5]}$

$\mathrm{t}_{\text {WC }}$	Write Cycle Time	25		30		35		45		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\text { CS LOW to Write End }}$	20		25		30		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		30		40		ns
$\mathrm{t}_{\text {HA }}$	Address Hold from Write End	3		3		3		3		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	2		2		2		2		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		20		25		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	2		2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z	0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE LOW to High Z }}{ }^{[4]}$	0	15	0	15	0	15	0	20	ns

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. $\mathrm{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steadystate voltage.
5. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[6,7]}$

Read Cycle No. $2^{[6,8]}$

Write Cycle No. 1 ($\overline{\mathrm{WE}}$ Controlled) $)^{[5]}$

Notes:

6. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
7. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\text { CS }}$ Controlled) ${ }^{[5,9]}$

Note:
9. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{W E}}$	Input/Output	Mode
H	X	X	High Z	Deselect/Power-Down
L	L	H	Data Out	Read
L	X	L	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed	Ordering Code	Package Name	Package Type	Operating Range
25	CYM1622PV-25C	PV04	$40-$-in Plastic VDIP Module	Commercial
30	CYM1622PV-30C	PV04	$40-$-Pin Plastic VDIP Module	Commercial
35	CYM1622PV-35C	PV04	40 -Pin Plastic VDIP Module	Commercial
45	CYM1622PV-45C	PV04	40 -Pin Plastic VDIP Module	Commercial

Document \#: 38-M-00001-C

Features

- High-density 768-kilobit SRAM module
- High-speed CMOS SRAMs
- Access time of 15 ns
- 56-pin, 0.5-inch-high ZIP package
- Low active power
-1.8 W (max. for $\mathrm{t}_{\mathrm{AA}}=25 \mathrm{~ns}$)
- SMD technology
- TTL-compatible inputs and outputs
- Commercial temperature range
- Small PCB footprint $-0.66 \mathrm{sq} . \mathrm{in}$.

Functional Description

The CYM1720 is a high-performance 768-kilobit static RAM module organized as 32 K words by 24 bits. This module is constructed using three $32 \mathrm{~K} \times 8$ static RAMs in SOJ packages mounted onto an epoxy laminate board with pins.
Writing to the device is accomplished when the chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/ output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{23}$) of the de-
vice is written into the memory location specified on the address pins (A_{0} through A_{14}).
Reading the device is accomplished by taking the chip select ($\overline{\mathrm{CS}}$) and output enable ($\overline{\mathrm{OE}})$ LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the input/output pins.
The input/output pins remain in a high-impedance state unless the module is selected, outputs are enabled, and write enable is HIGH.

Logic Block Diagram

Pin Configuration

Selection Guide

	$\mathbf{1 7 2 0 - 1 5}$	$\mathbf{1 7 2 0} \mathbf{- 2 0}$	$\mathbf{1 7 2 0 - 2 5}$	$\mathbf{1 7 2 0 - 3 0}$	$\mathbf{1 7 2 0 - 3 5}$
Maximum Access Time (ns)	15	20	25	30	35
Maximum Operating Current (mA)	450	450	330	330	330
Maximum Standby Current (mA)	120	120	60	60	60

[^67]CYPRESS

DC Input Voltage.....................
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Ambient Temperature with
Power Applied $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	CYM1720-15, 20		CYM1720-25, 30, 35		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{IOL}=8.0 \mathrm{~mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	VCC	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	-0.5	0.8	V
I_{IX}	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	$+20$	-20	+20	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}},$ Output Disabled	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \text { IOUT }=0 \mathrm{~mA} \\ & \mathrm{CS} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		450		330	mA
$\mathrm{I}_{\text {SB1 }}$	$\begin{aligned} & \text { Automatic } \overline{\mathrm{CS}} \\ & \text { Power-Down Current }{ }^{[1]} \end{aligned}$	Max. $\mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$, Min. Duty Cycle $=100 \%$		120		60	mA
$\mathrm{I}_{\text {SB2 }}$	$\begin{aligned} & \text { Automatic } \overline{\mathrm{CS}} \\ & \text { Power-Down Current }{ }^{[1]} \end{aligned}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		90		60	mA

Shaded area contains preliminary information.
Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	35	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		25
		pF		

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
2. Tested on a sample basis.

AC Test Loads and Waveforms

(a) SCOPE

(b)

1720-4

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3]}$

	Description	1720-15		1720-20		1720-25		1720-30		1720-35		Unit
Parameter		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE

t_{RC}	Read Cycle Time	25		20		25		30		35		ns
t_{AA}	Address to Data Valid	,	25		20		25		30		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3	2	3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\text { CS }}$ LOW to Data Valid		25		20		25		30		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\text { OE }}$ LOW to Data Valid		10	1	10		10		15		18	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0	3 ${ }^{3}$	0		0		0		ns
$\mathrm{t}_{\text {HzOE }}$	$\overline{\text { OE HIGH to High } \mathrm{Z}}$		10	4	10		10		20		20	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low $\mathrm{Z}^{[4]}$	3	4	3	3	3		5		3		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[4,5]}$		20	不	20		20		20		20	ns
tpu	$\overline{\mathrm{CS}}$ LOW to Power-Up	0	W	0		0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CS }}$ HIGH to Power-Down		15	-	20		25		25		30	ns

WRITE CYCLE ${ }^{[6]}$

t_{WC}	Write Cycle Time	25		20		25		30		35		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	20	3	15		20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		15		20		25		30		ns
t_{HA}	Address Hold from Write End	2		2	=	2		5		5		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	5	*	5	=	5		5		5		ns
tpWE	$\overline{\text { WE Pulse Width }}$	20		15		20		25		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	12		10		12		18		18		ns
t_{HD}	Data Hold from Write End	2		2		2		3		3		ns
t lzwe	$\overline{\text { WE HIGH }}$ to Low Z	0	\%	0		0		5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[5]}$	0	10	0	8	0	10	0	15	0	15	ns

Shaded area contains preliminary information.

Notes:

3. Test conditions assume signal transition time of 5 ns or less, timing ref erence levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $t_{\text {LZCS }}$ for any given device.
5. $\mathrm{t}_{\mathrm{HZOE}}, \mathrm{t}_{\mathrm{HZCS}}$, and $\mathrm{t}_{\text {LZCE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
6. The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. ${ }^{[7,8]}$

1720-5

Read Cycle No. 2 ${ }^{[7,9]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[6,10]}$

Notes:

7. WE is HIGH for read cycle.
8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
9. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
10. Data I / O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[6,10,11]}$

Note:
11. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read Word
L	L	X	Data In	Write Word
L	H	H	High Z	Deselect

Ordering Information

Speed	Ordering Code	Package Name	Package Type	Operating Range
15	CYM1720PZ-15C	PZ05	56-Pin ZIP Module	Commercial
20	CYM1720PZ-20C	PZ05	56-Pin ZIP Module	Commercial
25	CYM1720PZ-25C	PZ05	56-Pin ZIP Module	Commercial
30	CYM1720PZ-30C	PZ05	56-Pin ZIP Module	Commercial
35	CYM1720PZ-35C	PZ05	56-Pin ZIP Module	Commercial

Document \#: 38-M-00021-A

Features

- High-density 1.5M SRAM module
- High-speed CMOS SRAMs
- Access time of 25 ns
- 56-pin, 0.5-inch-high ZIP package
- Low active power
$-2.8 W$ (max. for $t_{\mathrm{AA}}=25 \mathrm{~ns}$)
- SMD technology
- TTL-compatible inputs and outputs
- Commercial temperature range
- Small PCB footprint
-1.05 sq . in.

Functional Description

The CYM1730 is a high-performance 1.5 M static RAM module organized as 64 K words by 24 bits. This module is constructed using six $32 \mathrm{~K} \times 8$ static RAMs in SOJ packages mounted onto an epoxy laminate board with pins.
Writing to the device is accomplished when the chip select $(\overline{\mathrm{CS}})$ and write enable $(\overline{\mathrm{WE}})$ inputs are both LOW. Data on the input/ output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{23}$) of the device is written into the memory location
specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking the chip select ($\overline{\mathrm{CS}}$) and output enable (OE) LOW while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the input/output pins.
The input/output pins remain in a high-impedance state unless the module is selected, outputs are enabled, and write enable is HIGH.

Logic Block Diagram

Pin Configuration

$1730-2$

Selection Guide

	$\mathbf{1 7 3 0} \mathbf{- 2 5}$	$\mathbf{1 7 3 0} \mathbf{- 3 0}$	$\mathbf{1 7 3 0 - 3 5}$
Maximum Access Time (ns)	25	30	35
Maximum Operating Current (mA)	510	510	510
Maximum Standby Current (mA)	180	180	180

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Ambient Temperature with
Power Applied \qquad $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
-0.5 V to +7.0 V

DC Input Voltage -0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

DC Voltage Applied to Outputs
in High Z State

$$
-0.5 \mathrm{~V} \text { to }+7.0 \mathrm{~V}
$$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	$\mathrm{V}_{\mathrm{CC}}+0.3$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	+20	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled	-10	+10	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \overline{\mathrm{CS}} \leq \mathrm{V}_{\text {IL }}$		510	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		180	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \end{aligned}$		180	mA

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	50	pF
CouT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	20	pF

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{\text {SB }}$ will exceed values given.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	1730-25		1730-30		1730-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		30		35		ns
t_{AA}	Address to Data Valid		25		30		35	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		30		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	3		3		3		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High Z		10		15		20	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low $\mathrm{Z}^{[4]}$	5		5		5		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}}$ HIGH to High Z ${ }^{[4,5]}$		10		15		15	ns
WRITE CYCLE ${ }^{[6]}$								
twC	Write Cycle Time	25		30		35		ns
${ }_{\text {t }}$ CSS	$\overline{\mathrm{CS}}$ LOW to Write End	20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	22		25		30		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	2		2		2		ns
tpWE	$\overline{\text { WE Pulse Width }}$	20		23		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	13		15		20		ns
t_{HD}	Data Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	3		3		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[5]}$	0	10	0	10	0	15	ns

Notes:

3. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage condition, tHZCS is less than $\mathfrak{t}_{\mathrm{LZCS}}$ for any given device.
5. $t_{H Z O E}, t_{\text {HZCS }}$, and $t_{\text {LZCE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady-state voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. ${ }^{[7], 8]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[6,10]}$

Notes:

Notes:
7.
$\overline{W E}$
is HIGH for read cycle.
8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
9. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW. 10. Data I / O will be high impedance if $\mathrm{OE}=\mathrm{V}_{\mathrm{IH}}$.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[6,10,11]}$

Note:
11. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read Word
L	L	X	Data In	Write Word
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CYM1730PZ-25C	PZ07	56-Pin ZIP Module	Commercial
30	CYM1730PZ-30C	PZ07	56-Pin ZIP Module	Commercial
35	CYM1730PZ-35C	PZ07	56-Pin ZIP Module	Commercial

Document \#: 38-M-00049

Features

- High-density 512-Kbit SRAM module
- High-speed CMOS SRAMs
-Access time of 12 ns
- Low active power
-4W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of .50 in .
- Small PCB footprint
-1.0 sq. in.
- JEDEC-compatible pinout
- 2V data retention (L version)
- SIMM version socket-compatible with CYM1831 and CYM1841

Functional Description

The CYM1821 is a high-performance 512-Kbit static RAM module organized as 16 K words by 32 bits. This module is constructed from eight 16K x 4 SRAM SOJ packages mounted on an epoxy laminate board with pins. Four chip selects ($\overline{\mathrm{CS}}_{1}$, $\overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}$, and $\overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/output pins $\left(\mathrm{I} / \mathrm{O}_{\mathrm{X}}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{13}).

Reading the device is accomplished by taking the chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data input/output pins ($/ \mathrm{O}_{\mathrm{X}}$).
The data input/output pins stay in the highimpedance state when write enable ($\overline{\mathrm{WE}}$) is LOW, or the appropriate chip selects are HIGH.
Two pins $\left(\mathrm{PD}_{0}\right.$ and $\left.\mathrm{PD}_{1}\right)$ are used to identify module memory density in applications where alternate versions of the JEDEC standard modules can be interchanged.

Selection Guide

	$\mathbf{1 8 2 1 - 1 2}$	$\mathbf{1 8 2 1 - 1 5}$	$\mathbf{1 8 2 1 - 2 0}$	$\mathbf{1 8 2 1 - 2 5}$	$\mathbf{1 8 2 1 - 3 5}$	$\mathbf{1 8 2 1 - 4 5}$
Maximum Access Time (ns)	12	15	20	25	35	45
Maximum Operating Current (mA)	960	960	720	720	720	720
Maximum Standby Current (mA)	450	450	160	160	160	160

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature $\ldots \ldots \ldots \ldots \ldots \ldots . .65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied
$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State -0.5 V to +7.0 V

Output Current into Outputs (LOW) \qquad 20 mA

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	$\begin{aligned} & 1821-12 \\ & 1821-15 \end{aligned}$		$\begin{aligned} & 1821-20 \\ & 1821-25 \\ & 1821-35 \\ & 1821-45 \end{aligned}$		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
VOL	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	+20	-20	+20	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-20	+20	-20	+20	$\mu \mathrm{A}$
IOS	Output Short Circuit Current ${ }^{[1]}$	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{V}_{\text {OUT }}=\mathrm{GND}$		-350		-350	mA
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA}, \\ & \mathrm{CS} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		960		720	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		450		160	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}} \overline{\mathrm{CS}}_{\mathrm{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		160	.	160	mA

Capacitance ${ }^{[3]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {INA }}$	Input Capacitance (ADDR, $\overline{\mathrm{OE}}, \overline{\mathrm{WE}})$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$	70	pF
CINB	Input Capacitance ($\overline{\mathrm{CS}}$)		35	pF
Cout	Output Capacitance		20	pF

Notes:

1. Not more than 1 output should be shorted at one time. Duration of the short circuit should not exceed 30 seconds.
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
3. Tested on a sample basis.

AC Test Loads and Waveforms

 SCOPE

(a)

ALL INPUT PULSES

(b)
$1821-4$

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameter	Description	1821-12		1821-15		1821-20		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	12		15		20		ns
t_{AA}	Address to Data Valid		12		15		20	ns
toha	Data Hold from Address Change	2		2		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {DOE }}$	$\bar{O} \bar{E}$ LOW to Data Valid		10		10		10	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	2		2		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High Z		8		8		8	ns
$t_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low $\mathrm{Z}^{[5]}$	3		3		5		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[5,6]}$		8		8		8	ns
t_{PU}	$\overline{\text { CS }}$ LOW to Power-Up	0		0		0		ns
$t_{\text {PD }}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to Power-Down		12		15		20	ns
WRITE CYCLE ${ }^{[7]}$								
t_{WC}	Write Cycle Time	12		15		20		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	10		12		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		12		15		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		2		ns
tPWE	WE Pulse Width	10		12		15		ns
${ }^{\text {S }}$ D	Data Set-Up to Write End	10		10		10		ns
t_{HD}	Data Hold from Write End	2		2		2		ns
$t_{\text {LZWE }}$	WE HIGH to Low Z	3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6]}$	0	7	0	7	0	7	ns

Notes:

4. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
5. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $t_{\text {LZCS }}$ for any given device. These parameters are guaranteed and not 100% tested.
6. $t_{H Z C S}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steadystate voltage.
7. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WELOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Characteristics Over the Operating Range (continued) ${ }^{[4]}$

Parameter	Description	1821-25		1821-35		1821-45		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	25		35		45		ns
t_{AA}	Address to Data Valid		25		35		45	ns
toha	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		35		45	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		25		30	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE HIGH to High } \mathrm{Z}}$		15		20		20	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low $\mathrm{Z}^{[5]}$	5		10		10		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}}$ HIGH to High Z ${ }^{[5,6]}$		10		15		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CS }}$ LOW to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CS HIGH to Power-Down }}$		25		35		45	ns

WRITE CYCLE ${ }^{[7]}$

$\mathrm{t}_{\text {WC }}$	Write Cycle Time	25		35		45		ns
$\mathrm{t}_{\text {SCS }}$	CS LOW to Write End	20		25		35		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		35		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	2		2		2		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	13		15		20		ns
t_{HD}	Data Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH }}$ to Low Z	3		5		5		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6]}$	0	7	0	10	0	15	ns

Data Retention Characteristics (L Version Only)

Parameter	Description	Test Conditions	CYM1821		Unit
			Min.	Max.	
V ${ }_{\text {DR }}$	V_{CC} for Retention Data	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}, \\ & \mathrm{CS} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\text {IN }} \leq 0.2 \mathrm{~V} \end{aligned}$	2		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current			8	mA
$\mathrm{t}_{\mathrm{CDR}}{ }^{[8]}$	Chip Deselect to Data Retention Time		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[8]}$	Operation Recovery Time		$\mathrm{t}_{\mathrm{RC}}{ }^{[9]}$		ns
$\mathrm{I}_{\mathrm{LI}}{ }^{[8]}$	Input Leakage Current			10	$\mu \mathrm{A}$

Notes:
8. Guaranteed, not tested.
9. $t_{\mathrm{RC}}=$ Read Cycle Time.

Data Retention Waveform

1821-5

Switching Waveforms

Read Cycle No. 1 ${ }^{[10,11]}$

Read Cycle No. 2 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[10,12]}$

Notes:

10. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
11. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
12. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms (continued)
Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[7]}$

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[7,13]}$

[^68]Truth Table

$\overline{\mathrm{CS}}_{\mathrm{N}}$	$\overline{\mathrm{WE}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed	Ordering Code	Package Name	Package Type	Operating Range
12	CYM1821PM-12C	PM01	64-Pin Plastic SIMM Module	Commercial
	CYM1821PZ-12C	PZ01	64-Pin Plastic ZIP Module	
15	CYM1821PM-15C	PM01	64-Pin Plastic SIMM Module	Commercial
	CYM1821PZ-15C	PZ01	64-Pin Plastic ZIP Module	
20	CYM1821PM-20C	PM01	64-Pin Plastic SIMM Module	Commercial
	CYM1821LPM-20C	PM01	64-Pin Plastic SIMM Module	
	CYM1821PZ-20C	PZ01	64-Pin Plastic ZIP Module	
	CYM1821LPZ-20C	PZ01	64-Pin Plastic ZIP Module	
25	CYM1821PM-25C	PM01	64-Pin Plastic SIMM Module	Commercial
	CYM1821LPM-25C	PM01	64-Pin Plastic SIMM Module	
	CYM1821PZ-25C	PZ01	64-Pin Plastic ZIP Module	
	CYM1821LPZ-25C	PZ01	64-Pin Plastic ZIP Module	
35	CYM1821PM-35C	PM01	64-Pin Plastic SIMM Module	Commercial
	CYM1821LPM-35C	PM01	64-Pin Plastic SIMM Module	
	CYM1821PZ-35C	PZ01	64-Pin Plastic ZIP Module	
	CYM1821LPZ-35C	PZ01	64-Pin Plastic ZIP Module	
45	CYM1821PM-45C	PM01	64-Pin Plastic SIMM Module	Commercial
	CYM1821LPM-45C	PM01	64-Pin Plastic SIMM Module	
	CYM1821PZ-45C	PZ01	64-Pin Plastic ZIP Module	
	CYM1821LPZ-45C	PZ01	64-Pin Plastic ZIP Module	

Document \#: 38-M-00015-D

Features

- High-density 1-megabit SRAM module
- High-speed CMOS SRAMs
-Access time of $25 \mathbf{n s}$
- 66-pin, 1.1-inch-square PGA package
- Low active power
-3.3W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Commercial and military temperature ranges

Functional Description

The CYM1828 is a very high performance 1-megabit static RAM module organized as 32 K words by 32 bits. The module is constructed using four $32 \mathrm{~K} \times 8$ static RAMs mounted onto a multilayer ceramic substrate. Four chip selects $\left(\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}\right.$, CS_{4}) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip selects ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}})$ inputs are both LOW.

Data on the input/output pins (I/O) is written into the memory location specified on the address pins (A_{0} through A_{14}).
Reading the device is accomplished by taking chip selects LOW while write enable remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pins.
The data input/output pins remain in a high-impedance state when write enable is LOW or the appropriate chip selects are HIGH.

Logic Block Diagram

1828-1

Pin Configuration

Top View

12 23	$34 \quad 45$	56
$\bigcirc 1 / O_{8} \bigcirc \mathrm{WE}_{2} \bigcirc 1 / \mathrm{O}_{15}$	$1 / 0_{24} \mathrm{O} \quad v_{\text {cc }} \mathrm{O}$	$1 / \mathrm{O}_{31} \mathrm{O}$
$\bigcirc 1 / 0_{9} \bigcirc \mathrm{CS}_{2} \bigcirc 1 / \mathrm{O}_{14}$	$1 / \mathrm{O}_{25} \mathrm{O} \quad \mathrm{CS}_{4} \mathrm{O}$	$1 / \mathrm{O}_{30} \mathrm{O}$
$\bigcirc 1 / 0_{10} \bigcirc$ gnd $\bigcirc 1 / /_{13}$	$1 / \mathrm{O}_{26} \mathrm{O} \quad \mathrm{WE}_{4} \mathrm{O}$	$1 / \mathrm{O}_{29} \mathrm{O}$
$\bigcirc_{A_{13}} \bigcirc_{1 / O_{11}} \bigcirc_{1 / /_{12}}$	$\mathrm{A}_{6} \bigcirc \mathrm{O}_{1 / \mathrm{O}_{27} \mathrm{O}}$	$1 / \mathrm{O}_{28} \mathrm{O}$
$\bigcirc \mathrm{A}_{14} \bigcirc_{\mathrm{A}_{10}} \bigcirc \mathrm{O}^{\text {d }}$	$a_{7} \bigcirc a_{3} \bigcirc$	$\mathrm{A}_{0} \bigcirc$
$\bigcirc \mathrm{Oc} \bigcirc \mathrm{a}_{11} \bigcirc \mathrm{Oc}$	$n C \bigcirc a_{4} \bigcirc$	$\mathrm{A}_{1} \bigcirc$
$\bigcirc \mathrm{Oc} \bigcirc \mathrm{A}_{12} \bigcirc \mathrm{WE}_{1}$	$A_{8} \bigcirc A_{5} \bigcirc$	$A_{2} \bigcirc$
$\bigcirc \mathrm{nc} \bigcirc \mathrm{v}_{\mathrm{cc}} \bigcirc 1 / \mathrm{o}_{7}$	$\mathrm{A}_{9} \bigcirc \mathrm{WE}_{3} \bigcirc$	$1 / 0_{23} \mathrm{O}$
$\bigcirc 1 / o_{0} \bigcirc$ cs $_{1} \bigcirc 1 / 0_{6}$	$1 / 10{ }_{16} \mathrm{O} \quad \mathrm{CS}_{3} \mathrm{O}$	$1 / 0_{22} \mathrm{O}$
$\bigcirc 1 / 0_{1} \bigcirc n<\bigcirc 1 / 0_{5}$	$1 / 170 \mathrm{O}$ GNDO	$1 / \mathrm{O}_{21} \mathrm{O}$
$\bigcirc 1 / 0_{2} \bigcirc 1 / 0_{3} \bigcirc 1 / 0_{4}$	$1 / 1818 \mathrm{O} / 1 /{ }_{19} \mathrm{O}$	$1 / \mathrm{O}_{20} \mathrm{O}$
$11{ }^{22} 33$	$44 \quad 55$	66

Selection Guide

		$\mathbf{1 8 2 8 - 2 5}$	$\mathbf{1 8 2 8 - 3 0}$	$\mathbf{1 8 2 8} \mathbf{- 3 5}$	$\mathbf{1 8 2 8 - 4 5}$	$\mathbf{1 8 2 8 - 5 5}$	$\mathbf{1 8 2 8 - 7 0}$
Maximum Access Time (ns)		25	30	35	45	55	70
Maximum OperatingCurrent(mA)	Commercial	600	600	600	600	600	600
	Military			600	600	600	600
Maximum Standby Current (mA)	Commercial	200	200	200	200	200	200
	Military			200	200	200	200

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature
re. \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . \qquad -0.5 V to +7.0 V

Electrical Characteristics Over the Operating Range

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	50	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	20	pF

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.

AC Test Loads and Waveforms

JIG AND

(b)

1828-4

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	1828-25		1828-30		1828-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	25		30		35		ns
t_{AA}	Address to Data Valid		25		30		35	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		30		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		17		20	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE }}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High Z		15		15		25	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low $\mathrm{Z}^{[4]}$	3		3		3		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\text { CS }}$ HIGH to High ${ }^{[4,5]}$		15		15		25	ns
WRITE CYCLE[6]								
twc	Write Cycle Time	25		30		35		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\text { CS }}$ LOW to Write End	20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	20		25		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		17		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	0		0		0		ns
thzwE	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[5]}$	0	15	0	20	0	30	ns

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $t_{\text {LZCS }}$ for any given device. These parameters are guaranteed and not 100% tested.
5. $t_{H Z C S}$ and $t_{H Z W E}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steadystate voltage.
6. The internal write time of the memory is defined by the overlap of CS LOW and $\overline{W E}$ LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

 \longrightarrowSwitching Characteristics Over the Operating Range (continued) ${ }^{[3]}$

Parameter	Description	1828-45		1828-55		1828-70		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	45		55		70		ns
t_{AA}	Address to Data Valid		45		55		70	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		45		55		70	ns
$\mathrm{t}_{\text {DOE }}$	OE LOW to Data Valid		25		30		35	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\mathrm{HzOE}}$	$\overline{\mathrm{OE}}$ HIGH to High Z		25		30		30	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low $\mathrm{Z}^{[4]}$	3		3		3		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\text { CS }}$ HIGH to High ${ }^{[4,5]}$		25		30		30	ns
WRITE CYCLE ${ }^{[6]}$								
t_{WC}	Write Cycle Time	45		55		70		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	40		45		55		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	40		45		55		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
tPWE	WE Pulse Width	30		35		45		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	25		30		40		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH }}$ to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE L L }}$ LOW to High ${ }^{\text {[5] }}$	0	30	0	30	0	30	ns

Data Retention Characteristics (L Version Only)

Parameter	Description	Test Conditions	1828		Unit
			Min.	Max.	
V_{DR}	V_{CC} for Retention Data	$\overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}$	2		V
$\mathrm{I}_{\text {CCDR3 }}$	Data Retention Current	$\begin{aligned} & \overline{\overline{C S}} \geq V_{C C}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\text {IN }} \geq V_{C C}-0.2 \mathrm{~V} \text { or } \\ & \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{DR}}=3.0 \mathrm{~V} \end{aligned}$		320	$\mu \mathrm{A}$
$\mathrm{t}_{\mathrm{CDR}{ }^{[7]}}$	Chip Deselect to Data Retention Time		0		ns
$\mathrm{t}_{\mathrm{R}}{ }^{[7]}$	Operation Recovery Time		t_{RC}		ns

Note:
7. Guaranteed, not tested.

Data Retention Waveform

1828-5

Switching Waveforms

Read Cycle No. $1^{[8,9]}$

Read Cycle No. ${ }^{[8,10]}$

Notes:

8. $\overline{W E}_{\mathrm{N}}$ is HIGH for read cycle.
9. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
10. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[6,11]}$

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) $)^{[6,11,12]}$

Notes:
11. Data I / O will be high impedance if $\overline{O E}=V_{I H}$.
12. If $\overline{\mathrm{CS}}_{\mathrm{N}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}}_{\mathrm{N}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}_{\mathbf{N}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{W E}}_{\mathbf{N}}$	Input/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	L	H	Data Out	Read
L	X	L	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CYM1828HG-25C	HG01	66-Pin PGA Module	Commercial
30	CYM1828HG-30C	HG01	66-Pin PGA Module	Commercial
35	CYM1828HG-35C	HG01	66-Pin PGA Module	Commercial
	CYM1828LHG-35C	HG01	66-Pin PGA Module	
	CYM1828HG-35MB	HG01	66-Pin PGA Module	Military
	CYM1828LHG-35MB	HG01	66-Pin PGA Module	
45	CYM1828HG-45C	HG01	66-Pin PGA Module	Commercial
	CYM1828LHG-45C	HG01	66-Pin PGA Module	
	CYM $1828 \mathrm{HG}-45 \mathrm{MB}$	HG01	66-Pin PGA Module	Military
	CYM1828LHG-45MB	HG01	66-Pin PGA Module	
55	CYM1828HG-55C	HG01	66-Pin PGA Module	Commercial
	CYM1828LHG-55C	HG01	66-Pin PGA Module	
	CYM1828HG-55MB	HG01	66-Pin PGA Module	Military
	CYM1828LHG-55MB	HG01	66-Pin PGA Module	
70	CYM1828HG-70C	HG01	66-Pin PGA Module	Commercial
	CYM1828LHG-70C	HG01	66-Pin PGA Module	
	CYM1828HG-70MB	HG01	66-Pin PGA Module	Military
	CYM1828LHG-70MB	HG01	66-Pin PGA Module	

Document \#: 38-M-00042

Features

- High-density 2-Mbit SRAM module
- High-speed CMOS SRAMs
- Access time of 15 ns
- Low active power
-5.3W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of .50 in.
- Small PCB footprint
- 1.2 sq. in.
- JEDEC-compatible pinout

Functional Description

The CYM1831 is a high-performance 2-Mbit static RAM module organized as 64 K words by 32 bits. This module is constructed from eight $64 \mathrm{~K} \times 4$ SRAMs in SOJ packages mounted on an epoxy laminate board with pins. Four chip selects ($\overline{\mathrm{CS}}_{1}$, $\overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}$, and $\overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/output pins ($\mathrm{I} / \mathrm{O}_{\mathrm{X}}$) is written into the memory location specified on the address pins (A_{0} through A_{15}).

Reading the device is accomplished by taking the chip selects $\left(\overline{C S}_{N}\right)$ LOW and output enable ($\overline{\mathrm{OE}}$) LOW while write enable (WE) remains HIGH. Under these conditions the contents of the memory location specified on the address pinswill appear on the data input/output pins $\left(\mathrm{I} / \mathrm{O}_{\mathrm{X}}\right)$.
The data input/output pins stay in the highimpedance state when write enable ($\overline{\mathrm{WE}}$) is LOW or the appropriate chip selects are HIGH.
Two pins $\left(\mathrm{PD}_{0}\right.$ and $\left.\mathrm{PD}_{1}\right)$ are used to identify module memory density in applications where alternate versions of the JEDEC-standard modules can be interchanged.

Logic Block Diagram

Selection Guide

	$\mathbf{1 8 3 1 - 1 5}$	$\mathbf{1 8 3 1 - 2 0}$	$\mathbf{1 8 3 1 - 2 5}$	$\mathbf{1 8 3 1 - 3 0}$	$\mathbf{1 8 3 1 - 3 5}$	$\mathbf{1 8 3 1 - 4 5}$
Maximum Access Time (ns)	15	20	25	30	35	45
Maximum Operating Current (mA)	1120	960	720	720	720	720
Maximum Standby Current (mA)	160	160	160	160	160	160

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V

DC Input Voltage . -0.5 V to +7.0 V
Output Current into Outputs (LOW) 20 mA
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	1831-15		1831-20		1831-25, 30, 35, 45		Unit
			Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	+20	-20	+20	-20	+20	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$ Output Disabled	-20	+20	-20	+20	-20	+20	$\mu \mathrm{A}$
I_{CC}	$V_{C C}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{CS}_{\mathrm{N}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		1120		960		720	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CS PowerDown Current ${ }^{[1]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \overline{\mathrm{CS}}_{\mathrm{N}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		320		320		320	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CS PowerDown Current ${ }^{[1]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \overline{\mathrm{CS}}_{\mathrm{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \\ & \hline \end{aligned}$		160		160		160	mA

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {INA }}$	Input Capacitance $\left(\mathrm{A}_{0}-\mathrm{A}_{15}, \overline{\mathrm{CS}}, \overline{\mathrm{WE}}, \overline{\mathrm{OE}}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	80	pF
$\mathrm{C}_{\mathrm{INB}}$	Input Capacitance $\left(\mathrm{I} / \mathrm{O}_{0}-\mathrm{I} / \mathrm{O}_{31}\right)$		15	pF
C $_{\text {OUT }}$	Output Capacitance			15
			pF	

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT O- $\underbrace{167 \Omega}$ 1.73V

CYPRESS
SEMICONDUCTOR
Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	1831-15		1831-20		1831-25		1831-30		1831-35		1831-45		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE														
t_{RC}	Read Cycle Time	15		20		25		30		35		45		ns
t_{AA}	Address to Data Valid		15		20		25		30		35		45	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{ACS}}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		15		20		25		30		35		45	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		8		10		15		20		20		30	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	0		0		0		0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\text { OE LOW }}$ to High Z		8		10		15		15		20		20	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low ${ }^{[4]}$	0		0		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\text { CS }}$ HIGH to High $\mathrm{Z}^{[4,5]}$		6		8		13		15		20		20	ns
WRITE CYCLE ${ }^{[6]}$														
$\mathrm{t}_{\text {WC }}$	Write Cycle Time	15		20		25		30		35		45		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\text { CS LOW to Write End }}$	10		15		20		25		30		40		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	10		15		20		25		30		40		ns
t_{HA}	Address Hold from Write End	2		2		2		2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	2		2		2		2		2		2		ns
tpWE	WE Pulse Width	10		15		20		25		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	8		12		15		15		20		20		ns
t_{HD}	Data Hold from Write End	2		2		2		2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z	3		3		3		3		3		3		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE LOW }}$ to High ${ }^{(5]}$	0	7	0	10	0	13	0	15	0	20	0	20	ns

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than ${ }^{\text {t LZCS }}$ for any given device. These parameters are guaranteed and not 100% tested
5. $t_{H Z C S}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steadystate voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WELOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.
7. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.

Switching Waveforms

Read Cycle No. $1^{[7,8]}$

Switching Waveforms

Read Cycle No. $2^{[7,9]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[6]}$

Write Cycle No. 2 ($\overline{\text { CS }}$ Controlled) ${ }^{[6,10]}$

Note:

9. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
10. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}_{\mathbf{N}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Outputs	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed	Ordering Code	Package Name	Package Type	Operating Range
15	CYM1831PM-15C	PM01	64-Pin Plastic SIMM Module	Commercial
	CYM1831PN-15C	PN01	64-Pin Plastic Angled SIMM Module	
	CYM1831PZ-15C	PZ01	64-Pin Plastic ZIP Module	
20	CYM1831PM-20C	PM01	64-Pin Plastic SIMM Module	Commercial
	CYM1831PN-20C	PN01	64-Pin Plastic Angled SIMM Module	
	CYM1831PZ-20C	PZ01	64-Pin Plastic ZIP Module	
25	CYM1831PM-25C	PM01	64-Pin Plastic SIMM Module	Commercial
	CYM1831PN-25C	PN01	64-Pin Plastic Angled SIMM Module	
	CYM1831PZ-25C	PZ01	64-Pin Plastic ZIP Module	
30	CYM1831PM-30C	PM01	64-Pin Plastic SIMM Module	Commercial
	CYM1831PN-30C	PN01	64-Pin Plastic Angled SIMM Module	
	CYM1831PZ-30C	PZ01	64-Pin Plastic ZIP Module	
35	CYM1831PM-35C	PM01	64-Pin Plastic SIMM Module	Commercial
	CYM1831PN-35C	PN01	64-Pin Plastic Angled SIMM Module	
	CYM1831PZ-35C	PZ01	64-Pin Plastic ZIP Module	
45	CYM1831PM-45C	PM01	64-Pin Plastic SIMM Module	Commercial
	CYM1831PN-45C	PN01	64-Pin Plastic Angled SIMM Module	
	CYM1831PZ-45C	PZ01	64-Pin Plastic ZIP Module	

Document \#: 38-M-00018-D

Features

- High-density 2-Mbit SRAM module
- High-speed CMOS SRAMs
-Access time of 25 ns
- Low active power
-5.4W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
—Max. height of .5 in.
- Small PCB footprint
$-1.0 \mathrm{sq} . \mathrm{in}$.

Functional Description

The CYM1832 is a high-performance 2-Mbit static RAM module organized as 64 K words by 32 bits. This module is constructed from eight $64 \mathrm{~K} \times 4$ SRAMs in SOJ packages mounted on an epoxy laminate board with pins. Four chip selects $\overline{\mathrm{CS}}_{1}$, $\overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}$, and $\overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or on any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the chip select $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ and write enable $(\overline{\mathrm{WE}})$ inputs are both LOW. Data on the
input/output pins $\left(1 / O_{\mathrm{X}}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{15}).
Reading the device is accomplished by taking the chip selects $\left(\overline{\mathrm{CS}}_{\mathrm{N}}\right)$ LOW, while write enable ($\overline{\mathrm{WE}}$) remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pins (I/OX).
The data input/output pins stay in the highimpedance state when write enable ($\overline{\mathrm{WE}}$) is LOW or the appropriate chip selects are HIGH.

Pin Configuration

Selection Guide

	$\mathbf{1 8 3 2 - 2 5}$	$\mathbf{1 8 3 2 - 3 5}$	$\mathbf{1 8 3 2 - 4 5}$	$\mathbf{1 8 3 2 - 5 5}$
Maximum Access Time (ns)	25	35	45	55
Maximum Operating Current (mA)	980	980	980	980
Maximum Standby Current (mA)	240	240	240	240

Operating Range

Range	Ambient Temperature	VCC
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature \qquad $-45^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V
DC Input Voltage . -0.5 V to +7.0 V
Output Current into Outputs (LOW) 20 mA

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	CYM1832		Unit
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[1]}$		-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	+20	$\mu \mathrm{A}$
I OZ	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-100	+100	$\mu \mathrm{A}$
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \overline{\mathrm{CS}}_{\mathrm{N}} \leq \mathrm{V}_{\text {IL }}$		980	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[2]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}}_{\mathrm{N}} \geq \mathrm{V}_{\mathrm{IH},} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		240	mA
$\mathrm{I}_{\text {SB2 }}$	$\begin{aligned} & \text { Automatic } \overline{\mathrm{CS}} \\ & \text { Power-Down Current }{ }^{2]} \end{aligned}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}}_{\mathrm{N}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		120	mA

Capacitance ${ }^{[3]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {INA }}$	Input Capacitance $\left(\mathrm{A}_{\mathrm{X}}, \overline{\mathrm{WE}}\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	60	pF
$\mathrm{C}_{\text {INB }}$	Input Capacitance $(\overline{\mathrm{CS}})$		25	pF
$\mathrm{C}_{\mathrm{CUT}}=5.0 \mathrm{~V}$			15	pF

Notes:

1. $\mathrm{V}_{\mathrm{IN}(\min .)}=-3.0 \mathrm{~V}$ for pulse widths less than 20 ns .
2. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $\mathrm{V}_{\text {CC }}$ power-up, otherwise $\mathrm{I}_{\text {SB }}$ will exceed values given.
3. Tested on a sample basis.

CYM1832

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[4]}$

Parameter	Description	1832-25		1832-35		1832-45		1832-55		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE										
$\mathrm{t}_{\text {RC }}$	Read Cycle Time	25		35		45		55		ns
t_{AA}	Address to Data Valid		25		35		45		55	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		3		3		3		ns
$\mathrm{t}_{\mathrm{ACS}}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		35		45		55	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[5]}$	2		3		3		3		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\text { CS HIGH to High } \mathrm{Z}^{[5,6]}}$	0	15	0	25	0	30	0	30	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CS }}$ LOW to Power-Up	0		0		0		0		ns
t_{PD}	$\overline{\text { CS }}$ HIGH to Power-Down		25		35		45		55	ns
WRITE CYCLE ${ }^{[7]}$										
t_{WC}	Write Cycle Time	25		35		45		55		ns
${ }_{\text {t }}$ SCS	$\overline{\mathrm{CS}}$ LOW to Write End	20		30		40		45		ns
${ }^{\text {taw }}$	Address Set-Up to Write End	20		30		35		45		ns
t_{HA}	Address Hold from Write End	2		2		5		5		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	2		3		5		5		ns
tpWE	$\overline{\text { WE Pulse Width }}$	20		30		35		45		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		20		25		35		ns
t_{HD}	Data Hold from Write End	3		5		5		5		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	3		3		3		3		ns
$t_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[6]}$	0	15	0	15	0	20	0	30	ns

Notes:
4. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
5. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $t_{\text {LZcs }}$ for any given device. These parameters are guaranteed and not 100% tested.
6. $\mathrm{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
7. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[8,9]}$

Read Cycle No. 2 ${ }^{[9,10]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[7]}$

Notes:

8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
9. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
10. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[7,11]}$

Note:

11. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}_{\mathbf{N}}$	$\overline{\mathbf{W E}}$	Input/Outputs	Mode
H	\mathbf{X}	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed	Ordering Code	Package Name	Package Type	Operating Range
25	CYM1832PZ-25C	PZ02	60-Pin Plastic ZIP Module	Commercial
35	CYM1832PZ-35C	PZ02	60-Pin Plastic ZIP Module	Commercial
45	CYM1832PZ-45C	PZ02	60-Pin Plastic ZIP Module	Commercial
55	CYM1832PZ-55C	PZ02	60-Pin Plastic ZIP Module	Commercial

Document \#: 38-M-00019-A

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs
-Access time of 20 ns
- Low active power
-2.6 W (max.) at 20 ns
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
—Max. height of 0.57 in .
- JEDEC-compatible pinout
- Small PCB footprint
-0.78 sq. in.
- Available in SIMM, ZIP, or PLCC format

Functional Description

The CYM1836 is a high-performance 4-megabit static RAM module organized as 128 K words by 32 bits. This module is constructed from four $128 \mathrm{~K} \times 8$ SRAMs in SOJ packages mounted on an epoxy laminate board with pins. Four chip selects ($\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}, \overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip select ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/output pins (I/O) is written
into the memory location specified on the address pins (A_{0} through A_{16}).
Reading the device is accomplished by taking the chip select ($\overline{\mathrm{CS}}$) LOW while write enable ($\overline{\mathrm{WE}})$ remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pins (I/O). The data input/output pins stay at the highimpedance state when write enable is LOW or the appropriate chip selects are HIGH.
Two pins (PD_{0} and PD_{1}) are used to identify module memory density in applications where alternate versions of the JEDECstandard modules can be interchanged.

Logic Block Diagram

Pin Configurations

1836-3

Selection Guide

	$\mathbf{1 8 3 6 - 2 0}$	$\mathbf{1 8 3 6 - 2 5}$	$\mathbf{1 8 3 6 - 3 0}$	$\mathbf{1 8 3 6} \mathbf{- 3 5}$	$\mathbf{1 8 3 6 - 4 5}$
Maximum Access Time (ns)	$20 \equiv$	25	30	35	45
Maximum Operating Current (mA)	$\mathbf{4 8 0}$	480	480	480	480
Maximum Standby Current (mA)	100	100	100	100	100

[^69]
Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad

$$
-10^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}
$$

Supply Voltage to Ground Potential
-0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High ZState
-0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	1836		Unit
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	+20	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-20	+20	$\mu \mathrm{A}$
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \overline{\mathrm{CS}} \leq \mathrm{V}_{\text {IL }}$		480	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\text { CS }}$ Power-Down Current ${ }^{11]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		100	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\text { CS }}$ Power-Down Current ${ }^{11]}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max. }, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \overline{\mathrm{~V}} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		28	mA

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	40	pF
CoUT	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	15	pF	
		Output Capacitance		15

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
2. Tested on a sample basis.

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	1836-20		1836-25		1836-30		1836-35		1836-45		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	

READ CYCLE

t_{RC}	Read Cycle Time	20	H2	25		30		35		45		ns
t_{AA}	Address to Data Valid		20		25		30		35		45	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold from Address Change	5		5		5		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		20		25		30		35		45	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid	4	8		8		10		12		15	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE }}$ LOW to Low Z	0	W	0		0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High Z		8		10		11		12		15	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low $\mathrm{Z}^{[4]}$	3		3		3		3		3		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[4,5]}$		10		10		13		15		18	ns

WRITE CYCLE[6]

$\mathrm{t}_{\text {WC }}$	Write Cycle Time	20	712:	25		30		35		45		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	15	W\%	15		18		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	15	2	15		18		20		25		ns
t_{HA}	Address Hold from Write End	0		0		0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		0		0		ns
tpWE	$\overline{\text { WE Pulse Width }}$	15	Was	15		18		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	10	3)	10		13		15		20		ns
t_{HD}	Data Hold from Write End	0	H	0		0		0		0		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z	0		0		0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[5]}$	0	8	0	10	0	15	0	15	0	18	ns

Shaded area contains preliminary information.

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $t_{\text {LZCS }}$ for any given device. These parameters are guaranteed and not 100% tested.
5. t_{HZCS} and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of ACTest Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steadystate voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. 2 ${ }^{[7,9]}$

1836-7
Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[6]}$

Notes:
7. WE is HIGH for read cycle.
8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
9. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.

Switching Waveforms (continued)

Write Cycle No. 2 ($\overline{\mathrm{CS}}$ Controlled) ${ }^{[6,10]}$

Note:

10. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}_{\mathbf{N}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Outputs	Mode
\mathbf{H}	\mathbf{X}	\mathbf{X}	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CYM1836PJ-20C	J81	68-Lead PLCC Module	Commercial
	CYM1836PM-20C	PM03	64-Pin SIMM Module	
	CYM1836PZ-20C	PZ08	64-Pin Z1P Module	
25	CYM1836PJ-25C	J81	68-Lead PLCC Module	Commercial
	CYM1836PM-25C	PM03	64-Pin SIMM Module	
	CYM1836PZ-25C	PZ08	64-Pin ZIP Module	
30	CYM1836PJ-30C	J81	68-Lead PLCC Module	Commercial
	CYM1836PM-30C	PM03	64-Pin SIMM Module	
	CYM1836PZ-30C	PZ08	64-Pin ZIP Module	
35	CYM1836PM-35C	PM03	64-Pin SIMM Module	Commercial
	CYM1836PZ-35C	PZ08	64-Pin ZIP Module	
45	CYM1836PM-45C	PM03	64-Pin SIMM Module	Commercial
	CYM1836PZ-45C	PZ08	64-Pin ZIP Module	

[^70]Document \#: 38-M-00050-A

Features

- High-density 4-megabit SRAM module
- High-speed CMOS SRAMs -Access time of 25 ns
- 66-pin, 1.1-inch-square PGA package
- Low active power -4.0W (max.)
- Hermetic SMD technology
- TTL-compatible inputs and outputs
- Commercial and military temperature ranges

Functional Description

The CYM1838 is a very high performance 4-megabit static RAM module organized as 128 K words by 32 bits. The module is constructed using four $128 \mathrm{~K} \times 8$ static RAMs mounted onto a multilayer ceramic substrate. Fourchip selects $\left(\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}\right.$, $\overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip selects ($\overline{\mathrm{CS}}$) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW.

Data on the input/output pins $\left(\mathrm{I} / \mathrm{O}_{\mathrm{X}}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{16}).
Reading the device is accomplished by taking chip selects LOW while write enable remains HIGH. Under these conditions, the contents of the memory location specified on the address pins will appear on the data input/output pins.
The data input/output pins remain in a high-impedance state when write enable is LOW or the appropriate chip selects are HIGH.

Pin Configuration
PGA
Top View

$12{ }^{23}$	$34 \quad 45 \quad 56$
	$11024 \mathrm{O} \mathrm{v}_{\mathrm{cc}} \mathrm{O} \quad 100_{31} \mathrm{O}$
	$11 / 25 \mathrm{O} \quad \mathrm{cs}_{4} \mathrm{O} \quad 10{ }_{30} \mathrm{O}$
	$11 / 2{ }_{26} \mathrm{O} \quad \mathrm{wE}_{4} \mathrm{O} \quad 10{ }_{29} \mathrm{O}$
$\mathrm{O}_{\mathrm{A}_{13}} \bigcirc_{1 / 011} \mathrm{O}_{1 / 12}$	$\mathrm{A}_{6} \mathrm{O}{ }_{10} 1027^{27} \mathrm{O} \quad 110{ }_{28} \mathrm{O}$
$\bigcirc A_{14} \bigcirc_{A_{10}} O$ OE	$a_{7} \bigcirc a_{s} \bigcirc a_{0} \bigcirc$
$\bigcirc \mathrm{A}_{45} \bigcirc_{a_{11}} \bigcirc O_{\text {gnd }}$	GndO $a_{4} \bigcirc \mathrm{O}_{1} \mathrm{a}$
$\bigcirc A_{16} \bigcirc A_{12} O W_{E_{1}}$	$A_{8} \bigcirc a_{5} \bigcirc A_{2} \bigcirc$
	$A_{9} \bigcirc O_{W_{3}} \mathrm{O} \quad 10{ }_{23} \mathrm{O}$
O $10{ }_{2} \mathrm{O}^{1} 10_{3} \mathrm{O} 1_{4}$	$1 / 18{ }_{18} \mathrm{O} \quad 1019 \mathrm{O} \quad 11020 \mathrm{O}$
$11 \quad 22 \quad 33$	44

Selection Guide

		$\mathbf{1 8 3 8} \mathbf{- 2 5}$	$\mathbf{1 8 3 8} \mathbf{- 3 0}$	$\mathbf{1 8 3 8 - 3 5}$
Maximum Access Time (ns)	25	30	35	
Maximum Operating Current (mA)	Commercial	720	720	720
	Military	720	720	720
Maximum Standby Current (mA)	Commercial	240	240	240
	Military	240	240	240

Maximum Ratings

(Above which the useful life may be impaired.)
Storage Temperature \qquad $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
DC Input Voltage
-0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	1838		Unit
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage		2.2	6.0	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.3	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max.	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disab	-10	+10	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CC} \times 32}$	V_{CC} Operating Supply Current by 32 Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{CS} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		720	mA
$\mathrm{I}_{\mathrm{CCx16}}$	V_{CC} Operating Supply Current by 16 Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{CS} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		480	mA
$\mathrm{I}_{\mathrm{CCx} 8}$	V_{CC} Operating Supply Current by 8 Mode	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{CS} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		360	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	Max. $\mathrm{V}_{\mathrm{CC}} ; \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}$, Min. Duty Cycle $=100 \%$		240	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } V_{C C} ; \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		40	mA

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	50	pF
COUT $^{\mathrm{V}} \mathrm{CC}=5.0 \mathrm{~V}$		50	pF	

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during V_{CC} power-up, otherwise I_{SB} will exceed values given.

AC Test Loads and Waveforms

SCOPE
(a)

(b)

1838-4

Equivalent to: THÉVENIN EQUIVALENT

[^71]CYM1838

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	1838-25		1838-30		1838-35		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	25		30		35		ns
t_{AA}	Address to Data Valid		25		30		35	ns
toha	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		30		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		12		13		15	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	0		0		0		ns
$\mathrm{t}_{\mathrm{HzOE}}$	$\overline{\text { OE HIGH to High } \mathrm{Z}}$		10		15		20	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low ${ }^{[4]}$	0		0		0		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[4,5]}$		15		18		20	ns

WRITE CYCLE ${ }^{[6]}$

$\mathrm{t}_{\text {WC }}$	Write Cycle Time	25		30		35		ns
$\mathrm{t}_{\text {SCS }}$	CS LOW to Write End	20		25		30		ns
t_{AW}	Address Set-Up to Write End	20		25		30		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	17		21		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	12		13		15		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH to Low Z }}$	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE LOW to High Z[5] }}$	0	10	0	12	0	15	ns

Notes:
3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $t_{\text {LZCS }}$ for any given device. These parameters are guaranteed and not 100% tested.
5. $t_{\text {HZCS }}$ and $t_{H Z W E}$ are specified with $C_{L}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steadystate voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $2^{[7,9]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[6,10]}$

Notes:

7. WE_{N} is HIGH for read cycle.
8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
9. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
10. Data I/O will be high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IH}}$.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\text { CS }}$ Controlled) ${ }^{[6,10,11]}$

Note:
11. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}_{\mathbf{N}}$	$\overline{\mathbf{O E}}$	$\overline{\mathbf{W E}}_{\mathbf{N}}$	Input/Output	Mode
H	X	X	High Z	Deselect/Power-Down
L	L	H	Data Out	Read
L	X	L	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CYM1838HG-25C	HG01	66-Pin PGA Module	Commercial
	CYM1838HG-25M	HG01	66-Pin PGA Module	Military
	CYM1838HG-25MB	HG01	66-Pin PGA Module	
	CYM1838HG-30C	HG01	66-Pin PGA Module	Commercial
	CYM1838HG-30M	HG01	66-Pin PGA Module	Military
	CYM1838HG-30MB	HG01	66-Pin PGA Module	
33	CYM1838HG-35C	HG01	66-Pin PGA Module	Commercial
	CYM1838HG-35M	HG01	66-Pin PGA Module	Military
	CYM1838HG-35MB	HG01	66-Pin PGA Module	

[^72]
Features

- High-density 8 -megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 20 ns
- Independent byte and word controls
- Low active power
-6.2 W (max.)
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
- Max. height of $\mathbf{3 5 0}$ in.
- Small PCB footprint
- $\mathbf{1 . 8}$ sq. in.

Functional Description

The CYM1840 is a high-performance 8 -megabit static RAM module organized as 256 K words by 32 bits. This module is constructed from eight $256 \mathrm{~K} \times 4$ SRAMs in SOJ packages mounted on an epoxy laminate substrate with pins. Four chip selects ($\overline{\mathrm{CS}}_{0}, \overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}$, and $\overline{\mathrm{CS}}_{3}$) are used to independently enable the four bytes. Two write enables (WE_{0} and $\left.\mathrm{WE}_{1}\right)$ are used to independently write to either the upper or lower 16 -bit word of RAM. Reading or writing can be executed on individual bytes or on any combination of multiple bytes through the proper use of selects and write enables.

Writing to each byte is accomplished when the appropriate chip select (CS) and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/output pins ($\left(\overline{\mathbf{I}} / \mathbf{O}_{\mathrm{X}}\right)$ is written into the memory location specified on the address pins (A_{0} through A_{17}).
Reading the device is accomplished by taking the chip selects ($\overline{\mathrm{CS}}$) LOW, while write enables (WE) remain HIGH. Under these conditions the contents of the memory location specified on the address pins will appear on the data input/output pins (I/O).
The data input/output pins stay in the highimpedance state when write enables ($\overline{\mathrm{WE}}$) are LOW or the appropriate chip selects are HIGH.

Selection Guide

	$\mathbf{1 8 4 0} \mathbf{- 2 0}$	$\mathbf{1 8 4 0 - 2 5}$	$\mathbf{1 8 4 0} \mathbf{- 3 0}$	$\mathbf{1 8 4 0 - 3 5}$	$\mathbf{1 8 4 0 - 4 5}$	$\mathbf{1 8 4 0 - 5 5}$
Maximum Access Time (ns)	20	25	30	35	45	55
Maximum Operating Current (mA)	1120	1120	1120	1120	1120	1120
Maximum Standby Current (mA)	320	320	320	320	320	320

Maximum Ratings
(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature................$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied (PD) $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V

DC Input Voltage
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	CYM1840		Unit
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}$ OL $=8.0 \mathrm{~mA}$		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-20	+20	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-50	+50	$\mu \mathrm{A}$
I_{CC}	V CC Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \overline{\mathrm{CS}}_{\mathrm{X}} \leq \mathrm{V}_{\text {IL }}$		1120	mA
$\mathrm{I}_{\text {SB1 }}$	$\begin{aligned} & \text { Automatic } \overline{\mathrm{CS}} \\ & \text { Power-Down Current }{ }^{[1]} \end{aligned}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}}_{\mathrm{X}} \geq \mathrm{V}_{\mathrm{IH}} \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		320	mA
$\mathrm{I}_{\text {SB2 }}$	$\begin{aligned} & \text { Automatic } \overline{\mathrm{CS}} \\ & \text { Power-Down Current }{ }^{[1]} \end{aligned}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}}_{\mathrm{X}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.3 \mathrm{~V} \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.3 \mathrm{~V} \end{aligned}$		160	mA

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {INA }}$	Input Capacitance, Address Pins	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	100	pF
$\mathrm{C}_{\mathrm{INB}}$			30	pF
C $_{\mathrm{CO}}=5.0 \mathrm{~V}$			30	pF

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.
2. Tested initially and after any design or process changes that may affect these parameters.

SEMICONDUCTOR

AC Test Loads and Waveforms

(a)

(b)

1840-4

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	1840-20		1840-25		1840-30		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	20		25		30		ns
t_{AA}	Address to Data Valid		20		25		30	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\text { CS }}$ LOW to Data Valid		20		25		30	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low $\mathrm{Z}^{[4]}$	5		5		5		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\text { CS }}$ HIGH to High $\mathrm{Z}^{[4,5]}$		20		20		20	ns
$\mathrm{t}_{\text {PU }}$	$\overline{\text { CS }}$ LOW to Power-Up	0		0		0		ns
tPD	CS HIGH to Power-Down		20		25		30	ns
WRITE CYCLE ${ }^{[6]}$								
t_{WC}	Write Cycle Time	20		25		30		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	18		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	18		20		25		ns
$\mathbf{t}_{\text {HA }}$	Address Hold from Write End	2		2		2		ns
t_{SA}	Address Set-Up to Write Start	2		2		2		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	15		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	13		15		15		ns
t_{HD}	Data Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	0		0		0		ns
$t^{\text {thzwE }}$	$\overline{\text { WE L L }}$ LOW to High $\mathbf{Z}^{[5]}$	0	15	0	15	0	15	ns

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $\mathrm{t}_{\text {LZCS }}$ for any given device.
5. $t_{\text {HZCS }}$ and $\mathrm{t}_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steadystate voltage.
6. The internal write time of the memory is defined by the overlap of CS LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Characteristics Over the Operating Range ${ }^{[3]}$ (continued)

Parameter	Description	1840-35		1840-45		1840-55		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	35		45		55		ns
t_{AA}	Address to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {OHA }}$	Output Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low $\mathrm{Z}^{[4]}$	5		5		5		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[4,5]}$		25		25		25	ns
t_{PU}	$\overline{\mathrm{CS}}$ LOW to Power-Up	0		0		0		ns
t_{PD}	$\overline{\text { CS }}$ HIGH to Power-Down		35		45		55	ns

WRITE CYCLE ${ }^{[6]}$

t_{WC}	Write Cycle Time	35		45		55		ns
$\mathrm{t}_{\text {SCS }}$	CS LOW to Write End	30		40		50		ns
t_{AW}	Address Set-Up to Write End	30		40		50		ns
$\mathrm{t}_{\text {HA }}$	Address Hold from Write End	6		6		6		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	6		6		6		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	25		30		40		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	25		30		35		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from Write End	6		6		6		ns
$\mathrm{t}_{\text {LZWE }}$	WE HIGH to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE LOW to High Z }}$ [5]	0	25	0	25	0	25	ns

Switching Waveforms

Read Cycle No. $1^{[7,8]}$

Read Cycle No. $2^{[7,8]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[6]}$

Notes:
7. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$.
8. $\overline{\mathrm{WE}}$ is HIGH for read cycle.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\text { CS }}$ Controlled) ${ }^{[6,9]}$

Note:

9. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	Input/Output	Mode
H	X	High Z	Deselect/Power-Down
L	H	Data Out	Read
L	L	Data In	Write

Ordering Information

Speed	Ordering Code	Package Name	Package Type	Operating Range
20	CYM1840PD-20C	PD06	60-Pin DIP Module	Commercial
25	CYM1840PD-25C	PD06	60-Pin DIP Module	Commercial
30	CYM1840PD-30C	PD06	60-Pin DIP Module	Commercial
35	CYM1840PD-35C	PD06	60-Pin DIP Module	Commercial
45	CYM1840PD-45C	PD06	60-Pin DIP Module	Commercial
55	CYM1840PD-55C	PD06	60-Pin DIP Module	Commercial

Document \#: $38-\mathrm{M}-00040-\mathrm{B}$

Features

- High-density 8-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 20 ns
- Low active power
$-5.3 W$ (max.) at 25 ns
- SMD technology
- TTL-compatible inputs and outputs
- Low profile
—Max. height of 0.58 in .
- JEDEC-compatible pinout
- Available in ZIP, SIMM, and angled SIMM footprint
- 72-pin SIMM version compatible with 1M x 32 (CYM1851)

Functional Description

The CYM1841 is a high-performance 8 -megabit static RAM module organized as 256 K words by 32 bits. This module is constructed from eight 256 Kx 4 SRAMs in SOJ packages mounted on an epoxy laminate board with pins. Four chip selects ($\overline{\mathrm{CS}}_{1}, \overline{\mathrm{CS}}_{2}, \overline{\mathrm{CS}}_{3}, \overline{\mathrm{CS}}_{4}$) are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
Writing to each byte is accomplished when the appropriate chip select ($\overline{\mathrm{CS}})$ and write enable ($\overline{\mathrm{WE}}$) inputs are both LOW. Data on the input/output pins (I/O) is written into the memory location specified on the address pins (A_{0} through A_{17}).

Reading the device is accomplished by taking the chip select ($\overline{\mathrm{CS}}$) LOW while write enable ($\overline{\mathrm{WE}})$ remains HIGH. Under these conditions, the contents of the memory location specified on the address pinswill appear on the data input/output pins (I/O). The data input/output pins stay at the highimpedance state when write enable is LOW or the appropriate chip selects are HIGH.
Two pins $\left(\mathrm{PD}_{0}\right.$ and $\left.\mathrm{PD}_{1}\right)$ are used to identify module memory density in applications where alternate versions of the JEDECstandard modules can be interchanged.
A72-pin SIMM is offered for compatibility with future density generations. This version is socket upgradable to the CYM1851.

Selection Guide

	$\mathbf{1 8 4 1 - 2 0}$	$\mathbf{1 8 4 1 - 2 5}$	$\mathbf{1 8 4 1 - 3 0}$	$\mathbf{1 8 4 1 - 3 5}$	$\mathbf{1 8 4 1 - 4 5}$	$\mathbf{1 8 4 1 - 5 5}$
Maximum Access Time (ns)	20	25	30	35	45	55
Maximum Operating Current (mA)	1120	960	960	960	960	960
Maximum Standby Current (mA)	480	480	480	480	480	480

SEMICONDUCTOR

Pin Configurations (continued)

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	1841-20		1841-25, 30, 35, 45, 55		Unit
			Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4		0.4	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-16	+16	-16	+16	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-10	+10	-10	+10	$\mu \mathrm{A}$
I_{CC}	$V_{\text {CC }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\text { Max., } \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{CS} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		1120		960	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CS PowerDown Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		480		480	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic CS PowerDown Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		16		16	mA

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	70	pF
COUT	Output Capacitance	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	20	pF

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $\mathrm{V}_{\text {CC }}$ power-up, otherwise $\mathrm{I}_{\text {SB }}$ will exceed values given.

AC Test Loads and Waveforms

ALL INPUT PULSES
(a) SCOPE (b)
1841-5
2. Tested on a sample basis.

Equivalent to: THÉVENIN EQUIVALENT
OUTPUT O-
167Ω \qquad 1.73 V

Switching Characteristics Over the Operating Range ${ }^{[3]}$

Parameter	Description	1841-20		1841-25		1841-30		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	20		25		30		ns
t_{AA}	Address to Data Valid		20		25		30	ns
$\mathrm{t}_{\mathrm{OHA}}$	Output Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\text { CS }}$ LOW to Data Valid		20		25		30	ns
$\mathrm{t}_{\text {DOE }}$	OE LOW to Data Valid		13		15		20	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE LOW to Low } \mathrm{Z}}$	0		0		0		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\text { OE HIGH to High Z }}$		15		15		15	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[4]}$	10		10		10		ns
$\mathrm{t}_{\mathrm{HZCS}}$	$\overline{\overline{C S}} \mathrm{HIGH}$ to High $\mathrm{Z}^{[4,5]}$		20		20		20	ns
WRITE CYCLE ${ }^{[6]}$								
t_{WC}	Write Cycle Time	20		25		30		ns
${ }^{\text {t }}$ SCS	$\overline{\text { CS }}$ LOW to Write End	18		20		25		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	18		20		25		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	2		2		2		ns
$\mathrm{t}_{\text {PWE }}$	$\overline{\text { WE Pulse Width }}$	15		20		25		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	13		15		15		ns
t_{HD}	Data Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH }}$ to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[5]}$	0	15	0	15	0	15	ns

SEMICONDUCTOR
Switching Characteristics Over the Operating Range (continued) ${ }^{[3]}$

Parameter	Description	1841-35		1841-45		1841-55		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
READ CYCLE								
t_{RC}	Read Cycle Time	35		45		55		ns
$\mathrm{t}_{\text {AA }}$	Address to Data Valid		35		45		55	ns
$\mathrm{t}_{\text {OHA }}$	Data Hold from Address Change	3		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		35		45		55	ns
tooe	$\overline{\mathrm{OE}}$ LOW to Data Valid		25		30		35	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\mathrm{OE}}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\mathrm{HZOE}}$	$\overline{\mathrm{OE}}$ LOW to High Z		15		15		15	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\mathrm{CS}}$ LOW to Low $\mathrm{Z}^{[4]}$	10		10		10		ns
$\mathrm{t}_{\mathrm{HzCS}}$	$\overline{\text { CS }}$ HIGH to High ${ }^{[4,5]}$		20		20		20	ns
$\mathrm{t}_{\text {PD }}$	$\overline{\text { CS }}$ HIGH to Power-Down		35		45		55	ns
WRITE CYCLE ${ }^{[6]}$								
twC	Write Cycle Time	35		45		55		ns
${ }_{\text {t }}$ SCS	$\overline{\text { CS }}$ LOW to Write End	30		40		50		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	30		40		50		ns
t_{HA}	Address Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	2		2		2		ns
tPWE	WE Pulse Width	30		35		45		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	20		25		35		ns
t_{HD}	Data Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE HIGH to Low } \mathrm{Z}}$	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE L L }}$ LOW to High ${ }^{\text {[5] }}$	0	15	0	15	0	15	ns

Notes:

3. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than $\mathrm{t}_{\text {LZCS }}$ for any given device. These parameters are guaranteed and not 100% tested.
5. $\mathrm{t}_{\mathrm{HZCS}}$ and $\mathrm{t}_{\mathrm{HZWE}}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steadystate voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. $1^{[7,8]}$

Switching Waveforms (continued)
Read Cycle No. $2^{[7,9]}$

Write Cycle No. 1 ($\overline{\mathrm{WE}}$ Controlled) ${ }^{[6]}$

Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[6,10]}$

Notes:

Notes:
7.
is
HIGH for read cycle.
8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$ and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
9. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.
10. If $\overline{C S}$ goes HIGH simultaneously with $\overline{W E}$ HIGH, the output remains in a high-impedance state.

CYM1841

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Output	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
20	CYM1841PM-20C	PM02	64-Pin Plastic SIMM Module	Commercial
	CYM1841P7-20C	PM04	72-Pin Plastic SIMM Module	
	CYM1841PN-20C	PN02	64-Pin Plastic Angled SIMM Module	
	CYM1841PZ-20C	PZ03	64-Pin Plastic ZIP Module	
25	CYM1841PM-25C	PM02	64-Pin Plastic SIMM Module	Commercial
	CYM1841P7-25C	PM04	72-Pin Plastic SIMM Module	
	CYM1841PN-25C	PN02	64-Pin Plastic Angled SIMM Module	
	CYM1841PZ-25C	PZ03	64-Pin Plastic ZIP Module	
30	CYM1841PM-30C	PM02	64-Pin Plastic SIMM Module	Commercial
	CYM1841P7-30C	PM04	72-Pin Plastic SIMM Module	
	CYM1841PN-30C	PN02	64-Pin Plastic Angled SIMM Module	
	CYM1841PZ-30C	PZ03	64-Pin Plastic ZIP Module	
35	CYM1841PM-35C	PM02	64-Pin Plastic SIMM Module	Commercial
	CYM1841P7-35C	PM04	72-Pin Plastic SIMM Module	
	CYM1841PN-35C	PN02	64-Pin Plastic Angled SIMM Module	
	CYM1841PZ-35C	PZ03	64-Pin Plastic ZIP Module	
45	CYM1841PM-45C	PM02	64-Pin Plastic SIMM Module	Commercial
	CYM1841P7-45C	PM04	72-Pin Plastic SIMM Module	
	CYM1841PN-45C	PN02	64-Pin Plastic Angled SIMM Module	
	CYM1841PZ-45C	PZ03	64-Pin Plastic ZIP Module	
55	CYM1841PM-55C	PM02	64-Pin Plastic SIMM Module	Commercial
	CYM1841P7-55C	PM04	72-Pin Plastic SIMM Module	
	CYM1841PN-55C	PN02	64-Pin Plastic Angled SIMM Module	
	CYM1841PZ-55C	PZ03	64-Pin Plastic ZIP Module	

[^73]
Features

- High-density 32-megabit SRAM module
- High-speed CMOS SRAMs
- Access time of 25 ns
- Low active power
-6.6W (max.) at 25 ns
- Downward compatible with CYM1821, CYM1831, CYM1836, and CYM1841 JEDEC modules
- 72 pins
- Available in ZIP, SIMM, or angled SIMM format

Functional Description

The CYM1851 is a high-performance 32-megabit static RAM module organized as $1,024 \mathrm{~K}$ words by 32 bits. This module is constructed from eight $1,024 \mathrm{~K} \times 4$ SRAMs in SOJ packages mounted on an epoxy laminate substrate. Four chip selects are used to independently enable the four bytes. Reading or writing can be executed on individual bytes or any combination of multiple bytes through proper use of selects.
The CYM1851 is designed for use with standard 72-pin SIMM sockets. The pin-
out is downward compatible with the 64-pin JEDEC ZIP/SIMM module family (CYM1821, CYM1831, CYM1836, and CYM1841). Thus, a single motherboard design can be used to accommodate memory depth ranging from 16 K words (CYM1821) to $1,024 \mathrm{~K}$ words (CYM1851).
Presence detect pins $\left(\mathrm{PD}_{0}-\mathrm{PD}_{3}\right)$ are used to identify module memory density in applications where modules with alternate word depths can be interchanged.

Selection Guide

	$\mathbf{1 8 5 1 - 2 5}$	$\mathbf{1 8 5 1 - 3 0}$	$\mathbf{1 8 5 1 - 3 5}$
Maximum Access Time (ns)	25	30	35
Maximum Operating Current (mA)	1200	1200	960
Maximum Standby Current (mA)	480	480	480

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature

$$
-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C}
$$

Ambient Temperature with
Power Applied
$-10^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to $+\mathrm{V}_{\mathrm{CC}}$

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
V_{IH}	Input HIGH Voltage		2.2	$\underset{0.3}{\mathrm{~V}_{\mathrm{CC}}+}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage		-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Load Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-10	+10	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max}, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA} \\ & \mathrm{CS}_{\mathrm{N}} \leq \mathrm{V}_{\mathrm{IL}} \end{aligned}$		1200	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic $\overline{\mathrm{CS}}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \text { Min. Duty Cycle }=100 \% \end{aligned}$		480	mA
$\mathrm{I}_{\text {SB2 }}$	Automatic $\overline{\text { CS }}$ Power-Down Current ${ }^{[1]}$	$\begin{aligned} & \text { Max. } \mathrm{V}_{\mathrm{CC}}, \overline{\mathrm{CS}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{CC}}-0.2 \mathrm{~V}, \text { or } \mathrm{V}_{\mathrm{IN}} \leq 0.2 \mathrm{~V} \end{aligned}$		80	mA

Capacitance ${ }^{[2]}$

Parameter	Description	Test Conditions	Max.	Unit
C INA $^{c \mid}$	Input Capacitance $\left(\overline{\mathrm{WE}}, \overline{\mathrm{OE}}, \mathrm{A}_{0}-19\right)$	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	80	pF
$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		20	pF	
			20	pF
	Input Capacitance $(\overline{\mathrm{CS}})$			

Notes:

1. A pull-up resistor to V_{CC} on the $\overline{\mathrm{CS}}$ input is required to keep the device deselected during $V_{C C}$ power-up, otherwise $I_{S B}$ will exceed values given.

AC Test Loads and Waveforms

JIG AND SCOPE
(a)

Equivalent to:
THÉVENIN EQUIVALENT

$$
\text { OUTPUT } \mathrm{O}-\underbrace{167 \Omega} \text { O }
$$

R

REL
SEMICONDUCTOR
Switching Characteristics Over the Operating Rangel ${ }^{[3]}$

READ CYCLE								
t_{RC}	Read Cycle Time	25		30		35		ns
t_{AA}	Address to Data Valid		25		30		35	ns
toha	Data Hold from Address Change	5		5		5		ns
$\mathrm{t}_{\text {ACS }}$	$\overline{\mathrm{CS}}$ LOW to Data Valid		25		30		35	ns
$\mathrm{t}_{\text {DOE }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		15		20		25	ns
$\mathrm{t}_{\text {LZOE }}$	$\overline{\text { OE }}$ LOW to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}} \mathrm{HIGH}$ to High Z		12		12		12	ns
$\mathrm{t}_{\text {LZCS }}$	$\overline{\text { CS }}$ LOW to Low $\mathbf{Z}^{[4]}$	10		10		10		ns
${ }^{\text {t }}$ HZCS	$\overline{\mathrm{CS}}$ HIGH to High $\mathrm{Z}^{[4,5]}$		12		12		12	ns
t_{PD}	$\overline{\text { CS }} \mathrm{HIGH}$ to Power-Down		25		30		35	ns

WRITE CYCLE ${ }^{[6]}$								
t_{WC}	Write Cycle Time	25		30		35		ns
$\mathrm{t}_{\text {SCS }}$	$\overline{\mathrm{CS}}$ LOW to Write End	20		25		30		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	20		25		30		ns
t_{HA}	Address Hold from Write End	3		3		3		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	2		2		2		ns
tpWE	$\overline{\text { WE Pulse Width }}$	20		25		30		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	15		15		20		ns
t_{HD}	Data Hold from Write End	2		2		2		ns
$\mathrm{t}_{\text {LZWE }}$	$\overline{\text { WE }}$ HIGH to Low Z	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\text { WE }}$ LOW to High $\mathrm{Z}^{[5]}$	0	12	0	12	0	12	ns

Notes:

3. Test conditions ássume signal transition times of 5 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance.
4. At any given temperature and voltage condition, $\mathrm{t}_{\mathrm{HZCS}}$ is less than ${ }^{\mathrm{t}} \mathrm{LZCS}$ for any given device. These parameters are guaranteed and not 100% tested.
5. $\mathfrak{t}_{\text {HZCS }}$ and $\mathrm{t}_{\text {HZWE }}$ are specified with $\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$ as in part (b) of AC Test Loads and Waveforms. Transition is measured $\pm 500 \mathrm{mV}$ from steadystate voltage.
6. The internal write time of the memory is defined by the overlap of $\overline{\mathrm{CS}}$ LOW and $\overline{W E}$ LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input setup and hold timing should be referenced to the rising edge of the signal that terminates the write.

Switching Waveforms

Read Cycle No. ${ }^{[7,8]}$

Switching Waveforms (continued)

Read Cycle No. 2 ${ }^{[7,9]}$

Write Cycle No. 1 ($\overline{\mathbf{W E}}$ Controlled) ${ }^{[6]}$

Notes:

7. $\overline{\text { WE }}$ is HIGH for read cycle.
8. Device is continuously selected, $\overline{\mathrm{CS}}=\mathrm{V}_{\mathrm{IL}}$, and $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IL}}$.
9. Address valid prior to or coincident with $\overline{\mathrm{CS}}$ transition LOW.

Switching Waveforms (continued)
Write Cycle No. 2 ($\overline{\mathbf{C S}}$ Controlled) ${ }^{[6,10]}$

Note:
10. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

Truth Table

$\overline{\mathbf{C S}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Inputs/Output	Mode
H	X	X	High Z	Deselect/Power-Down
L	H	L	Data Out	Read
L	L	X	Data In	Write
L	H	H	High Z	Deselect

Ordering Information

Speed (ns)	Ordering Code	Package Type	Package Type	Operating Range
25	CYM1851PM-25C	PM04	72-Pin Plastic SIMM Module	Commercial
	CYM1851PN-25C	PN04	72-Pin Plastic Angled SIMM Module	
	CYM1851PZ-25C	PZ09	72-Pin Plastic ZIP Module	
30	CYM1851PM-30C	PM04	72-Pin Plastic SIMM Module	Commercial
	CYM1851PN-30C	PN04	72-Pin Plastic Angled SIMM Module	
	CYM1851PZ-30C	PZ09	72-Pin Plastic ZIP Module	
35	CYM1851PM-35C	PM04	72-Pin Plastic SIMM Module	Commercial
	CYM1851PN-35C	PN04	72-Pin Plastic Angled SIMM Module	
	CYM1851PZ-35C	PZ09	72-Pin Plastic ZIP Module	

[^74]
Cascadable $64 \mathrm{~K} x 9$ FIFO Cascadable 128 K x 9 FIFO

Features

- $64 \mathrm{~K} \times 9$ FIFO buffer memory (4208) or 128K x 9 FIFO buffer memory (4209)
- Asynchronous read/write
- High-speed, 28.5-MHz read/write
- Pin-compatible with standard, 28-pin monolithic FIFOs
- Low operating power
$-I_{C C}($ max. $)=640 \mathrm{~mA}$ (commercial)
- 600-mil DIP package
- Empty, Full flags
- Small PCB footprint $-0.88 \mathrm{sq} . \mathrm{in}$.

Functional Description

The CYM4208 is a first-in first-out (FIFO) memory module that is 64 K words by 9 bits wide. The CYM4209 is 128 K words by 9 bits wide. Each is offered in a 600 -mil-wide DIP package. Each FIFO memory is organized such that the data is read in the same sequential order that it was written. Full and Empty flags are provided to prevent overrun and underrun. Three additional pins are also provided to facilitate unlimited expansion in width, depth, or both. The depth expansion technique steers the control signals from one device to another in parallel, thus eliminating the serial addi-
tion of propagation delays so that throughput is not reduced. Data is steered in a similar manner.
The read and write operations may be asynchronous; each can occur at a rate of 28.5 MHz . The write operation occurs when the write $(\overline{\mathrm{W}})$ signal is LOW. Read occurs when read $(\overline{\mathrm{R}})$ goes LOW. The nine data outputs go to the high-impedance state when $\overline{\mathrm{R}}$ is HIGH.
In the depth expansion configuration the (XO) pin provides the expansion out information that is used to tell the next FIFO that it will be activated.

- Expandable in depth and width

Selection Guide

		$\mathbf{4 2 0 8}-\mathbf{2 5}$ $\mathbf{4 2 0 9 - 2 5}$	$\mathbf{4 2 0 8}-\mathbf{3 0}$ $\mathbf{4 2 0 9}-\mathbf{3 0}$	$\mathbf{4 2 0 8}-\mathbf{4 0}$ $\mathbf{4 2 0 9 - 4 0}$
Frequency (MHz)	28.5	25	20	
Access Time (ns)	25	30	$\mathbf{4 0}$	
Maximum Operating Current (mA)	Commercial	640	640	640
	Military		720	720

Maximum Ratings

(Above which the usefullife may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential
(Pin 28 to Pin 14) \qquad -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State
-0.5 V to +7.0 V
-0.5 V to +7.0 V

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military ${ }^{[1]}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Electrical Characteristics Over the Operating Range

Parameters	Description	Test Conditions		$\begin{aligned} & \hline \mathbf{4 2 0 8} \\ & \mathbf{4 2 0 9} \end{aligned}$		Units
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$			0.4	V
$\mathrm{V}_{\mathrm{IH}}{ }^{[2]}$	Input HIGH Voltage		Com'l	2.0	V_{CC}	V
			Mil/Ind	2.2	V_{CC}	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Current	$\mathrm{GND} \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {CC }}$		-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	$\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}, \mathrm{GND} \leq \mathrm{V}_{\mathrm{O}} \leq \mathrm{V}_{\mathrm{CC}}$		-10	+10	$\mu \mathrm{A}$
I_{CC}	Operating Current	$\mathrm{V}_{\mathrm{CC}}=\text { Max. }, \mathrm{I}_{\mathrm{OUT}}=0 \mathrm{~mA},$ $\mathrm{f}_{\mathrm{MAX}}$, Outputs Open	Com'l		640	mA
			Mil/Ind		720	
$\mathbf{I}_{\mathrm{SB} 1}$	Standby Current	$\begin{aligned} & \text { All Inputs }=\mathrm{V}_{\mathrm{IH}} \text { Min., } \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \\ & \mathrm{f}_{\mathrm{MAX}}, \mathrm{I}_{\text {OUT }}=0 \mathrm{~mA} \end{aligned}$	Com'l		100	mA
			Mil/Ind		120	
$\mathrm{I}_{\text {SB2 }}$	Power-Down Current	All Inputs, $\mathrm{V}_{\mathrm{CC}}-0.2 \leq \mathrm{V}_{\text {IN }} \leq 0.2$, $\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\mathrm{OUT}}=0, \mathrm{f}=0$	Com'l		80	mA
			Mil/Ind		100	

Capacitance

Parameters	Description	Test Conditions	Max.	Units
$\mathrm{C}_{\text {IN }}$	Input Capacitance	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	30	pF
COUT	Output Capacitance		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	30
		pF		

Notes:

1. T_{A} is the "instant on" case temperature.
2. XI must use CMOS levels with $\mathrm{V}_{\mathrm{IH}} \geq 3.5 \mathrm{~V}$ (CYM4209 only).

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT OUTPUT O-

Switching Characteristics Over the Operating Range ${ }^{[3,4,5]}$

Parameters	Description	Spec.-25		Spec. ${ }^{\text {-30 }}$		Spec. ${ }^{\text {40 }}$		Units
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{RC}	Read Cycle Time	35		40		50		ns
t_{A}	Access Time		25		30		40	ns
t_{RR}	Read Recovery Time	10		10		10		ns
t_{PR}	Read Pulse Width	25		30		40		ns
$\mathrm{t}_{\text {LZR }}$	Read LOW to Low Z	3		3		3		ns
$\mathrm{t}_{\text {DVR }}$	Read HIGH to Data Valid	3		3		3		ns
$\mathrm{t}_{\mathrm{HZR}}$	Read HIGH to High Z		18		20		25	ns
twC	Write Cycle Time	35		40		50		ns
$\mathrm{t}_{\text {PW }}$	Write Pulse Width	25		30		40		ns
$\mathrm{t}_{\mathrm{HWZ}}$	Write HIGH to Low Z	10		10		10		ns
t_{WR}	Write Recovery Time	10		10		10		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up Time	18		18		20		ns
t_{HD}	Data Hold Time	0		0		0		ns
$\mathrm{t}_{\text {MRSC }}$	$\overline{\mathrm{MR}}$ Cycle Time	35		40		50		ns
$\mathrm{t}_{\text {PMR }}$	$\overline{\text { MR Pulse Width }}$	25		30		40		ns
$\mathrm{t}_{\text {RMR }}$	$\overline{\text { MR Recovery Time }}$	10		10		10		ns
trPW	Read HIGH to $\overline{\text { MR }} \mathrm{HIGH}$	25		30		40		ns
$t_{\text {WPW }}$	Write HIGH to $\overline{\text { MR }} \mathrm{HIGH}$	25		30		40		ns
$\mathrm{t}_{\text {EFL }}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{EF}}$ LOW		35		40		50	ns
$\mathrm{t}_{\text {FFH }}$	$\overline{\mathrm{MR}}$ to $\overline{\mathrm{FF}} \mathrm{HIGH}$		35		40		50	ns
$\mathrm{t}_{\text {REF }}$	Read LOW to $\overline{\text { EF }}$ LOW		25		30		40	ns
$\mathrm{t}_{\text {RFF }}$	Read HIGH to $\overline{\mathrm{FF}} \mathrm{HIGH}$		25		30		40	ns
tweF	Write HIGH to $\overline{\mathrm{EF}} \mathrm{HIGH}$		25		30		40	ns
$t_{\text {WFF }}$	Write LOW to $\overline{\mathrm{FF}}$ LOW		25		30		40	ns
$t_{\text {RAE }}$	Effective Read from Write HIGH		25		30		40	ns
$\mathrm{t}_{\text {RPE }}$	Effective Read Pulse Width After EF HIGH	25		30		40		ns
twaF	Effective Write from Read HIGH		25		30		40	ns
$t_{\text {WPF }}$	Effective Write Pulse Width After $\overline{\mathrm{FF}}$ HIGH	25		30		40		ns
${ }^{\text {t }}$ XOL	Expansion Out LOW Delay from Clock		25		30		40	ns
$\mathrm{t}_{\mathrm{XOH}}$	Expansion Out HIGH Delay from Clock		25		30		40	ns

Notes:
3. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and $30-\mathrm{pF}$ load capacitance, as in part (a) of AC Test Loads and Waveforms, unless otherwise specified.
4. $t_{H Z R}$ transition is measured at +500 mV from V_{OL} and -500 mV from $V_{\mathrm{OH}} . \mathrm{t}_{\mathrm{DVR}}$ transition is measured at the 1.5 V level. $\mathrm{t}_{\mathrm{HWZ}}$ and $\mathrm{t}_{\text {LZR }}$ transition is measured at $\pm 100 \mathrm{mV}$ from the steady state.
5. $t_{\text {HZR }}$ and $t_{\text {DVR }}$ use capacitance loading as in part (b) of AC Test Loads and Waveforms.

Switching Waveforms

Aynchronous Read and Write Timing Diagram

Last Write to First Read Full Flag Timing Diagram

Last Read to First Write Empty Flag Timing Diagram

Switching Waveforms (continued)

Master Reset Timing Diagram

Empty Flag and Read Bubble-Through Mode Timing Diagram

Full Flag and Write Bubble-Through Mode Timing Diagram

Notes:

6. $\quad \mathrm{t}_{\mathrm{MRSC}}=\mathrm{t}_{\mathrm{PMR}}+\mathrm{t}_{\mathrm{RMR}}$.
7. $\overline{\mathrm{W}}$ and $\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{IH}}$ for at least $t_{\text {WPW }}$ or t_{RPR} before the rising edge of $\overline{\mathrm{MR}}$.

Switching Waveforms (continued)

Expansion Timing Diagram

Note:
8. Expansion Out of Device $1\left(\overline{\mathrm{XO}}_{1}\right)$ is connected to Expansion In of Device $2\left(\mathrm{XI}_{2}\right)$.

Figure 1. Single Device Mode

Architecture

The CYM4208 FIFO module is an array of 64 K words of 9 bits each and is implemented using four 16 Kx 9 monolithic FIFOs. The CYM4209 is an array of 128 K words of 9 bits each and is implemented using four $32 \mathrm{~K} x 9$ monolithic FIFOs. Each version has Full and Empty flags, but since the FIFOs are internally cascaded using the depth mode, the half full and retransmit features are not available.
Pinouts of the CYM4208 and CYM4209 are compatible with industry standard 28-pin DIP. The functionality is compatible with monolithic FIFO devices and with other FIFO modules.

Resetting the FIFO

Upon power-up, the FIFO must be reset with a master reset ($\overline{\mathrm{MR}}$) cycle. This causes the FIFO to enter the empty condition signified by the Empty flag $(\overline{\mathrm{EF}})$ being LOW and the Full flag $(\overline{\mathrm{FF}})$ resetting to HIGH. Read $(\overline{\mathrm{R}})$ and write $(\overline{\mathrm{W}})$ must be HIGH $\mathrm{t}_{\text {RPW }} / \mathrm{t}_{\text {WPW }}$ before and $\mathrm{t}_{\mathrm{RMR}}$ after the rising edge of $\overline{\mathrm{MR}}$ for a valid reset cycle.

Writing Data to the FIFO

The availability of an empty location is indicated by the HIGH state of the Full flag ($\overline{\mathrm{FF}}$). A falling edge of write $(\overline{\mathrm{W}})$ initiates a write cycle. Data appearing at the inputs $\left(\mathrm{D}_{0}-\mathrm{D}_{8}\right) \mathrm{t}_{\text {SD }}$ before and t_{HD} after the rising edge of $\overline{\mathrm{W}}$ will be stored sequentially in the FIFO.
The Empty flag ($\overline{\mathrm{EF}})$ LOW-to-HIGH transition occurs tweF after the first LOW-to-HIGH transition on the write clock of an empty FIFO. The Full flag ($\overline{\mathrm{FF}}$) goes LOW on the falling edge of $\overline{\mathrm{W}}$ during the cycle in which the last available location in the FIFO is written, prohibiting overflow. $\overline{\mathrm{FF}}$ goes HIGH $\mathrm{t}_{\text {RFF }}$ after the completion of a valid read of a full FIFO.

Reading Data from the FIFO

The falling edge of read $(\overline{\mathrm{R}})$ initiates a read cycle if the Empty flag $(\overline{E F})$ is not LOW.Data outputs $\left(\mathrm{Q}_{0}-\mathrm{Q}_{8}\right)$ are in a high-impedance condition between read operations ($\overline{\mathrm{R}}$ HIGH), when the FIFO is empty, or when the FIFO is in the depth expansion mode but is not the active device.
The falling edge of $\overline{\mathrm{R}}$ during the last read cycle before the empty condition triggers a HIGH-to-LOW transition of $\overline{\mathrm{EF}}$, prohibiting any further read operations until $t_{\text {WEF }}$ after a valid write.

Single Device Mode

Single device mode is entered by connecting $\overline{\mathrm{FL}}$ to ground and connecting XO to XI (see Figure 1).

Figure 2. Width Expansion Mode

Width Expansion Mode

FIFOs can be expanded in width to provide word widths greater than 9 bits in increments of 9 bits. Devices are connected similar to the single device mode but with control line inputs in common to all devices. Flag outputs from any device can be monitored (see Figure 2).

Depth Expansion Mode

Depth expansion mode (see Figure 3) is entered when, during a MR cycle, expansion out ($\overline{\mathrm{XO}}$) of one device is connected to expansionin ($\overline{\mathrm{XI}})$ of the next device, with $\overline{\mathrm{XO}}$ of the last device connected to $\overline{\mathrm{XI}}$ of the first device. In the depth expansion mode the first load ($\overline{\mathrm{FL}}$) input, when grounded, indicates that this part is the first to be loaded. All other devices must have this pin HIGH. To enable the correct FIFO, XO is pulsed LOW when the last physical location of the previous FIFO is written to and is pulsed LOW again when the last physical location is read. Only one FIFO is enabled for read and one is enabled for write at any given time. All other devices are in standby.
FIFOs can also be expanded simultaneously in depth and width. Consequently, any depth or width FIFO can be created of word widths in increments of 9 bits. When expanding in depth, a composite $\overline{\mathrm{FF}}$ and $\overline{\mathrm{EF}}$ must be created by ORing the $\overline{\mathrm{FFs}}$ together and the $\overline{\mathrm{EF}}$ together.

Figure 3. Depth Expansion Mode

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CYM4208HD-25C	HD10	28-Pin Ceramic DIP Module	Commercial
30	CYM4208HD-30C	HD10	28-Pin Ceramic DIP Module	Commercial
	CYM4208HD-30MB	HD10	28-Pin Ceramic DIP Module	Military
40	CYM4208HD-40C	HD10	28-Pin Ceramic DIP Module	Commercial
	CYM4208HD-40MB	HD10	28-Pin Ceramic DIP Module	Military

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
25	CYM4209HD-25C	HD10	28-Pin Ceramic DIP Module	Commercial
30	CYM4209HD-30C	HD10	28-Pin Ceramic DIP Module	Commercial
	CYM4209HD-30MB	HD10	28-Pin Ceramic DIP Module	Military
40	CYM4209HD-40C	HD10	28-Pin Ceramic DIP Module	Commercial
	CYM4209HD-40MB	HD10	28-Pin Ceramic DIP Module	Military

Document \#: 38-M-00053

Features

- 4-megabyte to 1-gigabyte control capability
- 32- or 64-bit bus interface (M7232 only)
- 32- or 64-bit EDC versions
- 1-bit correct; 2-bit detect
- Multiplexed or non-multiplexed bus
- i486, Pentium ${ }^{(10)}$, $1860,68040,88110$, Power PC, SPARC, and MIPS compatible
- Synchronous bus interface
- 25-, 33-, and 40-MHz versions
- Error-logging facilities
- Cache line fill burst support; posted writes
- Cache line write-back support; write FIFO
- High performance
- 25-ns writes
-175-, 25-, 50-, 25-ns burst read/80-ns DRAMs
- Automatic refresh with scrubbing
- Multiprocessor compatible
- Inhibited reads and writes
- Reflective reads
— Reads for ownership
- Bus parity generation and checking
- Very small size

Functional Description

The CYM7232 and the CYM7264 consist of a full-function DRAM controller and a pipelined/FIFO data multiplexer/demultiplexer with error correction for cachebased, uniprocessor, and multiprocessor systems memory control. The CYM7232 performs 32-bit Error Detection and Correction (EDC) while CYM7264 performs 64-bit EDC. They both connect to the system bus through a 64 -bit-wide data bus, and a 36 -bit wide address bus. The CYM7232 also supports 32-bit system buses. The bus transfer control signals support i486, Pentium, i860, 68040, 88110, SPARC MBus, MIPS R4000, or other interfaces. The controller module interfaces to the DRAM array through a

16-byte-wide data bus plus check bits, a 12-bit row/column address bus, four RAS outputs, four CAS outputs, and four read/ write control lines.
During write operations, data passes from the system bus through a FIFO array that acts as an incoming queue. Writes occur at the system bus speed until the FIFO is full (sixteen 64-bit words). The FIFO supports cache-line copy-back and fill operations, reducing system bus traffic to a minimum. The module supports posted writes, by suspending the actual write to DRAM until the cache-line read is'completed during cache-line write-back. This speeds cache-line fill operations. The module pipelines a 16 -byte-wide DRAM access into the data path for EDC, and multiplexes the data to the system bus during reads. This supports high-speed burst line fills with error corrected data. Reads and writes may be inhibited for multiprocessor support. Inhibited reads may be turned into reflective reads, and inhibited writes may be turned into reads-for-ownership.

Pentium is a trademark of Intel Corporation.

[^75]
XYVNINITGYd

Overview

Cypress Semiconductor offers two DRAM control subsystem module types: the CYM7232, which supports 32-bit EDC, and the CYM7264, which supports 64 -bit EDC. The modules are very similar in functionality and architecture, with minor differences to support the EDC variation. Both modules support four blocks of DRAMs for a total capacity of 1 gigabyte of data storage. The CYM7232 divides the memory blocks into four 32-bit-wide data banks, each with 7 check bits, which provide a 156 -bit-wide data path to the DRAM array. The CYM7264 divides the memory blocks into two banks of 64-bit-wide data, each with 8 check bits, for a total DRAM interface of 144 bits.

The CYM7232 can be programmed and wired for use with 32-bit system buses, and the operation is very similar to use in 64-bit systems.
The modules support multiplexed address/data buses as well as separate address and data buses for applications such as the SPARC MBus architecture. This datasheet includes a detailed MBus Operation section.

The modules are offered in high-speed and standard speed versions. The high-speed version may be programmed for 100 MHz DRAM timing resolution, while the standard speed version may be programmed for $80-\mathrm{MHz}$ DRAM timing resolution.

System Bus Modes

The modules include selectable bus modes that support a variety of processors and cache controllers. Programmability includes the byte-ordering protocol (big endian/little endian); burst length is configurable for SPARC MBus, 88 K or 68040 SIZE, or 186 and i860 byte enables. A data strobe initiates the bus handshake for systems where the bus master must indicate when it can supply or accept data; bus acknowledge signals are programmable to be early (active in the bus cycle preceding the data) or normal (active in the cycle in which the data transfer takes place). The early modes support the Motorola 88 K family of microprocessors. Other programmable options allow optimization of the acknowledge timing to the system requirements.

General Description of Bus Transactions

The fully synchronous bus interface uses the rising edge of the system bus clock. Every system transaction has an address/control phase and one or more data phases.

Address Phase

During the address/control phase, which is specified by the assertion of the Address Strobe for one bus clock cycle, the address and nature (size and type) of the transaction is supplied over the system bus to the module.

Data Phase

During the data phase, which is specified by the assertion of the data strobe for one or more bus clock cycles, one or more data words is transferred over the system bus.

Data Write

The module supports four different write modes. Data strobe will be interpreted differently depending on the mode. Data strobe may be permanently asserted, asserted one clock early, or in realtime. Systems using Real-Time Data Strobe mode must monitor the Bus Request/FIFO Empty output and postpone data strobe assertion until the write FIFOs are empty. These systems do not require bus acknowledges since the FIFOs are empty when the data phase begins. The module will not respond with bus acknowledge (real-time data strobe case) or will assert bus ac-
knowledge one cycle before, or during the same cycle, as the data transfer.

Write Data Flow

During system bus writes and reflective read operations, two identical sets of FIFOs buffer the incoming data. One set is used during normal write transactions, and the second set is used exclusively during reflective read transactions. In the CYM7232, each set contains four FIFOs that are 32 bits wide by 8 words deep. In the CYM7264, each set contains two FIFOs that are 64 bits wide by 8 words deep. During writes, the module demultiplexes the incoming data into the appropriate FIFO according to the address and burst order. As soon as the required data falls through the FIFOs, a write to DRAM commences. This process continues until completion of the burst. When the inhibit signal and transform cycle inputs are asserted during a read, the module demultiplexes the write data into the appropriate reflective FIFO. These FIFOs operate in an identical fashion to the normal write FIFOs.
During writes to DRAM, the module appends the demultiplexed data with associated error detection and correction check bits. For the 32-bit EDC version, the demultiplexed data word consists of four sets of 32 data bits plus their 7 associated error check bits for a total of 156 bits. For the 64 -bit EDC version, the data word consists of two sets of 64 data bits plus their 8 associated error check bits for a total of 144 bits.

Data Phase Read

During read operations the module suspends data transfer until two clocks after the assertion of data strobe and the closing of the snoop window, whichever occurs last. The data transfer continues at the system bus speed. In systems where the master does not regulate the data flow, data strobe may be permanently asserted.
The module offers options for both early and real-time bus acknowledge for reads. At fast system bus clocks, wait states may be inserted to delay the bus acknowledge, allowing the data to propagate through the error-detection and correction logic.

Read Data Flow

The module reads 128 bits of data and the corresponding EDC check bits in parallel from the DRAM. The data then passes simultaneously through parallel error correction circuitry to a multiplexer that selects the corrected or uncorrected data. The module appends parity to the data and routes it to the system bus. The CYM7232 transfers the data in 32-bit packets, and the CYM7264 transfers 64-bit packets, which makes the CYM7264 incompatible with 32 -bit system buses.

Burst Last

The module allows any read or write burst transaction to terminate prematurely with the assertion of Burst last.

Data Alignment

The data path portion of the module contains data buffers and demultiplexers on writes and multiplexers and error correctors on reads. The bus interface is 64 data bits wide and the DRAM interface is 128 data bits wide.

Bus Alignment

All data flowing between the DRAM controller and the system data bus is assumed to be aligned to the bus width. When a system bus transaction crosses aligned boundaries, the processor or cache controller must split the transaction into multiple operations and issue an address phase for each portion. The misaligned transactions cannot, therefore, be bursts.

DRAM Alignment

The DRAM controller stores data into memory on 128 -bit aligned boundaries. Transactions over the system bus of 16 bytes or less are assumed to be aligned within a 128 -bit DRAM page. This implies that a single DRAM transaction will be associated with bus transactions of 16 bytes or less. Burst transactions exceeding 16 bytes may be misaligned to the DRAM storage boundary. Such transactions will involve transfers of 4,8 , or 12 bytes between controller and DRAM during the first cycle of the burst (i.e., not all DRAM banks will be involved in the first data transfer). The DRAM address will wrap around within the burst boundary as more data is transferred. The final data transfer will include the bank(s) omitted during the first cycle of the DRAM transfer. The nature of the misalignment will depend on the defined burst order (i.e., sequential or Intel).

I/O Operations

The internal command and status registers are accessed through I/O transactions. The ID inputs select between Memory, I/O transactions, or the Indirect Address register. The Indirect Address register points to the desired command and status I/O registers. I/O read and write transactions follow the same bus acknowledge and data strobe protocols as memory operations.
I/O operations may be inhibited prior to the closure of the snoop window.

Multiprocessor Support

The modules provide complete multiprocessing support. Any operation may be inhibited or aborted, including I/O operations.

Reflective Read Operations

A reflective read transaction occurs when a main memory read operation is inhibited and transformed into a write. Such transactions can occur in a multiprocessor environment when a processor's cache controller requests a line from main memory. The particular main memory line may be stale with the only valid copy contained in another processor's snooping cache. The cache line owner will inhibit the main memory, and then fetch and supply the data to the requesting processor's cache. Simultaneously, the data is copied into FIFO buffers inside the controller module for later transfer to DRAM. The memory read operation is thereby transformed into a memory write operation.

Reads For Ownership

The address space of a copy-back cache-based system will typically be partitioned into distinct regions. Some of these regions will be cachable and others (typically peripheral I/O registers and some small portion of memory) will not be cachable. Whenever a processor begins a write operation to a particular address location, the cachability status of that location must be determined. Should the write operation result in a miss within a cachable region of main memory, a line would be fetched. The DRAM controller module permits a write to begin into DRAM before the cachability status is completely determined. When the status of the address in question is resolved the operation can be inhibited and transformed into a read of a cache line.

Write Operations

Address Phase

A write operation is initiated when Address Strobe ($\overline{\mathrm{AS}}$) is asserted and an address and all appropriate control signals meet the set-up conditions to the rising edge of CLK. This is the address phase of the transaction. The control signals that accompany the address during the address phase include SIZE and TYPE inputs. The address and certain control information is strobed
into the Address-Control register in the cycle in which $\overline{\mathrm{AS}}$ is asserted. If address parity check is enabled, the lowest 32 bits of the system bus address is checked for byte parity. The control signals are not parity checked. If parity is error-free, the address and other control information is used to initiate the requested transaction. If address parity is enabled and an address bus parity error is detected, the Address Bus Parity Error (ABE) bit is set in the status register, the Bus Error ($\overline{\mathrm{BERR}})$ output is asserted, and the write operation is aborted. This action takes place whether or not the address is decoded to address the DRAM controller.

Data Phase

Data placed on the bus is clocked into the Write Data FIFO on a rising CLK edge. The system will use $\overline{\mathrm{DS}}$ (Data Strobe) to signal the onset of a write transaction. Once $\overline{\mathrm{DS}}$ is asserted, it must remain asserted throughout the bus operation. The system must continue to assert the write data until it is acknowledged (except in the no acknowledge mode). If the SIZE[7:0] control indicated a non-burst transfer, the write transaction is terminated upon the acceptance of the data. When SIZE [7:0] control inputs indicate a burst transaction, the module will continue the write transaction by accepting data until the transaction is terminated. The transaction is terminated by one or more of the following events: the bus responds by asserting Burst Last (BLST) or the burst length indicated by SIZE or the programmed default burst length is reached.
During the data phase, data is checked for valid parity (if data parity checking is enabled). Parity is checked over individual bytes. Should a data bus parity error occur, data is clocked into the Write Data FIFO (but is later discarded) and the Bus Error output ($\overline{\mathrm{BERR}}$) is asserted. After parity check, data flows into the Write Data FIFO and is subsequently written into the DRAM memory. When a parity error occurs, the entire word that would have been written to DRAM with the byte(s) incurring the parity error is discarded. The discarded word consists of bits over which the EDC algorithm is applied. It is therefore 32 (CYM7232) or 64 (CYM7264) bits in length. Recovery schemes must consequently rewrite more than the byte(s) incurring the parity error. Subsequent data transferred to the FIFO is written to DRAM even though a previous data word may have incurred a parity error.
Burst operations are supported up to the full FIFO depth. The FIFO permits these operations to take place at the full bus speed. If the Write Data FIFO contains data from a previous write (FIFO not Empty), the address and control information is accepted into the controller's internal Write Address register, but the data phase cannot begin until the previous write is completed to DRAM. BACK remains three-state until the FIFO is available for the new write. The system must use the Bus Request/FIFO Empty ($\overline{\mathrm{BR}} / / \overline{\mathrm{FE}}$) output to determine if the controller is capable of accepting data when using the No Bus Acknowledge Mode.

Posted Writes

Posted writes support fast cache line fills. A posted write is accomplished by issuing the Posted Write encoding in the TYPE input during the address phase. The module accepts the write data as usual and holds the data in the Write Data FIFO. After the next read transaction is completed, the actual write of the data to DRAM is accomplished. The posted write operation allows a cache controller to purge a cache line and fetch the new cache line as rapidly as possible by postponing the DRAM access for the write. Posted writes must be followed by a read operation.
When the address of the posted write is in the same burst address region as that of the following read, a memory incoherency can result. To resolve the incoherency, the module compares the

Posted Writes (continued)

address of the posted write with that of the read for address bits A 7 and higher. ($\mathrm{A}[6: 0]$ span the longest possible burst). If the compare shows equal, the posted write is performed before the read. Posted writes may not be inhibited.

Byte Writes

Single byte and partial word transfers are supported by a read-modify-write DRAM memory cycle. The old word is accessed and combined with the new data under control of the address and SIZE inputs. A new set of EDC check bits is generated and the modified data and new check bits are written back to the memory to complete the read-modify-write cycle. In the 32-bit EDC version, a read-modify-write cycle occurs for all writes less than 32 bits. In the 64-bit EDC version, a read-modify-write cycle occurs for all writes less than 64 bits.

Inhibited Write Operations

A write operation may be inhibited at any time prior to the end of the snoop window by asserting Inhibit, $\overline{\mathrm{INH}}$. When Inhibit is recognized, the module write operation is aborted and the module plays no further role in the bus transaction. Note that the system may perform data writes to the controller prior to the close of the snoop window and prior to the assertion of Inhibit. In these cases, the data will not be written to the DRAM and the write FIFO will be cleared upon recognition of the Inhibit. When data transfers occur prior to a write inhibit there must be at least two bus clock cycles between the close of the snoop window and the address strobe of the following transaction.
An inhibited write may also be converted into a read for ownership. This option is enabled by asserting the TRC input (Transform Cycle) along with the Inhibit. When Inhibit is recognized, the module write operation is transformed into a read operation. After Inhibit is recognized and before the read is completed, any data written to the Write FIFO is purged.

Write Snoop Window

The snoop window is determined by an internal counter that is programmable by the system or by an external input, SNW. The snoop window source is selectable by driving $\overline{\text { UERR }}$ as an input when RSTIN is asserted. Refer to the signal descriptions for programming details. The write into the DRAM is postponed until the snoop window closes. This prevents data from an inhibited write operation from corrupting main memory data. Long snoop window intervals may cause performance degradation.

Read Operations

Address Phase

A read operation begins with the address phase similar to write operations.

Data Phase

The DRAM interface accesses 128 data bits from the memory simultaneously with their related check bits. The addressed 64 -bit word (or the first word of the burst) is pipelined to the system bus and simultaneously to the error check logic. The data is accessed from DRAM but the transfer over the system bus is suspended until two clock cycles after the snoop window closes or two clock cycles after Data Strobe is asserted, whichever occurs last. The appropriate Bus Acknowledge is asserted as dictated by the selected modes. Byte-wide parity is appended to the data as it exits the module onto the system bus.
During bursts, data is pipelined consecutively over the bus until the transaction is terminated. Transactions may be terminated by

Burst Last ($\overline{\text { BLST }}$) or when the burst length indicated by SIZE or the default burst length is reached.
The error detection logic generates check bits that are compared with the check bits from the memory. The exclusive NOR of the generated check bits and the check bits from the memory form the syndrome bits. When the two sets of check bits are identical, no errors have occurred in the data. Should the comparison show a difference, the Error Detector decodes the syndrome bits, identifying the type of error (single-bit correctable, double-bit detectable, or uncorrectable multi-bit error). The Error Position Decoder creates a 32 -bit word that is used to correct the defective bit for single-bit errors.
Should the data contain an error, the appropriate status bits are set in the Interrupt Status register. An interrupt is generated when enabled. Whenever an error occurs, the syndrome bits are saved in the Syndrome FIFO allowing the syndrome to be read by the system. This output can be used to determine which bit was defective. The corrected data is not written back into the memory array but is corrected later as part of the refresh/scrubbing operations.

Inhibited Read Operations

Read operations may be inhibited. This action is required in multiprocessor systems when a main memory read must be terminated to allow a snooping cache to supply data to the requesting cache. A read operation may be inhibited prior to the close of the snoop window by asserting INH. When an Inhibit is recognized, the module read operation is aborted and the module plays no further role in the bus transaction.

Reflective Reads

Inhibited reads may also be reflective. This option is enabled by asserting Transform Cycle ($\overline{\mathrm{TRC}}$) simultaneously with INH. When a transformed Inhibit is recognized, the module read operation is changed into a write operation. INH and TRC must be asserted within the snoop window. After Inhibit is recognized, BACK and the Data Bus become inputs. BACK are now used as a synchronous write enable to strobe the bus data into the Reflective Read FIFO. As the slave in the transaction, the snooping cache must supply $\overline{\mathrm{BACK}}$. The timing of the $\overline{\mathrm{BACK}}$ input to strobe data into the reflective FIFO is either early or real-time following the Bus Acknowledge mode selection for reads.
The Reflective FIFO is an image of the normal Write Data FIFO and is devoted exclusively to reflective read operations. Upon inhibit, the data bus is kept three-stated, allowing the snooping cache to drive the bus with the requested data. The module accepts the data into the Reflective Read FIFO at the full bus speed. A mechanism is required to prevent overrun of the reflective FIFO during consecutive transformed reads. As soon as the Inhibit is recognized, the module asserts Bus Request ($\overline{\mathrm{BR}}$) in order to become the bus master in the next address phase. The system responds with Bus Grant ($\overline{\mathrm{BG}}$). When the bus is acquired, the module asserts Bus Busy ($\overline{\mathrm{BB}}$) until the reflective FIFO data is written to the DRAM and the module is capable of accepting another read. Since $\overline{B R}$ provides status of the availability of the reflective FIFO, the output may be used to delay the address phase of the next operation.

Read Snoop Window

As with writes, the snoop window may originate from either of two sources, one internal and the other external. On reads, the assertion of the bus acknowledge to transfer the data to the system is postponed until at least two clocks after the snoop window closes.

1/0 Operations

Access to the internal Command and Status registers is controlled by the ID input. The details of the ID control are given in the Pin Description section. When the ID code for memory is input, all transactions access DRAM. The ID input can also point to the Indirect Address register. When the ID input specifies an I/O register, the Command and Status register accessed is the one pointed to by the Indirect Address register. The register address, position on the system bus, and the bit definition for each of the Command and Status registers is given in the Internal Registers section.
I/O register access follows the same Data Strobe and Bus Acknowledge modes as invoked for memory transactions with a few exceptions. In the Real-Time Data Strobe mode for writes, the $\overline{\mathrm{BR}} / \mathrm{FE}$ output plays no role and the transaction is acknowledged with the controller asserting BACK. In all writes, system bus data must be valid at least one clock cycle before it is accepted. The controller delays $\overline{\text { BACK }}$ to meet this criterion. In all reads, data is always transferred in the second clock cycle after the snoop window closes or Data Strobe is asserted, whichever occurs last.
I/O operations may be inhibited. The duration of the I/O snoop window may be set externally or internally as in reads.

Write Bus Acknowledge and Data Strobe Modes

There are four modes of bus handshake: Early Data Strobe/Early Bus Acknowledge, Real-Time Data Strobe, Early Data Strobe/ Real-Time Bus Acknowledge, and MBus. These modes are invoked by driving the BACK and UERR pins during Reset with a specific pattern. Table 1 is a summary of the modes and their operation.

Early Data Strobe / Early Bus Acknowledge Mode

Data Strobe may be asserted at any time during or after the address phase. In Table 1, the cycle in which Data Strobe is asserted is designated cycle N. Data Strobe, once asserted, must remain asserted throughout the transaction. The FIFO may not be empty when the system asserts Data Strobe. If the FIFO goes empty in cycle $\mathrm{N}+\mathrm{k}$, the controller will assert Bus Acknowledge ($\overline{\mathrm{BACK}}$) in the cycle following the one in which the FIFO goes empty (N $+k+1$). The controller accepts the write data in the cycle following the one in which it asserted Bus Acknowledge (cycle N + $\mathrm{k}+2$). If the FIFO is empty when the Data Strobe is asserted, then $\mathrm{k}=0$. The controller would then assert Bus Acknowledge in the cycle following the one in which Data Strobe was asserted (cycle $\mathbf{N}+1$). Data is accepted in the following cycle $(\mathbf{N}+2)$. If the transfer is a burst, Bus Acknowledge continues to be asserted until one cycle before the last data transfer.

Real-Time Data Strobe Mode

Writes are performed by programming the $\overline{\mathrm{BR}} / \overline{\mathrm{FE}}$ output to include the status of the write data FIFO. The system may begin the write transaction with the address phase, but may not assert Data Strobe until the FIFO is known to be empty. In Table 1, the controller asserts $\overline{\mathrm{BR}} / \overline{\mathrm{FE}}$ in cycle N . The system responds with Data Strobe in cycle $N+k$ (k greater than or equal to 1) and the controller accepts the data in the same cycle. If the transaction is a burst, data is accepted each clock cycle thereafter until the burst is terminated. Data Strobe, once asserted, must remain asserted throughout the transaction.

Early Data Strobe/Real-Time Bus Acknowledge Mode

Data is accepted one clock cycle after Data Strobe is asserted in this mode. Bus Acknowledge is asserted in the same cycle in which the data is accepted (real-time Bus Acknowledge). Refer-
ring to Table 1 , the system asserts Data Strobe in cycle N. The FIFO goes empty in cycle $N+k$. If the FIFO is already empty, k is 0 . The controller asserts Bus Acknowledge and accepts the data in the next cycle $(\mathrm{N}+\mathrm{k}+1)$.

Table 1. Write Bus Acknowledge and Data Strobe Modes

Mode	Write Action	Write Cycle
Early $\overline{\mathrm{DS}}$ Early $\overline{\mathrm{BACK}}$	System asserts $\overline{\mathrm{DS}}$	N
	Cntrir FIFO goes empty	$\overline{\mathrm{N}}+\mathrm{k},(\mathrm{k} \geq 0)$
	Cntrlr asserts BACK	$\mathrm{N}+\mathrm{k}+1$
	Cntrlr accepts DATA	$\mathrm{N}+\mathrm{k}+2$
$\begin{aligned} & \text { Real-Time } \overline{\mathrm{DS}}, \\ & \text { No } \overline{\mathrm{BACK}} \end{aligned}$	Cntrlr asserts $\overline{\mathrm{BR} / \mathrm{FE}}$	N
	Systems asserts DS, Cntrlr accepts DATA	$\mathrm{N}+\mathrm{k}(\mathrm{k} \geq 1)$
$\begin{array}{\|l\|} \hline \text { Early } \overline{\mathrm{DS}}, \\ \text { Real-Time } \overline{\text { BACK }} \\ \hline \end{array}$	System asserts DS	N
	Cntrlr FIFO goes empty	$\mathrm{N}+\mathrm{k}(\mathrm{k} \geq 0)$
	Cntrlr asserts BACK, Cntrlr accepts DATA	$\mathrm{N}+\mathrm{k}+1$
$\begin{array}{\|l} \hline \text { MBus, } \\ \text { DS Gnded } \\ \hline \end{array}$	System asserts AS	N
	Cntrlr FIFO goes empty	$\mathrm{N}+\mathrm{k}(\mathrm{k} \geq 0)$
	CntrIr asserts BACK Cntrlr accepts DATA	N+k+1

MBus Mode

Data Strobe is permanently asserted in MBus mode. The controller operates as if it were in Early Data Strobe mode. The system asserts Address Strobe in cycle 0. The FIFO goes empty in cycle k . If the FIFO is already empty, k is 0 . The controller asserts Bus Acknowledge and accepts the data in the next cycle $(k+1)$.

Read Operating Modes

The module offers several programmable options to control the data transfer during memory-read operations. Wait states may be inserted to allow additional propagation delay through the EDC path. Error correction can be disabled for diagnostic purposes. As in write operations, Data Strobe may be used to regulate transfers over the system interface. Finally, Bus Acknowledges may be programmed to occur one clock early or in real time with respect to the corresponding data transfer. The timing of the Bus Acknowledges is shown in Figure 1.

Figure 1. Early and Normal Bus Acknowledge Modes for Reads
mode. Transformed operations use a preprogrammed default burst length to specify their burst duration.

Bus Acknowledge Timing Characteristics

The Bus Acknowledge control signals are bidirectional and may be driven by the controller or another device on the system bus. Therefore there are times when no device will be driving this signal line. At high bus speeds, pull-ups may not be sufficient to guarantee that the Bus Acknowledge line will revert in a sufficiently short time to the deasserted state after the controller has ceased driving the line. To guarantee the state of the BACK signal lines at the end of a transaction, the controller first drives the outputs HIGH (deasserted) in the first half of the clock cycle in which Bus Acknowledge is to be deasserted and then three-states these outputs in the second half of this clock cycle. To insure that the Bus Acknowledge signal lines remain in the deasserted state when no device is driving them for long periods, pull-ups should be employed. At the beginning of a transaction cycle, Bus Acknowledge remains three-stated until it is to be asserted. Thus in the first acknowledge cycle of a transaction, $\overline{\mathrm{BACK}}$ becomes driven and asserted at the same time. $\overline{\text { BACK }}$ continues to be driven until the end of the transaction cycle and terminates as described above.

Burst Last

Any read or write burst transaction may be terminated prematurely with the assertion of BLST. BLST must be asserted during the clock cycle in which the last piece of data is transferred. Systems that require the data bus to go three-state in the next cycle must also deassert Data Strobe ($\overline{\mathrm{DS}}$) when asserting BLST. Burst last may not be used in Early Back mode or to prematurely terminate a transformed operation.

Inhibits and Snoop Window

Certain constraints apply to the system's assertion of inhibits and the closing of the snoop window.
The inhibit signal must not be asserted until at least two clocks after the address phase (i.e., if $\overline{\mathrm{AS}}$ is asserted in bus clock N , inhibit may not be asserted until $\mathrm{N}+2$ or later). each data transfer. The controller will treat the strobe derived from the incoming bus acknowledge as an early strobe when programmed in the early bus acknowledge mode. Otherwise the controller assumes that the data is aligned with the corresponding strobe derived from the incoming bus acknowledge.
When a write is transformed, the operation converts to a read. In this case, the controller behaves according to the invoked read

Table 2. Read Bus Acknowledge Modes

Mode	Read Action	Read Cycle
Early BACK no wait states	System asserts DS and closes SNW by cycle N	N
	Cntrlr asserts BACK	$\mathrm{N}+\mathrm{k}(\mathrm{k} \geq 2)$
	Cntrlr supplies data	$\mathrm{N}+\mathrm{k}+1$
Early BACK with wait states	System asserts DS and closes SNW by cycle N	N
	Cntrlr asserts BACK	$\mathrm{N}+\mathrm{k}+1(\mathrm{k} \geq 2)$
	Cntrlr supplies data	$\mathrm{N}+\mathrm{k}+2$
Real Time BACK no wait states	System asserts DS and closes SNW by cycle N	$\mathrm{N}+\mathrm{k}(\mathrm{k} \geq 2)$
	Cntrlr asserts BACK and supplies data	N
Real Time BACK with wait states	System asserts DS and closes SNW by cycle N	Cntrlr asserts BACK and supplies data

Inhibits and Snoop Window (continued)

There must be a minimum of one bus clock cycle between the close of a transaction's snoop window and the address strobe of the next transaction (i.e., if the snoop window is deasserted on the system bus during bus clock N, the next transaction's address strobe must not be asserted until $\mathrm{N}+2$). This scenario would most likely occur when the first transaction is inhibited but not transformed.

DRAM Interface

The DRAM array is 128 data bits wide. This data is subdivided into banks: 4 banks of 32 bits each for the 32 -bit EDC version and two banks of 64 bits each for the 64 -bit EDC version. Each bank includes the associated error check bits: 7 bits for the 32-bit EDC version and 8 bits for the 64-bit EDC version. The DRAM array is divided in depth into blocks. Each block may be populated with different DRAM chip sizes, however, all DRAM chips in a given block must have the same depth. From one to four blocks may be populated with DRAM, however there are certain restrictions as given in other sections.
The DRAM interface consists of a bidirectional data bus for each DRAM bank, plus a bidirectional bus for the associated error detection and correction check bits. There is also a set of bankassociated write/read control outputs. The DRAM blocks are controlled by separate RAS and CAS control outputs. There is one RAS and one CAS for each block. The entire DRAM array is addressed through one set of 12 row/column multiplexed address lines. The row/column partition is dictated by the DRAM that populates a particular block.

Latch Requirements

Transparent latches are required between the R / W signals issued by the controller module and the DRAM. These latches guarantee that the R/W signals to the DRAM are stable while CAS is asserted. The latch is transparent when CAS is HIGH and closed when CAS is LOW. The latches can also be used to buffer R/W lines to the DRAM. A 74ABT373 or equivalent is recommended.
There are two alternatives for the latches:

1. One quad latch is devoted to each DRAM block. Each quad latch is enabled by the CAS for that block. $\mathrm{R} / \mathrm{W}[3: 0]$ is connected to the four inputs of the quad latch and the outputs of the quad latch are connected to the R / W inputs of the appropriate DRAM bank in that block. Refer to part (a) in Figure 2.
2. One quad latch is devoted to all of the DRAM blocks. the quad latch is enabled by the logical OR of CAS[3:0]. R/W[3:0] is connected to the four inputs of the quad latch and the outputs of the quad latch are connected to the R/W inputs of the appropriate DRAM bank for all of the blocks. Refer to part (b) in Figure 2.

DRAM Interface for the 32-Bit EDC

The controller supports an organization of DRAM that is 156 bits wide (four banks each consisting of 32 bits of data plus 7 er ror check bits) and up to four blocks deep. Each block is controlled by separate $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ signals ($\overline{\operatorname{RAS}}[3: 0], \overline{\mathrm{CAS}}[3: 0]$). Each Bank is controlled by separate read/write signals ($\mathrm{R} / \overline{\mathrm{W}}[3: 0]$). The DRAM address outputs from the controller module consists of a 12-bit row/column multiplexed bus. This bus is intended to drive a symmetrical set of address driver devices, which in turn drive the DRAM array address lines. Timing for the $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ outputs as well as other DRAM related timing is programmable. A representation of the DRAM organization is shown in Figure 3.
Each square in Figure 3 represents a bank of memory that is 32 data bits wide plus 7 check bits. A block is a column of four banks
totalling 128 data bits wide plus 28 check bits. Each block is controlled by dedicated RAS and CAS signals. With 12 multiplexed row/column address lines, each bank can be up to 16 megabits deep. The row/column address multiplexing is programmable. The controller supports 256 K -, 1 M -, 4 M -, and 16 M -deep DRAMs.

DRAM Interface for the 64-Bit EDC

This controller supports an organization of DRAM that is 144 bits wide (two banks each consisting of 64 bits of data plus 8 error check bits) and up to four blocks deep. Each block is controlled by separate $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ signals ($\overline{\mathrm{RAS}}[3: 0], \overline{\mathrm{CAS}}[3: 0]$). Each bank is controlled by separate read/write signals ($R / \bar{W}[1: 0]$). Address outputs, $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ outputs and DRAM timing is identical to that in the 32-bit EDC version. A representation of the DRAM organization is shown in Figure 4.
Each square in Figure 4 represents a bank of memory that is 64 data bits wide plus 8 check bits. A block is a column of two banks totaling 128 data bits wide plus 16 check bits. Each block is controlled by dedicated RAS and CAS signals. With 12 multiplexed row/column address lines, each bank can be up to 16 megabits deep. As in the 32-bit EDC version, the row/column address multiplexing is programmable. The controller supports $256 \mathrm{~K}-, 1 \mathrm{M}$-, 4M-, and 16M-deep DRAMs.

DRAM Block Placement

There are four physical DRAM blocks. Each block may be populated with an array of DRAMs that are 128 bits wide by 256 K , 1M, 4M, or 16M deep. Physical block population need not be contiguous.
An array of five registers are used to specify the DRAM configuration. At power-up, the controller module is programmed with the Base address (the starting address of the entire memory array) and the Logical Block Displacement and Population (the address gap between logical blocks and their respective DRAM sizes). Finally, the physical/logical mapping is assigned and each block's RAS/CAS address split point is specified.
During operation, an incoming memory address is evaluated. Once the controller determines that this address is valid, the appropriate RAS signal for the selected block is asserted. The controller will remain inactive if the comparison is invalid. Refer to the register description for programming details.

DRAM Interface Signals

CYM7232 - 32-bit EDC
The module interface to the DRAM array is made through the signals described below.
DDA[31:0] - Data Bus (Bank 0). DDA[31:0] forms a 32-bit data bus that is connected to bank 0 in every populated block.
DDB [31:0] - Data Bus (Bank 1). DDB[31:0] forms a 32-bit data bus that is connected to bank 1 in every populated block.
DDC[31:0] - Data Bus (Bank 2). DDC[31:0] forms a 32-bit data bus that is connected to bank 2 in every populated block.
DDD[31:0] - Data Bus (Bank 3). DDD[31:0] forms a 32-bit data bus that is connected to bank 3 in every populated block.
EDA[6:0] - Check Bus (Bank 0). EDA[6:0] forms a 7-bit error check bit bus that is associated with the data on DDA[31:0].
EDB [6:0] - Check Bus (Bank 1). EDB[6:0] forms a 7-bit error check bit bus that is associated with the data on DDB[31:0].

(a)

(b)

Figure 2. R/W Latch Configurations

Figure 3. DRAM Configuration for the CYM7232

Figure 4. DRAM Configuration for the CYM7264

CYM7232 - 32-bit EDC (continued)
EDC[6:0] - Check Bus (Bank 2). EDC[6:0] forms a 7-bit error check bit bus that is associated with the data on DDC[31:0].
EDD[6:0] - Check Bus (Bank 3). EDD[6:0] forms a 7-bit error check bit bus that is associated with the data on DDD[31:0].
ADRS[11:0] - Address Bus. ADRS is a 12 -bit row/column multiplexed address bus that supplies the address to the DRAM to access the proper 128-bit data word. The multiplexing is programmable for different depths of DRAM.
$\mathbf{R} / \overline{\mathbf{W}}[3: 0]$ - Read/Write Control. $\mathrm{R} / \overline{\mathrm{W}}[3: 0]$ are the read/write controls for the four banks of the DRAM array. R/ $\overline{\mathrm{W}} 0$ controls read/write for all blocks of DDA[31:0], R/W1 controls read/write for all blocks of $\mathrm{DDB}[31: 0], \mathrm{R} / \overline{\mathrm{W}} 2$ controls read/write for all blocks of $\mathrm{DDC}[31: 0]$, and $\mathrm{R} / \mathrm{W} 3$ controls read/write for all blocks of DDD[31:0].
(RAS[3:0] - These signals are the four $\overline{\text { RAS }}$ outputs to control each block of the DRAM.
$\overline{\text { CAS }}$ [3:0] - These signals are the four $\overline{\text { CAS }}$ outputs to control each block of the DRAM.
The address bus, $\operatorname{ADRS}[11: 0]$, RAS[3:0], CAS[3:0] should be connected through a set of drivers to the appropriate DRAM inputs. $\mathrm{R} / \overline{\mathrm{W}}[3: 0$] should be connected through a set of latches, gated by the appropriate CAS to the DRAM R/W controls. The driver configuration is dependent upon the capacitance that must be driven.
The data bus, check bus, and read/write control signals are connected across the DRAM array. DDA[31:0] and EDA[6:0] are connected to the data I/O of all the Bank 0 DRAMs. The Bank 0 DRAMs are the top row of DRAMs in Figure 3. LR/ $\overline{\mathrm{W}} 0$ is connected to the Write Control input of all the Bank 0 DRAMs. $\operatorname{DDB}[31: 0]$ and $\operatorname{EDB}[6: 0]$ are connected to the data I / O of all the Bank 1 DRAMs. The bank 1 DRAMs are the second row of DRAMs. LR/W1 is connected to the Write Control input of all the Bank 1 DRAMs. This connection pattern continues with Banks 2 and 3.
$\overline{\text { RAS }} 0$ and $\overline{\text { CAS }} 0$ are connected to the $\overline{\mathrm{RAS}}$ and $\overline{\mathrm{CAS}}$ inputs respectively of all of the DRAMs of Block 0. Block 0 is the left column of DRAMs in the array in Figure 3. Note that each block consists of Banks 0 through 3. Similarly, RAS1 and CAS1 are connected to the $\overline{\text { RAS }}$ and CAS inputs respectively of all of the DRAMs of Block 1. This connection pattern continues through Block 3.

CYM7264 - 64-bit EDC

The module interface to the DRAM array is made through the signals described below.
DDA[63:0] - Data Bus (Bank 0). DDA[63:0] forms a 64-bit data bus that is connected to bank 0 in every populated block.
DDB [63:0] - Data Bus (Bank 1). DDB[63:0] forms a 64-bit data bus that is connected to bank 1 in every populated block.
EDA[7:0] - Check Bus (Bank 0). EDA[7:0] forms an 8-bit error check bit bus that is associated with the data on DDA [63:0].
EDB[7:0] - Check Bus (Bank 1). EDB[7:0] forms an 8-bit error check bit bus that is associated with the data on $\mathrm{DDB}[63: 0]$.
ADRS[11:0] - Address Bus. ADRS is a 12-bit row/column multiplexed address bus that supplies the address to the DRAM to access the proper 128-bit data word. The multiplexing is programmable for different depths of DRAM.

CYM7264 - 64-bit EDC (continued)
$\mathbf{R} / \overline{\mathbf{W}}[\mathbf{1 : 0]}$ - Read/Write Control. $\mathrm{R} / \overline{\mathrm{W}}[1: 0]$ are the read/write controls for the two banks of the DRAM array. R/W 0 controls read/write for all blocks of DDA[63:0], R//W1 controls read/write for all blocks of DDB[63:0].
$\overline{\text { RAS }}$ [3:0] - These signals are the four $\overline{\text { RAS }}$ outputs to control each block of the DRAM.
$\overline{\text { CAS }}$ [3:0] - These signals are the four $\overline{\mathrm{CAS}}$ outputs to control each block of the DRAM.
The address bus, ADRS[11:0], RAS[3:0], CAS[3:0] should be connected through a set of drivers to the appropriate DRAM inputs. R/W[1:0] should be connected through a set of latches, gated by the appropriate CAS to the DRAM R/W controls. The driver configuration is dependent upon the capacitance that must be driven.
The data bus, check bus, and read/write control signals are connected across the DRAM array. DDA[64:0] and EDA[7:0] are connected to the data I/O of all the Bank 0 DRAMs. The Bank 0 DRAMs are the top row of DRAMs in Figure 4. LR/W0 is connected to the Write Control input of all the Bank 0 DRAMs. $\operatorname{DDB}[63: 0]$ and $\operatorname{EDB}[7: 0]$ are connected to the data I/O of all the Bank 1 DRAMs. LR/W[1] is connected to the read / write control inputs of all of the DRAMs of Bank 1.
$\overline{\text { RAS }} 0$ and $\overline{\text { CAS }} 0$ are connected to the $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ inputs respectively of all of the DRAMs of block 0 . Block 0 is the left column of DRAMs in the array in Figure 4. Note that each block consists of Bank 0 and Bank 1. Similarly, RAS 1 and CAS1 are connected to the $\overline{\text { RAS }}$ and $\overline{\text { CAS }}$ inputs respectively of all of the DRAMs of block 1.

DRAM Timing

The system bus clock rate determines the DRAM timing through an internal (X2, X4) phase locked loop, or an externally generated multiple clock (X1, X2, X3, X4 applied to MCLK input). Along with the multiplier selection, the appropriate VCO is selected to generate either a $66-\mathrm{MHz}, 80-\mathrm{MHz}$, or $100-\mathrm{MHz}$ internal clock. This selection is shown in Table 3. There are two versions, -H and -S . The -H version permits the use of the higher clock frequency multiples for maximum performance.

Table 3. Required PLL Frequency

Bus Clock (MHz)	Phase Lock Loop Frequency (MHz) $-\mathbf{H}$	Phase Lock Loop Frequency (MHz) $-\mathbf{S}$
40	80	80
33	66 (int), 99 (ext)	66
25	100	50 (ext)

The phase lock loops should be operated close to their center frequency to guarantee operation. For deviations from the bus clock frequencies listed in Table 3, consult Command Register 4 (programming of VCO[1:0]). Refer to the CLM[1:0] field in the Command register for programming details.
DRAM timing is fully programmable through internal registers. The resolution of the timing is equal to the period of the internal clock. (This is normally twice the bus clock frequency for $40-\mathrm{MHz}$ bus speeds.) The parameters listed in Table 4 are programmable.
Refer to the timing diagrams at the end of this data sheet for the timing definitions. Refer to the Register Descriptions for details.

Table 4. DRAM Programmable Timing Parameters

Parameter	Description
t_{AR}	Address to $\overline{\mathrm{RAS}}$ assertion
$\mathrm{t}_{\mathrm{RAM}}$	$\overline{\mathrm{RAS}}$ to multiplexed address
$\mathrm{t}_{\mathrm{MAC}}$	Multiplexed address to $\overline{\mathrm{CAS}}$
$\mathrm{t}_{\text {RAS }}$	$\overline{\mathrm{RAS}}$ pulse width
$\mathrm{t}_{\mathrm{RPR}}$	$\overline{\mathrm{RAS}}$ pre-charge width
t_{CP}	$\overline{\mathrm{CAS}}$ pre-charge width
t_{DC}	FIFO data delay to $\overline{\mathrm{CAS}}$
$\mathrm{t}_{\mathrm{RIN}}$	RAS completion during non-reflective inhibit
$\mathrm{t}_{\mathrm{ENR}}$	Enable delay on read
$\mathrm{t}_{\mathrm{ENW}}$	Enable delay on write

Refresh and Scrubbing

Refresh requirements vary depending on the density and organization of the DRAM chips in the system. However, rows must be refreshed at the same interval (approximately every 15 microseconds the next row is refreshed). The refresh requests are generated by two cascaded counters. A programmable 7-bit counter divides CLK down to create a $1-\mathrm{MHz}$ clock signal. This clock is further divided by a 4-bit, modulo 15 counter, to generate a refresh request every $15 \mu \mathrm{sec}$. These refresh requests are synchronously arbitrated with memory requests.
The 26-bit Scrub Address counter is comprised of three smaller counters: the least significant 12 bits form a row scrub counter, the middle two bits form a block counter, and the most significant 12 bits form a column address counter.
All four banks of a given block are scrubbed simultaneously at a particular address. All error correction channels in the controller are used in parallel (4 channels in CYM7232, 2 channels in CYM7264). While one of the four DRAM blocks is scrubbed, the other three blocks undergo normal refresh. The 2-bit Scrub Block counter advances after all rows in a particular block are scrubbed. Finally, the column address is incremented so that all rows and blocks of the next column are refreshed and scrubbed. A fully populated memory using $16-\mathrm{Mbit}$ devices to achieve 1 -gigabyte capacity is scrubbed in little more than 15 minutes. When an error is detected during scrubbing operations, the correction address will be copied from the Refresh Address counter to the Error Location register. (Note that when an error occurs in a normal read operation, the corrected data is not written back into the memory array. Data is corrected inside the DRAMs during scrubbing cycles only.) When an error occurs during refresh/ scrubbing operations the refresh cycle (i.e., a read to check for errors) is turned into a scrub cycle (i.e., read-modify-write to correct the errors).
Each block of memory may be populated with different sized DRAM components however, all banks within a given block must be populated with the same depth memory chip. For simplicity, the Refresh Address counter treats every block as if it were populated with DRAMs of maximum (16-Mbit) capacity. When refreshing smaller memories, the same address location will be scrubbed multiple times before the counter advances to the next location.

CYM7232
PRELIMINARY
CYM7264

The system data bus parity signals are equipped with holding buffers similar to those used by the system data bus.

Table 5. Data Parity Assignments

Data Parity	Data Byte
$\mathrm{DP}[0]$	$\mathrm{D}[7: 0]$
$\mathrm{DP}[1]$	$\mathrm{D}[15: 8]$
$\mathrm{DP}[2]$	$\mathrm{D}[23: 16]$
$\mathrm{DP}[3]$	$\mathrm{D}[31: 24]$
$\mathrm{DP}[4]$	$\mathrm{D}[39: 32]$
$\mathrm{DP}[5]$	$\mathrm{D}[47: 40]$
$\mathrm{DP}[6]$	$\mathrm{D}[55: 48]$
$\mathrm{DP}[7]$	$\mathrm{D}[63: 56]$

PMD[2:0] - Parity Mode. The Parity Mode bits specify the parity computation algorithm and identify those signals that participate in the parity computation. They must be hardwired for the correct configuration. The parity mode selection is applied to both the address and data buses. These bits are defined below.

$\frac{\text { PM2 }}{0}$	Even Parity Computed (sum of bits in byte and parity bit is even.)
1	Odd Parity Computed (sum of bits in byte and parity bit is odd.)
$\frac{\text { PM1 }}{0}$	Data Parity Disabled 1
Data Parity Computed	
$\frac{\text { PM0 }}{0}$	Address Parity Disabled
1	Address Parity Computed

A[35:0] - Address. During the address phase, the system will supply the transaction's address on A[35:0] and assert AS.
AP[3:0] - Address Parity. During the address phase, the lowest 32 bits of the transaction's address can be checked for parity. The system can generate a set of parity inputs AP[3:0] that correspond to $\mathrm{A}[31: 0]$. Parity is not supported for $\mathrm{A}[35: 32]$. The parity's sense (i.e., odd/even and enable/disable) is specified by the Parity Mode bits, PM[2:0]. Note that the parity mode bits also define the parity mode for the data bus. $\mathrm{AP}[3: 0]$ are assigned as given in Table 6.

Table 6. Address Parity Assignments

Address Parity	Address Byte
$\mathrm{AP}[0]$	$\mathrm{A}[7: 0]$
$\mathrm{AP}[1]$	$\mathrm{A}[15: 8]$
$\mathrm{AP}[2]$	$\mathrm{A}[23: 16]$
$\mathrm{AP}[3]$	$\mathrm{A}[31: 24]$

TYPE[5:0] - Transaction Type. During the address phase, TYPE[5:0] specify the Transaction Type (see Table 7). These are synchronous inputs. Note that the TYPE input may be changed on a transaction by transaction basis, consequently, different processors may be mixed within the system.
TYPE0 - Read/Write. When 0, this bit indicates the transaction is a write. When 1 , this bit indicates the transaction is a read.

Table 7. Type Interpretation

Type Bits				Data Size	Transaction Type		
$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$		
0	0	X	X	X	0	Any	Write
0	X	X	X	X	1	Any	Read
1	0	X	X	X	0	Default Burst	Write
1	X	X	X	X	1	Default Burst	Read
X	X	X	X	0	X	\geq Bus Width	Sequential Burst Order
X	X	X	X	1	X	\geq Bus Width	Intel Burst Order
X	X	X	0	X	X	Any	Size [3:0] are Size Bits
0	X	X	1	X	X	\leq Bus Width	Size [7:0] are Byte Enables
X	X	0	X	X	X	Any	Little-Endian Bus
X	X	1	X	X	X	Any	Big-Endian Bus
0	1	X	X	X	0	Any	Posted Write
1	1	X	X	X	0	Default Burst	Posted Write

TYPE1 - Burst Order. Given a system bus of width N bytes ($\mathrm{N}=$ 4 or 8), any transaction as specified by the SIZE input which is greater than N constitutes a burst. Thus transactions of double words (8 bytes) and larger are bursts for a 32 -bit bus and transactions of 16 bytes and larger are bursts for a 64 -bit bus. The maximum burst length is 128 bytes. During bursts the lowest order bits of the address input are ignored. $\mathrm{AD}[1: 0]$ are ignored for a 32 bit bus system and $\mathrm{AD}[2: 0]$ are ignored for a 64 bit bus system. This is the alignment constraint.
The next higher set of address inputs are loaded into a counter, which generates the proper address as the burst proceeds. The counter length is given in Table 8. The generated burst address will wrap around at the cache line end and complete the burst access for the remainder of the cache line.

Table 8. Burst Counter Length

Burst Length (bytes)	Burst Counter Length for 32-Bit Bus (bits)	Burst Counter Length for 64-Bit Bus (bits)
8	1	Not Burst
16	2	1
32	3	2
64	4	3
128	5	4

A new address, in which the burst counter serves as the lowest portion, is formed. The counter extends the length of address bits as shown in Table 8 and starts at AD2 for a 32-bit system bus and at AD3 for a 64-bit system bus. All higher address bits (above the counter) remain fixed throughout the burst transaction and are not affected by rollover of the burst counter. As an example, for a 64-bit system bus and a SIZE of 64 bytes, the system ignores $\mathrm{AD}[2: 0]$, fixing these bits at $0 . \mathrm{AD}[5: 3]$ form the internal burst counter starting from the address as transferred over the system bus, and AD[35:6] remain fixed as originally input. This address generation is shown for this example in Table 9.

Table 9. Burst Address Example

AD[35:6]	$\mathrm{AD}[5: 3]$	$\mathrm{AD}[2: 0]$
Fixed	Counter	000

When TYPE1 $=0$ the burst order is sequential. Subsequent addresses are generated by sequentially incrementing the bits of the address within the range of the burst counter as determined above. After reaching the address in which all burst counter bits are ones, the counter wraps around to zero. Higher-order addresses remain fixed.
When TYPE1 $=1$ the burst counter increments in the non-sequential fashion characteristic of Intel processors. In all other respects, the address for the burst is the same as that in the sequential case. The non-sequential burst counter algorithm extends the Intel scheme to any length burst. The nonsequential counting starts at the address specified by the address bus input. The counter bits are then incremented in the following fashion:

1. the lowest-order bit always toggles,
2. a bit toggles only if the next lowest order bit in the counter is toggling for the second time (independent of its value).
For example, if the burst counter is 3 bits in length ($\mathrm{AD}[5: 3]$ as above) and begins at address 101 , then the counting sequence is $101,100,111,110,001,000,011,010$
Notice that in this counting sequence, higher-order bits change the least often and therefore result in a minimum number of DRAM page mode accesses.
TYPE2 - SIZE Interpretation. The SIZE bits have two alternative interpretations. When TYPE2 $=0$, the transaction length in bytes is given by the value of SIZE[3:0]. When TYPE2 $=1$, the byte(s) that are enabled in the transaction are specified when their respective size bits are asserted LOW (e.g., SIZE[N] means BYTE $[\mathrm{N}]$ participates in the transaction). For elaboration see the SIZE[7:0] definition.
TYPE3 - Little Endian/Big Endian. Processors may define the position of BYTE 0 on the bus in either of two ways. Either BYTE 0 appears as the lowest byte on the bus (D[7:0] - little endian, TYPE3 $=0$) or BYTE 0 appears as the highest byte on the bus (big endian $-\mathrm{D}[\mathrm{M}: \mathrm{M}-7]$, where $\mathrm{M}=\mathrm{Bw}-1$. Bw is the bus width in bits, TYPE3 = 1). For elaboration see the definition of the SIZE[7:0] bits.
TYPE4 - Write Posting. When TYPE4 $=1$, the write data is posted into the Write FIFO, where it remains until the next read is completed. This can be used to postpone the actual DRAM write until after the DRAM read is completed, thereby speeding cache line fills.

TYPE5 - Default Burst Mode. When TYPE5 = 0, the transaction's size is specified by SIZE[7:0] (which are interpreted according to TYPE2). When TYPE5 $=1$, the transaction's size is specified by the default burst size programmed into the Command register. The burst size defaults to this value regardless of TYPE5 during reflective reads transformed into writes and writes transformed to reads for ownership.
SIZE[7:0] - Transaction Size. During the address phase, SIZE[3:0] specify the number of bytes to be transferred during a bus transaction. These are synchronous inputs. SIZE[7:4] are an extended size control used to support byte enabled transfers. The expanded definition is compatible with $\mathbf{i 4 8 6 ,}$, 1860 , SPARC, MIPS, 88 K and 68040 processors. The interpretation of SIZE is determined by TYPE2 as in Table 10 through Table 16. Note that for size specifications that are larger than the system bus size, the Transaction Size specifies the internal burst address generation wraparound.
Two interpretations are offered in the above table to support SPARC MBus and Motorola 88 K processors.

Table 14. 32 Bit Bus Address Interpretation Size = 1 Byte

A2	A1	A0	Byte \#	Big Endian	Little Endian
X	0	0	0	$\mathrm{D}[31: 24]$	$\mathrm{D}[7: 0]$
X	0	1	1	$\mathrm{D}[23: 16]$	$\mathrm{D}[15: 8]$
X	1	0	2	$\mathrm{D}[15: 8]$	$\mathrm{D}[23: 16]$
X	1	1	3	$\mathrm{D}[7: 0]$	$\mathrm{D}[31: 24]$

Table 15. 32 Bit Bus Address Interpretation Size $=2$ Bytes

A 2	A 1	A0	Half- Word \#	Big Endian	Little Endian
X	0	X	0	$\mathrm{D}[31: 16]$	$\mathrm{D}[15: 0]$
X	1	X	1	$\mathrm{D}[15: 0]$	$\mathrm{D}[31: 16]$

Table 16. Size Interpretation with TYPE2 $=1$

Size x$]$								Byte	
$\mathbf{7}$	$\mathbf{6}$	$\mathbf{5}$	$\mathbf{4}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$		
X	X	X	X	X	X	X	0	$\mathrm{D}[7: 0]$	
X	X	X	X	X	X	0	X	$\mathrm{D}[15: 8]$	
X	X	X	X	X	0	X	X	$\mathrm{D}[23: 16]$	
X	X	X	X	0	X	X	X	$\mathrm{D}[31: 24]$	
X	X	X	0	X	X	X	X	$\mathrm{D}[39: 32]$	
X	X	$\mathbf{0}$	X	X	X	X	X	$\mathrm{D}[47: 40]$	
X	0	X	X	X	X	X	X	$\mathrm{D}[55: 48]$	
0	X	X	X	X	X	X	X	$\mathrm{D}[63: 56]$	

Processors generally require their byte enable signals to be contiguous. No checking is performed to distinguish invalid combinations from valid combinations.
$\overline{\mathbf{A S}}$ - Address Strobe. This signal is asserted by the bus master during the address phase of the transaction. The address and transaction attributes are strobed into the Controller Module during the address phase. The address phase is one clock cycle long and is normally followed by one or more data phases.
$\overline{\mathbf{D S}}$ - Data Strobe. This signal is asserted by the bus master to begin the data phase of the transaction. Data strobe is recognized in certain modes and can be used by the system to delay the onset of the transaction. If the transaction is a burst, data strobe can not be used to interrupt or delay individual data phases of the burst. Data Strobe may be permanently asserted in those applications that do not need this function. Refer to the section on Bus Acknowledge and Data Strobe Modes for details.
BLST - Burst Last. The burst length is specified by SIZE[3:0] or the programmed default burst length by way of the TYPE input during the address phase of every transaction. $\overline{\text { BLST }}$ may be used by the bus master to override the default or SIZE specified burst length by prematurely terminating the bus transaction. BLST must be asserted in the same cycle as the last data transfer.
$\overline{\mathbf{I N H}}$ - Inhibit. This signal may be asserted by a cache controller in multiprocessing environments to abort a bus transaction already in progress. When INH is received before the snoop window ends, the operation is terminated. If the transaction is a memory read, no data is transferred over the system bus while the snoop window is open. If the transaction is a memory write and data has already been transferred, the internal FIFOs are cleared. Inhibit may be used to prematureiy terminate \bar{I} / O opera-
tions before data is transferred. $\overline{\text { INH }}$ should not be asserted after the snoop window closes.
TRC - Transform Cycle. This signal, when asserted along with $\overline{\mathrm{INH}}$, transforms an inhibited read cycle into a write cycle (reflective) or an inhibited write cycle into a read cycle (read-for-ownership). Transformed transactions use the programmed default burst length and ignore the SIZE specified in the original transaction. The burst begins at the address specified at the transaction start.
$\overline{\text { SNW }}$ - Snoop Window. This input may be used to define the duration of the snoop window. Operations may be inhibited and transformed in any cycles in which this signal is asserted. As an alternative, the duration of the snoop window may be defined by an internal counter.
$\overline{\text { RSTIN }}$ - Reset In. This signal is used to reset the controller. The signal must last for at least 16 clocks. This signal is internally synchronized to the bus clock.
BACK [1:0] - Bus Acknowledge. These signals supply the transaction acknowledge to the bus master. They are defined in Table 17. These signals also receive acknowledges from the system during reflective reads thereby acting as data strobes. During system reset $\overline{\operatorname{BACK}}[1: 0]$ act as inputs to program bus acknowledge modes and select the source of the snoop window signal.
$\overline{\text { BACK }}[1: 0]$ are used as inputs during Reset to select the Bus Acknowledge and Data Strobe modes. $\overline{\mathrm{BACK}}[1: 0]$ must be driven according to Table 18 when Reset is asserted to invoke the desired mode.
$\overline{\text { UERR }}$ - Uncorrectable Error Interrupt. This signal indicates the presence of an unrecoverable error condition on a read operation. The signal is asserted at the same time as the associated acknowledge is sent to the system bus. As with BACK [1:0], प्यRR may serve as an input. The signal must be driven to select the source of the Snoop Window signal during system reset. UERR should be pulled up with a 1 K -ohm resistor to V_{CC}.

Table 17. $\overline{\text { BACK }}[1: 0]$ Outputs

$\overline{\text { BACK1 }}$	$\overline{\text { BACK0 }}$	Definition
0	1	Valid Data Transfer
1	1	Wait States
Three-state	Three-state	Idle Cycles

Table 18. $\overline{\text { BACK }}[1: 0]$ Inputs When $\overline{R S T I N}$ is Asserted

$\overline{\text { BACK1 }}$	$\overline{\text { BACK }} 0$	$\overline{\text { DS }}$ Mode	$\overline{\overline{\text { BACK }} \text { Mode }}$
0	0	MBus ($\overline{\mathrm{DS}}$ Gnd)	With Data
0	1	Early $\overline{\mathrm{DS}}(1 \mathrm{Clk})$	With Data
1	0	Real-Time $\overline{\mathrm{DS}}$	None (Uses $\overline{\mathrm{BR}} / \overline{\mathrm{FE}})$
1	1	Early $\overline{\mathrm{DS}}(2 \mathrm{Clks})$	Early $\overline{\text { BACK }}(1 \mathrm{Clk})$

Table 19. $\overline{\text { UERR }}$ Inputs When $\overline{\text { RSTIN }}$ is Asserted

$\overline{\text { UERR }}(\overline{\text { SNW }})$	Snoop Window Source
0	External
1	Internal

When a read is inhibited and transformed into a write, the $\overline{\mathrm{BACK}}[1: 0]$ signals become inputs and are used to strobe the bus data into the Reflective FIFO. Table 20 gives the interpretation of the $\overline{\text { BACK }}[1: 0]$ inputs when the reflective writes are in progress.

Table 20. $\overline{\text { BACK }}$ [1:0] Inputs as Reflective Reads are Transformed Into Writes

$\overline{\text { BACK1 }}$	$\overline{\text { BACK0 }}$	Definition
0	1	Valid Data Transfer
1	1	Idle Cycle
Other	Modes	Invalid

$\overline{\text { BERR }}$ - Bus Error. This signal indicates that a parity error condition has occurred during the address or data phase of a transaction. This signal is asynchronous (i.e., it will occur one cycle after the corresponding address parity error or two cycles after the corresponding data parity error). $\overline{\mathrm{BERR}}$ may be programmed to last for one clock cycle or until cleared. Due to the nature of BERR internal to the module, the controller will log a parity error in its status register if any other device pulls $\overline{B E R R}$ LOW.
$\overline{\mathbf{B R}} / \overline{\mathrm{FE}}$ - Bus Request/FIFO Empty. This signal will be issued by the controller during reflective read transactions. $\overline{\mathrm{BR}}$ from the main memory system should be interpreted as the highest priority request for bus mastership to the system's arbiter. In this case $\overline{\mathrm{BR}} / \overline{\mathrm{FE}}$ works in conjunction with $\overline{\mathrm{BG}}$ and $\overline{\mathrm{BB}}$ to effect this mastership. Additional system bus transactions will be prevented until the ongoing write (resulting from the reflective read) to main memory has completed. Systems having more elaborate protocols for acknowledging data transfers between a requesting cache and a cache data owner can use this signal to prevent the next transaction from overwriting the reflective data path inside the controller.
This output may also be programmed to include the empty status of the FIFOs. $\overline{\mathrm{BR}} / \overline{\mathrm{FE}}$ will then be asserted if either the reflective FIFO or the normal write FIFO are not empty. This output may be used by systems that assess the availability of the controller before the data phase is initiated and pause until the controller becomes available.
$\overline{\mathbf{B G}}$ - Bus Grant. This signal is asserted by the external arbiter in response to a $\overline{\mathrm{BR}}$, to indicate that the controller has been granted ownership of the bus.
$\overline{\mathbf{B B}}$ - Bus Busy. This signal is asserted by the controller for the duration of its bus ownership. The controller will acquire the bus as it completes the main memory write transaction during reflective read operations. When Bus Arbitration is disabled, this bidirectional pin may be used as an output to report read status. When the controller module begins a read operation, $\overline{\mathrm{BB}}$ will be asserted indicating that the host can expect data in several clock cycles (actual number of clock cycles depends on programmed DRAM timings).

Table 21. ID[3:0] in Generic Mode

ID3	ID2	ID1	ID0	DRAM Mode Selection
0	0	X	X	Not Selected
0	1	0	0	Not Selected
0	1	0	1	I/O Registers
0	1	1	0	Indirect Address Register
0	1	1	1	Not Selected
1	X	X	X	Memory

ID[3:0] - Identification. The Identification bits are synchronous inputs recognized during the address phase. The ID bits are used in conjunction with address signals to define the nature of the bus
transaction and select I/O registers or DRAM memory. For MBus operation refer to Table 39. For the generic mode a match is required between $\operatorname{ID}[3: 0]$ and the fixed values shown in Table 21.
CLK - Clock. CLK synchronizes all bus transactions. All transactions are strobed in at the rising edge of clock.
MCLK - Multiple Clock. MCLK may be used to supply a high-er-frequency DRAM clock in lieu of using the internal PLLs. MCLK must be an integer multiple of CLK (either $1,2,3$, or 4). When using the PLLs, MCLK must be tied to CLK.
$\overline{\mathbf{I N T}}$ - Interrupt. This signal indicates that the module has a pending interrupt that requires service. This output remains asserted until the interrupting condition is cleared.
IMD - Interface Mode. When tied LOW, the controller operates in the MBus mode. When tied HIGH, the controller operates in the generic mode.

Pin Description

Table 22 through Table 25 summarize the functional pin connections of the controller module. Power and ground connections are not listed.

Table 22. Pin Descriptions

Signal Name	1/O	Description
D[63:0]	I/O	System Data Bus: These lines are used to transfer data to and from the DRAM Module. These lines are normally threestated except when a valid read cycle is in progress.
DP[7:0]	I/O	Data Bus Parity: These signals follow the direction of the data bus. When the device is driving the data bus (read), data parity is generated and supplied to these pins. When data is entering the device, data parity is checked.
PMD[2:0]	I	Parity Mode: These inputs specify the parity mode for data and address.
A[35:0]	I	System Address Bus: These lines are used to transfer the address to the DRAM module.
AP[3:0]	I	Address Bus Parity: These inputs are examined for address integrity during accesses to the device.
$\overline{\text { AS }}$	I	Address Strobe: This input is used to indicate that the bus address and control signals are valid. It is used to enable clocking of the address and control information into the controller.
$\overline{\text { DS }}$	I	Data Strobe: This input is used to indicate that the data transaction is to take place.
$\overline{\text { BLST }}$	I	Burst Last: This input can be used to terminate a transaction.
$\overline{\text { BACK [1:0] }}$	I/O	Bus Acknowledge: These acknowledge signals output the transaction response back to the bus master. During reflective reads, these signals are inputs. During Reset, act as inputs and are used to invoke certain modes.
$\overline{\text { UERR }}$	I/O	Uncorrectable Error: This interrupt signal reports an unrecoverable error condition during a read. During reset it acts as an input to select Snoop Window source.
$\overline{\text { RSTIN }}$	I	Master Reset: Activating this input causes the module to set all control and status bits to their reset state.
CLK	I	System Bus Clock: This clock is used to synchronize the controller's operation to the system bus clock.
$\overline{\text { BERR }}$	O	Bus Error (Three-State): Indicates that a parity error has occurred on the bus. BERR is asynchronous.

Signal Name	I/O	Description
$\overline{\text { INH }}$	I	Inhibit is used to abort read and write op- erations.
$\overline{\text { SNW }}$	I	Snoop Window: Defines the time in which Inhibit can be asserted.
$\overline{\text { TRC }}$	I	Transform Cycle: This input reverses the sense of inhibited operations.
TYPE[5:0]	I	Transaction Type: These inputs determine the transaction type.
SIZE[7:0]	I	Transaction Size: These inputs indicate the size of the transaction.
$\overline{\mathrm{INT}}$	O	Interrupt (Three-State): This output indi- cates that an interrupt request is pending.
ID[3:0]	I	Identification: Selects memory or internal registers; positions the module in the ad- dress space.
$\overline{\mathrm{BR} / \mathrm{FE}}$	O	Bus Request/FIFO Empty: Reflects the status of the reflective or write FIFOs.
$\overline{\mathrm{BG}}$	I	Bus Grant.
$\overline{\mathrm{BB}}$	I/O	Bus Busy: Used to assert bus ownership or to indicate the beginning of a read op- eration.
ADRS[11:0]	O	DRAM row/column multiplexed address.
R/ $\overline{\mathrm{W}}[3: 0]$	O	DRAM read/write control; one output per bank. (CYM7232 only)
R/ $\overline{\mathrm{W}}[1: 0]$	O	DRAM read/write control; one output per bank. (CYM7264 only)
$\overline{\mathrm{RAS}[3: 0] ~}$	O	DRAM row address strobe; one per block.
$\overline{\mathrm{CAS}}[3: 0]$	O	DRAM column address strobe; one per block.

Table 23. Special Function Signals

Signal Name	I/O	Description
TSTE	I	Test Enable: This input must be set to 1 for proper operation.
TSTM	I	Test Mode.
TST[2:0]	O	Test Outputs.
MCLK	I	Multiple Frequency Clock: Optional input if internal PLLs are not used.
IMD	I	MBus/generic interface mode select.

Table 24. DRAM Data Signals (CYM7232)

Signal Name	I/O	Description
DDA[31:0]	I/O	DRAM data bus interface, Bank 0
EDA[6:0]	I/O	DRAM error check bit bus interface, Bank 0
DDB[31:0]	I/O	DRAM data bus interface, Bank 1
EDB[6:0]	I/O	DRAM error check bit bus interface, Bank 1
DDC[31:0]	I/O	DRAM data bus interface, Bank 2
EDC[6:0]	I/O	DRAM error check bit bus interface, Bank 2
DDD[31:0]	I/O	DRAM data bus interface, Bank 3
EDD[6:0]	I/O	DRAM error check bit bus interface, Bank 3

Table 25. DRAM Data Signals (CYM7264)

Signal Name	I/O	Description
DDA[63:0]	I/O	DRAM data bus interface, Bank 0
EDA[7:0]	I/O	DRAM error check bit bus interface, Bank 0
DDB[63:0]	I/O	DRAM data bus interface, Bank 1
EDB[7:0]	I/O	DRAM error check bit bus interface, Bank 1

Power and Ground Connections

There are two sets of power and ground connections. One set is for the logic and I / O circuitry and is indicated by $V_{S S}$ and $V_{D D}$ in the pin diagram. All V_{SS} pins should be connected to ground and all $V_{D D}$ pins should be connected to the +5 volt supply. There are separate supply connections for the internal phase lock loops. $\mathrm{V}_{\text {DDL }}$ is the +5 volt supply connection and $\mathrm{V}_{\text {SSL }}$ is the ground connection for the phase lock loops. For superior noise immunity, $\mathrm{V}_{\text {SSL }}$ and $\mathrm{V}_{\text {DDL }}$ should be connected with independent pcb routing. These connections should run to the power supply where it connects to the circuit board on which the controller module resides.
The pinout lists several no connect (NC) pins. These connections should be left open. They may be used in future versions of the controller. IMD should be tied HIGH to invoke the generic bus interface mode or LOW for MBus mode. TSTE must be held HIGH.

32-Bit System Bus Connection

The 32-bit EDC version of the controller (CYM7232) may be connected to a 32 -bit system data bus. This is accomplished by tying D0 to D32, D1 to D33 and so forth. The SBS field in the Command register must also be programmed with 0 to invoke the 32-bit system bus mode forcing the controller to multiplex read
data onto the system bus and demultiplex write data from the system bus. The controller may be further connected for a multiplexed address/data bus by tying $\mathrm{A}[31: 0]$ to $\mathrm{D}[31: 0]$.
If the system bus employs bus parity, then DP0 should be tied to DP4, DP1 tied to DP5 and so forth forming a four-bit parity nibble for the 32-bit system bus.

64-Bit System Bus Connection

The 64-bit EDC version of the controller may only be connected to 64 bit bus systems. Address and data may be multiplexed, as in the 32 bit case, by connecting the module's address bus to a portion of its data bus. Address parity and data parity may also be shared, by connecting the module's address parity bus bits to a portion of its data parity bus.

Internal Registers

Several internal registers are available to set-up the controller and report status to the host. Each register is spaced 16 bytes apart in the address space so that its contents will be accessible on $\mathrm{D}[7: 0]$ of the data bus regardless of system bus width or orientation (little/big endian). The EDC registers are accessed as 32 -bit registers. An internal 8 -bit indirect address register is provided to point to the individual I/O locations inside the controller. A register map is provided in Table 26.

Table 26. Register Map

Index Name

00 H Command Register 0
$01 \mathrm{H} \quad$ Command Register 1
$02 \mathrm{H} \quad$ Command Register 2
03 H Command Register 3
$04 \mathrm{H} \quad$ Command Register 4
05 H Command Register 5
06 H Command Register 6
07H Reserved
08 H DRAM Timing 0
09 H DRAM Timing 1
0A H DRAM Timing 2
OB H DRAM Timing 3
OCH DRAM Timing 4
0D H Reserved
0E H Reserved
0FH Reserved
10 H Base Address [7:0]
$11 \mathrm{H} \quad$ Base Address [15:8]
12 H Logical Block Displacement [7:0]
13 H Logical Block Displacement [15:8]
14H Reserved
15H Reserved
16H Reserved
17H Reserved

R/W
R/W
R/W
R/W
R/W
R/W
R/W
R/W

7	6	5	4	3	2	1	0
CIE	RFD						
INIT	WC	AEM	SBS	ES			RFT
BLP				BLK		DFB	
RCM		BAM		SEN	CAM	RSM	BRM
PLT		VCO		IOSWC			
IE		EDP	EAP	EME	EUE	EDE	ESE
SNWWRCNT				SNWRD CNT			

R/W
R/W
R/W
R/W
R/W

RAM	AR
RAS	MAC
CP	RPR
RIN	DC
ENW	ENR

R/W
R/W
R/W
R/W

BA[27:20]		
BA[35:28]		
Reserved	DS2	DS1
Reserved		DS3

Table 26. Register Map (continued)

Index Name

18 H Logical Block Population Code [7:0]
19 H Logical Block Population Code [15:8]
1A H Physical/Logical Map [7:0]
1B H Reserved
1C H Logical Block Mux Position [7:0]
1D H Logical Block Mux Position [15:8]
1E H Reserved
1FH Reserved
20 H Error Location Address [7:0]
21 H Error Location Address [15:8]
22 H Error Location Address [23:16]
23 H Error Location Address [31:24]
$24 \mathrm{H} \quad$ EDC Register 0
$25 \mathrm{H} \quad$ EDC Register 1
26 H Reserved
27 H Reserved
28 H Syndrome FIFO Flags 0
29 H Syndrome FIFO Flags 1
2AH Reserved
2BH Reserved
2C H Diagnostic Check Bit 0
2D H Diagnostic Check Bit 1
2E H Reserved
2F H Reserved
30 H Silicon Revision
31 H Bus Error
32 H Interrupt Status Register

R/W
R/W
R/W
R/W

R/W
R/W

R

R
R
R
R
R

R
R

W
W

R
W
R/W

Index Register

IA[7:0] - Index Address. This register's contents points to all other registers inside the controller. During access to the controller's internal byte wide 1/O path, little-endian processors should apply an address with $\mathrm{A}[3: 0]=0$ to enable data onto $\mathrm{D}[7: 0]$ on their system bus. Big-endian processors should apply an address with their $\mathrm{A}[3: 0]=\mathrm{F}$ to enable data onto $\mathrm{D}[7: 0]$ on their system bus. Access to the internal registers is controlled through the ID bits. For ID3 equal to 1, all accesses occur to memory. For ID3 equal to 0 , access is to the internal registers: with $\operatorname{ID}[2: 0]$ equal to 110, transactions are directed to the Index register, with ID[2:0] equal to 101, transactions are directed to the register pointed to by the Index register. For all other combinations of the ID input, the controller is not selected. ID3 functions as the Memory/IO select and the remaining ID inputs function as selects or chip enables.
This register is not used in MBus mode. See MBus section for details on writing and reading I/O registers.
Command Registers - Write / Read
Command Register 0

Index	7	6	5	4	3	2	1	0
00 H	CIE		RFD					
Default	0	7F (h)						

CIE - Coherent Invalidate Acknowledge Enable. When this bit is set HIGH it enables acknowledges to MBus Coherent Invalidate cycles. BACK[1:0] are generated two clocks after the address phase in which the TYPE bits specify this cycle. Systems requiring different acknowledge delays should set CIE $=0$ and use an external PLD to generate the acknowledge. This bit should be set to 0 when in the Generic Mode.
RFD - Refresh Counter Divisor. These bits divide CLK down to 1 MHz . The output of this counter is further divided by a fixed divide "by 15 " counter, which produces the 15 microsecond refresh requests. The division factor is the load value plus 1 . For example, the divisor load values in decimal for the various bus clock frequencies are:

24	25 MHz						
32	33 MHz						
39	40 MHz						
49	50 MHz						
Command Register 1							
Index	7	6	5	4	3	2	1
01 H INIT WC AEM SBS ES CLM[1:0] RFT Default 0 0 0 0 0 0 0							

INIT - Initialization. This bit, when set, triggers an initialization of the DRAM memory and its check bits. The contents of the memory are set to zero and the corresponding check bits are set.
WC - Write Check Bits. Enables writing of the EDC check bits from the registers inside the data path.

0 Write EDC check word computed from incoming data.
1 Write EDC check word from check bit register.
AEM - Address Error Mode. Controls assertion of BERR after an address parity error.

0 BERR asserted for one clock
$1 \overline{\mathrm{BERR}}$ asserted until cleared by writing 1 to ABE in Interrupt Status register

SBS - System Bus Size. Specifies the number of data bits in the system bus.
$\begin{array}{ll}0 & 32 \text { Bits } \\ 1 & 64 \text { Bits }\end{array}$
ES - EDC Size. Specifies the number of data bits in each EDC packet.

032 Bits
164 Bits
CLM - Clock Multiplier. These bits program the multiplication factor from the incoming bus clock (CLK) to the internal DRAM timing clock. They are defined as follows:

CLM[1:0] Clock Multiplier

00	X 1
01	X 2
10	X 3
11	$\mathbf{X} 4$

RFT - Refresh Test Mode. This bit must be clear for proper operation.
Command Register 2

Index	7	6	5	4	3
02 H	2				1

BLP - Block Population. These bits define which physical blocks are populated. $\operatorname{BLP}[\mathrm{N}]=1$ indicates that Block N is populated. Block population must be contiguous with one exception. BLP0 and BLP2 can be asserted simultaneously with BLP1 and BLP3 deasserted simultaneously when supporting 36- and 40-bit SIMMS populated with two sections of DRAM memory.
BLK - Number of Blocks. These bits specify the total number of populated blocks. $0(\mathrm{H})=1$ block ... $3(\mathrm{H})=4$ blocks.
DFB - Default Burst Length. This field defines the default burst length for cache line read/writes. The bus will execute burst transactions with this default length when the appropriate TYPE bit is asserted during the address phase of a transaction or when an operation is transformed. These bits are interpreted as follows:

DFB [1:0] Default Burst Length

| 00 | 16 Bytes | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 01 | 32 Bytes | |
| 10 | 64 Bytes | |
| 11 | 128 Bytes | |

RCM - Refresh Control Modes. These bits control refresh and the DRAM INIT process for test purposes. RCM must be set to 11 for proper operation. When asserted, RCM $[0]$ enables refresh and RCM[1] enables the INIT process. (The INIT process occurs after DRAM energizing and fills all DRAM with 0 .)

Index Register (continued)

BAM[1:0] - Bus Acknowledge Modes. These bits control the operating modes for read operations. BAM0 controls error correction. BAM1 controls the insertion of wait states.

BAM0 - Error Correction Enable

0 Error correction disabled
1 Error correction enabled
When error correction is disabled, reads as a result of Read Modify Write operations are not affected. Consequently, singlebit errors in the read portion of RMW cycles are corrected and merged with the write data. Uncorrectable errors cause the write back portion of RMW cycles to abort. Read Modify Write transactions are not possible in systems configured without DRAM check bits.

BAM1 - Wait State Insertion on Reads
0 No wait states inserted
1 Wait states inserted
The insertion of wait states allows corrected data to meet minimum set-up requirements in high-speed systems. Wait states should be inserted for systems requiring greater system bus setup time on reads.
SEN - Scrub Enable. This bit enables scrubbing when asserted HIGH.

CAM - CAS Assertion Mode

0 CAS[3:0] independently asserted.
1 CAS[3:2] "ORed" to produce $\overline{\mathrm{CAS}} 2, \overline{\mathrm{CAS}}[1: 0]$ "ORed" to produce CAS 0 . This mode is provided to support some 36 or 40-bit-wide DRAM SIMMs that contain two rows of memory with independent $\overline{\mathrm{RAS}}$ and common $\overline{\mathrm{CAS}}$.
RSM - $\overline{\text { RAS }}$ Stagger Mode (during Refresh/Scrub operations).
0 $\overline{\mathrm{RAS}}[3: 0]$ staggered by one bus clock.
1 RAS[3:0] staggered to be non-overlapping (mutually exclusive in time). This mode is provided to support some 36 - or 40-bit-wide DRAM SIMMs that contain two rows of memory with independent RAS and common CAS. The $\overline{\mathrm{RAS}}$ signals must be mutually exclusive when scrubbing these SIMMs.

BRM - Bus Request Mode
0 Busarbiter ON. $\overline{\mathrm{BR}} / \overline{\mathrm{FE}}$ assertion indicates reflective FIFO status only. With bus arbiter $\mathrm{ON}, \overline{\mathrm{BR}} / \overline{\mathrm{FE}}$ is deasserted with the recognition of Bus Grant $(\overline{\mathrm{BG}})$ and Bus Busy $(\overline{\mathrm{BB}})$ is asserted after the $\overline{\mathrm{BB}}$ pin goes HIGH.
1 Bus arbiter OFF. $\overline{\mathrm{BR}} / \overline{\mathrm{FE}}$ assertion combines write FIFO status and reflective FIFO status (logicalOR). Both FIFOs must beempty for the $\overline{\mathrm{BR}} / \overline{\mathrm{FE}}$ output to be deasserted. With the bus arbiter OFF, $\overline{\mathrm{BG}}$ is ignored, the $\overline{\mathrm{BR}} / \mathrm{FE}$ output simply reflects the combined FIFO status, and $\overline{\mathrm{BB}}$ acts as an output signaling the beginning of a read transaction.
Command Register 4

Index	76	54	3	21	0
04 H	PLT[1:0]	$\mathrm{VCO}[1: 0]$		IOSWC	
Default	$\mathrm{O}(\mathrm{h})$	$\mathrm{O}(\mathrm{h})$		$\mathrm{F}(\mathrm{h})$	

PLT[1:0] - Phase-Locked Loop Test. This field is for test purposes only. PLT[1:0] should be programmed to 11 when enabling the internal VCOs, otherwise PLT[1:0] $=00$.
VCO[1:0] - Voltage Controlled Oscillation Select. This field selects the appropriate VCO for generating the internal multiplied clock.

00 No VCO selected, use external MCLK
$0170-\mathrm{MHz}$ VCO
$1080-\mathrm{MHz}$ VCO
11 100-MHz VCO
The operating range of the VCOs is given in the following table. Each VCO requires a minimum of 20 ms to phase lock to the system bus clock after being enabled.

VCO (MHz)	Operating Range (MHz)
70	$65-74.9$
80	$75-84.9$
100	$95-104.9$

IOSWC - Snoop Window Count. This value programs the duration of the snoop window for I/O operations in bus clock cycles. The snoop window counter is enabled one clock after an address phase on the bus in which the controller is selected. When a 0 is programmed into the counter the snoop window closes immediately (i.e., the cycle after the address phase). The window can be extended up to 16 clocks after the address phase appears on the bus. After power-up the counter defaults to the maximum value. The internal snoop window is selected by driving UERR appropriately during reset.
Command Register 5

| Index | 7 | | 6 | 5 | 4 | 3 | 2 | 1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$|$

IE - Interrupt Enable. This bit must be set to enable interrupts to the system bus.
EDP - Enable Data Bus Parity Interrupt. Enables the interrupt indicating that one of the data bytes has a parity error.
EAP - Enable Address Bus Parity Interrupt. Enables the interrupt indicating that one of the address bytes has a parity error.
EME - Enable Read-Modify-Write Multiple Error Interrupt. Enables the interrupt indicating that a multiple error has occurred on a read-modify-write cycle.
EUE - Enable Uncorrectable Error in Word Interrupt. Enables the interrupt indicating that an uncorrectable error has occurred in a word.
EDE - Enable Double Bit Error in Word Interrupt. Enables the interrupt indicating that a double bit error has occurred in a 32-(64-) bit word.
ESE - Enable Single Bit Error Interrupt. Enables the interrupt indicating that a single bit correctable error has occurred in a 32-(64-) bit word.

Command Register 6

| Index | 7 | 6 | 5 | 4 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | 2.1 .0

Index Register (continued)

SNWWRCNT specifies the snoop window duration for memorywrite transactions and SNWRDCNT specifies the snoop window duration for memory-read transactions. The internal snoop window is used only if selected by driving UERR appropriately during reset. The snoop window counter is enabled one clock after an address phase on the bus in which the controller is selected. When a 0 is programmed into the counter, the snoop window closes immediately (e.g., the cycle after the address phase). the window can be extended up to 16 clocks after the address phase appears on the bus. After reset, the counter defaults to the maximum value.
DRAM Timing Program Registers - Write / Read
DRAM Timing Register 0

Index	7	6	5	4	3	2
08 H	RAM[3:0]	1	0			
Default	$\mathrm{F}(\mathrm{h})$	$\mathrm{AR}[3: 0]$				

DRAM Timing Register 1

Index	7	6	5	4	3	2	1	0

09 H	RAS[3:0]	MAC[3:0]
Default	$\mathrm{F}(\mathrm{h})$	$\mathrm{F}(\mathrm{h})$

DRAM Timing Register 2

Index	7	6	5	4	3	2
0AH	$\mathrm{CP}[3: 0]$	1	0			
Default	$\mathrm{F}(\mathrm{h})$	$\mathrm{RPR}[3: 0]$				

DRAM Timing Register 3

Index	7	6	5	4	3	2

DRAM Timing Register 4

Index	7	6	5	4	3	2
0 CH		ENW[3:0]		0		
Default	$\mathrm{F}(\mathrm{h})$	ENR[3:0]				

The DRAM Timing Program registers should not be reprogrammed during operation. The user must reset the part and reprogram all DRAM timing before issuing an INIT.
For optimum performance, $\mathrm{DC}[3: 0]$ should always be programmed to 0001(b). $\operatorname{RIN}[3: 0]=\operatorname{RAS}[3: 0]-(\operatorname{RAM}[3: 0]+$ MAC[3:0]).
All timing values are set with 4-bit values. The time intervals are specified to $10-\mathrm{ns}$ accuracy when the internal clock is running at $100 \mathrm{MHz}, 12.5-\mathrm{ns}$ accuracy when the internal clock is running at $80 \mathrm{MHz}, 13.3-\mathrm{ns}$ accuracy when the internal clock is running at 75 MHz , or 15.2 -ns accuracy when the internal clock is running at 66 MHz . Refer to the timing diagrams for elaboration.

Table 27. DRAM Timing Values

Hex Value	Delay/Width (ns)			
	$\mathbf{6 6} \mathbf{~ M H z}$	$\mathbf{7 5} \mathbf{~ M H z}$	$\mathbf{8 0} \mathbf{~ M H z}$	$\mathbf{1 0 0} \mathbf{~ M H z}$
0	15.2	13.3	12.5	10
1	30.3	26.6	25	20
2	45.5	40	37.5	30
3	60.7	53.3	50	40
4	80	66.6	62.5	50
5	91	80	75	60
6	106	93.3	87.5	70
7	121	106.6	100	80
8	136	120	112.5	90
9	167	133.3	125	100
A	182	146.6	160	150
C	197	173.3	162.5	120
D	212	186.6	187.5	130
E	227	200	200	140
F	242	213.3	150	

Table 28. DRAM Timing Program ${ }^{[1]}$

Parameter	Field Name	Description
$\mathrm{t}_{\mathrm{RAM}}$	RAM	$\overline{\mathrm{RAS}}$ to multiplexed address
t_{AR}	AR	Address to $\overline{\mathrm{RAS}}$ assertion
$\mathrm{t}_{\mathrm{RAS}}$	RAS	$\overline{\mathrm{RAS}}$ pulse width
$\mathrm{t}_{\mathrm{MAC}}$	MAC	Multiplexed address to $\overline{\mathrm{CAS}}$
t_{CP}	CP	$\overline{\mathrm{CAS}}$ pre-charge width
$\mathrm{t}_{\mathrm{RPR}}$	RPR	$\overline{\mathrm{RAS}}$ pre-charge width
$\mathrm{t}_{\mathrm{RIN}}$	RIN	$\overline{\mathrm{RAS}}$ completion during non-reflec- tive Inhibit
t_{DC}	DC	FIFO data delay to $\overline{\mathrm{CAS}}$
$\mathrm{t}_{\mathrm{ENR}}$	ENR	Enable delay on read
$\mathrm{t}_{\mathrm{ENW}}$	ENW	Enable delay on write
$\mathrm{t}_{\mathrm{ACC}}$	-	DRAM access time (determine by DRAM chips)
$\mathrm{t}_{\mathrm{CLZ}}$	-	DRAM $\overline{\text { CAS to Output Low }} \mathrm{Z}$ (de- termined by DRAM chips)
t_{CY}	-	Bus CLK period

Note:

1. All timings may be resolved to $1 / \mathrm{n}$ of t_{CY}, where n is the phase locked loop multiplier (e.g. $50-\mathrm{MHz}$ systems having a PLL multiplier of 2 with $\mathrm{t}_{\mathrm{CY}}=20 \mathrm{~ns}$ can have DRAM timing resolutions defined to 10 ns). Therefore, unless the timing values are constrained, the DRAM read data could arrive at the data path input pipeline on a 10 -ns boundary rather than a bus clock boundary. The controller will automatically extend certain values that are programmed to provide data on a bus clock boundary, whenever necessary.

DRAM Block Assignment Register Array

Five registers are used to map the incoming address to the four physical blocks of DRAM. These registers specify the Base address of the DRAM array, the gaps between blocks, the relationship between physical blocks and logical blocks, the size of memory each block is populated with, and the RAS/CAS address split point in the DRAMs in each block. The module should be re-initialized when any of these registers are changed during operation.
The Base Address register, Logical Block Displacement register, Logical Block Population Code register, and Logical Block MUX Position register are all 2-byte registers. The Physical/Logical Block Map register is a 1-byte register.
Base Address Register
Byte Address 10H, BA[27:20] (Bits 7:0) Byte Address 11H, BA[35:28] (Bits 15:8)

15 87

0

	BA0[35:28]	BA0[27:20]
Default	00 H	00 H

BA[35:20] - Base Address of Memory. This entry specifies the base address of the memory. The base address must be evenly divisible by the depth of the largest DRAM device used multiplied by 16 . For example, if the largest DRAM device used is 1 M deep, then the smallest base address (other than 0) is $\mathrm{BA}=0010(\mathrm{~h})$; BA[23:20] must be 0 .

Logical Block Displacement Register Byte Address 12H, LBD[7:0] Byte Address 13H, LBD [15:8]					
	1511	108	76	53	20
	Reserved	$\mathrm{DS}(3)[2: 0]$	Reserved	DS(2)[2:0]	DS(1)[2:0]
Default	0 H	0 H	0 H	0 H	0 H

DS(N) [2:0] - Address Displacement of logical block (N). This entry specifies the address displacement of logical block (N) from logical block $(\mathrm{N}-1)$. The starting address of logical block (0) is the Base address of the memory. The starting address of logical block (1) is the sum of the Base address and the displacement selected by DS(1). The starting address of logical block (2) is the sum of the starting address of logical block (1) and the displacement selected by DS(2). The starting address of logical block (3) is the sum of the starting address of logical block (2) and the displacement selected by DS(3). The programmed displacement, $\mathrm{DS}(\mathrm{N})$, must be equal to or greater than the depth of the memory chips contained in logical block $\mathrm{N}-1$. When the programmed displacement is equal to the memory chips depth, the memory is contiguous.

DS(N)[2:0]	Displacement
000	256 K
001	1 M
010	4 M
011	16 M
100	32 M
101	64 M
110	128 M
111	256 M

LPC(N) [1:0] - Logical Block Population Code. LPC(N)[1:0] specifies the DRAM type in logical block (N).
LPC(N) [1:0]
11
10
01
00
DRAM Depth
16M
4M
1M
256K

The physical blocks may be configured in any order. To obtain a contiguous memory with no overlaps or gaps, the logical blocks must be populated in order with the largest DRAM type in logical block 0 , followed by the next largest DRAM type in logical block 1, etc., and the logical block populations must be contiguous (no unpopulated logical blocks between populated blocks).
LBP (N) specifies whether or not the block is populated. LBP (N) $=0$ block not populated. $\operatorname{LBP}(\mathrm{N})=1$ block populated.
Physical/Logical Block Map Register
Byte Address 1AH , PBLR[7:0]

	654		210	
	PBL3[1:0]	PBL2[1:0]	PBL1[1:0]	PBL0[1:0]
Default	00 H			

PBL(N) [1:0] - Physical Block Association. PBL(N)[1:0] specifies the logical block to which physical block N is mapped.

PBL(N) [1:0]	Association
00	Logical Block 0
01	Logical Block 1
10	Logical Block 2
11	Logical Block 3

Logical Block MUX Position Register
Byte Address 1CH, MPR[7:0]
Byte Address 1DH, MPR [15:8]

7	6		3		0
	Reserved	LBMP1[2:0]	LBMP0[2:0]		
Default	00 H				

LBMP(N$)[2: 0]$ specifies the DRAM column address/row address split for logical block (N). The split is specified in terms of the address applied to the DRAM. Note that bus address 4 is DRAM column address 0 . All twelve DRAM address bits are valid for all split selections.

LBMP(N) [2:0]	Row/Column Address Split Location
000	$8 / 7$
001	$9 / 8$
010	$10 / 9$
011	$11 / 10$
100	$12 / 11$
101	unused
110	unused
111	unused

Error Location Register - Read Only

The Error Location register is a 32 bit register that contains the address of the most recent error. This register is read only and is byte addressable only. All bytes appear on $\mathrm{D}[7: 0]$. Byte addresses are as follows:

20 H	ELA[7:0]
21 H	ELA[15:8]
22 H	ELA[23:16]
23 H	ELA[31:24]

Error Location Address [31:0]
31
0

	ELA[31:0]
Default	00 H

The Error Location Address register reports the address location of an error in the DRAM and how the error occurred. When the error ocurs during a read operation the ELA register reports the address as it appeared on the system bus and the physical block wherer the system bus address is mapped. When the error occurs during a refresh, or scrub, operation the ELA reports the physical block and address in row/column format.
Read Error Location Register Format
ELA[31:30] Physical Block in DRAM
ELA[29:28] 00 (Reports Read Error)
ELA[27:4] System Bus Address A[27:4]
ELA[3:0] 0
Refresh/Scrub Error Location Register Format
ELA[31:30] Physical Block in DRAM
ELA[29:28] 01 (Reports Ref. Error)
ELA [27:16] DRAM Row Address
ELA[15:4] DRAM Column Address
ELA[3:0] 0
After a system bus read error, diagnostic software will translate the system bus address to the row/column address inside the DRAM. This mapping will depend on the DRAM configuration.
When the error occurs during refresh, or scrub, diagnostic software will extract the meautingful portion of the row/column address (from the reported row/column address) based on the DRAM population of the particular physical block in error. The

Error Location Register - Read Only (continued)

DRAM array is always refreshed as if populated with 16-Megabit DRAMs in all blocks. Therefore higher order row and column address bits in the internal refresh counter will increment even when they are not required to span the address space within a block. These redundant bits must be ignored in calculating the location of an error which occurred during refresh.
The ELA register is constantly updated with the address of the current transaction. If an error is detected in the read from DRAM, further writing to this register is locked out until the interrupt bit is cleared. (If two successive transactions incur errors
and the interrupt bit is not cleared before the address phase of the second transaction, the address of the second error is lost.)

Error Status Registers - CYM7232

The Error Status registers provide information on errors that have occurred during any read operation (including scrubbing and read modify write). The location of these registers on the data bus will depend on the system bus configuration (32 or 64 bits). Table 29 shows the location of data path registers for the 64-bit system bus.Table 30 shows the location of the same registers in the 32-bit system bus application.

Table 29. Error Status Register Map for CYM7232 with 64-Bit System Bus

Index	Name	R/W	63:56	55:48	47:40	39:32	31:24	23:16	15:8	7:0
24 H	EDC Register 0	R					CB2	CB0	SYN2	SYN0
25 H	EDC Register 1	R	CB3	CB1	SYN3	SYN1				
26 H	Reserved									
27 H	Reserved									
28 H	Syndrome FIFO Flags 0	R								FL0
29 H	Syndrome FIFO Flags 1	R				FL1				
2 AH	Reserved									
2B H	Reserved									
2 CH	Diagnostic Check Bit 0	W								DCB0
2D H	Diagnostic Check Bit 1	W				DCB1				
2EH	Reserved									
2F H	Reserved									

Table 30. Error Status Register Map for CYM7232 with 32-Bit System Bus

Index	Name	R/W
24 H	EDC Register 0	R
25 H	EDC Register 1	R
26 H	Reserved	
27 H	Reserved	R
28 H	Syndrome FIFO Flags 0	R
29 H	Syndrome FIFO Flags 1	
2 A H	Reserved	
2 B H	Reserved	W
2 C H	Diagnostic Check Bit 0	W
2 D H	Diagnostic Check Bit 1	
2 E H	Reserved	
2 2F H	Reserved	

$31: 24$	$23: 16$	$15: 8$	$7: 0$
CB2	CB0	SYN2	SYN0
CB3	CB1	SYN3	SYN1
			FL0
			FL1
			DCB0
			DCB1

EDC Registers

The EDC Registers contain the Read Error Log FIFO and Check Bits fields. The registers are Read Only. The register at address 24 appears on D [31:0] and the register at address 25 appears on $\mathrm{D}[63: 32$] when the module is connected a 64 bit system bus. For 32 bit systems, both registers appear on D [31:0].
EDC Register 0

Index	31	30	24	161514	CB0	6	SYN2	0
24 H		CB2		00 H		Undefined		Undefined
Default		00 H		02				

EDC Register 1

This register will appear on D [63:32] of the 64-bit system bus. When used in a 32 -bit system bus application, this register will appear on $\mathrm{D}[31: 0]$.
SYN0, SYN1, SYN2, SYN3 - Syndrome Bits. These bits originate from the outputs of the syndrome FIFO. They reflect the EDC syndrome bits on any memory read error condition (including reads, read bursts, scrubs, and read modify writes). The syndrome outputs contain valid information whenever the FIFO Flag register's corresponding status bits indicate that the FIFOs are not empty. SYN0 contains the syndrome values for errors in DRAM Bank 0. SYN1 contains the syndrome values for errors in DRAM Bank 1, and so forth.
CB0, CB1, CB2, CB3 - Check Bits. These bits reflect the EDC check bits that were present during the previous read operation. CB0 contains the check bits from DRAM Bank 0 for the most recent read. CB1 contains the check bits from DRAM Bank1 for the most recent read and so forth.

Syndrome FIFO Flag Registers

The Syndrome FIFO Flag registers contain the full/empty status of the syndrome FIFOs. The registers are read only (byte addressable only). When the module is used in a 64-bit bus system the register at address 28 appears on $\mathrm{D}[7: 0]$ and the register at address 29 appears on D [39:32]. In 32-bit system bus operation the register at address 29 will appear on $\mathrm{D}[7: 0]$.

Syndrome FIFO flag register 0 (32- \& 64-bit system bus) $\begin{array}{lllllllll}\text { Index } & 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0\end{array}$

28 H	Reserved	FSF2	ESF2	FSF0	ESF0
Default	00 H	0	1	0	1

Syndrome FIFO flag register 1 (64-bit system bus)

Index	39	38	37	36	35	34	33	32

29 H	Reserved	FSF3	ESF3	FSF1	ESF1
Default	00 H	0	1	0	1

Syndrome FIFO flag register 1 (32-bit system bus)

Index	7	6	5	4	3	2	1	0
29 H	Reserved		FSF3	ESF3	FSF1	ESF1		
Default	00 H		0	1	0	1		

ESF0, ESF1, ESF2, ESF3 - Syndrome FIFO Empty Flags. These bits reflect the EDC syndrome FIFO empty status. When set to 1, these bits indicate that the associated FIFO is empty. ESF0 reflects the status of EIFO 0 which stores the syndrome values from DRAM Bank 0. ESF1 reflects the status of FIFO 1 which stores the syndrome values form DRAM Bank 1 and so forth.

FSF0, FSF1, FSF2, FSF3 - Syndrome FIFO Full Flags. These bits reflect the EDC syndrome FIFO full status. When set to 1, these bits indicate that the associated FIFO is full. FSF0 reflects the status of FIFO 0 , which stores the syndrome values form DRAM Bank 0. FSF1 reflects the status of FIFO 1, which stores the syndrome values from DRAM Bank 1 and so forth.

Diagnostic Check Bit Registers

Diagnostic Check Bit Register 0 (32- \& 64-bit system bus)							
Index	7	65	4	3	2	1	0
2 CH	-			DCB			
Default	-			00 H			

Diagnostic Check Bit Register 1 (64-bit system bus)

Index	39	38	37	36	35	34	33	32
2D H	-			DCB1				
Default	-			00 H				

Diagnostic Check Bit Register 1 (32-bit system bus)

Index	7	6	5	4	3	2	1	0
2D H	-			DCB1				
Default	-			00 H				

DCB0, DCB1: Check Bit Register - Write only. These bits can be written to override the check bits generated by the write polynomial generator. In a 64-bit system bus configuration, the register at address 2 C appears on $\mathrm{D}[7: 0]$ and the register at address 2 D appears on $\mathrm{D}[39: 32]$. When used in a 32 -bit system bus, the register at address 2D will appear on D [7:0]. Data written into Diagnostic Check Bit register 0 will write into the check bits for DRAM Banks 0 and 2. Data written into Diagnostic Check Bit register 1 will write into the check bits for DRAM Banks 1 and 3. The selection to use EDC computed from the write data or use the EDC as contained in this register is determined by bit WC in the Command register 1.

Error Status Registers - CYM7264

Table 31. Data Path Register Map for CYM7264

Index	Name	R/W	31:24	23:16	15:8	7:0
24 H	EDC Register 0	R		CB0		SYN0
25 H	EDC Register 1	R		CB1		SYN1
26 H	Reserved					
27 H	Reserved					
28 H	Syndrome FIFO Flags 0	R				FL0
29 H	Syndrome FIFO Flags 1	R				FL1
2A H	Reserved					
2B H	Reserved					
2 CH	Diagnostic Check Bit 0	W				DCB0
2D H	Diagnostic Check Bit 1	W				DCB1
2E H	Reserved					
2F H	Reserved					

EDC Registers

The EDC Registers contain the Read Error Log FIFO and Check Bits fields. The registers are Read Only. These registers will appear in $\mathrm{D}[31: 0]$ of the system data bus as shown in Table 31.
EDC Register 0
Index 31
2423
1615
87
0

24 H		CB 0		SYN0
Default	Undefined	00 H	Undefined	Undefined

EDC Register 1

Index	31	2423	16	15	8

25 H		CB1		SYN1
Default	Undefined	00 H	Undefined	Undefined

SYN0, SYN1 - Syndrome Bits. These bits reflect the EDC syndrome bits on an error condition. SYN0 contains the syndrome values for errors in DRAM Bank 0. SYN1 contains the syndrome values for errors in DRAM Bank 1.

CB0, CB1 - Check Bits. These bits reflect the EDC check bits that were present during the previous read operation. CB0 contains the check bits read from DRAM Bank 0. CB1 contains the check bits read from DRAM Bank 1.

Syndrome FIFO Flag Registers								
Syndrome FIFO Flag Register 0								
Index	7	6	5	4	3	2	1	0
28 H							FSF0	ESF0
Default							0	1
Syndrome FIFO Flag Register 1								
Index	7	6	5	4	3	2	1	0
29 H							FSF1	ESF1
Default							0	1

ESF0, ESF1 - Syndrome FIFO Empty Flags. These bits reflect the EDC syndrome FIFO Empty status. When set to 1, these bits indicate that the associated FIFO is empty. ESF0 is the flag for Syndrome FIFO 0 and ESF1 is the flag for Syndrome FIFO 1.
FSF0, FSF1 - Syndrome FIFO Full Flags. These bits reflect the EDC syndrome FIFO full status. When set to 1, these bits indicate that the associated FIFO is full. FSF0 is the flag for Syndrome FIFO 0 and FSF1 is the flag for Syndrome FIFO 1.

Diagnostic Check Bit Registers

Diagnostic Check Bit Register 0

Index	7	6	5	4	3	2	1	0
2 CH	DCB0							
Default	00 H							
Diagnostic Check Bit Register 1								
Index	7	6	5	4	3	2	1	0
2D H	DCB1							
Default	00 H							

DCB0, DCB1 - Check Bit Register. These bits can be written to override the check bits generated by the write polynomial register. Data in DCB0 is written to DRAM Bank 0 and data in DCB1 is written to DRAM Bank 1. The selection to use EDC computed from the write data or use the EDC as contained in this register is determined by bit WC in the Command register Byte 1.

Silicon Revision Code - Read Only

Index	7	6	5	4	3	2	1	0
30 H				REV[3:0]				

REV[3:0] - Silicon Revision. This field gives the revision number of the module's address controller chip.

BERR Control Register - Write Only

Index	7	6	5	4	3	2	1	0
31 H							BEM	BEC

This register controls operation of the $\overline{\mathrm{BERR}}$ output for data parity errors.
BEM - Data Bus Error Mode. When BEM is set, $\overline{B E R R}$ remains asserted till explicitly cleared (when reporting data parity errors). Otherwise $\overline{\mathrm{BERR}}$ is asserted for one clock only.

BEC - Clear Data Bus Error. This bit, when asserted, clears $\overline{\text { BERR }}$ when MBE (above) is set.
There are two BERR registers in the CYM7232 and two in the CYM7264. These locations on the data bus depend on the bus configuration as follows:
CYM7232
32-Bit Bus mode - Registers programmed simultaneously at D[7:0]
64-Bit Bus mode - Registers located at D [39:32], $\mathrm{D}[7: 0$]
CYM7264
64-Bit Bus mode - Registers programmed simultaneously at D[7:0]
All registers appear at the same address, 31 H .
Interrupt Status Register

Index	7	6	5	4	3	2	1	0
32 H	-	IC	DBE	ABE	MEW	UEW	DEW	SBW
Default	0	0	0	0	0	0	0	0

IC - Initialization Complete. This bit indicates initialization of the DRAM is complete.
DBE - Data Parity Error. This bit indicates that a data bus parity error has occurred over the system bus.
ABE - Address Parity Error. This bit indicates that an address bus parity error has occurred over the system bus.
MEW - Multiple Errors in a Read-Modify-Write. This bit indicates that multiple errors have occurred during a read-modifywrite operation.
UEW - Uncorrectable Error in a Word. This bit indicates that an uncorrectable error has occurred in a 32- (64-) bit word.
DEW - Double Error in a Word. This bit indicates that a double bit error has occurred in a 32- (64-)bit word.
SBW - Single Correctable Error. This bit indicates that a single correctable error has occurred in a 32- (64-) bit word.
Interrupt Status register bits ISR [6:0] are latched. Interrupts[5:0] can be cleared individually by writing the register with the desired bit high. Otherwise those status bits remain indefinitely, or until RSTIN is asserted LOW.

Special Characteristics of I/O Registers

The two EDC registers can be accessed with 32-bit reads over the system bus. All other I/O registers must be accessed by reading or writing a single byte at the address location shown. That byte will always be located at the lowest 8 bits of the system's data bus (D[7:0]). Programming registers are read/write for diagnostic purposes. These register's address locations are separated by 16 bytes to support wide system data paths.

Syndrome Decoding

The following tables give the decoding for the syndrome values for the 32- and 64-bit error detection and correction algorithms. Table 32 gives the syndrome decoding for the 32-bit error-detection and correction algorithm. Table 33 gives the syndrome decoding for the 64 bit error detection and correction algorithm. In these two tables, U indicates a multiple (greater than 2) bit uncorrectable error, D indicates a double bit error, nm indicates an error in data bit nm, Cn indicates an error in check bit n , and N indicates no error.

Table 32. Syndrome Decoding, 32-bit EDC

S6 S5 S4 S[3:0]	0 0 0	0 0 1	$\begin{aligned} & \hline \mathbf{0} \\ & \mathbf{1} \end{aligned}$	0 1 1	1 0 0	$\begin{aligned} & 1 \\ & \mathbf{0} \\ & 1 \end{aligned}$	1 1 0	1 1 1
0000	U	D	D	0	D	U	U	D
0001	D	U	U	D	U	D	D	16
0010	D	29	7	D	U	D	D	U
0011	U	D	D	U	D	13	23	D
0100	D	28	6	D	U	D	D	17
0101	U	D	D	1	D	12	22	D
0110	U	D	D	U	D	11	21	D
0111	D	27	5	D	U	D	D	C3
1000	D	26	4	D	U	D	D	U
1001	U	D	D	U	D	10	20	D
1010	31	D	D	U	D	9	19	D
1011	D	25	3	D	15	D	D	C2
1100	U	D	D	U	D	8	18	D
1101	D	24	2	D	U	D	D	C1
1110	D	U	U	D	14	D	D	C0
1111	30	D	D	C6	D	C5	C4	N

Table 33. Syndrome Decoding, 64-bit EDC

$\begin{aligned} & \hline \mathbf{S 7} \\ & \text { S6 } \\ & \text { S5 } \\ & \text { S4 } \\ & \text { S[3:0] } \end{aligned}$	$\begin{array}{\|l} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{array}$	$\begin{array}{\|l} \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{1} \end{array}$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 1 \\ & 0 \end{aligned}\right.$	$\begin{array}{\|l} \mathbf{0} \\ 0 \\ 1 \\ 1 \end{array}$	$\begin{array}{\|l} \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \end{array}$	$\begin{array}{\|l} 0 \\ 1 \\ 0 \\ 1 \end{array}$	$\begin{aligned} & 0 \\ & 1 \\ & 1 \\ & 0 \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{array}{\|l\|} \hline \mathbf{1} \\ \mathbf{0} \\ \mathbf{0} \\ \mathbf{0} \end{array}$	$\begin{array}{\|l} 1 \\ 0 \\ 0 \\ 1 \end{array}$	$\begin{array}{\|l} 1 \\ \mathbf{0} \\ \mathbf{1} \\ \mathbf{0} \end{array}$	$\begin{array}{\|l\|} \hline 1 \\ 0 \\ 1 \\ 1 \end{array}$	$\begin{array}{\|l} \hline 1 \\ 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{\|l} 1 \\ 1 \\ 0 \\ 1 \end{array}$	$\begin{array}{\|l} 1 \\ 1 \\ 1 \\ 0 \end{array}$	$\begin{array}{\|l} 1 \\ 1 \\ 1 \\ 1 \end{array}$
0000	N	C4	C5	D	C6	D	D	62	C7	D	D	46	D	U	U	D
0001	C0	D	D	14	D	U	U	D	D	U	U	D	U	D	D	30
0010	C1	D	D	U	D	34	56	D	D	50	40	D	U	D	D	U
0011	D	18	8	D	U	D	D	U	U	D	D	U	D	2	24	D
0100	C2	D	D	15	D	35	57	D	D	51	41	D	U	D	D	31
0101	D	19	9	D	U	D	D	63	U	D	D	47	D	3	25	D
0110	D	20	10	D	U	D	D	U	U	D	D	U	D	4	26	D
0111	U	D	D	U	D	36	58	D	D	52	42	D	U	D	D	U
1000	C3	D	D	U	D	37	59	D	D	53	43	D	U	D	D	U
1001	D	21	11	D	U	D	D	U	U	D	D	U	D	5	27	D
1010	D	22	12	D	33	D	D	U	49	D	D	U	D	6	28	D
1011	17	D	D	U	D	38	60	D	D	54	44	D	1	D	D	U
1100	D	23	13	D	U	D	D	U	U	D	D	U	D	7	29	D
1101	U	D	D	U	D	39	61	D	D	55	45	D	U	D	D	U
1110	16	D	D	U	D	U	U	D	D	U	U	D	0	D	D	U
1111	D	U	U	D	32	D	D	U	48	D	D	U	D	U	U	D

MBus Operation

Bus Transactions General Description

System transactions follow the MBus specification January 31st, 1991, Revision 1.2 (Review draft) including Level 2. Only those functions required of a main memory system are implemented. The generic interface is an extension of the MBus specification adapted to a variety of processors. The descriptions of the generic interface are therefore applicable to MBus applications. The intent of this section is not to repeat the MBus specification but to identify those operating characteristics and functions which are invoked with the MBus mode selection.

Module Connections

The SPARC MBus is an address/data multiplexed bus therefore, the address and data pins of the module must be wired together. The controller accommodates the multiplexed bus by storing the address and control information that is presented during the address phase allowing the data on the address pins to change after the deassertion of the address strobe. The module connections to MBus are given in the following tables. Note that some module pins are tied together to the MBus connection. Other connections must be permanently tied to a HIGH or LOW level.

Table 34. MBus Signal Translation

Controller	MBus
CLK	CLK
D[63:0]	MAD[63:0]
A[35:0]	MAD[35:0]
TYPE[3:0]	MAD[39:36]
SIZE[2:0]	MAD[42:40]
$\overline{\text { AS }}$	MAS
BACK[1]	MRDY
$\overline{\text { INH }}$	$\overline{\text { MIH }}$
$\overline{\text { BR }}$	$\overline{\text { MBR }}$
$\overline{\text { BG }}$	$\overline{\text { MBG }}$
BB	MBB
ID[3:0]	ID[3:0]
BERR (Optional)	AERR
RSTIN	RSTIN
INT	INTOUT
UERR	MERR

Table 35. Extra Signals in MBus

Controller	MBus
IMD	0 (MBus mode)
TYPE[5:4]	0 (Ignored)
SIZE[7:3]	0
$\overline{\mathrm{DS}}$	0
$\overline{\mathrm{BLST}}$	1
TSTE	1
PMD[2:0]	(Optional) $\overline{\mathrm{TRC}}$Tied to memory memory meflective

During reset, $\overline{\text { BACK }}[1: 0]$ and $\overline{\text { UERR }}$ must be driven to invoke the proper MBus modes. The snoop window source can originate internally. To make these selections, $\overline{\text { UERR }}$ and $\overline{\text { BACK }}[1: 0]$ must be driven to binary 100 during Reset. Refer to Table 18 and Table 19.

Bus Interface Signal Description

The bus interface signal descriptions are identical to that given in the generic descriptions except for some minor variations and nomenclature. This section will present only those differences and highlight the nomenclature equivalences.

Transaction Specific Control

Transaction specific control information is contained in fields within the address as specified by MBus. These fields are given in Table 36.

Table 36. Multiplexed Bus Address Subfields

Signal Name	Physical Signal	Description
A[35:0]	MAD[35:0]	Physical Address
TYPE[3:0]	MAD[39:36]	Transaction Type
SIZE[2:0]	MAD[42:40]	Transaction Data Size
	MAD[63:43]	Reserved

Parity

Parity is not defined for MBus, however, the controller retains the capability to generate and check parity when configured for MBus.

TYPE[2:0]: Transaction Type

During the address phase, TYPE[2:0] specify the transaction type. TYPE[2:0] are multiplexed bus signals and are directly MBus compatible. The module fully responds to Write, Read, Coherent Read, Coherent Write and Invalidate, and Coherent Read and Invalidate. The response to Coherent Invalidate cycles is programmable. If the Coherent Invalidate Acknowledge Enable in the Command register is 0 , the module makes no response to these cycles. This is the default condition after reset. If the Coherent Invalidate Acknowledge Enable in the Command register is 1, the module asserts MRDY for Coherent Invalidate cycles but, otherwise, plays no role in the transaction.

Table 37. Transaction Types

Type			Data Size	Transaction Site
2	1	0		
0	0	0	Any	Write
0	0	1	Any	Read
0	1	0	32 Bytes	Coherent Invalidate
0	1	1	32 Bytes	Coherent Read
1	0	0	Any	Coherent Write \& In- validate
1	0	1	32 Bytes	Coherent Read \& In- validate
All Other Combinations				
Reserved				

TYPE[2:0]: Transaction Size

During the address phase, SIZE[2:0] specify the number of bytes to be transferred during the data phase of the bus transaction. SIZE[2:0] are muitipiexed bus signals and are directly MBus compatible.

Table 38. Size Transaction

Size2	Size1	Size0	Transaction Size
0	0	0	Byte
0	0	1	Halfword (2 Bytes)
0	1	0	Word (4 Bytes)
0	1	1	Doubleword (8 Bytes)
1	0	0	16 -Byte Burst
1	0	1	32-Byte Burst
1	1	0	64 -Byte Burst
1	1	1	128 -Byte Burst

Table 39. Address Interpretation in Byte Mode (Size[2:0]=0)

$\mathbf{A 2}$	$\mathbf{A 1}$	$\mathbf{A 0}$	Byte\#	Bits
0	0	0	0	$\mathrm{D}[63: 56]$
0	0	1	1	$\mathrm{D}[55: 48]$
0	$\mathbf{1}$	0	2	$\mathrm{D}[47: 40]$
0	1	1	3	$\mathrm{D}[39: 32]$
1	0	0	4	$\mathrm{D}[31: 24]$
1	0	1	5	$\mathrm{D}[23: 16]$
1	$\mathbf{1}$	0	6	$\mathrm{D}[15: 8]$
1	$\mathbf{1}$	1	7	$\mathrm{D}[7: 0]$

Table 40. Address Interpretation in Halfword mode (Size[2:0]=1)

$\mathbf{A 2}$	$\mathbf{A} \mathbf{1}$	$\mathbf{A 0}$	Halfword\#	Bits
0	0	X	0	$\mathrm{D}[63: 48]$
0	1	X	1	$\mathrm{D}[47: 32]$
$\mathbf{1}$	0	X	2	$\mathrm{D}[31: 16]$
1	1	X	3	$\mathrm{D}[15: 0]$

Table 41. Address Interpretation in Word Mode (Size[2:0]=2)

A2	A1	A0	Word\#	Bits
0	X	X	0	$\mathrm{D}[63: 32]$
1	X	X	1	$\mathrm{D}[31: 0]$

$\overline{\mathbf{B R}} / \overline{\mathrm{FE}}$ - Bus Request. This signal will be issued by the controller during reflective read transactions. $\overline{\mathrm{BR}}$ from the main memory system should be interpreted as the highest priority request for bus mastership to the system's arbiter. Additional system bus transactions will be prevented until the ongoing write (resulting from the reflective read) to main memory has completed. (The original MBus specification has no explicit mechanism for reflective main memories to postpone the next bus transaction while the data being transferred between two caches is simultaneously written to DRAM.)
In the MBus mode, The BRM bit in Command register 3 should be programmed 0 to enable the bus request handshaking. When this is done, $\overline{\mathrm{BR}}$ is deasserted upon the recognition of $\overline{\mathrm{BG}}$ and is followed by the assertion of $\overline{\mathrm{BB}}$. $\overline{\mathrm{BB}}$ remains asserted until the Reflective FIFO is empty.
$\overline{\mathbf{B G}}$ - Bus Grant. This signal is asserted by the external arbiter in response to a $\overline{\mathrm{BR}}$, to indicate that the controller has been granted ownership of the bus.
$\overline{\mathbf{B B}}$ - Bus Busy. This signal is asserted by the controller for the duration of its bus ownership. The controller will require the bus as it completes the main memory write transaction during reflective read operations.
ID[3:0] - Identification. The ID field selects various configuration spaces within the MBus address space for access to the Port register and other I/O registers.

Table 42. ID [3:0] Mapping

MBus CONFIGURATION SPACE	ID[3:0]
F/F000/000 H to F/F0FF/FFFF H	0 H reserved for boot PROM
F/F100/0000 H to F/F1FF/FFFF H	1 H
.	.
F/Fn00/0000 H to F/Fn00/0000 H	n H
.	.
F/FE00/0000 H to F/FEFF/FFFF H	E H
F/FF00/0000 H to F/FFFF/FFFF H	F H

Internal Registers

Several internal registers are available to set up the DRAM controller and report status to the host. The register's individual bits are defined in the sections describing the generic mode of operation. The registers appear on the MBus exactly as they would in the 64 -bit bus generic mode, big-endian operation.
When the MBus mode is invoked, the MBus Port register becomes accessible. Its form, content, and address are defined below. In addition, the Command register 0 contains a control bit specific to MBus operation. This control bit affects the controllers response to MBus coherent invalidate cycles. Addressing of the internal registers is direct in the MBus mode and therefore the index register is not used. The address of each register has the form (in hexadecimal)

FFnxx0mpx

where n is a nibble that is compared to the input on the ID pins, x is a don't care condition, and mp are the two nibbles of the indexed address as given in the register descriptions. For example, if ID[3:0] is A H, then the MBus address for the BERR Register is FFAxx031x H.

$$
\text { MBus Port Register - } 2 \text { Bytes - Read Only }
$$

| Address 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FFF H | MR | | MV | | | | |
| Default | 0 H | | | 1 H | | | |
| Address 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 |
| FFE H | MD | | | | | | |
| Default | 00 H or 01 H | | | | | | |

MV[3:0] - Vendor Code. This specifies the vendor code for MBus compatible devices -1 H for Cypress Semiconductor.

Internal Registers (continued)

MR[3:0] - Revision Number. This specifies the revision level for MBus compatible devices -0 H .
MD[7:0] - Device Number. This specifies a unique number that indicates the vendor specific MBus device present at this port.

00 H	CYM7232
01 H	CYM7264

MP[31:16] - Reserved for later use.

Specific Programming

For MBus, there will be specific register programming to configure the controller for MBus operation. For convenience, specific fields are listed below along with the load value appropriate to MBus. There are other programming selections that must be made which are dependent upon the specific application.
VCO[1:0] $10 \quad 80-\mathrm{MHz}$ DRAM Clock
SBS $1 \quad$ 64-Bit System Bus

Timing

Bus timing diagrams reflect generic applications, however they are applicable to MBus. All of the diagrams must be interpreted for data strobe, $\overline{\mathrm{DS}}$, permanently asserted.
Electrical Characteristics Over the Operating Range

			CYM7232 Parameter		Description

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
C	Capacitance, In, Out, I / O	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}$,	20	pF
CLK	Capacitance, Input	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	30	pF
$\overline{\mathrm{C}} \overline{\overline{\mathrm{BERR}}, \mathrm{C} \overline{\mathrm{UERR}}}$	Capacitance		30	pF

Output Signals by Type

Output	Description
BACK[1]	Type 2
$\overline{\text { BERR }}$	Type 1
$\overline{\mathrm{BR} / \overline{\mathrm{FE}}}$	Type 2
$\overline{\mathrm{BB}}$	Type 2
INT, UERR	Type 1
$\overline{\mathrm{RAS}}$ [3:0]	Type 2
CAS[3:0]	Type 2
ADRS[11:0]	Type 2
DDA, DDB, DDC, DDD	Type 1
EDA, EDB, EDC, EDD	Type 1
R/ $\overline{\mathrm{W}}[3: 0]$	Type 1
DP[7:0]	Type 1
D[63:0]	Type 1

DC drive of 12 mA . MBus modules are tested with $100-\mathrm{pF}$ loads to guarantee compatibility with the MBus specification.

Data and Data Parity Holding Buffers

The system bus data and data parity pins are equipped with holding buffers. These buffers use a weak feedback buffer combined with the input buffer to form a latch. The latch holds the last value driven on the bus.

Holding Buffer DC Characteristics

Holding 0

$$
\mathrm{V}_{\mathrm{IN}}=0.4 \mathrm{~V} \quad \mathrm{I}_{\mathrm{IN}}=160 \mu \mathrm{~A}(\text { Max. }) ~\left(\begin{array}{l}
\text { Min. }
\end{array}\right)
$$

Holding 1

$$
\begin{aligned}
\mathrm{V}_{\mathrm{IN}}=2.4 \mathrm{~V} \quad \mathrm{I}_{\mathrm{IN}}= & -715 \mu \mathrm{~A}(\text { Max. }) \\
& -175 \mu \mathrm{~A}(\text { Min. })
\end{aligned}
$$

Flipping Current

Holding 0
$\mathrm{V}_{\mathrm{IN}}=2.0 \mathrm{~V} \quad \mathrm{I}_{\mathrm{IN}}=565 \mu \mathrm{~A}($ Max. $)$
$\mathrm{V}_{\text {IN }}=2.4 \mathrm{~V}$
$\mathrm{I}_{\text {IN }}=630 \mu \mathrm{~A}$ (Max.)
Holding 1
$\begin{array}{ll}\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V} & \mathrm{I}_{\mathrm{IN}}=-725 \mu \mathrm{~A} \text { (Max.) } \\ \mathrm{V}_{\text {IN }}=0.4 \mathrm{~V} & \mathrm{I}_{\mathrm{IN}}=-730 \mu \mathrm{~A} \text { (Max.) }\end{array}$

Type 1 outputs are designed to drive $50-\mathrm{pF}$ loads with a DC drive of 8 mA . Type 2 outputs are designed to drive $50-\mathrm{pF}$ loads with a

AC Test Loads and Waveforms

AC Timing Characteristics

Description	$40 / 80 \mathrm{MHz}$		33/66 MHz		25/75 MHz		Unit
	Min.	Max.	Min.	Max.	Min.	Max.	
D[63:0], DP[7:0] Output Delay	7	18.5	9	21.5	11	23.5	ns
D[63:0], DP[7:0] Output Hold	3		3.5		3.5		ns
D[63:0], DP[7:0] Input Set-Up	4		5		7		ns
D[63:0], DP[7:0] Input Hold	2.5		2.5		2.5		ns
A[35:0], AP[3:0] Input Set-Up	4		5		7		ns
A[35:0], AP[3:0] Input Hold	2.5		2.5		2.5		ns
TYPE[5:0] Input Set-Up	4		5		7		ns
TYPE[5:0] Input Hold	2.5		2.5		2.5		ns
SIZE[7:0] Input Set-Up	4		5		7		ns
SIZE[7:0] Input Hold	2.5		2.5		2.5		ns
ID[3:0] Input Set-Up	4		5		7		ns
ID[3:0] Input Hold	2.5		2.5		2.5		ns
$\overline{\text { AS }}$ Set-Up	4		5		7		ns
$\overline{\text { AS Hold }}$	2.5		2.5		2.5		ns
$\overline{\text { DS Set-Up }}$	4		5		7		ns
$\overline{\text { DS Hold }}$	2.5		2.5		2.5		ns
$\overline{\text { INH }}$ Set-Up	4		5		7		ns
$\overline{\text { INH Hold }}$	2.5		2.5		2.5		ns
SNW Set-Up	4		5		7		ns
$\overline{\text { SNW Hold }}$	2.5		2.5		2.5		ns
$\overline{\text { TRC }}$ Set-Up	4		5		7		ns
TRC Hold	2.5		2.5		2.5		ns
$\overline{\text { BG }}$ Set-Up	4		5		7		ns
$\overline{\text { BG }}$ Hold	2.5		2.5		2.5		ns
$\overline{\overline{B R}} / \overline{\mathrm{FE}}$ Output Delay	7	17.5	9	20.5	11	22.5	ns
$\overline{\mathrm{BR}} / \overline{\mathrm{FE}}$ Output Hold	3		3.5		3.5		ns
$\overline{\text { BB }}$ Output Delay	10	17.5	12	20.5	14	22.5	ns
$\overline{\overline{B B}}$ Output Hold	3		3.5		3.5		ns
$\overline{\bar{B} \bar{B}}$ Input Set-Up	4		5		7		ns
$\overline{\mathrm{BB}}$ Input Hold	2.5		2.5		2.5		ns
$\overline{\text { IMD }}$ Input Set-Up	10.5		13.5		16.5		ns
$\overline{\text { IMD }}$ Input Hold	2.5		2.5		2.5		ns
$\overline{\text { RSTIN }}$ Input Set-Up	10.5		13.5		16.5		ns
$\overline{\text { RSTIN Input Hold }}$	5		5		5		ns
$\overline{\overline{I N T}}$ Output Delay	7	18.5	9	21.5	11	23.5	ns
$\overline{\text { INT Output Hold }}$	3		3.5		3.5		ns
$\overline{\overline{B E R R}}$ Output Delay	7	18.5	9	21.5	11	23.5	ns

AC Timing Characteristics (continued)

Description	$40 / 80 \mathrm{MHz}$		33/66 MHz		25/75 MHz		Unit
	Min.	Max.	Min.	Max.	Min.	Max.	
BERR Output Hold	3		3.5		3.5		ns
TSTE Input Set-Up	10.5		13.5		16.5		ns
TSTE Input Hold	3		3		3		ns
TSTM Input Set-Up	10.5		13.5		16.5		ns
TSTM Input Hold	3		3		3		ns
UERR Output Delay	7	17.5	9	20.5	11	22.5	ns
UERR Output Hold	3		3.5		3.5		ns
UERR Input Set-Up	7.5		10.5		13.5		ns
UERR Input Hold	2.5		2.5		2.5		ns
BACK0 Input Set-Up	4		5		7		ns
BACK0 Input Hold	2.5		2.5		2.5		ns
BACK0 Output Delay (MBus)		17.5		20.5		22.5	ns
BACK0 Output Hold (MBus)	3		3.5		3.5		ns
BACK1 Output Delay (Real Time)	9	17.5	11	20.5	13	22.5	ns
BACK1 Output Hold (Real Time)	3		3.5		3.5		ns
BACK1 Input Set-Up	4		5		7		ns
BACK1 Input Hold	2.5		2.5		2.5		ns
BACK1 Output Delay (Early)	11	21	13	24	15	26	ns
BACK1 Output Hold (Early)	3		3.5		3.5		ns
BLST Input Set-Up	4		5		7		ns
$\overline{\text { BLST }}$ Input Hold	2.5		2.5		2.5		ns
ADRS[11:0] Output Delay	7	16	9	18	11	21	ns
ADRS[11:0] Output Hold	3		3.5		3.5		ns
RAS[3:0] Output Delay	7	16	9	18	11	21	ns
RAS[3:0] Output Hold	3		3.5		3.5		ns
CAS[3:0] Output Delay	7	16	9	18	11	21	ns
CAS[3:0] Output Hold	3		3.5		3.5		ns
R/W[3:0]/[1:0] Output Delay	7	17.5	9	20.5	11	23.5	ns
R/W[3:0]/[1:0] Output Hold	3						ns
DDA[31:0], DDB[31:0], DDC[31:0], DDD[31:0] Output Delay	7	17.5	9	20.5	11	23.5	ns
DDA[31:0], DDB[31:0], DDC[31:0], DDD[31:0] Output Hold	1		3		3		ns
DDA[31:0], DDB[31:0], DDC[31:0], DDD[31:0] Input Set-Up	4		5		7		ns
DDA[31:0], DDB[31:0], DDC[31:0], DDD[31:0] Intput Hold	2.5		2.5		2.5		ns
EDA[6:0], EDB[6:0], EDC[6:0], EDD[6:0] Output Delay	7	17.5	9	20.5	11	23.5	ns
EDA[6:0], EDB[6:0], EDC[6:0], EDD[6:0] Output Hold	1		3		3		ns
EDA[6:0], EDB[6:0], EDC[6:0], EDD[6:0] Input Set-Up	4		5		7		ns
EDA[6:0], EDB[6:0], EDC[6:0], EDD[6:0] Intput Hold	2.5		2.5		2.5		ns
BACK [1:0], UERR Input Set-Up During Reset	8		10		12		ns
BACK [1:0], UERR Input Hold During Reset	5		5		5		ns

AC Timing Characteristics (continued)

Description	40/80 MHz		33/66 MHz		25/75 MHz		Unit
	Min.	Max.	Min.	Max.	Min.	Max.	
Clock Frequency	20	40	20	33	20	25	MHz
Clock Cycle Time	50	25	50	30	50	40	ns
Clock Rise Time		1.6		1.6		1.6	ns
Clock Fall Time		1.6		1.6		1.6	ns
Clock Symmetry	45	55	45	55	45	55	\%
Clock Pulse Width HIGH at 40, 33, and 25 MHz	11	14	13.5	16.5	18	22	ns
Clock Pulse Width LOW at 40, 33, and 25 MHz	11	14	13.5	16.5	18	22	ns
MCLK Frequency	20	80	20	66	20	75	MHz
MCLK Cycle Time	12.5	50	15	50	13.33	50	ns
MCLK Rise Time		1.6		1.6		1.6	ns
MCLK Fall Time		1.6		1.6		1.6	ns
MCLK Symmetry	45	55	45	55	45	55	\%
MCLK Pulse Width HIGH at 80,66 , and 75 MHz)	5.5	7	6.5	8.5	6	7.5	ns
MCLK Pulse Width LOW at 80, 66, and 75 MHz)	5.5	7	6.5	8.5	6	7.5	ns
MCLK/CLK Skew	-1.5	0	-1.5	0	-1.5	0	ns

SEMICONDUCTOR

Switching Waveforms

Read

Notes:
2. FESTRB is asserted here following the closure of the snoop window in the previous clock cycle.
3. FESTRB would normally occur after tenR plus a delay if necessary to align FESTRB to a bus clock boundary. FESTRB is asserted here following the assertion of DS (data strobe) in the previous clock cycle.
4. $\overline{\mathrm{BACK}}$ remains three-stated until it is firstasserted. At the middle and end of the transaction, BACK is deasserted in the first half of the clock cycle and then three-stated.
5. FESTRB would normally occur here after $t_{E N R}$, however, it is automatically delayed by the controller to align to a bus clock boundary.

Switching Waveforms (continued)
Write - Real-Time Bus Acknowledge/Early Data Strobe

Notes:

6. $\overline{\text { FESTRB }}$ is an internal signal that unclocks the FIFO. $\overline{\text { FESTRB }}$ is one bus clock cycle long.
7. $\overline{B L S T}$ may be internal or external
8. $\overline{\mathrm{DS}}$ may be deasserted in any of the cycles shown.
9. $t_{R} \geq t_{R P C}+2 \mathrm{MCLK}$
$\mathrm{t}_{\mathrm{R}} \geq \mathrm{t}_{\mathrm{AR}}+2 \mathrm{MCLK}$
10. The assertion of CAS requires
t_{CP} to have expired (from previous transaction)
$t_{\text {MAC }}$ have expired ($t_{1 A} \geq t_{M A C}$)
$t_{D C}$ to have expired ($t_{1 B} \geq t_{D C}$)
Sivw to have ciosed 2 bus ciocks previous.
11. The assertion of $\overline{\mathrm{CAS}}$ (and all subsequent $\overline{\mathrm{CAS}}$ cycles of the burst) requires $t_{D C}$ to have expired t_{CP} to have expired $\left(\mathrm{t}_{2 \mathrm{~A}}>\mathrm{t}_{\mathrm{CP}}\right)$
After CAS asserted, FESTRB unclocks the write FIFOpresenting the next data page to the DRAM.
12. $t_{1 A}$ is measured from the rising edge of the bus clock after $t_{R A M}$ has expired.

Switching Waveforms (continued)
Write - Real-Time Data Strobe

PRELIMINARY
\qquad
Switching Waveforms (continued)
I/O Cycles - Read ${ }^{[13]}$

Note:
13. Data transfer occurs 5 clock cycles after $\overline{\mathrm{SNW}}$ or $\overline{\mathrm{DS}}$ whichever occurs last.

Switching Waveforms (continued)

Arbitration for Bus Mastership During Reflective Read

Switching Waveforms (continued)
Pre-initialization

Initialization

Switching Waveforms (continued)
Reset Cycle

MBus Coherent Invalidate Cycle (CIE set)

Note:
14. BACK and $\overline{\text { UERR }}$ used as input to select bus acknowledge modes and snoop window source during reset.

Timing Diagrams

RESET Invoking Mode 10, External Snoop Window

5

Timing Diagrams (continued)
Preinit Followed by Start of DRAM Init

CLK	
MCLK	
As	
ADRS<12	
RAS<0>	
RAS<1>	
RAS<2>	凹ைปைฺை
RAS<3>	
cas<0>	\checkmark
CAS<1>	
CAS<2>	
CAS<3>	
DDA<32>	$\square \square$
DDB<32>	$\square \square$
DDC-32>	$\square \square$
DDD<32>	$\square \square$
Rwo	\square
RW2	\square
RW1	\square
RW3	ᄂ

I/O Write Followed by Read, Mode 01

Timing Diagrams (continued)
I/O Write Inhibited Follwed by Read Inhibited

I/O Write Followed by Read, Mode 11

Timing Diagrams (continued)

Read-Modify-Write Mode 01

Timing Diagrams (continued)
Write Mode 01, Sequential, 32 Bytes

Timing Diagrams (continued)
Write Mode 01, Sequential, Misaligned, 32 Bytes

Timing Diagrams (continued)
Write Mode 01, Intel, Misaligned

Timing Diagrams (continued)
Write Mode 01, Intel, Misaligned, 64 Bytes

Timing Diagrams (continued)

Write Burst Truncated by BLST, Mode 01

Timing Diagrams (continued)

Write Mode 01, Transformed

Timing Diagrams (continued)
Write Burst Followed by Write, Mode 01

Timing Diagrams (continued)

Write Burst Followed by Read, Mode 01

Timing Diagrams (continued)
Write Posted Followed by Read, Mode 01

Timing Diagrams (continued)

Write Mode 10 Showing BR as FE

Timing Diagrams (continued)
Write Burst, Mode 11

Timing Diagrams (continued)
Write 32 Bytes, Misaligned 32-Bit Bus

Timing Diagrams (continued)

Write 32 Bytes, Misaligned, Intel Order 32-Bit Bus

Timing Diagrams (continued)
Write with BLST, 32-Bit Bus

CLK	
MCLK	
AS	$\square _$
A<36>	
TYPE<6>	100
SIZE<8>	07 O 07
DS	\longrightarrow
D<32>	[1111111111111
BACK<1>	-
BLST	\checkmark
INH	
TRC	
SNW	\square
BR	\longrightarrow L_
BB	
ADRS<12	${ }_{0}^{008}-{ }^{1320}$
RAS<0>	
CAS<0>	-
CAS<1>	
CAS<2>	
CAS<3>	
DDA<32>	$[44382 \mathrm{fif}$ []
DDB<32>	[mmif [iflif
DDC<32>	
DDD<32>	\square
RW0	-
RW2	
RW1	\checkmark
RW3	

Timing Diagrams (continued)
Read Mode 01, 8 Bytes

Timing Diagrams (continued)

Read Mode 01, 32 Bytes

Timing Diagrams (continued)
Read Mode 01, Wait State, 32 Bytes

Timing Diagrams (continued)
Read Mode 01, Sequential, Misaligned

Timing Diagrams（continued）
Read Mode 01，Intel，Misaligned， 32 Bytes

CLK	以ぃム
MCLK	
PMD＜3＞	－ 7
As	L
A＜36＞	000215488 － 0000215488 － 000215488
TYPE＜6＞	0^{03}
SIZE＜8＞	0^{05}
DS	$\square \square$
D＜64＞	fedcha9876543210－III II Il Il
BACK＜1＞	－L＿
INH	
TRC	
SNW	\checkmark
BR	
BB	－
ADRS＜12	
RAS＜0＞	
CAS＜0＞	\square
CAS＜1＞	
CAS＜2＞	
CAS＜3＞	
DDA＜32＞	$\square \square$
DDB＜32＞	$\square \square$
DDC＜32＞	$\square \square$
DDD＜32＞	$\square \square$

Timing Diagrams (continued)
Read Mode 01, Intel, Misaligned, 64 Bytes

Timing Diagrams (continued)

Read with BLST Mode 01

Timing Diagrams (continued)
Read Mode 01, Transformed

Timing Diagrams (continued)

Read Mode 11

CLK	
MCLK	
PMD<3>	7 - 7
AS	\square
A<36>	000543200 - 000543200
TYPE<6>	$01-\square$
SIZE<8>	$]_{05}^{05} 05$
Ds	
D<64>	redcha9876543210 [-II Il Il
BACK<1>	$\checkmark \square$
INH	
TRC	
SNW	[
BR	
BB	L__
ADRS<12	
RAS<0>	
CAS<0>	\checkmark
CAS<1>	
CAS<2>	
CAS<3>	
DDA<32>	\square
DDB<32>	$\square \square$
DDC<32>	$\square \square$
DDD<32>	

Timing Diagrams (continued)

Reflective Transaction Showing Bus Arbitration

Timing Diagrams (continued)

Read 32 Bytes, Misaligned 32-Bit Bus

Timing Diagrams (continued)

Read 32 Bytes, Misaligned, Intel Order 32-Bit Bus

Timing Diagrams (continued)
Read with BLST, 32-Bit Bus

Timing Diagrams (continued)

Refresh, Staggered RAS, No Scrub, No Error in Data

CLK MCLK AS ADRS<12 RAS<0> RAS<1> RAS<2> RAS<3> CAS<0> CAS<1> CAS<2> CAS<3> DDA<32> DDB<32> DDC<32> DDD<32> Rwo RW2 RW1 RW3 INT FESTRB	¢000			

Timing Diagrams (continued)
Refresh, Staggered RAS, Scrub

Timing Diagrams (continued)

Refresh, Mutually Exclusive RAS, Scrub

Power Dissipation

The table below shows the estimated power dissipation for various bus clock frequencies under specific assumptions. The temperatures listed under the air flow column are the maximum ambient air temperature allowed for the frequency at the left and the air flow at the column top.
The assumptions are: DRAM bus load $=50 \mathrm{pF}$; system bus load $=100 \mathrm{pF}$; system bus data frequency is $1 / 2$ of the system clock (NRZ); DRAM bus data frequency is $1 / 2$ of the system clock (NRZ); and V_{CC} is 5.25 V .

The data pattern assumptions are:
Reads: $\quad 2 / 3$ of all system bus cycles involve the CYM7232.
$2 / 3$ of all CYM 7232 cycles are reads.
$1 / 2$ of the 64 -bit system bus will toggle on average.
The CYM 7232 drives the system bus $1 / 3$ of the time during a read.
Writes: $\quad 2 / 3$ of all system bus cycles involve the CYM7232. $1 / 3$ of all CYM 7232 cycles are writes.
$1 / 2$ of the 64 -bit system bus will toggle on average. The CYM 7232 drives the system bus $1 / 6$ of the time during a write.

System Clock Frequency (MHz)	Power (watts)	Air Flow -LFM (C)				
		$\mathbf{0}$	$\mathbf{1 0 0}$	$\mathbf{2 0 0}$	$\mathbf{3 0 0}$	$\mathbf{4 0 0}$
25		60	70	70	70	70
33		60	60	60	70	70
40		60	60	60	60	

Socket Data

Test ZIF Socket:

Test Receptacle:
Textool 3M Grid ZIP PGA Kit 25×25
Socket Part \# 2-0000-06325-170-024-000
PGA Pin (gold plated) Part\# 3-0000-02740-006-000-002
PGA Pin (nickel plated) Part\# 3-0000-02740-006-000-005
Procon Part\# 228-401-1001-2525
(uses Millmac 0400 Pins Part\# 0400-0-15-01-47-27-0400)
Production Socket:
Installation Lubricant:
Extraction Tool:
McKenzie Part\# PGA401H009B2-2406R
Tech Spray Part\# 2111-P (Goldfinger Glove)
McKenzie Part\# TOLPGAX-41622-001 (CYM7232)
TOLPGAX-41622-002 (CYM7264)
McKenzie, 44370 Old Warm Springs Boulevard, Fremont, CA 94538 (510) 651-2700
Tech Spray, P.O. Box 949, Amarillo, TX 79105 (806) 372-8523
Procon Tech., 1333 Lawrence Expwy., Suite 207, Santa Clara, CA 95051 (408) 246-4456
Textool, 6801 Riverplace Blvd., Austin, TX 78726 (800) 328-0411
Ordering Information

Speed (MHz) Bus/DRAM	Ordering Code	Package Name	Package Type	Operating Range
$40 / 80$	CYM7232S-40HGC	HG02	401-Pin PGA Module	Commercial
$33 / 99$	CYM7232H-33HGC	HG02	401-Pin PGA Module	Commercial
$33 / 66$	CYM7232S-33HGC	HG02	401-Pin PGA Module	Commercial
$25 / 100$	CYM7232H-25HGC	HG02	401-Pin PGA Module	Commercial
$25 / 75$	CYM7232S-25HGC	HG02	401-Pin PGA Module	Commercial

Speed (MHz) Bus/DRAM	Ordering Code	Package Name	Package Type	Operating Range
$40 / 80$	CYM7264S-40HGC	HG03	401-Pin PGA Module	Commercial
$33 / 99$	CYM7264H-33HGC	HG03	401-Pin PGA Module	Commercial
$33 / 66$	CYM7264S-33HGC	HG03	401 -Pin PGA Module	Commercial
$25 / 100$	CYM7264H-25HGC	HG03	401 -Pin PGA Module	Commercial
$25 / 75$	CYM7264S-25HGC	HG03	401-Pin PGA Module	Commercial

Document \#: 38-M-00051-C

Features

- 128-Kbyte direct-mapped, writethrough, zero-wait-state secondary cache module
- Operates with 33-MHz Intel 486 processors
- Uses low-cost CMOS asynchronous SRAMs as cache data storage and cache tag storage
- Supports self-invalidation
- 64-position dual-read-out SIMM with 128 leads
- Single $5 \mathrm{~V}(\pm 5 \%)$ power supply
- TTL-compatible inputs/outputs

Functional Description

The CYM7485 is a self-contained 128-Kbyte direct-mapped, zero-waitstate, write-through secondary cache module designed for use in Intel 486 -based systems. The line size is 16 bytes. Cache data is stored in four 32 K by 8 asynchronous SRAMs, and the tag addresses are stored in two 8 K by 8 asynchronous SRAMs.The address from the processor is captured by high-speed transparent latches at the beginning of each access and the lowest two address bits are incremented according to the Intel burst sequence during burst reads and cache line fills.

The on-board cache controller coordinates accesses to the cache memory. During a read hit, four 32-bit words are read from the cache RAMs and returned to the
processor without wait states. If the read location requested by the processor is not found in the cache, the memory controller will hold the processor and retrieve the missing line from the main memory. During write cycles, the main memory is always updated with the data from the processor. If the write location is found in the cache, then the cache content is updated as well.
All components on the cache module are surface mounted on a multi-layer epoxy laminate (FR-4) board.The package dimensions are $3.85^{\prime \prime} \times 0.200^{\prime \prime} \times 1.5^{\prime \prime}$. All inputs and outputs of the CYM7485 are TTL compatible and operate from a single 5 V power supply. The contact pins are plated with 100 micro-inches of nickel covered by 5 micro-inches of gold flash.

Pin Configuration

Pin Descriptions

Symbol	Parameter	Type	Pins	Active	Description
CLK	Clock	I	1	N/A	This input is the timing reference for all module functions. It is the same as the 1486 clock.
RESET	Reset the Cache	I	1	HIGH	RESET is sampled at each clock rise. If it is true, the cache logic will be placed in the idle state. RESET will not invalidate the cache contents.
$\overline{\text { ADS }}$	Address Strobe	I	1	LOW	$\overline{\mathrm{ADS}}$ is connected to the $\overline{\mathrm{ADS}}$ signal from the i486. It is used to start read or write cycles. $\overline{\mathrm{CS}}$ must be asserted for $\overline{\mathrm{ADS}}$ to be recognized.
M/IO	Memory/IO	I	1	N/A	This signal is used by the $i 486$ to distinguish between memory and IO accesses. The module will not cache IO accesses.
W/ $\overline{\mathbf{R}}$	Write/Read	I	1	N/A	A LOW indicates a read cycle. A HIGH indicates a write cycle.
D/ \bar{C}	Data/Control	N/A	1	N/A	This signal is not used by the CYM7485.
$\overline{\text { START }}$	Memory Start	O	1	LOW	$\overline{\text { START }}$ is asserted during read miss and write cycles. It signals the main memory to service the current access.
$\overline{\text { BRDYO }}$	Burst Ready Out	0	1	LOW	This signal is asserted during read hits only. It indicates to the i486 that valid data from the cache is available. $\overline{\text { BRDYO }}$ is deasserted during other accesses.
CBRDY	Cache Burst Ready In	I	1	LOW	This signal is asserted when burst data from the system is ready to be sampled by the i486 and the cache module.
$\overline{\overline{\text { CRDY }}}$	Cache Ready In	I	1	LOW	This signal is asserted when non-burst data from the system is ready to be sampled by the i486 and the cache module.
$\overline{\text { BLAST }}$	Burst Last	I	1	LOW	BLAST is asserted by the $i 486$ when the current cycle is the last cycle of a burst access.
$\overline{\text { BOFF }}$	Back-off	I	1	LOW	$\overline{\text { BOFF }}$ is sampled at each clock rise except the rising edge of T1 in a 486 access. If $\overline{\text { BOFF }}$ is asserted, the cache module will place its data lines in a three-stated condition. In addition, START and BRDYO will be deasserted.
$\overline{\text { PRSN }}$	Presence	0	1	LOW	This signal is tied to ground. It indicates to the system that the cache module is present.
$\mathrm{A}_{2}-\mathrm{A}_{31}$	Address Lines	I	30	N/A	Address inputs to the CYM7485.
$\overline{\mathrm{BE}}_{0}-\overline{\mathrm{BE}}_{3}$	Byte Enables	I	4	LOW	These signals are used during write cycles to determine which byte(s) will be written.
$\overline{\mathrm{CS}}$	Chip Select	I	1	LOW	For normal accesses, $\overline{\mathrm{CS}}$ must be LOW before $\overline{\mathrm{ADS}}$ or $\overline{\mathrm{EADS}}$ can be recognized. If $\overline{\mathrm{CS}}$ is HIGH and $\overline{\mathrm{ADS}}$ is LOW, the cache line selected by the address on $\mathrm{A}_{2}-\mathrm{A}_{31}$ will be invalidated.
$\mathrm{D}_{0}-\mathrm{D}_{31}$	Data Lines	I/O	32	N/A	Data lines to/from the i486, main memory, and other system components. $\mathrm{D}_{0}-\mathrm{D}_{7}$ is the low byte.
$\overline{\text { SKEN }}$	System Cache Enable	I	1	LOW	This signal is generated by the system to inform the $i 486$ and the cache module that the current line is cachable. During a cache line fill, SKEN is sampled one clock cycle before the first word is returned and one clock cycle before the last word of the line is returned.
$\overline{\text { FLUSH }}$	Cache Flush	I	1	LOW	If $\overline{\text { FLUSH }}$ is LOW and $\overline{\mathrm{ADS}}$ is LOW, then the cache line selected by the address on $\mathrm{A}_{2}-\mathrm{A}_{31}$ will be invalidated.
$\overline{\text { EADS }}$	Valid External Address	I	1	LOW	If $\overline{\text { EADS }}$ is asserted together with $\overline{\mathrm{CS}}$, then the cache line selected by the address on $\mathrm{A}_{2}-\mathrm{A}_{31}$ will be invalidated if a match is found.
$\mathrm{ID}_{0}-\mathrm{ID}_{1}$	Cache Size Selector	0	2	N/A	These two lines are not connected on the cache module. They are tied externally to V_{CC} to select a cache size of 128 K bytes.

Basic Operation

The CYM7485 is a complete 128 -Kbyte, direct-mapped secondary cache subsystem designed to work with $33-\mathrm{MHz}$ Intel 486 processors. The cache memory is divided into 8 K 16-byte lines and each line is assigned a dedicated entry in the cache tag RAM. The CYM7485 supports zero-wait-state operations: it can return four words from its cache memory in five clock cycles (i.e., 2-1-1-1). A write-through cache policy is implemented to provide data integrity.
Four 32 K by 8 asynchronous SRAMs provide the 128 -Kbyte cache storage and two 8 K by 8 asynchronous SRAMs store the 8 K 16 -bit tag entries. Each tag entry is divided into a 15 -bit tag field (to support the 4-Gbyte processor address space) and a valid bit. During an access, the contents of the tag entry selected by processor address bits, $\mathrm{A}_{4}-\mathrm{A}_{16}$, are delivered to two 8-bit comparators where they are matched against the 15 upper order address bits from the i486. A match is declared only if the two set of addresses are identical and the valid bit of the tag entry is set.

Addresses from the processor are captured by transparent latches before they are delivered to the cache memory. The lowest two address bits $\left(\mathrm{A}_{2}\right.$ and $\left.\mathrm{A}_{3}\right)$ are incremented by the cache controller according to the Intel burst order during read hits and line fills (see Table 1).
The following functions are not supported in the CYM7485: data parity $\left(\mathrm{DP}_{0}-\mathrm{DP}_{3}\right)$, write protect (WP), write protect strap (WPSTRAP), cache enable to CPU ($\overline{\mathrm{CKEN}}$), software flushes, and global cache invalidation.

Read Cycles

A read cycle is initiated when $\overline{\mathrm{ADS}}, \overline{\mathrm{CS}}$, and $\mathrm{W} / \overline{\mathrm{R}}$ are sampled LOW at clock rise with M/IO sampled HIGH. The processor address is captured by a set of transparent latches as soon as the access is started. The latch will remain closed until the access is completed or until $\overline{\mathrm{BOFF}}$ is asserted (LOW). $\overline{\mathrm{BE}}_{0}-\overline{\mathrm{BE}}_{3}$ are ignored in all read accesses.
Tag look-up begins whenever a valid processor address is available. Processor address lines are connected to the two tag RAMs directly to reduce the tag match delay. If the requested location is found in the cache, the CYM7485 will return the first burst word in the first T 2 cycle. This is followed by three more words delivered once every clock until the last word is returned or until BLAST is asserted. START is pulled HIGH in T2 to signal a cache hit to main memory and BRDYO is pulled LOW in T2 to signal the processor that valid data is available from the cache. $\overline{B R D Y O}$ remains LOW until the last word is returned.

If the requested location is not in the cache, then the cache controller will assert START (LOW) to initiate the main memory access and deassert BRDYO (HIGH) to hold the processor.The CYM7485 cannot accept data from main memory in zero wait states. The earliest cycle in which main memory data is accepted is the second clock cycle after START is asserted. The minimum cache line fill sequence from main memory is $4 / 3 / 3 / 3$.
$\overline{\text { BLAST }}$ is sampled concurrently with $\overline{\text { CBRDY }}$ and $\overline{\text { CRDY }}$. If BLAST is sampled LOW before the fourth data transfer, then the line fill operation is aborted. Data from main memory is considered cachable if SKEN is sampled LOW at least one clock cycle before CBRDY or CRDY is first asserted (LOW). If this condition is satisfied, the data returned from main memory will be written into the cache each time $\overline{\text { CBRDY }}$ or $\overline{\text { CRDY }}$ is sampled LOW. If SKEN is sampled HIGH when the first CBRDY or CRDY is sampled LOW, or if SKEN is sampled LOW concurrently with the first CBRDY or CRDY, then the data is considered to be non-cachable and the cache module will not act on the information.
SKEN is sampled again at the end of the line fill to validate the cache line. If SKEN is sampled LOW one cycle before the fourth time CBRDY or CRDY is sampled LOW, then the cache line will be validated.
In order to process the read miss line fill correctly, $\mathrm{A}_{4}-\mathrm{A}_{31}$ from the processor must remain stable throughout the line fill. Otherwise, the cache tag will not be updated properly. In addition, SKEN must be LOW t_{14} before the end of T2 and remain LOW until the line fill is completed.
If the read access is not cachable, then SKEN will be sampled HIGH after T2. The CYM7485 supports the following types of non-cachable read accesses. If a single read hit is detected, then the data word will be returned with BRDYO asserted. If a single read miss is found, START will be asserted to begin the main memory access. However, the data returned will not be stored into the cache memory and the selected cache line is not validated. If a burst read hit is detected, the cache module will treat it in the same manner as a cachable burst read hit (i.e., four words will be retrieved from the cache memory with BRDYO asserted). On the other hand, if a burst read miss is found, then START will be asserted to begin the main memory access. However, the four words returned by the main memory will not be stored into the cache and the selected cache line is not invalidated. Table 2 illustrates the various cachable/non-cachable and single/burst access combinations.

Table 1. Intel Burst Sequence

First Address	Second Address	Third Address	Fourth Address
0	4	8	C
4	0	C	8
8	C	0	4
C	8	4	0

Table 2. Cachable/Non-cachable and Single/Burst Read Access Combinations

$\overline{\text { SKEN }}$	$\overline{\text { BLAST at end of T2 }}$	Hit / Miss	Action
0	0	Read hit	Cachable single read access. Cache module will return the word from its memory, assert BRDYO, and then return to the idle state.
0	1	Read hit	Cachable burst access. This is the normal read hit case. Cache module will return 4 words from its memory with BRDYO asserted. Less than 4 words will be returned if BLAST is asserted before the end of the burst sequence.
1	0	Read hit	Non-cachable single read access. Cache module will return the word from its memory, assert BRDYO, and return to the idle state.
1	1	Read hit	Non-cachable burst access. The cache module will process this access like a normal burst read hit. The 4 words in the line will be returned with BRDYO asserted. Less than 4 words will be returned if $\overline{\text { BLAST }}$ is asserted before the end of the burst sequence.
0	0	Read miss	Cachable single read access. Cache module will assert START and wait for $\overline{\text { CBRDY }}$ or $\overline{\text { CRDY }}$ to complete the cycle. The selected cache line is invalidated.
0	1	Read miss	Cachable burst read access. This is the normal read miss case. The cache module will assert START and wait for the 4 words to return from main memory accompanied by CBRDY or CRDY. The words will be written into the cache memory and the cache line will be validated when the fourth word is returned (because SKEN is LOW). If BLAST is asserted before the fourth word is returned, the line fill is aborted and the selected cache line will remain invalidated.
1	0	Read miss	Non-cachable single read access. The cache module will assert $\overline{\text { START }}$ and wait for $\overline{\text { CBRDY }}$ or CRDY to complete the cycle. The word returned from main memory will not be stored into the cache memory and the valid bit of the selected cache line is not changed.
1	1	Read miss	Non-cachable burst read access. The cache module will process this access like a normal cachable burst read miss. START will be asserted but the 4 words returned from main memory not will be stored into the cache. In addition, the valid bit of the selected cache entry is not changed.

Write Cycles

A write cycle is initiated when $\overline{\mathrm{ADS}}$ and $\overline{\mathrm{CS}}$ are sampled LOW at clock rise with W / \bar{R} and $M / \overline{I O}$ sampled HIGH. The address from the processor is latched for two clock cycles to allow cache RAM update in case of a write hit. The latch then reopens to accept new addresses.
Tag look-up begins as soon as a valid processor address is available. If the location specified by the processor is found in the cache, the cache RAMs are updated with the data from the processor immediately. Byte enable signals $\overline{\mathrm{BE}} 0-\overline{\mathrm{BE}} 3$ are used to determine which bytes in the 32 -bit words are to be modified. If the location is not found in the cache, the cache RAMs are not modified.
Because the CYM7485 implements the write-through cache policy, write data from the processor is always written into the main memory regardless of cache hits or cache misses. In every write cycle, START is asserted (LOW) in T2 to trigger the main memory write operation. This signal will remain LOW until the system indicates write completion by asserting (LOW) CBRDY or CRDY. $\overline{B R D Y O}$ is kept HIGH throughout the write cycle. The minimum write cycle contains one wait state (i.e., three clocks in the cycle) and the minimum data-hold time is 6 ns .
All write cycles require one wait state.

Invalidations

Individual tag invalidation is supported in the CYM7485. If $\overline{\mathrm{EADS}}, \overline{\mathrm{CS}}$, and $\mathrm{W} / \overline{\mathrm{R}}$ are sampled LOW and M/IO is sampled HIGH at clock rise, then the tag entry selected by the processor address is invalidated if a tag match is detected. In other words, memory read cycles never cause invalidation. The address must
be stable a minimum of 14 ns before the clock edge at which EADS is sampled LOW.
The CYM7485 will recognize invalidation requests under two conditions only:

1. Self invalidation during a write cycle (initiated by asserting $\overline{\mathrm{ADS}}$). The earliest time at which EADS can be asserted is the third clock rise after the one clock cycle in which $\overline{\text { ADS }}$ is sampled LOW. For each invalidation, the address to be invalidated must be stable for two full clock cycles after EADS is asserted. CBRDY or CRDY can be asserted as early as the second clock rise after the one in which EADS is asserted to complete the write cycle. The CYM7485 can support consecutive EADS invalidations once every three clock cycles before CBRDY or CRDY is returned. For consecutive write cycles with self-invalidation, the CYM7485 can support one such operation every six clock cycles (see Self-Invalidation Timing Diagram).
2. When the cache module is in the "back-off" state ($\overline{\mathrm{BOFF}}$ is asserted).The cache module can be placed in the "back-off" state by asserting BOFF in all normal access cycles except in T1. Once in the "back-off" state, the module can accept consecutive invalidations via $\overline{\mathrm{CS}}$ and $\overline{\mathrm{EADS}}$ once every three clock cycles. The earliest time $\overline{\mathrm{CS}}$ and $\overline{\text { EADS }}$ can be asserted is the clock rise after the one in which BOFF is asserted. For each invalidation, the address to be invalidated has to remain stable for two full clock cycles after the EADS signal is asserted.

Flush

The CYM7485 cannot support global cache flushes where the entire cache is invalidated by the assertion of the FLUSH input.To flush the cache in the CYM7485, the processor has to

1. Assert FLUSH and $\overline{\mathrm{ADS}}$ at clock rise (i.e., $\overline{\mathrm{FLUSH}}=\mathrm{LOW}$ and $\overline{A D S}=\mathrm{LOW}$) with M/IO set to HIGH, or assert $\overline{A D S}$ and deassert $\overline{\mathrm{CS}}$ at clock rise (i.e., $\overline{\mathrm{ADS}}=\mathrm{LOW}$ and $\overline{\mathrm{CS}}=\mathrm{HIGH})$ with M/IO set to HIGH. Note that $\overline{C S}, \overline{A D S}$, and M/IO must satisfy the set-up time requirements (i.e., $\mathrm{t} 8, \mathrm{t} 6$, and t 6 respectively).
2. Access (read or write) the 8 K locations in the cache tag.

During each access, the cache module will invalidate the cache entry selected by the address lines. The CYM7485 can accept new flush accesses no faster than once every three clock cycles (see the Flush Timing Diagrams). START and BRDY0 will remain deasserted (HIGH) during flush cycles. $\overline{\mathrm{CBRDY}}$ and $\overline{\mathrm{CRDY}}$ are not required to complete the flush cycle.

Back-Off

A cache back-off can be initiated by the assertion of the $\overline{\mathrm{BOFF}}$ in any normal access cycles except in T1 where the $\overline{\mathrm{BOFF}}$ signal is ignored. Once BOFF is sampled LOW at clock rise, the data lines will be placed in a three-stated condition in the same clock cycle. In addition, both START and BRDYO will be pulled HIGH. When BOFF is asserted, the cache module will ignore all cache cycles except RESET, invalidation via $\overline{C S}, ~ E A D S$, and $\mathrm{M} / \overline{\mathrm{IO}}$, and flush operations via FLUSH, $\overline{\mathrm{CS}}, \overline{\mathrm{ADS}}$, and M/IO.

Reset

If RESET is sampled HIGH at clock rise, the cache controller will enter the idle state and all module outputs will be deasserted. The cache contents, however, are not invalidated. Refer to the Flush section for information on cache invalidation.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied $-0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage to Ground Potential -0.5 V to +7.0 V
DC Voltage Applied to Outputs
in High Z State . -0.5 V to +7.0 V

Output Current into Outputs (LOW) 20 mA

Operating Range

Range	Ambient Temperature	V $_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	CYM7485-33		Unit
			Min.	Max.	
$\mathrm{V}_{\text {OHD }}$	Output HIGH Voltage (Data)	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OLD }}$	Output LOW Voltage (Data)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=8.0 \mathrm{~mA}$		0.4	V
V OHC	Output HIGH Voltage (Control)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	2.4		V
V ${ }_{\text {OLC }}$	Output LOW Voltage (Control)	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA}$		0.5	V
V_{IH}	Input HIGH Voltage		2.2	V_{CC}	V
V_{IL}	Input LOW Voltage		-0.5	0.8	V
$\mathrm{I}_{\text {IX }}$	Input Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}, \mathrm{V}_{\mathrm{CC}}=$ Max	-10	+10	$\mu \mathrm{A}$
I_{OZ}	Output Leakage Current	GND $\leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled	-10	+10	$\mu \mathrm{A}$
I_{CC}	V_{CC} Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}}$		1500	mA

SEMICONDUCTOR
AC Electrical Characteristics
$\left(\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} \pm 5 \%, \mathrm{~T}_{\mathrm{A}}=0^{\circ}\right.$ to $70^{\circ} \mathrm{C}$, loading on $\mathrm{D}_{0}-\mathrm{D}_{31}=75 \mathrm{pF}$, loading on all other outputs $=50 \mathrm{pF}$)

Symbol	Parameter	Min.	Max.	Unit
t1	Clock Period	30		ns
t2	Clock HIGH Time	11		ns
t3	Clock LOW Time	11		ns
t4	$\mathrm{A}_{2}-\mathrm{A}_{31}, \overline{\mathrm{BE}}_{0}-\overline{\mathrm{BE}}_{3}$ Set-Up Before Clock Rise	14		ns
t5	$\mathrm{A}_{2}-\mathrm{A}_{31}, \overline{\mathrm{BE}}_{0}-\overline{\mathrm{BE}}_{3}$ Hold After Clock Rise	3		ns
t6	ADS, M//̄О, W/R Set-Up Before Clock Rise	14		ns
t7	$\overline{\mathrm{ADS}}, \mathrm{M} / \overline{\mathrm{IO}}, \mathrm{W} / \overline{\mathrm{R}}$ Hold After Clock Rise	3		ns
t8	$\overline{\text { CS, }}$ BLAST Set-Up Before Clock Rise	9		ns
t9	$\overline{\text { CS }}$, $\overline{\text { BLAST }}$ Hold After Clock Rise	3		ns
t10	BRDYO Valid After Clock Rise		17	ns
t11	BRDYO Hold After Clock Rise	3		ns
t12	$\mathrm{D}_{0}-\mathrm{D}_{31}$ Valid After Clock Rise During Read Hit		24	ns
t13	$\mathrm{D}_{0}-\mathrm{D}_{31}$ Hold After Clock Rise	3		ns
t14	SKEN Set-Up Before Clock Rise	9		ns
t15	SKEN Hold After Clock Rise	3		ns
t16	START Valid After Clock Rise		17	ns
t17	START Hold After Clock Rise	3		ns
t18	$\mathrm{D}_{0}-\mathrm{D}_{31}$ Set-Up Before Clock Rise During Line Fill	10		ns
t19	$\mathrm{D}_{0}-\mathrm{D}_{31}$ Hold After Clock Rise During Line Fill	15		ns
t20	CBRDY, CRDY Set-Up Before Clock Rise	14		ns
t21	CBRDY, $\overline{\text { CRDY }}$ Hold After Clock Rise	3		ns
t22	$\mathrm{D}_{0}-\mathrm{D}_{31}$ Set-Up Before Clock Rise During Processor Write Cycle	0		ns
t23	$\mathrm{D}_{0}-\mathrm{D}_{31}$ Hold After Clock Rise During Processor Write Cycle	6		ns
t24	EADS Set-Up Before Clock Rise	9		ns
t25	EADS Hold After Clock Rise	3		ns
t26	BOFF Set-Up Before Clock Rise	9		ns
t27	BOFF Hold After Clock Rise	3		ns
t28	START Go HIGH After Clock Rise During BOFF or RESET		18	ns
t29	$\overline{\text { BRDYO }}$ Go HIGH After Clock Rise During $\overline{\text { BOFF }}$ or RESET		18	ns
t30	D_{0} - D_{31} High Z During $\overline{\mathrm{BOFF}}$		18	ns
t31	RESET Set-Up Before Clock Rise	9		ns
t32	RESET Hold After Clock Rise	3		ns
t33	RESET Duration	$2 \mathrm{t} 2+12$		ns
t34	FLUSH Set-Up Before Clock Rise	9		ns
t35	FLUSH Hold After Clock Rise	3		ns

4

Switching Waveforms

Note:

1. Reset is LOW, $\overline{\text { EADS }}$ is HIGH, and $\overline{\mathrm{BOFF}}$ is HIGH.

Switching Waveforms (continued)
Read Miss, Line Fill (Min. DRAM Access is 4/3/3/3) ${ }^{[2]}$

Notes:
2. Reset is LOW, $\overline{\mathrm{EADS}}$ is HIGH, $\overline{\mathrm{BOFF}}$ is HIGH , and CRDY is HIGH.
3. $\overline{\text { BLAST }}$ is LOW $\mathbf{t 8}$ before the rising edge of clock period C11.

Switching Waveforms (continued)
Write Cycle ${ }^{[4]}$

8 MODULES

Note:
4. Reset is LOW, $\overline{\text { CBRDY }}$ is HIGH, $\overline{\text { EADS }}$ is HIGH, $\overline{\mathrm{BOFF}}$ is HIGH. Access to DRAM must be a minimum of 3 cycles.

Switching Waveforms (continued)

Write Cycle with Self-Invalidation ${ }^{[5]}$

Note:
5. Reset is LOW. There is a minimum of 3 clocks between $\overline{\mathrm{ADS}}$ and $\overline{E A D S}$, a minimum of two clocks between EADS and CBRDY or $\overline{C R D Y}$, a minimum of three clocks between consecutive EADS inside the same write cycle, and a minimum of 6 clocks between consecutive ADSs.

Switching Waveforms (continued)
Single Non-Cachable Read (Cache Hit) ${ }^{[6]}$

[^76]
Switching Waveforms (continued)

Single Non-cachable Read (Cache Miss) Showing a Four-Clock Main Memory Access

Switching Waveforms (continued)
Flush Cycle 1 ${ }^{[7,8]}$

Flush Cycle $2^{[8,9]}$

[^77]Switching Waveforms (continued)

Consecutive Invalidations During $\overline{\text { BOFF }}^{[10]}$

Note:
10. Reset is LOW. There is a minimum of three clocks between EADS, and a minimum of one clock between $\overline{B O F F}$ and EADS.

Switching Waveforms (continued)
Backoff Operation ${ }^{[11]}$

7485-12

Reset Operation

Note:
11. Reset is LOW.

Ordering Information

Operating Frequency (MHz)	Ordering Code	Package Name	Package Type	Operating Range
33	CYM7485ZPM-33C	PM08	128-Pin Dual-Readout SIMM	Commercial

Document \#: 38-M-00058-A

i486 Level II Cache Module
 Family

Features

- Cache sizes of $64 \mathrm{~KB}, 256 \mathrm{~KB}$, or 1 MB
- Tag width of 8 bits
- Independent dirty bit
- Operates with 33-MHz Intel $\mathbf{i 4 8 6}$ processors
- Zero-wait-state operation
- Constructed using standard asynchronous SRAMs
- 64-position (128-signal) dual-readout SIMM
- Single 5V ($\pm 5 \%$) power supply
- TTL-compatible inputs/outputs

Functional Description

The CYM 7490 module series is a family of cache memory subsystems for Intel i486-based systems. Each module contains two banks of 32-bit-wide data SRAM, an 8 -bit-wide tag SRAM, and a single-bitwide, separate I/O dirty SRAM. Bank sizes of $8 \mathrm{~K} \times 32,32 \mathrm{~K} \times 32$, and $128 \mathrm{~K} \times 32$ are supported, yielding cache sizes of 64 kilobytes, 256 kilobytes, and 1 megabyte. The address signals for the data and dirty SRAMs are latched.
The module is configured as a 128 -pin dual-readout single-in-line memory module (SIMM). It is constructed using standard asynchronous SRAMs in SOJ pack-
ages mounted on an epoxy laminate substrate. The SIMM contacts are plated with five micro-inches of gold over 100 microinches of nickel. Module dimensions are 3.85 inches long by 1.15 inches high by 0.33 inches thick.
These modules are designed for zero-waitstate operation in 486-based systems operating at a bus speed of 33 MHz . They are designed for compatibility with off-theshelf cache controllers and chipsets. The $15-\mathrm{ns}$ device is built using data and tag SRAMs with an access time of 15 ns , while the $20-\mathrm{ns}$ version is built with 15 -ns tag SRAMs and $20-\mathrm{ns}$ data SRAMs.

Signal Descriptions

Signal	Type	Description
TAG	$7-0$	I/O
TAGWE	I	Tache Tag Data Bus
$\overline{\text { DIRTYWE }}$	I	Dirty Bit Write Enable
DIRTYIN	I	Dirty Bit In
DIRTYOUT	O	Dirty Bit Out
HACALE	I	Host Address Bus Latch Enable
HA $_{19-4}$	I	Host Address Bus.
$\overline{\text { CACS }}_{1-0}$	I	Cache Memory Chip Selects
HA3B $_{1-0}$	I	Host Address A3 Bank Select
$\overline{\text { CDOE }}_{1-0}$	I	Cache Data Output Enable
$\overline{\text { CAWE }}_{3-0}$	I	Cache Write Enables
HD $_{31-0}$	I/O	Host Data Bus
PD $_{3-0}$	O	Presence Detect Pins (see below)
NC	-	Reserved for future use.

Presence Detect Scheme

Device	PD3	PD2	PD1	PD0
CYM7490	Open	Open	Open	GND
CYM7491	Open	Open	GND	Open
CYM7492	Open	Open	GND	GND

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Supply Voltage to Ground Potential
(Pin 28 to Pin 14)
0.5 V to +7.0 V

Storage Temperature
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	$\begin{aligned} & \text { CYM7490-15, } 20 \\ & \text { CYM7491-15, } 20 \\ & \text { CYM7492-15, } 20 \end{aligned}$		Unit
			Min.	Max.	
V_{CC}	Supply Voltage		4.5	5.5	V
TAMB	Ambient Temperature	Commercial	0	70	${ }^{\circ} \mathrm{C}$
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min. $\mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min. $\mathrm{I}_{\mathrm{OL}}=8 . .0 \mathrm{~mA}$		0.4	V
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage Level		2.2	V_{CC}	V
V_{IL}	Input LOW Voltage Level		-0.5	0.8	V
$\mathrm{L}_{\text {IN }}$	Input Leakage Output	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., 0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\text {SS }}$		± 20	$\mu \mathrm{A}$
Iout	Operating Leakage Current	$\overline{\mathrm{CS}}=\mathrm{V}_{\text {IH }}, \mathrm{V}_{\text {CC }}=$ Max., $\mathrm{V}_{\text {SS }} \leq \mathrm{V}_{\text {OUT }} \leq \mathrm{V}_{\text {CC }}$		± 20	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CC} 1}$	Operating Current	$\overline{\mathrm{CACSn}}=\mathrm{V}_{\text {IL }}$, Outputs Open, $\mathrm{f}=\mathrm{f}_{\text {MAX }}$		1300	mA
ISB1	Standby Current - TTL Levels	$\overline{\mathrm{CACSn}} \geq \mathrm{V}_{\mathrm{CC}}-0.2, \mathrm{~V}_{\mathrm{CC}}=\mathrm{Max}$ $\mathrm{V}_{\mathrm{CC}}-0.2 \leq \mathrm{V}_{\text {IN }} \leq 0.2$, Outputs Open		800	mA
$\mathrm{I}_{\text {SB2 }}$	Standby Current - CMOS Levels	$\overline{\mathrm{CACSn}} \geq \mathrm{V}_{\mathrm{CC}}-0.2, \mathrm{~V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\mathrm{CC}}-0.2 \leq \mathrm{V}_{\mathrm{IN}} \leq 0.2$, Outputs Open		400	mA

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
CADDR	Input Capacitance, $\mathrm{HA}_{19-4}, \mathrm{CAA}_{1-0}$	$\mathrm{f}=1 \mathrm{MHz}$	50	pF
CWE	Input Capacitance, $\overline{\text { CAWE }}_{1-0}, \overline{\text { TAGWE }}^{\text {a }}$	$\mathrm{f}=1 \mathrm{MHz}$	30	pF
$\mathrm{C}_{\text {WE2 }}$	Input Capacitance, DIIRTYWE, HACALE	$\mathrm{f}=1 \mathrm{MHz}$	20	pF
$\mathrm{C}_{\text {CSOE }}$	Input Capacitance, $\overline{\mathrm{CACS}}_{1-0}$, CDOE_{1-0}	$\mathrm{f}=1 \mathrm{MHz}$	50	pF
$\mathrm{C}_{\text {data }}$	Input/Output Capacitance, HD_{31-0}	$\mathrm{f}=1 \mathrm{MHz}$	90	pF
$\mathrm{C}_{\text {TAG }}$	Input/Output Capacitance, TAG $_{7-0}$, DIRTYIN, DIRTYOUT	$\mathrm{f}=1 \mathrm{MHz}$	30	pF

AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

Switching Characteristics Over the Operating Range

Parameter	Description	$\begin{aligned} & 7490-15 \\ & 7491-15 \\ & 7492-15 \end{aligned}$		$\begin{aligned} & 7490-20 \\ & 7491-20 \\ & 7492-20 \end{aligned}$	
		Min.	Max.	Min.	Max.

Unit
ADDRESS LATCH

$\mathrm{t}_{\text {LPW }}$	Latch Pulse Width	5		5		ns
$\mathrm{t}_{\text {LSD }}$	Data Set-Up to ALE Positive	2		2		ns
$\mathrm{t}_{\text {LHD }}$	Data Hold from ALE Positive	1.5		1.5		ns

READ CYCLE - Data SRAM Read Timing

t_{RC}	Read Cycle Time	20		25		ns
t_{AA}	Address Access Time (Latch Transparent)		20		25	ns
t_{OE}	Output Enable to Output Valid		10		10	ns
t_{CE}	Chip Enable to Data Valid		15		20	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold After Address Change	3		3		ns
$\mathrm{t}_{\mathrm{LZCE}}$	Chip Enable to Outputs in Low Z	3		3		ns
$\mathrm{t}_{\mathrm{HZCE}}$	Chip Disable to Outputs in High Z		8		10	ns
$\mathrm{t}_{\text {OLZ }}$	Output Enable to Output in Low Z	0		0		
$\mathrm{t}_{\text {OHZ }}$	Output Diable to Outputs in High Z		8		10	ns

READ CYCLE - Tag SRAM Read Timing

$\mathbf{t}_{\text {TDRC }}$	Read Cycle Time	15		20		ns
$\mathrm{t}_{\text {TAA }}$	Address Access Time		15		20	ns
$\mathbf{t}_{\text {TCE }}$	Chip Enable to Data Valid		15		20	ns
$\mathrm{t}_{\text {TOHA }}$	Data Hold After Address Change	3		3		ns
$\mathrm{t}_{\text {TLZCE }}$	Chip Enable to Outputs in Low Z	3		3		ns
$\mathrm{t}_{\text {THZCE }}$	Chip Disable to Outputs in High Z		8		8	ns

READ CYCLE - Dirty SRAM Read Timing

$\mathrm{t}_{\text {DRC }}$	Read Cycle Time	20		25		ns
$\mathrm{t}_{\text {DAA }}$	Address Time		20		25	ns
$\mathrm{t}_{\text {DOHA }}$	Data Hold After Address Change	3		3		ns
WRITE CYCLE - Data SRAM Write Timing						
twc	Write Cycle Time	20		25		ns
$\mathrm{t}_{\text {SCE }}$	Chip Enable to End of Write	10		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to End of Write	20		25		ns
t_{AH}	Address Hold from End of Write	0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up from Beginning of Write	5		5		ns
tPWE	Write Pulse Width	10		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to End of Write	7		10		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from End of Write	0		0		ns
$\mathrm{t}_{\text {LZWE }}$	Write High to Outputs in Low Z	3		3		ns
$\mathrm{t}_{\text {HZWE }}$	Write Low to Outputs in High Z		7		10	ns

WRITE CYCLE - Data SRAM Write Timing

$\mathrm{t}_{\text {DRC }}$	Read Cycle Time	20		25		ns
$\mathrm{t}_{\text {DAA }}$	Address Time		20		25	ns
$\mathrm{t}_{\text {DOHA }}$	Data Hold After Address Change	3		3		ns
WRITE CYCLE						
$\mathrm{t}_{\text {WC }}$	Data SRAM Write Timing	Write Cycle Time	20		25	
$\mathrm{t}_{\text {SCE }}$	Chip Enable to End of Write	10		15		ns
$\mathrm{t}_{\text {AW }}$	Address Set-up to End of Write	20		25		ns
$\mathrm{t}_{\text {AH }}$	Address Hold from End of Write	0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up from Beginning of Write	5		5		ns
$\mathrm{t}_{\text {PWE }}$	Write Pulse Width	10		15		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to End of Write	7		10		ns
$\mathrm{t}_{\text {HD }}$	Data Hold from End of Write	0		0		ns
$\mathrm{t}_{\text {LZWE }}$	Write High to Outputs in Low Z	3		3		ns
$\mathrm{t}_{\text {HZWE }}$	Write Low to Outputs in High Z		7		10	ns

Switching Characteristics (continued)

Parameter	Description	$\begin{aligned} & 7490-15 \\ & 7491-15 \\ & 7492-15 \end{aligned}$		$\begin{aligned} & 7490-20 \\ & 7491-20 \\ & 7492-20 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	
WRITE CYCLE - Tag SRAM Write Timing						
$\mathrm{t}_{\text {TWC }}$	Write Cycle Time	15		15		ns
$\mathrm{t}_{\text {TSCE }}$	Chip Enable to End of Write	10		10		ns
$\mathrm{t}_{\text {TAW }}$	Address Set-Up to End of Write	10		10		ns
$\mathrm{t}_{\text {TAH }}$	Address Hold from End of Write	0		0		ns
$\mathrm{t}_{\text {TSA }}$	Address Set-Up from Beginning of Write	0		0		ns
$\mathrm{t}_{\text {TPWE }}$	Write Pulse Width	10		10		ns
$\mathrm{t}_{\text {TSD }}$	Data Set-Up to End of Write	7		7		ns
$\mathrm{t}_{\text {THD }}$	Data Hold from End of Write	0		0		ns
$\mathrm{t}_{\text {TLZWE }}$	Write High to Outputs in Low Z	3		3		ns
$\mathrm{t}_{\text {THZWE }}$	Write Low to Outputs in High Z		7		7	ns
WRITE CYCLE - Dirty SRAM Write Timing						
$t_{\text {DWC }}$	Write Cycle Time	20		20		ns
$\mathrm{t}_{\text {DAW }}$	Address Set-Up to End of Write	17		17		ns
$t_{\text {DAH }}$	Address Hold from End of Write	0		0		ns
t ${ }_{\text {DSA }}$	Address Set-Up from Begining of Write	5		5		ns
$t_{\text {DPWE }}$	Write Pulse Width	12		12		ns
$\mathrm{t}_{\text {DSD }}$	Data Set-Up to End of Write	10		10		ns
$\mathrm{t}_{\text {DHD }}$	Data Hold from End of Write	0		0		ns
tolzwe	Write High to Outputs in Low Z	5		5		ns
t DHzWE	Write Low to Outputs in High Z		7		7	ns

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Cache Size
15 (Data and Tag/Dirty)	CYM7490PM-15	PM05	128-Pin Dual-Readout SIMM	64 Kbyte
20 (Data), 15 (Tag/Dirty)	CYM7490PM-20	PM05	128-Pin Dual-Readout SIMM	

Speed (ns)	Ordering Code	Package Name	Package Type	Cache Size
15 (Data and Tag/Dirty)	CYM7491PM-15	PM06	128-Pin Dual-Readout SIMM	256 Kbyte
20 (Data), 15 (Tag/Dirty)	CYM7491PM-20	PM06	128-Pin Dual-Readout SIMM	

Speed (ns)	Ordering Code	Package Name	Package Type	Cache Size
15 (Data and Tag/Dirty)	CYM7492PM-15	PM07	128-Pin Dual-Readout SIMM	1 Mbyte
20 (Data), 15 (Tag/Dirty)	CYM7492PM-20	PM07	128-Pin Dual-Readout SIMM	

Document \#: 38-M-00061
INFO 1
SRAMs2
PROMs 3
PLDs 4
FIFOs 5
LOGIC 6
DATACOM 7
MODULES 8

BUS 10
MILITARY 11
TOOLS 12
QUALITY 13
PACKAGES 14

Device Number
 CY10E383
 CY101E383
 CY10E384L
 CY10E422
 CY100E422
 CY10E470
 CY100E470
 CY10E474
 CY100E474
 CY10E484
 CY100E484
 CY101E484

Description

ECL/TTL/ECL Translator and High-Speed Bus Driver . 9-1
ECL/TTL/ECL Translator and High-Speed Bus Driver . 9-1
ECL/TTL/ECL Translator . 9-8
256×4 ECL Static RAM . 9-13
256 x 4 ECL Static RAM 9-13
4K x 1 ECL Static RAM . 9-20
4Kx 1 ECL Static RAM . 9-20
1Kx 4 ECL Static RAM . 9- 25
1K x 4 ECL Static RAM . 9-25
4Kx 4 ECL Static RAM . 9-32
4K x 4 ECL Static RAM . 9-32
4K x 4 ECL Static RAM . 9-32

Features

- BiCMOS for optimum speed/power
- High speed (max.)
- 2.5 ns tPD TTL-to-ECL
-3.5 ns tPD ECL-to-TTL
- Low skew < ± 1 ns
- Can operate on single +5 V supply
- Full-duplex ECL/TTL data transmission
- Internal $2 \mathrm{k} \Omega$ ECL pull-down resistors on each ECL output
- 80-pin PQFP package
- Surface-mount PLCC/CLCC package
- $V_{B B}$ ECL reference voltage output
- Single- or dual-supply operation
- Capable of greater than 2001V ESD
- ECL cable/twisted pair driver

Functional Description

The CY10/101E383 is a new-generation TTL-to-ECL and ECL-to-TTL logic level translator designed for high-performance systems. The device contains ten independent TTL-to-ECL and ten independent ECL-to-TTL translators for high-speed full-duplex data transmission, mixed logic, and bus applications. The CY10/101E383 is especially suited to drive ECL backplanes between TTL boards. The CY10/101E383 is implemented with differential ECLI/O to provide balanced low noiseoperationovercontrolledimpedance buses between TTL and/or ECL subsystems. In addition, the device has internal output $2 \mathrm{k} \Omega$ pull-down resistors tied to V_{EE} to decrease the number of external components. For system testing purposes or for driving light loads, the $2 \mathrm{k} \Omega$ is used as the only termination thereby eliminating
up to 20 external resistors. The part meets standard $10 \mathrm{~K} / 10 \mathrm{KH}$ and 100 K logic levels with the internal pull-down while driving 50Ω to -2 V .
The device is designed with ample ground pins to reduce bounce, and has separate ECL and TTL power/ground pins to reduce noise coupling between logic families. The parts can operate in single- or dual-supply configurations while maintaining absolute $10 \mathrm{~K} / 10 \mathrm{KH}$ and 100 K level swings. The translators are offered in standard $10 \mathrm{~K} / 10 \mathrm{KH}(10 \mathrm{E})$ and $100 \mathrm{~K}(101 \mathrm{E})$ ECL-compatible versions with -5.2 V or -4.5 V power supply. The TTL I/O is fully TTL compatible. The CY10/101E383 is packaged in 84 -pin surface-mountable PLCCs and CLCCs. To save board space, an 80 -pin PQFP package with 25 -mil-lead pitch is available.

Notes:

1. The PQFP package has one less each TTL $V_{C C}$ and $T T L ~ G N D ~ p i n ~ a n d ~ t w o ~ l e s s ~ E C L ~ V ~ V C C ~ p i n s . ~$

Pin Configurations (continued)
PQFP
Top View

Selection Guide

	10E383-2 $\mathbf{1 0 1 E 3 8 3 - 2}$	10E383-3 101E383-3
Maximum Propagation Delay Time (ns) (TTL to ECL)	2.5	3
Maximum Propagation Delay Time (ns) (ECL to TTL)	3.5	4
Maximum Operating Current (mA) Sum of I_{EE} and I_{CC}	270	270

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
TTL Supply Voltage to Ground Potential .. -0.5 V to +7.0 V
TTL DC Input Voltage $\ldots \ldots \ldots \ldots \ldots,-3.0 \mathrm{~V}$ to +7.0 V
ECL Supply Voltage V_{EE} to $\mathrm{ECL} \mathrm{V}_{\mathrm{CC}} \ldots .-7.0 \mathrm{~V}$ to +0.5 V

ECL Output Current -50 mA
Static Discharge Voltage $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Latch-Up Current
$>200 \mathrm{~mA}$

Operating Range

Range	I/O	Version	Ambient Temperature	$\begin{aligned} & \mathbf{E} \mathbf{V}_{\mathbf{E E}} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbf{T T L} \\ & \mathbf{V}_{\mathrm{CC}} \\ & \hline \end{aligned}$
Commercial	$\begin{array}{\|c\|} \hline 10 \mathrm{~K} \\ 10 \mathrm{KH} \end{array}$	10E	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \end{aligned}$	$\begin{gathered} -5.2 \mathrm{~V} \\ \pm 5 \% \end{gathered}$	$\begin{gathered} 5 \mathrm{~V} \pm \\ 5 \% \end{gathered}$
Commercial	100K	101E	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -4.2 \mathrm{~V} \text { to } \\ & -5.46 \mathrm{~V} \end{aligned}$	$\begin{gathered} 5 \mathrm{~V} \pm \pm \\ 5 \% \end{gathered}$
Military	$\begin{gathered} \hline 10 \mathrm{~K} \\ 10 \mathrm{KH} \end{gathered}$	10E	$\begin{gathered} -55^{\circ} \mathrm{C} \\ \text { to }+125^{\circ} \mathrm{C} \\ \text { case } \end{gathered}$	$\begin{aligned} & -5.2 \mathrm{~V} \\ & \pm 5 \% \end{aligned}$	$5 \mathrm{~V}, \pm$

CYPRESS -

ECL Electrical Characteristics Over the Operating Range ${ }^{[2]}$

Parameter	Description	Test Conditions	Temperature ${ }^{[3]}$	10E383		101 E383		Unit
				Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 10 \mathrm{E}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Min} . \text { or } \mathrm{V}_{\mathrm{IL}} \mathrm{Max} . \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1140	-900			mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000	-840			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960	-810			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900	-735			mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-880	-700			mV
		$\begin{aligned} & 101 \mathrm{E} \mathrm{R}_{\mathrm{I}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Min.or } \mathrm{V}_{\mathrm{IL}} \text { Max. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1025	-880	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 10 \mathrm{E}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Min. or } \mathrm{V}_{\mathrm{IL}} \text { Max. } \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1920	-1670			mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870	-1665			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850	-1650			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830	-1625			mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1830	-1610			mV
		$\begin{aligned} & 101 \mathrm{E} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Min.or } \mathrm{V}_{\mathrm{IL}} \text { Max. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1810	-1620	mV
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	10E	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1260	-900			mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1170	-840			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1130	-810			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1070	-720			mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1030	-700			mV
		101E	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1165	-880	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	10E	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1950	-1540			mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1950	-1480			mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1950	-1475			mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1950	-1450			mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1950	-1450			mV
		101E	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1810	-1475	mV
$\mathrm{V}_{\text {BB }}$	Output Reference Voltage	$10 \mathrm{E}^{[4]}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	-1.37	-1.18			V
			$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1.46	-1.32			
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1.29	-1.14			
		$101 \mathrm{E}^{[4]}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			-1.40	-1.23	
$\mathrm{V}_{\mathrm{cm}}{ }^{[5]}$	CommonModeVoltage	$\pm \mathrm{V}_{\mathrm{cm}}$ with respect to $V_{B B}$			1.0		1.0	V
$\mathrm{V}_{\text {diff }}$	Input Voltage Differential	Required for Full Output Swing		150		150		mV
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ Max.			220		220	$\mu \mathrm{A}$
I_{IL}	Input LOW Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }} \mathrm{Min}$.		-0.5	170	-0.5	170	$\mu \mathrm{A}$
R_{PD}	Pull-Down Resistor	Connected from All ECL Outputs to $V_{\text {EE }}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	1.6	2.4			$\mathrm{k} \Omega$
			$\begin{aligned} & \mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	1.6	2.4			
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$			1.6	2.4	
I_{EE}	Supply Current (All inputs and outputs open)				-180		-180	mA

TTL Electrical Characteristics Over the Operating Range ${ }^{2]}$

Parameter	Description	Test Conditions	$\begin{aligned} & \hline 10 \mathrm{E} 383 \\ & \text { 101E383 } \end{aligned}$		Unit
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Min., $\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}$		0.5	V
V_{IH}	Input HIGH Voltage ${ }^{[6]}$		2.0		V
V_{IL}	Input LOW Voltage ${ }^{[5]}$			0.8	V
V_{CD}	Input Clamp Diode Voltage	$\mathrm{I}_{\text {IN }}=-10 \mathrm{~mA}$	-1.5		V
$\mathrm{IOS}^{[7]}$	Output Short-Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[8]}$	-180	-40	mA
I_{IX}	Input Load Current ${ }^{[9]}$	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-250	+20	$\mu \mathrm{A}$
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{f}=\mathrm{f}$ max.		90	mA

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\mathrm{IN}}{ }^{[7]}$	Input Capacitance		4	pF
$\mathrm{C}_{\text {out }}{ }^{[7]}$	Output Capacitance		5	pF

TTL AC Test Load and Waveform ${ }^{[10]}$

E383-5
Equivalent to: THÉVENIN EQUIVALENT (Commercial)
OUTPUT 0 O_O_ 0.08 V

E383-4
THÉVENIN EQUIVALENT (Military)

ECL AC Test Load and Waveform ${ }^{[11,12,13,14,15,16]}$

Notes:

2. See AC Test Load and Waveform for test conditions.
3. Commercial grade is specified as ambient temperature with transverse air flow greater than 500 linear feet per minute. Military grade is specified as case temperature.
4. $\mathrm{Max} . \mathrm{I}_{\mathrm{BB}}=-1 \mathrm{~mA}$.
5. The internal gain of the CY101/10E383 guarantees that the output voltage will not change for common mode signals to $\pm 1 \mathrm{~V}$. Therefore, input $\mathrm{C}_{\mathrm{MRR}}$ is infinite within the common mode range.
6. These are absolute values with respect to device ground.
7. Characterized initially and after any design or process changes that may affect these parameters.
8. Not more than one output should be tested at a time. Duration of the short should not be more than one second.

9. I / O pin leakage is the worst case of $I_{I X}$ (where $X=H$ or L).
10. TTL test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$.
11. $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}$ Min., $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}}$ Max. on 10 KH version.
12. $\mathrm{V}_{\mathrm{IL}}=-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}$ on 101 E version
13. $\mathrm{ECL} \mathrm{R}_{\mathrm{L}}=50 \Omega \mathrm{C}_{\mathrm{L}}<5 \mathrm{pF}$ (includes fixture and stray capacitance).
14. All coaxial cables should be 50Ω with equal lengths. The delay of the coaxial cables should be "nulled" out of the measurement.
15. $t_{r}=t_{f}=0.7 \mathrm{~ns}$
16. Alii timing measurements are made from the 50% point of aill waveforms.

ECL-to-TTL Switching Characteristics Over the Operating Range

Parameter	Description	Test Conditions	$\begin{gathered} \hline 10 \mathrm{E} 383-2 \\ 101 \mathrm{E} 383-2 \end{gathered}$		$\begin{gathered} \hline 10 \mathrm{E} 383-3 \\ 101 \mathrm{E} 383-3 \end{gathered}$		Unit
			Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{pLH}}$	Propagation Delay Time	$\mathrm{D}_{\mathrm{n}}, \overline{\mathrm{D}}_{\mathrm{n}}$ to Q_{n}	1	3	1	4	ns
$\mathrm{t}_{\mathrm{pHL}}$	Propagation Delay Time	$\mathrm{D}_{\mathrm{n}}, \overline{\mathrm{D}}_{\mathrm{n}}$ to Q_{n}	1	3	1	4	ns

TTL-to-ECL Switching Characteristics Over the Operating Range

Parameter	Description	Test Conditions	$\begin{array}{r} 10 \mathrm{E} 383-2 \\ 101 \mathrm{E} 383-2 \end{array}$		$\begin{array}{r} 10 \mathrm{E} 383-3 \\ 101 \mathrm{E} 383-3 \end{array}$		Unit
			Min.	Max.	Min.	Max.	
$\mathrm{t}_{\mathrm{pLH}}$	Propagation Delay Time	D_{n} to $\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$	1	2.5	1	3	ns
$\mathrm{t}_{\mathrm{pHL}}$	Propagation Delay Time	D_{n} to $\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$	1	2.5	1	3	ns
t_{r}	Output Rise Time	20\% to 80\%	0.35	1.7	0.35	1.7	ns
t_{f}	Output Fall Time	20\% to 80\%	0.35	1.7	0.35	1.7	ns

Skew Time Switching Characteristics (Same test conditions as TTL-to-ECL and ECL-to-TTL Electrical Characteristics)

Symbol	Characteristic	Test Conditions	Min.	Max.	Unit
$\mathrm{t}_{\mathrm{SKT}^{[7]}}{ }^{[7]}$	Data Skew Time ECL-to-TTL	$\mathrm{TTLQ}_{\mathrm{n}}$ to $\mathrm{TTLQ}_{\mathrm{n}+\mathrm{m}}$		1	ns
$\mathrm{t}_{\mathrm{SKE}{ }^{[7]}}$	Data Skew Time TTL-to-ECL	$\mathrm{ECLQ}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$ to $\mathrm{ECLQ}_{\mathrm{n}+\mathrm{m}}, \overline{\mathrm{Q}}_{\mathrm{n}+\mathrm{m}}$		1	ns

Switching Waveforms

ECL-to-TTL Timing

TTL-to-ECL Timing

Switching Waveforms (continued)

Skew Test (tSKT)
TTL $_{\mathbf{Q n}^{n}-\mathrm{to}-\mathrm{TTL}_{\mathrm{Qn}+\mathrm{m}}}$

Skew Test ($\mathbf{t}_{\text {SKE }}$)
$\mathbf{E C L}_{\mathbf{Q n}}, \overline{\mathbf{Q}}_{\mathbf{n}}-\mathbf{t o}-\mathbf{E C L}_{\mathbf{Q n}+\mathrm{m}}, \overline{\mathbf{Q}}_{\mathbf{n}+\mathrm{m}}$

ECL-to-TTL Truth Table

Inputs		Outputs
ECL D $_{\mathbf{n}}$	ECL $_{\mathbf{D}}^{\mathbf{n}}$	TTL $_{\mathbf{n}}$
Open $^{[17]}$	Open $^{[17]}$	L
L	H	L
H	L	H

Note:

17. The ECL inputs will pull to a known logic level if left open.

TTL-to-ECL Truth Table

Inputs	Outputs	
TTLD $_{\mathbf{n}}$	ECL Q $_{\mathbf{n}}$	ECL $_{\mathbf{Q}}^{\mathbf{n}}$
L	L	H
H	H	L

Nominal Voltages

The CY101/10E 383 can be used in dual $\pm 5 \mathrm{~V}$ or single +5 V supply systems. The supply pins should be connected as shown in Tables 1 and 2. This connection technique involves shifting up all ECL supply pins by 5 V . When operating in single-supply systems, the ECL termination voltage level must also be shifted up by adding 5 V . For example, if the termination is 50 ohms to -2 V in a dual-supply system, the single +5 V system should have 50 ohms to +3 V . If the termination is a thévenin type, then the resistor tied to ground is now at +5 V and the resistor tied to -5 V is now at ground potential. Consideration should be given to the power supply so that adequate bypassing is made to isolate the ECL output switching noise from the supply. Having separate TTL and ECL +5 V supply lines will help to reduce the noise. Table 3 shows the CY10E383 nominal voltages applied in a 10 K system.

Table 1. CY101E383 Nominal Voltages Applied in 100K System

Supply Pin	Single-Supply System	Dual-Supply System
TTL V_{CC}	+5.0 V	+5.0 V
TTL GND	0.0 V	0.0 V
ECL V_{CC}	+5.0 V	0.0 V
ECL V_{EE}	0.0 V	-4.5 V

Table 2. CY101E383 Nominal Voltages Applied in 101K System

Supply Pin	Single-Supply System	Dual-Supply System
TTL V_{CC}	+5.0 V	+5.0 V
TTL GND	0.0 V	0.0 V
ECL V_{CC}	+5.0 V	0.0 V
ECL V_{EE}	0.0 V	-5.2 V

Table 3. CY10E383 Nominal Voltages Applied in 10K System

Supply Pin	Single-Supply System	Dual-Supply System
TTL $\mathrm{VCC}_{\mathrm{CC}}$	+5.0 V	+5.0 V
TTL GND	0.0 V	0.0 V
ECL V_{CC}	+5.0 V	0.0 V
ECL V_{EE}	0.0 V	-5.2 V

Ordering Information

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
2.5	CY10E383-2JC	J83	84-Lead Plastic Leaded Chip Carrier	Commercial
	CY10E383-2NC	N80	80-Lead Plastic Quad Flatpack	
3	CY10E383-3JC	J83	84-Lead Plastic Leaded Chip Carrier	Commercial
	CY10E383-3NC	N80	80-Lead Plastic Quad Flatpack	
	CY10E383-3YMB	Y84	84-Pin Ceramic Leaded Chip Carrier	Military

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
2.5	CY101E383-2JC	J83	84-Lead Plastic Leaded Chip Carrier	Commercial
	CY101E383-2NC	N80	80-Lead Plastic Quad Flatpack	
3	CY101E383-3JC	J83	84-Lead Plastic Leaded Chip Carrier	Commercial
	CY101E383-3NC	N80	80-Lead Plastic Quad Flatpack	

Document \#: 38-A-00023-F

Features

- BiCMOS for optimum speed/power
- High speed (max.)
-3 ns tPD TTL-to-ECL
$-4 \mathrm{~ns} \mathrm{t}_{\mathrm{PD}}$ ECL-to-TTL
- Low skew $< \pm \mathbf{1}$ ns
- Operates on single $+\mathbf{5 V}$ supply
- 28-pin SOJ package
- Capable of greater than 2001V ESD

- Low power (110 mA max.) Functional Description

The CY10E384L is a new-generation TTL-to-ECL and ECL-to-TTL logic level translator designed for high-performance systems. The device contains three independent TTL-to-ECL and five independent ECL-to-TTL translators for highspeed data transmission, mixed logic, and bus applications. The CY10E384L functions using differential ECLI/O to provide

ECL/TTL/ECL Translator

Logic Block Diagram

E384-1
balanced low-noise operation over con-trolled-impedance buses between TTL and/or ECL subsystems.
The device has separate ECL and TTL power/ground pins to reduce noise coupling between logic families. The translator is offered in ECL-compatible versions with +5.0 V power supply. The TTL I/O is fully TTL compatible. The CY10E384L is packaged in 28 -pin surface-mountable SOJ.

Pin Configuration

E384-2

Selection Guide

	10E384L-3
Maximum Propagation Delay Time (ns) (TTL to ECL)	3
Maximum Propagation Delay Time (ns) (ECL to TTL)	4
Maximum Operating Current (mA) I CC	110

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)	ECL Output CurrenStatic Discharge Vol					$\begin{aligned} & -50 \mathrm{~mA} \\ & >2001 \mathrm{~V} \end{aligned}$
	Static Discharge Voltage (per MIL-STD-883, Method 3015)					
Storage Temperature Ambient Temperatur	Latch-Up Cu					00 mA
Power Applied $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Operatin	nge				
TTL Supply Voltage to Ground Potential .. -0.5 V to +7.0 V TTL DC Input Voltage -3.0 V to +7.0 V	Range	I/O	Version	Ambient Temperature	$\begin{array}{r} \mathbf{E C L} \\ \mathbf{V}_{\mathbf{C C}} \\ \hline \end{array}$	$\mathrm{V}_{\mathbf{C C}}^{\text {TTL }}$
ECL Supply Voltage V_{CC} to ECL GND $\ldots-0.5 \mathrm{~V}$ to +7.0 V ECL Input Voltage \qquad	Commercial	$\begin{gathered} 10 \mathrm{~K} \\ 10 \mathrm{KH} \end{gathered}$	10 E	$\begin{aligned} & 0^{\circ} \mathrm{C} \text { to } \\ & +75^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	$\begin{gathered} 5 \mathrm{~V} \\ \pm 5 \% \\ \hline \end{gathered}$	$\begin{gathered} 5 \mathrm{~V} \\ \pm 5 \% \\ \hline \end{gathered}$

ECL Output Current
$-50 \mathrm{~mA}$
Static Discharge Voltage . $>2001 \mathrm{~V}$
(per MIL-STD-883, Method 3015)
Operating Range

Cincocen

ECL DC Electrical Characteristics ECL $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}{ }^{[1,2]}$

Parameter	Description	Test Conditions	Temperature ${ }^{[3]}$		84L	Unit
				Min.	Max.	
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 10 \mathrm{E}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }+3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Min. or } \mathrm{V}_{\mathrm{IL}} \text { Max. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	+3950	+4160	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	+3990	$+4190$	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	+4050	+4265	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 10 \mathrm{E}, \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }+3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Min. or } \mathrm{V}_{\mathrm{IL}} \text { Max. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	+3080	+3285	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	$+3100$	+3300	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	+3120	+3325	mV
V_{IH}	Input HIGH Voltage	10E	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	+3830	+4160	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	+3870	+4190	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	+3930	+4280	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	10 E	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	+3050	+3520	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	+3050	+3525	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	+3050	+3550	mV
$\mathrm{V}_{\mathrm{cm}}{ }^{[4]}$	Common Mode Voltage	$\pm \mathrm{V}_{\mathrm{cm}}$ with respect to $\mathrm{V}_{\mathrm{BB}}(+3.7 \mathrm{~V})$			1.0	V
$\mathrm{V}_{\text {diff }}$	Input Voltage Differential	Required for Full Output Swing		150		mV
I_{IH}	Input HIGH Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ Max.			220	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }} \mathrm{Min}$.		-0.5	170	$\mu \mathrm{A}$

TTL DC Electrical Characteristics Over the Operating Range ${ }^{[1]}$

Parameter	Description	Test Conditions	10E384L		Unit
			Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min}$., $\mathrm{I}_{\mathrm{OH}}=-3.2 \mathrm{~mA}$	2.4		V
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{I}_{\mathrm{OL}}=16.0 \mathrm{~mA}$		0.5	V
V_{IH}	Input HIGH Voltage ${ }^{[5]}$		2.0		V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[5]}$			0.8	V
V_{CD}	Input Clamp Diode Voltage	$\mathrm{I}_{\text {IN }}=-10 \mathrm{~mA}$	-1.5		V
IOS	Output Short-Circuit Current	$\mathrm{V}_{\mathrm{CC}}=$ Max., $\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}^{[6]}$	-180	-40	mA
I_{IX}	Input Load Current ${ }^{[7]}$	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$	-250	+20	$\mu \mathrm{A}$
I_{CC}	$\mathrm{V}_{\text {CC }}$ Operating Supply Current	$\mathrm{V}_{\text {CC }}=$ Max., $\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}, \mathrm{f}=\mathrm{f}$ max.		110	mA

Capacitance

Parameter	Description	Test Conditions	Max.	Unit
C_{IN}	Input Capacitance		4	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		5	pF

Notes:

1. See AC Test Load and Waveform for test conditions.
2. DClevels are specified with a nominal $E C L V_{C C}$ of 5 V . The levels will track the variations in ECL $V_{C C}$.
3. Commercial grade is specified as ambient temperature with transverse air flow greater than 500 linear feet per minute.
4. The internal gain of the CY10E384L guarantees that the output voltage will not change for common mode signals to $\pm 1 \mathrm{~V}$. Therefore, input $\mathrm{C}_{\mathrm{MRR}}$ is infinite within the common mode range.
5. These are absolute values with respect to device ground.
6. Not more than one output should be tested at a time. Duration of the short should not be more than one second.
7. I / O pin leakage is the worst case of I_{IX} (where $\mathrm{X}=\mathrm{H}$ or L).

ECL AC Test Load and Waveform ${ }^{[8,9,10,11,12]}$

E384-3

E384-4

TTL AC Test Load and Waveform ${ }^{[13]}$

E384-6
Equivalent to: THÉVENIN EQUIVALENT (Commercial) OUTPUT O——O 99Ω

E384-5

Parameter	Description		10E384L-3		
		Test Conditions	Min.	Max.	
	Propagation Delay Time	$\mathrm{D}_{\mathrm{n}}, \overline{\mathrm{D}}_{\mathrm{n}}$ to Q_{n}	1	4	ns
$\mathrm{t}_{\mathrm{pHL}}$	Propagation Delay Time	$\mathrm{D}_{\mathrm{n}}, \overline{\mathrm{D}}_{\mathrm{n}}$ to Q_{n}	1	4	ns

TTL-to-ECL Switching Characteristics Over the Operating Range

Parameter	Description	Test Conditions	10E384L-3		Unit
			Min.	Max.	
$\mathrm{t}_{\mathrm{pLH}}$	Propagation Delay Time	D_{n} to $\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$	1	3	ns
$\mathrm{t}_{\mathrm{pHL}}$	Propagation Delay Time	D_{n} to $\mathrm{Q}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$	1	3	ns
t_{r}	Output Rise Time	20\% to 80%	0.35	1.7	ns
t_{f}	Output Fall Time	20\% to 80%	0.35	1.7	ns

Skew Time Switching Characteristics (Same test conditions as TTL-to-ECL and ECL-to-TTL Electrical Characteristics)

Symbol	Characteristic	Test Conditions	Min.	Max.	Unit
$\mathrm{t}_{\text {SKT }}$	Data Skew Time ECL-to-TTL	TTLQ $_{\mathrm{n}}$ to $\mathrm{TTLQ}_{\mathrm{n}+\mathrm{m}}$		± 1	ns
$\mathrm{t}_{\text {SKE }}$	Data Skew Time TTL-to-ECL	$\mathrm{ECLQ}_{\mathrm{n}}, \overline{\mathrm{Q}}_{\mathrm{n}}$ to $\mathrm{ECLQ}_{\mathrm{n}+\mathrm{m}}, \overline{\mathrm{Q}}_{\mathrm{n}+\mathrm{m}}$		± 1	ns

Notes:

8. $V_{I L}=V_{\text {IL }}$ Min., $V_{I H}=V_{I H}$ Max.
9. $E C L R_{L}=50 \Omega C_{L}<5 \mathrm{pF}$ (includes fixture and stray capacitance).
10. All coaxial cables should be 50Ω with equal lengths. The delay of the coaxial cables should be "nulled" out of the measurement.
11. $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=0.7 \mathrm{~ns}$
12. All timing measurements are made from the 50% point of all waveforms.
13. TTL test conditions assume signal transition times of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$, and $\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$.

Switching Waveforms

ECL-to-TTL Timing

TTL-to-ECL Timing

Skew Test (tskT)
TTL Qn_{n}-to-TTL $\mathrm{Qn}_{\mathrm{n}+\mathrm{m}}$

Skew Test (tske)
$\mathbf{E C L}_{\mathbf{Q n}}, \overline{\mathbf{Q}}_{\mathbf{n}}$-to-ECL $\mathbf{Q n}+\mathrm{m}, \overline{\mathbf{Q}}_{\mathbf{n}+\mathrm{m}}$

ECL-to-TTL Truth Table

Inputs		Outputs
ECL $_{\mathbf{n}}$	ECL $_{\overline{\mathbf{D}}_{\mathbf{n}}}$	TTL $\mathbf{Q}_{\mathbf{n}}$
Open	Open	L
L	H	L
H	L	H

TTL-to-ECL Truth Table

Inputs	Outputs	
TTL D $_{\mathbf{n}}$	ECL Q $_{\mathbf{n}}$	ECL $_{\mathbf{Q}}^{\mathbf{n}}$
L	L	H
H	H	L

Ordering Information

Speed $(\mathbf{n s})$	Ordering Code	Package Name	Package Type	Operating Range
3	CY10E384L-3VC	V21	28-Lead Molded SOJ	Commercial

Document \#: 38-A-00035

Features

- 256 x 4-bit organization
- Ultra high speed/standard power
$-\mathrm{t}_{\mathrm{AA}}=3.5 \mathrm{~ns}$
$-I_{E E}=220 \mathrm{~mA}$
- Low-power version
$-\mathrm{t}_{\mathrm{AA}}=5 \mathrm{~ns}$
$-\mathrm{I}_{\mathrm{EE}}=150 \mathrm{~mA}$
- Both $10 \mathrm{KH} / 10 \mathrm{~K}$ - and 100 K -compatible I/O versions
- $10 \mathrm{~K} / 10 \mathrm{KH}$ military version
- Capable of withstanding $\mathbf{>} 2001 \mathrm{~V}$ ESD
- On-chip voltage compensation for improved noise margin
- Open emitter output for ease of memory expansion
- Industry-standard pinout

Functional Description

The Cypress CY10E422 and CY100E422 are 256×4 ECL RAMs designed for scratch pad, control, and buffer storage applications. Both parts are fully decoded random access memories organized as 1024 words by 4 bits. The CY10E422 is $10 \mathrm{KH} / 10 \mathrm{~K}$ compatible and is available in a military version.. The CY100E422 is 100 K compatible.

The four independent active LOW block select $(\overline{\mathrm{B}})$ inputs control memory selection and allow for memory expansion and reconfiguration. Each block select ($\overline{\mathrm{B}}_{1}$ through \bar{B}_{4}), when active, turns off the corresponding output and memory block. The read and write operations are controlled by the state of the active LOW write enable $(\overline{\mathrm{W}})$ input. With $\overline{\mathrm{W}}$ and $\overline{\mathrm{B}}_{\mathrm{X}}$ LOW, the corresponding data at D_{X} is written into the addressed location. To read, $\overline{\mathrm{W}}$ is held HIGH, while \bar{B} is held LOW. Open emitter outputs allow for wired-OR connection to expand or reconfigure the memory.

Logic Block Diagram

Pin Configurations (continued on next page)

Selection Guide

		$\mathbf{1 0 E 4 2 2 - 4}$ $\mathbf{1 0 0 E 4 2 2 - 3 . 5}$	$\mathbf{1 0 E 4 2 2 - 5}$ $\mathbf{1 0 0 E 4 2 2 - 5}$	$\mathbf{1 0 E 4 2 2 - 7}$ $\mathbf{1 0 0 E 4 2 2 - 7}$
Maximum Access Time (ns)		$3.5 / 4$	5	7
I_{EE} Max. (mA)	Commercial	220	220	
	L (Low Power)		150	150
	Military (10K/10KH only)		150	150

Pin Configurations (continued)

Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum-rated conditions for extended periods may affect device reliability. For user guidelines, not tested.)
Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage V_{EE} to $\mathrm{V}_{\mathrm{CC}} \ldots \ldots$.
Input Voltage V_{EE} to +0.5 V

Operating Range Referenced to V_{CC}

Range	\mathbf{I} / \mathbf{O}	Ambient Temperature	$\mathbf{V}_{\text {EE }}$
Commercial (Standard, L)	$10 \mathrm{KH} /$ 10 K	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	$-5.2 \mathrm{~V} \pm 5 \%$
Commercial (Standard, L)	100 K	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-4.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Military (L)	$10 \mathrm{KH} /$ 10 K	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Case	$-5.2 \mathrm{~V} \pm 5 \%$

Output Current $-50 \mathrm{~mA}$
Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Temperature ${ }^{[1]}$	Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 10 \mathrm{E}^{[2]} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1140	-900	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900	-735	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-880	-700	mV
		$\begin{aligned} & 100 \mathrm{~K} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1025	-880	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 10 \mathrm{E} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1920	-1670	mV
			$\mathrm{T}_{\mathrm{A}}=+0^{\circ} \mathrm{C}$	-1870	- 1665	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850	-1650	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830	-1625	mV
		$\begin{aligned} & 100 \mathrm{~K} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} \text { or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1830	- 1610	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1810	- 1620	mV

Electrical Characteristics Over the Operating Range (continued)

Parameter	Description	Test Conditions	Temperature ${ }^{[1]}$	Min.	Max.	Unit
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	$\begin{aligned} & 10 \mathrm{E} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1260	-900	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1170	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1130	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	- 1070	-720	mV
		$\begin{aligned} & 100 \mathrm{~K} \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1030	-700	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1165	-880	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	$\begin{aligned} & 10 \mathrm{E} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1950	- 1540	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	- 1950	-1480	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1950	-1475	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	- 1950	-1450	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1950	-1450	mV
		$\begin{aligned} & 100 \mathrm{~K} \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	- 1810	- 1475	mV
I_{IH}	Input HIGH Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ Max.			220	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ Min.	$\overline{\mathrm{B}}$ inputs ${ }^{[3]}$	0.5	170	$\mu \mathrm{A}$
			All other inputs	-50		
I_{EE}	Supply Current (All inputs and outputs open)	Commercial/Military L (Low Power)		- 150		mA
		Commercial Standard		- 220		mA

Capacitance ${ }^{[4]}$

Parameter	Description	Typ.	Max ${ }^{[5]}$	Unit
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance	4	5	pF
C OUT	Output Pin Capacitance	5	6	pF

AC Test Loads and Waveforms ${ }^{[6,7,8,9,10,11]}$

Notes:

1. Commercial grade is specified as ambient temperature with transverse air flow greater than 500 linear feet per minute. Military grade is specified as case temperature.
2. 10 E specifications support both 10 K and 10 KH compatibility.
3. $\overline{\mathbf{B}}$ inputs have pull-down resistors, all other inputs do not have pulldowns. The value of the resistors is nominally $50 \mathrm{k} \Omega$ so the \bar{B} inputs are active when left floating.
4. Tested initially and after any design or process changes that may affect these parameters.
5. For all packages except cerDIP (D40), which has maximums of $\mathrm{C}_{\mathrm{IN}}=8 \mathrm{pF}, \mathrm{C}_{\mathrm{OUT}}=9 \mathrm{pF}$.
6. $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}$ Min., $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}}$ Max. on 10E version.
7. $\mathrm{V}_{\mathrm{IL}}=-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}$ on 100 K version.
8. $\mathrm{R}_{\mathrm{L}}=50 \Omega \mathrm{C}<5 \mathrm{pF}$ (3-ns grade) or $<30 \mathrm{pF}(5-, 7-\mathrm{ns}$ grade). Includes fixture and stray capacitance.
9. All coaxial cables should be 50Ω with equal lengths. The delay of the coaxial cables should be "nulled" out of the measurement.
10. $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=0.7 \mathrm{~ns}$.
11. All timing measurements are made from the 50% point of all waveforms.

Switching Characteristics Over the Commercial Operating Range

Parameter	Description	100E422-3.5		10E422-4		$\begin{aligned} & 10 \mathrm{E} 422-5 \\ & 100 \mathrm{E} 422-5 \end{aligned}$		$\begin{aligned} & 10 \mathrm{E} 422-7 \\ & 100 \mathrm{E} 422-7 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {ABS }}$	Block Select to Output Delay		2.5		2.5	0.5	3.0	0.5	4.0	ns
$\mathrm{t}_{\text {RBS }}$	Block Select Recovery		2.5		2.5	0.5	3.0	0.5	4.0	ns
t_{AA}	Address Access Time		3.5		4.0	1.2	5.0	1.2	7.0	ns
t_{W}	Write Pulse Width	3.5		3.5		3.5		5.0		ns
$t_{\text {WSD }}$	Data Set-Up to Write	0.5		0.5		0.5		1.0		ns
$t_{\text {WHD }}$	Data Hold to Write	1.0		1.0		1.0		1.0		ns
$t_{\text {WSA }}$	Address Set-Up/Write	0.5		0.5		0.5		1.0		ns
$t_{\text {WHA }}$	Address Hold/Write	1.0		1.0		1.0		1.0		ns
$\mathrm{t}_{\text {WSBS }}$	Block Select Set-Up/Write	0.5		0.5		0.5		1.0		ns
$\mathrm{t}_{\text {WHBS }}$	Block Select Hold/Write	1.0		1.0		1.0		1.0		ns
$\mathrm{t}_{\text {Ws }}$	Write Disable	0.3	2.5	0.3	2.5	0.3	3.5	0.3	4.0	ns
t_{WR}	Write Recovery	0.5	3.5	0.5	3.5	0.5	3.5	0.5	8.0	ns
t_{r}	Output Rise Time	0.35	1.5	0.35	1.5	0.35	2.5	1.0	2.5	ns
t_{f}	Output Fall Time	0.35	1.5	0.35	1.5	0.35	2.5	1.0	2.5	ns

Switching Characteristics Over the Military Operating Range

Parameter	Description	10E422-5		10E422-7		Unit
		Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {ABS }}$	Block Select to Output Delay	0.5	4.0	0.5	4.0	ns
$\mathrm{t}_{\text {RBS }}$	Block Select Recovery	0.5	4.0	0.5	4.0	ns
$\mathrm{t}_{\text {AA }}$	Address Access Time	1.2	5.0	1.2	7.0	ns
t_{w}	Write Pulse Width	5.0		5.0		ns
twSD	Data Set-Up to Write	0		0		ns
$\mathrm{t}_{\text {WHD }}$	Data Hold to Write	1.0		1.0		ns
twSA	Address Set-Up/Write	1.0		1.0		ns
twha	Address Hold/Write	1.0		1.0		ns
$\mathrm{t}_{\text {WSBS }}$	Block Select Set-Up/Write	0		0		ns
$t_{\text {WHBS }}$	Block Select Hold/Write	1.0		1.0		ns
$\mathrm{t}_{\text {WS }}$	Write Disable	0.3	4.0	0.3	4.0	ns
$\mathrm{t}_{\text {WR }}$	Write Recovery	0.5	5.0	0.5	8.0	ns
t_{r}	Output Rise Time	1.0	2.5	1.0	2.5	ns
t_{f}	Output Fall Time	1.0	2.5	1.0	2.5	ns

Switching Waveforms

Read Mode

Write Mode

Typical DC and AC Characteristics (10E422/10E422L/100E422/100E422L)

NORMALIZED ACCESS TIME vs. AMBIENT TEMPERATURE

NORMALIZED ACCESS TIME vs. SUPPLY VOLTAGE

Truth Table

Inputs			Output	Mode
$\overline{\mathbf{B}}_{\mathbf{X}}$	$\overline{\mathbf{W}}$	$\mathbf{D}_{\mathbf{X}}$	$\mathbf{\text { Qx }}$	
H	X	X	L	Disabled
L	L	H	L	Write H
L	L	L	L	Write L
L	H	X	Out	Read

Ordering Information

I/O	$\underset{(\mathbf{m A})}{\mathbf{I E E}_{\mathbf{E E}}}$	$\begin{gathered} \mathbf{t}_{\mathrm{AA}} \\ (\mathrm{~ns}) \end{gathered}$	Ordering Code	Package Name	Package Type	Operating Range
$10 \mathrm{E}^{[12]}$	220	4	CY10E422-4KC	K63	24-Lead Square Cerpack	Commercial
			CY10E422-4LC	L63	24-Square Leadless Chip Carrier	
		5	CY10E422-5DC	D40	24-Lead (400-Mil) Sidebraze DIP	
			CY10E422-5KC	K63	24-Lead Square Cerpack	
			CY10E422-5LC	L63	24-Square Leadless Chip Carrier	
	150	5	CY10E422L-5DC	D40	24-Lead (400-Mil) Sidebraze DIP	Commercial
			CY10E422L-5JC	J64	28-Lead PlasticLeaded Chip Carrier	
			CY10E422L-5KC	K63	24-Lead Square Cerpack	
			CY10E422L-5LC	L63	24-Square Leadless Chip Carrier	
			CY10E422L-5DMB	D40	24-Lead (400-Mil) Sidebraze DIP	Military
			CY10E422L-5KMB	K63	24-Lead Square Cerpack	
		7	CY10E422L-7DC	D40	24-Lead (400-Mil) Sidebraze DIP	Commercial
			CY10E422L-7JC	J64	28-LeadPlasticLeadedChip Carrier	
			CY10E422L-7KC	K63	24-Lead Square Cerpack	
			CY10E422L-7LC	L63	24-Square Leadless Chip Carrier	
			CY10E422L-7DMB	D40	24-Lead (400-Mil) Sidebraze DIP	Military
			CY10E422L-7KMB	K63	24-Lead Square Cerpack	
100K	220	3.5	CY100E422-3.5KC	K63	24-Lead Square Cerpack	Commercial
			CY100E422-3.5LC	L63	24-Square Leadless Chip Carrier	
		5	CY100E422-5DC	D40	24-Lead (400-Mil) Sidebraze DIP	
			CY100E422-5KC	K63	24-Lead Square Cerpack	
			CY100E422-5LC	L63	24-Square Leadless Chip Carrier	
	150	5	CY100E422L-5DC	D40	24-Lead (400-Mil) Sidebraze DIP	Commercial
			CY100E422L-5JC	J64	28-LeadPlasticLeaded Chip Carrier	
			CY100E422L-5KC	K63	24-Lead Square Cerpack	
			CY100E422L-5LC	L63	24-Square Leadless Chip Carrier	
		7	CY100E422L-7DC	D40	24-Lead (400-Mil) Sidebraze DIP	
			CY100E422L-7JC	J64	28-LeadPlasticLeaded Chip Carrier	
			CY100E422L-7KC	K63	24-Lead Square Cerpack	
			CY100E422L-7LC	L63	24-Square Leadless Chip Carrier	

Note:

12. 10 E specifications support both 10 K and 10 KH compatibility.

Document \#: 38-A-00002-C

SEMICONDUCTOR

Functional Description

The Cypress CY10E470 and CY100E470 are ECL RAMs designed for scratch pad, control, and buffer storage applications. Both parts are fully decoded random access memories organized as 4096 words by 1 bit. The CY10E470 is 10K-compatible. The CY100E470 is 100 K -compatible.

4K x 1 ECL Static RAM

Features

- 4096×1-bit organization
- High speed/low power
$-\mathrm{t}_{\mathrm{AA}}=5 \mathrm{~ns}$
$-I_{E E}=200 \mathrm{~mA}$
- Both 10 K - and 100 K -compatible versions
- On-chip voltage compensation for improved noise margin
- Open emitter output for ease of memory expansion
- Industry-standard pinout

The active LOW chip select $(\overline{\mathbf{S}})$ input controls memory selection and allows for memory expansion. The read and write operations are controlled by the state of the active LOW write enable $(\overline{\mathrm{W}})$ input. With \bar{W} and $\bar{S} L O W$, the data at D is written into the addressed location. To read, $\overline{\mathrm{W}}$ is held HIGH, while \bar{S} is held LOW. Open emitter outputs allow for wired-OR connection in order to expand the memory.

Logic Block Diagram

Pin Configuration

C470-2

Selection Guide

	10E470-5	$10 \mathrm{E} 470-7$ $\mathbf{1 0 0 E 4 7 0 - 7}$
Maximum Access Time (ns)	$\mathbf{1 0 0 \mathrm { E } 4 7 0 - 5}$	7
I_{EE} Max. (mA)	5	200

Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum rated conditions for extendedperiods mayaffect device reliability. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied .$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage V_{EE} to $\mathrm{V}_{\mathrm{CC}} \ldots \ldots \ldots \ldots . . .7 . \mathrm{F}^{2} \mathrm{~V}$ to +0.5 V
Input Voltage VEE $_{\text {EE }}$ to +0.5 V
Output Current
$-50 \mathrm{~mA}$

Operating Range referenced to V_{CC}

Range	Version	Ambient Temperature	VEE
Commercial	10 E	$0^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$	$-5.2 \mathrm{~V} \pm 5 \%$
Commercial	100 E	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-4.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Temperature ${ }^{[1]}$	Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 10 \mathrm{E} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} . \text { or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900	-720	mV
		$\begin{aligned} & 100 \mathrm{~K} R_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} . \text { or } \mathrm{V}_{\text {IL }} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1025	-880	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 10 \mathrm{E} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} . \text { or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870	-1665	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850	-1650	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830	-1625	mV
		$\begin{aligned} & 100 \mathrm{~K} R_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} . \text { or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1810	-1620	mV
V_{IH}	Input HIGH Voltage	$\begin{aligned} & 10 \mathrm{E} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1145	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1105	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1045	-720	mV
		$100 \mathrm{~K} \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1165	-880	mV
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage	$\begin{aligned} & 10 \mathrm{E} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1870	-1490	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850	-1475	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830	-1450	mV
		$100 \mathrm{~K} \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1810	-1475	mV
I_{IH}	Input HIGH Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IH }}$ Max.			220	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IL }}$ Min.	$\overline{\mathrm{S}}$ inputs	0.5	170	$\mu \mathrm{A}$
			All other inputs	-50		$\mu \mathrm{A}$
$\mathrm{I}_{\text {EE }}$	Supply Current (Allinputs and outputsopen)	Commercial		-200		mA

Capacitance ${ }^{[2]}$

Parameter	Description	Min.	Typ.	Max.	Unit
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance		4		pF
C OUT	Output Pin Capacitance		6		pF

Notes:

1. Commercial grade is specified as ambient temperature with transverse air flow greater than 500 linear feet per minute.
2. Tested initially and after any design or process changes that may affect these parameters.

AC Test Loads and Waveforms ${ }^{[3,4,5,6,7,8]}$

Switching Characteristics Over the Operating Range

Parameter	Description	$\begin{aligned} & 10 \mathrm{E} 470-5 \\ & 100 \mathrm{E} 470-5 \end{aligned}$		$\begin{gathered} 10 \mathrm{E} 470-7 \\ 100 \mathrm{E} 470-7 \end{gathered}$		Unit
		Min.	Max.	Min.	Max.	
t_{AC}	Input to Output Delay		3.0		3.5	ns
t_{RC}	Chip Select Recovery		3.0		3.5	ns
t_{AA}	Address Access Time		5.0		7.0	ns
${ }^{\text {tww }}$	Write Pulse Width	5.0		7.0		ns
${ }_{\text {S }}$ D	Data Set-Up to Write	0		0		ns
t_{HD}	Data Hold to Write	0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up/Write	0		1.0		ns
t_{HA}	Address Hold/Write	0		1.0		ns
$\mathrm{t}_{\text {SC }}$	Chip Select Set-Up/Write	0		0		ns
t_{HC}	Chip Select Hold/Write	0		0		ns
$\mathrm{t}_{\text {WS }}$	Write Disable		3.0		3.5	ns
$\mathrm{t}_{\text {WR }}$	Write Recovery		5.0		8.0	ns
t_{r}	Output Rise Time	1.0	2.5	1.0	2.5	ns
t_{f}	Output Fall Time	1.0	2.5	1.0	2.5	ns

Notes

3. $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}$ Min., $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}}$ Max. on 10E version.
4. $\mathrm{V}_{\mathrm{IL}}=-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}$ on 100 K version.
5. $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}<30 \mathrm{pF}$ (includes fixture and stray capacitance).
6. All coaxial cables should be 50Ω with equal lengths. The delay of the coaxial cables should be "nulled" out of the measurement.
7. $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=0.7 \mathrm{~ns}$.
8. All timing measurements are made from the 50% point of all waveforms.

Switching Waveforms

Read Mode

C470-6

Truth Table

Inputs			Output	Mode
$\overline{\mathbf{S}}$	$\overline{\mathbf{W}}$	D	Q	
H	X	X	L	Disabled
L	L	H	L	Write "H"
L	L	L	L	Write "L"
L	H	X	Dout	Read

$\mathrm{H}=$ High Voltage Level
$\mathrm{L}=$ Low Voltage Level
$\mathrm{X}=$ Don't Care

Ordering Information

\mathbf{I} / \mathbf{O}	$\mathbf{I}_{\mathbf{E E}}$ $(\mathbf{m A})$	$\mathbf{t}_{\mathbf{A A}}$ $(\mathbf{n s})$	Ordering Code	Package Name	Package Type	Operating Range
10 K	200	5.0	CY10E470-5DC	D4	18-Lead (300-Mil) CerDIP	Commercial
		7.0	CY10E470-7DC	D4	18-Lead (300-Mil) CerDIP	
100 K	200	5.0	CY100E470-5DC	D4	18-Lead (300-Mil) CerDIP	Commercial
		7.0	CY100E470-7DC	D4	18-Lead (300-Mil) CerDIP	

Document \#: 38-A-00003-B

Features

- 1024 x 4-bit organization
- Ultra high speed/standard power
$-\mathrm{t}_{\mathrm{AA}}=3.5 \mathrm{~ns}$
$-\mathrm{I}_{\mathrm{EE}}=275 \mathrm{~mA}$
- Low-power version
$-\mathrm{t}_{\mathrm{AA}}=5 \mathrm{~ns}$
$-\mathrm{I}_{\mathrm{EE}}=190 \mathrm{~mA}$
- Both $10 \mathrm{KH} / 10 \mathrm{~K}$ - and 100 K -compatible I/O versions
- $10 \mathrm{~K} / 10 \mathrm{KH}$ military version
- Capable of withstanding >2001V ESD
- On-chip voltage compensation for improved noise margin
- Open emitter output for ease of memory expansion
- Industry-standard pinout

Functional Description

The Cypress CY10E474 and CY100E474 are 1 Kx 4 ECL RAMs designed for scratch pad, control, and buffer storage applications. These RAMs are developed by Aspen Semiconductor Corporation, a subsidiary of Cypress Semiconductor. Both parts are fully decoded random access
memories organized as 1024 words by 4 bits. The CY10E474 is $10 \mathrm{KH} / 10 \mathrm{~K}$ compatible and is available in a military version. The CY100E474 is 100 K comptaible.
The active LOW chip select (S) input controls memory selection and allows for memory expansion. The read and write operations are controlled by the state of the $\frac{\text { active LOW write enable (W) input. With }}{\mathbf{W}}$ \bar{W} and $\bar{S} L O W$, the data at $D_{(1-4)}$ is written into the addressed location. To read, \bar{W} is held HIGH while $\overline{\mathrm{S}}$ is held LOW. Open emitter outputs allow for wired-OR connection to expand the memory.

Selection Guide

		$10 \mathrm{EA74-4}$ $\mathbf{1 0 0 E 4 7 4 - 3 . 5}$	10E474-5 $\mathbf{1 0 0 E 4 7 4 - 5}$	10E474-7 $\mathbf{1 0 0 E 4 7 4 - 7}$
Maximum Access Time (ns)		$3.5 / 4$	5	7
I_{EE} Max. (mA)	Commercial	275	275	
	L		190	190
	Military (10K/10KH only)		190	190

Pin Configurations（continued）

$\underset{\text { Top View }}{\text { PLCC }}$	Quad Cerpack Top View	$\begin{gathered} \text { LCC } \\ \text { Top View } \end{gathered}$
of 80 		
		3242423
$A_{0} \square^{5}$	W ${ }^{1}$	
$A_{1} \mathrm{C}^{6}$	ड $\mathrm{C}^{2} \quad 17{ }^{17} \mathrm{~A}_{4}$	$\left.A_{1}\right\}$
		$\left.A_{2}\right\} \quad 10 \mathrm{E} 474{ }^{19}\left\{\begin{array}{l}\text { d }\end{array}\right.$
NC ［8 100E474 ${ }^{\text {22 }}$－NC		
$\mathrm{A}_{3} \mathrm{O}_{9}$	$\mathrm{D}_{3} \square_{5}$	$\left.A_{4}\right\} 8{ }^{8}$
$\mathrm{A}_{4} \mathrm{C}^{10}{ }^{20}{ }^{20} \overline{\mathrm{~s}}$	$\mathrm{D}_{3} \mathrm{C}_{5}$	$A_{5} \underbrace{9} \quad{ }^{16}\}$
	78	$\underbrace{1011121314}$
பபᄂ！5！5		こと0
		て《＞
E474－4	E474－5	E474－6

Maximum Ratings

（Abovewhich the usefullife maybe impaired．Exposure to absolute maximum rated conditions for extended periods may affect device reliability．For user guidelines，not tested．）

Storage Temperature \qquad $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $\ldots \ldots . . .-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage V_{EE} to $\mathrm{V}_{\mathrm{CC}} \ldots \ldots \ldots \mathrm{F}^{2} .0 \mathrm{~V}$ to +0.5 V
Input Voltage ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．． V_{EE} to +0.5 V
Operating Range Referenced to V_{CC}

Range	I／O	Ambient Temperature	$\mathbf{V}_{\text {EE }}$
Commercial （Standard，L）	$10 \mathrm{KH} / 10 \mathrm{~K}$	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	$-5.2 \mathrm{~V} \pm 5 \%$
Commercial （Standard， L$)$	100 K	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-4.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Military（L）	$10 \mathrm{KH} / 10 \mathrm{~K}$	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Case	$-5.2 \mathrm{~V} \pm 5 \%$

Output Current ． $-50 \mathrm{~mA}$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Temperature ${ }^{[1]}$	Min．	Max．	Unit
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 10 \mathrm{E}^{[2]} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \mathrm{Min} . \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	－1140	－900	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	－1000	－840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	－960	－810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	－900	－735	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	－880	－700	mV
		$\begin{aligned} & 100 \mathrm{~K} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	－1025	-880	mV
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage	$\begin{aligned} & 10 \mathrm{E} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} . \text { or } \mathrm{V}_{\mathrm{IL}} \mathrm{Min} . \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	－1920	－1670	mV
			$\mathrm{T}_{\mathrm{A}}=+0^{\circ} \mathrm{C}$	－1870	－1665	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	－1850	－1650	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	－1830	－1625	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	－1830	－1610	mV
		$\begin{aligned} & 100 \mathrm{~K} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V}, \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \mathrm{Max} . \text { or } \mathrm{V}_{\text {IL }} \mathrm{Min} . \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	－1810	－1620	mV

Electrical Characteristics Over the Operating Range (continued)

Parameter	Description	Test Conditions	Temperature ${ }^{[1]}$	Min.	Max.	Unit
V_{IH}	Input HIGH Voltage	$\begin{aligned} & 10 \mathrm{E} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1260	-900	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1170	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1130	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1070	-720	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1030	-700	mV
		$100 \mathrm{~K} \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1165	-880	mV
V_{IL}	Input LOW Voltage	$\begin{aligned} & 10 \mathrm{E} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1950	-1540	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1950	-1480	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1950	-1475	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1950	-1450	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1950	-1450	mV
		$\begin{aligned} & 100 \mathrm{~K} \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=0^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$	-1810	-1475	mV
I_{IH}	Input HIGH Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}}$ Max.			220	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ Min.	$\overline{\text { S }}$ inputs	0.5	170	$\mu \mathrm{A}$
			All other inputs	-50		
I_{EE}	Supply Current (All inputs and outputs open)	Commercial/Military Standard L (Low Power)		-190		mA
		Commercial Standard		-275		mA

Capacitance ${ }^{[3]}$

Parameter	Description	Typ.	Max. ${ }^{[4]}$	Unit
$\mathrm{C}_{\text {IN }}$	Input Pin Capacitance	4	5	pF
$\mathrm{C}_{\text {OUT }}$	Output Pin Capacitance	5	6	pF

AC Test Loads and Waveforms ${ }^{[5,6,7,8,9,10]}$

E474-7

E474-8

Notes:

1. Commercial grade is specified as ambient temperature with transverse air flow greater than 500 linear feet per minute. Military grade is specified as case temperature.
2. 10 E specifications support both 10 K and 10 KH compatibility.
3. Tested initially and after any design or process changes that may affect these parameters.
4. For all packages except cerDIP (D40), which has maximums of $\mathrm{C}_{\mathrm{IN}}=8 \mathrm{pF}, \mathrm{C}_{\mathrm{OUT}}=9 \mathrm{pF}$.
5. $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}$ Min., $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}}$ Max. on 10E version.
6. $\mathrm{V}_{\mathrm{IL}}=-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}$ on 100 K version.
7. $\mathrm{R}_{\mathrm{L}}=50 \Omega \mathrm{C}<5 \mathrm{pF}$ (3.5/4-ns grade) or $<30 \mathrm{pF}$ (5-, 7-ns grade). Includes fixture and stray capacitance.
8. All coaxial cables should be 50Ω with equal lengths. The delay of the coaxial cables should be "nulled" out of the measurement.
9. $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=0.7 \mathrm{~ns}$.
10. All timing measurements are made from the 50% point of all waveforms.

Switching Characteristics Over the Commercial Operating Range

Parameter	Description	100E474-3.5		10E474-4		$\begin{aligned} & 10 \mathrm{E} 474-5 \\ & 100 \mathrm{E} 474-5 \end{aligned}$		$\begin{gathered} 10 \mathrm{E} 474-7 \\ \text { 100E474-7 } \end{gathered}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{AC}	Input to Output Delay		2.5		2.5	0.5	3.0	0.5	5.0	ns
t_{RC}	Chip Select Recovery		2.5		2.5	0.5	3.0	0.5	5.0	ns
t_{AA}	Address Access Time		3.5		4.0	1.2	5.0	1.2	7.0	ns
${ }^{\text {tww }}$	Write Pulse Width	5.0		5.0		5.0		5.0		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write	0		0		0		0		ns
t_{HD}	Data Hold to Write	0		0		0		1.0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up/Write	0		0		0		1.0		ns
t_{HA}	Address Hold/Write	0		0		0		1.0		ns
$\mathrm{t}_{\text {SC }}$	Chip Select Set-Up/Write	0		0		0		0		ns
t_{HC}	Chip Select Hold/Write	0		0		0		1.0		ns
t_{WS}	Write Disable	0.3	2.5	0.3	2.5	0.3	3.0	0.3	6.5	ns
$t_{\text {WR }}$	Write Recovery	0.5	3.5	0.5	3.5	0.5	5.0	0.5	7.0	ns
t_{r}	Output Rise Time	0.35	1.5	0.35	1.5	0.35	2.5	1.0	2.5	ns
t_{f}	Output Fall Time	0.35	1.5	0.35	1.5	0.35	2.5	1.0	2.5	ns

Switching Characteristics Over the Military Operating Range

Parameter	Description	10E474-5		10E474-7		Unit
		Min.	Max.	Min.	Max.	
t_{AC}	Input to Output Delay	0.5	4.0	0.5	5.0	ns
t_{RC}	Chip Select Recovery	0.5	4.0	0.5	5.0	ns
$\mathrm{t}_{\text {AA }}$	Address Access Time	1.2	5.0	1.2	7.0	ns
tww	Write Pulse Width	5.0		5.0		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write	0		0		ns
t_{HD}	Data Hold to Write	1.0		1.0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up/Write	1.0		1.0		ns
t_{HA}	Address Hold/Write	1.0		1.0		ns
tsc	Chip Select Set-Up/Write	0		0		ns
t_{HC}	Chip Select Hold/Write	1.0		1.0		ns
$t_{\text {Ws }}$	Write Disable	0.3	4.0	0.3	6.5	ns
$\mathrm{t}_{\text {WR }}$	Write Recovery	0.5	5.0	0.5	7.0	ns
t_{r}	Output Rise Time	1.0	2.5	1.0	2.5	ns
t_{f}	Output Fall Time	1.0	2.5	1.0	2.5	ns

Switching Waveforms

Read Mode

ADDRESS

Write Mode

Typical DC and AC Characteristics (10E474/10E474L/100E474/100E474L)

Truth Table

Inputs			Output	Mode
$\overline{\mathbf{S}}$	$\overline{\mathbf{W}}$	$\overline{\mathbf{D}}$	\mathbf{Q}	
H	X	X	L	Disabled
L	L	H	L	Write H
L	L	L	L	Write L
L	H	X	Dour	Read

CYPRESS
SEMICONDUCTOR
Ordering Information

I/O	$\underset{(\mathbf{m A})}{\mathbf{I}_{\mathrm{EE}}}$	$\begin{aligned} & \mathbf{t}_{\mathbf{A A}} \\ & (\mathbf{n s}) \end{aligned}$	Ordering Code	Package Name	Package Type	Operating Range
100K	275	3.5	CY100E474-3.5KC	K63	24-Lead Square Cerpack	Commercial
			CY100E474-3.5LC	L63	24-Square Leadless Chip Carrier	
		5	CY100E474-5DC	D40	24-Lead (400-Mil) Sidebraze DIP	
			CY100E474-5KC	K63	24-Lead Square Cerpack	
			CY100E474-5LC	L63	24-Square Leadless Chip Carrier	
	190	5	CY100E474L-5DC	D40	24-Lead (400-Mil) Sidebraze DIP	Commercial
			CY100E474L-5JC	J64	28-LeadPlasticLeaded Chip Carrier	
			CY100E474L-5KC	K63	24-Lead Square Cerpack	
			CY100E474L-5LC	L63	24-Square Leadless Chip Carrier	
		7	CY100E474L-7DC	D40	24-Lead (400-Mil) Sidebraze DIP	
			CY100E474L-7JC	J64	28-LeadPlasticLeaded Chip Carrier	
			CY100E474L-7KC	K63	24-Lead Square Cerpack	
			CY100E474L-7LC	L63	24-Square Leadless Chip Carrier	
$10 \mathrm{E}^{[11]}$	275	4	CY10E474-4KC	K63	24-Lead Square Cerpack	Commercial
			CY10E474-4LC	L63	24-Square Leadless Chip Carrier	
		5	CY10E474-5DC	D40	24-Lead (400-Mil) Sidebraze DIP	
			CY10E474-5KC	K63	24-Lead Square Cerpack	
			CY10E474-5LC	L63	24-Square Leadless Chip Carrier	
	190	5	CY10E474L-5DC	D40	24-Lead (400-Mil) Sidebraze DIP	Commercial
			CY10E474L-5JC	J64	28-Lead PlasticLeaded Chip Carrier	
			CY10E474L-5KC	K63	24-Lead Square Cerpack	
			CY10E474L-5LC	L63	24-Square Leadless Chip Carrier	
			CY10E474L-5DMB	D40	24-Lead (400-Mil) Sidebraze DIP	Military
			CY10E474L-5KMB	K63	24-Lead Square Cerpack	
		7	CY10E474L-7DC	D40	24-Lead (400-Mil) Sidebraze DIP	Commercial
			CY10E474L-7JC	J64	28-Lead Plastic Leaded Chip Carrier	
			CY10E474L-7KC	K63	24-Lead Square Cerpack	
			CY10E474L-7LC	L63	24-Square Leadless Chip Carrier	
			CY10E474L-7DMB	D40	24-Lead (400-Mil) Sidebraze DIP	Military
			CY10E474L-7KMB	K63	24-Lead Square Cerpack	

Notes:

11. 10 E specifications support both 10 K and 10 KH compatibility.

Document \#: 38-A-00004-D

4K x 4 ECL Static RAM

Features

- 4096×4-bit organization
- Ultra high speed/standard power
$-\mathrm{t}_{\mathrm{AA}}=4,5 \mathrm{~ns}$
$-I_{E E}=320 \mathrm{~mA}$
- Low-power version
$-t_{A A}=7,10 \mathrm{~ns}$
$-I_{E E}=200 \mathrm{~mA}$
- Both $10 \mathrm{KH} / 10 \mathrm{~K}$ - and 100 K -compatible I/O versions
- On-chip voltage compensation for improved noise margin
- Capable of withstanding >2001V ESD
- Open emitter output for ease of memory expansion
- Industry-standard pinout

Functional Description

The Cypress CY101E484, CY10E484, and CY100E484 are $4 \mathrm{~K} \times 4$ ECL RAMs designed for scratch pad, control, and buffer storage applications. These parts are fully decoded random access memories organized as 4 K words by 4 bits. The CY10E484 is $10 \mathrm{KH}-10 \mathrm{~K}$-compatible. The CY100E484 is 100 K -compatible, and the CY101E484 is 100 K -compatible with a -5.2 V supply.

The active LOW chip select ($\overline{\mathbf{S}}$) input controls memory selection and allows for memory expansion. The read and write operations are controlled by the state of the active LOW write enable $(\overline{\mathrm{W}})$ input. With \bar{W} and $\bar{S} L O W$, the data at $D_{(1-4)}$ is written into the addressed location. To read, $\overline{\mathrm{W}}$ is held HIGH while $\overline{\mathrm{S}}$ is held LOW. Open emitter outputs allow for wired-OR connection to expand the memory. The 4 -ns and 5 -ns devices are packaged in 28-pin cerDIPs, CLCCs, and rectangular cerpacks in the high-performance center power-ground version pin configurations. The 7 -ns and 10 -ns parts are offered with two write enables ($\overline{W E}_{1}, \overline{W E}_{2}$).

Logic Block Diagram

484-1

Pin Configurations (4-/5-ns Center Power/Ground Only)

Rectangular Cerpack Top View

Selection Guide

		$\begin{array}{\|l} \hline 101 \mathrm{E} 484-4 \\ 10 \mathrm{E} 484-4 \\ 100 \mathrm{E} 484-4 \end{array}$	$\begin{aligned} & \hline 101 \mathrm{E} 484-5 \\ & 10 \mathrm{E} 84-5 \\ & 100 \mathrm{E} 484-5 \end{aligned}$	$\begin{aligned} & \text { 101E484-7 } \\ & 10 \mathrm{E} 484-7 \\ & 100 \mathrm{E} 484-7 \end{aligned}$	$\begin{array}{\|l\|} \hline 101 \mathrm{E} 484-10 \\ 10 \mathrm{E} 84-10 \\ 100 \mathrm{E} 484-10 \end{array}$
Maximum Access Time (ns)		4	5	7	10
$\mathrm{I}_{\text {EE }}$ Max. (mA)	Standard	320	320		
	Low Power (L)			200	200
	Military (10K/10KH only)		320	200	200

Pin Configurations (7 ns, 10 ns)

Maximum Ratings

(Above which the useful life may be impaired. Exposure to absolute maximum rated conditionsfor extended periods may affect device reliability. For user guidelines, not tested.)
Storage Temperature
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage V_{EE} to V_{CC} -7.0 V to +0.5 V
Input Voltage V_{EE} to +0.5 V
Output Current
. -50 mA

Operating Range Referenced to V_{CC}

Range	I/O	Ambient Temperature	VEE
Commercial (Standard, L)	$10 \mathrm{KH} /$ 10 K	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	$-5.2 \mathrm{~V} \pm 5 \%$
Commercial (Standard, L)	100 K	$0^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$-4.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$
Commercial (Standard, L)	101	$0^{\circ} \mathrm{C}$ to $75^{\circ} \mathrm{C}$	$-5.2 \mathrm{~V} \pm 5 \%$
Military (Standard, L)	$10 \mathrm{KH} /$ 10 K	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ Case	$-5.2 \mathrm{~V} \pm 5 \%$

Electrical Characteristics Over the Operating Range

Parameter	Description	Test Conditions	Temperature ${ }^{[1]}$	Min.	Max.	Unit
V_{OH}	Output HIGH Voltage	$\begin{aligned} & 10 \mathrm{E}^{[2]} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \mathrm{Min} . \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1140	-900	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1000	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-960	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-900	-735	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-880	-700	mV
		$\begin{aligned} & 100 / 101 \mathrm{~K} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}(5.2 \mathrm{~V} \text { for } 101 \mathrm{~K}) \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \mathrm{Min} . \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ ($75^{\circ} \mathrm{C}$ for 101 K)	-1025	-880	mV
V_{OL}	Output LOW Voltage	$\begin{aligned} & 10 \mathrm{E} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CA}}=\mathrm{GND} \\ & \mathrm{~V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1920	-1670	mV
			$\mathrm{T}_{\mathrm{A}}=+0^{\circ} \mathrm{C}$	-1870	-1665	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1850	-1650	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1830	-1625	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1830	-1610	mV
		$\begin{aligned} & 100 / 101 \mathrm{~K} \mathrm{R}_{\mathrm{L}}=50 \Omega \text { to }-2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}(5.2 \mathrm{~V} \text { for } 101 \mathrm{~K}) \\ & \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\text { GND } \\ & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { Max. or } \mathrm{V}_{\mathrm{IL}} \text { Min. } \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \left(75^{\circ} \mathrm{C} \text { for } 101 \mathrm{~K}\right) \end{aligned}$	-1810	-1620	mV

Electrical Characteristics Over the Operating Range (continued)

Parameter	Description	Test Conditions	Temperature ${ }^{[1]}$	Min.	Max.	Unit
$\mathrm{V}_{\text {IH }}$	Input HIGH Voltage	$\begin{aligned} & 10 \mathrm{E} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1260	-900	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1170	-840	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1130	-810	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1070	-720	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1030	-700	mV
		$\begin{aligned} & 100 \mathrm{~K} \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}(-5.2 \mathrm{~V} \text { for } \\ & 101 \mathrm{~K}), \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C} \\ & \left(75^{\circ} \mathrm{C} \text { for } 101 \mathrm{~K}\right) \end{aligned}$	-1165	-880	mV
V_{IL}	Input LOW Voltage	$\begin{aligned} & 10 \mathrm{E} \\ & \mathrm{~V}_{\mathrm{EE}}=-5.2 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \end{aligned}$	$\mathrm{T}_{\mathrm{C}}=-55^{\circ} \mathrm{C}$	-1950	-1540	mV
			$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C}$	-1950	-1480	mV
			$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$	-1950	-1475	mV
			$\mathrm{T}_{\mathrm{A}}=+75^{\circ} \mathrm{C}$	-1950	-1450	mV
			$\mathrm{T}_{\mathrm{C}}=+125^{\circ} \mathrm{C}$	-1950	-1450	mV
		$\begin{aligned} & 100 / 101 \mathrm{~K} \mathrm{~V}_{\mathrm{EE}}=-4.5 \mathrm{~V}(-5.2 \mathrm{~V} \\ & \text { for } 101 \mathrm{~K}), \mathrm{V}_{\mathrm{CC}}=\mathrm{V}_{\mathrm{CCA}}=\mathrm{GND} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to } 85^{\circ} \mathrm{C}$ ($75^{\circ} \mathrm{C}$ for 101 K)	-1810	-1475	mV
$\mathrm{I}_{\text {IH }}$	Input HIGH Current	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\text {IH }} \mathrm{Max}$.			220	$\mu \mathrm{A}$
$\mathrm{I}_{\text {IL }}$	Input LOW Current	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {IL }}$ Min.	$\overline{\text { S }}$ inputs	0.5	170	$\mu \mathrm{A}$
			All other inputs	-50		
I_{EE}	Supply Current (All inputs and outputs open)	Commercial/Military L (Low Power)		-200		mA
		Commercial and Military Standard Power		-320		mA

Capacitance ${ }^{[3]}$

Parameter	Description	Typ.	Max. ${ }^{[4]}$	Unit
C_{IN}	Input Pin Capacitance	4	6	pF
CouT	Output Pin Capacitance	5	7	pF

AC Test Loads and Waveforms ${ }^{[5,6,7,8,9,10]}$

484-9

484-10

Notes:

1. Commercial grade is specified as ambient temperature with transverse air flow greater than 500 linear feet per minute. Military grade is specified as case temperature.
2. 10 E specifications support both 10 K and 10 KH compatibility.
3. Tested initially and after any design or process changes that may affect these parameters.
4. For all packages except cerDIP (D42), which has maximums of $\mathrm{C}_{\mathrm{IN}}=8 \mathrm{pF}$, Cout $=9 \mathrm{pF}$.
5. $\mathrm{V}_{\mathrm{IL}}=\mathrm{V}_{\mathrm{IL}}$ Min., $\mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{IH}}$ Max. on 10 E version.
6. $\mathrm{V}_{\mathrm{IL}}=-1.7 \mathrm{~V}, \mathrm{~V}_{\mathrm{IH}}=-0.9 \mathrm{~V}$ on 100 K version.
7. $\mathrm{R}_{\mathrm{L}}=50 \Omega \mathrm{C}<5 \mathrm{pF}$ (4-, $5-\mathrm{ns}$ grade) or $<30 \mathrm{pF}$ (7-, $10-\mathrm{ns}$ grade). Includes fixture and stray capacitance.
8. All coaxial cables should be 50Ω with equal lengths. The delay of the coaxial cables should be "nulled" out of the measurement.
9. $\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=0.7 \mathrm{~ns}$.
10. All timing measurements are made from the 50% point of all waveforms.

Switching Characteristics Over the Commercial Operating Range

Parameter	Description	$\begin{gathered} \hline \text { 101E484-4 } \\ 10 \mathrm{E} 484-4 \\ 100484-4 \end{gathered}$		$\begin{gathered} 101 \mathrm{E} 484-5 \\ 10 \mathrm{E} 484-5 \\ 100 \mathrm{E} 484-5 \end{gathered}$		$\begin{gathered} 101 \mathrm{E} 484-7 \\ 10 \mathrm{E} 484-7 \\ 100 \mathrm{E} 484-7 \end{gathered}$		$\begin{aligned} & 101 \mathrm{E} 484-10 \\ & 10 \mathrm{E} 484-10 \\ & 100 \mathrm{E} 484-10 \end{aligned}$		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
t_{AC}	Input to Output Delay		3		3	0.5	4	0.5	5	ns
t_{RC}	Chip Select Recovery		3		3	0.5	4	0.5	5	ns
t_{AA}	Address Access Time		4		5	1.2	7	1.2	10	ns
tww	Write Pulse Width	5		5		5		6		ns
$\mathrm{t}_{\text {NWW }}$	Non-Write Pulse		1.5		1.5		1.5		1.5	ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write	0		0		1		2		ns
t_{HD}	Data Hold to Write	0		0		1		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up/Write	0		0		1		2		ns
t_{HA}	Address Hold/Write	0		0		1		2		ns
t_{SC}	Chip Select Set-Up/Write	0		0		1		2		ns
t_{HC}	Chip Select Hold/Write	0		0		1		2		ns
tws	Write Disable	0.3	3	0.3	3	0.3	5	0.3	5	ns
${ }^{\text {twR }}$	Write Recovery	0.5	4	0.5	5	0.5	8	0.5	12	ns
t_{r}	Output Rise Time	0.35	1.5	0.35	1.5	1	2.5	1	2.5	ns
t_{f}	Output Fall Time	0.35	1.5	0.35	1.5	1	2.5	1	2.5	ns

Switching Characteristics Over the Military Operating Range

Parameter	Description	10E484-5		10E484-7		10E484-10		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
t_{AC}	Input to Output Delay		3	0.5	4	0.5	5	ns
t_{RC}	Chip Select Recovery		3	0.5	4	0.5	5	ns
t_{AA}	Address Access Time		5	1.2	7	1.2	10	ns
${ }_{\text {tww }}$	Write Pulse Width	5		5		6		ns
$\mathrm{t}_{\text {NWW }}$	Non-Write Pulse		1.5		1.5		1.5	ns
${ }_{\text {tSD }}$	Data Set-Up to Write	1		1		2		ns
t_{HD}	Data Hold to Write	1		1		2		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up/Write	1		1		2		ns
t_{HA}	Address Hold/Write	1		1		2		ns
$\mathrm{t}_{\text {SC }}$	Chip Select Set-Up/Write	1		1		2		ns
t_{HC}	Chip Select Hold/Write	1		1		2		ns
$\mathrm{t}_{\text {WS }}$	Write Disable	0.3	3	0.3	5	0.3	5	ns
$\mathrm{t}_{\text {WR }}$	Write Recovery	0.5	5	0.5	8	0.5	12	ns
t_{r}	Output Rise Time	0.35	1.5	1	2.5	1	2.5	ns
t_{f}	Output Fall Time	0.35	1.5	1	2.5	1	2.5	ns

Switching Waveforms

Read Mode

Truth Table

Inputs			Output	Mode
$\overline{\mathbf{S}}$	$\overline{\mathbf{W}}$	D	\mathbf{Q}	
H	X	X	L	Disabled
L	L	H	L	Write H
L	L	L	L	Write L
L	$H^{[12]}$	X	DouT	Read

Notes:

11. If $t_{W W} \leq \mathrm{t}_{\mathrm{NWW}}$ the device will not write data to the addressed location.
12. The 7 -ns and 10 -ns parts have two $\overline{\mathrm{WE}}$ pins. Both $\overline{\mathrm{WE}}_{1}$ and $\overline{\mathrm{WE}}_{2}$ must be LOW to initiate write operation.

Ordering Information

I/O	$\underset{(\mathbf{m A})}{\mathbf{I}_{\mathrm{EE}}}$	$\begin{aligned} & \mathrm{t}_{\mathrm{AA}} \\ & (\mathrm{~ns}) \end{aligned}$	Ordering Code	Package Name	Package Type/ Pinout	Operating Range
$101 E^{[13]}$	320	4	CY101E484-4DC	D42	$\begin{aligned} & \text { 28-Lead (400-Mil) CerDIP } \\ & \text { Center Power/Ground } \end{aligned}$	Commercial
			CY101E484-4KC	K80	28-Lead Rectangular Cerpack Center Power/Ground	
			CY101E484-4YC	Y64	28-Pin Ceramic Leaded Chip Carrier Center Power/Ground	
		5	CY101E484-5DC	D42	$\begin{aligned} & \text { 28-Lead (400-Mil) CerDIP } \\ & \text { Center Power/Ground } \end{aligned}$	
			CY101E484-5KC	K80	28-Lead Rectangular Cerpack Center Power/Ground	
			CY101E484-5YC	Y64	28-Pin Ceramic Leaded Chip Carrier Center Power/Ground	
	200	7	CY101E484L-7DC	D42	$\begin{aligned} & \text { 28-Lead (400-Mil) CerDIP } \\ & \text { Corner Power/Ground } \end{aligned}$	Commercial
			CY101E484L-7JC	J64	28-Lead Plastic Leaded Chip Carrier Corner Power/Ground	
			CY101E484L-7KC	K80	28-Lead Rectangular Cerpack Corner Power/Ground	
			CY101E484L-7VC	V21	28-Lead Molded SOJ Center Power/Ground	
		10	CY101E484L-10DC	D42	$\begin{aligned} & \text { 28-Lead (400-Mil) CerDIP } \\ & \text { Corner Power/Ground } \end{aligned}$	
			CY101E484L-10JC	J64	28-Lead Plastic Leaded Chip Carrier Corner Power/Ground	
			CY101E484L-10KC	K80	28-Lead Rectangular Cerpack Corner Power/Ground	
			CY101E484L-10VC	V21	28-Lead Molded SOJ Center Power/Ground	

Note:
13. 101 E specifications are 100 K -compatible with -5.2 V supplies.

Ordering Information (continued)

I/O	$\mathbf{I}_{\mathbf{E E}}$	$\begin{aligned} & \mathbf{t}_{\mathbf{A A}} \\ & (\mathrm{ns}) \end{aligned}$	Ordering Code	Package Name	Package Type/ Pinout	$\begin{aligned} & \text { Operating } \\ & \text { Range } \end{aligned}$
100 E	320	4	CY100E484-4DC	D42	$\begin{aligned} & \text { 28-Lead (400-Mil) CerDIP } \\ & \text { Center Power/Ground } \end{aligned}$	Commercial
			CY100E484-4KC	K80	28-Lead Rectangular Cerpack Center Power/Ground	
			CY100E484-4YC	Y64	28-Pin Ceramic Leaded Chip Carrier Center Power/Ground	
		5	CY100E484-5DC	D42	$\begin{aligned} & \text { 28-Lead (400-Mil) CerDIP } \\ & \text { Center Power/Ground } \end{aligned}$	
			CY100E484-5KC	K80	28-Lead Rectangular Cerpack Center Power/Ground	
			CY100E484-5YC	Y64	28-Pin Ceramic Leaded Chip Carrier Center Power/Ground	
	200	7	CY100E484L-7DC	D42	28-Lead (400-Mil) CerDIP Corner Power/Ground	Commercial
			CY100E484L-7JC	J64	28-Lead Plastic Leaded Chip Carrier Corner Power/Ground	
			CY100E484L-7KC	K80	28-Lead Rectangular Cerpack Corner Power/Ground	
			CY100E484L-7VC	V21	28-Lead Molded SOJ Center Power/Ground	
		10	CY100E484L-10DC	D42	28-Lead (400-Mil) CerDIP Corner Power/Ground	
			CY100E484L-10JC	J64	28-Lead Plastic Leaded Chip Carrier Corner Power/Ground	
			CY100E484L-10KC	K80	28-Lead Rectangular Cerpack Corner Power/Ground	
			CY100E484L-10VC	V21	28-Lead Molded SOJ Center Power/Ground	

CYPRESS
SEMICONDUCTOR
Ordering Information (continued)

1/0	$\begin{array}{\|l\|} \hline \mathbf{I}_{\mathbf{E E}} \\ (\mathbf{m A}) \end{array}$	$\begin{aligned} & \hline \mathbf{t}_{\mathrm{AA}} \\ & (\mathrm{~ns}) \end{aligned}$	Ordering Code	Package Name	Package Type/ Pinout	$\begin{gathered} \text { Operating } \\ \text { Range } \end{gathered}$
$10 \mathrm{E}^{[14]}$	320	4	CY10E484-4DC	D42	$\begin{aligned} & \text { 28-Lead (400-Mil) CerDIP } \\ & \text { Center Power/Ground } \end{aligned}$	Commercial
			CY10E484-4KC	K80	28-Lead Rectangular Cerpack Center Power/Ground	
			CY10E484-4YC	Y64	28-Pin Ceramic Leaded Chip Carrier Center Power/Ground	
		5	CY10E484-5DC	D42	$\begin{aligned} & \text { 28-Lead (400-Mil) CerDIP } \\ & \text { Center Power/Ground } \end{aligned}$	
			CY10E484-5KC	K80	28-Lead Rectangular Cerpack Center Power/Ground	
			CY10E484-5YC	Y64	28-Pin Ceramic Leaded Chip Carrier Center Power/Ground	
			CY10E484-5DMB	D42	$\begin{aligned} & \text { 28-Lead (400-Mil) CerDIP } \\ & \text { Center Power/Ground } \end{aligned}$	Military
			CY10E484-5KMB	K80	28-Lead Rectangular Cerpack Center Power/Ground	
	200	7	CY10E484L-7DC	D42	$\begin{aligned} & \text { 28-Lead (400-Mil) CerDIP } \\ & \text { Corner Power/Ground } \end{aligned}$	Commercial
			CY10E484L-7JC	J64	28-Lead Plastic Leaded Chip Carrier Corner Power/Ground	
			CY10E484L-7KC	K80	28-Lead Rectangular Cerpack Corner Power/Ground	
			CY10E484L-7VC	V21	28-Lead Molded SOJ Center Power/Ground	
			CY10E484L-7DMB	D42	$\begin{aligned} & \text { 28-Lead (400-Mil) CerDIP } \\ & \text { Corner Power/Ground } \end{aligned}$	Military
			CY10E484L-7KMB	K80	28-Lead Rectangular Cerpack Corner Power/Ground	
		10	CY10E484L-10DC	D42	$\begin{aligned} & \text { 28-Lead (400-Mil) CerDIP } \\ & \text { Corner Power/Ground } \end{aligned}$	Commercial
			CY10E484L-10JC	J64	28-Lead Plastic Leaded Chip Carrier Corner Power/Ground	
			CY10E484L-10KC	K80	28-Lead Rectangular Cerpack Corner Power/Ground	
			CY10E484L-10VC	V21	28-Lead Molded SOJ Center Power/Ground	
			CY10E484L-10DMB	D42	$\begin{aligned} & \text { 28-Lead (400-Mil) CerDIP } \\ & \text { Corner Power/Ground } \end{aligned}$	Military
			CY10E484L-10KMB	K80	28-Lead Rectangular Cerpack Corner Power/Ground	

Note:
14. 10 E specifications support both 10 K and 10 KH compatibility.

Document \#: 38-A-00005-F
INFO
SRAMs 2
PROMs 3
PLDs 응․
FIFOs 5
LOGIC 6
DATACOM 7
MODULES 8
ECL 9
BUS10
MILITARY 11
TOOLS 12
QUALITY 13
PACKAGES 14

Section Contents

Bus Interface Products

Device Number	Description	
VIC64	VMEbus Interface Controller with D64 Functionality	10-1
VIC068A	VMEbus Interface Controller	10-6
VAC068A	VMEbus Address Controller	10-14
CY7C964	Bus Interface Logic Circuit	10-20

VMEbus Interface Controller with D64 Functionality

Features

- An enhanced VIC068A
-64-bit MBLT operation
- Higher transfer rate
- Complete VMEbus interface controller and arbiter
- 58 internal registers for configuration control and VMEbus and local operations status
-Drives arbitration, interrupt, address modifier, utility, strobe, address line A[7:1], and data line D[7:0] directly. and provides control signals to drive remaining address and data lines
-Direct connection to 68 K family and mappable to non-68K processors
- Complete master/slave capability
-Supports read, write, write posting, and block transfers
- Accommodates VMEbus timing requirements with internal digital delay line with half-clock granularity
- Programmable metastability delay
--Programmable data acquisition delays
-Provides programmable timeout timers for local bus and VMEbus transactions
- Interleaved block transfers
-D64 block transfer capability in conformance with VME64 proposal
- Can act as DMA master on local bus
- Programmable burst counter, transfer length, and interleave period
-Allows master and slave transfer to occur during interleave period
- Also supports local module-based DMA
- Arbitration support
-Supports single-level, priority, and round-robin arbitration
-Support fair request option as requester
- Interrupt support
- Complete support for the VMEbus interrupts; interrupters and interrupt handler
-Seven local interrupt lines
-8-level interrupt priority encoded
-Total of 29 interrupts mapped through the VIC64
- Miscellaneous features
— Refresh option for local DRAM
- Four broadcast location monitors
-Four module-specific location monitors
- Eight interprocessor communication registers
- See the VIC64/7C964 Design Notes for more information

Functional Description

Cypress's VIC64 VMEbus Interface Controller with D64 functionality is a single chip designed to minimize the cost and board area requirements and to maximize the performance of a VMEbus master/slave module. Data transfers of $70 \mathrm{Mbyte} / \mathrm{sec}$ are possible between boards using VIC64.

In addition to D8, D16 and D32 operations, the VIC64 performs D64 data transfer. The VIC64 is designed with an advanced CMOS process using high-performance standard cells. On-chip output buffers are used to provide direct connection to address and data lines.
The VIC64 is based on the industry-standard VIC068A. For most applications, the VIC64 is fully software and plug compatible with the VIC068A. (As VIC64 uses register bits that are unassigned in VIC068A, user code may require simple rework to insure compatibility.)
The local bus interface of the VIC64 emulates Motorola's family of 32 -bit 68 K processor interfaces. Other processors can easily be adapted to interface to the VIC64 using appropriate logic.

Resetting the VIC64

The VIC64 can be reset by any of three distinct reset conditions:

- Internal Reset. This reset is the most common means of resetting the VIC64. It resets selected register values and logic within the device.
- System Reset. This reset provides a means of resetting the VIC64 through the VMEbus backplane. The VIC64 may also initiate a system reset by writing a configuration register.
- Global Reset. This provides the most complete reset of the VIC64. It resets all of the VIC64's configuration registers.
All three reset options are implemented in a different manner and have different effect on the VIC64 configuration registers.

VIC64 VMEbus System Controller

The VIC64 is capable of operating as the VMEbus system controller. It provides VMEbus arbitration functions, including:

- Priority, round-robin, and single-level arbitration schemes
- Driving IACK daisy-chain
- Driving BGiOUT daisy-chain (all four levels)
- Driving SYSCLK output
- VMEbus arbitration timeout timer

The system controller functions are enabled by the SCON pin of the VIC64. This pin is sampled during Reset and if LOW, VIC64 performs as system controller. After Reset the pin becomes an output signifying a D64 transfer.

VIC64 VMEbus Master Cycles

The VIC64 is capable of becoming the VMEbus master in response to a request from local resources. In this situation, the local resource requests a VMEbus transfer. The VIC64 makes a request for the VMEbus. When the VMEbus is granted to the VIC64, it then performs the transfer and acknowledges the local resource and the cycle is complete. The VIC64 is capable of all four VMEbus request levels. In addition, the following release modes are supported:

- Release On Request (ROR)
- Release When Done (RWD)
- Release On Clear (ROC)
- Release Under RMC Control
- Bus Capture And Hold (BCAP)

Pin Configurations

Pin Grid Array (PGA)
Bottom View

A	B	C	D	E	F	G	H	J	K	L	M	N	P	R
vss	PL2	LIACKO	LRQ2	प1RO5	ASIZ1	ASIZO	SLSEL1	WORD	FCIACK	A02	A04	VDD	vSs	IRQ4
LD6	BLT	IPL1	VDD	पRQ1	LIRQ4	LIRQ6	ICFSEL	MWB	A01	A03	A05	A07	IRQ3	IRQ7
LD2	LD5	DEDLR	IPL0	LAEN	पRQ3	LTRQ7	vSS	SLSELO	VSS	A06	IRQ1	IRQ2	TRQ6	$\overline{\text { ACFAIL }}$
LD1	LD3	LD7	LOCATOR PIN									IRQ5	VDD	IACKOUT
LA7	LDO	LD4										SYSFAIL	SYSRESE:	DTACK
LA3	LA5	LA6										IACKIN	IACK	AMO
LA2	LA4	vss										vss	$\overline{A S}$	AM1
LA1	LAO	VDD										vss	AM2	AM3
CS	DSACK1	DS							.			vDD	LWORD	AM4
PAS	LBERR	RESET			,							BERR	WRITE	AM5
DSACR0	R/W	FC1					.					BR2	DS1	DSO
HALT	RMC	LBR										BBSY	BR1	Bro
FC2	SIzo	SCON/D64	CLK64M	LADI	vss	VDD	vss	VDD	D00	BGOUT1	BGIN2	BGINO	ER3	vss
SIZ1	IRESET	LADO	LEDI	DDIR	LWDENIN	DENO	D06	D03	D01	vss	BGOUTO	BGIN3	BGIN1	BCLI
LBG	$\overline{\text { ABEN }}$	VDD	Ledo	UWDEENIN	SWDEN	ISOBE	D07	D05	D04	D02	BGOUT3	BGOUT2	SYSCLK	VSS

Pin Configurations (continued)

Quad Flatpack (QFP)

Top View

Functional Description (continued)

The VIC64 supports A32, A24, and A16, as well as user-defined address spaces.

Master Write-Posting

The VIC64 is capable of performing master write-posting (bus decoupling). In this situation, the VIC64 acknowledges the local resource immediately after the request to the VIC64 is made, thus freeing the local bus. The VIC64 latches the local data to be written and performs the VMEbus transfer without the local resource having to wait for VMEbus arbitration.

Indivisible Cycles

Read-modify-write cycles and indivisible multiple-address cycles (IMACs) areeasilyperformedusing the VIC64.Significantcontrol is allowed for:

- Requesting the VMEbus on the assertion of RMC independent of MWB (this prevents any slave access from interrupting local indivisible cycles)
- Stretching the VMEbus $\overline{\mathrm{AS}}$
- Making the above behaviors dependent on the local SIZi signals

Deadlock

If a master operation is attempted when a slave operation to the same module is in progress, a deadlock condition occurs. The VIC64 signals a deadlock condition by asserting the DEDLOCK signal. This should be used by the local resource requesting the VMEbus to try the transfer after the slave access has completed.

Self-Access

If the VIC64, while it is VMEbus master, has a slave select signaled, a self-access has occurred. The VIC64 asserts BERR and LBERR.

VIC64 VMEbus Slave Cycles

The VIC64 is capable of operating as a VMEbus slave controller. The VIC64 contains a highly programmable environment to allow for a wide variety of slave configurations. The VIC64 allows for:

- D64, D32, D16, or D8 configuration
- A32, A24, A16, or user-defined address spaces
- Programmable block transfer support including:
—DMA-type block transfer ($\overline{\mathrm{PAS}}$ and $\overline{\mathrm{DSACKi}}$ held asserted)
—Non DMA-type block transfer (toggle PAS\& and DSACKi)
- No support for block transfer
- Programmable data acquisition delays
- Programmable $\overline{\text { PAS }}$ and $\overline{\mathrm{DS}}$ timing
- Restricted slave accesses (supervisory accesses only)

When a slave access is required, the VIC64 requests the local bus. When local bus mastership is obtained, the VIC64 reads or writes the data to/from the local resource and asserts the DTACK signal to complete the transfer.

Slave Write-Posting

The VIC64 is capable of performing a slave write-post operation (bus decoupling). When enabled, the VIC64 latches the data to be written, and acknowledges the VMEbus (asserts DTACK) immediately thereafter. This prevents the VMEbus from having to wait for local bus access.

Address Modifier (AM) Codes

The VIC64 encodes and decodes the VMEbus address modifier codes. For VMEbus master accesses, the VIC64 encodes the ap-
propriate AM codes through the VIC64 FCi and ASIZi signals, as well as the block transfer status. For slave accesses, the VIC64 decodes the AM codes and checks the slave select control registers to see if the slave request is to be supported with regard to address spaces, supervisory accesses, and block transfers. The VIC64 also supports user-defined AM codes; that is, the VIC64 can be made to assert and respond to user-defined AM codes.

VIC64 VMEbus Block Transfers

The VIC64 is capable of both master and slave block transfers. The master VIC64 performs a block transfer in one of two modes:

- The Master Block Transfer with Local DMA (D16, D32, and D64)
- The MOVEM-type Block Transfer (D16 and D32)

In addition to these VMEbus block transfers, the VIC64 is also capable of performing block transfers from one local resource to another in a DMA-like fashion. This is referred to as a mod-ule-based DMA transfer.
For D32 block transfers, the VMEbus specification restricts block transfers from crossing 256-byte boundaries without toggling the address strobe, in addition to restricting the maximumlength of the transfer to 256 bytes. The VIC64 allows for easy implementation of block transfers that exceed the 256-byte restriction by releasing the VMEbus at the appropriate time and re-arbitrating for the bus at a programmed time later (this in-between time is referred to as the interleave period), while at the same time holding both the local and VMEbus addresses with internal latches. All of this is performed without processor/software intervention until the transfer is complete. For D64 block transfers, the VMEbus specification allows for bursts of up to 2048 bytes.
The VIC64 contains two separate address counters for the VMEbus and local address buses. In addition, a separate address counter is provided for slave block transfers. The VIC64 address counters are 8 -bit up-counters that provide for transfers up to 256 bytes. For transfers that exceed the 256 byte limit, the external counters and latches are required.
The VIC64 is capable of performing A32/A16:D64/D32/D16 master block transfers. For D64 transfers, external logic is required for the multiplexing of the data and address signals for the upper 24 address/data lines. Multiplexing for the lower 8 bits is done within the VIC64.
The VIC64 allows slave accesses to occur during the interleave period. Master accesses are also allowed during interleave with programming and external logic. This is referred to as the dual-path option.

MOVEM Master Block Transfer

This mode of block transfer provides the simplest implementation of VMEbus block transfers. For this mode, the local resource simply configures the VIC64 for a MOVEM block transfer and proceeds with the consecutive-address cycles (such as a 68K MOVEM instruction). The local resource continues as the local busmaster in this mode.

Master Block Transfers with Local DMA

In this mode, the VIC64 becomes the local bus master and reads or writes the local data in a DMA-like fashion. This provides a much faster interface than the MOVEM block transfer, but with less control and fault tolerance.
D64 block transfers are not supported by MOVEM protocol.

VIC64 Slave Block Transfer

The VIC64 is capable of decoding the address modifier codes to determine that a slave block transfer is desired. In this mode, the VIC64 captures the VMEbus address, and latches it into internal counters. For subsequent cycles, the VIC64 simply increments this counter for each transfer. The local protocol for slave block transfers can be configured in a full handshake mode by toggling both $\overline{\text { PAS }}$ and $\overline{\text { DS }}$ and expecting DSACKi to toggle, or in an accelerated mode in which only $\overline{\mathrm{DS}}$ toggles and $\overline{\text { PAS }}$ is asserted throughout the cycle.
For D64 slave block transfers, the $\overline{\text { SCON/ }} / \mathrm{D} 64$ signal is asserted to indicate a D64 transfer is in progress. External logic is required to de-multiplex the data from the VMEbus address bus for the upper 24 address/data lines. The lower 8 bits are done within the VIC64.

Module-Based DMA Transfers

The VIC64 can act as a DMA controller between two local resources. This mode is similar to that of master block transfers with local DMA, with the exception that the VMEbus is not the source or destination.

VIC64 Interrupt Generation and Handling Facilities

The VIC64 cangenerate and handle a seven-level prioritized interrupt scheme similar to that used by the Motorola 68 K processors. These interrupts include:

- 7 VMEbus interrupts
- 7 local interrupts
- 5 VIC64 error/status interrupts
- 8 interprocessor communication interrupts.

The VIC64 can be configured to act as handler for any of the seven VMEbus interrupts. The VIC64 can generate the seven VMEbus interrupts as well as supplying a user-defined status/ID vector. The local priority level (IPL) for VMEbus interrupts is programmable. When configured as the system controller, the VIC64 drives the IACK daisy chain.
The local interrupts can be configured with the following:

- User-defined local interrupt priority level (IPL)
- Option for VIC64 to provide the status/ID vector
- Edge or level sensitivity
- Polarity (rising/falling edge, active HIGH/LOW)

The VIC64 is also capable of generating local interrupts on certain error or status conditions. These include:

- $\overline{\text { ACFAIL }}$ asserted
- SYSFAIL asserted
- Failed master write-post ($\overline{\mathrm{BERR}}$ asserted)
- Local DMA completion for block transfers
- Arbitration timeout
- VMEbus interrupter interrupt

The VIC64 can also interrupt on the setting of a module or global switch in the interprocessor communication facilities.

Interprocessor Communication Facilities

The VIC64 includes interprocessor registers and switches that can be written and read through VMEbus accesses. These are the only such registers that are directly accessible from the VMEbus. Included in the interprocessor communication facilities are:

- Four general-purpose 8 -bit registers
- Four module switches
- Four global switches
- VIC64 version/revision register (read-only)
- VIC64 reset/halt condition (read-only)
- VIC64 interprocessor communication register semaphores When set through a VMEbus access, these switches can interrupt a local resource. The VIC64 includes module switches that are intended for a single module, and global switches which are intended to be used as a broadcast.

Operating Range

Range	Ambient Temperature	V $\mathbf{C C}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Related Documents

VIC64/CY7C964 Design Notes
VIC068A/VAC068A User's Guide

Ordering Information

Ordering Code	Package Name	Package Type	Operating Range
VIC64-BC	B144	145-Pin Plastic Pin Grid Array	Commercial
VIC64-GC	G145	145-Pin Ceramic Pin Grid Array	
VIC64-NC	N160	160-Lead Plastic Quad Flatpack	
VIC64-UC	U162	160-Lead Ceramic Quad Flatpack	
VIC64-GI	G145	145-Pin Ceramic Pin Grid Array	Industrial
VIC64-UI	U162	160-Lead Ceramic Quad Flatpack	
VIC64-GM	G145	145-Pin Ceramic Pin Grid Array	Military
VIC64-GMB	G145	145-Pin Ceramic Pin Grid Array	
VIC64-UMB	U162	160-Lead Ceramic Quad Flatpack	
VIC64-UM	U162	160-Lead Ceramic Quad Flatpack	

Document \#: 38-00196-A

Features

- Complete VMEbus interface controller and arbiter
- 58 internal registers provide configuration control and status of VMEbus and local operations
- Drives arbitration, interrupt, address modifier utility, strobe, address lines A07through A01 and data lines D07 through D00 directly, and provides signals for control logic to drive remaining address and data lines
-Direct connection to 68xxx family and mappable to non-68xxx processors
- Complete master/slave capability
-Supports read, write, write posting, and block transfers
- Accommodates VMEbus timing requirements with internal digital delay line ($1 / 2$-clock granularity)
- Programmable metastability delay
- Programmable data acquisition delays
- Provides timeout timers for local bus and VMEbus transactions.
- Interleaved block transfers over VMEbus
- Acts as DMA master on local bus
- Programmable burst count, transfer length, and interleaved period interval

- Supports local module-based

 DMA.- Arbitration support
- Supports single-level, priority and round robin arbitration
-Supports fair request option as requester.
- Interrupt support
- Complete support for the VMEbus interrupts: interrupter and interrupt handler
-Seven local interrupt lines
-8-level interrupt priority encode
- Total of 29 interrupts mapped through the VIC068A.
- Miscellaneous features
- Refresh option for local DRAM
- Four broadcast location monitors
- Four module-specific location monitors
- Eight interprocessor communications registers
- PGA or QFP packages
- Compatible with IEEE Specification 1014, Rev. C
- Supports RMC operations
- See the VIC068A/VAC068A User's Guide for more information

Functional Description

The VMEbus interface controller (VIC068A) is a single chip designed to minimize the cost and board area requirements and to maximize performance of the VMEbus interface of a VMEbus master/ slave module. This can be implemented on either a 8 -bit, 16 -bit, or 32 -bit VMEbus system. The VIC068A was designed using high-performance standard cells on an advanced 1-micron CMOS process. The VIC068A performs all VMEbus system controller functions plus many others, which simplify the development of a VMEbus interface. The VIC068A utilizes patented on-chip output buffers. These CMOS high-drive buffers provide direct connection to the address and data lines. In addition to these signals, the VIC068A connects directly to the arbitration, interrupt, address modifier, utility and strobe lines. Signals are provided which control data direction and latch functions needed for a 32-bit implementation.
The VIC068A was developed through the efforts of a consortium of board vendors, under the auspices of the VMEbus International Trade Association (VITA). The VIC068A thus insures compatibility between boards designed by different manufacturers.

Pin Configurations
Pin Grid Array (PGA)

Bottom View

A	B	C	D	E	F	G	H	J	K	L	M	N	P	R	
vSs	IPL2	पІАСरठ	URQ2	LIRQ5	ASIZ1	ASIZO	SLSEL1	WORD	FIACK	A02	A04	VDD	vss	IRQ4	1
LD6	BLT	IPL1	VDD	LIRQ1	LIRQ4	LIRQ6	ICFSEL	MWB	A01	A03	A05	A07	/RQ3	IRQ7	2
LD2	LD5	DEDLK	IPL0	LAEN	LRQ3	LIRQ7	vss	SESELO	vss	A06	IRQ1	IRO2	IRQ6	ACFAIL	3
LD1	LD3	LD7	$\underset{\text { PIN }}{\text { LOCATOR }}$									IRQ5	VDD	IACKOUT	4
LA7	LDO	LD4										SYSFAIL	SYSRESET	DTACK	5
LA3	LA5	LA6										IACKIN	IACR	AM0	6
LA2	LA4	vSs										vss	Ā	AM1	7
LA1	LAO	VDD										vss	AM2	AM3	8
CS	DSACK 1	DS										VDD	LWORD	AM4	9
PAS	LBERR	RESET										BERR	WRITE	AM5	10
DSACK0	R/N	FC1										BR2	$\overline{\text { DS }} 1$	DS0	
HALT	FIMC	LBR										BESY	BR1	BR0	12
FC2	SIZO	SCON	CLK64M	LADI	vss	VDD	vss	VDD	D00	BGOUT1	BGIN2	BGIN0	BR3	vss	13
SIZ1	IRESET	LADO	LEDI	DDIR	LWDENIN	DENO	D06	D03	D01	vss	BGOUT0	BGIN3	BGIN2	$\overline{B C L R}$	14
LBG	ABEN	VDD	LEDO	UWDENIN	SWDEN	ISOBE	D07	D05	D04	D02	BGOUT3	BGOUT2	SYSCLK	vss	15

Pin Configurations (continued)

Quad Flatpack (QFP)
 Top View

VIC068A on 68030 Board

Indivisible Cycles

Read-modify-write cycles and indivisible multiple-address cycles (IMACs) are easily performed using the VIC068A. Significant control is allowed to:

- Requesting the VMEbus on the assertion of $\overline{\text { RMC }}$ independent of MWB (this prevents any slave access from interrupting local indivisable cycles)
- Stretching the VMEbus $\overline{\mathrm{AS}}$
- Making the above behaviors dependent on the local SIZi signals

Deadlock Condition

If a master operation is attempted when a slave operation to the same module is in progress, a deadlock condition has occurred. The VIC068A will signal a deadlock condition by asserting the DEDLK signal. This should be used by the local resource request ing the VMEbus to try the transfer after the slave access has completed.

Self-Access Condition

If the VIC068A, while it is VMEbus master, has a slave select signaled, a self access is said to have occurred. The VIC068A will issue a $\overline{B E R R}$, which in turn will cause a $\overline{\text { LBERR }}$ to be asserted.

VIC068A VMEbus Slave Cycles

The VIC068A is capable of operating as a VMEbus slave controller. The VIC068A contains a highly programmable environment to allow for a wide variety of slave configurations. The VIC068A allows for:

- D32, D16, or D8 configuration
- A32, A24, A16, or user-defined address spaces
- Programmable block transfer support including:
- DMA-type block transfer ($\overline{\text { PAS }}$ and $\overline{\text { DSACKi }}$ held asserted) —non-DMA-type block transfer (toggle PAS and $\overline{\text { DSACKi }}$) - No support for block transfer
- Programmable data acquisition delays
- Programmable $\overline{\text { PAS }}$ and $\overline{\mathrm{DS}}$ timing
- Restricted slave accesses (supervisory accesses only)

When a slave access is required, the VIC068A will request the local bus. When local bus mastership is obtained, the VIC068A will read or write the data to/from the local resource and assert the DTACK signal to complete the transfer.

Slave Write-Posting

The VIC068A is capable of performing a slave write-post operation (bus decoupling). When enabled, the VIC068A latches the data to bewritten and acknowledge the VMEbus (asserts $\overline{\text { DTACK }}$) immediately thereafter. This prevents the VMEbus from having to wait for local bus access.

Address Modifier (AM) Codes

The VIC068A encodes and decodes the VMEbus address modifier codes. For VMEbus master accesses, the VIC068A encodes the appropriate AM codes through the VIC068A FCi and ASIZi signals, as well as the block transfer status. For slave accesses, the VIC068A decodes the AM codes and checks the slave select control registers to see if the slave request is to be supported with regard to address spaces, supervisory accesses, and block transfers. The VIC068A also supports user-defined AM codes; that is, the

VIC068A can be made to assert and respond to user-defined AM codes.

VIC068A VMEbus Block Transfers

The VIC068A is capable of both master and slave block transfers. The master VIC068A performs a block transfer in one of two modes:

- MOVEM-type Block Transfer
- Master Block Transfer with Local DMA

In addition to these VMEbus block transfers, the VIC068A is also capable of performing block transfers from one local resource to another in a DMA-like fashion. This is referred to as a Modulebased DMA transfer.
The VMEbus specification restricts block transfers from crossing 256 -byte boundaries without toggling the address strobe, in addition to restricting the maximum length of the transfer to 256 bytes. The VIC068A allows for easy implementation of block transfers that exceed the 256 -byte restriction by releasing the VMEbus at the appropriate time and rearbitrating for the bus at a programmed time later (this in-between time is referred to as the interleave period), while at the same time holding both the local and VMEbus addresses with internal latches. All of this is performed without processor/software intervention until the transfer is complete.
The VIC068A contains two seperate address counters for the VMEbus and the local address buses. In addition, a seperate address is counter-provided for slave block transfers. The VIC068A address counters are 8-bitup-counters that provide for transfers up to 256 bytes. For transfers that exceed the 256 -byte limit, the Cy press VAC068A or external counters and latches are required.
The VIC068A allows slave accesses to occur during the interleave period. Master accesses are also allowed during interleave with programming and external logic. This is referred to as the "dual path" option.
The VAC068A may be used in conjunction with the VIC068A to provide much of the external logic required for extended block transfer modes, such as the 256-byte boundary crossing and dual path. the VAC068A extends the 8-bit counters in the VIC068A to support full 32-bit incrementing addresses on both the local bus and VMEbus. The VAC068A also contains the latches required for extended address block transfers as well as those required for supporting the dual path feature. The VAC068A is not required to support block transfers, it simply enhances them.

MOVEM Master Block Transfer

This mode of block transfer provides the simplest implementation of VMEbus block transfers. For this mode, the local resource simply configures the VIC068A for a MOVEMblock transfer and proceeds with the consecutive-address cycles (such as a 680 X 0 MOVEM instruction). The local resource continues as the local bus master in this mode.

Master Block Transfers with Local DMA

In this mode, the VIC068A becomes the local bus master and reads or writes the local data in a DMA-like fashion. This provides a much faster interface than the MOVEM block transfer, but with less control and fault tolerence.

VIC068A Slave Block Transfer

The process of receiving a block transfer is referred to as a slave block transfer. The VIC068A is capable of decoding the address modifier codes to determine that a slave block transfer is desired.

In this mode, the VIC068A captures the VMEbus address, and latches them into internal counters. For subsequent cycles, the VIC068A simply increments this counter for each transfer. The local protocol for slave block transfers can be configured in a full handshake mode by toggling both PAS and DS and expecting $\overline{\text { DSACKi }}$ to toggle, or in an accelerated mode in which only DS toggles and PAS is asserted throughout the cycle.

Module-Based DMA Transfers

The VIC068A is capable of acting as a DMA controller between two local resources. This mode is similar to that of master block transfers with local DMA, with the exception that the VMEbus is not the second source or destination.

VIC068A Interrupt Generation and Handling Facilities

The VIC068A is capable of generating and handling a seven-level prioritized interrupt scheme similar to that used by the Motorola CISC processors. These interrupts include the seven VMEbus interrupts, seven local interrupts, five VIC068A error/status interrupts, and eight interprocessor communication interrupts.
The VIC068A can be configured to act as handler for any of the seven VMEbus interrupts. The VIC068A can generate the seven VMEbus interrupts as well as supplying a user-defined status/ID vector. The local priority level(IPL) for VMEbus interrupts is programmable. When configured as the systemcontroller, the VIC068 will drive the IACK daisy-chain.
The local interrupts can be configured with the following:

- User-defined local interrupt priority level (IPL)
- Option for VIC068A to provide the status/ID vector
- Edge or level sensitivity
- Polarity (rising/falling edge, active HIGH/LOW)

The VIC068A is also capable of generatinglocal interrupts on certain error or status conditions. These include:

- ACFAIL asserted
- SYSFAIL asserted
- Failed master write-post ($\overline{\mathrm{BERR}}$ asserted)
- Local DMA completion for block transfers
- Arbitration timeout
- VMEbus interrupter interrupt

The VIC068A can also interrupt on the setting of a module or global switch in the interprocessor communication facilities.

Interprocessor Communication Facilities

The VIC068A includes interprocessor registers and switches that can be written and read through VMEbus accesses. These are the only such registers that are directly accessible from the VMEbus. Included in the interprocessor communication facilities are:

- Four general purpose 8-bit registers
- Four module switches
- Four global switches
- VIC068A version/revision register (read-only)
- VIC068A Reset/Halt condition (read-only)
- VIC068A interprocessor communication register semaphores When set through a VMEbus access, these switches can interrupt a local resource. The VIC068A includes module switches that are intended for a single module, and global switches which are intended to be used as a broadcast.

Buffer Control Signal for Shared Memory Implementation ${ }^{[1]}$

Note:

1. This configuration can support Slave Block Transfers and Master and Slave Write-Post Operation. This buffer configuration cannot support block transfers with DMA.

Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\mathbf{C C}}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Related Documents

VIC068A/VAC068A User's Guide
VIC64/CY7C964 Design Notes

Ordering Information

Ordering Code	Package Name	Package Type	Operating Range
VIC068A-BC	B144	145-Pin Plastic Pin Grid Array	Commercial
VIC068A-GC	G145	145-Pin Ceramic Pin Grid Array	
VIC068A-NC	N160	160-Lead Plastic Quad Flatpack	
VIC068A-UC	U162	160-Lead Ceramic Quad Flatpack	
VIC068A-GI	G145	145-Pin Ceramic Pin Grid Array	Industrial
VIC068A-UI	U162	160-Lead Ceramic Quad Flatpack	
VIC068A-GM	G145	145-Pin Ceramic Pin Grid Array	Military
VIC068A-GMB	G145	145-Pin Ceramic Pin Grid Array	
VIC068A-UM	U162	160-Lead Ceramic Quad Flatpack	
VIC068A-UMB	U162	160-Lead Ceramic Quad Flatpack	

Document \#: 38-00167-B

Features

- Optional companion part to VIC068A
- Implements master/slave VMEbus interface in conjunction with the VIC068A
- Complete VMEbus and I/O DMA capability for a 32-bit CPU
- Complete local and VMEbus memory map decoding
-Separate segments on local side available for DRAM, VME subsystem bus (VSB), shared resources, VMEbus, local I/O, and EPROM
-Separate segments for the VMEbus address decode for slave select $\mathbf{0}$, slave select 1, and interprocessor communication facilities
- 64-Kbyte resolution for both local and VMEbus memory maps
- Supports block transfers over 256 byte boundaries
- Address counters for both VMEbus A(31-8) and local LA(31-8)
-Supports dual-path mode
-Supports implementation of VSB interface with DMA capability
- Dual UART channels on board
- Double-buffered on transmit, quint-buffered on receive
-Baud rate programmable
- Miscellaneous features
- Pin grid array or quad flatpack package
-Supports unaligned transfers
- Programmable DSACKi for local I/O
- Programmable timer and interrupt controller
- Programmable I/O (PIO)
- See the VIC068A/VAC068A User's Guide for more information

Functional Description

The VMEbus address controller (VAC068A) is a programmable memory map address controller. In conjunction with the VIC068A (VMEbus interface controller), the VAC068A maximizes the VMEbus interface performance of a master/ slave module.
The VAC068A contains programmable registers to allow the user to easily define
memory maps for both the local and VMEbus address regions. The VAC068A also contains the address counters and handshaking signals to allow easy implementation of block-level transfers over 256-byte boundaries. Additional features include dual internal UART channels, redirection control on the local bus to VSB (VMEsubsystem bus) or shared resource area, data swapping for unaligned transfers, programmableDSACKi,programmabletimer and interrupt controller.
The VAC068A connects directly to the local bus and the VIC068A. VMEbus address lines A8 through A31 are driven directly. The VAC068A output drivers feature patented high-drive outputs and TTLcompatible inputs. The VAC068A was designed using high-performance standard cells on an advanced CMOS process.
The VAC068A is available in pin grid array (with 122 active signals, 22 power and ground pins, and 1 locator pin) and quad flatpack.

Sample Board Design

VAC068A

Block Diagram

Pin Configurations

Pin Grid Array (PGA)

Bottom View

A	B	c	D	E	F	G	H	J	K	L	M	N	P	R
A23	$\frac{\mathrm{PIO} 13 /}{\mathrm{IOSEL}}$	DDIR	P1011	LADI	BLT	REFGT*	ICFSEL	SLSELT	1D8	ID11	1D13	1014	ASIZO	FC1
A20	A22	SWDEN	VAS	ABEN	$\frac{\mathrm{PIO4/4}}{10 R D}$	VSESEL	SLSELO	1810	109	1D12	WORD	FCIACK	FC0	PAS
A17	A19	A21	LADO	LDMACK	vss	LBE	vDD	vss	vss	1015	ASIZ1	CPUCLK	LaEn	DSACK ${ }^{1}$
A16	A18	vss	$\left.\right\|_{\text {LOCATOR }} ^{\text {PIN }}$									FC2	RN	LD19
A14	A15	vDD										vDD	DSACK0	LD21
A12	A13	vss										vss	LD16	LD17
A10	A11	vDD										$L^{\text {L } 23}$	LD18	LD20
${ }^{\text {A }} 8$	A09	vss										LD24	LD22	LD25
A25	A24	VDD										vss	LD27	LD26
A27	A26	vss										vDD	LD29	LD28
A29	A28	$\begin{aligned} & \text { PIOO/ } \\ & \text { TXDA } \end{aligned}$										DRAMCS	LD31	LD30
A31	$\begin{aligned} & \text { PIO1/ } \\ & \text { RXDA } \end{aligned}$	$\frac{\text { Plo5/ }}{\text { IOWR }}$										vss	EPROMCS	MWB
A30	$\begin{aligned} & \text { PIO3/ } \\ & \text { RXDD } \end{aligned}$	P107	$\frac{\text { PIO8/ }}{\text { IOSEL4 }}$	vss	LA29	vss	vDD	VDD	vss	LA13	LA9	LA11	$\overline{\text { CACHINH }}$	FPUCS
$\begin{aligned} & \text { P102/ } \\ & \text { TXDB } \end{aligned}$	$\begin{aligned} & \text { PIO6 } 1 \\ & \text { OSELL3 } \end{aligned}$	PIO10	CS	LA31	LA26	LA24	LA22	TOSEL1	LA17	LA15	LA14	LA12	LA8	RESET
vDD	$\frac{\text { plog }}{\frac{10 S E L 5}{}}$	La30	$\frac{\mathrm{PIO} 121}{\text { SHRCS }}$	LA28	LA27	LA25	LA23	LA21	LA19	LA20	LA18	LA16	LA10	IOSELO

Pin Configurations (continued)
Quad Flatpack (QFP)
Top View

VIC068A/VAC068A on 68030 Board

Operating Range

Range	Ambient Temperature	V ${ }_{\text {DD }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 5 \%$
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$
Military	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	$5 \mathrm{~V} \pm 10 \%$

Related Documents

VIC068A/VAC068A User's Guide
VIC64/CY7C964 Design Notes

Ordering Information

Ordering Code	Package Name	Package Type	Operating Range
VAC068A-BC	B144	145-Pin Plastic Pin Grid Array	
VAC068A-GC	G145	145-Pin Ceramic Pin Grid Array	
VAC068A-NC	N160	160-Lead Plastic Quad Flatpack	
VAC068A-UC	U162	160-Lead Ceramic Quad Flatpack	
VAC068A-GI	G145	145-Pin Ceramic Pin Grid Array	Industrial
VAC068A-UI	U162	160-Lead Ceramic Quad Flatpack	
VAC068A-GM	G145	145-Pin Ceramic Pin Grid Array	Military
VAC068A-GMB	G145	145-Pin Ceramic Pin Grid Array	
VAC068A-UM	U162	160-Lead Ceramic Quad Flatpack	
VAC068A-UMB	U162	160-Lead Ceramic Quad Flatpack	

Document \#: 38-00169-B

Bus Interface Logic Circuit

Features

- Comparators, counters, latches, and drivers minimize logic requirements for a variety of multiplexed and nonmultiplexed buses
- Directly drives VMEbus address and data signals
- 8-/16-bit comparator for slave address decoding
- Flexible interface optimized for VMEbus applications
- Companion device to Cypress VMEbus family of components
- Replaces multiple SSI/MSI components
- Cascadeable
- 64-pin QFP package
- See the VIC64/7C964 Design Notes for more information

Functional Description

The CY7C964 integrates several spaceconsuming functions into one small package, freeing board space for the implementation of added-value board features. It contains counters, comparators, latches, and drivers configured to be of value to implementors of anybackplane interface with address and data buses, particularly VME-
businterfaces. The on-chipdrivers are suitable for driving the VMEbus directly. The CY7C964 is ideal in applications where high-performance and real estate are primary concerns.
Although having many applications, the Bus Interface Logic Circuit is anideal companion part to Cypress's VMEbus family of components, the VIC068A and the VIC64. It is intended to drive the address and data buses (only the three upper bytes, as the VIC068A/VIC64 drives the lower byte of data and address buses), so three of these small devices are needed per controller. The VIC068A/VIC64 provides the control and timing signals to control the Bus Interface Logic Circuit as it acts as a bridge between the VMEbus and the Local bus.

Application with VMEbus Architecture

Use with Cypress VMEbus Controllers
The CY7C964 Bus Interface Logic Circuit is a seamless interface between the VIC068A/VIC64 and the VMEbussignals. The device functions equally well in the established 32-bit VMEbus arena and the emerging 64 -bit VMEbus standard. The device contains three 8 -bit counters to ful-
fill the functions of Block counters, and DMA counters as implied by the D64 portion of the VMEbus specification. It also contains the necessary multiplexing logic to allow the 64-bit-wide VMEbus path to be funnelled to and from the 32 -bit local bus. Control circuitry is included to manage the switching of the 32 -bit address bus during normal (32-bit) operations, and during MBLT (64-bit) operations. All the controls for these operations are directly provided from the VIC068A/VIC64. The on-chip drivers are capable of driving the VMEbus directly (48 mA).

Use in Other VMEbus Controller Implementations

The CY7C964 circuitry is designed to be of use to designers of VMEbus circuitry, including VSB (VME subsystem bus) and designs not requiring the features of the Cypress VIC068A and VIC64. The logic diagram includes general-purpose blocks of comparators, counters, and latches that can be controlled using the flexible control interface to allow many different options to be implemented. Although the device is packaged in a small 64-pin package, the use of multiplexed input and output pins provides access to the many internal functions, thus saving external circuitry.

Pin Configuration

Application with Other Bus Architectures

The CY7C964 is optimized for applications requiring wide buffers and high-performance multiplexing operations. The architecture can be configured to provide functions such as 16 -bit bidirectional three-state latch and 16-bit comparator with mask register, or
more complex functions such as 16 -to- 8 pipelined bidirectional multiplexer with address counter/comparator circuitry. The device can be cascaded to generate counters and comparators suitable for multiple byte address/data buses. The on-chip 48 mA drivers can be directly connected to many standard backplane buses.

Ordering Information

Ordering Code	Package Name	Operating Range	
CY7C964-NC	N65	64-Lead Plastic Quad Flatpack	Commercial
CY7C964-UC	U64	64-Lead Ceramic Quad Flatpack	
CY7C964-UI	U64	64-Lead Ceramic Quad Flatpack	Industrial
CY7C964-UM	U64	64-Lead Ceramic Quad Flatpack	Military
CY7C964-UMB	U64	64-Lead Ceramic Quad Flatpack	

Related Documents

VIC64/CY7C964 Design Notes
VIC068A/VAC068A User's Guide

Document \#: 38-00197-A
INFO 1
SRAMs 2
PROMs 3
PLDs 4
FIFOs 5
LOGIC 6
DATACOM 7
MODULES 8
ECL 9
BUS 11

PACKAGES

Section Contents

Military Product Selector Guide 11-2
Military Ordering Information 11-7

Military Overview

Features

Success in any endeavor requires a high level of dedication to the task. Cypress Semiconductor has demonstrated its dedication through its corporate commitment to support the military marketplace. This commitment starts with product design. All products are designed using our state-of-the-art CMOS and BiCMOS processes, and they must meet the full -55 to +125 degrees Celsius operational criteria for military use. The commitment continues with the 1986DESCcertification of our automated U.S. facility in San Jose, California. The commitment shows in our dedication to meet and exceed the stringent quality and reliability requirements of MIL-STD-883D and MIL-M-38510J. It shows in Cypress's participation in each of the military processing programs: MIL-STD-883D compliant, SMD (Standardized Military Drawing), and JAN. Finally, our commitment shows in our leadership position in special packages for military use.

Product Design

Every Cypress product is designed to meet or exceed the full temperature and functional requirements of military product. This means that Cypress builds military product as a matter of course, rather than as an accidental benefit of favorable test yield.Designs are being carried out in our industry-leading 0.65 -micron CMOS and BiCMOS processes. Cypress is able to offer a family of products that are industry leaders in density, low operating and standby current, and high speed. In addition, our technology results in products with very small manufacturable die sizes that will fit into the LCCs and flatpacks so often used in military programs.

DESC-Certified Facility

On May 8, 1986, the Cypress facility at 3901 North First Street in San Jose, California was certified by DESC for the production of JAN Class B CMOS Microcircuits. This certification not only allows Cypress to qualify product for JAN use, but also assures our customers that our San Jose Facility has the necessary documentation and procedures to manufacture product to the most stringent of quality and reliability requirements. Our wafer fabrication facilities are Class 10 (San Jose) and Class 1 (Round Rock, TX and Bloomington, MN) manufacturing environments and our assembly facility is also a clean room.

Data Sheet Documentation

Every Cypress final data sheet is a corporate document with a revision history. The document number and revision appears on each final data sheet. Cypress maintains a listing of all data sheet documentation and a copy is available to customers upon request. This gives a customer the ability to verify the current status of any data sheet and it also gives that customer the ability to obtain updated specifications as required.
Every final data sheet also contains detailed Group A subgroup testing information. All of the specified parameters that are tested
at Group A are listed in a table at the end of each final data sheet, with a notation as to which specific Group A test subgroups apply.

Assembly Traceability Code ${ }^{(\times)}$

Cypress Semiconductor places an assembly traceability code on every military package that is large enough to contain the code. The ATC automatically provides traceability for that product to the individual wafer lot. This unique code provides Cypress with the ability to determine which operators and equipment were used in the manufacture of that product from start to finish.

Quality and Reliability

MIL-STD-883D and MIL-M-38510J spell out the toughest of quality and reliability standards for military products. Cypress products meet all of these requirements and more. Our in-house quality and reliability programs are being updated regularly with tighter and tighter objectives. Please refer to the chapter on Quality, Reliability, and Process Flows for further details.

Military Product Offerings

Cypress offers three levels of processing for military product.
First, all Cypress products are available with processing in full compliance with MIL-STD-883, Revision D.
Second, selected products are available to the SMD (Standardized Military Drawing) program administered by DESC. These products are not only fully MIL-STD-883D compliant, but are also screened to the electrical requirements of the applicable military drawing.
Third, selected products are available as JAN devices. These products are processed in full accordance with MIL-M-38510J and they are screened to the electrical requirements of the applicable JAN slash sheet.

Product Packaging

All packages for military product are hermetic. A look at the package appendix in the back of this data book will give the reader an appreciation of the variety of packages offered. Included are cerDIPs, windowed CerDIPs, leadless chip carriers (LCCs), windowed leadless chip carriers, cerpaks, windowed cerpaks, quad cerpaks, windowed quad cerpaks, bottom-brazed flatpacks, and pin grid arrays.

Summary

Cypress Semiconductor is committed to the support of the military marketplace. Our commitment is demonstrated by our product designs, our DESC-certified facility, our documentation and traceability, our quality and reliability programs, oursupport of all levels of military processing, and by our leadership in special packaging.

Static RAMs

Size	Organization	$\begin{aligned} & \text { Pins } \\ & \text { (DIP) } \end{aligned}$	Part Number	JAN/SMD Number	Speed (ns)	$\mathrm{I}_{\mathrm{CC}} / \mathrm{I}_{\mathrm{SB}} / \mathrm{I}_{\mathrm{CCDR}}$ (mA@ns)	$\begin{gathered} 883 \\ \text { Availability } \end{gathered}$
64	16x4-Inverting	16	CY7C189		$\mathrm{t}_{\text {AA }}=25$	70@25	Now
64	16x4-Non-Inverting	16	CY7C190	5962-89694	$\mathrm{t}_{\mathrm{AA}}=25$	70 @ 25	Now
64	16x4-Inverting	16	CY27S03/A		$\mathrm{t}_{\text {AA }}=25,35$	100@35	Now
64	16x4-Non-Inverting	16	CY27S07/A		$\mathrm{t}_{\mathrm{AA}}=25,35$	100@25	Now
64	16x4-Inverting/Low Power	16	CY27LS03		$\mathrm{t}_{\text {AA }}=65$	38 @ 65	Now
1K	256x4-10K/10KHECL	24	CY10E422L		$\mathrm{t}_{\mathrm{AA}}=5,7$	150@5/7	Now
1K	256x4	22	CY7C122	5962-88594	$\mathrm{t}_{\mathrm{AA}}=25,35$	90@ 25	Now
1K	256x4	24S	CY7C123	5962-90696	$\mathrm{t}_{\text {AA }}=10,12,15$	150@15	Now
1K	256x4	22	CY9122/91L22	5962-88594	$\mathrm{t}_{\mathrm{AA}}=35,45$	$90 @ 45$	Now
1K	256x4	22	CY93422A/93L422A	5962-88594	$\mathrm{t}_{\mathrm{AA}}=45,55,60,75$	90@ 55	Now
4K	4Kx1-CS Power-Down	18	CY7C147	M38510/289	$\mathrm{t}_{\mathrm{AA}}=35,45$	110/10@35	Now
4K	4K $\times 1$-CS Power-Down	18	CY2147	M38510/289	$\mathrm{t}_{\mathrm{AA}}=45,55$	140/25@45	Now
4K	4Kx1-CS Power-Down	18	CY7C147	5962-88587	${ }^{t_{A A}}=35,45$	110/10@35	Now
4K	4Kx1-CS Power-Down	18	CY2147	5962-88587	$\mathrm{t}_{\mathrm{AA}}=45,55$	140/25@45	Now
4K	1Kx4-10K/10KHECL	24	CY10E474L	5962-91518	$\mathrm{t}_{\mathrm{AA}}=5,7$	190@5/7	Now
4K	1Kx4-CS Power-Down	18	CY7C148	M38510/289	$\mathrm{t}_{\mathrm{AA}}=35,45$	110/10@35	Now
4K	1Kx4-CS Power-Down	18	CY2148	M38510/289	$\mathrm{t}_{\mathrm{AA}}=45,55$	140/25@45	Now
4K	1 Kx 4	18	CY7C149		$\mathrm{t}_{\mathrm{AA}}=35,45$	110@35	Now
4K	1Kx4	18	CY2149		$\mathrm{t}_{\mathrm{AA}}=45,55$	140@45	Now
4K	1Kx4-Separate I/O	24S	CY7C150	5962-88588	$\mathrm{t}_{\mathrm{AA}}=12,15,25,35$	100@15	Now
8K	1 Kx 8 -Dual Port	48	CY7C130/31	5962-86875	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/40@45	Now
8K	1Kx8-Dual-PortSlave	48	CY7C140/41	5962-86875	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/40@45	Now
16K	4Kx4-CSECL	28	CY10E484L		$\mathrm{t}_{\mathrm{AA}}=7,10$	200@10	Now
16K	2 Kx 8 -CS Power-Down	24S	CY7C128A	5962-89690	$\mathrm{t}_{\mathrm{AA}}=20 ; 25$	125@20	Now
16K	2Kx 8-CS Power-Down	24	CY6116A/7A	5962-89690	$\mathrm{t}_{\mathrm{AA}}=20,25$	125@20	Now
16K	2Kx 8-CS Power-Down	24S	CY7C128A	84036	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	125/40@25	Now
16K	16Kx1-CSPower-Down	20	CY7C167A	84132	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	70/20@ 25	Now
16K	4Kx4-CS Power-Down	20	CY7C168A	5962-86705	$\mathrm{t}_{\text {AA }}=20,25,35,45$	100/20@25	Now
16K	4 Kx 4	20	CY7C169A		$\mathrm{t}_{\mathrm{AA}}=20,25,35,40$	100/20@35	Now
16K	4Kx4-Output Enable	22S	CY7C170A		$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	120@25	Now
16K	4Kx4-Separate I/O	24S	CY7C171A		$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	100/20@25	Now
16K	4Kx4-Separate I/O, PowerDown	24S	CY7C172A	5962-89790	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	90@ 20	Now
16K	2Kx8-Dual-Port	48	CY7C132/36	5962-90620	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	170/65@35	Now
16K	2Kx8-Dual-PortSlave	48	CY7C142/46	5962-90620	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	120/40@45	Now
32K	4Kx8-Dual-Port	48	CY7B134	5962-93001	$\mathrm{t}_{\mathrm{AA}}=25,35$	280@25	Now
32K	4 Kx 8 -Dual-Port	52	CY7B135	5962-93001	$\mathrm{t}_{\mathrm{AA}}=25,35$	280@ 25	Now
32 K	4Kx8-Dual-Port Semaphores	52	CY7B1342		$\mathrm{t}_{\mathrm{AA}}=25,35$	280@ 25	Now
32K	4Kx8-Dual-PortSemaphores Int, Busy	68	CY7B138		$\mathrm{t}_{\mathrm{AA}}=25,35$	280@ 25	Now
32 K	4Kx9-Dual-PortSemaphores Int, Busy	68	CY7B139		$\mathrm{t}_{\mathrm{AA}}=25,35$	280@ 25	Now
64 K	8Kx 8-CS Power-Down	28S	CY7C185A	5962-38294	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	125@20	Now
64K	8Kx 8--CS Power-Down	28S	CY7C185A	5962-89691	$\mathrm{t}_{\mathrm{AA}}=20,25$	125@20	Now
64K	8Kx8-CS Power-Down	28S	CY7C185A	5962-85525	$\mathrm{t}_{\mathrm{AA}}=35,45$	100/20/1@45	Now
64K	8Kx 8-CS Power-Down	28S	CY7B185	5962-91594	$\mathrm{t}_{\mathrm{AA}}=10,12,15$	145/50@15	Now
64K	8Kx8-CS Power-Down	28	CY7C186A	5962-38294	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	125@20	Now
64 K	8 Kx 8 -CS Power-Down	28	CY7C186A	5962-89691	$\mathrm{t}_{\mathrm{AA}}=20,25$	125@20	Now
64 K	8Kx8-CS Power-Down	28	CY7C186A	5962-85525	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	100/20/1@45	Now
64K	16Kx4-CS Power-Down	22S	CY7C164A	5962-89692	$\mathrm{t}_{\mathrm{AA}}=20,25$	90@ 20	Now
64K	16Kx4-CS Power-Down	22S	CY7C164A	5962-86859	$\mathrm{t}_{\mathrm{AA}}=35$	70/20/1@35	Now
64K	16Kx 4-CSPower-Down	22S	CY7B164	5962-91593	$\mathrm{t}_{\mathrm{AA}}=10,12,15$	135/50@15	Now
64K	16 Kx 4 -CSPower-Down	24S	CY7C166A	5962-89892	$\mathrm{t}_{\mathrm{AA}}=20,25$	90@20	Now
64K	16 Kx 4 -Output Enable	24S	CY7C166A	5962-86859	$\mathrm{t}_{\text {AA }}=35$	70/20/1@35	Now
64 K	16Kx 4 -Output Enable	24S	CY7B166	5962-91593	$\mathrm{t}_{\mathrm{AA}}=10,12,15$	135/50@15	Now
64K	16 Kx 4 -Separate I/O, T-write	28 S	CY7C161A	5962-90594	$\mathrm{t}_{\mathrm{AA}}=20,25,35$	70/20/1@35	Now
64K	16 Kx 4 -Separate I/O	28 S	CY7C162A	5962-89712	$\mathrm{t}_{\mathrm{AA}}=20,25,35$	70/20/1@35	Now
64 K	16Kx4-Separate I/O, T-write	28 S	CY7B161		$\mathrm{t}_{\text {AA }}=12,15$	135/50@15	Now
64K	16 Kx 4 -Separate I/O	28 S	CY7B162	5962-92172	$\mathrm{t}_{\mathrm{AA}}=12,15$	135/50@15	Now
64 K	64Kx1-CSPower-Down	22S	CY7C187A	5962-86015	$\mathrm{t}_{\mathrm{AA}}=20,25,35$	70/20/1@35	Now
64 K	8Kx8-Dual-Port Semaphores Int, Busy	68	CY7B144		$\mathrm{t}_{\mathrm{AA}}=25,35$	280@25	Now
64K	8Kx9-Dual-PortSemaphores Int, Busy	68	CY7B145		$\mathrm{t}_{\mathrm{AA}}=25,35$	280@25	Now

Static RAMs (continued)

Size	Organization	$\begin{array}{\|c} \hline \text { Pins } \\ \text { (DIP) } \end{array}$	Part Number	JAN/SMD Number	Speed (ns)	$\underset{(\mathrm{mA} @ \mathrm{~ns})}{\mathbf{I}_{\mathrm{CC}} / \mathbf{I}_{\mathbf{S B}} / \mathbf{I}_{\mathrm{CCDR}}}$	$\begin{gathered} 883 \\ \text { Availability } \end{gathered}$
64K	4Kx18-Cache Tag	68	CY7B180		$\mathrm{t}_{\mathrm{AA}}=15.20$	250@15	Now
64K	$4 \mathrm{~K} \times 18$-Cache Tag	68	CY7B181		$\mathrm{t}_{\mathrm{AA}}=15,20$	250@15	Now
256K	32Kx 8-CS Power-Down	28	CY7C198	5962-88662	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45,55$	180/40@ 20	Now
256 K	32Kx 8--CS Power-Down	28S	CY7C199	5962-88662	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45,55$	180/40@20	Now
256K	64Kx4-CSPower-Down	24S	CY7C194	5962-88681	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	150/40@ 20	Now
256K	64 Kx 4 - $\mathrm{CSPD}+\mathrm{OE} / \mathrm{CE} 1$	28S	CY7C195		$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	150/40@ 20	Now
256K	64Kx4-CS, OE	28S	CY7C195L	5962-89524	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	120/25@25	Now
256 K	$64 \mathrm{Kx} 4-\mathrm{CSPD}+\mathrm{OE} / \mathrm{CE} 2$	28S	CY7C196		$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	150/40@ 20	Now
256K	64Kx4-Separatel/O, T-write	28S	CY7C191	5962-90664	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	150/40@20	Now
256K	64Kx4-Separate I/O	28S	CY7C192	5962-89935	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	150/40@20	Now
256K	$256 \mathrm{~K} \times 1$-CS Power-Down	24S	CY7C197	5962-88725	$\mathrm{t}_{\mathrm{AA}}=20,25,35,45$	150/40@20	Now
256K	32Kx8-CS Power-Down	28	CY7B198		$\mathrm{t}_{\mathrm{AA}}=15,20$	170/60@ 15	Now
256K	32Kx8-CSPower-Down	28S	CY7B199		$\mathrm{t}_{\mathrm{AA}}=12,15,20$	170/40@ 12	Now
256 K	64 Kx 4 -Separate I/O	28S	CY7B192		$\mathrm{t}_{\mathrm{AA}}=12,15,20$	170/40@12	Now
256K	64Kx4-CSPower-Down	24S	CY7B194		$\mathrm{t}_{\mathrm{AA}}=12,15,20$	170/40@ 12	Now
256K	64Kx4-CSPD, OE	28 S	CY7B195		$\mathrm{t}_{\mathrm{AA}}=12,15,20$	170/40@12	Now
256K	64Kx4-CSPD, OE, 2CE	28S	CY7B196		$\mathrm{t}_{\mathrm{AA}}=12,15,20$	170/40@12	Now
256K	32 Kx 9 --Synchronous Cache	44	CY7B174		$\mathrm{t}_{\mathrm{AA}}=18,21$	250@18	Now
1M	$128 \mathrm{~K} \times 8$-CS Power-Down	32	CY7C109A	5962-89598	$\mathrm{t}_{\mathrm{AA}}=25,35,45$	140/30@25	1Q94
1M	128 Kx 8 -CS Power-Down	32S	CY7C1009		$\mathrm{t}_{\text {AA }}=15,20,25$	180/40@15	1Q94
1 M	256K \times 4-CSPower-Down/OE	28S	CY7C1006	5962-91612	$\mathrm{t}_{\mathrm{AA}}=15,20,25$	165/40@15	1Q94
1M	$256 \mathrm{Kx} 4 \text {-Separate I/O, }$ T-Write	32S	CY7C1001		$\mathrm{t}_{\text {AA }}=15,20,25$	165/40@15	1Q94
1M	256Kx4-Separate I/O	32S	CY7C1002		$\mathrm{t}_{\mathrm{AA}}=15,20,25$	165/40@15	1Q94
1M	1Mx1-CS Power-Down	28S	CY7C1007	5962-92316	$\mathrm{t}_{\mathrm{AA}}=15,20,25$	145/40@15	1Q94

PROMs

Size	Organization	Pins	Part Number	$\underset{\text { JAN/SMD }}{\text { JANher }} \text { + }$	Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathrm{CC}} / \mathbf{I}_{\mathbf{S B}} \\ (\mathrm{mA} @ \mathrm{~ns}) \end{gathered}$	$\begin{gathered} 883 \\ \text { Availability } \end{gathered}$
4K	512×8-Registered	24S	CY7C225	5962-88518(O)	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=30 / 15,35 / 20,40 / 25$	120@30/15	Now
4K	512x8-Registered	24 S	CY7C225A	$5962-88518(\mathrm{O})$	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=25 / 12,30 / 15,35 / 20$	120	Now
8K	1Kx8-Registered	24S	CY7C235	5962-88636(O)	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=30 / 15,40 / 20$	120@30/15	Now
8K	1Kx8-Registered	24S	CY7C235A	5962-88636(O)	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=25 / 12,30 / 15,40 / 20$	120	Now
8K	1 Kx 8	24 S	CY7C281	5962-87651(O)	$\mathrm{t}_{\mathrm{AA}}=45$	120@45	Now
8K	1 Kx 8	24S	CY7C281A	5962-87651(O)	$\mathrm{t}_{\mathrm{AA}}=30,45$	120	Now
8K	1Kx8	24	CY7C282	5962-87651(O)	$\mathrm{t}_{\mathrm{AA}}=45$	120 @ 45	Now
8K	1 Kx 8	24	CY7C282A	5962-87651(O)	$\mathrm{t}_{\mathrm{AA}}=30,45$	120	Now
16K	2Kx 8-Registered	24S	CY7C245	5962-87529(W)	$\mathrm{t}_{\text {SA/CO }}=35 / 15,45 / 25$	120@35/15	Now
16K	2Kx8-Registered	24S	CY7C245A	5962-89815(W)	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=18 / 12,25 / 12,35 / 15$	120@18/12	Now
16K	2Kx8-Registered	24S	CY7C245A	5962-88735(O)	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=18 / 12,25 / 12,35 / 15$	120@18/12	Now
16K	2 Kx 8	24S	CY7C291	5962-87650(W)	$\mathrm{t}_{\mathrm{AA}}=25,35,50$	120@35	Now
16K	2 Kx 8	24S	CY7C291A	5962-88734(O)	$\mathrm{t}_{\mathrm{AA}}=25,30,35,50$	120@25	Now
16K	2Kx8-CS Power-Down	24S	CY7C293A	5962-88680(W)	$\mathrm{t}_{\mathrm{AA}}=25,30,35,50$	120/30@25	Now
16K	2Kx8-CSPower-Down	24 S	CY7C293A	5962-92341(O)	$\mathrm{t}_{\mathrm{AA}}=25,30,35,50$	120/30@35	Now
16K	2 Kx 8	24	CY7C292		$\mathrm{t}_{\mathrm{AA}}=35,50$	120@35	Now
16 K	2Kx 8	24	CY7C292A	5962-88734(O)	$\mathrm{t}_{\mathrm{AA}}=25,30,35,45,50$	120@30	Now
16K	2Kx8-Reprogrammable State Machine	$\begin{aligned} & 28 \mathrm{~S} \\ & 144 \end{aligned}$	CY7C258/9	5926-93122(W)	$\mathrm{t}_{\mathrm{CP}}=12,15,18$	200@15	Now
16K	2 Kx 8 -Reprogrammable State Machine	$\begin{aligned} & 28 \mathrm{~S} \\ & 144 \end{aligned}$	CY7C258/9	5926-93123(O)	$\mathrm{t}_{\mathrm{CP}}=12,15,18$	200@15	Now
64K	8Kx8-CS Power-Down	24S	CY7C261	5962-87515(W)	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	140/50@25	Now
64K	8Kx8-CS Power-Down	24 S	CY7C261	5962-90803(O)	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	120/30@35	Now
64 K	8 Kx 8	24 S	CY7C263/4	5962-87515(W)	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	140@25	Now
64K	8 Kx 8	24	CY7C263/4	5962-90803(O)	$\mathrm{t}_{\mathrm{AA}}=25,35,45,55$	120@35	Now
64K	8 Kx 8 -Registered	28 S	CY7C265	5962-89967(O)	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=15 / 12,25 / 20,50 / 25$	140@18/15	Now
64 K	8 Kx 8 -Registered	28 S	CY7C265	5962-89484(W)	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=15 / 12,25 / 20,50 / 25$	120@50/25	Now
64 K	8 Kx 8 -EPROM Pinout	28	CY7C266	5962-91624(W)	$\mathrm{t}_{\mathrm{AA}}=25,45$	140/15@25	Now
64K	8Kx8-Registered/Diagnostic	28 S	CY7C269	5962-90831(O)	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=15 / 12,25 / 20,50 / 25$	140@15/12	Now
64K	8Kx8-Registered/Diagnostic	28S	CY7C269	5962-90930(W)	$\mathrm{tsA}^{\text {/CO }}$ = $=15 / 12,25 / 20,50 / 25$	140@15/12	Now

PROMs (continued)

Size	Organization	Pins	Part Number	$\underset{\text { NAN/SMD }}{\text { Number }{ }^{[1]}}$	Speed (ns)	$\begin{gathered} \mathbf{I}_{\mathrm{Cd}} / \mathrm{I}_{\mathrm{SB}} \\ (\mathrm{~mA} @ \mathbf{n s}) \end{gathered}$	$\begin{gathered} 883 \\ \text { Availability } \end{gathered}$
128K	16Kx8-CS Power-Down	28S	CY7C251	5962-89537(W)	$\mathrm{t}_{\mathrm{AA}}=45,55,65$	120/35@45	Now
128K	16 Kx 8	28	CY7C254	5962-89538(W)	$\mathrm{t}_{\mathrm{AA}}=45,55,65$	120@45	Now
256K	Processor Specific	44	CY7C270		${ }^{t_{C P}}=15,20,30$	250@ 25	Now
256K	16 Kx 16	44	CY7C276		$\mathrm{t}_{\mathrm{AA}}=25,30,35$	250@30	Now
256K	32Kx 8--CS Power-Down	28 S	CY7C271	5962-89817(W)	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	130/40@35	Now
256K	32Kx 8-CS Power-Down	28 S	CY7C271	5962-93166(O)	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	130/40@55	Now
256K	32Kx 8 -EPROMPinout	28	CY7C274	5962-89817(W)	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	130/40@35	Now
256K	32 Kx 8 -EPROM Pinout	28	CY7C274	5962-93166(O)	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	130/40@35	Now
256K	$32 \mathrm{~K} \times 8$-Registered	28S	CY7C277	5962-91744(W)	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=40 / 20,50 / 25$	$130 @ 40$	Now
256K	32 Kx 8 -Registered	28 S	CY7C277	5962-92155(O)	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=40 / 20,50 / 25$	130@40	Now
256K	32 Kx 8 -Latched	28 S	CY7C279		$\mathrm{t}_{\mathrm{AA}}=45,55$	130/40@45	Now
512K	64 Kx 8 -Fast Column Access	28 S	CY7C285	5962-92322(W)	$\mathrm{t}_{\mathrm{AA}} / \mathrm{FCA}=75 / 25,85 / 35$	200@ 75	Now
512K	64Kx 8-EPROMPinout	28	CY7C286	5962-91637(O)	$\mathrm{t}_{\mathrm{AA}}=60,70$	$150 @ 60$	Now
512 K	64Kx 8-EPROMPin	28	CY7C286	5962-92071(W)	$\mathrm{t}_{\mathrm{AA}}=60,70$	150@60	Now
512 K	$64 \mathrm{~K} \times 8$-Registered	28 S	CY7C287	5962-90913(W)	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=55 / 20,65 / 25$	150@65	Now
512 K	$64 \mathrm{~K} \times 8$-Registered	28S	CY7C287	5962-92065(O)	$\mathrm{t}_{\mathrm{SA} / \mathrm{CO}}=55 / 20,65 / 25$	150@65	Now

PLDs

	Organization	Pins	Part Number	$\begin{aligned} & \text { JAN/SMD } \\ & \text { Number }{ }^{[1]}{ }^{*} \end{aligned}$	Speed (ns/MHz)	$\underset{(\mathrm{mA} @ \mathbf{n s} / \mathbf{M H z})}{\mathbf{I}_{\mathrm{CC}}}$	$\begin{gathered} 883 \\ \text { Availability } \end{gathered}$
PAL20	16L8, 16R8, 16R6, 16R4	20	PAL16XX	5962-92338(O)	$\mathrm{t}_{\mathrm{PD}}=7,10$	180@7	Now
PALC20	16L8, 16R8,16R6, 16R4	20	PALC16XX	5962-88678(W)	$\mathrm{t}_{\mathrm{PD}}=20,30,40$	70 @ 20	Now
PALC20	16L8, 16R8, 16R6, 16R4	20	PALC16XX	5962-88713(O)	$\mathrm{t}_{\mathrm{PD}}=20,30,40$	70 @ 20	Now
PLD20	18G8-Generic	20	PLDC18G8	5962-91568(O)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=15 / 15 / 20$	110	Now
PLD24	22V10C-Macrocell	24S	PAL22V10C	5962-91760(O)	${ }^{\text {tPD/S/CO }}$ = $=10 / 3.6 / 7.5$	190@10	Now
PLD24	22V10C-Macrocell	24S	PAL22VP10C	5962-91760(O)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=10 / 3.6 / 7.5$	190@10	Now
PLDC24	22V10-Macrocell	24S	PALC22V10	5962-87539(W)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=25 / 18 / 15$	100@25	Now
PLD24	22V10-Macrocell	24S	PALC22V10B	5962-87539(W)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=20 / 17 / 15$	100@ 20	Now
PLDC24	22V10-Macrocell	24S	PALC22V10	5962-88670(O)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=25 / 18 / 15$	100@ 25	Now
PLD24	22V10-Macrocell	24S	PALC22V10B	5962-88670(O)	$\mathrm{tPD} / \mathrm{S} / \mathrm{CO}=15 / 12 / 10$	120@15	Now
PLDC24	22V10-Macrocell	24S	PALC22V10B	M38510/507(W)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=15 / 12 / 10$	$120 @ 15$	Now
PLDC24	22V10-Macrocell	24S	PALC22V10B	M38510/508(O)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=15 / 12 / 10$	120@15	Now.
PLDC24	22V10D-Macrocell	24S	PALC22V10D	5962-89841(O)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=10 / 6 / 7$	130@10	Now
PLDC24	22V10-Macrocell	24S	PALC22V10D	$5962-89841(\mathrm{O})$	$\mathrm{tPD} / \mathrm{S} / \mathrm{CO}=10 / 6 / 6$	$150 @ 10$	Now
PLDC24	20G10-Generic	24S	PLDC20G10	5962-88637(O)	$\mathrm{t}_{\mathrm{PD} / \mathrm{S} / \mathrm{CO}}=20 / 17 / 15$	80 @ 30	Now
PLDC24	20RA10-Asynchronous	24S	PLD20RA10	5962-90555(O)	$\mathrm{t}_{\text {PD/SU/CO }}=20 / 10 / 20$	100@ 25	Now
PLDC28	7C330-State Machine	28S	CY7C330	5962-89546(W)	$50,40,28 \mathrm{MHz}$	$180 @ 40 \mathrm{MHz}$	Now
PLDC28	7C330-State Machine	28 S	CY7C330	5926-90802(O)	$50,40,28 \mathrm{MHz}$	$180 @ 40 \mathrm{MHz}$	Now
PLDC28	7C331-Asynchronous	28S	CY7C331	5962-90754(W)	$\mathrm{t}_{\mathrm{PD}}=25,30,40$	$200 @ 20 \mathrm{MHz}$	Now
PLDC28	7C331-Asynchronous	28S	CY7C331	5962-89855(O)	$\mathrm{t}_{\mathrm{PD}}=25,30,40$	$200 @ 20 \mathrm{MHz}$	Now
PLDC28	7C332-Combinatorial	28S	CY7C332	5962-91584(W)	$\mathrm{t}_{\text {PD }}=20,25,30$	$200 @ 24 \mathrm{MHz}$	Now
PLD28	7C335-Universal State Machine	28S	CY7C335		$\mathrm{f}_{\text {MAX } 5}=66.6,50,83$	$160 @ 66.6 \mathrm{MHz}$	Now
MAX28	7C344-32 Macrocell	28S	CY7C344	5962-90611(W)	$\mathrm{t}_{\mathrm{PD}}=25,35$	220/170	Now
MAX40	7C343-64 Macrocell	40/44	CY7C343	5962-92158(W)	$\mathrm{t}_{\mathrm{PD}}=25,30,35$	160/120	Now
MAX68	7C342-128 Macrocell	68	CY7C342	5962-89468(W)	$\mathrm{t}_{\mathrm{PD}}=30,35,40$	$320 / 240$	Now
MAX84	7C341-192 Macrocell	84	CY7C341	5962-92062(W)	$\mathrm{t}_{\text {PD }}=30,35,40$	$320 / 240$	Now
PLDC28	7C361-State Machine	28 S	CY7C361		$100,83,66 \mathrm{MHz}$	$150 @ 100 \mathrm{MHz}$	Now

FIFOs

Organization	Pins	Part Number	$\begin{aligned} & \text { JAN/SMD } \\ & \text { Number } \end{aligned}$	Speed	$\begin{gathered} \mathbf{I}_{\mathrm{CC}} / \mathbf{I}_{\mathbf{S B}} \\ (\mathrm{mA} @ \mathrm{~ns} / \mathrm{MHz}) \end{gathered}$	$\begin{gathered} 883 \\ \text { Availability } \end{gathered}$
64×4-Cascadable	16	CY3341		$1.2,2 \mathrm{MHz}$	$60 @ 2.0 \mathrm{MHz}$	Now
64×4-Cascadable	16	CY7C401		$10,15,25 \mathrm{MHz}$	90 @ 15 MHz	Now
64x4-Cascadable/OE	16	CY7C403	5962-89523	$10,15,25 \mathrm{MHz}$	$90 @ 25 \mathrm{MHz}$	Now
64×5-Cascadable	18	CY7C402		$10,15,25 \mathrm{MHz}$	$90 @ 15 \mathrm{MHz}$	Now
64×5-Cascadable/OE	18	CY7C404	5962-86846	$10,15,25 \mathrm{MHz}$	$90 @ 25 \mathrm{MHz}$	Now
64x8-Cascadable/OE	28 S	CY7C408A	5962-89664	$15,25 \mathrm{MHz}$	$120 @ 25 \mathrm{MHz}$	Now
64×9-Cascadable	28 S	CY7C409A	5962-89661	$15,25 \mathrm{MHz}$	120@25 MHz	Now
512×9-Cascadable	28	CY7C420	5962-89863	$\mathrm{t}_{\mathrm{A}}=25,30,40,65 \mathrm{~ns}$	140/30@30	Now

FIFOs (continued)

Organization	Pins	Part Number	JAN/SMD Number	Speed	$\begin{gathered} \mathbf{I}_{\mathrm{CC}} / \mathbf{I}_{\mathbf{S B}} \\ (\mathrm{mA} @ \mathrm{~ns} / \mathbf{M H z}) \end{gathered}$	$\begin{gathered} 883 \\ \text { Availability } \end{gathered}$
512×9-Cascadable	28S	CY7C421	5962-89863	$\mathrm{t}_{\mathrm{A}}=25,30,40,65 \mathrm{~ns}$	147/30@ 25	Now
1Kx9-Cascadable	28	CY7C424	5962-91585	$\mathrm{t}_{\mathrm{A}}=25,30,40,65 \mathrm{~ns}$	140/30@30	Now
1Kx9-Cascadable	28S	CY7C425	5962-91585	$\mathrm{t}_{\mathrm{A}}=25,30,40,65 \mathrm{~ns}$	147/30@ 25	Now
2Kx9-Cascadable	28	CY7C428	5962-88669	$\mathrm{t}_{\mathrm{A}}=25,30,40,65 \mathrm{~ns}$	140/30@30	Now
2Kx9-Cascadable	28S	CY7C429	5962-88669	$\mathrm{t}_{\mathrm{A}}=25,30,40,65 \mathrm{~ns}$	147/30@ 25	Now
2Kx9-Bidirectional	28 S	CY7C439	5962-92321	$\mathrm{t}_{\mathrm{A}}=30,40,65 \mathrm{~ns}$	170/45@30	Now
4Kx9-Cascadable	28	CY7C432	5962-90715	$\mathrm{t}_{\mathrm{A}}=30,40,65 \mathrm{~ns}$	160/30@30	Now
4Kx9-Cascadable	28S	CY7C433	5962-90715	$\mathrm{t}_{\mathrm{A}}=30,40,65 \mathrm{~ns}$	160/30@30	Now
512x9-Clocked	28S	CY7C441		$\mathrm{t}_{\mathrm{C}}=14,20,30 \mathrm{~ns}$	160@14	Now
2Kx9-Clocked	28S	CY7C443		$\mathrm{t}_{\mathrm{C}}=14,20,30 \mathrm{~ns}$	160@14	Now
512×9-Clocked/Cascadable	32	CY7C451	5962-93173	$\mathrm{t}_{\mathrm{C}}=14,20,30 \mathrm{~ns}$	160@14	Now
2Kx9-Clocked/Cascadable	32	CY7C453	5962-93124	$\mathrm{t}_{\mathrm{C}}=14,20,30 \mathrm{~ns}$	160@14	Now
8Kx9—Half Full Flag	28	CY7C460		$\mathrm{t}_{\mathrm{A}}=20,25,40 \mathrm{~ns}$	165@25	Now
8Kx9-Prog. Flags	28	CY7C470		$\mathrm{t}_{\mathrm{A}}=20,25,40 \mathrm{~ns}$	165@25	Now
16 Kx 9 -Half Full Flag	28	CY7C462	5962-93008	$\mathrm{t}_{\mathrm{A}}=20,25,40 \mathrm{~ns}$	165@25	Now
$16 \mathrm{~K} \times 9$-Prog. Flags	28	CY7C472		$\mathrm{t}_{\mathrm{A}}=20,25,40 \mathrm{~ns}$	165@25	Now
32Kx9-HalfFull Flag	28	CY7C464	5962-93152	$\mathrm{t}_{\mathrm{A}}=20,25,40 \mathrm{~ns}$	165@25	Now
32Kx 9-Prog. Flags	28	CY7C474		$\mathrm{t}_{\mathrm{A}}=20,25,40 \mathrm{~ns}$	165@25	Now
512x18-Prog. Flags	52	CY7C455		$\mathrm{t}_{\mathrm{A}}=10,15,20 \mathrm{~ns}$	180@70	1Q94
1Kx18-Prog. Flags	52	CY7C456		$\mathrm{t}_{\mathrm{A}}=10,15,20 \mathrm{~ns}$	180@70	1Q94
2Kx18-Prog. Flags	52	CY7C457		$\mathrm{t}_{\mathrm{A}}=10,15,20 \mathrm{~ns}$	180@70	1Q94

Logic

Organization	Pins	Part Number	JAN/SMD Number	Speed (ns)	$\frac{\mathbf{I}_{\mathrm{CC}}}{(\mathrm{~mA} @ \mathrm{~ns})}$	$\begin{gathered} 883 \\ \text { Availability } \end{gathered}$
Programmable Skew Clock Buffer (TTLOutputs)	32	CY7B991		$\mathrm{f}_{\mathrm{REF}}=15-80 \mathrm{MHz}$	75	Now
Programmable Skew Clock Buffer (CMOS Outputs)	32	CY7B992	5962-93112	$\mathrm{f}_{\text {REF }}=15-80 \mathrm{MHz}$	75	Now
2901-4-BitSlice	40	CY7C901	5962-88535	$\mathbf{t}_{\text {CLK }}=27,32$	90@27	Now
2901-4-Bit Slice	40	CY2901C	5962-88535	C	180@32	Now
4×2901-16-BitSlice	64	CY7C9101	5962-89517	$\mathrm{t}_{\text {CLK }}=35,45$	85 @ 35	Now
2909-Sequencer	28	CY7C909		$\mathbf{t}_{\text {CLK }}=30,40$	$55 @ 30$	Now
2911-Sequencer	20	CY7C911	5962-90609	$\mathbf{t}_{\text {CLK }}=30,40$	$55 @ 30$	Now
2909-Sequencer	28	CY2909A		A	90@40	Now
2911-Sequencer	20	CY2911A	5962-90609	A	90@40	Now
2910-Controller (17-Word Stack)	40	CY7C910	5962-87708	$\mathbf{t}_{\mathbf{C L K}}=46,51,99$	90@46	Now
2910-Controller (9-Word Stack)	40	CY2910A	5962-87708	A	170 @ 51	Now
16×16 Multiplier	64	CY7C516	5962-86873	$\mathrm{t}_{\mathrm{MC}}=42,55,75$	110 @ 10MHz	Now
16×16 Multiplier	64	CY7C517	5962-87686	$\mathrm{t}_{\mathrm{MC}}=42,55,75$	110@10MHz	Now
16×16 Multiplier/Accumulator	64	CY7C510	5962-88733	$\mathbf{t}_{\mathbf{M C}}=55,65,75$	$110 @ 10 \mathrm{MHz}$	Now

VMEbus Interface Products

Organization	Pins	Part Number	JAN/SMD Number	Speed (MHz)	ICC (mA)	883 Availability
VME Interface Controller	$144 / 160$	VIC068A	$5962-92010$	64	250	
VME Address Controller	$144 / 160$	VAC068A	$5962-92009$	50	Now	
64-Bit VIC	$144 / 160$	VIC64		Now		
N40		Now				

Communication Products

Organization	Pins	Part Number	Speed (Mbps)	$\begin{aligned} & \mathbf{I}_{\mathbf{C C}} \\ & (\mathbf{m A}) \end{aligned}$	Packages	$\begin{gathered} 883 \\ \text { Availability } \end{gathered}$
HotLink Transmitter	28	CY7B923	160-330	TBA	D, L,	4Q93
HotLink Receiver	28	CY7B933	160-330	TBA	D,L,	4Q93

Military Product Selector Guide

Modules

Size	Organization	Pins	Part Number	Packages	Speed (ns)	$\underset{(\mathrm{mA} @ \mathrm{~ns})}{\mathrm{I}_{\mathrm{CC}}}$	$\begin{gathered} 883 \\ \text { Availability } \end{gathered}$
SRAMs							
2M	64 Kx 32 SRAM	60	CYM1830	HD06	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	$880 @ 35$	Now
4M	$128 \mathrm{~K} \times 32$ SRAM	66	CYM1838		$\mathrm{t}_{\text {AA }}=25,30,35$	$720 @ 25$	Now
4M	512Kx8 SRAM	32	CYM1466	HD12	$\begin{gathered} \mathrm{t}_{\mathrm{AA}}=35,45,55,70 \\ 85,100,120 \end{gathered}$	350 @ 35	Now
4M	256Kx16SRAM	48	CYM1641	HD05	$\mathrm{t}_{\mathrm{AA}}=35,45,55$	1800@35	Now

Notes:

The Cypress facility at 3901 North First Street in San Jose, CA is DESC-certified for JAN class B production.
All of the above products are available with processing to MIL-STD-883D at a minimum. Many of these products are also available either to SMDs (Standardized Military Drawings) or to JAN slash sheets.
The speed and power specifications listed above cover the full military temperature range.
Modules are available with MIL-STD-883D components. These modules are assembled and screened to the proposed JEDEC military processing standard for modules.
W = Windowed Package
O = Opaque Package
HD = Hermetic DIP Module
100 K ECL devices are available only to extended temperature range.
22 S stands for 22-pin 300-mil DIP.
24 S stands for 24 -pin 300-mil DIP.
28 S stands for 28 -pin $300-\mathrm{mil}$ DIP.
32S stands for 32-pin 300-mil DIP.

Cypress Semiconductor fully supports the DESC standardized Military Drawing Program for devices that are compliant to the Class B requirements of MIL-STD-883D.

Listed below are the SMDs for which Cypress is an approved source of supply. Please contact your local Cypress representative for the latest SMD update.

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
84036	09JX		CY6116A-45DMB	24.6 DIP	D12	2K x 8 SRAM
84036	09 KX	CY7C128A-45KMB	24 CP	K73	2Kx8SRAM	
84036	09LX	CY7C128A-45DMB	24.3 DIP	D14	2Kx8SRAM	
84036	09XX	CY6117A-45LMB	32 R LCC	L55	2Kx 8 SRAM	
84036	09YX	CY7C128A-45LMB	24 R LCC	L53	2Kx8SRAM	
84036	093X	CY6116A-45LMB	28 S LCC	L64	2Kx8SRAM	
84036	11JX	CY6116A-55DMB	24.6 DIP	D12	2Kx 8 SRAM	
84036	11KX	CY7C128A-55KMB	24 CP	K73	2Kx8SRAM	
84036	11LX	CY7C128A-55DMB	24.3 DIP	D14	2Kx8SRAM	
84036	11XX	CY6117A-55LMB	32 R LCC	L55	2Kx 8 SRAM	
84036	11YX	CY7C128A-55LMB	24 R LCC	D14	2Kx8SRAM	
84036	113X	CY6116A-55LMB	28 S LCC	L64	2Kx8SRAM	
84036	14JX	CY6116A-35DMB	24.6 DIP	D12	2Kx 8 SRAM	
84036	14KX	CY7C128A-35KMB	24 CP	K73	2Kx8SRAM	
84036	14LX	CY7C128A-35DMB	24.3 DIP	D14	2Kx8SRAM	
84036	14XX	CY6117A-35LMB	32 R LCC	L55	2Kx8SRAM	
84036	14YX	CY7C128A-35LMB	24 R LCC	L53	2Kx 8 SRAM	
84036	143X	CY6116A-35LMB	28 S LCC	L64	2K x 8 SRAM	
84132	02RA	CY7C167A-45DMB	20.3 DIP	D6	16K x 1 SRAM	
84132	02SA	CY7C167A-45KMB	20 CP	K71	16K x 1 SRAM	
84132	02YA	CY7C167A-45LMB	20 R LCC	L51	16K x 1 SRAM	
84132	05RA	CY7C167A-35DMB	20.3 DIP	D6	16K x 1 SRAM	
84132	05SA	CY7C167A-35KMB	20 CP	K71	16K $\times 1$ SRAM	
84132	05 YA	CY7C167A-35LMB	20 R LCC	L51	16K x 1 SRAM	
5962-38294	09MTX	CY7C185A-55KMB	28 CP	K74	8K x 8 SRAM	
5962-38294	23MUX	CY7C185A-55LMB	28 R TLCC	L54	8K x 8 SRAM	
5962-38294	09MXX	CY7C186A-55DMB	28.6 DIP	D16	8K x 8 SRAM	
5962-38294	09MYX	CY7C186A-55LMB	32 RLCC	L55	8Kx 8 SRAM	
5962-38294	09MZX	CY7C185A-55DMB	28.3 DIP	D22	8K x 8 SRAM	
5962-38294	11MTX	CY7C185A-45KMB	28 CP	K74	8K x 8 SRAM	
5962-38294	25MUX	CY7C185A-45LMB	28 R TLCC	L54	8Kx 8 SRAM	
5962-38294	11MXX	CY7C186A-45DMB	28.6 DIP	D16	8K $\times 8$ SRAM	
5962-38294	11MYX	CY7C186A-45LMB	32 R LCC	L55	8K x 8 SRAM	
5962-38294	11MZX	CY7C185A-45DMB	28.3 DIP	D22	8Kx 8 SRAM	
5962-38294	13MTX	CY7C185A-35KMB	28 CP	K74	8K x 8 SRAM	
5962-38294	27MUX	CY7C185A-35LMB	28 R TLCC	L54	8K x 8 SRAM	
5962-38294	13MXX	CY7C186A-35DMB	28.6 DIP	D16	8K x 8 SRAM	
5962-38294	13MYX	CY7C186A-35LMB	32 R LCC	L55	8K x 8 SRAM	
5962-38294	13MZX	CY7C185A-35DMB	28.3 DIP	D22	8K x 8 SRAM	
5962-38294	15MTX	CY7C185A-25KMB	28 CP	K74	8K x 8 SRAM	
5962-38294	29MUX	CY7C185A-25LMB	28 R TLCC	L54	8K x 8 SRAM	
5962-38294	15MXX	CY7C186A-25DMB	28.6 DIP	D16	8K x 8 SRAM	
5962-38294	15MYX	CY7C186A-25LMB	32 R LCC	L55	8K x 8 SRAM	
5962-38294	15MZX	CY7C185A-25DMB	28.3 DIP	D22	8Kx 8 SRAM	
5962-38294	17MTX	CY7C185A-20KMB	28 CP	K74	8K x 8 SRAM	
5962-38294	30MUX	CY7C185A-20LMB	28 R TLCC	L54	8K x 8 SRAM	
5962-38294	17MXX	CY7C186A-20DMB	28.6 DIP	D16	8K x 8 SRAM	
5962-38294	17MYX	CY7C186A-20LMB	32 R LCC	L55	8Kx 8 SRAM	
5962-38294	17MZX	CY7C185A-20DMB	28.3 DIP	D22	8K x 8 SRAM	
5962-85525	05TX	CY7C185A-55KMB	28 CP	K74	8K x 8 SRAM	
5962-85525	05UX	CY7C185A-55LMB	28 R TLCC	L54	8K x 8 SRAM	
5962-85525	05XX	CY7C186A-55DMB	28.6 DIP	D16	8K x 8 SRAM	
5962-85525	05ZX	CY7C185A-55DMB	28.3 DIP	D22	8K x 8 SRAM	
5962-85525	06TX	CY7C185A-45KMB	28 CP	K74	8K x 8 SRAM	
5962-85525	06UX	CY7C185A-45LMB	28 R TLCC	L54	8K x 8 SRAM	

Military Ordering Information

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description		
		Description	Type				
5962-85525	06XX		CY7C186A-45DMB	28.6 DIP	D16	8K x 8 SRAM	
5962-85525	06ZX	CY7C185A-45DMB	28.3 DIP	D22	8K x 8 SRAM		
5962-85525	07TX	CY7C185A-35KMB	28 CP	K74	8K x 8 SRAM		
5962-85525	07UX	CY7C185A-35LMB	28 R TLCC	L54	8K x 8 SRAM		
5962-85525	07XX	CY7C186A-35DMB	28.6 DIP	D16	8K x 8 SRAM		
5962-85525	07ZX	CY7C185A-35DMB	28.3 DIP	D22	8K x 8 SRAM		
5962-86015	01YX	CY7C187A-35DMB	22.3 DIP	D10	64K x 1 SRAM		
5962-86015	01ZX	CY7C187A-35LMB	22 R LCC	L52	64K x 1 SRAM		
5962-86015	02YX	CY7C187AL-35DMB	22.3 DIP	D10	64K x 1 SRAM		
5962-86015	02ZX	CY7C187AL-35LMB	22. R LCC	L52	64K x 1 SRAM		
5962-86015	03YX	CY7C187A-45DMB	22.3 DIP	D10	64K x 1 SRAM		
5962-86015	03ZX	CY7C187A-45LMB	22 R LCC	L52	64K x 1 SRAM		
5962-86015	04YX	CY7C187AL-45DMB	22.3 DIP	D10	64K x 1 SRAM		
5962-86015	04ZX	CY7C187AL-45LMB	22 R LCC	L52	64K x 1 SRAM		
5962-86705	12RA	CY7C168A-35DMB	20.3 DIP	D6	4K x 4 SRAM		
5962-86705	12XA	CY7C168A-35LMB	20 R LCC	L51	4Kx 4 SRAM		
5962-86846	01VX	CY7C404-10DMB	18.3 DIP	D4	64×5 FIFO		
5962-86846	012X	CY7C404-10LMB	20 S LCC	L61	64×5 FIFO		
5962-86846	01XX	CY7C404-10KMB	18 CP	K70	64×5 FIFO		
5962-86846	02VX	CY7C404-15DMB	18.3 DIP	D4	64×5 FIFO		
5962-86846	022X	CY7C404-15LMB	20 S LCC	L61	64×5 FIFO		
5962-86846	02XX	CY7C404-15KMB	18 CP	K70	64×5 FIFO		
5962-86846	03VX	CY7C404-25DMB	18.3 DIP	D4	64×5 FIFO		
5962-86846	032X	CY7C404-25LMB	20 S LCC	L61	64×5 FIFO		
5962-86846	03XX	CY7C404-25KMB	18 CP	K70	64×5 FIFO		
5962-86859	15KX	CY7C166AL-45KMB	24 CP	K73	16K x 4 SRAM w/OE		
5962-86859	15LX	CY7C166AL-45DMB	24.3 DIP	D14	16K x 4 SRAM w/OE		
5962-86859	15UX	CY7C166AL-45LMB	28 R LCC	L54	16K x 4 SRAM w/OE		
5962-86859	15XX	CY7C166AL-45LMB	28 R TLCC	L54	16K x 4 SRAM w/OE		
5962-86859	16KX	CY7C166A-45KMB	24 CP	K73	16K x 4 SRAM w/OE		
5962-86859	16LX	CY7C166A-45DMB	24.3 DIP	D14	16K x 4 SRAM w/OE		
5962-86859	16UX	CY7C166A-45LMB	28 R LCC	L54	16K x 4 SRAM w/OE		
5962-86859	16XX	CY7C166A-45LMB	28 R TLCC	L54	16K x 4 SRAM w/OE		
5962-86859	17KX	CY7C166AL-35KMB	24 CP	K73	16K x 4 SRAM w/OE		
5962-86859	17LX	CY7C166AL-35DMB	24.3 DIP	D14	16K x 4 SRAM w/OE		
5962-86859	17UX	CY7C166AL-35LMB	28 R LCC	L54	16K x 4 SRAM w/OE		
5962-86859	17XX	CY7C166AL-35LMB	28 R TLCC	L54	16K x 4 SRAM w/OE		
5962-86859	18KX	CY7C166A-35KMB	24 CP	K73	16K x 4 SRAM w/OE		
5962-86859	18LX	CY7C166A-35DMB	24.3 DIP	D14	16K x 4 SRAM w/OE		
5962-86859	18UX	CY7C166A-35LMB	28 R LCC	L54	16K x 4 SRAM w/OE		
5962-86859	18XX	CY7C166A-35LMB	28 R TLCC	L54	16K x 4 SRAM w/OE		
5962-86859	21KX	CY7C164AL-45KMB	24 CP	K73	16K x 4 SRAM		
5962-86859	21YX	CY7C164AL-45DMB	22.3 DIP	D10	16K x 4 SRAM		
5962-86859	21ZX	CY7C164AL-45LMB	22 R LCC	L52	16K x 4 SRAM		
5962-86859	22KX	CY7C164A-45KMB	24 CP	K73	$16 \mathrm{~K} \times 4$ SRAM		
5962-86859	22YX	CY7C164A-45DMB	22.3 DIP	D10	16K x 4 SRAM		
5962-86859	22ZX	CY7C164A-45LMB	22 R LCC	L52	16K x 4 SRAM		
5962-86859	23KX	CY7C164AL-35KMB	24 CP	K73	16K x 4 SRAM		
5962-86859	23YX	CY7C164AL-35DMB	22.3 DIP	D10	16K x 4 SRAM		
5962-86859	23ZX	CY7C164AL-35LMB	22 R LCC	L52	16K x 4 SRAM		
5962-86859	24KX	CY7C164A-35KMB	24 CP	K73	16K x 4 SRAM		
5962-86859	24YX	CY7C164A - 35DMB	22.3 DIP	D10	16K x 4 SRAM		
5962-86859	24ZX	CY7C164A-35LMB	22 R LCC	L52	16K x 4 SRAM		
5962-86873	01XX	CY7C516-42DMB	64 DIP	D30	16×16 Multiplier		
5962-86873	01YX	CY7C516-42LMB	68 S LCC	L81.	16×16 Multiplier		
5962-86873	01ZX	CY7C516-42GMB	68 PGA	G68	16×16 Multiplier		
5962-86873	01UX	CY7C516-42FMB	64 Q FP	F90	16×16 Multiplier		
5962-86873	02XX	CY7C516-55DMB	64 DIP	D30	16×16 Multiplier		

SEMICONDUCTOR
DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	'Type			
5962-86873	02YX		CY7C516-55LMB	68 S LCC	L81	16×16 Multiplier
5962-86873	02ZX	CY7C516-55GMB	68 PGA	G68	16×16 Multiplier	
5962-86873	02UX	CY7C516-55FMB	64 Q FP	F90	16×16 Multiplier	
5962-86873	03XX	CY7C516-75DMB	64 DIP	D30	16×16 Multiplier	
5962-86873	03YX	CY7C516-75LMB	68 S LCC	L81	16×16 Multiplier	
5962-86873	03ZX	CY7C516-75GMB	68 PGA	G68	16×16 Multiplier	
5962-86873	03UX	CY7C516-75FMB	64 Q FP	F90	16×16 Multiplier	
5962-86875	03XX	CY7C130-55DMB	48.6 DIP	D26	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	03YX	CY7C130-55LMB	48 LCC	L68	1K x 8 Dual-Port SRAM	
5962-86875	03ZX	CY7C131-55LMB	52 LCC	L69	1K x 8 Dual-Port SRAM	
5962-86875	03UX	CY7C130-55FMB	48 QFP	F90	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	04XX	CY7C130-45DMB	48.6 DIP	D26	1K x 8 Dual-Port SRAM	
5962-86875	04YX	CY7C130-45LMB	48 LCC	L68	1K x 8 Dual-Port SRAM	
5962-86875	04ZX	CY7C131-45LMB	52 LCC	L69	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	04UX	CY7C130-45FMB	48 QFP	F90	1K x 8 Dual-Port SRAM	
5962-86875	11XX	CY7C140-55DMB	48.6 DIP	D26	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	11YX	CY7C140-55LMB	48 LCC	L68	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	11ZX	CY7C141-55LMB	52 LCC	L69	1K x 8 Dual-Port SRAM	
5962-86875	11UX	CY7C140-55FMB	48 QFP	F90	1K x 8 Dual-Port SRAM	
5962-86875	12XX	CY7C140-45DMB	48.6 DIP	D26	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	12YX	CY7C140-45LMB	48 LCC	L68	1Kx 8 Dual-Port SRAM	
5962-86875	12ZX	CY7C141-45LMB	52 LCC	L69	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	12UX	CY7C140-45FMB	48 QFP	F90	1K x 8 Dual-Port SRAM	
5962-86875	19XX	CY7C130-35DMB	48.6 DIP	D26	1K $\times 8$ Dual-Port SRAM	
5962-86875	19YX	CY7C130-35LMB	48 LCC	L68	1K x 8 Dual-Port SRAM	
5962-86875	19ZX	CY7C131-35LMB	52 LCC	L69	1K x 8 Dual-Port SRAM	
5962-86875	20XX	CY7C140-35DMB	48.6 DIP	D26	1K x 8 Dual-Port SRAM	
5962-86875	20YX	CY7C140-35LMB	48 LCC	L68	$1 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-86875	20ZX	CY7C141-35LMB	52 LCC	L69	1K x 8 Dual-Port SRAM	
5962-87515	05KX	CY7C261-45TMB	24 CP	T73	8Kx8 UV EPROM	
5962-87515	05LX	CY7C261-45WMB	24.3 DIP	W14	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87515	053X	CY7C261-450MB	28 S LCC	Q64	8K x 8 UV EPROM	
5962-87515	06KX	CY7C261-55TMB	24 CP	T73	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87515	06LX	CY7C261-55WMB	24.3 DIP	W14	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87515	063X	CY7C261-55QMB	28 S LCC	Q64	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87515	07KX	CY7C261-35TMB	24 CP	T73	8K x 8 UV EPROM	
5962-87515	07LX	CY7C261-35WMB	24.3 DIP	W14	8K x 8 UV EPROM	
5962-87515	073X	CY7C261-35QMB	28 S LCC	Q64	8K x 8 UV EPROM	
5962-87515	08JX	CY7C264-35WMB	24.6 DIP	W14	8K x 8 UV EPROM	
5962-87515	08KX	CY7C263-35TMB	24 CP	T73	8K x 8 UV EPROM	
5962-87515	08LX	CY7C263-35WMB	24.3 DIP	W14	8K x 8 UV EPROM	
5962-87515	083X	CY7C263-35QMB	28 S LCC	Q64	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87515	09JX	CY7C264-45WMB	24.6 DIP	W14	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87515	09KX	CY7C263-45TMB	24 CP	T73	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87515	09LX	CY7C263-45WMB	24.3 DIP	W14	$8 \mathrm{~K} \times 8 \mathrm{UV}$ EPROM	
5962-87515	093X	CY7C263-45QMB	28 S LCC	Q64	$8 \mathrm{~K} \times 8 \mathrm{UV}$ EPROM	
5962-87515	10JX	CY7C264-55WMB	24.6 DIP	W14	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87515	10KX	CY7C263-55TMB	24 CP	T73	8K x 8 UV EPROM	
5962-87515	10LX	CY7C263-55WMB	24.3 DIP	W14	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87515	103X	CY7C263-55QMB	28 S LCC	Q64	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87515	11JX	CY7C264-25WMB	24.6 DIP	W14	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87515	11KX	CY7C263-25TMB	24 CP	T73	8K x 8 UV EPROM	
5962-87515	11LX	CY7C263-25WMB	24.3 DIP	W14	8 Kx 8 UV EPROM	
5962-87515	113X	CY7C263-25QMB	28 S LCC	Q64	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87515	12KX	CY7C261-25TMB	24 CP	T73	8K x 8 UV EPROM	
5962-87515	12LX	CY7C261-25WMB	24.3 DIP	W14	8K x 8 UV EPROM	
5962-87515	123X	CY7C261-25QMB	28 S LCC	Q64	$8 \mathrm{~K} \times 8$ UV EPROM	
5962-87529	01KX	CY7C245-45TMB	24 CP	T73	2K x 8 Registered UV PROM	
5962-87529	01LX	CY7C245-45WMB	24.3 DIP	W14	2K x 8 Registered UV PROM	
5962-87529	013X	CY7C245-45QMB	28 S LCC	Q64	2K x 8 Registered UV PROM	
5962-87529	02KX	CY7C245-35TMB	24 CP	T73	2K x 8 Registered UV PROM	

DESC SMD (Standardized Military Drawing) Approvalss ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-87529	02LX		CY7C245-35WMB	24.3 DIP	W14	2K x 8 Registered UV PROM
5962-87529	023X	CY7C245-35QMB	28 S LCC	Q64	$2 \mathrm{~K} \times 8$ Registered UV PROM	
5962-87539	01KX	PALC22V10-25TMB	24 CP	T73	24-Pin CMOS UV EPLD	
5962-87539	01LX	PALC22V10-25WMB	24.3 DIP	W14	24-Pin CMOS UV EPLD	
5962-87539	013X	PALC22V10-25QMB	28 S LCC	Q64	24-Pin CMOS UV EPLD	
5962-87539	02KX	PALC22V10-30TMB	24 CP	T73	24-Pin CMOS UV EPLD	
5962-87539	02LX	PALC22V10-30WMB	24.3 DIP	W14	24-Pin CMOS UV EPLD	
5962-87539	023X	PALC22V10-30QMB	28 S LCC	Q64	24-Pin CMOS UV EPLD	
5962-87539	03KX	PALC22V10-40TMB	24 CP	T73	24-Pin CMOS UV EPLD	
5962-87539	03LX	PALC22V10-40WMB	24.3 DIP	W14	24-Pin CMOS UV EPLD	
5962-87539	033X	PALC22V10-40QMB	28 S LCC	Q64	24-Pin CMOS UV EPLD	
5962-87539	04KX	PALC22V10B-20TMB	24 CP	T73	24-Pin CMOS UV EPLD	
5962-87539	04LX	PALC22V10B-20WMB	24.3 DIP	W14	24-Pin CMOS UV EPLD	
5962-87539	043X	PALC22V10B-20QMB	28 S LCC	Q64	24-Pin CMOS UV EPLD	
5962-87650	01KX	CY7C291-50TMB	24 CP	T73	2K x 8 UV EPROM	
5962-87650	01LX	CY7C291-50WMB	24.3 DIP	W14	2Kx 8 UV EPROM	
5962-87650	013X	CY7C291-50QMB	28 S LCC	Q64	2K x 8 UV EPROM	
5962-87650	03KX	CY7C291-35TMB	24 CP	T73	2K x 8 UV EPROM	
5962-87650	03LX	CY7C291-35WMB	24.3 DIP	W14	2K x 8 UV EPROM	
5962-87650	033X	CY7C291-35QMB	28 S LCC	Q64	$2 \mathrm{~K} \times 8$ UV EPROM	
5962-87650	05KX	CY7C291A-25TMB	24 CP	T73	$2 \mathrm{~K} \times 8$ UV EPROM	
5962-87650	05LX	CY7C291A-25WMB	24.3 DIP	W14	2K x 8 UV EPROM	
5962-87650	053X	CY7C291A-25QMB	28 S LCC	Q64	2K x 8 UV EPROM	
5962-87651	01JX	CY7C282-45DMB	24.6 DIP	D12	1Kx 8 PROM	
5962-87651	01KX	CY7C281-45KMB	24 CP	K73	$1 \mathrm{~K} \times 8$ PROM	
5962-87651	01LX	CY7C281-45DMB	24.3 DIP	D14	1K x 8 PROM	
5962-87651	013X	CY7C281-45LMB	28 S LCC	L64	1K x 8 PROM	
5962-87686	01XX	CY7C517-42DMB	64 DIP	D30	16×16 Multiplier	
5962-87686	01YX	CY7C517-42LMB	68 S LCC	L81	16×16 Multiplier	
5962-87686	01ZX	CY7C517-42GMB	68 PGA	G68	16×16 Multiplier	
5962-87686	01UX	CY7C517-42FMB	64 Q FP	F90	16×16 Multiplier	
5962-87686	02XX	CY7C517-55DMB	64 DIP	D30	16×16 Multiplier	
5962-87686	02YX	CY7C517-55LMB	68 S LCC	L81	16×16 Multiplier	
5962-87686	02ZX	CY7C517-55GMB	68 PGA	G68	16×16 Multiplier	
5962-87686	02UX	CY7C517-55FMB	64 Q FP	F90	16×16 Multiplier	
5962-87686	03XX	CY7C517-75DMB	64 DIP	D30	16×16 Multiplier	
5962-87686	03YX	CY7C517-75LMB	68 S LCC	L81	16×16 Multiplier	
5962-87686	03ZX	CY7C517-75GMB	68 PGA	G68	16×16 Multiplier	
5962-87686	03UX	CY7C517-75FMB	64 Q FP	F90	16×16 Multiplier	
5962-87708	01QX	CY2910ADMB	40.6 DIP	D18	Microprogram Controller	
5962-87708	01UX	CY2910ALMB	44 LCC	L67	Microprogram Controller	
5962-87708	04QX	CY7C910-51DMB	40.6 DIP	D18	Microprogram Controller	
5962-87708	04UX	CY7C910-51LMB	44 LCC	L67	Microprogram Controller	
5962-87708	05QX	CY7C910-46DMB	40.6 DIP	D18	Microprogram Controller	
5962-87708	05UX	CY7C910-46LMB	44 LCC	L67	Microprogram Controller	
5962-88518	01LX	CY7C225-30DMB	24.3 DIP	D14	512×8 Registered PROM	
5962-88518	013X	CY7C225-30LMB	28 S LCC	L64	512×8 Registered PROM	
5962-88518	02LX	CY7C225-35DMB	24.3 DIP	D14	512×8 Registered PROM	
5962-88518	023X	CY7C225-35LMB	28 S LCC	L64	512×8 Registered PROM	
5962-88518	03LX	CY7C225-40DMB	24.3 DIP	D14	512×8 Registered PROM	
5962-88518	033X	CY7C225-40LMB	28 S LCC	L64	512×8 Registered PROM	
5962-88535	01QX	CY7C901-32DMB	40.6 DIP	D18	4-Bit Slice	
5962-88535	01XX	CY7C901-32LMB	44 LCC	L67	4-Bit Slice	
5962-88535	01YX	CY7C901-32FMB	42 FP	F76	4-Bit Slice	
5962-88535	02QX	CY7C901-27DMB	40.6 DIP	D18	4-Bit Slice	
5962-88535	02XX	CY7C901-27LMB	44 LCC	L67	4-Bit Slice	
5962-88535	02YX	CY7C901-27FMB	42 FP	F76	4-Bit Slice	
5962-88587.	01VX	CY7C147-45DMB	18.3 DIP	D4	4Kx 1 SRAM	
5962-88587	01XX	CY7C147-45KMB	18 CP	K70	4K×1 SRAM	
5962-88587	01YX	CY7C147-45LMB	18 R LCC	L50	4K x 1 SRAM	
5962-88587	02VX	CY7C147-35DMB	18.3 DIP	D4	4K x 1 SRAM	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-88587	02XX		CY7C147-35KMB	18 CP	K70	4K x 1 SRAM
5962-88587	02YX	CY7C147-35LMB	18 R LCC	L50	4K x 1 SRAM	
5962-88588	01KX	CY7C150-35KMB	24 CP	K73	1K x 4 SRAM with Reset	
5962-88588	01LX	CY7C150-35DMB	24.3 DIP	D14	1K x 4 SRAM with Reset	
5962-88588	01XX	CY7C150-35LMB	28 R LCC	L54	1K x 4 SRAM with Reset	
5962-88588	02KX	CY7C150-25KMB	24 CP	K73	1K x 4 SRAM with Reset	
5962-88588	02LX	CY7C150-25DMB	24.3 DIP	D14	1K x 4 SRAM with Reset	
5962-88588	02XX	CY7C150-25LMB	28 R LCC	L54	1K x 4 SRAM with Reset	
5962-88588	03KX	CY7C150-15KMB	24 CP	K73	1K x 4 SRAM with Reset	
5962-88588	03LX	CY7C150-15DMB	24.3 DIP	D14	1K x 4 SRAM with Reset	
5962-88588	03XX	CY7C150-15LMB	28 R LCC	L54	1K x 4 SRAM with Reset	
5962-88594	02WX	CY7C122-35DMB	22.4 DIP	D8	256×4 SRAM	
5962-88594	02KX	CY7C122-35KMB	24 CP	K73	256×4 SRAM	
5962-88594	03WX	CY7C122-25DMB	22.4 DIP	D8	256×4 SRAM	
5962-88594	03KX	CY7C122-25KMB	24 CP	K73	256x 4 SRAM	
5962-88636	01KX	CY7C235-40KMB	24 CP	K73	1K x 8 Registered PROM	
5962-88636	01LX	CY7C235-40DMB	24.3 DIP	D14	1K x 8 Registered PROM	
5962-88636	013X	CY7C235-40LMB	28 S LCC	L64	1K x 8 Registered PROM	
5962-88636	02KX	CY7C235-30KMB	24 CP	K73	1K x 8 Registered PROM	
5962-88636	02LX	CY7C235-30DMB	24.3 DIP	D14	1K x 8 Registered PROM	
5962-88636	023X	CY7C235-30LMB	28 S LCC	L64	1K x 8 Registered PROM	
5962-88637	01KX	PLDC20G10-40KMB	24 CP	K73	Generic CMOS PLD	
5962-88637	01LX	PLDC20G10-40DMB	24.3 DIP	D14	Generic CMOS PLD	
5962-88637	013X	PLDC20G10-40LMB	28 S LCC	L64	Generic CMOS PLD	
5962-88637	02KX	PLDC20G10-30KMB	24 CP	K73	Generic CMOS PLD	
5962-88637	02LX	PLDC20G10-30DMB	24.3 DIP	D14	Generic CMOS PLD	
5962-88637	023X	PLDC20G10-30LMB	28 S LCC	L64	Generic CMOS PLD	
5962-88662	03MX	CY7C199-55KMB	28 CP	K74	32 Kx 8 SRAM	
5962-88662	03NX	CY7C199-55DMB	28.3 DIP	D22	$32 \mathrm{~K} \times 8$ SRAM	
5962-88662	03UX	CY7C199-55LMB	28 R LCC	L54	32K x 8 SRAM	
5962-88662	03XX	CY7C198-55DMB	28.6 DIP	D16	32K x 8 SRAM	
5962-88662	03YX	CY7C198-55LMB	32 R LCC	L55	32K x 8 SRAM	
5962-88662	04MX	CY7C199-45KMB	28 CP	K74	$32 \mathrm{~K} \times 8$ SRAM	
5962-88662	04NX	CY7C199-45DMB	28.3 DIP	D22	32K x 8 SRAM	
5962-88662	04UX	CY7C199-45LMB	28 R LCC	L54	32K x 8 SRAM	
5962-88662	04XX	CY7C198-45DMB	28.6 DIP	D16	$32 \mathrm{~K} \times 8$ SRAM	
5962-88662	04YX	CY7C198-45LMB	32 R LCC	L55	32 Kx 8 SRAM	
5962-88662	05MX	CY7C199-35KMB	28 CP	K74	32K x 8 SRAM	
5962-88662	05NX	CY7C199-35DMB	28.3 DIP	D22	32K x 8 SRAM	
5962-88662	05UX	CY7C199-35LMB	28 R LCC	L54	32 Kx 8 SRAM	
5962-88662	05XX	CY7C198-35DMB	28.6 DIP	D16	$32 \mathrm{~K} \times 8$ SRAM	
5962-88662	05YX	CY7C198-35LMB	32 R LCC	L55	32K x 8 SRAM	
5962-88662	06MX	CY7C199-25KMB	28 CP	K74	32K x 8 SRAM	
5962-88662	06NX	CY7C199-25DMB	28.3 DIP	D22	$32 \mathrm{~K} \times 8$ SRAM	
5962-88662	06UX	CY7C199-25LMB	28 R LCC	L54	$32 \mathrm{~K} \times 8$ SRAM	
5962-88662	06XX	CY7C198-25DMB	28.6 DIP	D16	$32 \mathrm{~K} \times 8$ SRAM	
5962-88662	06YX	CY7C198-25LMB	32 R LCC	L55	$32 \mathrm{~K} \times 8$ SRAM	
5962-88662	07NX	CY7C199-20DMB	28.3 DIP	D22	$32 \mathrm{~K} \times 8$ SRAM	
5962-88662	07MX	CY7C199-20KMB	28 CP	K74	32K x 8 SRAM	
5962-88662	07UX	CY7C199-20LMB	28 R LCC	L54	32K x 8 SRAM	
5962-88662	07YX	CY7C198-20LMB	32 R LCC	L55	32K x 8 SRAM	
5962-88669	02UX	CY7C429-65KMB	28 CP	K74	2K x 9 FIFO	
5962-88669	02XX	CY7C428-65DMB	28.6 DIP	D16	2K x 9 FIFO	
5962-88669	02YX	CY7C429-65DMB	28.3 DIP	D22	2K x 9 FIFO	
5962-88669	02ZX	CY7C429-65LMB	32 R LCC	L55	$2 \mathrm{~K} \times 9$ FIFO	
5962-88669	03UX	CY7C429-50KMB	28 CP	K74	2Kx9FIFO	
5962-88669	03XX	CY7C428-50DMB	28.6 DIP	D16	2Kx9FIFO	
5962-88669	03YX	CY7C429-50DMB	28.3 DIP	D22	$2 \mathrm{~K} \times 9$ FIFO	
5962-88669	03ZX	CY7C429-50LMB	32 R LCC	L55	$2 \mathrm{~K} \times 9$ FIFO	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-88669	04UX		CY7C429-40KMB	28 CP	K74	2K x 9 FIFO
5962-88669	04XX	CY7C428-40DMB	28.6 DIP	D16	$2 \mathrm{~K} \times 9$ FIFO	
5962-88669	04YX	CY7C429-40DMB	28.3 DIP	D22	2K x 9 FIFO	
5962-88669	04ZX	CY7C429-40LMB	32 R LCC	L55	2K x 9 FIFO	
5962-88669	05UX	CY7C429-30KMB	28 CP	K74	$2 \mathrm{~K} \times 9$ FIFO	
5962-88669	05XX	CY7C428-30DMB	28.6 DIP	D16	2 Kx 9 FIFO	
5962-88669	05YX	CY7C429-30DMB	28.3 DIP	D22	2K x 9 FIFO	
5962-88669	05ZX	CY7C429-30LMB	32 R LCC	L55	2K x 9 FIFO	
5962-88670	01KX	PALC22V10-25KMB	24 CP	K73	24-Pin CMOS PLD	
5962-88670	01LX	PALC22V10-25DMB	24.3 DIP	D14	24-Pin CMOS PLD	
5962-88670	013X	PALC22V10-25LMB	28 S LCC	L64	24-Pin CMOS PLD	
5962-88670	02KX	PALC22V10-30KMB	24 CP	K73	24-Pin CMOS PLD	
5962-88670	02LX	PALC22V10-30DMB	24.3 DIP	D14	24-Pin CMOS PLD	
5962-88670	023X	PALC22V10-30LMB	28 S LCC	L64	24-Pin CMOS PLD	
5962-88670	03KX	PALC22V10-40KMB	24 CP	K73	24-Pin CMOS PLD	
5962-88670	03LX	PALC22V10-40DMB	24.3 DIP	D14	24-Pin CMOS PLD	
5962-88670	033X	PALC22V10-40LMB	28 S LCC	L64	24-Pin CMOS PLD	
5962-88670	04KX	PALC22V10B-20KMB	24 CP	K73	24-Pin CMOS PLD	
5962-88670	04LX	PALC22V10B-20DMB	24.3 DIP	D14	24-Pin CMOS PLD	
5962-88670	043X	PALC22V10B-20LMB	28 S LCC	L64	24-Pin CMOS PLD	
5962-88670	05KX	PALC22V10B-15KMB	24 CP	K73	24-Pin CMOS PLD	
5962-88670	05LX	PALC22V10B-15DMB	24.3 DIP	D14	24-Pin CMOS PLD	
5962-88670	053X	PALC22V10B-15LMB	28 S LCC	L64	24-Pin CMOS PLD	
5962-88678	01RX	PALC16L8-40WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD	
5962-88678	01SX	PALC16L8-40TMB	20 CP	T71	20-Pin CMOS UV EPLD	
5962-88678	01XX	PALC16L8-40QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD	
5962-88678	02RX	PALC16R8-40WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD	
5962-88678	02SX	PALC16R8-40TMB	20 CP	T71	20-Pin CMOS UV ERLD	
5962-88678	02XX	PALC16R8-40QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD	
5962-88678	03RX	PALC16R6-40WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD	
5962-88678	03SX	PALC16R6-40TMB	20 CP	T71	20-Pin CMOS UV EPLD	
5962-88678	03XX	PALC16R6-40QMB	20 S LCC	Q61.	20-Pin CMOS UV EPLD	
5962-88678	04RX	PALC16R4-40WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD	
5962-88678	04SX	PALC16R4-40TMB	20 CP	T71	20-Pin CMOS UV EPLD	
5962-88678	04XX	PALC16R4-40QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD	
5962-88678	05RX	PALC16L8-30WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD	
5962-88678	05SX	PALC16L8-30TMB	20 CP	T71	20-Pin CMOS UV EPLD	
5962-88678	05XX	PALC16L8-30QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD	
5962-88678	06RX	PALC16R8-30WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD	
5962-88678	06SX	PALC16R8-30TMB	20 CP	T71	20-Pin CMOS UV EPLD	
5962-88678	06XX	PALC16R8-30QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD	
5962-88678	07RX	PALC16R6-30WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD	
5962-88678	07SX	PALC16R6-30TMB	20 CP	T71	20-Pin CMOS UV EPLD	
5962-88678	07XX	PALC16R6-30QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD	
5962-88678	08RX	PALC16R4-30WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD	
5962-88678	08SX	PALC16R4-30TMB	20 CP	T71	20-Pin CMOS UV EPLD	
5962-88678	08XX	PALC16R4-30QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD	
5962-88678	09RX	PALC16L8-20WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD	
5962-88678	09SX	PALC16L8-20TMB	20 CP	T71	20-Pin CMOS UV EPLD	
5962-88678	09XX	PALC16L8-20QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD	
5962-88678	10RX	PALC16R8-20WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD	
5962-88678	10SX	PALC16R8-20TMB	20 CP	T71	20-Pin CMOS UV EPLD	
5962-88678	10XX	PALC16R8-20QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD	
5962-88678	11RX	PALC16R6-20WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD	
5962-88678	11SX	PALC16R6-20TMB	20 CP	T71	20-Pin CMOS UV EPLD	
5962-88678	11XX	PALC16R6-20QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD	
5962-88678	12RX	PALC16R4-20WMB	20.3 DIP	W6	20-Pin CMOS UV EPLD	
5962-88678	12SX	PALC16R4-20TMB	20 CP	T71	20-Pin CMOS UV EPLD	
5962-88678	12XX	PALC16R4-20QMB	20 S LCC	Q61	20-Pin CMOS UV EPLD	
5962-88680	01LX	CY7C293A-50WMB	24.3 DIP	W14	2K x 8 UVVEPROM	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-88680	01KX		CY7C293A-50TMB	24 CP	T73	2K x 8 UV EPROM
5962-88680	013X	CY7C293A-50QMB	28 S LCC	Q64	2Kx 8 UV EPROM	
5962-88680	02LX	CY7C293A-35WMB	24.3 DIP	W14	2K x 8 UV EPROM	
5962-88680	02KX	CY7C293A-35TMB	24 CP	T73	2K x 8 UV EPROM	
5962-88680	023X	CY7C293A-35QMB	28 S LCC	Q64	2K x 8 UV EPROM	
5962-88680	03LX	CY7C293A-30WMB	24.3 DIP	W14	2K x 8 UV EPROM	
5962-88680	03KX	CY7C293A-30TMB	24 CP	T73	2K x 8 UV EPROM	
5962-88680	033X	CY7C293A-30QMB	28 S LCC	Q64	2K x 8 UV EPROM	
5962-88680	04LX	CY7C293A-25WMB	24.3 DIP	W14	2K x 8 UV EPROM	
5962-88680	04KX	CY7C293A-25TMB	24 CP	T73	2Kx 8 UV EPROM	
5962-88680	043X	CY7C293A-25QMB	28 S LCC	Q64	2K x 8 UV EPROM	
-5962-88681	01LX	CY7C194-35DMB	24.3 DIP	D14	64K x 4 SRAM	
5962-88681	01XX	CY7C194-35LMB	28 R LCC	L54	64K x 4 SRAM	
5962-88681	02LX	CY7C194-45DMB	24.3 DIP	D14	64K x 4 SRAM	
5962-88681	02XX	CY7C194-45LMB	28 R LCC	L54	64K x 4 SRAM	
5962-88713	01RX	PALC16L8-40DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	01SX	PALC16L8-40KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	01XX	PALC16L8-40LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	02RX	PALC16R8-40DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	02SX	PALC16R8-40KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	02XX	PALC16R8-40LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	03RX	PALC16R6-40DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	03SX	PALC16R6-40KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	03XX	PALC16R6-40LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	04RX	PALC16R4-40DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	04SX	PALC16R4-40KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	04XX	PALC16R4-40LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	05RX	PALC16L8-30DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	05SX	PALC16L8-30KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	05XX	PALC16L8-30LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	06RX	PALC16R8-30DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	06SX	PALC16R8-30KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	06XX	PALC16R8-30LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	07RX	PALC16R6-30DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	07SX	PALC16R6-30KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	07XX	PALC16R6-30LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	08RX	PALC16R4-30DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	08SX	PALC16R4-30KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	08XX	PALC16R4-30LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	09RX	PALC16L8-20DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	09SX	PALC16L8-20KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	09XX	PALC16L8-20LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	10RX	PALC16R8-20DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	10SX	PALC16R8-20KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	10XX	PALC16R8-20LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	11RX	PALC16R6-20DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	11SX	PALC16R6-20KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	11XX	PALC16R6-20LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88713	12RX	PALC16R4-20DMB	20.3 DIP	D6	20-Pin CMOS PLD	
5962-88713	12SX	PALC16R4-20KMB	20 CP	K71	20-Pin CMOS PLD	
5962-88713	12XX	PALC16R4-20LMB	20 S LCC	L61	20-Pin CMOS PLD	
5962-88725	01LX	CY7C197-35DMB	24.3 DIP	D14	$256 \mathrm{~K} \times 1$ SRAM	
5962-88725	01XX	CY7C197-35LMB	28 R LCC	L54	$256 \mathrm{~K} \times 1$ SRAM	
5962-88725	02LX	CY7C197-45DMB	24.3 DIP	D14	$256 \mathrm{~K} \times 1$ SRAM	
5962-88725	02XX	CY7C197-45LMB	28 R LCC	L54	$256 \mathrm{~K} \times 1$ SRAM	
5962-88725	05LX	CY7C197-25DMB	24.3 DIP	D14	256K x 1 SRAM	
5962-88725	05XX	CY7C197-25LMB	28 R LCC	L54	$256 \mathrm{~K} \times 1$ SRAM	
5962-88733	01XX	CY7C510-55DMB	64 DIP	D30	$16 \times 16 \mathrm{MAC}$	
5962-88733	01YX	CY7C510-55LMB	68 S LCC	L81	$16 \times 16 \mathrm{MAC}$	
5962-88733	01ZX	CY7C510-55GMB	68 PGA	G68	$16 \times 16 \mathrm{MAC}$	
5962-88733	02XX	CY7C510-65DMB	64 DIP	D30	$16 \times 16 \mathrm{MAC}$	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-88733	02YX		CY7C510-65LMB	68 S LCC	L81	16×16 MAC
5962-88733	02ZX	CY7C510-65GMB	68 PGA	G68	16×16 MAC	
5962-88733	03XX	CY7C510-75DMB	64 DIP	D30	16×16 MAC	
5962-88733	03YX	CY7C510-75LMB	68 S LCC	L81	16x 16 MAC	
5962-88733	03ZX	CY7C510-75GMB	68 PGA	G68	16×16 MAC	
5962-88734	02JX	CY7C292A-45DMB	24.6 DIP	D12	2 Kx 8 EPROM	
5962-88734	02KX	CY7C291A-45KMB	24 CP	K73	2 Kx 8 EPROM	
5962-88734	02LX	CY7C291A-45DMB	24.3 DIP	D14	2 Kx 8 EPROM	
5962-88734	023X	CY7C291A-45LMB	28 S LCC	L64	2 Kx 8 EPROM	
5962-88734	03JX	CY7C292A-35DMB	24.6 DIP	D12.	2 Kx 8 EPROM	
5962-88734	03KX	CY7C291A-35KMB	24 CP	K73	$2 \mathrm{~K} \times 8$ EPROM	
5962-88734	03LX	CY7C291A-35DMB	24.3 DIP	D14	2 Kx 8 EPROM	
5962-88734	033X	CY7C291A-35LMB	28 S LCC	L64	2 Kx 8 EPROM	
5962-88734	04JX	CY7C292A-25DMB	24.6 DIP	D12	2 Kx 8 EPROM	
5962-88734	04KX	CY7C291A-25KMB	24 CP	K73	2 Kx 8 EPROM	
5962-88734	04LX	CY7C291A-25DMB	24.3 DIP	D14	$2 \mathrm{~K} \times 8$ EPROM	
5962-88734	043X	CY7C291A-25LMB	28 S LCC	L64	$2 \mathrm{~K} \times 8$ EPROM	
5962-88735	01KX	CY7C245-45KMB	24 CP	K73	2K x 8 Registered PROM	
5962-88735	01LX	CY7C245-45DMB	24.3 DIP	D14	2K x 8 Registered PROM	
5962-88735	013X	CY7C245-45LMB	28 S LCC	L64	2K x 8 Registered PROM	
5962-88735	02KX	CY7C245-35KMB	24 CP	K73	2K x 8 Registered PROM	
5962-88735	02LX	CY7C245-35DMB	24.3 DIP	D14	2K x 8 Registered PROM	
5962-88735	023X	CY7C245-35LMB	28 S LCC	164	2K x 8 Registered PROM	
5962-88735	03KX	CY7C245A-35KMB	24 CP	K73	2K x 8 Registered PROM	
5962-88735	03LX	CY7C245A-35DMB	24.3 DIP	D14.	$2 \mathrm{~K} \times 8$ Registered PROM	
5962-88735	033X	CY7C245A-35LMB	28 S LCC	L64	2Kx 8 Registered PROM	
5962-88735	04KX	CY7C245A-25KMB	24 CP	K73	2K x 8 Registered PROM	
5962-88735	04LX	CY7C245A-25DMB	24.3 DIP	D14	2K x 8 Registered PROM	
5962-88735	043X	CY7C245A-25LMB	28 S LCC	L64	2 Kx 8 Registered PROM	
5962-89468	01XX	CY7C342-35RMB	68 SOJ	H81	128-Macrocell UV EPLD	
5962-89468	01YX	CY7C342-35HMB	68 PGA	R68	128-Macrocell UV EPLD	
5962-89468	01ZX	CY7C342-35TMB	68 QFP	T91	128-Macrocell UV EPLD	
5962-89517	01XX	CY7C9101-45DMB	64 DIP	D30	16-Bit Slice	
5962-89517	01YX	CY7C9101-45LMB	68 S LCC	L81	16-Bit Slice	
5962-89517	01ZX	CY7C9101-45GMB	68 PGA	G68	16-Bit Slice	
5962-89517	01UX	CY7C9101-45FMB	64 Q FP	F90	16-Bit Slice	
5962-89517	02XX	CY7C9101-35DMB	64 DIP	D30	16-Bit Slice	
5962-89517	02YX	CY7C9101-35LMB	68 S LCC	L81	16-Bit Slice	
5962-89517	02ZX	CY7C9101-35GMB	68 PGA	G68	16-Bit Slice	
5962-89517	02UX	CY7C9101-35FMB	64 Q FP	F90	16-Bit Slice	
5962-89523	01EX	CY7C403-10DMB	16.3 DIP	D2	64×4 FIFO	
5962-89523	012X	CY7C403-10LMB	20 S LCC	L61	64×4 FIFO	
5962-89523	02EX	CY7C403-15DMB	16.3 DIP	D2	64×4 FIFO	
5962-89523	022X	CY7C403-15LMB	20 S LCC	L61	64×4 FIFO	
5962-89524	03XX	CY7C195L-45DMB	28.3 DIP	D22	64K x 4 SRAM	
5962-89524	04XX	CY7C195L-35DMB	28.3 DIP	D22	64K x 4 SRAM	
5962-89524	05XX	CY7C195L-25DMB	28.3 DIP	D22	64K x 4 SRAM	
5962-89537	01UX	CY7C251-65QMB	32 R LCC	Q55	16K x 8 UV EPROM	
5962-89537	01YX	CY7C251-65WMB	28.3 DIP	W22	16K x 8 UV EPROM	
5962-89537	01ZX	CY7C251-65TMB	28 CP	T74	16K x 8 UV EPROM	
5962-89537	02UX	CY7C251-55QMB	32 R LCC	Q55	16K x 8 UV EPROM	
5962-89537	02YX	CY7C251-55WMB	28.3 DIP	W22	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89537	02ZX	CY7C251-55TMB	28 CP	T74	16K x 8 UV EPROM	
5962-89537	03UX	CY7C251-45QMB	32 R LCC	Q55	16K x 8 UV EPROM	
5962-89537	03YX	CY7C251-45WMB	28.3 DIP	W22	16K x 8 UV EPROM	
5962-89537	03ZX	CY7C251-45TMB	28 CP	T74	16K x 8 UV EPROM	
5962-89538	01UX	CY7C254-65QMB	32 R LCC	Q55	16K x 8 UV EPROM	
5962-89538	01XX	CY7C254-65WMB	28.6 DIP	W16	16K x 8 UV EPROM	
5962-89538	01ZX	CY7C254-65TMB	28 CP	T74	16K x 8 UV EPROM	
5962-89538	02UX	CY7C254-55QMB	32 R LCC	Q55	16K x 8 UV EPROM	
5962-89538	02XX	CY7C254-55WMB	28.6 DIP	W16	16K x 8 UV EPROM	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-89538	02ZX		CY7C254-55TMB	28 CP	T74	$16 \mathrm{~K} \times 8$ UV EPROM
5962-89538	03UX	CY7C254-45QMB	32 R LCC	Q55	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89538	03XX	CY7C254-45WMB	28.3 DIP	W16	16K x 8 UV EPROM	
5962-89538	03ZX	CY7C254-45TMB	28 CP	T74	$16 \mathrm{~K} \times 8$ UV EPROM	
5962-89546	01XX	CY7C330-28WMB	28.3 DIP	W22	PLD State Machine	
5962-89546	01YX	CY7C330-28TMB	28 CP	T74	PLD State Machine	
5962-89546	013X	CY7C330-28QMB	28 S LCC	Q64	PLD State Machine	
5962-89546	02XX	CY7C330-40WMB	28.3 DIP	W22	PLD State Machine	
5962-89546	02YX	CY7C330-40TMB	28 CP	T74	PLD State Machine	
5962-89546	023X	CY7C330-40QMB	28 S LCC	Q64	PLD State Machine	
5962-89546	03XX	CY7C330-50WMB	28.3 DIP	W22	PLD State Machine	
5962-89546	03YX	CY7C330-50TMB	28 CP	T74	PLD State Machine	
5962-89546	033X	CY7C330-50QMB	28 S LCC	Q64	PLD State Machine	
5962-89598	34MTX	CY7C108-55FMB	32 FP	F75	$128 \mathrm{~K} \times 8$ SRAM	
5962-89598	34MUX	CY7C108-55LMB	32 LCC	L55	128K x 8 SRAM	
5962-89598	34MXX	CY7C108-55DMB	32.6 DIP	D20	128K x 8 SRAM	
5962-89598	34MYX	CY7C108-55YMB	32 SOJ	Y65	128K x 8 SRAM	
5962-89598	34MZX	CY7C109-55DMB	32.4 DIP	D44	128K x 8 SRAM	
5962-89598	35MTX	CY7C108-45FMB	32 FP	F75	$128 \mathrm{~K} \times 8$ SRAM	
5962-89598	35MUX	CY7C108-45LMB	32 LCC	L55	$128 \mathrm{~K} \times 8$ SRAM	
5962-89598	35MXX	CY7C108-45DMB	32.6 DIP	D20	128K x 8 SRAM	
5962-89598	35MYX	CY7C108-45YMB	32 SOJ	Y65	128K x 8 SRAM	
5962-89598	35MZX	CY7C109-45DMB	32.4 DIP	D44	128K x 8 SRAM	
5962-89598	36MTX	CY7C108-35FMB	32 FP	F75	$128 \mathrm{~K} \times 8$ SRAM	
5962-89598	36MUX	CY7C108-35LMB	32 LCC	L55	128K x 8 SRAM	
5962-89598	36MXX	CY7C108-35DMB	32.6 DIP	D20	$128 \mathrm{~K} \times 8$ SRAM	
5962-89598	36MYX	CY7C108-35YMB	32 SOJ	Y65	128K x 8 SRAM	
5962-89598	36MZX	CY7C109-35DMB	32.4 DIP	D44	$128 \mathrm{~K} \times 8$ SRAM	
5962-89598	37MTX	CY7C108-25FMB	32 FP	F75	128K x 8 SRAM	
5962-89598	37MUX	CY7C108-25LMB	32 LCC	L55	128K x 8 SRAM	
5962-89598	37MXX	CY7C108-25DMB	32.6 DIP	D20	$128 \mathrm{~K} \times 8$ SRAM	
5962-89598	37MYX	CY7C108-25YMB	32 SOJ	Y65	128K x 8 SRAM	
5962-89598	37MZX	CY7C109-25DMB	32.4 DIP	D44	$128 \mathrm{~K} \times 8$ SRAM	
5962-89661	01XX	CY7C409A-15DMB	28.3 DIP	D22	64×9 FIFO	
5962-89661	01 YX	CY7C409A-15KMB	28 CP	K74	64×9 FIFO	
5962-89661	013X	CY7C409A-15LMB	28 S LCC	L64	64×9 FIFO	
5962-89661	02XX	CY7C409A-25DMB	28.3 DIP	D22	64×9 FIFO	
5962-89661	02YX	CY7C409A-25KMB	28 CP	K74	64×9 FIFO	
5962-89661	023X	CY7C409A-25LMB	28 S LCC	L64	64×9 FIFO	
5962-89664	01XX	CY7C408A-15DMB	28.3 DIP	D22	64×8 FIFO	
5962-89664	01YX	CY7C408A-15KMB	28 CP	K74	64×8 FIFO	
5962-89664	013X	CY7C408A-15LMB	28 S LCC	L64	64×8 FIFO	
5962-89664	02XX	CY7C408A-25DMB	28.3 DIP	D22	64×8 FIFO	
5962-89664	02YX	CY7C408A-25KMB	28 CP	K74	64×8 FIFO	
5962-89664	023X	CY7C408A-25LMB	28 S LCC	L64	64×8 FIFO	
5962-89690	01JX	CY6116A-25DMB	24.6 DIP	D12	2Kx 8 SRAM	
5962-89690	01KX	CY7C128A-25KMB	24 CP	K73	2Kx8SRAM	
5962-89690	01LX	CY7C128A-25DMB	24.3 DIP	D14	2Kx8SRAM	
5962-89690	01XX	CY6117A-25LMB	32 R LCC	L55	2Kx8SRAM	
5962-89690	01YX	CY7C128A-25LMB	24 R LCC	L53	2Kx8SRAM	
5962-89690	013X	CY6116A-25LMB	28 S LCC	L64	2Kx8SRAM	
5962-89690	02JX	CY6116A-20DMB	24.6 DIP	D12	2Kx8SRAM	
5962-89690	02KX	CY7C128A-20KMB	24 CP	K73	2Kx8SRAM	
5962-89690	02LX	CY7C128A-20DMB	24.3 DIP	D14	2Kx8SRAM	
5962-89690	02XX	CY6117A-20LMB	32 R LCC	L55	2Kx8SRAM	
5962-89690	02YX	CY7C128A-20LMB	24 R LCC	L53	2Kx8SRAM	
5962-89690	023X	CY6116A-20LMB	28 S LCC	L64	2Kx8SRAM	
5962-89691	02TX	CY7C185A-25KMB	28 CP	K74	8K x 8 SRAM	
5962-89691	02UX	CY7C185A-25LMB	28 R TLCC	L54	8K x 8 SRAM	
5962-89691	02XX	CY7C186A-25DMB	28.6 DIP	D16	8Kx 8 SRAM	
5962-89691	02ZX	CY7C185A-25DMB	28.3 DIP	D22	8K x 8SRAM	

SEMICONDUCTOR
DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-89691	04TX		CY7C185A-20KMB	28 CP	K74	8K x 8 SRAM
5962-89691	04UX	CY7C185A-20LMB	28 R TLCC	L54	8K x 8 SRAM	
5962-89691	04XX	CY7C186A-20DMB	28.6 DIP	D16	8K x 8 SRAM	
5962-89691	04ZX	CY7C185A-20DMB	28.3 DIP	D22	8K x 8 SRAM	
5962-89692	02KX	CY7C164A-25KMB	24 CP	K73	16K x 4 SRAM	
5962-89692	02YX	CY7C164A-25DMB	22.3 DIP	D10	16K x 4 SRAM	
5962-89692	02ZX	CY7C164A-25LMB	22 R LCC	L52	16K x 4 SRAM	
5962-89692	04KX	CY7C164A-20KMB	24 CP	K73	16K x 4 SRAM	
5962-89692	04YX	CY7C164A-20DMB	22.3 DIP	D10	$16 \mathrm{~K} \times 4$ SRAM	
5962-89692	04ZX	CY7C164A-20LMB	22 R LCC	L52	16K x 4 SRAM	
5962-89694	01EX	CY7C190-25DMB	16.3 DIP	D2	16×4 SRAM	
5962-89694	01FX	CY7C190-25KMB	16 CP	K69	16×4 SRAM	
5962-89694	01XX	CY7C190-25LMB	20 S LCC	L61	16×4 SRAM	
5962-89712	01UX	CY7C162A-45LMB	28 R LCC	L54	$16 \mathrm{~K} \times 4$ SRAM with Separate I/O	
5962-89712	01XX	CY7C162A-45DMB	28.3 DIP	D22	16K x 4 SRAM with Separate I/O	
5962-89712	01YX	CY7C162A-45KMB	28 CP	K74	16K x 4 SRAM with Separate I/O	
5962-89712	01ZX	CY7C162A-45LMB	28 R TLCC	L54	$16 \mathrm{~K} \times 4$ SRAM with Separate I/O	
5962-89712	02UX	CY7C162A-35LMB	28 R LCC	L54	16K x 4 SRAM with Separate I/O	
5962-89712	02XX	CY7C162A-35DMB	28.3 DIP	D22	16K x 4 SRAM with Separate I/O	
5962-89712	02YX	CY7C162A-35KMB	28 CP	K74	16K x 4 SRAM with Separate I/O	
5962-89712	02ZX	CY7C162A-35LMB	28 R TLCC	L54	16K x 4 SRAM with Separate I/O	
5962-89712	03UX	CY7C162A-25LMB	28 R LCC	L54	16K x 4 SRAM with Separate I/O	
5962-89712	03XX	CY7C162A-25DMB	28.3 DIP	D22	16K x 4 SRAM with Separate I/O	
5962-89712	03YX	CY7C162A-25KMB	28 CP	K74	$16 \mathrm{~K} \times 4$ SRAM with Separate I/O	
5962-89712	03ZX	CY7C162A-25LMB	28 R TLCC	L54	16K x 4 SRAM with Separate I/O	
5962-89712	04UX	CY7C162A-20LMB	28 R LCC	L54	16K x 4 SRAM with Separate I/O	
5962-89712	04XX	CY7C162A-20DMB	28.3 DIP	D22	16K x 4 SRAM with Separate I/O	
5962-89712	04YX	CY7C162A-20KMB	28 CP	K74	$16 \mathrm{~K} \times 4$ SRAM with Separate I/O	
5962-89712	04ZX	CY7C162A-20LMB	28 R TLCC	L54	16K x 4 SRAM with Separate I/O	
5962-89790	02KX	CY7C172A-20KMB	24 CP	K73	4K $\times 4$ SRAM with Separate I/O	
5962-89790	02LX	CY7C172A-20DMB	24.3 DIP	D14	4K x 4 SRAM with Separate I/O	
5962-89790	023X	CY7C172A-20LMB	28 S LCC	L64	4K x 4 SRAM with Separate I/O	
5962-89815	01LX	CY7C245A-35WMB	24.3 DIP	W14	2K x 8 Registered UV EPROM	
5962-89815	01KX	CY7C245A-35TMB	24 CP	T73	2K x 8 Registered UV EPROM	
5962-89815	013X	CY7C245A-35QMB	28 S LCC	Q64	2K x 8 Registered UV EPROM	
5962-89815	02LX	CY7C245A-25WMB	24.3 DIP	W14	2K x 8 Registered UV EPROM	
5962-89815	02KX	CY7C245A-25TMB	24 CP	T73	2K x 8 Registered UV EPROM	
5962-89815	023X	CY7C245A-25QMB	28 S LCC	Q64	2K x 8 Registered UV EPROM	
5962-89815	03LX	CY7C245A-18WMB	24.3 DIP	W14	2K x 8 Registered UV EPROM	
5962-89815	03KX	CY7C245A-18TMB	24 CP	T73	2K x 8 Registered UV EPROM	
5962-89815	033X	CY7C245A-18QMB	28 S LCC	Q64	2K x 8 Registered UV EPROM	
5962-89817	01XX	CY7C271-55WMB	28.3 DIP	W16	32K x 8 UV EPROM	
5962-89817	01YX	CY7C271-55TMB	28 CP	T74	$32 \mathrm{~K} \times 8$ UV EPROM	
5962-89817	01ZX	CY7C271-55QMB	32 RLCC	Q55	32K x 8 UV EPROM	
5962-89817	02XX	CY7C271-45WMB	28.3 DIP	W16	$32 \mathrm{~K} \times 8$ UV EPROM	
5962-89817	02YX	CY7C271-45TMB	28 CP	T74	32K x 8 UV EPROM	
5962-89817	02ZX	CY7C271-45QMB	32 R LCC	Q55	$32 \mathrm{~K} \times 8$ UV EPROM	
5962-89817	03XX	CY7C271-35WMB	28.3 DIP	W22	$32 \mathrm{~K} \times 8$ UV EPROM	
5962-89817	03YX	CY7C271-35TMB	28 CP	T74	$32 \mathrm{~K} \times 8$ UV EPROM	
5962-89817	03ZX	CY7C271-35QMB	32 R LCC	Q55	32K x 8 UV EPROM	
5962-89817	04UX	CY7C274-55WMB	28.6 DIP	W16	$32 \mathrm{~K} \times 8$ UV EPROM	
5962-89817	04ZX	CY7C274-55QMB	32 R LCC	Q55	$32 \mathrm{~K} \times 8$ UV EPROM	
5962-89817	05UX	CY7C274-45WMB	28.6 DIP	W16	$32 \mathrm{~K} \times 8$ UV EPROM	
5962-89817	05ZX	CY7C274-45QMB	32 R LCC	Q55	$32 \mathrm{~K} \times 8$ UV EPROM	
5962-89817	06UX	CY7C274-35WMB	28.6 DIP	W16	$32 \mathrm{~K} \times 8$ UV EPROM	
5962-89817	06ZX	CY7C274-35QMB	32 R LCC	Q55	32K x 8 UV EPROM	
5962-89841	01KX	PALC22V10D-30KMB	24 CP	K73	CMOS EE PLD	
5962-89841	01LX	PALC22V10D-30DMB	24.3 DIP	D14	CMOS EE PLD	
5962-89841	013X	PALC22V10D-30LMB	28 S LCC	L64	CMOS EE PLD	
5962-89841	02KX	PALC22V10D-20KMB	24 CP	K73	CMOS EE PLD	
5962-89841	02LX	PALC22V10D-20DMB	24.3 DIP	D14	CMOS EE PLD	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-89841	023X		PALC22V10D-20LMB	28 S LCC	L64	CMOS EE PLD
5962-89841	03KX	PALC22V10D-15KMB	24 CP	K73	CMOS EE PLD	
5962-89841	03LX	PALC22V10D-15DMB	24.3 DIP	D14	CMOS EE PLD	
5962-89841	033X	PALC22V10D-15LMB	28 S LCC	L64	CMOS EE PLD	
5962-89841	04KX	PALC22V10D-25KMB	24 CP	K73	CMOS EE PLD	
5962-89841	04LX	PALC22V10D-25DMB	24.3 DIP	D14	CMOS EE PLD	
5962-89841	043X	PALC22V10D-25LMB	28 S LCC	L64	CMOS EE PLD	
5962-89841	05KX	PALC22V10D-15KMB	24 CP	K73	CMOS EE PLD	
5962-89841	05LX	PALC22V10D-15DMB	24.3 DIP	D14	CMOS EE PLD	
5962-89841	053X	PALC22V10D-15LMB	28 S LCC	L64	CMOS EE PLD	
5962-89855	01MXX	CY7C331-40DMB	28.3 DIP	D22	Asynchronous PLD	
5962-89855	01MYX	CY7C331-40KMB	28 CP	K74	Asynchronous PLD	
5962-89855	01MZX	CY7C331-40YMB	28 S JCQ	Y64	Asynchronous PLD	
5962-89855	01M3X	CY7C331-40LMB	28 S LCC	L64	Asynchronous PLD	
5962-89855	02MXX	CY7C331-30DMB	28.3 DIP	D22	Asynchronous PLD	
5962-89855	02MYX	CY7C331-30KMB	28 CP	K74	Asynchronous PLD	
5962-89855	02MZX	CY7C331-30YMB	28 S JCQ	Y64	Asynchronous PLD	
5962-89855	02M3X	CY7C331-30LMB	28 S LCC	L64	Asynchronous PLD	
5962-89855	03MXX	CY7C331-25DMB	28.3 DIP	D22	Asynchronous PLD	
5962-89855	03MYX	CY7C331-25KMB	28 CP	K74	Asynchronous PLD	
5962-89855	03MZX	CY7C331-25YMB	28 S JCQ	Y64	Asynchronous PLD	
5962-89855	03M3X	CY7C331-25LMB	28 S LCC	L64	Asynchronous PLD	
5962-89863	02UX	CY7C421-65KMB	28 CP	K74	512×9 FIFO	
5962-89863	02XX	CY7C420-65DMB	28.6 DIP	D16	512×9 FIFO	
5962-89863	02YX	CY7C421-65DMB	28.3 DIP	D22	512×9 FIFO	
5962-89863	02ZX	CY7C421-65LMB	32 R LCC	L55	512×9 FIFO	
5962-89863	03UX	CY7C421-50KMB	28 CP	K74	512×9 FIFO	
5962-89863	03XX	CY7C420-50DMB	28.6 DIP	D16	512×9 FIFO	
5962-89863	03YX	CY7C421-50DMB	28.3 DIP	D22	512×9 FIFO	
5962-89863	03ZX	CY7C421-50LMB	32 R LCC	L55	512×9 FIFO	
5962-89863	04UX	CY7C421-40KMB	28 CP	K74	512×9 FIFO	
5962-89863	04XX	CY7C420-40DMB	28.6 DIP	D16	512×9 FIFO	
5962-89863	04YX	CY7C421-40DMB	28.3 DIP	D22	512×9 FIFO	
5962-89863	04ZX	CY7C421-40LMB	32 R LCC	L55	512×9 FIFO	
5962-89863	05UX	CY7C421-30KMB	28 CP	K74	512×9 FIFO	
5962-89863	05XX	CY7C420-30DMB	28.6 DIP	D16	512×9 FIFO	
5962-89863	05YX	CY7C421-30DMB	28.3 DIP	D22	512×9 FIFO	
5962-89863	05ZX	CY7C421-30LMB	32 R LCC	L55	512×9 FIFO	
5962-89863	06UX	CY7C421-25KMB	28 CP	K74	512×9 FIFO	
5962-89863	06XX	CY7C420-25DMB	28.6 DIP	D16	512×9 FIFO	
5962-89863	06YX	CY7C421-25DMB	28.3 DIP	D22	512×9 FIFO	
5962-89863	06ZX	CY7C421-25LMB	32 R LCC	L55	512×9 FIFO	
5962-89892	02KX	CY7C166A-25KMB	24 CP	K73	16K x 4 SRAM w/OE	
5962-89892	02LX	CY7C166A-25DMB	24.3 DIP	D14	16K x 4 SRAM w/OE	
5962-89892	02XX	CY7C166A-25LMB	28 R LCC	L54	16K x 4 SRAM W/OE	
5962-89892	02YX	CY7C166A-25LMB	28 R TLCC	L54	16K x 4 SRAM w/OE	
5962-89892	04KX	CY7C166A-20KMB	24 CP	K73	16K x 4 SRAM w/OE	
5962-89892	04LX	CY7C166A-20DMB	24.3 DIP	D14	16K x 4 SRAM w/OE	
5962-89892	04XX	CY7C166A-20LMB	28 R LCC	L54	16K $\times 4$ SRAM w/OE	
5962-89892	04YX	CY7C166A-20LMB	28 R TLCC	L54	16K x 4 SRAM w/OE	
5962-89935	01XX	CY7C192-45DMB	28.3 DIP	D22	$64 \mathrm{~K} \times 4$ SRAM with Separate I/O	
5962-89935	01YX	CY7C192-45KMB	28 CP	K74	$64 \mathrm{~K} \times 4$ SRAM with Separate I/O.	
5962-89935	01ZX	CY7C192-45LMB	28 R LCC	L54	64K x 4 SRAM with Separate I/O	
5962-89935	02XX	CY7C192-35DMB	28.3 DIP	D22	$64 \mathrm{~K} \times 4$ SRAM with Separate I/O	
5962-89935	02YX	CY7C192-35KMB	28 CP	K74	$64 \mathrm{~K} \times 4$ SRAM with Separate I/O	
5962-89935	02ZX	CY7C192-35LMB	28 R LCC	L54	64K x 4 SRAM with Separate I/O	
5962-89935	03XX	CY7C192-25DMB	28.3 DIP	D22	$64 \mathrm{~K} \times 4$ SRAM with Separate I/O	
5962-89935	03YX	CY7C192-25KMB	28 CP	K74	$64 \mathrm{~K} \times 4$ SRAM with Separate I/O	
5962-89935	03ZX	CY7C192-25LMB	28 R LCC	L54	$64 \mathrm{~K} \times 4$ SRAM with Separate I/O	
5962-89967	01MXX	CY7C265-60DMB	28.3 DIP	D22	8K x 8 Registered OTP PROM	
5962-89967	01MYX	CY7C265-60KMB	28 CP	K74	$8 \mathrm{~K} \times 8$ Registered OTP PROM	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-89967	01M3X		CY7C265-60LMB	28 S LCC	L64	8K x 8 Registered OTP PROM
5962-89967	02MXX	CY7C265-50DMB	28.3 DIP	D22	8K x 8 Registered OTP PROM	
5962-89967	02MYX	CY7C265-50KMB	28 CP	K74	8K x 8 Registered OTP PROM	
5962-89967	02M3X	CY7C265-50LMB	28 S LCC	L64	8K x 8 Registered OTP PROM	
5962-89967	03MXX	CY7C265-25DMB	28.3 DIP	D22	8K x 8 Registered OTP PROM	
5962-89967	03MYX	CY7C265-25KMB	28 CP	K74	8K x 8 Registered OTP PROM	
5962-89967	03M3X	CY7C265-25LMB	28 S LCC	L64	8K x 8 Registered OTP PROM	
5962-89967	04MXX	CY7C265-18DMB	28.3 DIP	D22	8K x 8 Registered OTP PROM	
5962-89967	04MYX	CY7C265-18KMB	28 CP	K74	8K x 8 Registered OTP PROM	
5962-89967	04M3X	CY7C265-18LMB	28 S LCC	L64	8K x 8 Registered OTP PROM	
5962-90555	01KX	PLDC20RA10-35KMB	24 CP	K73	Asynchronous CMOS OTP PLD	
5962-90555	01LX	PLDC20RA10-35DMB	24.3 DIP	D14	Asynchronous CMOS OTP PLD	
5962-90555	013X	PLDC20RA10-35LMB	28 S LCC	L64	Asynchronous CMOS OTP PLD	
5962-90555	02KX	PLDC20RA10-25KMB	24 CP	K73	Asynchronous CMOS OTP PLD	
5962-90555	02LX	PLDC20RA10-25DMB	24.3 DIP	D14	Asynchronous CMOS OTP PLD	
5962-90555	023X	PLDC20RA10-25LMB	28 S LCC	L64	Asynchronous CMOS OTP PLD	
5962-90555	03KX	PLDC20RA10-20KMB	24 CP	K73	Asynchronous CMOS OTP PLD	
5962-90555	03LX	PLDC20RA10-20DMB	24.3 DIP	D14	Asynchronous CMOS OTP PLD	
5962-90555	033X	PLDC20RA10-20LMB	28 S LCC	L64	Asynchronous CMOS OTP PLD	
5962-90594	01XX	CY7C161A-45DMB	28.3 DIP	D22	16K x 4 SRAM with Separate I/O, TW	
5962-90594	01YX	CY7C161A-45KMB	28 CP	K74	16K $\times 4$ SRAM with Separate I/O, TW	
5962-90594	01ZX	CY7C161A-45LMB	28 R TLCC	L54	16Kx 4 SRAM with Separate I/O, TW	
5962-90594	02XX	CY7C161A-35DMB	28.3 DIP	D22	16K x 4 SRAM with Separate I/O, TW	
5962-90594	02YX	CY7C161A-35KMB	28 CP	K74	16K x 4 SRAM with Separate I/O, TW	
5962-90594	02ZX	CY7C161A-35LMB	28 R TLCC	L54	16Kx 4 SRAM with Separate I/O, TW	
5962-90594	03XX	CY7C161A-25DMB	28.3 DIP	D22	16K x 4 SRAM with Separate I/O, TW	
5962-90594	03YX	CY7C161A-25KMB	28 CP	K74	16K x 4 SRAM with Separate I/O, TW	
5962-90594	03ZX	CY7C161A-25LMB	28 R TLCC	L54	16K x 4 SRAM with Separate I/O, TW	
5962-90594	04XX	CY7C161A-20DMB	28.3 DIP	D22	16K x 4 SRAM with Separate I/O, TW	
5962-90594	04YX	CY7C161A-20KMB	28 CP	K74	16K x 4 SRAM with Separate I/O, TW	
5962-90594	04ZX	CY7C161A-20LMB	28 R TLCC	L54	16K x 4 SRAM with Separate I/O, TW	
5962-90611	01XX	CY7C344-35WMB	28.3 DIP	W22	32-Macrocell UV EPLD	
5962-90611	01YX	CY7C344-35HMB	28 S JCQ	H64	32-Macrocell UV EPLD	
5962-90611	02XX	CY7C344-25WMB	28.3 DIP	W22	32-Macrocell UV EPLD	
5962-90611	02YX	CY7C344-25HMB	28 S JCQ	H64	32-Macrocell UV EPLD	
5962-90620	01MUX	CY7C132-55FMB	48 Q FP	F78	2K x 8 Dual-Port SRAM	
5962-90620	01MZX	CY7C132-55LMB	48 LCC	L68	2K x 8 Dual-Port SRAM	
5962-90620	01MYX	CY7C132-55DMB	48.6 DIP	D26	2K x 8 Dual-Port SRAM	
5962-90620	02MUX	CY7C132-45FMB	48 Q FP	F78	2K x 8 Dual-Port SRAM	
5962-90620	02MZX	CY7C132-45LMB	48 LCC	L68	2K x 8 Dual-Port SRAM	
5962-90620	02MYX	CY7C132-45DMB	48.6 DIP	D26	2K x 8 Dual-Port SRAM	
5962-90620	03MUX	CY7C132-35FMB	48 Q FP	F78	$2 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-90620	03MZX	CY7C132-35LMB	48 LCC	L68	2K x 8 Dual-Port SRAM	
5962-90620	03MYX	CY7C132-35DMB	48.6 DIP	D26	2K x 8 Dual-Port SRAM	
5962-90620	04MUX	CY7C142-55FMB	48 Q FP	F78	2K x 8 Dual-Port SRAM	
5962-90620	04MZX	CY7C142-55LMB	48 LCC	L68	2K x 8 Dual-Port SRAM	
5962-90620	04MYX	CY7C142-55DMB	48.6 DIP	D26	2K x 8 Dual-Port SRAM	
5962-90620	05MUX	CY7C142-45FMB	48 Q FP	F78	2K x 8 Dual-Port SRAM	
5962-90620	05MZX	CY7C142-45LMB	48 LCC	L68	2K x 8 Dual-Port SRAM	
5962-90620	05MYX	CY7C142-45DMB	48.6 DIP	D26	2K x 8 Dual-Port SRAM	
5962-90620	06MUX	CY7C142-35FMB	48 Q FP	F78	2K x 8 Dual-Port SRAM	
5962-90620	06MZX	CY7C142-35LMB	48 LCC	L68	2K x 8 Dual-Port SRAM	
5962-90620	06MYX	CY7C142-35DMB	48.6 DIP	D26	2K x 8 Dual-Port SRAM	
5962-90620	07MXX	CY7C136-55LMB	52 LCC	L69	2K x 8 Dual-Port SRAM	
5962-90620	08MXX	CY7C136-45LMB	52 LCC	L69	$2 \mathrm{~K} \times 8$ Dual-Port SRAM	
5962-90620	09MXX	CY7C136-35LMB	52 LCC	L69	2K x 8 Dual-Port SRAM	
5962-90620	10MXX	CY7C146-55LMB	52 LCC	L69	2K x 8 Dual-Port SRAM	
5962-90620	11MXX	CY7C146-45LMB	52 LCC	L69	2K x 8 Dual-Port SRAM	
5962-90620	12MXX	CY7C146-35LMB	52 LCC	L69	2K x 8 Dual-Port SRAM	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-90644	01XX		CY7C191-45DMB	28.3 DIP	D22	64K x 4 SRAM with Separate I/O, TW
5962-90644	01YX	CY7C191-45KMB	28 CP	K74	64K x 4 SRAM with Separate I/O, TW	
5962-90644	01ZX	CY7C191-45LMB	28 R LCC	L54	$64 \mathrm{~K} \times 4$ SRAM with Separate I/O, TW	
5962-90644	02XX	CY7C191-35DMB	28.3 DIP	D22	$64 \mathrm{~K} \times 4$ SRAM with Separate I/O, TW	
5962-90644	02YX	CY7C191-35KMB	28 CP	K74	$64 \mathrm{~K} \times 4$ SRAM with Separate I/O, TW	
5962-90644	02ZX	CY7C191-35LMB	28 R LCC	L54	$64 \mathrm{~K} \times 4$ SRAM with Separate I/O, TW	
5962-90644	03XX	CY7C191-25DMB	28.3 DIP	D22	$64 \mathrm{~K} \times 4$ SRAM with Separate I/O, TW	
5962-90644	03YX	CY7C191-25KMB	28 CP	K74	64K x 4 SRAM with Separate I/O, TW	
5962-90644	037X	CY7C191-25LMB	28 R LCC	L54	64K x 4 SRAM with Separate I/O, TW	
5962-90696	01MKX	CY7C123-15KMB	24 CP	K73	256×4 SRAM with Separate I/O	
5962-90696	01MLX	CY7C123-15DMB	24.3 DIP	D14	256×4 SRAM with Separate I/O	
5962-90696	01MXX	CY7C123-15LMB	24 R LCC	L53	256×4 SRAM with Separate I/O	
5962-90696	02MKX	CY7C123-12KMB	24 CP	K73	256×4 SRAM with Separate I/O	
5962-90696	02MLX	CY7C123-12DMB	24.3 DIP	D14	256×4 SRAM with Separate I/O	
5962-90696	02MXX	CY7C123-12LMB	24 R LCC	L53	256×4 SRAM with Separate I/O	
5962-90696	03MKX	CY7C123-10KMB	24 CP	K73	256×4 SRAM with Separate I/O	
5962-90696	03MLX	CY7C123-10DMB	24.3 DIP	D14	256×4 SRAM with Separate I/O	
5962-90696	03MXX	CY7C123-10LMB	24 R LCC	L53	256×4 SRAM with Separate I/O	
5962-90715	03MUX	CY7C433-65DMB	28.3 DIP	D22	4K x 9 FIFO	
5962-90715	03MXX	CY7C432-65DMB	28.6 DIP	D16	$4 \mathrm{~K} \times 9$ FIFO	
5962-90715	03MYX	CY7C433-65KMB	28 CP	K74	$4 \mathrm{~K} \times 9$ FIFO	
5962-90715	03MZX	CY7C433-65LMB	32 RLCC	L55	$4 \mathrm{~K} \times 9$ FIFO	
5962-90715	04MUX	CY7C433-50DMB	28.3 DIP	D22	$4 \mathrm{~K} \times 9$ FIFO	
5962-90715	04MXX	CY7C432-50DMB	28.6 DIP	D16	$4 \mathrm{~K} \times 9$ FIFO	
5962-90715	04MYX	CY7C433-50KMB	28 CP	K74	$4 \mathrm{~K} \times 9$ FIFO	
5962-90715	04MZX	CY7C433-50LMB	32 RLCC	L55	$4 \mathrm{~K} \times 9$ FIFO	
5962-90715	05MUX	CY7C433-40DMB	28.3 DIP	D22	$4 \mathrm{~K} \times 9$ FIFO	
5962-90715	05MXX	CY7C432-40DMB	28.6 DIP	D16	$4 \mathrm{~K} \times 9$ FIFO	
5962-90715	05MYX	CY7C433-40KMB	28 CP	K74	$4 \mathrm{~K} \times 9$ FIFO	
5962-90715	05MZX	CY7C433-40LMB	32 RLCC	L55	$4 \mathrm{~K} \times 9$ FIFO	
5962-90715	06MUX	CY7C433-30DMB	28.3 DIP	D22	$4 \mathrm{~K} \times 9$ FIFO	
5962-90715	06MXX	CY7C432-30DMB	28.6 DIP	D16	$4 \mathrm{~K} \times 9$ FIFO	
5962-90715	06MYX	CY7C433-30KMB	28 CP	K74	$4 \mathrm{~K} \times 9$ FIFO	
5962-90715	06MZX	CY7C433-30LMB	32 R LCC	L55	$4 \mathrm{~K} \times 9$ FIFO	
5962-90754	01MXX	CY7C331-40WMB	28.3 DIP	W22	Asynchronous UV PLD	
5962-90754	01MYX	CY7C331-40TMB	28 CP	T74	Asynchronous UV PLD	
5962-90754	01MZX	CY7C331-40HMB	28 S JCQ	H64	Asynchronous UV PLD	
5962-90754	01M3X	CY7C331-40QMB	28 S LCC	Q64	Asynchronous UV PLD	
5962-90754	02MXX	CY7C331-30WMB	28.3 DIP	W22	Asynchronous UV PLD	
5962-90754	02MYX	CY7C331-30TMB	28 CP	T74	Asynchronous UV PLD	
5962-90754	02MZX	CY7C331-30HMB	28 S JCQ	H64	Asynchronous UV PLD	
5962-90754	02M3X	CY7C331-30QMB	28 S LCC	Q64	Asynchronous UV PLD	
5962-90754	03MXX	CY7C331-25WMB	28.3 DIP	W22	Asynchronous UV PLD	
5962-90754	03MYX	CY7C331-25TMB	28 CP	T74	Asynchronous UV PLD	
5962-90754	03MZX	CY7C331-25HMB	28 S JCQ	H64	Asynchronous UV PLD	
5962-90754	03M3X	CY7C331-25QMB	28 S LCC	Q64	Asynchronous UV PLD	
5962-90803	01MKX	CY7C261-55KMB	24 CP	K73	8K x 8 OTP PROM	
5962-90803	01MLX	CY7C261-55DMB	24.3 DIP	D14	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90803	01M3X	CY7C261-55LMB	28 S LCC	L64	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90803	02MKX	CY7C261-45KMB	24 CP	K73	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90803	02MLX	CY7C261-45DMB	24.3 DIP	D14	8K x 8 OTP PROM	
5962-90803	02M3X	CY7C261-45LMB	28 S LCC	L64	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90803	03MKX	CY7C261-35KMB	24 CP	K73	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90803	03MLX	CY7C261-35DMB	24.3 DIP	D14	8K x 8 OTP PROM	
5962-90803	03M3X	CY7C261-35LMB	28 S LCC	L64	$8 \mathrm{~K} x 8$ OTP PROM	
5962-90803	04MKX	CY7C261-25KMB	24 CP	K73	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90803	04MLX	CY7C261-25DMB	24.3 DIP	D14	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90803	04M3X	CY7C $51-25 \mathrm{LMB}$	28 S LCC	L64	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90803	05MJX	CY7C264-55DMB	24.6 DIP	D12	8K x 8 OTP PROM	
5962-90803	05MKX	CY7C263-55KMB	24 CP	K73	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90803	05MLX	CY7C263-55DMB	24.3 DIP	D14	$8 \mathrm{~K} \times 8$ OTP PROM	

CYPRESS
SEMICONDUCTOR
DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-90803	05M3X		CY7C263-55LMB	28 S LCC	L64	8K x 8 OTP PROM
5962-90803	06MJX	CY7C264-45DMB	24.6 DIP	D12	8K x 8 OTP PROM	
5962-90803	06MKX	CY7C263-45KMB	24 CP	K73	8K x 8 OTP PROM	
5962-90803	06MLX	CY7C263-45DMB	24.3 DIP	D14	8K x 8 OTP PROM	
5962-90803	06M3X	CY7C263-45LMB	28 S LCC	L64	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90803	07MJX	CY7C264-35DMB	24.6 DIP	D12	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90803	07MKX	CY7C263-35KMB	24 CP	K73	8K x 8 OTP PROM	
5962-90803	07MLX	CY7C263-35DMB	24.3 DIP	D14	8K x 8 OTP PROM	
5962-90803	07M3X	CY7C263-35LMB	28 S LCC	L64	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90803	08MJX	CY7C264-25DMB	24.6 DIP	D12	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90803	08MKX	CY7C263-25KMB	24 CP	K73	8K x 8 OTP PROM	
5962-90803	08MLX	CY7C263-25DMB	24.3 DIP	D14	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90803	08M3X	CY7C263-25LMB	28 S LCC	L64	$8 \mathrm{~K} \times 8$ OTP PROM	
5962-90913	01MXX	CY7C287-65WMB	28.3 DIP	W22	$64 \mathrm{~K} \times 8$ Registered UV PROM	
5962-90913	01MYX	CY7C287-65QMB	32 R LCC	Q55	$64 \mathrm{~K} \times 8$ Registered UV PROM	
5962-90913	02MXX	CY7C287-55WMB	28.3 DIP	W22	$64 \mathrm{~K} \times 8$ Registered UV PROM	
5962-90913	02MYX	CY7C287-55QMB	32 R LCC	Q55	$64 \mathrm{~K} \times 8$ Registered UV PROM	
5962-91518	01MXX	CY10E474L-7DMB	24.4	D40	1 Kx 4 ECL SRAM	
5962-91518	01MYX	CY10E474L-7YMB	28 J LCC	Y64	$1 \mathrm{~K} \times 4 \mathrm{ECL}$ SRAM	
5962-91518	01MZX	CY10E474L-7KMB	24 CP	K63	1 Kx 4 ECL SRAM	
5962-91518	02MXX	CY10E474L-5DMB	24.4	D40	$1 \mathrm{~K} \times 4 \mathrm{ECL}$ SRAM	
5962-91518	02MYX	CY10E474L-5YMB	28 J LCC	Y64	1Kx4ECL SRAM	
5962-91518	02MZX	CY10E474L-5KMB	24 CP	K63	1Kx4ECL SRAM	
5962-91568	01MRX	PLDC18G8-20DMB	20.3 DIP	D6	20-Pin Generic PLD	
5962-91568	01MSX	PLDC18G8-20KMB	20 CP	K71	20-Pin Generic PLD	
5962-91568	01MXX	PLDC18G8-20LMB	20 S LCC	L61	20-Pin Generic PLD	
5962-91568	02MRX	PLDC18G8-15DMB	20.3 DIP	D6	20-Pin Generic PLD	
5962-91568	02MSX	PLDC18G8-15KMB	20 CP	K71	20-Pin Generic PLD	
5962-91568	02MXX	PLDC18G8-15LMB	20 S LCC	L61	20-Pin Generic PLD	
5962-91584	01MXX	CY7C332-25WMB	28.3 DIP	W22	Registered Combinatorial UV EPLD	
5962-91584	01MYX	CY7C332-25TMB	28 CP	T74	Registered Combinatorial UV EPLD	
5962-91584	01MZX	CY7C332-25HMB	28 S JCQ	H64	Registered Combinatorial UV EPLD	
5962-91584	01M3X	CY7C332-25QMB	28 S LCC	Q64	Registered Combinatorial UV EPLD	
5962-91584	02MXX	CY7C332-20WMB	28.3 DIP	W22	Registered Combinatorial UV EPLD	
5962-91584	02MYX	CY7C332-20TMB	28 CP	T74	Registered Combinatorial UV EPLD	
5962-91584	02MZX	CY7C332-20HMB	28 S JCQ	H64	Registered Combinatorial UV EPLD	
5962-91584	02M3X	CY7C332-20QMB	28 S LCC	Q64	Registered Combinatorial UV EPLD	
5962-91593	01MKX	CY7B164-15KMB	24 CP	K73	16K x 4 SRAM	
5962-91593	01MYX	CY7B164-15DMB	22.3 DIP	D10	16K x 4 SRAM	
5962-91593	01MZX	CY7B164-15LMB	22 R LCC	L52	16K x 4 SRAM	
5962-91593	02MKX	CY7B164-12KMB	24 CP	K73	16K x 4 SRAM	
5962-91593	02MYX	CY7B164-12DMB	22.3 DIP	D10	16K x 4 SRAM	
5962-91593	02MZX	CY7B164-12LMB	22 R LCC	L52	16K x 4 SRAM	
5962-91593	03MKX	CY7B164-10KMB	24 CP	K73	16K x 4 SRAM	
5962-91593	03MYX	CY7B164-10DMB	22.3 DIP	D10	16K x 4 SRAM	
5962-91593	03MZX	CY7B164-10LMB	22 R LCC	L52	16K x 4 SRAM	
5962-91593	04MKX	CY7B166-15KMB	24 CP	K73	16K x 4 SRAM w/OE	
5962-91593	04MYX	CY7B166-15DMB	24.3 DIP	D14	16K x 4 SRAM w/OE	
5962-91593	04MZX	CY7B166-15LMB	28 R LCC	L54	16K x 4 SRAM w/OE	
5962-91593	05MKX	CY7B166-12KMB	24 CP	K73	16K x 4 SRAM w/OE	
5962-91593	05MYX	CY7B166-12DMB	24.3 DIP	D14	16K x 4 SRAM w/OE	
5962-91593	05MZX	CY7B166-12LMB	28 R LCC	L54	16K x 4 SRAM w/OE	
5962-91593	06MKX	CY7B166-10KMB	24 CP	K73	16K x 4 SRAM w/OE	
5962-91593	06MYX	CY7B166-10DMB	24.3 DIP	D14	16K x 4 SRAM w/OE	
5962-91593	06MZX	CY7B166-10LMB	28 R LCC	L54	16K x 4 SRAM w/OE	
5962-91744	01MXX	CY7C277-50WMB	28.3 DIP	W22	32K x 8 Registered UV PROM	
5962-91744	01MYX	CY7C277-50QMB	32 R LCC	Q55	$32 \mathrm{~K} \times 8$ Registered UV PROM	
5962-91744	01MZX	CY7C277-50TMB	28 CP	T74	$32 \mathrm{~K} \times 8$ Registered UV PROM	
5962-91744	02MXX	CY7C277-40WM	28.3 DIP	W22	32Kx 8 Registercd UV PROM	
5962-91744	02MYX	CY7C277-40QMB	32 R LCC	Q55	$32 \mathrm{~K} \times 8$ Registered UV PROM	
5962-91744	02MZX	CY7C277-40TMB	28 CP	T74	$32 \mathrm{~K} \times 8$ Registered UV PROM	

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-91760	01M3X		PAL22V10C-15LMB	28 S LCC	L64	BiCMOS OTP PLD
5962-91760	02M3X	PAL22V10C-12LMB	28 S LCC	L64	BiCMOS OTP PLD	
5962-91760	03M3X	PAL22V10C-10LMB	28 S LCC	L64	BiCMOS OTP PLD	
5962-91760	04M3X	PAL22VP10C-15LMB	28 S LCC	L64	BiCMOS OTP PLD	
5962-91760	05M3X	PAL22VP10C-12LMB	28 S LCC	L64	BiCMOS OTP PLD	
5962-91760	06M3X	PAL22VP10C-10LMB	28 S LCC	L64	BiCMOS OTP PLD	
5962-92009	01MXC	VACO68A-GMB	145 PGA	G145	VME Address Controller	
5962-92009	01MYC	VACO68A-UMB	160 FP	U162	VME Address Controller	
5962-92010	01MXC	VICO68A-GMB	145 PGA	G145	VME Interface Controller	
5962-92010	01MYC	VICO68A-UMB	160 FP	U162	VME Interface Controller	
5962-92155	01MXX	CY7C277-50DMB	28.3 DIP	D22	$32 \mathrm{~K} \times 8$ Registered OTP PROM	
5962-92155	01MYX	CY7C277-50LMB	32 R LCC	L55	$32 \mathrm{~K} \times 8$ Registered OTP PROM	
5962-92155	01MZX	CY7C277-50KMB	28 CP	K74	$32 \mathrm{~K} \times 8$ Registered OTP PROM	
5962-92155	02MXX	CY7C277-40DMB	28.3 DIP	D22	32K x 8 Registered OTP PROM	
5962-92155	02MYX	CY7C277-40LMB	32 R LCC	L55	32K x 8 Registered OTP PROM	
5962-92155	02MZX	CY7C277-40KMB	28 CP	K74	$32 \mathrm{~K} \times 8$ Registered OTP PROM	
5962-92158	01MXX	CY7C343-40HMB	44 S JCQ	H67	64-Macrocell UV EPLD	
5962-92158	02MXX	CY7C343-30HMB	44 S JCQ	H67	64-Macrocell UV EPLD	
5962-92321	01MXX	CY7C439-65DMB	28.3 DIP	D22	2K x 9 BiFIFO	
5962-92321	01MYX	CY7C439-65KMB	28 CP	K74	2Kx9 BiFIFO	
5962-92321	01MZX	CY7C439-65LMB	32 R LCC	L55	2Kx9 BiFIFO	
5962-92321	02MXX	CY7C439-40DMB	28.3 DIP	D22	2 Kx 9 BiFIFO	
5962-92321	02MYX	CY7C439-40KMB	28 CP	K74	2 Kx 9 BiFIFO	
5962-92321	02MZX	CY7C439-40LMB	32 R LCC	L55	$2 \mathrm{~K} \times 9 \mathrm{BiFIFO}$	
5962-92321	03MXX	CY7C439-30DMB	28.3 DIP	D22	2K x 9 BiFIFO	
5962-92321	03MYX	CY7C439-30KMB	28 CP	K74	$2 \mathrm{~K} \times 9 \mathrm{BiFIFO}$	
5962-92321	03MZX	CY7C439-30LMB	32 R LCC	L55	2K x 9 BiFIFO	
5962-92338	01MRX	PAL16L8-10DMB	20.3 DIP	D6	20-Pin BiCMOS PLD	
5962-92338	01MSX	PAL16L8-10KMB	20 CP	K71	20-Pin BiCMOS PLD	
5962-92338	01MXX	PAL16L8-10LMB	20 S LCC	L61	20-Pin BiCMOS PLD	
5962-92338	02MRX	PAL16R8-10DMB	20.3 DIP	D6	20-Pin BiCMOS PLD	
5962-92338	02MSX	PAL16R8-10KMB	20 CP	K71	20-Pin BiCMOS PLD	
5962-92338	02MXX	PAL16R8-10LMB	20 S LCC	L61	20-Pin BiCMOS PLD	
5962-92338	03MRX	PAL16R6-10DMB	20.3 DIP	D6	20-Pin BiCMOS PLD	
5962-92338	03MSX	PAL16R6-10KMB	20 CP	K71	20-Pin BiCMOS PLD	
5962-92338	03MXX	PAL16R6-10LMB	20 S LCC	L61	20-Pin BiCMOS PLD	
5962-92338	04MRX	PAL16R4-10DMB	20.3 DIP	D6	20-Pin BiCMOS PLD	
5962-92338	04MSX	PAL16R4-10KMB	20 CP	K71	20-Pin BiCMOS PLD	
5962-92338	04MXX	PAL16R4-10LMB	20 S LCC	L61	20-Pin BiCMOS PLD	
5962-92338	05MRX	PAL16L8-7DMB	20.3 DIP	D6	20-Pin BiCMOS PLD	
5962-92338	05MSX	PAL16L8-7KMB	20 CP	K71	20-Pin BiCMOS PLD	
5962-92338	05MXX	PAL16L8-7LMB	20 S LCC	L61	20-Pin BiCMOS PLD	
5962-92338	06MRX	PAL16R8-7DMB	20.3 DIP	D6	20-Pin BiCMOS PLD	
5962-92338	06MSX	PAL16R8-7KMB	20 CP	K71	20-Pin BiCMOS PLD	
5962-92338	06MXX	PAL16R8-7LMB	20 S LCC	L61	20-Pin BiCMOS PLD	
5962-92338	07MRX	PAL16R6-7DMB	20.3 DIP	D6	20-Pin BiCMOS PLD	
5962-92338	07MSX	PAL16R6-7KMB	20 CP	K71	20-Pin BiCMOS PLD	
5962-92338	07MXX	PAL16R6-7LMB	20 S LCC	L61	20-Pin BiCMOS PLD	
5962-92338	08MRX	PAL16R4-7DMB	20.3 DIP	D6	20-Pin BiCMOS PLD	
5962-92338	08MSX	PAL16R4-7KMB	20 CP	K71	20-Pin BiCMOS PLD	
5962-92338	08MXX	PAL16R4-7LMB	20 S LCC	L61	20-Pin BiCMOS PLD	
5962-93122	01MXX	CY7C258-15WMB	28.3 DIP	W22	$2 \mathrm{~K} \times 8$ State Machine UV PROM	
5962-93122	01MYX	CY7C258-15HMB	28 S JLCC	H64	$2 \mathrm{~K} \times 8$ State Machine UV PROM	
5962-93122	01M3X	CY7C258-15QMB	28 S LCC	Q64	$2 \mathrm{~K} \times 8$ State Machine UV PROM	
5962-93122	02MXX	CY7C258-12WMB	28.3 DIP	W22	$2 \mathrm{~K} \times 8$ State Machine UV PROM	
5962-93122	02MYX	CY7C258-12HMB	28 S JLCC	H64	$2 \mathrm{~K} \times 8$ State Machine UV PROM	
5962-93122	02M3X	CY7C258-12QMB	28 S LCC	Q64	$2 \mathrm{~K} \times 8$ State Machine UV PROM	
5962-93122	03MUX	CY7C259-15QMB	44 S LCC	Q67	$2 \mathrm{~K} \times 8$ State Machine UV PROM	
5962-93122	03MZX	CY7C259-15HMB	44 S JLCC	H67	$2 \mathrm{~K} \times 8$ State Machine UV PROM	

Military Ordering Information

DESC SMD (Standardized Military Drawing) Approvals ${ }^{[1]}$ (continued)

SMD Number		Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	
		Description	Type			
5962-93122	04MUX		CY7C259-12QMB	44 S LCC	Q67	2K x 8 State Machine UV PROM
5962-93122	04MZX	CY7C259-12HMB	44 S JLCC	H67	$2 \mathrm{~K} \times 8$ State Machine UV PROM	
5962-93123	01MXX	CY7C258-15DMB	28.3 DIP	D22	2K x 8 State Machine PROM	
5962-93123	01MYX	CY7C258-15YMB	28 S JLCC	Y64	2K x 8 State Machine PROM	
5962-93123	01M3X	CY7C258-15LMB	28 S LCC	L64	2K x 8 State Machine PROM	
5962-93123	02MXX	CY7C258-12DMB	28.3 DIP	D22	2K x 8 State Machine PROM	
5962-93123	02MYX	CY7C258-12YMB	28 S JLCC	Y64	2K x 8 State Machine PROM	
5962-93123	02M3X	CY7C258-12LMB	28 S LCC	L64	2K x 8 State Machine PROM	
5962-93123	03MUX	CY7C259-15LMB	44 S LCC	L67	2K x 8 State Machine PROM	
5962-93123	03MZX	CY7C259-15YMB	44 S JLCC	Y67	$2 \mathrm{~K} \times 8$ State Machine PROM	
5962-93123	04MUX	CY7C259-12LMB	44 S LCC	L67	$2 \mathrm{~K} \times 8$ State Machine PROM	
5962-93123	04MZX	CY7C259-12YMB	44 S JLCC	Y67	2K x 8 State Machine PROM	
5962-93166	01MXX	CY7C271-55DMB	28.3 DIP	D22	32K x 8 OTP PROM	
5962-93166	01MYX	CY7C271-55KMB	28 CP	K74	$32 \mathrm{~K} \times 8$ OTP PROM	
5962-93166	01MZX	CY7C271-55LMB	32 R LCC	L55	32K x 8 OTP PROM	
5962-93166	02MXX	CY7C271-45DMB	28.3 DIP	D22	$32 \mathrm{~K} \times 8$ OTP PROM	
5962-93166	02MYX	CY7C271-45KMB	28 CP	K74	32K x 8 OTP PROM	
5962-93166	02MZX	CY7C271-45LMB	32 R LCC	L55	$32 \mathrm{~K} \times 8$ OTP PROM	
5962-93166	03MXX	CY7C271-35DMB	28.3 DIP	D22	$32 \mathrm{~K} \times 8$ OTP PROM	
5962-93166	03MYX	CY7C271-35KMB	28 CP	K74	32K x 8 OTP PROM	
5962-93166	03MZX	CY7C271-35LMB	32 R LCC	L55	32K x 8 OTP PROM	
5962-93166	04MUX	CY7C274-55DMB	28.6 DIP	D16	32K x 8 OTP PROM	
5962-93166	04MZX	CY7C274-55LMB	32 R LCC	L55	32K x 8 OTP PROM	
5962-93166	05MUX	CY7C274-45DMB	28.6 DIP	D16	32K x 8 OTP PROM	
5962-93166	05MZX	CY7C274-45LMB	32 R LCC	L55	$32 \mathrm{~K} \times 8$ OTP PROM	
5962-93166	06MUX	CY7C274-35DMB	28.6 DIP	D16	32K x 8 OTP PROM	
5962-93166	06MZX	CY7C274-35LMB	32 R LCC	L55	32 Kx 8 OTP PROM	

Notes:

1. Devices listed have been approved by DESC for the SMD indicated as of the date of publication. Contact your local Cypress representative, or the Cypress SMD Hotline at 408/943-2716, for the latest update.
2. Use the SMD part number as the ordering code.

3. Package:	24.3 DIP $=24-$ pin $0.300^{\prime \prime}$ DIP; 24.6 DIP $=24$-pin $0.600^{\prime \prime}$ DIP; $28 \mathrm{RLCC}=28$ terminal rectangular LCC , $\mathrm{S}=$ Square LCC, TLCC $=$ Thin LCC $24 \mathrm{CP}=24$-pin ceramic flatpack (Configuration 1); $\mathrm{FP}=$ brazed flatpack; PGA $=$ Pin Grid Array .

24.3 DIP $=24-\operatorname{pin} 0.300^{\prime \prime}$ DIP;
24.6 DIP $=24-$ pin $0.600^{\prime \prime}$ DIP;
$\mathrm{S}=$ Square LCC TLCC $=$ Thin LCC
$24 \mathrm{CP}=24$-pin ceramic flatpack (Configuration 1);
$\mathrm{PGA}=$ Pin Grid Array.

JAN M38510 Qualifications

JAN Number	Cypress ${ }^{[2]}$ Part Number	Package ${ }^{[3]}$		Product Description	Qualification Status
		Description	Type		
JM 38510/28901BVA	CY7C147-35DMB	18.3 DIP	D4	4K x 1 SRAM	Qualified
JM 38510/28901BYA	CY7C147-35KMB	18 CP	K70	4K x 1 SRAM	Qualified
JM 38510/28903BVA	CY2147-55DMB	18.3 DIP	D4	4K x 1 SRAM	Qualified
JM 38510/28903BYA	CY2147-55KMB	18 CP	K70	4K x 1 SRAM	Qualified
JM 38510/28902BVA	CY7C148-35DMB	18.3 DIP	D4	1K x 4 SRAM	Qualified
JM 38510/28902BYA	CY7C148-35KMB	18 CP	K70	1K x 4 SRAM	Qualified
JM 38510/28904BVA	CY2148-55DMB	18.3 DIP	D4	1Kx 4 SRAM	Qualified
JM 38510/28904BYA	CY2148-55KMB	18 CP	K70	1Kx 4 SRAM	Qualified
JM 38510/50701BLA	PALC22V10B-30WMB	24.3 DIP	W14	CMOS UV PLD	Qualified
JM 38510/50701BKA	PALC22V10B-30TMB	24 CP	T73	CMOS UV PLD	Qualified
JM 38510/50701B3A	PALC22V10B-30QMB	28 S LCC	Q64	CMOS UV PLD	Qualified
JM 38510/50702BLA	PALC22V10B-25WMB	24.3 DIP	W14	CMOS UV PLD	Qualified
JM 38510/50702BKA	PALC22V10B-25TMB	24 CP	T73	CMOS UV PLD	Qualified
JM 38510/50702B3A	PALC22V10B-25QMB	28 S LCC	Q64	CMOS UV PLD	Qualified
JM 38510/50703BLA	PALC22V10B-20WMB	24.3 DIP	W14	CMOS UV PLD	Qualified
JM 38510/50703BKA	PALC22V10B-20TMB	24 CP	T73	CMOS UV PLD	Qualified
JM 38510/50703B3A	PALC22V10B-20QMB	28 S LCC	Q64	CMOS UV PLD	Qualified
JM 38510/50704BLA	PALC22V10B-15WMB	24.3 DIP	W14	CMOS UV PLD	Qualified
JM 38510/50704BKA	PALC22V10B-15TMB	24 CP	T73	CMOS UV PLD	Qualified
JM 38510/50704B3A	PALC22V10B-15QMB	28 S LCC	Q64	CMOS UV PLD	Qualified
JM 38510/50801BLA	PALC22V10B-30DMB	24.3 DIP	D14	CMOS PLD	Qualified
JM 38510/50801BKA	PALC22V10B-30KMB	24 CP	K73	CMOS PLD	Qualified
JM 38510/50801B3A	PALC22V10B-30LMB	28 S LCC	L64	CMOS PLD	Qualified
JM 38510/50802BLA	PALC22V10B-25DMB	24.3 DIP	D14	CMOS PLD	Qualified
JM 38510/50802BKA	PALC22V10B-25KMB	24 CP	K73	CMOS PLD	Qualified
JM 38510/50802B3A	PALC22V10B-25LMB	28 S LCC	L64	CMOS PLD	Qualified
JM 38510/50803BLA	PALC $22 \mathrm{~V} 10 \mathrm{~B}-20 \mathrm{DMB}$	24.3 DIP	D14	CMOS PLD	Qualified
JM 38510/50803BKA	PALC22V10B-20KMB	24 CP	K73	CMOS PLD	Qualified
JM 38510/50803B3A	PALC22V10B-20LMB	28 S LCC	L64	CMOS PLD	Qualified
JM 38510/50804BLA	PALC22V10B-15DMB	24.3 DIP	D14	CMOS PLD	Qualified
JM 38510/50804BKA	PALC22V10B-15KMB	24 CP	K73	CMOS PLD	Qualified
JM 38510/50804B3A	PALC22V10B-15LMB	28 S LCC	L64	CMOS PLD	Qualified

SMD Ordering Information

Cypress Military Marking Information

Manufacturer's identification:
Cypress Logo, CYPRESS, CYP, and CY are trademarks of Cypress Semiconductor Corporation.
Manufacturer's designating symbol or CAGE CODE:
Designating symbol $=$ CETK or ETK
CAGE CODE/FSCM Number $=65786$

Country of origin:
USA $=$ United States of America
THA $=$ Thailand

SEMICONDUCTOR

Military Ordering Information

In general, the codes for all products (except modules) follow the format below.

PAL \& PLD		
PREFIX	DEVICE	SUFFIX
PALC	16R8	${ }_{-20 \mathrm{DMB}}$
PALC	22 V 10	-15 WMB
PLD C	$20 \mathrm{G10}$	- 20 WMB
CY	7 C 330	-50 DMB
CY	10E302	-4 DMB

FAMILY
PAL 20 VARIABLE PRODUCT TERMS
GENERIC PLD 24
PLD SYNCHRONOUS STATE MACHINE
10K ECL PLD

RAM, PROM, FIFO, μ P, ECL

PREFIX	DEVICE
CY	7 C 128 A
CY	7B185
CY	-7C245A
CY	7 C 404
CY	7 C 901
CY	10E422L
	$\begin{aligned} & \mathrm{B}=\mathrm{BiCMOS} \\ & \mathrm{C}=\mathrm{CMOS} \end{aligned}$

FAMILY
CMOS SRAM
BiCMOS SRAM
PROM
FIFO
$\mu \mathrm{P}$
10K ECL SRAM

PROCESSING
B = HI REL MIL STD 883D FOR MILITARY PRODUCT
= LEVEL 2 PROCESSING FOR COMMERCIAL PRODUCT

TEMPERATURE RANGE
$\mathrm{M}=\operatorname{MILITARY}\left(-55^{\circ} \mathrm{C}\right.$ TO $\left.+125^{\circ} \mathrm{C}\right)$

PACKAGE
D = CERDIP
$\mathrm{F}=\mathrm{FLATPAK}$
$\mathrm{G}=\mathrm{PIN}$ GRID ARRAY (PGA)
H = WINDOWED LEADED CHIP CARRIER
K = CERPAK (GLASS-SEALED FLAT PACKAGE)
L = LEADLESS CHIP CARRIER
Q = WINDOWED LEADLESS CHIP CARRIER
R = WINDOWED PGA
T = WINDOWED CERPAK
$\mathrm{U}=\mathrm{CERAMIC}$ QUAD FLATPACK
W = WINDOWED CERDIP
X = DICE (WAFFLE PACK)
$\mathrm{Y}=$ CERAMIC LEADED CHIP CARRIER

SPEED (ns or MHz)
L = LOW-POWER OPTION
$\mathrm{A}, \mathrm{B}, \mathrm{C}=$ REVISION LEVEL
e.g., CY7C128A-35DMB, PALC16R8-20DMB

Cypress FSCM \#65786

CYPRESS

The codes for module products follow the the format below.

PREFIX	DEVICE	SUFFIX
$\sqrt{\text { CYM }}$	$\sqrt{1420}$	$\sqrt{\text { HD }-25 ~ M B}$

OCESSING
B = MILITARY PROCESSING
= STANDARD
TEMPERATURE RANGE
$\mathrm{M}=-55^{\circ} \mathrm{C}$ TO $125^{\circ} \mathrm{C}$

SPEED
CONFIGURATION
$\mathrm{D}=\mathrm{DUAL}-\mathrm{IN}-\mathrm{LINE}$
$\mathrm{G}=$ PIN GRID ARRAY

TYPE
H = HERMETIC

Cypress FSCM \#65786

INFO 1
SRAMs 2
PROMs 3
PLDs

FIFOs 5
LOGIC 6
DATACOM 7
MODULES 8
ECL 9
BUS 10
MILITARY 11
TOOLS 12
QUALITY 13
PACKAGES 14

Design and Programming Tools
Page Number

Device Number

CY3120
CY3130
CY3200
CY3210
CY3220
CY3300

Description

Warp2 VHDL Compiler for PLDs . 12-1
Warp3 VHDL Development System for PLDs and FPGAs . 12-6
PLDS-MAX+PLUS Design System . 12-7
PLS-EDIF Bidirectional Netlist Interface . 12-12
MAX+PLUS II Design System . 12-19
QuickPro II .. 12-24

Warp2 VHDL Compiler for PLDs

Features

- VHDL (IEEE 1076) high-level language compiler
- VHDL facilitates device independent design
-VHDL designs are portable across multiple devices and/or CAD platforms
- VHDL facilitates the use of industry-standard simulation and synthesis tools for board and system-level design
- VHDL supports functions and libraries facilitating modular design activity
- Warp 2 provides synthesis for a powerful subset of IEEE standard VHDL including:
- enumerated types
- opeartor overloading
-for... generate statements
-integers
- State-of-the-art optimizations and reduction algorithms
- Optimization for flip-flop type (D type/T type)
- Automatic selection of optimal flip-flop type (D type/T type)
- Automatic pin assignment
- Automatic state assignment (grey code, one-hot, binary)
- Several design entry methods support multiple levels of abstraction:
-VHDL Behavioral (IF...THEN...ELSE; CASE...)
-State tables
-Boolean
-VHDL Standard (RTL)
- Designs can intermix multipleVHDL entry methods in a single design
- Supports all Cypress PLDs, PROMs, and FPGAs including MAX5000, the state machine PROMs (CY7C258/9), FLASH370, and pASIC380.
- Functional simulation provided with PLD ToolKit ${ }^{\text {© }}$:
-Graphical waveform simulator
-Entry and modification of on-screen waveforms
-Ability to probe internal nodes
-Displays inputs, outputs, and High Z signals in different colors
-Automatic clock and pulse creation
- Includes waveform to JEDEC test vector conversion utility
- Provides JEDEC to symbolic disassembly
- Hosted on IBM PC-AT
- DOS or Windows compatible on PCs
- OpenLook or Motif on Sun workstations

Functional Description

Warp $2^{\circledR 1}$ is a state-of-the-art VHDL compiler for designing with Cypress PLDs and PROMs. Warp2 utilizes a proper subset of IEEE 1076 VHDL as its Hardware Description Language (HDL) for design entry. VHDL provides a number of significant benefits for the design engineer. Warp 2 accepts VHDL input, synthesizes and optimizes the entered design, and outputs a JEDEC map or POF file for the desired device (see Figure 1). For simulation,

Warp2 provides the graphical waveform simulator from the PLD ToolKit.

VHDL Compiler

VHDL (VHSIC Hardware Description Language) is an open, powerful, non-proprietary language that is a standard forbehavioral design entry and simulation. It is already mandated for use by the Department of Defense and supported by every major vendor of CAE tools. VHDL allows designers to learn a single language that is useful for all facets of the design process.
VHDL offers designers the ability to describe designs at different levels of abstraction. At the highest level, designs can be entered as a description of their behavior. This behavioral description is not tied to any specific target device. As a result, simulation can be done very early in the design to verify correct functionality, which significantly speeds the design process.
Warp2's VHDL syntax also includes support for intermediate level entry modes such as state table and boolean entry. At the lowest level, designs can be described using gate-level RTL (Register Transfer Language). Warp2 gives the designer the flexibility to intermix all of these entry modes.
In addition, VHDL allows you to design hierarchically, building up entities in terms of other entities. This allows you to work either "top-down" (designing the highest levels of the system and its interfaces first, then progressing to greater and greater detail) or "bottom-up" (designing elementary building blocks of the system,

Figure 1. Warp2 Design Flow
then combining these to build larger and larger parts) with equal ease.
Because VHDL is an IEEE standard, multiple vendors offer tools for designentry, simulation at both high and low levels, and synthesis of designs to different silicon targets. The use of device independent behavioral design entry gives users the freedom to retarget designs to different devices. The wide availability of VHDL tools provides complete vendorindependence aswell. Designers canbegin their project using Warp2 for Cypress PLDs and convert to high-volume gate arrays using the same VHDL behavioral description with industry-standard synthesis tools.
While design portability and device independence are significant benefits, VHDL has other advantages. The VHDL language allows users to define their own functions. User-defined functions allow users to extend the capabilities of the language and build reusable libraries of tested routines. As a result the user can produce complex designs faster than with ordinary "flat" languages. VHDL also provides control over the timing of events or processes. VHDL hasconstructs that identify processes as either sequential, concurrent, or a combination of both. This is essential when describing the interaction of complex state machines.
Cypress chose to offer tools that use the VHDL language because of the language's universal acceptance, the ability to do both device andvendor independent design, simulation capabilities at both the chip and system level thatimprove design efficiency, the wide availability of industry-standard tools with VHDL support for both simulation and synthesis, and the inherent power of the language's syntax.
VHDL is a rich programming language. Its flexibility reflects the nature of modern digital systems and allows designers to create accurate models of digital designs. Because of its depth and completeness, it is easier to describe a complex hardware system accurately in VHDL than in any other hardware description language. In addition, models created in VHDL can readily be transported to other CAD systems. Warp2 supports a rich subset of VHDL including loops, for...generate statements, full hierarchical designs with packages, as well as synthesis for enumerated types and integers.

Designing with Warp2

Design Entry

Warp2 descriptions specify

1. The behavior or structure of a design, and
2. The mapping of signals in a design to the pins of a PLD

The part of a Warp 2 description that specifies the mapping of signals from the design to the pins of a PLD is called a binding architecture. It takes signal names from the design and matches them up with pin names from the PLD's entry in a library.

Thepart of a Warp 2 description that specifies the behavior orstructure of the design is called an entity/architecture pair. Entity/architecture pairs, as their name implies, can be divided into two parts: an entity declaration, which declares the design's interface signals (i.e., tells the world what external signals the design has, and what their directions and types are), and a design architecture, which describes the design's behavior or structure.
Some users prefer to put the binding architecture for a design in onefile, and the entity/architecture pair containing the design's behavioral or structural description in a different file. This allows you to isolate the device-dependent pin mapping in one file (the one containing the binding architecture), whileleaving the device-independent behavioral or structural description in another (the one containing the entity/architecture pair). Warp 2 makes it easy to do
this, offering separate analysis of files and easy reference to previously analyzed files by means of the USE clause.

Design Entity

If the entity/architecture pair is kept in a separate file, that file is usually referred to as the design entity file. The entity portion of a design entity file is a declaration of what a design presents to the outside world (the interface). For each external signal, the entity declaration specifies a signal name, a direction and a data type. In addition, the entity declaration specifies a name bywhich the entity can be referenced in a design architecture. In this section are code segments from four sample design entity files. The top portion of each example features the entity declaration.

Behavioral Description

The architecture portion of a design entity file specifies the function of the design. As shown in Figure 1, multiple design-entry methods are supported in Warp2. A behavioral description in VHDL often includes well known constructs such as If...Then...Else, and Case statements. Here is a code segment from a simple state machine design (soda vending machine) that usesbehavioral VHDL to implement the design:

```
ENTITY drink IS
    PORT (nickel, dime, quarter, clock:in bit;
        returnDime, returnNickel, giveDrink:outbit);
END drink;
```


ARCHITECTURE fsm OF drink IS

TYPE drinkState IS (zero,five,ten,fif-
teen, twenty, twentyfive, owedime);
SIGNAL drinkstatus:drinkState;
ATTRIBUTE FSM_synthesis OF drinkStatus:signal
is sequential;

BEGIN

PROCESS BEGIN

```
WAIT UNTIL clock = '1';
    giveDrink <= '0';
    returnDime <= '0';
    returnNickel <= '0';
    CASE drinkStatus IS
    WHEN zero =>
        IF (nickel = '1') THEN
        drinkStatus <= drinkStatus'SUCC(drink-
Status);
            -- goto Five
        ELSIF (dime = '1') THEN
        drinkStatus <= Ten;
        ELSIF (quarter = '1') THEN
        drinkStatus <= TwentyFive;
        ENDIF;
    WHEN Five =>
        IF (nickel = '1') THEN
            drinkStatus <= Ten;
            ELLSLF (dime = '1') THEN
                drinkStatus <= Fifteen;
            ELSIF (quarter = '1') THEN
```

```
        giveDrink <= '1';
        drinkStatus <= drinkStatus'PRED(drink-
Status);
            -- goto Zero
        ENDIF;
WHEN oweDime =>
    returnDime <= '1';
    drinkStatus <= zero;
when others =>
-- This ELSE makes sure that the state
-- machine resets itself if
-- it somehow gets into an undefined state.
    drinkStatus <= zero;
END CASE;
END PROCESS;
```

```
END FSM;
```

VHDL is a highly typed language. It comes with several predefined operators, such as + and $/=$ (add, not-equal-to). VHDL offers the capability of defining multiple meanings for operators (such as +), which results in simplification of the code written. For example, the following code segment shows that "count = count +1 " can be written such that count is a bit vector, and 1 is an integer.

```
ENTITY sequence IS
    port (clk: in bit;
        s : inout bit);
end sequence;
ARCHITECTURE fsm OF sequence IS
SIGNAL count: INTEGER RANGE O TO 7;
```

BEGIN

PROCESS BEGIN
WAIT UNTIL clk = '1';
CASE count IS
WHEN $0|1| 2 \mid 3$ | 1 $\mathrm{s}<=\mathbf{1}^{\prime}$; count $<=$ count +1 ;
WHEN 4 => $\mathrm{s}<=\quad \mathrm{O}^{\prime}$; count $<=$ count +1 ;
WHEN 5 => s <= '1'; count $<=0^{\prime \prime} 0$ ";
WHEN others => $\mathrm{s}<=\mathrm{O}^{\prime}$ '; count $<=0^{\prime \prime} 0^{\prime \prime}$;
END CASE;
END PROCESS;
END FSM;
In this example, the + operator is overloaded to accept both integer and bit arguments. Warp 2 supports overloading of operators.

Functions

A major advantage of VHDL is the ability toimplement functions. The support of functions allows designs to be reused by simply specifying a function and passing the appropriate parameters. Warp 2 features some built-in functions such as ttf(truth-table function). The ttf function is particularly useful for state machine or look-up table designs. The following code describes a seven-segment display decoder implemented with the ttf function:

```
ENTITY seg7 IS
    PORT (
        inputs: IN BIT_VECTOR (0 to 3)
        outputs: OUT BIT_VECTOR (0 to 6)
    );
END SEG7;
ARCHITECTURE mixed OF seg7 IS
CONSTANT truthTable:
    x01_table (0 to 11, 0 to 10) \(:=(\)
-- input \& output
-- ------------------------------1111
    "0000" \& "0111111",
    "0001" \& "0000110",
    "0010" \& "1011011",
    "0011" \& "1001111",
    "0100" \& "1100110",
    "0101" \& "1101101",
    "0110" \& "1111101",
    "0111" \& "0000111",
    "1000" \& "1111111",
    "1001" \& "1101111",
    "101x" \& "1111100", --creates E pattern
    "111x" \& "1111100"
    );
BEGIN
```

```
    outputs <= ttf(truthTable,inputs);
```

 outputs <= ttf(truthTable,inputs);
 END mixed;

```

\section*{Boolean Equations}

A third design-entry method available to Warp2 users is Boolean equations. Figure 2 displays a schematic of a simple one-bit half adder. The following code describes how this one-bit half adder can be implemented in Warp2 with Boolean equations:
--entity declaration
ENTITY half_adder IS
PORT (x, y : IN BIT;
END half_adder;
--architecture body
ARCHITECTURE behave OF half_adder IS BEGIN


Figure 2. One-Bit Half Adder
```

sum <= x XOR y;

```
carry <= X AND \(y\);

END behave;

\section*{Structural VHDL (RTL)}

While all of the design methodologies described thus far are highlevel entry methods, structural VHDL provides a method for designing at a very low level. In structural descriptions (also called RTL), the designer simply lists the components that make up the design and specifies how the components are wired together. Figure 3 displays the schematic of a simple 3-bit shift register and the following code shows how this design can be described in Warp2 using structural VHDL:
```

ENTITY shifter3 IS port (
clk : IN BIT;
x : IN BIT;
q0 : OUT BIT;
q1 : OUT BIT;
q2 : OUT BIT);
END shifter3;
ARCHITECTURE struct OF shifter3 IS
SIGNAL q0_temp, q1_temp, q2_temp : BIT;
BEGIN
d1 : DFF PORT MAP (x,clk,q0_temp);
d2 : DFF PORT MAP(q0_temp,\overline{clk,q1_temp);}
d3 : DFF PORT MAP(q1_temp,clk,q2_temp);
q0 <= q0_temp;
q1 <= q1_temp;
q2 <= q2 temp;
END struct;

```

All of the design-entry methods described can be mixed as desired. The ability to combine both high- and low-level entry methods in a single file is unique to VHDL. The flexibility and power of VHDL allows users of Warp 2 to describe designs using whatever method is appropriate for their particular design.

\section*{Binding Architecture}

The purpose of a binding architecture is to map external signals of a design to the pins of a physical device. The binding architecture can be in a separate file or appended to the end of the design file.
Here is a binding architecture file for the 3-bit shift register described in the last example:
```

USE work.rtlpkg.all;
USE work.shift3pkg.all;

```


Figure 3. Three-Bit Shift Register Circuit Design
```

ARCHITECTURE shift3 OF c22v10 IS
BEGIN
SH1:shifter3 PORT MAP(
clk => pin1,
x => pin2,
fbx(q0) => pin14,
fbx(q1) => pin15,
fbx(q2) => pin16);
END shift3;

```

As indicated in the architecture statement, this design targets the Cypress 22V10 for implementing the specified function. By simply changing the architecture statement and appropriately modifying the pin assignments, a binding architecture file targeting other Cy press PLDs can easily be generated.

\section*{Compilation}

Once a design entity and binding architecture have been completed, a design is compiled using Warp2. Although implementation is with a single command, compilation is actually a multistep process (as shown in Figure 1). The first step is synthesizing the input VHDL into a logical representation of the design. Warp2 synthesis is unique in that the input language (VHDL) supports a very high level of abstraction. Competing PLD compilers require very specific and device-dependent information in the design input file.
The secondstep ofcompilation is an iterative process of optimizing the design and fitting the logic into the targeted PLD. Logical optimization in Warp 2 is accomplished with the Espresso algorithms. The optimized design is fed to the Warp 2 fitter, which applies the design to the specified target PLD. The Warp2 fitter supports manual or automatic pin assignments as well as automatic selection of \(D\) or \(T\) flip-flops. After the optimization and fitting step is complete, Warp 2 automatically creates a JEDEC file for the specified PLD.

\section*{Simulation}

Warp2 is delivered with Cypress's PLD ToolKit. PLD ToolKit features a graphical waveform simulator that can be used to simulate designs generated in Warp2. The ToolKit simulator provides functional simulation and features interactive waveform editing and viewing. The simulator also provides the ability to probe internal nodes, automatically generate clocks and pulses, and to generate JEDEC test vectors from simulator waveforms.

\section*{Programming}

The result of Warp2 compilation is a JEDEC file that implements the input design in the targeted PLD. Using the JEDEC file, Cypress PLDs can be programmed on Cypress's QuickPro II programmer or on any qualified third-party programmer.

\section*{System Requirements}

\section*{For PCs}

IBM PC-AT or equivalent ( 386 or higher recommended)
PC-DOS version 3.3 or higher
2 Mbytes of RAM (4 Mbytes recommended)
EGA, VGA, or Hercules monochrome display
20-Mbyte hard disk drive
1.2-Mbyte \(51 / 4\)-inch or 1.44 -Mbyte floppy disk drive

Two or three-button mouse
Windows Version 3.1 or higher (optional)

For Sun Workstations
SPARC CPU
Sun OS 4.1.1 or later
16 Mbytes of RAM
1.44-Mbyte \(31 / 2\)-inch disk drive

\section*{Ordering Information}

CY3120 Warp 2 PLD Compiler includes:
51/4-inch, 1.2 -Mbyte floppy disks
\(31 / 2\)-inch, 1.4 -Mbyte floppy disks
Warp 2 User's Guide
Warp2 Workbook
Warp2 Reference Manual
Registration Card

Document \#: 38-00218-A

Warp 2 and PLD ToolKit are trademarks of Cypress Semiconductor Corporation.
PC-AT is a trademark of IBM Corporation.

\section*{SEMICONDUCTOR}

\section*{Features}
- Sophisticated PLD/FPGA design and verification system based on VHDL
- Warp3 is based on ViewLogic's Powerview \({ }^{\text {m }}\) environment
- Advanced graphical user interface for Windows and Sun Workstations
—Schematic capture (ViewDraw \({ }^{\text {m }}\) )
- Interactive timing simulator (ViewSim \({ }^{\text {TM }}\) )
-Waveform stimulus and viewing (ViewTrace \({ }^{\mathrm{TM}}\) )
- Textual design entry using VHDL
- Graphical VHDL debugger
- Mixed-mode design entry support
- EDIF input/output capability
- VHDL to schematic option (ViewGen \({ }^{\text {m" }}\) )
- The core of Warp 3 is an IEEE 1076 standard VHDL compiler
- VHDL is an open, powerful design language
-VHDL (IEEE standard 1076) facilitates design portability across devices and/or CAD platforms
- VHDL facilitates the use of industry-standard simulation and synthesis tools for board and system-level design
- VHDL facilitates hierarchical design with support for functions and libraries

\section*{Warp3 VHDL Development System for PLDs and FPGAs}
- For synthesis Warp3 supports a rich subset of VHDL for synthesis including
—Enumerated types
- Integers
-For . . . generate loops
-Operator overloading
- State-of-the-art optimization and reduction algorithms
-Optimization for flip-flop type (D type/ T type)
- Automatic pin assignment
-Automatic state assignment (Gray code, binary, one-hot)
- Completely automatic place and route
- Includes timing back annotation into ViewSim
- Support for ALL Cypress PLDs/FPGAs and PROMs, including:
- Industry-standard 20- and 24-pin devices like the 22V10
- Cypress 7C33X family of 28-pin PLDs
-CY7C258/9 State Machine PROMs
— MAX5000
- FLASH37X
-pASIC38X
- Sun and PC platforms

Warp3 Design Flow


\footnotetext{
Document \#: 38-00242-A
Warp 2 and PLD ToolKit are trademarks of Cypress Semiconductor Corporation.
PC-AT is a trademark of International Business Machines Corporation.
PowerView, ViewDraw, ViewSim, ViewTrace and ViewGen are trademarks of ViewLogic.
}

CY3200

\section*{Features}
- Unified development system for Multiple Array MatriX (MAX®) EPLDs
- Hierarchical design entry methods for both graphical and textual designs
-Multiple-level schematics and hardware language descriptions
- Library of 7400 Series TTL and bus macrofunctions optimized for MAX architecture
- Advanced Hardware Description Language (AHDL) supporting state machines, Boolean equations, truth tables, arithmetic, and relational operations
-Delay prediction for graphic and text designs
- Logic synthesis and minimization for quick and efficient processing
- Compiler that compiles a \(\mathbf{1 0 0 \%}\) utilized CY7C342 in only 10 minutes
- Automatic error location for AHDL text files and schematics
- Interactive Simulator with probe assignments for internal nodes
- Runs on IBM PC/AT \({ }^{\circledR}\), PS/2 \({ }^{\circledR}\) or compatible machines
- Waveform Editor for entering and editing waveforms and viewing simulation results

\section*{Description}

The PLDS-MAX+PLUS (Programmable Logic Development System) is a unified CAE system for designing logic with Cypress's CY7C340 family of EPLDs (Figure 1). PLDS-MAX+PLUS includes design entry, design processing, timing simulation, and device programming support. PLDS-MAX+PLUS runs on IBM PS/2, PC-AT, or compatible machines, and provides tools to quickly and efficiently create and verify complex logic designs.
The MAX+PLUS software compiles designs for MAX EPLDs in minutes. Designs may be entered with a variety of design entry mechanisms. MAX+PLUS supports hierarchical entry of both Graphic Design Files (GDFs) with the MAX+PLUS Graphic Editor, and Text Design Files (TDFs) with the Advanced Hardware Description Language (AHDL). The Graphic Editor offers advanced features such as multiple hierarchy
levels, symbol editing, and a library of 7400 series devices as well as basic SSI gates. AHDL designs may be mixed into any level of the hierarchy or used on a standalone basis. AHDL is tailored especially for EPLD designs and includes support for complex Boolean and arithmetic functions, relational comparisons, multiple hierarchy levels, state machines with automatic state variable assignment, truth tables, and function calls.

In addition to multiple design entry mechanisms, MAX+PLUS includes a sophisticated compiler that uses advanced logic synthesis and minimization techniques in conjunction with heuristic fitting rules to efficiently place designs within MAX EPLDs. A programming file created by the compiler is then used by MAX+PLUS to program MAX devices with the QP2MAX programming hardware.

Simulations maybe performed with a powerful, event-driven timing simulator. The MAX+PLUS Simulator interactively displays timing results in the MAX+PLUS Waveform Editor. Hardcopy table and waveform output is also available. With the Waveform Editor, input vector waveformsmaybeentered, modified, grouped,


MAX and MAX+PLUS are registered trademarks of Altera Corporation.
IBM PC/AT and PS/2 are registered trademarks of International Business Machines Corporation.
QP2-MAX and QuickPro II are trademarks of Cypress Semiconductor Corporation.


Figure 1. MAX+PLUS Block Diagram
and ungrouped. In addition, the Waveform Editor compares simulation runs and highlights the differences.
The integratedstructure of MAX+PLUSprovidesfeaturessuch as automatic error location and delay prediction. If a design contains an error in either a schematic or a text file, MAX+PLUS flags the error and takes the user to the actual location of the error in the original schematic or text file. In addition, propagation delays of critical paths may be determined in both the Graphic and Text Editors with the delay predictor. After the source and destination nodes are tagged, the shortest and longest timing delays are calculated.
MAX+PLUS provides a seamless design framework using a consistent graphicaluser interface throughout. Thisframeworksimplifies all stages of the design cycle: design entry, processing, verification, and programming. In addition, MAX+PLUS offers online help to aid the user.

\section*{Design Entry}

MAX+PLUS offers both graphic and text design entry methods. GDFs are enteredwith the MAX + PLUS GraphicEditor;Boolean equations, state machines, and truth tables may be entered with the MAX+PLUS Test Editor using AHDL. The ability to freely mix graphics and text files at all levels of the design hierarchy and to use either a top-down or bottom-up design method makes design entry simple and versatile.

\section*{Graphic Editor}

The GraphicEditor provides a mouse-driven, multi-windowedenvironment in which commands are entered with pop-up menus or simple keystrokes. The Hierarchy Display window, shown at the top, lists all schematics used in a design. The designer navigates the hierarchy by placing the cursor on the name of the design to be edited and clicking the left mouse button. The Total View window (next to the Hierarchy window) shows the entire design. By clicking on an area in this window, the user is moved to that area of the schematic. The Error Report window lists all warnings and errors inthe compiled design; selecting an error with the cursor highlights the problem node and symbol. A design is edited in the main area, which may be enlarged by closing the auxiliary windows.
When entering a design, the user may choose from a library of over 2007400 series and special-purpose macrofunctions that are all optimized for MAX architecture. In addition, the designer my create custom functions that can be used in any MAX+PLUS design.
To take advantage of the hierarchy features, the user first saves the entered design so the Graphic Editor can automatically create a symbol representing the design. This symbol may be used in a high-er-level schematic or in another design. It may also be modified with the Symbol Editor.
Tag-and-drag editing is used to move individual symbols or entire areas. Lines stay connected with orthogonal rubberbanding. A design maybe printed on an Epson FX-compatible printer, or plotted on an HP- or Houston Instruments-compatible plotter.

\section*{Symbol Editor}

The MAX+PLUS Symbol Editor enables the designer to create or modify a custom symbol representing a GDF or TDF. It is also possible to modify input and output pin placement of an automatically generated symbol.
The created symbol represents a lower-level design, described by a GDF or TDF. The lower-level design represented by the symbol may be displayed with a single command that invokes either the

Graphic Editor for schematics or the Text Editor for AHDL designs.

\section*{AHDL}

The Advanced Hardware Description Language (AHDL) is a high-level, modular language used to create logic designs for MAX EPLDs. It is completely integrated into MAX+PLUS, so AHDL files may be created, edited, compiled, simulated, and programmed from within MAX+PLUS.
AHDL provides support for state machine, truth tables, and Boolean equations, as well as srithmetic and relational operations. AHDL is hierarchical, which allows frequently used functions such as TTL and bus macrofunctions to be incorporated in a design. AHDL supports complex arithmetic and relational opeartions, such as addition, subtraction, equality, and magnitude comparisons, with the logic functions automatically generated. Standard Boolean functions, including AND, OR, NAND, NOR, XOR, and SNOR are also included. Groups are fully supported so operations may be performed on groups as well as on single variables. AHDL also allows the designer to specify the location of nodes within MAX EPLD. Together, these features enable complex designs to be implemented in a concise, high-level description.

\section*{Text Editor}

The MAX+PLUS Text Editor enables the user to view and edit text files within the MAX+PLUS environment. Any ASCII text file, including Vector Files, Table Files, Report Files, and AHDL Text Design Files (TDFs) may be viewed andedited wihtout having to exit to DOS.
The Text Editor parallels the Graphic Editor's menu structure. It has a Hierarchy Display and a Total View window for moving through the hierarchy levels and around the design. It includes automatic error location and hierarchy traversal. If an error is found in a TDF during compilation, the Text Editor is automatically invoked and the line of AHDL code where the error occurred is highlighted. In addition, a design may use both text and graphicfiles. As the designer t4raverses the hierarchy, the Text Editor is invoked for text files, and the Graphic Editor is invoked for schematics.

\section*{Symbol Libraries}

The library provided with MAX+PLUS contains the most commonly used 7400 series devices such as counters, decoders, encoders, shift registers, flip-flops, latches, and multipliers, as well as special bus macrofunctions, all of which increase design productivity. Because of the flexible architecture of MAXEPLDs (that includes asynchronous preset and clear), true TTL device emulation is achieved. Cypress also provides special-purpose bus macrofunctions for designs that use buses. All macrofunctions have been optimized to maximize speed and utilization. Refer to the MAX +PLUS TTL MacroFunctions manual for more information on TTL macrofunctions.

\section*{Design Processing}

TheMAX+PLUSCompiler processes MAX designs. The Compiler offers options that speed the processing and analysis of a design. The user can set the degree of detail of the Report File and the maximum number of errors generated. In addition, the user may select whether or not to extract a netlist file for simulation.
The Compiler compiles a design in increments. If a design has been previously processed, only the portion of the design that has been changed is re-extracted, which decreases the compilation time. This "Make" facility is an automatic feature of the Compile command.

The first module of the Compiler, the Compiler Netlist Extractor, extracts the netlist that is used to define the design from each file. At this time, design rules are checked for any errors. If errors are found, the Graphic Editor is invoked when the error appears in a GDF, and the Text Editor is invoked when the error appears in a TDF. The Error Report window in both editors highlights the location of the error. A successfully extracted design is built into a database to be used by the Logic Synthesizer.
The Logic Synthesizer module translates and optimizes the userdefined logic for the MAX architecture. Any unused logic within the design is automatically removed. The Logic Synthesizer uses expert system synthesis rules to factor and map logic within the multilevel MAX architecture. It then chooses the approach that ensures the most efficient use of silicon resources.
The next module, the Fitter, uses heuristic rules to optimally place the synthesized design into the chosen MAX EPLD. For MAX devices that have a Programmable Interconnect Array (PIA), the Fitter also routes the signals across this interconnect structure, so the designer doesn'thave to worry about placement and routing issues. A Report File (.RPT) is issued by the Fitter, which shows design implementation as well as any unused resources in the EPLD. The designer can then determine how much additional logic may be placed in the EPLD.
A Simulator Netlist File (.SNF) may be extracted from the compiled design by the Simulator Netlist Extractor if simulation is desired. Finally, the Assembler creates a Programmer Object File (.POF) from the compiled design. This file is used with the QP2-MAX programming hardware to program the desired part.

\section*{Delay Prediction and Probes}

MAX+PLUS includes powerful analysis tools to verify and analyze the completed design. Delay analysis with the delay predictor may be performed interactively in the Graphic Editor, or in the Simulator. The Simulator is interactive and event-driven, yielding true timing and functional charactersitics of the compiled design.
The delay predictor provides instant feedback about the timing of the processed design. After selecting the start point and end point of a path, the designer may determine the shortest and longest propagation delays of speed-critical paths.
Also, a designer may use probes to mark internal nodes in a design. The designer may enter a probe by placing the cursor on any node in a graphic design, selecting the SPE (Symbol:Probe:Enter) command, and then entering a unique name to define the probe. This name may then be used in the Graphic Editor, Simulator, and Waveform Editor to reference that node, so that lengthy hierarchical path names are avoided.

\section*{Simulator}

Input stimuli can be defined with a straightforward vector input language, or waveforms can be directly drawn using the Waveform Editor. Outputs may also be viewed in the Waveform Editor, or hardcopy table and waveform files may be printed.
The Simulator used the Simulator Netlist File (SNF) extracted from the compiled design to perform timing simulation with \(1 / 10\)-nanosecond resolution. A Command File may be used for batch operation, or commands may be entered interactively. Simulator commands allow the user to halt the simulation dependent on user-defined conditions, to force and group nodes, and perform AC detection.
If flip-flop set-up or hold times have been violated, the Simulator warns the user. In addition, the minimum pulse width and period of oscillation may be defined. If a pulse is shorter than the mini-
mum pulse width specified, or if a node oscillates for longer than the specified time, the Simulator issues a warning.

\section*{Waveform Editor}

The MAX+PLUS Waveform Editor provides a mouse-driven environment in which timing waveforms may be viewed and edited. It functions as a logic analyzer, enabling the user to observe simulation results. Simulated waveforms may be viewed and manipulated at multiple zoom levels. Nodes may be added, deleted, and combined into buses, which may contain up to 32 signals represented in binary, octal, decimal, or hexadecimal format. Logical opeartors may also be performed on pairs of waveforms, so that waveforms may be inverted, ORed, ANDed, or XORed together.
The Waveform Editor includes sophisticated editing features to define and modify input vectors. Input waveforms are created with the mouse and familiar text editing commands. Waveforms may be copied, patterns may be repeated, and blocks may be moved and copied. For example, all or part of a waveform may be contracted to simulate the increase in clock frequency.
The Waveform Editor also compares and highlights the difference between two different simulations. A user may simulate a design, observe and edit the results, and then resimulate the design, and the Waveform Editor will show the results superimposed upon each other to highlight the differences.

\section*{MAX+PLUS Timing Analyzer (MTA)}

The MAX+PLUS Timing Analyzer (MTA) provides user-configurable reports that assist the designer in analyzing critical delay paths, set-up and hold timing, and overall system performance of any MAX EPLD design. Critical paths identified by these reports may be desplayed and highlighted.
Timing delays between multiple source and destination nodes may be calculated, thus creating a connection matrix giving the shortest and longest delay paths between all source and destination nodes specified. Or, the designer may specify that the detailed paths and delays between specific sources and destinations be shown.
The set-up/hold option provides set-up and hold requirements at the device pins for all pins that feed the D, CLK, or ENABLE inputs of flip-flops and latches. Critical source nodes may be specified individually, or set-up and hold at all pins may be calculated. This information is then displayed in a table, one set of set-up and hold times per flip-flop/latch.
The MTA also allows the user to print a complete list of all accessible nodes in a design; i.e., all nodes that may be displayed during simulation or delay prediction.
All MTA options may be listed in an MTA command file. With this file, the user may specify all information needed to configure the output.

\section*{SNF2GDF Converter}

SNF2GDF converts the SNF into logic schematics represented with basic gates and flip-flop elements. It uses the SNF's delay and connection information and creates a series of schematics fully annotated with propagation delay and set-up and hold information at each logic gate. Certain speed paths of a design may be specified for conversion, so the user may graphically analyze only the paths considered critical.
If State Machine or Boolean Equation design entry is used, SNF2GDF shows how the high-level description has been synthesized and placed into the MAX architecture.

\section*{Device Programming}

PLDS-MAX contains the basic hardware and software for programming the MAX EPLD family. Adapters are included for programming the CY7C344 (DIP and PLCC) and CY7C342 (PLCC) devices. Additional adapters supporting other MAX devices may be purchased separately. MAX+PLUS programming software drives the QP2-MAX programming hardware. The designer can use MAX+PLUS to program and verify MAXEPLDs. If the security bit of the device is not set to ON , the designer may also read the contents of a MAX device and use this information to program additional devices.

\section*{System Requirements}

Minimum System Configuration
IBM PS/ 2 model 50 or higher, PC/AT or compatible computer.

PC-DOS version 3.1 or higher.
640 kbytes RAM.
EGA, VGA or Hercules monochrome display.
20-MB hard disk drive.
1.2-MB \(51 / 4^{\prime \prime}\) or \(1.44-\mathrm{MB} 312^{\prime \prime}\) floppy disk drive.

2-button serial port mouse.

Document \#: 38-00132-A

\section*{Recommended System Configuration}

IBM PS/2 model 70 or higher, or Compaq \(38620-\mathrm{MHz}\) computer.

PC-DOS version 3.3.
640 kbytes of RAM plus 1 MB of expanded memory with LIM 3.2-compatible EMS driver.

VGA graphics display.
20-MB hard disk drive.
1.2-MB \(5^{1 / 4^{\prime \prime}}\) or \(1.44-\mathrm{MB} 31 / 2^{\prime \prime}\) floppy disk drive.

3-button serial port mouse.
Ordering Information
CY3200 PLDS-MAX + PLUS System including:
CY3201 MAX+PLUS software, manuals and key.

CY3202 QP2-MAX PLD programmer with CY3342 \& CY3344 adapters.

\section*{Device Adapters}

CY3342 Adapter for CY7C342 in PLCC packages.
CY3344 Adapter for CY7C344 in DIP and PLCC packages.

CY3342R Adapter for CY7C342 in PGA packages.
CY33435 Adapter for CY7C343 in DIP and PLCC packages.

CY3340 Adapter for CY7C341 in PLCC packages.
CY3340R Adapter for CY7C341 in PGA packages.
CY3342F Adapter for CY7C342 in flatpack (TMB) packages.

\section*{Features}
- Bidirectional netlist interface between MAX+PLUS \({ }^{\circledR}\) and other major CAE software packages
- Supports the industry-standard Electronic Design Interchange Format (EDIF) version 200.
- MAX EPLD designs entered on workstation CAE tools can be downloaded to MAX+PLUS for compilation; compile designs can then be returned to the workstation for device- or system-level simulation.
- EDIF netlist reader imports EDIF netlists into MAX+PLUS. Library Mapping Files (LMFs) convert CAE library functions to MAX+PLUS library functions.
- LMFs allow conversion of common Dazix, Mentor Graphics, Valid Logic, and Viewlogic functions to MAX+PLUS functions.
- EDIF netlist writer produces post-synthesis logic and delay information used during device- or board-level simulation with popular CAE tools.
- Runs on IBM PS/2® \({ }^{\circledR}\), PC-AT \({ }^{\circledR}\), or compatible machines.

\section*{Description}

The PLS-EDIF tool kit is a bidirectional EDIF netlist interface between worksta-tion-basedCAE software packages and the PLDS-MAX+PLUS Design System (Figure 1).
PLS-EDIF allows the designer toenter and verify logic designs for MAX EPLDs using third-party CAE tools. The EDIF 200 netlist exchange format is the two-way bridge between MAX+PLUS and third-party schematic capture and simulation tools. PLS-EDIF runs on an IBM PS/2, PC-AT, or compatible machines.
Any CAE software package that produces EDIF 200 netlists can interface to MAX+PLUS with PLS-EDIF. EDIF netlists are imported into MAX+PLUS using the EDIF Design File-to-Compiler Netlist File (EDF2CNF) Converter.LibraryMapping Files (LMFs) are used with EDF2CNF to map third-partyCAElibrary functions to the MAX+PLUSlibrary functions. LMFs are provided for Dazix, Mentor Graphics, Valid Logic, and Viewlogic software, but designers may create LMFs to map any CAE software library.
After a design is imported into MAX+PLUS, it is compiled with the sophisticated MAX+PLUS Compiler, which
uses advanced logic synthesis and minimization techniques together with heuristic fitting rules to optimize the design for MAX EPLD architecture. A Programmer Object File created by the MAX+PLUS Compiler is then used together with standard Cypress or third-party programming hardware to program MAX devices.
EDIF netlists can be exported from MAX+PLUS using the Simulator Netlist File-to-EDIF Design File (SNF2EDF) Converter. This converter generates an EDIF output file from a compiled MAX+PLUS design. The EDIF file contains the post-synthesis information used by CAE simulators to perform device- or board-level simulation.

PLS-EDIF provides an open environment that allows popular CAE tools to be used to create and simulate MAX EPLD designs. The designer may use a preferred workstation schematic capture package to enter logic designs, and then quickly convert and compile them with EDF2CNF and MAX+PLUS. Likewise, designs compiled in MAX+PLUS and converted with SNF2EDF may be transferred to a workstation forsimulation. The PLS-EDIF netlist reader and writer together allow MAX EPLD designs to be entered and simulated on any workstation platform.


MAX+PLUS is a registered trademark of Altera Corporation.
IBM PS/2 and PC-AT are registered trademarks of International Business Machines Corporation.

\section*{EDF2CNF Converter}

The EDF2CNF Converter generates one or more MAX+PLUS Compiler Netlist Files (CNFs) from an EDIF file. For each CNF, a Hierarchy Interconnect File (HIF) and a Graphic Design File (GDF) are also generated (see Figure 2). The CNF contains the connectivity data for a design file, while the HIF defines the hierarchical connections between design files. The GDF is a symbol that represents the actual design data in the CNF. This symbol may be entered in the MAX+PLUS Graphic Editor and integrated into a logic schematic.

EDF2CNF can convert any EDIF 200 netlist with the following parameters:

EDIF level 0
keyword level 0
view type NETLIST
cell type GENERIC
Library Mapping Files (LMFs) are used with EDF2CNF to convert workstation CAE functions into equivalent MAX+PLUS functions. This direct substitution is beneficial because MAX+PLUS functions are optimized for both logic utilization and performance in MAX EPLD designs.


Figure 2. EDF2CNF Block Diagram

\section*{Workstation Information}

EDF2CNF has been specifically tested for use with the Dazix, Mentor Graphics, Valid Logic, and ViewLogic CAE software packages. In addition, LMFs for these products are provided with the PLS-EDIF tool kit.

\section*{Dazix}

To design logic and create an EDIF file with Dazix software, the following applications are required:

ACE (Dazix graphics editor)
DANCE and DRINK (Dazix compiler)
ENW verison 1.0 (Dazix EDIF netlist writer)
Table 1 lists the Dazix basic functions that are mapped to MAX+PLUS functions.

Table 1. Dazix Library Mapping File
\begin{tabular}{|l|ll|}
\hline Dazix Function & \multicolumn{2}{|c|}{ MAX+PLUS Function } \\
\hline R\#AND & AND\# & \((\#=2,3,4,5,6,7,8,9)\) \\
\hline R\#ANDD & BNOR\# & \((\#=2,3,4,5,6,7,8,9)\) \\
\hline R\#NAND & NAND\# & \((\#=2,3,4,6,7,8,9,13)\) \\
\hline R\#NANDD & BOR\# & \((\#=2,3,4,5,7,8,9,13)\) \\
\hline R\#NOR & NOR\# & \((\#=2,3,4,5)\) \\
\hline R\#NORD & BAND\# & \((\#=2,3)\) \\
\hline R\#OR & OR\# & \((\#=2,3,4,5)\) \\
\hline R\#ORD & BNAND\# & \((\#=2,3,4,5)\) \\
\hline R1BUF & MCELL & \\
\hline R1INV & NOT & \\
\hline R1INVD & EXP & \\
\hline R1OCBUF & SCLK & \\
\hline R1OTBUF & TRIBUF & \\
\hline R1TINV & TRINOT & \\
\hline R2XNOR & XNOR & \\
\hline R2XOR & XOR & \\
\hline R3UAOI & 1A2NOR2 \\
\hline R4AOI & 2A2NOR2 \\
\hline R4OAI & 2OR2NA2 \\
\hline R8AOI & 4A2NOR4 \\
\hline R13TNAND & TNAND13 \\
\hline R13TNANDD & TBOR13 \\
\hline RDFLOP & DFF2 \\
\hline RDLATCH & RDLATCH \\
\hline RJKFLOP & JKFF2 & \\
\hline & & \\
\hline
\end{tabular}

\section*{Mentor Graphics}

To design logic and create an EDIF file using Mentor Graphics software, the following applications are required:

NETED (Mentor Graphics graphics editor)
EXPAND (Mentor Graphics compiler)
EDIFNET version 7.0 (Mentor Graphics EDIF netlist writer)
Table 2 lists the Mentor Graphics basic functions that are mapped to MAX+PLUS functions.

Table 2. Mentor Graphics Libary Mapping File
\begin{tabular}{|l|ll|}
\hline \begin{tabular}{c} 
Mentor Graphics \\
Function
\end{tabular} & \multicolumn{2}{|c|}{ MAX+PLUS Function } \\
\hline AND\# & AND\# \(\quad(\#=2,3,4,5,6)\) \\
\hline BUF & SCLK & \\
\hline DELAY & MCELL \\
\hline DFF & DFF2 \\
\hline INV & NOT \\
\hline JKFF & JKFF2 \\
\hline LATCH & MLATCH & \\
\hline NAND\# & NAND\# & \((\#=2,3,4,5,6,9)\) \\
\hline NOR\# & NOR\# & \((\#=2,3,4,6,8,16)\) \\
\hline OR\# & OR2\# & \((\#=2,3,4,6,8)\) \\
\hline XNOR2 & XNOR & \\
\hline XOR2 & XOR & \\
\hline
\end{tabular}

\section*{Valid Logic}

To design logic and create an EDIF file using Valid Logic software, the following applications are required:

ValidGED (Valid Logic graphics editor)
ValidCompiler
GEDIFNET (Valid Logic EDIF netlist writer)
Table 3 lists the Valid Logic basic functions that are mapped to MAX+PLUS functions.

Table 3. Valid Logic Libary Mapping File
\begin{tabular}{|l|l|}
\hline Valid Logic Function & MAX+PLUS Function \\
\hline INV & EXP \\
\hline LS00 & NAND2 \\
\hline LS02 & NOR2 \\
\hline LS04 & NOT \\
\hline LS08 & AND2 \\
\hline LS10 & NAND3 \\
\hline LS11 & AND3 \\
\hline LS20 & NAND4 \\
\hline LS21 & AND4 \\
\hline LS27 & NOR3 \\
\hline LS28 & NOR2 \\
\hline LS30 & NAND8 \\
\hline LS32 & OR2 \\
\hline LS37 & NAND2 \\
\hline LS40 & NAND4 \\
\hline LS74 & DFF2 \\
\hline LS86 & XOR \\
\hline LS126 & TRI \\
\hline LS280 & DFF2 \\
\hline LS386 & XOR \\
\hline & \\
\hline
\end{tabular}

\section*{ViewLogic}

To design logic and create an EDIF file using ViewLogic software, the following applications are required:

Workview (ViewLogic graphics editor)
EDIFNET2 version 3.02 (Viewlogic EDIF netlist writer)
Table 4 lists the ViewLogic basic functions that are mapped to MAX+PLUS functions.

Table 4. ViewLogic Libary Mapping File
\begin{tabular}{|l|ll|}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c} 
ViewLogic \\
Function
\end{tabular}} & \multicolumn{2}{|c|}{ MAX+PLUS Function } \\
\hline AND\# & AND\# & \((\#=2,3,4,8)\) \\
\hline ANDNOR22 & 2A2NOR2 \\
\hline BUF & SOFT \\
\hline DAND\# & DAND\# & \((\#=2,3,4,8)\) \\
\hline DELAY & MCELL & \\
\hline DOR\# & DOR\# & \((\#=2,3,4,8)\) \\
\hline DXOR\# & DXOR\# & \((\#=2,3,4,8)\) \\
\hline JKFFRE & JKFFRE & \\
\hline MUX41 & MUX41 & \\
\hline NAND\# & NAND\# & \((\#=2,3,4,8)\) \\
\hline NOR\# & NOR\# & \((\#=2,3,4,8)\) \\
\hline NOT & NOT & \\
\hline OR\# & OR\# & \((\#=2,3,4,8)\) \\
\hline TRIAND\# & TAND\# & \((\#=2,3,4,8)\) \\
\hline TRIBUF & TRIBUF & \\
\hline TRINAND\# & TNAND\# & \((\#=2,3,4,8)\) \\
\hline TRINOR\# & TNOR\# & \((\#=2,3,4,8)\) \\
\hline TRINOT & TRINOT & \\
\hline TRIOR\# & TOR\# & \((\#=2,3,4,8)\) \\
\hline UBDEC38 & DEC38 & \\
\hline UDFDL & UDFDL & \\
\hline UJKFF & UJKFF & \\
\hline XNOR2 & XNOR & \\
\hline XNOR\# & XNOR\# & \((\#=3,4,8)\) \\
\hline XOR2 & XOR & \\
\hline XOR\# & XOR\# & \((\#=3,4,8)\) \\
\hline & & \\
\hline
\end{tabular}

\section*{LMF Support for TTL Macrofunctions}

In addition to the basic gates, LMFs map various Dazix, Mentor Graphics, Valid Logic, and ViewLogic TTL macrofunctions to their MAX+PLUS equivalents, as shown in Table 5.

Table 5. TTL Function Mappings in LMFs
\begin{tabular}{|c|c|c|c|c|}
\hline MAX+PLUS & Dazix & Mentor Graphics & Valid Logic & ViewLogic \\
\hline 7442 & LS42 & 74LS42 & LS42 & 74LS42 \\
\hline DFF2 & LS74 & 74LS74A & LS74 & 74LS74A \\
\hline 7483 & LS83 & 74LS83A & LS83 & 74LS83A \\
\hline 7485 & LS85 & 74LS85 & LS85 & 74LS85 \\
\hline 7491 & LS91 & 74LS91 & LS91 & 74LS91 \\
\hline 7493 & LS93 & 74LS93 & LS93 & 74LS93 \\
\hline 74138 & LS138 & 74LS138 & LS138 & 74LS138 \\
\hline 74139 & LS139 & & & \\
\hline 74139M & & 74LS139A & LS139 & 74LS139 \\
\hline 74151 & LS151 & 74LS151 & LS151 & 74LS151 \\
\hline 74153 & & 74LS153 & & 74LS153 \\
\hline 74153M & LS153 & & LS153 & \\
\hline 74157 & LS157 & 74LS157 & & 74LS157 \\
\hline 74157M & & & & LS157 \\
\hline 74160 & LS160 & 74LS160A & LS160 & 74LS160A \\
\hline 74161 & LS161 & 74LS161A & LS161 & 74LS161A \\
\hline 74162 & LS162 & 74LS162A & LS162 & 74LS162A \\
\hline 74163 & LS163 & 74LS163A & LS163 & 74LS163A \\
\hline 74164 & LS164 & 74LS164 & LS164 & 74LS164 \\
\hline 74165 & LS165 & 74LS165 & LS165 & 74LS165 \\
\hline 74174 & LS174 & 74LS174 & & 74LS174 \\
\hline 74174M & & & LS174 & \\
\hline 74181 & LS181 & 74LS181 & LS181 & 74LS181 \\
\hline 74190 & LS190 & 74LS190 & LS190 & 74LS190 \\
\hline 74191 & LS191 & 74 LS 191 & LS191 & 74LS191 \\
\hline 74194 & LS194 & 74LS194A & LS194A & 74LS194A \\
\hline 74273 & LS273 & 74LS273 & & 74LS273 \\
\hline 74174M & & & LS273 & \\
\hline 74279MD & LS279 & & & \\
\hline 74279M & & 74LS279 & LS279 & 74LS279 \\
\hline 74280 & LS280 & 74LS280 & LS280 & 74LS280 \\
\hline 74373 & LS373 & 74LS373 & & 74LS373 \\
\hline 74373M & & & LS373 & \\
\hline 74374 & LS374 & 74LS374 & & 74LS374 \\
\hline 74374M & & & LS374 & \\
\hline 74393M & LS393 & 74LS393 & LS393 & 74LS393 \\
\hline
\end{tabular}

\section*{Custom Library Mapping Files}

Designers can map their commonly used workstation functions to MAX+PLUS equivalents by modifying an LMF or creating a new one. If no equivalent function currently exists in MAX+PLUS, the user can create the function with the MAX+PLUS Graphic Editor or Text Editor before mapping the function in an LMF. Figure 3 shows an example of this process.

\section*{SNF2EDF Converter}

The SNF2EDF Converter creates an industry-standard level 0 EDIF file from a MAX+PLUS Simulator Netlist File (SNF). The SNF, which is optionally generated during compilation of a MAX EPLD design, contains all post-synthesis functional and delay in-
formation for the completed design. This design-specific information is also contained in the EDIF output file after conversion so that it may be integrated into a workstation environment for simulation. An optional command file enables the user to customize the output EDIF file for various workstation environments by renaming certain constructs or by changing the EDIF level or keyword level (see Figure 4).
The EDIF output file may have one of two formats. The first format expresses all delays with special EDIF property constructs. The second expresses combinatorial delays with portdelay constructs and registered delays as pathdelay constructs-a format that is especially useful for behavioral simulators. Both formats are shown in Figure 5.

Step 1: Select a workstation function for mapping


Step 2: Design an equivalent circuit with the MAX + PLUS Graphic Editor
CYPRESS_A05


Step 2: Map the workstation function to the MAX + PLUS function in an LMF
LIBRARY new_lib

FUNCTION MAX_A05 (A_IN, B_IN, C_IN)
RETURNS (Z_OUT)
FUNCTION "A05" ("A", "B", "C")
RETURNS ("Z") 3210-3
END
Figure 3. Creating a Library Mapping File


Figure 4. SNF2EDF Block Diagram

Format 1: Delays expressed with property constructs
```

(instance xor2_5
(viewRef viewl
(cellRef XOR2
(property TPD(integer 20)(unit TIME)))

```

Format 2: Delays expressed with portdelay and pathdelay constructs
```

(instance xor2_5
(viewRef view1
(cellRef XOR2
(portInstance \&1
(portDelay
(derivation CALCULATED
(delay(e 20 - 10)))))

```

Figure 5. EDIF File Formats

\section*{System Requirements}
- IBM PC/AT or compatible computers; IBM PS/2 models 50, 60,70 , or 80
- MS-DOS version 3.1 or later version
- 640 Kbytes of RAM
- 1 Mbyte of expanded memory compatible with version 3.2 or a later version of the Lotus/Intel/Microsoft Expanded Memory Specification
- EGA, VGA, or Hercules Monochrome display
- 20-Mbyte hard disk drive
- 1.2-Mbyte \(51 / 4^{\prime \prime}\) or 1.44 -Mbyte \(3^{1 / 2} 2^{\prime \prime}\) floppy disk drive
- MAX+PLUS version 2.01 or a later version
- Workstation-PC network hardware and software with the ability to transfer ASCII files

\section*{Package Contents}
- Floppy diskettes containing all PLS-EDIF programs and files for both PC/AT and PS/2 platforms
—EDF2CNF Converter
-SNF2EDF Converter
- Library Mapping Files for Dazix, Mentor Graphics, Valid Logic, and Viewlogic
- MAX+PLUS macrofunctions for Dazix, Mentor Graphics, Valid Logic, and ViewLogic libraries
- Example files
- Documentation

Document \#: 38-00144

\section*{Features}
- Unified development system for Multiple Array MatriX (MAX®) CY7C340 EPLDs plus compiler support for all Altera Classic, Max 5000, Max 7000, and STG EPLDs
- Microsoft Windows version 3.0 to provide graphical user interface, multi-tasking abilities, efficient memory management, and extensive printer and plotter support
- Hierarchical design entry methods for graphical, textual, and waveform designs
- Graphic Editor for schematic designs
—Text Editor for Text Design Files (TDFs) in the Advanced Hardware Description Language (AHDL) will support state machines, Boolean equations, truth tables, arithmetic, and relational operations
-Waveform Editor for waveform entry to define logic and view simulation results
- Logic synthesis and minimization for quick and efficient processing
- Automatic error location for AHDL text files and schematics
- Interactive Simulator with probe assignments for internal nodes
- Multichip partitioning to divide large designs into multiple EPLDs
- Library of \(\mathbf{7 4 0 0}\) series TTL and bus macrofunctions optimized for MAX architecture
- Bidirectional EDIF 200 netlist interface compatible with a variety of CAE schematic capture and simulation tools
- Runs on IBM PC/AT \({ }^{\circledR}, \mathbf{P S} / 2{ }^{\circledR}\) or compatible machines

\section*{Description}

The MAX+PLUS II programmable logic development system is a unified CAE system for designing logic with Cypress's CY7C340 family of EPLDs (Figure 1). MAX+PLUS II includes design entry, design processing, timing simulation, and device programming support. MAX+PLUS II runs on IBMPS/2, PC-AT, or compatible machines, and provides tools to quickly and efficiently create and verify complex logic designs.
The MAX + PLUSII software compiles designs for MAX EPLDs in minutes. Designs may be entered with a variety of design entry mechanisms. MAX+PLUS II supports hierarchical entry of Graphic Design Files (GDFs) with the MAX+PLUS II Graphic Editor, Text Design Files (TDFs) with the Advanced Hardware

\section*{MAX+PLUS \({ }^{\circledR}\) II Design System}

Description Language (AHDL), and waveforms with the Waveform Editor. The Graphic Editor offers advanced features such as multiple hierarchy levels, symbol editing, and a library of 7400 series devices as well as basic SSI gates. AHDL designs may be mixed into any level of the hierarchy or used on a standalone basis. AHDL is tailored especially forEPLD designs and includes support for complex Boolean and arithmetic functions, relational comparisons, multiple hierarchy levels, state machines with automatic state variable assignment, truth tables, and function calls.
MAX+PLUS II includes a sophisticated compiler that uses advanced logic synthesis and minimization techniques in conjunction with heuristic fitting rules to efficiently place designs within MAX EPLDs. A programming file created by the compiler is then used by MAX+PLUS II to program MAX devices.
MAX+PLUS II features multichip partitioning that automatically splits large designs into multiple EPLDs, allowing the user to create large system-level designs. The partitioner lets the user specify speedcritical path for optimum EPLD selection and design placement.
Simulations may be performed with a powerful, event-driven timing simulator. The MAX + PLUS II Simulator interactively


destination of nets, and use the search-and-replace to make changes to the net name. A design may be printed on an Epson FXcompatible printer, or plotted on anHP-or Houston Instrumentscompatible plotter.

\section*{Symbol Editor}

The MAX+PLUS II Symbol Editor enables the designer to create or modify a custom symbol representing a GDF or TDF. It is also possible to modify input and output pin placement of an automatically generated symbol.
The created symbol represents a lower-level design, described by a GDF or TDF. The lower-level design represented by the symbol may be displayed with a single command that invokes either the Graphic Editor for schematics or the Text Editor for AHDL designs.

\section*{AHDL}

The Advanced Hardware Description Language (AHDL) is a high-level, modular language used to create logic designs for MAX EPLDs. It is completely integrated into MAX+PLUS II, so AHDL files may be created, edited, compiled, simulated, and programmed from within MAX+PLUS II.
AHDL provides support for state machine, truth tables, and Boolean equations, as well as arithmetic and relational operations. AHDL is hierarchical, which allows frequentlyused functions such as TTL and bus macrofunctions to be incorporated in a design. AHDL supports complex arithmetic and relational operations, such as addition, subtraction, equality, and magnitude comparisons, with the logic functions automatically generated. Standard Boolean functions, including AND, OR, NAND, NOR, XOR, and XNOR are also included. Groups are fully supported so operations may be performed on groups as well as on single variables. AHDL also allows the designer to specify the location of nodes within MAX EPLDs. Together, these features enable complex designs to be implemented in a concise, high-level description.

\section*{Text Editor}

The MAX+PLUS II Text Editor enables the user to view and edit text files within the MAX + PLUS II environment. Any ASCII text file, including Vector Files, Table Files, Report Files, and AHDL Text Design Files (TDFs) may be viewed and edited without having to exit to DOS.
The Text Editor parallels the Graphic Editor's menu structure. It has a Hierarchy Display and a Total View window for moving through the hierarchy levels and around the design. It includes automatic error location, hierarchy traversal, global search-and-replace, and multiple fonts. If an error is found in a TDF during compilation, the Text Editor is automatically invoked and the line of AHDL code where the error occurred is highlighted. In addition, a design may use both text and graphic files. As the designer traverses the hierarchy, the Text Editor is invoked for text files, and the Graphic Editor is invoked for schematics.

\section*{Waveform Editor}

The MAX+PLUS II Waveform Editor provides a mouse-driven environment in which waveform algorithms automatically generate logic from user-defined input and output waveforms. It also functions as a logic analyzer, enabling the user to observe simulation results.
Simulated waveforms may be viewed and manipulated at multiple zoom levels. Nodes may be added, deleted, and combined into

To take advantage of the hierarchy features, the user first saves the entered design so the Graphic Editor can automatically create a symbol representing the design. This symbol may be used in a high-er-level schematic or in another design. It may also be modified with the Symbol Editor.
The Graphics Editor offers many advanced schematic entry and debugging features. For example, probes can be entered into the schematic so a specific net (e.g., flip-flops, logic outputs) can be easily viewed during simulation; critical paths can be specified in the schematic; and objects can be quickly moved with tag-and-drag editing. Lines stay connected with orthogonal rubberbanding. De-
signers can also group nodes into buses, quickly locate source and
displays timing results in the MAX+PLUS II Waveform Editor. Hardcopy table and waveform output is also available. With the Waveform Editor, input vector waveforms may be entered, modified, grouped, and ungrouped, and simulation errors may be viewed. In addition, the Waveform Editor compares simulation runs and highlights the differences.
The integrated structure of MAX + PLUSII providesfeatures such as automatic error location and delay prediction. If a design contains an error in either a schematic or a text file, MAX+PLUS II flags the error and takes the user to the actual location of the error in the original schematic or text file. The designer uses the Clipboard to quickly copy design information from one editor to another. In addition, propagation delays of critical paths may be determined in both the Graphic and Text Editors with the delay predictor. After the source and destination nodes are tagged, the shortest and longest timing delays are calculated.
MAX+PLUS II provides a seamless design framework using a consistent graphical user interface throughout. This framework simplifies all stages of the design cycle: design entry, processing, verification, and programming. In addition, MAX + PLUSIIoffers extensive, context-sensitive online help to aid the user.

\section*{Design Entry}

MAX + PLUS II supports three hierarchical design entry mechanisms: (1) the Graphic Editor is used to enter schematic designs; (2) the Text Editor is used to enter Text Design Files (TDFs) in the Advanced Hardware Description Language (AHDL); and (3) the Waveform Editor is used to enter waveforms to define logic. These design entry methods can be freely mixed within a single project, allowing the designer to specify each logic block in the most appropriate format. In addition, EDIF 200 netlists with popular CAE schematic tools such as ORCAD, Viewlogic, FutureNet, Mentor Graphics or Valid Logic are easily imported into MAX+PLUS II.

\section*{Graphic Editor}

The Graphic Editor provides a mouse-driven, multi-windowedenvironment in which commands are entered with pop-up menus or simple keystrokes. The HierarchyDisplaywindowlists all schematics used in a design. The designer navigates the hierarchy by placing the cursor on the name of the design to be edited and clicking the left mouse button. The Total View window shows the entire design. The Error Report window lists all warnings and errors in the compiled design; selecting an error with the cursor highlights the problem node and symbol. A design is edited in the main area, which may be enlarged by closing the auxiliary windows.
When entering a design, the user may choose from a library of over 3007400 series and special-purpose macrofunctions that are all optimized for MAX architecture. In addition, the designer may create custom functions that can be used in any MAX+PLUS II design.
buses, which may contain up to 32 signals represented in binary, octal, decimal, or hexadecimal format. Logical operators may also be performed on pairs of waveforms, so that waveforms may be inverted, ORed, ANDed, or XORed together.
The Waveform Editor includes sophisticated editing features to define and modify input vectors. Input waveforms are created with the mouse and familiar text editing commands. Waveforms may be copied, patterns may be repeated, and blocks may be moved and copied. For example, all or part of a waveform may be contracted to simulate the increase in clock frequency.
The Waveform Editor also compares and highlights the difference between two different simulations. A user may simulate a design, observe and edit the results, and then resimulate the design, and the Waveform Editor will show the results superimposed upon each other to highlight the differences.

\section*{Symbol Libraries}

The library provided with MAX+PLUS II contains the most commonly used 7400 series devices such as counters, decoders, encoders, shift registers, flip-flops, latches, and multipliers, aswell as special bus macrofunctions, all of which increase design productivity. Because of the flexible architecture of MAX EPLDs (that includes asynchronous preset and clear), true TTL device emulation is achieved. Cypress also provides special-purpose bus macrofunctions for designs that use buses. All macrofunctions have beenoptimized to maximize speed and utilization.

\section*{EDIF Support}

MAX+PLUS II software supports bidirectional EDIF 200 netlists, providing a convenient way to import popular CAE schematic capture and simulation tools. The Library Mapping Files (LMFs) of MAX+PLUS II converts EDIF 200 netlists into equivalent primatives and macrofunctions. Users can create their own LMFs to map any CAE software library. MAX+PLUS II then automatically generates a symbol from a translated EDIF file, so that the file can be directly incorporated into a MAX+PLUS II schematic or AHDL design. EDIF netlists can also be exported to the popular simulation tool of the user's choice. The netlist contains all postsynthesis function and delay information for the completed design.

\section*{Design Processing}

The MAX + PLUS II Compiler processes MAX designs. The Compiler offers options that speed the processing and analysis of a design. The user can set the degree of detail of the Report File and the maximum number of errors generated. In addition, the user may specify for which MAX EPLD the compiler should target the design and select whether or not to extract a netlist file for simulation.
The Compiler compiles a design in increments. If a design has been previously processed, only the portion of the design that has been changed is re-extracted, which decreases the compilation time. This "Make" facility is an automatic feature of the Compile command.
The first module of the Compiler, the Compiler Netlist Extractor, extracts the netlist that is used to define the design from each file. At this time, design rules are checked for any errors. If errors are found, the Graphic Editor is invoked when the error appears in a GDF, and the Text Editor is invoked when the error appears in a TDF. The Error Report window in both editors highlights the location of the error. A successfully extracted design is built into a database to be used by the Logic Synthesizer.
The Logic Synthesizer module translates and optimizes the userdefined logic for the MAX architecture. Any unused logic within
the design is automatically removed. The Logic Synthesizer uses expert system synthesis rules to factor and map logic within the multilevel MAX architecture. It then chooses the approach that ensures the most efficient use of silicon resources.
The next module, the Fitter, uses heuristic rules to optimally place the synthesized design into the chosen MAX EPLD. For MAX devices that have a Programmable Interconnect Array (PIA), the Fitter also routes the signals across this interconnect structure, so the designer doesn't have toworry about placement and routing issues. A Report File (.RPT) is issued by the Fitter, which shows design implementation as well as any unused resources in the EPLD. The designer can then determine how much additional logic may be placed in the EPLD.
For large system-level designs, the logic design is broken up into multiple EPLDs of the same family. The designer does not have to manually split a large design into many smaller designs. The user can control the design's partitioning at the source level by specifying chip assignments to flip-flops and pins.
A Simulator Netlist File (.SNF) may be extracted from the compiled design by the Simulator Netlist Extractor if simulation is desired. Finally, the Assembler creates a Programmer Object File (.POF) from the compiled design. This file is used with the QP2-MAX programming hardware to program the desired CY7C340 family member.

\section*{Delay Prediction and Probes}

MAX+PLUS II includes powerful analysis tools to verify and analyze the completed design. Delay analysis with the delay predictor may be performed interactively in the Graphic Editor, or in the Simulator. The Simulator is interactive and event-driven, yielding true timing and functional characteristics of the compiled design.
The delay predictor provides instant feedback about the timing of the processed design. After selecting the start point and end point of a path, the designer may determine the shortest and longest propagation delays of speed-critical paths.
Also, a designer may use probes to mark internal nodes in a design. The designer may enter a probe by placing the cursor on any node in a graphic design, selecting the SPE (Symbol:Probe:Enter) command, and then entering a unique name to define the probe. This name may then be used in the Graphic Editor, Simulator, and Waveform Editor to reference that node, so that lengthy hierarchical path names are avoided.

\section*{Simulator}

The MAX+PLUS II Simulator uses the virtual memory of Windows 3.0 to run simulations of large, multichip EPLDs.
Input stimuli can be defined with a straightforward vector input language, or waveforms can be directly drawn using the Waveform Editor. Outputs may also be viewed in the Waveform Editor, or hardcopy table and waveform files may be printed.
The Simulator uses the Simulator Netlist File (SNF) extracted from the compiled design to perform timing simulation with \(1 / 10\)-nanosecond resolution. A Command File may be used for batch operation, or commands may be entered interactively. Simulator commands allow the user to halt the simulation dependent on user-defined conditions, to force and group nodes, and perform AC detection.
If flip-flop set-up or hold times have been violated, the Simulator warns the user. In addition, the minimum pulse width and period of oscillation may be defined. If a pulse is shorter than the minimum pulse width specified, or if a node oscililates for longer than the specified time, the Simulator issues a warning.

\section*{MAX + PLUS II Timing Analyzer (MTA)}

The MAX + PLUSIITiming Analyzer (MTA) provides user-configurable reports that assist the designer in analyzing critical delay paths, set-up and hold timing, and overall system performance of any MAX EPLD design. Critical paths identified by these reports may be displayed and highlighted.
Timing delaysbetween multiple source and destination nodes may be calculated, thus creating a connection matrix giving the shortest and longest delay paths between all source and destination nodes specified. Or, the designer may specify that the detailed paths and delays between specific sources and destinations be shown.
The set-up/hold option provides set-up and hold requirements at the device pins for all pins that feed the D, CLK, or ENABLE inputs of flip-flops and latches. Critical source nodes may be specified individually, or set-up and hold at all pins may be calculated. This information is then displayed in a table, one set of set-up and hold times per flip-flop/latch.
The MTA also allows the user to print a complete list of all accessible nodes in a design; i.e., all nodes that may be displayed during simulation or delay prediction.
All MTA options may be listed in an MTA command file. With this file, the user may specify all information needed to configure the output.

\section*{SNF2GDF Converter}

SNF2GDF converts the SNF into logic schematics represented with basic gates and flip-flop elements. It uses the SNF's delay and connection information and creates a series of schematics fully annotated with propagation delay and set-up and hold information at each logic gate. Certain speed paths of a design may be specified for conversion, so the user may graphically analyze only the paths considered critical.
If State Machine or Boolean Equation design entry is used, SNF2GDF shows how the high-level description has been synthesized and placed into the MAX architecture.

\section*{Device Programming}

PLDS-MAX contains the basic hardware and software for programming the CY7C340 MAX EPLD family. Adapters are included for programming the CY7C344 (DIP and PLCC) and CY7C342 (PLCC) devices. Additional adapters supporting other MAX devices may be purchased separately. MAX + PLUS II programming software drives the QP2-MAX programming hardware. The designer can use MAX+PLUS II to program and verify CY7C340 MAX EPLDs. If the security bit of the device is not set to ON, the designer may also read the contents of a MAX device and use this information to program additional devices.

\section*{System Requirements}

\section*{Minimum System Configuration}

IBM PS/2 model 70 or higher, PC/AT or compatible 80386-based computer.
PC-DOS version 3.1 or higher.
4 Mbytes RAM.
Microsoft Windows version 3.0.
Microsoft Windows - compatible graphics card and monitor. EGA, VGA or Hercules monochrome display.
20-MB hard disk drive.
1.2-MB \(5 \frac{1}{4} 4^{\prime \prime}\) or \(1.44-\mathrm{MB} 31 / 2^{\prime \prime}\) floppy disk drive.

2-button serial port mouse compatible with Microsoft Windows 3.0.
Parallel port.

\section*{Recommended System Configuration}

IBM PS/ 2 model 70 or higher, or compatible 386 -based computer.
PC-DOS version 3.3 or higher.
4 Mbytes of RAM plus 10 Mbytes of expanded memory with LIM 3.2-compatible EMS driver.
Microsoft Windows version 3.0.
VGA graphics display.
20-MB hard disk drive.
1.2-MB \(5 \frac{1}{4 \prime \prime}\) or \(1.44-\mathrm{MB} 31 / 2^{\prime \prime}\) floppy disk drive.

3-button serial port mouse compatible with Microsoft Windows 3.0.
Parallel port.

\section*{Ordering Information}

CY3220 MAX + PLUS II System including:
CY3221 MAX+PLUS II software, manuals and key.

CY3202 QP2-MAX PLD programmer with CY3342 \& CY3344 adapters.

\section*{Device Adapters}

CY3340 Adapter for CY7C341 in PLCC packages.
CY3340R Adapter for CY7C341 in PGA packages.
CY3342 Adapter for CY7C342 in PLCC packages.
CY3342R Adapter for CY7C342 in PGA packages.
CY3342F Adapter for CY7C342 in Flatpack (TMB) packages.
CY3344 Adapter for CY7C344 in DIP and PLCC packages.
CY33435 Adapter for CY7C343 in DIP and PLCC packages.
Document \#: 38-00187

\section*{Features}
- Combined PROM, PLD, and EPROM Programmer
- Programs all Cypress CMOS \& ECL PLDs and PROMs
- Easy-to-use, menu-driven software
- New device and feature updates via floppy disk and adapters
- Plugs into standard IBM PC \({ }^{\text {(n) }}\) parallel port—no need to use up a bus slot
- Compatible with IBM PC/AT \({ }^{(\infty)}, P S / 2^{\circledR 0}\), and compatible computers
- Programs 20-, 24-, 28-, 32-, 40-, 44-, and 68-pin Cypress PLDs and PROMs via device adapters
- Modular design with adapter bus for future device support and future feature enhancements
- Comprehensive self-test and automatic calibration software
- Supports Vmargin verification for a higher degree of device reliability

\section*{Description}

QuickPro II is Cypress's second-generation QuickPro PLD and PROM device programmer. It incorporates new architectural features that enable it to handle all current and future devices through a96-pin universal bus connector. The QuickProII hardware can be installed on any IBMPC/AT- or PS/2-compatible computer by simply plugging into a standard parallel port. The software communicates with the QuickPro II electronics via this parallel port and utilizes intelligent programming algorithms to minimize device programming time.
The QuickPro II architecture and feature set were dictated by the needs of Cypress's new-generation PLDs and PROMs. Many of these devices offer very high performance and complexity with large numbers of pins. To meet these needs, the QuickPro II utilizes flexible pin electronics, a universal adapter bus and a carefully engineered system design that minimizes electrical noise. Pin electronics are located as close as possible to the device being programmed. In addition to the \(V_{P P}\) and \(V_{C C}\) voltage sources needed to program parts, the QuickPro II incorporates a Vmargin voltage source for measuring the relative programming margins to which a device has been programmed and a Vref voltage source for doing self-testing and calibration.
For PLDs, QuickPro II uses the JEDEC standard data format, so present and future design tools such as PLD ToolKit \({ }^{\left({ }^{( }\right)}, ~ A B E L{ }^{\infty}\), CUPL \({ }^{(\aleph)}\), and PALASM \({ }^{(\infty)}\) can be used. QuickPro II reads Intellec 86®, Motorola S, TEK and space format files. It also reads and writes PROM PC DOS binary files for use with assemblers and compilers. QuickProII isalow-cost,full-feature programming/verification system with a flexible and extendible architecture. The user interface software ismenu-drivenwith complete on-screen explanations.

\section*{Technical Information}

\section*{Size}

The QuickPro II base unit is approximately \(101 / 2^{\prime \prime} \times 81 / 2^{\prime \prime} \times 1^{\prime \prime}\). Individual device family adapters vary in size from \(5^{\prime \prime} \times 3^{\prime \prime}\) to \(6^{\prime \prime} \mathrm{x}\)
\(6^{\prime \prime}\). The parallel port cable and AC power adapter cable are both approximately \(6^{\prime}\) in length.

\section*{Power}

AC Power Adapter: \(\quad 17\) VAC @ 500 mA

\section*{Device Adapters}

Device adapters are external modules with various pin and socket configurations. Each adapter plugs into the QuickPro II bus connector and maps the pins of particular devices and packages to the pin electronics resources available at the connector. Each adapter has at least one LED that indicates when power is being applied to the socket. In addition to these device adapters, package adapters are also used to accommodate the various package options available for PLDs and PROMs.

\section*{Memory}

640 K of total memory is necessary to operate the QuickPro II software.

\section*{Devices Supported}

QuickProII hardware and software supports the programming and verification of all Cypress and Aspen PLDs and PROMs.

\section*{Ordering Information}

CY3300 QuickPro II system including:
CY3301 QuickPro II base unit
CY3302 QuickPro II parallel port cable
CY3303 QuickPro II AC power adapter
CY3304 QuickPro II software (disk \& manual)
CY3202 QP2-MAX version of QuickPro II for PLDS-MAX+PLUS design tool that consists of the CY3300 system and the CY3342 and CY3344 adapters.

International versions ( 220 V ) of the CY3300 and the CY3202 are also available.

\section*{Device Adapters}

CY3320 Adapter for all Cypress 20-, 24-, 28-, and 32-pin devices excluding the MAX parts. Contains 20-, 24, and 28-pin DIP sockets (package adapters required for 32 -pin devices).

CY3342 Adapter for the CY7C342—PLCC
CY3342R Adapter for the CY7C342-PGA
CY3342F Adapter for the CY7C342-Flatpack
CY3340 Adapter for the CY7C341-PLCC
CY3340R Adapter for the CY7C341—PGA
CY3344
CY33435 Adapter for the CY7C343-PLCC \& DIP

\section*{Package Adapters}

Package adapters are used with the CY3320 generic device programming adapter on the QuickPro II in order to accommodate Cypress's wide variety of device packaging options. The package adapters used with devices having 28 native pins on the QuickPro II are the same as those used on the original QuickPro \({ }^{@}\). The number of native pins that a device has refers to the number of actual signal, power and ground pins used-excluding any N/C (No Connects) in a particular package. All devices are programmed in the

CY3320 adapter's DIP socket having the same number of pins as the native pins on the device. Therefore, a 22 V 10 is programmed in the 24 -pin DIP socket, regardless of whether it is in a DIP package or a PLCC package, even though the PLCC package has 28 pins ( 4 are N/Cs). A package adapter between the 28 -pin PLCC and the 24-pin DIP sockets is used to accomplish this. The following list summarizes the package adapters used with the CY3320 adapter on the QuickPro II.

\section*{Devices with 20 native pins}
CY3005 20-pin LCC - Package codes L61 and Q61 - All devices

CY3007 20-pin PLCC - Package code J61 - All devices
CY3031 20-pin SOJ - Package code V5 - All devices
CY3021 20-pin Cerpack - Package code K71

\section*{Devices with 24 native pins}

CY3004A 28-pin LCC (22V10, CG7C323, CG7C324)
CY3004B 28-pin LCC (7C225, 7C235, 7C245, 7C261/3/4, 7C281/2, 7C291/2, 7C245, 7C291A/2A/3A)
CY3010 28-pin LCC (20G10, 20RA10)
CY3006A 28-pin PLCC and HLCC (22V10, CG7C323, CG7C324)
CY3006B 28-pin PLCC and HLCC (7C225, 7C235, 7C245, 7C261/3/4, 7C281/2, 7C291/2, 7C245, 7C291A/2A/3A)
CY3011 28-pin PLCC and HLCC (20G10, 20RA10)
CY3019 24-pin Cerpack - Package codes K73, T73 - All devices
CY3030 24-pin SOIC - Package code S13 - All devices
Devices with 28 native pins
CY3008 28-pin LCC - Package codes L64 and Q64 - All devices
CY3009 28-pin PLCC and HLCC - Package codes J64 and H64 - All devices
CY3014 28-pin SOIC - Package code S21 - All devices
CY3022 28-pin SOJ - Package code V21 - All devices
CY3020 28-pin Cerpack - Package codes K74, T74 - All devices
CY3017 32-pin rectangular LCC (7C251/4)
CY3024 32-pin rectangular LCC (7C266, 7C271/4, 7C277, 7C279, 7C286)
CY3026 32-pin DIP (7C289)
CY3027 32-pin rectangular LCC (7C285, 7C287)
CY3029 32-pin rectangular LCC (7C289)

Document \#: 38-00129-B
QuickPro, QuickPro II, and PLD ToolKit are trademarks of Cypress Semiconductor Corporation.
IBM PC, PC/AT, and PS/2 are registered trademarks of International Business Machines Corporation.
ABEL is a registered trademark of Data I/O Corporation.
CUPL is a registered trademark of Assisted Technology.
PALASM is a registered trademark of Monolithic Memories Inc.
Intellec 86 is a trademark of Intel Corporation.
INFO ..... 1
SRAMs ..... 2
PROMs ..... 3
PLDs ..... 4
FIFOs ..... 5
LOGIC ..... 6
DATACOM ..... 7
MODULES ..... 8
ECL ..... 9
BUS ..... 1
MILITARY ..... 1
TOOLS ..... 1QUALITY

PACKAGES

\section*{Section Contents}

Quality, Reliability, and Process Flows ............................................................................13-1
Tape and Reel Specifications

\section*{Quality, Reliability, and Process Flows}

\section*{Corporate Views on Quality and Reliability}

Cypress believes in product excellence. Excellence can only be defined by how the users perceive both our product quality and reliability. If you, the user, are not satisfied with every device that is shipped, then product excellence has not been achieved.
Product excellence does not occur by following the industry norms. It begins by being better than one's competitors, with better designs, processes, controls and materials. Therefore, product quality and reliability are built into every Cypress product from the start.
Some of the techniques used to insure product excellence are the following:
- Product Reliability is built into every product design, starting from the initial design conception.
- Product Quality is built into every step of the manufacturing process through stringent inspections of incoming materials and conformance checks after critical process steps.
- Stringent inspections and reliability conformance checks are done on finished product to insure the finished product quality requirements are met.
- Field data test results are encouraged and tracked so that accelerated testing can be correlated to actual use experiences.

\section*{Product Assurance Documents}

Cypress Semiconductor uses MIL-STD-883D and MIL-M38510 J as baseline documents to determine our Test Methods, Procedures and General Specifications for semiconductors.
Customers using our commercial and industrial grade product receive the benefit of a military patterned process flow at no additional charge.

\section*{Product Testing Categories}

Five different testing categories are offered by Cypress:
1. Commercial operating range product: \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\).
2. Industrial operating range product: \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\).
3. Military Grade product processedtoMIL-STD-883D; Military operating range: \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\).
4. SMD(StandardizedMilitaryDrawing)approvedproduct:Militaryoperatingrange: \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\), electrically tested per the applicable Military Drawing.
5. JAN qualified product; Military operating range: \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\), electrically tested per MIL-M-38510J slash sheet requirements.
Categories 1, 2, and 3 are available on all products offered by Cypress Semiconductor. Categories 4 and 5 are offered on a more limited basis, dependent upon the specific part type in question.

\section*{Commercial Product Assurance Categories}

Commercial grade devices are offered with two different classes of product assurance. Every device shipped, as a minimum, meets the processing and screening requirements of level 1.
Level 1: For commercial or industrial systems where the demand for quality and reliability is high, but where field service and device replacement can be reasonably accomplished.
Level 2: For enhanced reliability applications and commercial or industrial systems where maintenance is difficult and/or expensive and reliability is paramount.
Devices are upgraded from Level 1 to Level 2 by additional testing and a burn-in of 12 hours at \(150^{\circ} \mathrm{C}\).
Tables 1 and 2 list the \(100 \%\) screening and quality conformance testing performed by Cypress Semiconductor in order to meet requirements of these programs.

\section*{Military Product Assurance Categories}

Cypress's Military Grade components and SMD products are processed per MIL-STD-883D using methods 5004 and 5005 to define our screening and quality conformance procedures. The processing performed by Cypress results in a product that meets the class B screening requirements as called out by these methods. Every device shipped, as a minimum, meets these requirements.
JAN, SMD, and Military Grade devices supplied by Cypress are processed for applications where maintenance is difficult or expensive and reliability is paramount. Tables 3 through 7 list the screening and quality conformance testing that is performed in order to meet the processing requirements required by MIL-STD-883D and MIL-M-38510J.

Table 1. Cypress Commercial and Industrial Product Screening Flows-Components
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[b]{4}{*}{Screen} & \multirow[b]{4}{*}{MIL-STD-883D Method} & \multicolumn{4}{|c|}{Product Temperature Ranges} \\
\hline & & \multicolumn{4}{|l|}{Commercial \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\); Industrial \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)} \\
\hline & & \multicolumn{2}{|c|}{Level 1} & \multicolumn{2}{|c|}{Level 2} \\
\hline & & Plastic & Hermetic & Plastic & Hermetic \\
\hline \begin{tabular}{l}
Visual/Mechanical \\
- Internal Visual \\
- Hermeticity \\
- Fine Leak \\
- Gross Leak
\end{tabular} & \begin{tabular}{l}
\[
2010
\] \\
1014, Cond A or B (sample) \\
1014, Cond C
\end{tabular} & \begin{tabular}{l}
\[
0.4 \% \mathrm{AQL}
\] \\
Does Not Apply Does Not Apply
\end{tabular} & \[
\begin{gathered}
100 \% \\
\text { LTPD }=5 \\
100 \%
\end{gathered}
\] & \begin{tabular}{l}
\[
0.4 \% \mathrm{AQL}
\] \\
Does Not Apply Does Not Apply
\end{tabular} & \[
\begin{gathered}
100 \% \\
\text { LTPD }=5 \\
100 \%
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Burn-in \\
- Pre-Burn-in Electrical \\
- Burn-in \\
- Post-Burn-in Electrical \\
- Percent Defective Allowable (PDA)
\end{tabular} & \begin{tabular}{l}
Per Device Specification \\
Per Cypress Specification \\
Per Device Specification
\end{tabular} & Does Not Apply Does Not Apply Does Not Apply Does Not Apply & Does Not Apply Does Not Apply Does Not Apply Does Not Apply & \[
\begin{gathered}
100 \% \\
100 \%{ }^{[1]} \\
100 \% \\
5 \%(\max )^{[2]}
\end{gathered}
\] & \[
\begin{gathered}
100 \% \\
100 \%[1] \\
100 \% \\
5 \% \text { (max) }{ }^{[2]}
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Final Electrical \\
- Static (DC), Functional, andSwitching(AC)Tests
\end{tabular} & \begin{tabular}{l}
Per Device Specification \\
1. At \(25^{\circ} \mathrm{C}\) and Power Supplies Extremes \\
2. At Hot Temperature and Power Supply Extremes
\end{tabular} & Not Performed
\[
100 \%
\] & Not Performed
\[
100 \%
\] & \[
\begin{gathered}
100 \%{ }^{[1]} \\
100 \%
\end{gathered}
\] & \[
\begin{gathered}
100 \%{ }^{[1]} \\
100 \%
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Cypress Quality Lot Acceptance \\
- External Visual \\
- Final Electrical Conformance
\end{tabular} & \begin{tabular}{l}
2009 \\
Cypress Method 17-00064
\end{tabular} & \begin{tabular}{l}
Note 3 \\
Note 3
\end{tabular} & \begin{tabular}{l}
Note 3 \\
Note 3
\end{tabular} & \begin{tabular}{l}
Note 3 \\
Note 3
\end{tabular} & \begin{tabular}{l}
Note 3 \\
Note 3
\end{tabular} \\
\hline
\end{tabular}

Table 2. Cypress Commercial and Industrial Product Screening Flows-Modules
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{3}{*}{Screen} & \multirow[b]{3}{*}{MIL-STD-883D Method} & \multicolumn{2}{|c|}{Product Temperature Ranges} \\
\hline & & \multicolumn{2}{|l|}{Commercial \(0^{\circ} \mathrm{C}\) to \(+70^{\circ} \mathrm{C}\); Industrial \(-40^{\circ} \mathrm{C}\) to \(+85^{\circ} \mathrm{C}\)} \\
\hline & & Level 1 & Level 2 \\
\hline \begin{tabular}{l}
Burn-in \\
- Pre-Burn-in Electrical \\
- Burn-in \\
- Post-Burn-in Electrical \\
- Percent Defective Allowable (PDA)
\end{tabular} & \begin{tabular}{l}
Per Device Specification 1015 \\
Per Device Specification
\end{tabular} & \begin{tabular}{l}
Does Not Apply \\
Does Not Apply \\
Does Not Apply \\
Does Not Apply
\end{tabular} & \[
\begin{gathered}
100 \% \\
100 \% \\
100 \% \\
15 \%
\end{gathered}
\] \\
\hline \begin{tabular}{l}
Final Electrical \\
- Static (DC), Functional, andSwitching (AC)Tests
\end{tabular} & \begin{tabular}{l}
Per Device Specification \\
1. At \(25^{\circ} \mathrm{C}\) and Power Supply Extremes \\
2. At Hot Temperature and Power Supply Extremes
\end{tabular} & Not Performed
\[
100 \%
\] & \[
\begin{aligned}
& 100 \% \\
& 100 \%
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Cypress Quality Lot Acceptance \\
- External Visual \\
- Final Electrical Conformance
\end{tabular} & \begin{tabular}{l}
2009 \\
Cypress Method 17-00064
\end{tabular} & Per Cypress Module Specification Note 3 & Per Cypress Module Specification Note 3 \\
\hline
\end{tabular}

\section*{Notes:}
1. Burn-in is performed as a standard for 12 hours at \(150^{\circ} \mathrm{C}\).
2. Electrical Test is performed after burn-in. Results of this are used to determine PDA percentage.
3. Lot acceptance testing is performed on every lot to guarantee 200 PPM average outgoing quality.

Table 3. Cypress JAN/SMD/Military Grade Product Screening Flows for Class B
\begin{tabular}{|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Screen} & \multirow[t]{2}{*}{Screening Per Method 5004 of MIL-STD-883D} & \multicolumn{3}{|l|}{Product Temperature Ranges \(-55^{\circ} \mathrm{C}\) to \(+125^{\circ} \mathrm{C}\)} \\
\hline & & JAN & SMD/Military Grade Product & Military Grade Module \\
\hline \begin{tabular}{l}
Visual/Mechanical \\
- Internal Visual \\
- Temperature Cycling \\
- Constant Acceleration \\
- Hermeticity: \\
- Fine Leak \\
— Gross Leak
\end{tabular} & \begin{tabular}{l}
Method 2010, Cond B \\
Method 1010, Cond C, ( 10 cycles) \\
Method 2001, Cond E (Min.), \\
Y1 Orientation Only \\
Method 1014, Cond A or B \\
Method 1014, Cond C
\end{tabular} & \[
\begin{aligned}
& 100 \% \\
& 100 \% \\
& 100 \% \\
& \\
& 100 \% \\
& 100 \%
\end{aligned}
\] & \[
\begin{aligned}
& 100 \% \\
& 100 \% \\
& 100 \% \\
& \\
& 100 \% \\
& 100 \%
\end{aligned}
\] & \begin{tabular}{l}
N/A \\
Optional
\[
\mathrm{N} / \mathrm{A}
\] \\
N/A \\
N/A
\end{tabular} \\
\hline \begin{tabular}{l}
Burn-in \\
- Pre-Burn-in Electrical Parameters \\
- Burn-in Test \\
- Post-Burn-in Electrical Parameters \\
- Percent Defective Allowable (PDA)
\end{tabular} & \begin{tabular}{l}
Per Applicable Device Specification \\
Method 1015, Cond D, 160 Hrs at \(125^{\circ} \mathrm{C}\) Min. or 80 Hrs at \(150^{\circ} \mathrm{C}\) \\
Per Applicable Device Specification \\
Maximum PDA, for All Lots
\end{tabular} & \[
\begin{aligned}
& 100 \% \\
& 100 \% \\
& 100 \% \\
& 5 \%
\end{aligned}
\] & \[
\begin{gathered}
100 \% \\
100 \% \\
100 \% \\
5 \%
\end{gathered}
\] & \(100 \%\)
\(100 \%\)
\(\left(48\right.\) Hours at \(125^{\circ} \mathrm{C}\) )
\(100 \%\)
\(10 \%\) \\
\hline \begin{tabular}{l}
Final Electrical Tests \\
Static Tests \\
- Functional Tests \\
- Switching
\end{tabular} & \begin{tabular}{l}
Method 5005 \\
Subgroups 1, 2, and 3 \\
Method 5005 \\
Subgroups 7, 8A, and 8B \\
Method 5005 \\
Subgroups 9, 10, and 11
\end{tabular} & \begin{tabular}{l}
\(100 \%\) Test to Slash Sheet \\
100\% Test to Slash Sheet \\
\(100 \%\) Test to Slash Sheet
\end{tabular} & \begin{tabular}{l}
\(100 \%\) Test to Applicable Device Specification \\
\(100 \%\) Test to \\
Applicable Device Specification \\
100\% Test to Applicable Device Specification
\end{tabular} & \(100 \%\) Test to Applicable Specification \(100 \%\) Test to Applicable Specification \(100 \%\) Test to Applicable Specification \\
\hline \begin{tabular}{l}
Quality Conformance Tests \\
- Group \(\mathrm{A}^{[4]}\) \\
- Group B \\
- Group C[5] \\
- Group \(\mathrm{D}^{[5]}\)
\end{tabular} & \begin{tabular}{l}
Method 5005, see \\
Tables 4-7 for details
\end{tabular} & \begin{tabular}{l}
Sample \\
Sample \\
Sample \\
Sample
\end{tabular} & \begin{tabular}{l}
Sample \\
Sample \\
Sample \\
Sample
\end{tabular} & \begin{tabular}{l}
Sample \\
Sample \\
Sample \\
Sample
\end{tabular} \\
\hline External Visual & Method 2009 & 100\% & 100\% & 100\% \\
\hline
\end{tabular}

\section*{Notes:}
4. Group A subgroups tested for SMD/Military Grade products are 1, 2, \(3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10,11\), or per JAN Slash Sheet.
5. Group C and D end-point electrical tests for SMD/Military Grade products are performed to Group A subgroups \(1,2,3,7,8 \mathrm{~A}, 8 \mathrm{~B}, 9,10\), 11, or per JAN Slash Sheet.

\section*{Quality, Reliability, and Process Flows}

Table 4. Group A Test Descriptions
\begin{tabular}{|c|l|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Sub- \\
group
\end{tabular}} & \multicolumn{2}{|c|}{ Description } & \multicolumn{2}{|c|}{ Sample Size/Accept No. } \\
\cline { 3 - 4 } & Components & Modules \({ }^{[6]}\) \\
\hline 1 & Static Tests at \(25^{\circ} \mathrm{C}\) & \(116 / 0\) & \(116 / 0\) \\
\hline 2 & \begin{tabular}{l} 
Static Tests at \\
Maximum Rated \\
Operating Temperature
\end{tabular} & \(116 / 0\) & \(116 / 0\) \\
\hline 3 & \begin{tabular}{l} 
Static Tests at \\
Minimum Rated \\
Operating Temperature
\end{tabular} & \(116 / 0\) & \(116 / 0\) \\
\hline 4 & Dynamic Tests at \(25^{\circ} \mathrm{C}\) & \(116 / 0\) & \(116 / 0\) \\
\hline 5 & \begin{tabular}{l} 
Dynamic Tests at \\
Maximum Rated \\
Operating Temperature
\end{tabular} & \(116 / 0\) & \(116 / 0\) \\
\hline 6 & \begin{tabular}{l} 
Dynamic Tests at \\
Minimum Rated \\
Operating Temperature
\end{tabular} & \(116 / 0\) & \(116 / 0\) \\
\hline 7 & Functional Tests at \(25^{\circ} \mathrm{C}\) & \(116 / 0\) & \(116 / 0\) \\
\hline 8 A & \begin{tabular}{l} 
Functional Tests at \\
Maximum Temperature
\end{tabular} & \(116 / 0\) & \(116 / 0\) \\
\hline 8 B & \begin{tabular}{l} 
Functional Tests at \\
Minimum Temperature
\end{tabular} & \(116 / 0\) & \(116 / 0\) \\
\hline 9 & Switching Tests at \(25^{\circ} \mathrm{C}\) & \(116 / 0\) & \(116 / 0\) \\
\hline 10 & \begin{tabular}{l} 
Switching Tests at \\
Maximum Temperature
\end{tabular} & \(116 / 0\) & \(116 / 0\) \\
\hline 11 & \begin{tabular}{l} 
Switching Tests at \\
Minimum Temperature
\end{tabular} & \(116 / 0\) & \(116 / 0\) \\
\hline
\end{tabular}

Cypress uses an LTPD sampling plan that was developed by the Military to assure product quality. Testing is performed to the subgroups found to be appropriate for the particular device type. All Military Grade component products have a Group A sample test performed on each inspection lot per MIL-STD-883D and the applicable device specification.

Table 5. Group B Quality Tests
\begin{tabular}{|c|l|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Sub- \\
group
\end{tabular}} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Description
\end{tabular}} & \multicolumn{2}{|c|}{\begin{tabular}{c} 
Quantity/Accept \# \\
or LTPD
\end{tabular}} \\
\cline { 3 - 4 } & \multicolumn{2}{|c|}{ Components } & Modules \({ }^{[6]}\) \\
\hline 2 & \begin{tabular}{l} 
Resistance to Solvents, \\
Method 2015
\end{tabular} & \(3 / 0\) & \(3 / 0\) \\
\hline 3 & \begin{tabular}{l} 
Solderability, \\
Method 2003
\end{tabular} & 10 & 10 \\
\hline 5 & \begin{tabular}{l} 
Bond Strength, \\
Method 2011,
\end{tabular} & 15 & NA \\
\hline
\end{tabular}

Group B testing is performed for each inspection lot. An inspection lot is defined as a group of material of the same device type, Note:
6. Military Grade Modules are processed to proposed JEDEC standard flowsfor MIL-STD-883D compliant modules.
package type and lead finish builtwithin a sixweek seal period and submitted to Group B testing at the same time.

Table 6. Group C Quality Tests
\begin{tabular}{|c|c|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Sub- \\
group
\end{tabular}} & Description & \multicolumn{2}{|c|}{ LTPD } \\
\cline { 3 - 4 } & & Components & Modules \({ }^{[6]}\) \\
\hline 1 & \begin{tabular}{l} 
Steady State Life Test, \\
End-Point Electricals, \\
Method 1005, Cond \(\mathbf{D}\)
\end{tabular} & 5 & \(15 / 0\) \\
&
\end{tabular}

Group C tests for JAN product are performed on one device type from one inspection for lot representing each technology. Sample tests are performed per MIL-M-38510J from each three month production of devices, which is based upon the die fabrication date code.
Group C tests for SMD and Military Grade products are performed on one device type from one inspection lot representing each technology.Sampletests areperformed perMIL-STD-883D from each four calendar quarters production of devices, which is based upon the die fabrication date code.
End-point electrical tests and parameters are performed per the applicable device specification.

Table 7. Group D Quality Tests (Package Related)
\begin{tabular}{|c|l|c|c|}
\hline \multirow{2}{*}{\begin{tabular}{c} 
Sub- \\
group
\end{tabular}} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Description
\end{tabular}} & \multicolumn{2}{|c|}{\begin{tabular}{c} 
Quantity/Accept \# \\
or LTPD
\end{tabular}} \\
\cline { 3 - 4 } & Components & Modules \({ }^{[6]}\) \\
\hline 1 & \begin{tabular}{l} 
Physical Dimensions, \\
Method 2016
\end{tabular} & 15 & \(15 / 0\) \\
\hline 2 & \begin{tabular}{l} 
Lead Integrity, Seal: \\
Fine and Gross Leak, \\
Method 2004 and 1014
\end{tabular} & 5 & \(15 / 0\) \\
\hline 3 & \begin{tabular}{l} 
Thermal Shock, Temp \\
Cycling, Moisture \\
Resistance, Seal: Fine \\
and Gross Leak, Visual \\
Examination, End-
\end{tabular} & 15 & \(15 / 0\) \\
\hline \begin{tabular}{l} 
Point, Electricals, \\
Methods 1011, 1010, \\
1004 and 1014
\end{tabular} & 15 & \(15 / 0\) \\
\hline 4 & \begin{tabular}{l} 
Mechanical Shock, \\
Vibration - Variable \\
Frequency, Constant \\
Acceleration, Seal: \\
Fine and Gross Leak, \\
Visual Examination, \\
End-Point Electricals, \\
Methods 2002, 2007, \\
2001 and 1014
\end{tabular} & & \\
\hline
\end{tabular}

Table 7. Group D Quality Tests (Package Related) (continued)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[b]{2}{*}{Subgroup} & \multirow[b]{2}{*}{Description} & \multicolumn{2}{|l|}{Quantity/Accept \# or LTPD} \\
\hline & & Components & Modules \({ }^{[7]}\) \\
\hline 5 & Salt Atmosphere, Seal:Fine \& Gross Leak, Visual Examination, Methods 1009 \& 1014 & 15 (0) & 15/0 \\
\hline 6 & Internal Water-Vapor Content; 5000 ppm maximum@ \(100^{\circ} \mathrm{C}\). Method 1018 & \(3(0)\) or 5(1) & N/A \\
\hline 7 & Adhesion of Lead Finish, \({ }^{88}\) Method 2025 & 15(0) & 15/0 \\
\hline 8 & Lid Torque, Method 2024[9] & 5(0) & N/A \\
\hline
\end{tabular}

\section*{Notes:}
7. Does not apply to leadless chip carriers.
8. Based on the number of leads.
9. Applies only to packages with glass seals.

Group D tests for JAN product are performed per MIL-M-38510J on each package type from each six months of production, based on the lot inspection identification (or date) codes.
Group D tests for SMD and Military Grade products are performed per MIL-STD-883D on each package type from each six months of production, based on the lot inspection identification (or date) codes.
End-point electrical tests and parameters are performed per the applicable device specification.

\section*{Product Screening Summary}

\section*{Commercial and Industrial Product}
- Screened to either Level 1 or Level 2 product assurance flows
- Hermetic and molded packages available
- Incoming mechanical and electrical performance guaranteed:
- \(0.02 \%\) AQL Electrical Sample test performed on every lot prior to shipment
- \(0.65 \%\) AQL External Visual Sample inspection
- Electrically tested to Cypress data sheet

\section*{Ordering Information}

\section*{Product Assurance Grade: Level 1}
- Order Standard Cypress part number
- Parts marked the same as ordered part number

Ex: CY7C122-15PC, PALC22V10-25PI

\section*{Product Assurance Grade: Level 2}
- Burn-in performed on all devices to Cypress detailed circuit specification
- Add 'B' Suffix to Cypress standard part number when ordering to designate burn-in option

\section*{Military Grade Product}
- SMD and Military Grade components are manufactured in compliance with paragraph 1.2.1 of MIL-STD-883D. Compliant products are identified by an 'MB' suffix on the part number (CY7C122-25DMB) and the letter "C"
- JAN devices are manufactured in accordance with MIL-M-38510J
- Military grade devices electrically tested to:
- Cypress data sheet specifications OR
- SMD devices electrically tested to military drawing specifications

OR
- JAN devices electrically tested to slash sheet specifications
- All devices supplied in hermetic packages
- Quality conformance inspection: Method 5005, Groups A, B, C , and D performed as part of the standard process flow
- Burn-in performed on all devices
- Cypress detailed circuit specification for non-Jan devices OR
- Slash sheet requirements for JAN products
- Static functional and switching tests performed at \(25^{\circ} \mathrm{C}\) as well as temperature and power supply extremes on \(100 \%\) of the product in every lot
- JAN product manufactured in a DESC certified facility

\section*{Ordering Information}

\section*{JAN Product:}
- Order per military document
- Marked per military document

Ex: JM38510/28901BVA

\section*{SMD Product:}
- Order per military document
- Marked per military document Ex: 5962-8867001LA

\section*{Military Grade Product:}
- Order per Cypress standard military part number
- Marked the same as ordered part number

Ex: CY7C122-25DMB

\section*{Military Modules}
- Military Temperature Grade Modules are designated with an ' M ' suffix only. These modules are screened to standard combined flows and tested at both military temperature extremes.
- MIL-STD-883D Equivalent Modules are processed to proposed JEDEC standard flows for MIL-STD-883D compliant modules. All MIL-STD-883D equivalent modules are assembled with fully compliant MIL-STD-883D components.

\section*{Product Quality Assurance Flow-Components}


Product Quality Assurance Flow-Components (continued)
Commercial and Industrial Product


Product Quality Assurance Flow-Components (continued)
Commercial and Industrial Product

(continued)

Product Quality Assurance Flow-Components (continued)
Commercial and Industrial Product

\(\bigcirc\) Production Process


Test/Inspection
Production Process and Test Inspection


QC Sample Gate and Inspection

\section*{Product Quality Assurance Flow-Components Military Components}
MILITARY ASSEMBLY FLOW
Wafer Prep/Mount/Saw
Inspect for accurate sawing of scribeline and 100\% saw-through
Die Visual Inspection
Inspect die per MIL-STD-883D, Method 2010, condition B
Seriodic QC Monitor, Lid-Torque
Shear strength of glass
Sattach Linspect die; 1.0\% AQL

Product Quality Assurance Flow-Components (continued) Military Components


Temperature Cycle
Method 1010, Cond C, 10 cycles
Constant Acceleration
Method 2001, Cond E, Y1 Orientation

Lead Trim
Lead trim when applicable

Lot ID
Mark assembly lot on devices

Lead Finish
Solder dip or matte tin plate applicable devices and inspect

QC Process Monitor
Verify workmanship and lead finish coverage

External Visual Inspection
Method 2009

Pre-Burn-In Electrical Test
Method 5004, per applicable device specification

Burn-In
Method 1015, condition D

Post-Burn-In Electricals
Method 5004, per applicable device specification

PDA Calculation
Method 5004, 5\%

Final Electrical Test
Method 5004; Static, functional and switching tests per applicable device specification
(continued)

\section*{Product Quality Assurance Flow-Components (continued) Military Components}


Lead Finish - Solder Dip
Solder dip applicable devices

Fine and Gross Leak Test
Method 1014, condition A or B, fine leak; condition C, gross leak

Final Device Marking
MIL-STD-883D or applicable device specification

Group B
Method 5005

Group A
Method 5005 , per applicable device specification

Group C and D
Method 5005, in accordance with
1.2.1 of MIL-STD-883D; JAN devices
in accordance with MIL-M-38510J
External Visual
Method 2009, 100\% inspection

External Visual Sample
Method 2009, 0.4\% AQL

Plant Clearance

Pack/Ship Order

Key
0
Production Process
\(\square\) Test/Inspection
Production Process and Test Inspection


QC Sample Gate and Inspection

\section*{Quality, Reliability, and Process Flows}


Product Quality Assurance Flow-Modules (continued)


Quality, Reliability, and Process Flows

\section*{Reliability Monitor Program}

The Reliability Monitor Program is a documented Cypress procedure that is described in Cypress specification \#25-00008, which is available to Cypress customers upon request. This specification describes a procedure that provides for periodic reliability monitors to insure that all Cypress products comply with established goals for reliability improvement and to minimize reliability risks
for Cypresscustomers. The Reliability Monitor Program monitors our most advanced technologies and packages. Every technology produced at a given fabrication site (Tech. - Fab.) and all assembly houses are monitored at least quarterly. If failures occur, detailed failure analyses are performed and corrective actions are implemented. A summary of the Reliability Monitor Program test and sampling plan is shown below.

\section*{Quarterly Reliability Monitor Test Matrix}
\begin{tabular}{|c|l|c|}
\hline \multirow{2}{*}{ Stress } & \multicolumn{1}{|c|}{ Devices Tested } & \begin{tabular}{c} 
\# per \\
Quarter
\end{tabular} \\
\hline \multirow{2}{*}{ HTOL } & Tech. - Fab. & 6 \\
\cline { 2 - 3 } & All High Volume & 2 \\
\hline \multirow{2}{*}{ HAST } & Tech. - Fab. & 6 \\
\cline { 2 - 3 } & All High Volume & 2 \\
\hline PCT & Plastic Packages & 4 \\
\hline \multirow{3}{*}{ TC } & Tech. - Fab. & 6 \\
\cline { 2 - 3 } & Plastic Packages & 3 \\
\cline { 2 - 3 } & Ceramic Packages & 5 \\
\cline { 2 - 3 } & All High Volume & 2 \\
\hline DRET & FAMOS - San Jose and Texas & 2 \\
\hline HTSSL & All Technologies & 4 \\
\hline TEV & All Technologies & 4 \\
\hline & \multicolumn{2}{|c|}{ Total } \\
\hline
\end{tabular}

\section*{Reliability Monitor Test Conditions}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Test & Abbrev. & Temp. ( \({ }^{( } \mathbf{C}\) ) & R.H. (\%) & Bias & \[
\underset{\text { Size }}{\text { Sample }}
\] & LTPD & \[
\begin{gathered}
\text { Read Points } \\
\text { (hrs.) }
\end{gathered}
\] \\
\hline High-Temperature Operating Life & HTOL & +150 & N/A & 5.75V Dynamic & 116 & 2 & \[
\begin{gathered}
48,168,500, \\
1000
\end{gathered}
\] \\
\hline High-Temperature SteadyState Life & HTSSL & +150 & N/A & 5.75V Static & 116 & 2 & \[
\begin{gathered}
48,168,500, \\
1000
\end{gathered}
\] \\
\hline Data Retention for Plastic Packages & DRET & +165 & N/A & N/A & 76 & 3 & 168, 1000 \\
\hline Data Retention for Ceramic Packages & DRET2 & +250 & N/A & N/A & 76 & 3 & 168, 1000 \\
\hline Pressure Cooker & PCT & +121 & 100 & N/A & 76 & 3 & 96, 168 \\
\hline Highly Accelerated Stress Test & HAST & +140 & 85 & 5.5V Static & 76 & 3 & 128 \\
\hline Temperature Cycling for Plastic Packages & TC & \[
\begin{array}{r}
-40 \text { to } \\
+125^{\circ} \mathrm{C}
\end{array}
\] & N/A & N/A & 76 & 3 & 500, 1000 Cycles \\
\hline Temperature Cycling for Ceramic Packages & TC2 & \[
\begin{array}{r}
-65 \text { to } \\
+150^{\circ} \mathrm{C}
\end{array}
\] & N/A & N/A & 45 & 5 & 500, 1000 Cycles \\
\hline Temperature Extreme Verification & TEV & Commercial Hot \& Cold 0 to \(+70^{\circ} \mathrm{C}\) & N/A & N/A & 116 & 2 & N/A \\
\hline
\end{tabular}

\section*{Tape and Reel Specifications}

\section*{Description}

Surface-mounted devices are packaged in embossed tape and wound onto reels for shipment in compliance with Electronics Industries Association Standard EIA-481 Rev. A.

\section*{Specifications}

\section*{Cover Tape}
- The cover tape may not extend past the edge of the carrier tapes
- The cover tape shall not cover any part of any sprocket hole.
- The seal of the cover tape to the carrier tape is uniform, with the seal extending over \(100 \%\) of the length of each pocket, on each side.

SOIC Devices

- The force to peel back the cover tape from the carrier tape shall be: 20 gms minimal, 70 gms nominal, 100 gms maximal, at a pullback speed of \(300 \pm 10 \mathrm{~mm} / \mathrm{min}\).

\section*{Loading the Reel}

Empty pockets between the first and last filled pockets on the tape are permitted within the following requirements:
- No two consecutive pockets may be left empty
- No more than a total of ten (10) empty pockets may be on a reel The surface-mount devices are placed in the carrier tape with the leads down, as shown in Figure 1.

\section*{PLCC and LCC Devices}


Figure 1. Part Orientation in Carrier Tape

\section*{Leaders and Trailers}

The carrier tape and the cover tape may not be spliced. Both tapes must be one single uninterrupted piece from end to end.
Bothends of the tape must have empty pockets meeting the following minimum requirements:
- Trailer end (inside hub of reel) is 300 mm minimum
- Leader end (outside of reel) is 500 mm min., 560 mm max.
- Unfilled leader and trailer pockets are sealed
- Leaders and trailers are taped to tape and hub respectively using masking tape

\section*{Packaging}
- Full reels contain a standard number of units (refer to Table 1)
- Reels may contain up to 3 inspection lots.
- Each reel is packed in an anti-static bag and then in its own individual box.
- Labels are placed on each reel asshown in Figure 2. The information on the label consists of a minimum of the following information, which complies with EIA 556, "Shipping and Receiving Transaction Bar Code Label Standard":
- Barcoded Information:

Customer PO number
Quantity
Date code
- Human Readable Only:

Package count (number of reels per order)
Description
"Cypress-San Jose"

Cypress p/n
Cypress CS number (if applicable)
Customer p/n
- Each box will contain an identical label plus an ESD warning label.

\section*{Ordering Information}

CY7Cxxx-yyzzz
\(\mathrm{xxx}=\) part type
\(y \mathrm{y}=\) speed
zzz = package, temperature, and options
SCT = soic, commercial temperature range
SIT = soic, inductrial temperature range
SCR = soic, commercial temperature plus burn-in
SIR = soic, industrial temperature plus burn-in
\(\mathrm{VCT}=\) soj, commercial temperature range
VIT \(=\) soj, industrial temperature range
\(\mathrm{VCR}=\mathrm{soj}\), commercial temperature plus burn-in
VIR \(=\) soj, industrial temperature plus burn-in
\(\mathrm{JCT}=\) plcc, commercial temperature range
\(\mathrm{JIT}=\) plcc, industrial temperature range
JCR \(=\) plcc, commercial temperature range plus burn-in
\(\mathrm{JIR}=\) plcc, industrial temperature range plus burn-in

\section*{Notes:}
1. The Tor R suffixwill not be marked on the device. Units will be marked the same as parts in a tube.
2. Order releases must be in full-reel multiples as listed in Table 1 .

Table 1. Parts Per Reel and Tape Specifications
\begin{tabular}{|c|c|c|c|c|c|}
\hline Package Type & Terminals & Carrier Width (mm) & Pocket Pitch & Parts Per Meter & Parts Per Full Reel \\
\hline \multirow{8}{*}{ PLCC } & 18 & 24 & 3 & 83.3 & 750 \\
\cline { 2 - 6 } & 20 & 16 & 3 & 83.3 & 750 \\
\cline { 2 - 6 } & \(28(\mathrm{~S})\) & 24 & 4 & 62.5 & 500 \\
\cline { 2 - 6 } & 32 & 24 & 4 & 62.5 & 500 \\
\cline { 2 - 6 } & 44 & 32 & 6 & 41.6 & 400 \\
\cline { 2 - 6 } & 52 & 32 & 6 & 41.6 & 400 \\
\cline { 2 - 6 } & 68 & 44 & 8 & 31.2 & 250 \\
\cline { 2 - 6 } & 84 & 44 & 8 & 31.2 & 250 \\
\hline \multirow{7}{*}{ SOIC } & 20 & 24 & 3 & 83.3 & 1,000 \\
\cline { 2 - 6 } & 24 & 24 & 3 & 83.3 & 1,000 \\
\cline { 2 - 6 } & 28 & 24 & 3 & 83.3 & 1,000 \\
\hline
\end{tabular}


Tape and Reel Shipping Medium


\section*{Label Placement}

Figure 2. Shipping Medium and Label Placement
INFO ..... 1
SRAMs ..... 2
PROMs ..... 3
PLDs ..... 4
FIFOs ..... 5
LOGIC ..... 6
DATACOM ..... 7
MODULES ..... 8
ECL ..... 9
BUS ..... 10
MILITARY ..... 1
TOOLS ..... 12
QUALITY15

\section*{Packages}

Thermal Management and Component Reliability
Package Diagrams ..... 14-11
Module Package Diagrams ..... 14-66
Sales Representatives and Distributors
Direct Sales OfficesNorth American Sales RepresentativesInternational Sales Representatives
Distributors

\section*{Thermal Management and Component Reliability}

One of the key variables determining the long-term reliability of an integrated circuit is the junction temperature of the device during operation. Long-term reliability of the semiconductor chip degrades proportionally with increasing temperatures following an exponential function described by the Arrhenius equation of
the kinetics of chemical reactions. The slope of the logarithmic plots is given by the activation energy of the failure mechanisms causing thermally activated wear out of the device (see Figure 1).
Typical activation energies for commonly observed failure mechanisms in CMOS devices are shown in Table 1.


Figure 1. Arrhenius plot, which assumes a failure rate proportional to \(\operatorname{EXP}\left(-\mathrm{E}_{\mathrm{A}} / \mathbf{k T}\right)\) where \(\mathbf{E}_{\mathrm{A}}\) is the activation energy for the particular failure mechanism

Table 1. Failure Mechanisms and Activation Energies in CMOS Devices
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Failure Mode } & \begin{tabular}{c} 
Approximate \\
Activation Energy (Eq)
\end{tabular} \\
\hline Oxide Defects & 0.3 eV \\
\hline Silicon Defects & 0.3 eV \\
\hline Electromigration & 0.6 eV \\
\hline Contact Metallurgy & 0.9 eV \\
\hline Surface Charge & \(0.5-1.0 \mathrm{eV}\) \\
\hline Slow Trapping & 1.0 eV \\
\hline Plastic Chemistry & 1.0 eV \\
\hline Polarization & 1.0 eV \\
\hline Microcracks & 1.3 eV \\
\hline Contamination & 1.4 eV \\
\hline
\end{tabular}

To reduce thermally activated reliability failures, Cypress Semiconductor has optimized both their low-power-generating CMOS device fabrication process and their high-heat-dissipation packaging capabilities. Table 2 demonstrates this optimized thermal performance by comparing bipolar, NMOS, and Cypress high-speed 1 K SRAM CMOS devices in their respective plastic packaging environments under standard operating conditions.

Table 2. Thermal Performance of Fast 1K SRAMs in Plastic Packages
\begin{tabular}{|l|c|c|c|}
\hline \multicolumn{1}{|c|}{ Technology } & Bipolar & NMOS & \begin{tabular}{c} 
Cypress \\
CMOS
\end{tabular} \\
\hline Device Number & 93422 & 9122 & 7 C 122 \\
\hline Speed (ns) & 30 & 25 & 25 \\
\hline \(\mathrm{I}_{\mathrm{CC}}(\mathrm{mA})\) & 150 & 110 & 60 \\
\hline \(\mathrm{~V}_{\mathrm{CC}}(\mathrm{V})\) & 5.0 & 5.0 & 5.0 \\
\hline \(\mathrm{P}_{\mathrm{MAX}}(\mathrm{mW})\) & 750 & 550 & 300 \\
\hline Package RTH (JA) \(\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)\) & 120 & 120 & 70 \\
\hline \begin{tabular}{l} 
Junction Temperature \\
at Datasheet \(\left.{ }^{\circ} \mathrm{C}\right)\) \\
\(\mathrm{PAAX}^{[1]}\)
\end{tabular} & 160 & 136 & 91 \\
\hline
\end{tabular}

During its normal operation, the Cypress 7C122 device experiences a \(91^{\circ} \mathrm{C}\) junction temperature, whereas competitive devices in their respective packaging environments see a \(45^{\circ} \mathrm{C}\) and \(69^{\circ} \mathrm{C}\) higher junction temperature. In terms of relative reliability life expectancy, assuming a \(1.0-\mathrm{eV}\) activation energy failure mechanism, this translates into an improvement in excess of two orders of magnitude ( 100 x ) over the bipolar 93422 device, and more than one order of magnitude (30x) over the NMOS 9122 device.

\section*{Thermal Performance Data of Cypress Component Packages}

The thermal performance of a semiconductor device in its package is determined by many factors, including package design and construction, packaging materials, chip size, chip thickness, chip attachment process and materials, package size, etc.

\section*{Thermal Resistance ( \(\theta_{\mathrm{JA}}, \theta_{\mathrm{JC}}\) )}

Thermal resistance is a measure of the ability of a package to transfer the heat generated by the device inside it to the ambient. For a packaged semiconductor device, heat generated near the junction of the powered chip causes the junction temperature to rise above the ambient temperature. The total thermal resistance is defined as
\[
\theta_{\mathrm{JA}}=\frac{\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{A}}}{\mathrm{P}}
\]
and \(\theta_{\mathrm{JA}}\) physically represents the temperature differential between the die junction and the surrounding ambient at a power dissipation of 1 watt.
The junction temperature is given by the equation
\[
\mathrm{T}_{\mathrm{J}}=\mathrm{T}_{\mathrm{A}}+\mathrm{P}\left[\theta_{\mathrm{JA}}\right]=\mathrm{T}_{\mathrm{A}}+\mathrm{P}\left[\theta_{\mathrm{JC}}+\theta_{\mathrm{CA}}\right]
\]
where
\[
\theta_{\mathrm{JC}}=\frac{\mathrm{T}_{\mathrm{J}}-\mathrm{T}_{\mathrm{C}}}{\mathrm{P}} \quad \text { and } \quad \theta_{\mathrm{CA}}=\frac{\mathrm{T}_{\mathrm{C}}-\mathrm{T}_{\mathrm{A}}}{P}
\]
\(\mathrm{T}_{\mathrm{A}}=\) Ambient temperature at which the device is operated; Most common standard temperature of operation is room temperature to \(70^{\circ} \mathrm{C}\).
\(\mathrm{T}_{\mathrm{J}}=\) Junction temperature of the IC chip.
\(\mathrm{T}_{\mathrm{C}}=\) Temperature of the case (package).
\(\mathbf{P}=\) Power at which the device operates.
\(\theta_{\mathrm{JC}}=\) Junction-to-case thermal resistance. This is mainly a function of the thermal properties of the materials constituting the package.
\(\theta_{\mathrm{JA}}=\) Junction-to-ambient thermal resistance. The junction-toambient environment is a still-air environment.
\(\theta_{\mathrm{CA}}=\) Case-to-ambient thermal resistance. This is mainly dependent on the surface area available for convection and radiation and the ambient conditions among other factors. This can be controlled at the user end by using heat sinks providing greater surface area and better conduction path or by air or liquid cooling.

\section*{Thermal Resistance: Finite Element Model}
\(\theta_{\mathrm{JC}}\) and \(\theta_{\mathrm{JA}}\) values given in the following figures and listed in the following tables have been obtained by simulation using the Finite element software ANSYS \({ }^{[2]}\). SDRC-IDEAS Pre and Post processor software \({ }^{[3]}\) was used to create the finite element model of the packages and the ANSYS input data required for analysis. SEMI Standard (Semiconductor Equipment and Materials International) method SEMI G30-88 \({ }^{[4]}\) states "heat sink" mounting technique to be the "reference" method for \(\theta_{\mathrm{JC}}\) estimation of ceramic packages. Accordingly, \(\theta_{\mathrm{JC}}\) of packages has been obtained by applying the boundary conditions that correspond to the heat sink mounted on the packages in the simulation.
For \(\theta_{\mathrm{JA}}\) evaluation, SEMI standard specification SEMI G38-87 suggests using a package-mounting arrangement that approximates the application environment. So, in evaluating the \(\theta_{\mathrm{JA}}\), package on-board configuration is assumed.

\section*{Notes:}

\footnotetext{
1. \(\mathrm{T}_{\text {ambient }}=70^{\circ} \mathrm{C}\)
2. ANSYS Finite Element Software User Guides
}
3. SDRC-IDEAS Pre and Post Processor User Guide
4. SEMI International Standards, Vol. 4, Packaging Handbook, 1989.

\section*{Model Description}
- One quarter of the package is mounted on a FR-4 PC board.
- Leads have been modeled as a continuous metallic plane, and equivalent thermal properties have been used to account for the plastic (or the glass in the case of ceramic packages) that fills the space between the leads.
- 1 W power dissipation over the entire chip is assumed.
- \(70^{\circ} \mathrm{C}\) ambient condition is considered.

\section*{Comparison of Simulation Data with Measured Data}

In the case of ceramic packages, it is not unusual to see significant differences in \(\theta_{\mathrm{JC}}\) values when a heat sink is used in the place of fluid bath. \({ }^{[5]}\) However, SEMI G30-88 test method recommends the heat sink configuration for \(\theta_{\text {JC }}\) evaluation.
\(\theta_{\mathrm{JA}}\) values from simulation compare within 12 percent of the measured values. \(\theta_{\mathrm{JA}}\) values obtained from simulation seem to be conservative with an accuracy of about +12 percent.
Measured values given in Table 3 used the Temperature Sensitive Parameter method described in MIL-STD-883C, method 1012.1. The junction-to-ambient measurement was made in a still-air environment where the device was inserted into a lowcost standard-device socket and mounted on a standard \(0.062^{\prime \prime}\) G10 PC board.

Table 3. 24-Lead Ceramic and Plastic DIPs
\begin{tabular}{|c|c|c|c|c|}
\hline & \multirow{3}{*}{\begin{tabular}{c} 
Cavity/PAD \\
Package
\end{tabular}} & \multicolumn{3}{|c|}{\(\theta_{\text {JA }}\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right.\) ) } \\
\cline { 3 - 5 } & Size (mils) & Measured & Simulation & \% Diff. \\
\hline 24LCDIP \(^{[6]}\) & \(170 \times 270\) & 64 & 67 & 5 \\
\hline 24LPDIP \(^{[7]}\) & \(160 \times 210\) & 72 & 82 & 12 \\
\hline
\end{tabular}

\section*{Thermal Resistance of Packages with Forced Convection Air Flow}

One of the methods adopted to cool the packages on PC boards at the system level is to used forced air (fans) specified in linear feet per minute or LFM. This helps reduce the device operating temperature by lowering the case to ambient thermal resistance. Available surface area of the package and the orientation of the package with respect to the air flow affect the reduction of thermal resistance that can be achieved. A general rule of thumb is:
- For plastic packages:
- 200 LFM air flow can reduce \(\theta_{\text {JA }}\) by 20 to \(25 \%\)
- 500 LFM air flow can reduce \(\theta_{\mathrm{JA}}\) by 30 to \(40 \%\)
- For ceramic packages:
- 200 LFM air flow can reduce \(\theta_{\text {JA }}\) by 25 to \(30 \%\)
- 500 LFM air flow can reduce \(\theta_{\text {JA }}\) by 35 to \(45 \%\)

If \(\theta_{\mathrm{JA}}\) for a package in still air (no air flow) is known, approximate values of thermal resistance at 200 LFM and 500 LFM can be estimated. For estimation, the factors given in Table 4 can be used as a guideline.

Table 4. Factors for Estimating Thermal Resistance
\begin{tabular}{|l|c|c|}
\hline Package Type & \begin{tabular}{c} 
Air Flow Rate \\
(LFM)
\end{tabular} & \begin{tabular}{c} 
Multiplication \\
Factor
\end{tabular} \\
\hline Plastic & 200 & 0.77 \\
\hline Plastic & 500 & 0.66 \\
\hline Ceramic & 200 & 0.72 \\
\hline Ceramic & 500 & 0.60 \\
\hline
\end{tabular}

\section*{Example:}
\(\theta_{\mathrm{JA}}\) for a plastic package in still air is given to be \(80^{\circ} \mathrm{C} / \mathrm{W}\). Using the multiplication factor from Table 4:
- \(\theta_{\mathrm{JA}}\) at 200 LFM is \((80 \times 0.77)=61.6^{\circ} \mathrm{C} / \mathrm{W}\)
- \(\theta_{\text {JA }}\) at 500 LFM is \((80 \times 0.66)=52.8^{\circ} \mathrm{C} / \mathrm{W}\)
\(\theta_{\mathrm{JA}}\) for a ceramic package in still air is given to be \(70^{\circ} \mathrm{C} / \mathrm{W}\). Using Table 4:
- \(\theta_{\mathrm{JA}}\) at 200 LFM is \((70 \times 0.72)=50.4^{\circ} \mathrm{C} / \mathrm{W}\)
- \(\theta_{\mathrm{JA}}\) at 500 LFM is \((70 \times 0.60)=42.0^{\circ} \mathrm{C} / \mathrm{W}\)

\section*{Presentation of Data}

The following figures and tables present the data taken using the aforementioned procedures. The thermal resistance values of Cy press standard packages are graphically illustrated in Figures 2 through 6. Each envelope represents a spread of typical Cypress integrated circuit chip sizes (upper boundary \(=5000 \mathrm{mils}^{2}\), lower boundary \(=100,000\) mils \(^{2}\) ) in their thermally optimized packaging environments. These graphs should be used in conjunction with Table 10, which lists the die sizes of Cypress devices.
Tables 5 through 9 give the thermal resistance values for other package types not included in the graphs. The letter in the head\(\operatorname{er}(D, P, J\), etc.) of these tables refer to the package designators as detailed in the Package Diagrams section of this catalog. The numeric values given in the table (e.g., 20.3) refer to the lead count (20) and package width in inches (.3). If no decimal appears, the reader must refer to the package diagrams.

\section*{Packaging Materials}

Cypress plastic packages incorporate
- High thermal conductivity copper lead frame
- Molding compound with high thermal conductivity
- Gold bond wires

Cypress cerDIP packages incorporate
- High conductivity alumina substrates
- Silver-filled glass as die attach material
- Alloy 42-lead frame
- Aluminum bond wires
- Silver-filled conductive epoxy as die attach material

\section*{Notes:}
5. "Thermal resistance measurements and finite calculations for ceramic hermetic packages." James N. Sweet et. al., SEMI-Therm, 1990.
6. \(24 \mathrm{LCDIP}=24\)-lead cerDIP
7. 24 LPDIP \(=24\)-lead plastic DIP


Figure 2. Thermal Resistance of Cypress Plastic DIPs (Package type "P")


DIE SIZE
----- 5000 SQ. MIL
—— 30000 SQ. MIL
- - - 100000 SQ. MIL

Figure 3. Thermal Resistance of Cypress Ceramic DIPs (Package type "D" and "W")

DIE SIZE
....... \(\quad 5000\) SQ. MIL
— 30000 SQ. MIL
- - - 100000 SQ. MIL

. 10000 SQ.

Figure 4. Thermal Resistance of Cypress PLCCs (Package type "J")


DIE SIZE
- - - - - \(\quad 5000\) SQ. MIL
— 30000 SQ. MIL
- - - 100000 SQ. MIL

Figure 5. Thermal Resistance of Cypress LCCs (Package type "L" and "Q")

DIE SIZE
… . . . 5000 SQ. MIL — 30000 SQ. MIL _ - - 100000 SQ. MIL


Figure 6. Thermal Resistance of Cypress Ceramic PGAs
Table 5. Plastic Surface Mount SOIC, SOJ \({ }^{[8,9]}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Package Type \\
"S" and "V"
\end{tabular} & \begin{tabular}{c} 
Paddle Size \\
(mil)
\end{tabular} & LF Material & \begin{tabular}{c} 
Die Size \\
(mil)
\end{tabular} & \begin{tabular}{c} 
Die Area \\
(sq. mil)
\end{tabular} & \begin{tabular}{c}
\(\theta_{\text {JC }}\) \\
\(\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right.\) )
\end{tabular} & \begin{tabular}{c}
\(\theta_{\text {JA }}\) \\
\(\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right.\) still air)
\end{tabular} \\
\hline 16 & \(140 \times 170\) & Copper & \(98 \times 84\) & 8,232 & 19.0 & 120 \\
\hline 18 & \(140 \times 170\) & Copper & \(98 \times 84\) & 8,232 & 18.0 & 116 \\
\hline 20 & \(180 \times 250\) & Copper & \(145 \times 213\) & 30,885 & 17.0 & 105 \\
\hline 24 & \(180 \times 250\) & Copper & \(145 \times 213\) & 30,885 & 15.4 & 88 \\
\hline 24 & \(170 \times 500\) & Copper & \(141 \times 459\) & 64,719 & 14.9 & 85 \\
\hline 28 & \(170 \times 500\) & Copper & \(145 \times 213\) & 30,885 & 16.7 & 84 \\
\hline 28 & \(170 \times 500\) & Copper & \(141 \times 459\) & 64,719 & 14.4 & 80 \\
\hline
\end{tabular}

Table 6. Plastic Quad Flatpacks
\begin{tabular}{|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Package Type \\
"N"
\end{tabular} & LF Material & \begin{tabular}{c} 
Paddle Size \\
\((\mathbf{m i l})\)
\end{tabular} & \begin{tabular}{c} 
Die Size \\
\((\mathbf{m i l})\)
\end{tabular} & \begin{tabular}{c}
\(\theta_{\mathbf{J C}}\) \\
\(\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)\)
\end{tabular} & \begin{tabular}{c}
\(\theta_{\text {JA }}\) \\
\(\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right.\) still air \()\)
\end{tabular} \\
\hline 100 & Copper & \(310 \times 310\) & \(235 \times 235\) & 17 & 51 \\
\hline 144 & Copper & \(310 \times 310\) & \(235 \times 235\) & 18 & 41 \\
\hline 160 & Copper & \(310 \times 310\) & \(230 \times 230\) & 18 & 40 \\
\hline 184 & Copper & \(460 \times 460\) & \(322 \times 311\) & 15 & 38.5 \\
\hline 208 & Copper & \(400 \times 400\) & \(290 \times 320\) & 16 & 39 \\
\hline
\end{tabular}

Notes:
8. The data in Table 6 was simulated for SOIC packaging.
9. SOICs and SOJs have very similar thermal resistance characteristics. The thermal resistance values given above apply to SOJ packages also.

Table 7. Ceramic Quad Flatpacks
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Package Type \\
"H" and "Y"
\end{tabular} & \begin{tabular}{c} 
Cavity Size \\
(mil)
\end{tabular} & LF Material & \begin{tabular}{c} 
Die Size \\
(mil)
\end{tabular} & \begin{tabular}{c} 
Die Area \\
(sq. mil)
\end{tabular} & \begin{tabular}{c}
\(\theta_{\mathbf{J C}}\) \\
\(\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)\)
\end{tabular} & \begin{tabular}{c}
\(\theta_{\mathbf{J A}}\) \\
\(\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right.\) still air)
\end{tabular} \\
\hline 28 & \(250 \times 250\) & Alloy 42 & \(123 \times 162\) & 19,926 & 9.2 & 96 \\
\hline 28 & \(250 \times 250\) & Alloy 42 & \(150 \times 180\) & 27,000 & 8.9 & 93 \\
\hline 32 & \(316 \times 317\) & Alloy 42 & \(198 \times 240\) & 47,520 & 7.5 & 72 \\
\hline 44 & \(400 \times 400\) & Alloy 42 & \(310 \times 250\) & 77,500 & 5.9 & 55 \\
\hline 52 & \(400 \times 400\) & Alloy 42 & \(250 \times 310\) & 77,500 & 5.9 & 55 \\
\hline 68 & \(400 \times 400\) & Alloy 42 & \(310 \times 250\) & 77,500 & 5.4 & 33 \\
\hline 84 & \(450 \times 450\) & Alloy 42 & \(310 \times 250\) & 77,500 & 5.4 & 29 \\
\hline
\end{tabular}

Table 8. Cerpacks
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{c} 
Package Type \\
"K" and \({ }^{\text {"T" }}\)
\end{tabular} & \begin{tabular}{c} 
Cavity Size \\
(mil)
\end{tabular} & \begin{tabular}{c} 
Leadframe \\
Material
\end{tabular} & \begin{tabular}{c} 
Die Size \\
(mil)
\end{tabular} & \begin{tabular}{c} 
Die Area \\
(sq. mil)
\end{tabular} & \begin{tabular}{c}
\(\theta_{\mathbf{J J C}}\) \\
\(\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)\)
\end{tabular} & \begin{tabular}{c}
\(\theta_{\text {JA }}\) \\
\(\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right.\) still air)
\end{tabular} \\
\hline 16 & \(140 \times 200\) & Alloy 42 & \(100 \times 118\) & 11,800 & 10 & 107 \\
\hline 18 & \(140 \times 200\) & Alloy 42 & \(100 \times 118\) & 11,800 & 10 & 104 \\
\hline 20 & \(180 \times 265\) & Alloy 42 & \(128 \times 170\) & 21,760 & 9 & 102 \\
\hline 24 & \(170 \times 270\) & Alloy 42 & \(128 \times 170\) & 21,760 & 10 & 102 \\
\hline 28 & \(210 \times 210\) & Alloy 42 & \(150 \times 180\) & 27,000 & 9 & 98 \\
\hline 32 & \(210 \times 550\) & Alloy 42 & \(141 \times 459\) & 64,719 & 7 & 81 \\
\hline
\end{tabular}

Table 9. Miscellaneous Packaging
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Package Type & \begin{tabular}{c} 
Cavity Size \\
(mil)
\end{tabular} & \begin{tabular}{c} 
Leadframe \\
Material
\end{tabular} & \begin{tabular}{c} 
Die Size \\
(mil)
\end{tabular} & \begin{tabular}{c} 
Die Area \\
(sq. mil)
\end{tabular} & \begin{tabular}{c}
\(\theta_{\mathbf{J C}}\) \\
\(\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right)\)
\end{tabular} & \begin{tabular}{c}
\(\theta_{\mathrm{JA}}\) \\
\(\left({ }^{\circ} \mathbf{C} / \mathbf{W}\right.\) still air)
\end{tabular} \\
\hline 24 VDIP \({ }^{[10]}\) & \(500 \times 275\) & Alloy 42 & \(145 \times 213\) & 30,885 & 6 & 57 \\
\hline 68 CPGA \(^{[11]}\) & \(350 \times 350\) & Kovar Pins & \(323 \times 273\) & 88,179 & 3 & 28 \\
\hline
\end{tabular}

Notes:
10. VDIP = "PV" package.
11. \(\mathrm{CPGA}=\) " G " package .

Table 10. Die Sizes of Cypress Devices
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Part Number } & Size (mil \({ }^{2}\) ) \\
\hline SRAMs & \\
\hline CY2147 & 10132 \\
\hline CY2148 & 9983 \\
\hline CY2149 & 9983 \\
\hline CY27LS03 & 4130 \\
\hline CY27S03A & 4130 \\
\hline CY27S07A & 4130 \\
\hline CY6116 & 20007 \\
\hline CY6116A & 20007 \\
\hline CY6117 & 20007 \\
\hline CY6117A & 20007 \\
\hline CY74S189 & 4130 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Part Number } & Size (mil \({ }^{2}\) ) \\
\hline CY7B134 & 76152 \\
\hline CY7B1342 & 76152 \\
\hline CY7B135 & 76152 \\
\hline CY7B138 & 76152 \\
\hline CY7B139 & 76152 \\
\hline CY7B144 & 76152 \\
\hline CY7B145 & 76152 \\
\hline CY7B160 & 27244 \\
\hline CY7B161 & 27244 \\
\hline CY7B162 & 27244 \\
\hline CY7B164 & 27244 \\
\hline CY7B166 & 27244 \\
\hline
\end{tabular}

\section*{Thermal Management}

Table 10. Die Sizes of Cypress Devices (continued)
\begin{tabular}{|c|c|c|c|}
\hline Part Number & Size ( \(\mathrm{mil}^{\mathbf{2}}\) ) & Part Number & Size (mil \({ }^{2}\) ) \\
\hline CY7B173 & 102200 & CY7C171A & 21228 \\
\hline CY7B174 & 102200 & CY7C172 & 21228 \\
\hline CY7B180 & 54600 & CY7C172A & 21228 \\
\hline CY7B181 & 54600 & CY7C183 & 65636 \\
\hline CY7B185 & 27244 & CY7C184 & 65636 \\
\hline CY7B186 & 27244 & CY7C185 & 30885 \\
\hline CY7B191 & 73152 & CY7C186 & 30885 \\
\hline CY7B192 & 73152 & CY7C187 & 30885 \\
\hline CY7B194 & 73152 & CY7C189 & 4130 \\
\hline CY7C122 & 6300 & CY7C190 & 4130 \\
\hline CY7C123 & 6300 & CY7C191 & 68150 \\
\hline CY7C128 & 20007 & CY7C192 & 68150 \\
\hline CY7C128A & 17400 & CY7C194 & 68150 \\
\hline CY7C130 & 36636 & CY7C196 & 68150 \\
\hline CY7C131 & 36636 & CY7C197 & 68150 \\
\hline CY7C132 & 36636 & CY7C198 & 68150 \\
\hline CY7C136 & 36636 & CY7C199 & 68150 \\
\hline CY7C140 & 36636 & CY7C191 (RAM2.5) & 51590 \\
\hline CY7C141 & 36636 & CY7C192 (RAM2.5) & 51590 \\
\hline CY7C142 & 36636 & CY7C194 (RAM2.5) & 51590 \\
\hline CY7C146 & 36636 & CY7C196 (RAM2.5) & 51590 \\
\hline CY7C147 & 10132 & CY7C197 (RAM2.5) & 51590 \\
\hline CY7C148 & 9983 & CY7C198 (RAM2.5) & 51590 \\
\hline CY7C149 & 9983 & CY7C199 (RAM2.5) & 51590 \\
\hline CY7C150 & 6634 & CY7C9122 & 6300 \\
\hline CY7C157 & 86460 & CY93422A & 6300 \\
\hline CY7C161A & 30885 & PROMs & \\
\hline CY7C162A & 30885 & CY7C225 & 11815 \\
\hline CY7C164A & 30885 & CY7C235 & 13900 \\
\hline CY7C166A & 30885 & CY7C245 & 19321 \\
\hline CY7C167 & 21228 & CY7C245A & 9394 \\
\hline CY7C167A & 21228 & CY7C251 & 49536 \\
\hline CY7C168 & 21228 & CY7C254 & 49536 \\
\hline CY7C168A & 21228 & CY7C261 & 28290 \\
\hline CY7C169 & 21228 & CY7C263 & 28290 \\
\hline CY7C169A & 21228 & CY7C264 & 28290 \\
\hline CY7C170 & 21228 & CY7C265 & 28290 \\
\hline CY7C170A & 21228 & CY7C266 & 28290 \\
\hline CY7C17i & 21228 & CY7C268 & 29400 \\
\hline
\end{tabular}

Table 10. Die Sizes of Cypress Devices (continued)
\begin{tabular}{|c|c|c|c|}
\hline Part Number & Size ( \(\mathrm{mil}^{2}\) ) & Part Number & Size (mil \({ }^{\text {2 }}\) ) \\
\hline CY7C269 & 29400 & PALC16R8 & 9700 \\
\hline CY7C271 & 38750 & PALC22V10 & 19926 \\
\hline CY7C274 & 38750 & PALC22V10B & 13284 \\
\hline CY7C277 & 38750 & PALC22V10D & 12954 \\
\hline CY7C279 & 38750 & PLD20G10C & 18834 \\
\hline CY7C281 & 13900 & PLDC18G8 & 7744 \\
\hline CY7C282 & 13900 & PLDC20G10 & 19926 \\
\hline CY7C285 & 43875 & PLDC20G10B & 13284 \\
\hline CY7C286 & 43875 & PLDC20RA10 & 13284 \\
\hline CY7C287 & 43875 & FIFOs & \\
\hline CY7C289 & 43875 & CY3341 & 8064 \\
\hline CY7C291 & 19182 & CY7C401 & 8064 \\
\hline CY7C291A & 9394 & CY7C402 & 8064 \\
\hline CY7C292 & 19321 & CY7C403 & 8064 \\
\hline CY7C292A & 9394 & CY7C404 & 8064 \\
\hline CY7C293A & 9394 & CY7C408A & 16268 \\
\hline \multicolumn{2}{|l|}{PLDs} & CY7C409A & 16268 \\
\hline CY7C330 & 20088 & CY7C420 & 41019 \\
\hline CY7C331 & 16536 & CY7C421 & 41019 \\
\hline CY7C332 & 19116 & CY7C424 & 41019 \\
\hline CY7C335 & 23111 & CY7C425 & 41019 \\
\hline CY7C341 & 136320 & CY7C428 & 41019 \\
\hline CY7C342 & 83475 & CY7C429 & 41019 \\
\hline CY7C342B & 49104 & CY7C432 & 50040 \\
\hline CY7C343 & 43953 & CY7C433 & 50040 \\
\hline CY7C344 & 21977 & CY7C439 & 47160 \\
\hline CY7C361 & 25872 & CY7C441 & 44756 \\
\hline PAL16L8 & 13552 & CY7C443 & 44756 \\
\hline PAL16R4 & 13552 & CY7C451 & 44756 \\
\hline PAL16R6 & 13552 & CY7C453 & 44756 \\
\hline PAL16R8 & 13552 & CY7C460 & 89445 \\
\hline PAL22V10C & 18834 & CY7C462 & 89445 \\
\hline PAL22VP10C & 18834 & CY7C464 & 89445 \\
\hline PALC16L8 & 9700 & CY7C470 & 89445 \\
\hline PALC16R4 & 9700 & CY7C472 & 89445 \\
\hline PALC16R6 & 9700 & CY7C474 & 89445 \\
\hline
\end{tabular}

Table 10. Die Sizes of Cypress Devices (continued)
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Part Number } & Size (mil \({ }^{2}\) ) \\
\hline Logic & \\
\hline CY2909A & 7968 \\
\hline CY2910A & 21750 \\
\hline CY2911A & 7968 \\
\hline CY7C2901 & 11800 \\
\hline CY7C510 & 30704 \\
\hline CY7C516 & 29000 \\
\hline CY7C517 & 29000 \\
\hline CY7C901 & 11800 \\
\hline CY7C909 & 7968 \\
\hline CY7C910 & 21750 \\
\hline CY7C9101 & 36108 \\
\hline CY7C911 & 7968 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|}
\hline \multicolumn{1}{|c|}{ Part Number } & Size (mil \({ }^{2}\) ) \\
\hline ECL & \\
\hline CY100E301L & 14875 \\
\hline CY100E302L & 14875 \\
\hline CY100E422 & 6960 \\
\hline CY100E474 & 10830 \\
\hline CY100E494 & 29575 \\
\hline CY10E301L & 14875 \\
\hline CY10E302L & 14875 \\
\hline CY10E422 & 6960 \\
\hline CY10E474 & 10830 \\
\hline CY10E494 & 29575 \\
\hline Bus Interface & \\
\hline CY7C964 & 21460 \\
\hline VAC068 & 101060 \\
\hline VIC068A & 103620 \\
\hline VIC64 & 103620 \\
\hline
\end{tabular}

Document \#: 38-00190

\title{
Package Diagrams
}

\section*{Plastic Pin Grid Arrays}

145-Pin Plastic Grid Array (Cavity Up) B144


\section*{Ceramic Dual-In-Line Packages}


18-Lead (300-Mil) CerDIP D4
MIL-STD-1835 D-8 Config. A


20-Lead (300-Mil) CerDIP D6
MIL-STD-1835 D-8 Config. A


22-Lead (400-Mil) CerDIP D8
MIL-STD-1835 D-7 Config. A


Package Diagrams

\section*{Ceramic Dual-In-Line Packages (continued)}

22-Lead (300-Mil) CerDIP D10


24-Lead (300-Mil) CerDIP D14
MIL-STD-1835 D-9 Config. A


24-Lead (600-Mil) CerDIP D12
MIL-STD-1835 D-3 Config. A


\section*{28-Lead (600-Mil) CerDIP D16} MIL-STD-1835 D-10 Config. A


\section*{Ceramic Dual-In-Line Packages (continued)}

\section*{40-Lead (600-Mil) CerDIP D18}

MIL-STD-1835 D-5 Config. A


32-Lead (600-Mil) CerDIP D20


28-Lead (300-Mil) CerDIP \(\mathbf{D 2}\)
MIL-STD-1835 D-15 Config. A


\section*{Ceramic Dual-In-Line Packages (continued)}


\section*{52-Lead (900-Mil) Bottombraze DIP D28}


\section*{Ceramic Dual-In-Line Packages (continued)}

\section*{64-Lead (900-Mil) Bottombraze DIP D30}


32-Lead (300-Mil) CerDIP D32
24-Lead (400-Mil) Sidebraze DIP D40
MIL-STD-1835 D-11 Config. A


\section*{Ceramic Dual-In-Line Packages (continued)}

\section*{28-Lead (400-Mil) Sidebraze DIP D41}

DIMENSIDNS IN INCHES
\(\frac{\text { MIN. }}{\text { MAX }}\)


28-Lead (400-Mil) CerDIP D42


32-Lead (400-Mil) CerDIP D44


\section*{32-Lead (400-Mil) Sidebraze DIP D46}


Ceramic Dual-In-Line Packages (continued)
32-Lead (600-Mil) Sidebraze DIP D50


\section*{Ceramic Flatpacks}

16-Lead Rectangular Flatpack F69
18-Lead Rectangular Flatpack F70
MIL-STD-1835 F-5 Config. B


\section*{Ceramic Flatpacks (continued)}

20-Lead Rectangular Flatpack F71


32-Lead Rectangular Flatpack F75

24-Lead Rectangular Flatpack F73
MIL-STD-1835 F-6 Config. B


42-Lead Rectangular Flatpack F76


\section*{Ceramic Flatpacks (continued)}

\section*{48-Lead Quad Flatpack \(F 78\)}

DIMENSIUNS IN INCHES
\(\frac{\text { MIN }}{\text { MAX }}\)


64-Lead Quad Flatpack F90


\section*{Ceramic Pin Grid Arrays}

68-Pin Grid Array (Cavity Down) G68


84-Pin Grid Array (Cavity Up) G84


\section*{Ceramic Pin Grid Arrays (continued)}

145-Pin Grid Array (Cavity Up) G145


207-Pin Grid Array (Cavity Down) G207


\section*{Ceramic Windowed J-Leaded Chip Carriers}

28-Pin Windowed Leaded Chip Carrier H64


\section*{Ceramic Windowed J-Leaded Chip Carriers (continued)}

44-Pin Windowed Leaded Chip Carrier H67


VIEW A

\section*{Ceramic Windowed J-Leaded Chip Carriers (continued)}

\section*{68-Pin Windowed Leaded Chip Carrier H81}


\section*{Ceramic Windowed J-Leaded Chip Carriers (continued)}

\section*{84-Lead Windowed Leaded Chip Carrier H84}


\title{
Plastic Leaded Chip Carriers
}

\section*{20-Lead Plastic Leaded Chip Carrier J61}

DIMENSIDNS IN INCHES \(\frac{\text { MIN. }}{\text { MAX }}\)


28-Lead Plastic Leaded Chip Carrier J64

\section*{DIMENSIDNS IN INCHES MIN.}

32-Lead Plastic Leaded Chip Carrier J65

DIMENSIUNS IN INCHES \(\frac{\text { MIN. }}{\text { MAX. }}\)



\section*{Plastic Leaded Chip Carriers (continued)}

\section*{52-Lead Plastic Leaded Chip Carrier J69}


68-Lead Plastic Leaded Chip Carrier J81


84-Lead Plastic Leaded Chip Carrier J83

DIMENSIDNS IN INCHES \(\frac{\text { MIN. }}{\text { MAX. }}\)


\section*{Cerpacks}

\section*{24-Lead Square Cerpack K63}

18-Lead Rectangular Cerpack K70
MIL-STD-1835 F-10 Config. A


16-Lead Rectangular Cerpack K69
MIL-STD-1835 F-5 Config. A


20-Lead Rectangular Cerpack K71
MIL-STD-1835 F-9 Config. A


\section*{Cerpacks (continued)}

24-Lead Rectangular Cerpack K73
MIL-STD-1835 F-6 Config. A


\section*{32-Lead Rectangular Cerpack K75}


28-Lead Rectangular Cerpack K74
MIL-STD-1835 F-11 Config. A

DIMENSIONS IN INCHES
\(\frac{M 1 N}{M A X}\)


28-Lead Rectangular Cerpack K80


Package Diagrams

\section*{Ceramic Leadless Chip Carriers}

32-Lead Leadless Chip Carrier LA5


20-Pin Rectangular Leadless Chip Carrier L51 MIL-STD-1835 C-13


18-Pin Rectangular Leadless Chip Carrier L50 MIL-STD-1835 C-10A


22-Pin Rectangular Leadless Chịp Carrier L52


\section*{Ceramic Leadless Chip Carriers (continued)}

24-Pin Rectangular Leadless Chip Carrier L53

32-Pin Rectangular Leadless Chip Carrier L55 MIL-STD-1835 C-12


28-Pin Rectangular Leadless Chip Carrier L54 MIL-STD-1835 C-11A


20-Pin Square Leadless Chip Carrier L61
MIL-STD-1835 C-2A


Package Diagrams

\section*{Ceramic Leadless Chip Carriers (continued)}


48-Square Leadless Chip Carrier L68


SEMICONDUCTOR

\section*{Ceramic Leadless Chip Carriers (continued)}

52-Square Leadless Chip Carrier L69



68-Square Leadless Chip Carrier L81
MIL-STD-1835 C-7

dimensians in inches
\(\frac{\text { MIN. }}{\text { MAX. }}\)


\section*{Plastic Quad Flatpacks}

44-Lead Plastic Quad Flatpack N44


\section*{Plastic Quad Flatpacks (continued)}

64-Lead Plastic Quad Flatpack N64

dIMENSIDNS IN MILLIMETERS LEAD CIPLANARITY 0.102 MAX.


\section*{Plastic Quad Flatpacks (continued)}

64-Lead Plastic Thin Quad Flatpack N65


\section*{Plastic Quad Flatpacks (continued)}

80-Lead Plastic Quad Flatpack N80


DIMENSIINS ARE IN MILLIMETERS
LEAD CEPLANARITY 0.102 MAX.


\section*{Plastic Quad Flatpacks (continued)}

160-Lead Plastic Quad Flatpack N160


Plastic Quad Flatpacks (continued)

\section*{160-Lead Plastic Quad Flatpack with Molded Carrier Ring N161}



SECTIDN B-B

\section*{Plastic Dual-In-Line Packages}

16-Lead (300-Mil) Molded DIP P1


DIMENSIDNS IN INCHES MIN.


18-Lead (300-Mil) Molded DIP P3


20-Lead (300-Mil) Molded DIP P5


\section*{Plastic Dual-In-Line Packages (continued)}

\section*{22-Lead (400-Mil) Molded DIP P7}


DIMENSIONS IN INCHES \(\frac{\text { MIN. }}{\text { MAX. }}\)


22-Lead (300-Mil) Molded DIP P9


24-Lead (600-Mil) Molded DIP P11


DIMENSIGNS IN INCHES MIN.


Package Diagrams

\section*{Plastic Dual-In-Line Packages (continued)}

\section*{24-Lead (300-Mil) Molded DIP P13/P13A}


28-Lead (600-Mil) Molded DIP P15

dimensians in inches min, \(\frac{\text { MAX. }}{}\)


40-Lead (600-Mil) Molded DIP P17


\section*{Plastic Dual-In-Line Packages (continued)}

\section*{32-Lead (600-Mil) Molded DIP P19}

dimensians in inches \(\frac{\text { Min }}{\text { MAX. }}\)


28-Lead (300-Mil) Molded DIP P21


48-Lead (600-Mil) Molded DIP P25


DIMENSIONS IN INCHES \(\frac{\text { MIN }}{\text { MAX. }}\)


\section*{Plastic Dual-In-Line Packages (continued)}

\section*{64-Lead (900-Mil) Molded DIP P29}


\section*{dimensians in inches min.}


32-Lead (300-Mil) Molded DIP P31

\[
\text { DIMENSIINS IN INCHES } \frac{\text { MIN. }}{\text { MAX }}
\]

28-Lead (400-Mil) Molded DIP P41


DIMENSIDNS IN INCHES \(\frac{\text { MIN. }}{\text { MAX. }}\)


Plastic Dual-In-Line Packages (continued)

\section*{32-Lead (400-Mil) Molded DIP P43}

dimensians in inches min.


Ceramic Windowed Leadless Chip Carriers
32-Pin Windowed Rectangular Leadless Chip Carrier Q55 MIL-STD-1835 C-12


20-Pin Windowed Square Leadless Chip Carrier Q61 MIL-STD-1835 C-2A


\section*{Ceramic Windowed Leadless Chip Carriers (continued)}

28-Pin Windowed Leadless Chip Carrier Q64 MIL-STD-1835 C-4

44-Pin Windowed Leadless Chip Carrier Q67
MIL-STD-1835 C-5


Ceramic Windowed Pin Grid Arrays
68-Pin Windowed PGA Ceramic R68


\section*{Ceramic Windowed Pin Grid Arrays (continued) 84-Lead Windowed Pin Grid Array R84}


\section*{Plastic Small Outline ICs}

16-Lead Molded SOIC S1


\section*{Plastic Small Outline ICs (continued)}

\section*{18-Lead (300-Mil) Molded SOIC S3}


20-Lead (300-Mil) Molded SOIC S5


DIMENSIDNS IN INCHES \(\frac{M I N .}{M A X}\).
LEAD CDPLANARITY 0.004 MAX.


\section*{Plastic Small Outline ICs (continued)}

\section*{24-Lead (300-Mil) Molded SOIC S13}


\section*{28-Lead (300-Mil) Molded SOIC S21}


DIMENSIUNS IN INCHES \(\frac{\text { MIN. }}{\text { MAX }}\)
LEAD CIPLANARITY 0.004 MAX.


\section*{Plastic Small Outline ICs (continued)}

28-Lead (400-Mil) Molded SOIC S28


32-Lead (400-Mil) Molded SOIC S33


DETAIL A EXTERNAL LEAD DESIUN


QPTIDN 1


QPTIDN ?


\section*{Windowed Cerpacks}

\section*{24-Lead Windowed Cerpack T73}


28-Lead Windowed Cerpack T74


Windowed Cerpacks (continued)
68-Lead Windowed Cerquad Flatpack T91


\section*{Ceramic Quad Flatpacks}

\section*{64-Lead Ceramic Quad Flatpack (Cavity Up) U65}


\section*{Ceramic Quad Flatpacks (continued)}

\section*{160-Lead Ceramic Quad Flatpack (Cavity Up) U162}


Package Diagrams

\section*{Plastic Small Outline J-Bend}

\section*{20-Lead (300-Mil) Molded SOJ V5}


\section*{28-Lead (300-Mil) Molded SOJ V21}


\section*{DIMENSIDNS IN INCHES \(\frac{M I N .}{M A X}\)}


\section*{Plastic Small Outline J-Bend (continued)}

\section*{28-Lead (400-Mil) Molded SOJ V28}

\section*{DIMENSIDNS IN INCHES MIN.}


DETAIL A EXTERNAL LEAD DESIGN


32-Lead (300-Mil) Molded SOJ V32


DIMENSILNS IN INCHESS \(\frac{\text { MIN. }}{\text { MAX. }}\)


\section*{Plastic Small Outline J-Bend (continued)}

32-Lead (400-Mil) Molded SOJ V33


DETAIL A
EXTERNAL LEAD DESIGN


\section*{Ceramic Windowed Dual-In-Line Packages}

20-Lead (300-Mil) Windowed CerDIP W6 MIL-STD-1835 D-8 Config. A


24-Lead (600-Mil) Windowed CerDIP W12
MIL-STD-1835 D-3 Config. A


\title{
Ceramic Windowed Dual-In-Line Packages (continued)
}

\section*{24-Lead (300-Mil) Windowed CerDIP W14} MIL-STD-1835 D-9 Config. A


28-Lead (600-Mil) Windowed CerDIP W16
MIL-STD-1835 D-10 Config. A


\section*{Ceramic Windowed Dual-In-Line Packages (continued)}

40-Lead (600-Mil) Windowed CerDIP W18


32-Lead (600-Mil) Windowed CerDIP W20


\section*{Ceramic Windowed Dual-In-Line Packages (continued)}

\section*{28-Lead (300-Mil) Windowed CerDIP W22}

MIL-STD-1835 D-15 Config. A


\section*{32-Lead (300-Mil) Windowed CerDIP W32}


\section*{Ceramic J-Leaded Chip Carriers}

\section*{52-Pin Ceramic Leaded Chip Carrier Y59}


\section*{Ceramic J-Leaded Chip Carriers (continued)}

\section*{28-Pin Ceramic Leaded Chip Carrier Y64}


\section*{Ceramic J-Leaded Chip Carriers (continued)}

\section*{84-Pin Ceramic Leaded Chip Carrier Y84}
DIMENSIDNS IN INCHES
MIN.

\(\frac{\text { MIN }}{\text { M }}\),


Typical Marking for DIP Packages (P and D Type)



60-Pin Ceramic DIP Module HD06


28-Pin Ceramic DIP Module HD10


32-Pin DIP Module HD12


DIMENSIONS IN INCHES
\(\frac{\text { MIN. }}{\text { MAX }}\)


\section*{66-Pin PGA Module HG01}


Module Package Diagrams

401-Pin PGA Module HG02


TIP VIEW


END VIEW

BOTTIM VIEW


SHOULDER DETAIL
(TYPICAL 4 CIRNER PINS)

SEMICONDUCTOR

\section*{401-Pin PGA Module HG03}


BOTTAM VIEW

\(\frac{\text { SHDUL DER METAIL }}{\text { (TTPICALL } 4 \text { CORNER PTISS) }}\)

88-Pin Vertical DIP Module HV02


32-Pin DIP Module PD01


32-Pin DIP Module PD02


Module Package Diagrams

32-Pin DIP Module PD03


40-Pin DIP Module PD04


DIMENSIONS IN INCHES
\(\frac{\text { MIN. }}{\text { MAX }}\)

\section*{32-Pin DIP Module PD05}


DIMENSIONS IN INCHES
\(\frac{\mathrm{MIN} .}{\mathrm{MAX} \text {. }}\)

60-Pin DIP Module PD06


36-Pin Flat SIP Module PF04


36-Pin Flat SIP Module PF05


44-Pin Flat SIP Module PF06


64-Pin Plastic SIMM Module PM01


SEMICONDUCTOR
Module Package Diagrams


64-Pin SIMM Module PM03


72-Pin Plastic SIMM Module PM04


128-Pin Dual-Readout SIMM Module PM05


128-Pin Dual-Readout SIMM Module PM06


128-Pin Dual-Readout SIMM Module PM07


SEMICONDUCTOR
128-Pin Dual-Readout SIMM PM08


64-Pin Plastic Angled SIMM Module PN01


\section*{64-Pin Plastic Angled SIMM Module PN02}


64-Pin Plastic Angled SIMM Module PN03


72-Pin Plastic Angled SIMM Module PN04


44-Pin Plastic SIP Module PS04


DIMENSIONS IN INCHES
\(\frac{\text { MIN. }}{\text { MAX. }}\)

36-Pin SIP Module PS05


SEMICONDUCTOR
36-Pin SIP Module PS06


44-Pin Plastic SIP Module PS07


36-Pin SIP Module PS08


\section*{40-Pin VDIP Module PV01}


36-Pin Plastic Vertical DIP Module PV03


40-Pin Plastic VDIP Module PV04



DIMENSIONS IN INCHES
\[
\frac{\text { MIN. }}{\text { MAX. }}
\]

64-Pin Plastic ZIP Module PZ01

\section*{Bottom View}


DIMENSIONS IN INCHES
\(\frac{\text { MIN. }}{\text { MAX. }}\)

60-Pin Plastic ZIP Module PZ02


DIMENSIONS IN INCHES
\(\frac{\text { MIN. }}{\text { MAX. }}\)

64-Pin Plastic ZIP Module PZ03


\section*{60-Pin ZIP Module PZ04}


56-Pin ZIP Module PZ05


\section*{56-Pin ZIP Module PZ07}


64-Pin ZIP Module PZ08


72-Pin Plastic ZIP Module PZ09


SEMCONDUCTOR
Module Package Diagrams

\section*{64-Pin ZIP Module PZ10}


PIN 1


\section*{Domestic Direct Sales Offices}

\section*{Corporate Headquarters}

Cypress Semiconductor
3901 N. First Street
San Jose, CA 95134
(408) 943-2600

Telex: 821032 CYPRESS SNJ UD
TWX: 9109970753
FAX: (408) 943-2741

\section*{Alabama}

Cypress Semiconductor
555 Sparkman Drive, Ste. 1212
Huntsville, AL 35816
(205) 721-9500

FAX: (205) 721-0230

\section*{California}

Northwest Sales Office
Cypress Semiconductor
3901 N. First Street
San Jose, CA 95134
(408) 943-4867

FAX: (408) 943-6860
Cypress Semiconductor
23586 Calabasas Rd., Ste. 201
Calabasas, CA 91302
(818) 222-3800

FAX: (818) 222-3810
Cypress Semiconductor
2 Venture Plaza, Suite 460
Irvine, CA 92718
(714) 753-5800

FAX: (714) 753-5808
Cypress Semiconductor
12526 High Bluff Dr., Ste. 300
San Diego, CA 92130
(619) 755-1976

FAX: (619) 755-1969

\section*{Canada}

Cypress Semiconductor
701 Evans Avenue
Suite 312
Toronto, Ontario M9C 1A3
(416) 620-7276

FAX: (416) 620-7279

\section*{Colorado}

Cypress Semiconductor
4704 Harlan St., Suite 360
Denver, CO 80212
(303) 433-4889

FAX: (303) 433-0398

\section*{Florida}

Cypress Semiconductor
10014 N. Dale Mabry Hwy. 101
Tampa, FL 33618
(813) 968-1504

FAX: (813) 968-8474
Cypress Semiconductor
255 South Orange Avenue
Suite 1255
Orlando, FL 32801
(407) 422-0734

FAX: (407) 422-1976

\section*{Georgia}

Cypress Semiconductor
1080 Holcomb Bridge Rd.,
Building 100, Suite 300
Roswell, GA 30076
(404) 998-0491

FAX (404) 998-2172

\section*{Illinois}

Cypress Semiconductor
1530 E. Dundee Rd., Ste. 190
Palatine, IL 60067
(708) 934-3144

FAX: (708) 934-7364

\section*{Maryland}

Cypress Semiconductor
8850 Stanford Blvd., Suite 1600
Columbia, MD 21045
(410) 312-2911

FAX: (410) 290-1808

\section*{Minnesota}

Cypress Semiconductor
14525 Hwy. 7, Ste. 360
Minnetonka, MN 55345
(612) 935-7747

FAX: (612) 935-6982

\section*{New Hampshire}

Cypress Semiconductor
61 Spit Brook Road, Ste. 110
Nashua, NH 03060
(603) 891-2655

FAX: (603) 891-2676

\section*{New Jersey}

Cypress Semiconductor
35 Bailey Hollow Road Morristown, NJ 07960
(201) 267-6773

FAX: (201) 267-6599

\section*{New York}

Cypress Semiconductor
244 Hooker Ave., Ste. B
Poughkeepsie, NY 12603
(914) 485-6375

FAX: (914) 485-7103

\section*{North Carolina}

Cypress Semiconductor 7500 Six Forks Rd., Suite G
Raleigh, NC 27615
(919) 870-0880

FAX: (919) 870-0881

\section*{Oregon}

Cypress Semiconductor 8196 S.W. Hall Blvd. Suite 100
Beaverton, OR 97005
(503) 626-6622

FAX: (503) 626-6688

\section*{Pennsylvania}

Cypress Semiconductor
Two Neshaminy Interplex, Ste. 206
Trevose, PA 19053
(215) 639-6663

FAX: (215) 639-9024

\section*{Texas}

Cypress Semiconductor
333 West Campbell Rd., Ste. 240
Richardson, TX 75080
(214) 437-0496

FAX: (214) 644-4839
Cypress Semiconductor
Great Hills Plaza
9600 Great Hills Trail, Ste. 150W
Austin, TX 78759
(512) 502-3023

FAX: (512) 338-0865
Cypress Semiconductor
20405 SH 249, Ste. 216
Houston, TX 77070
(713) 370-0221

FAX: (713) 370-0222

\section*{Virginia}

Cypress Semiconductor
3151C Anchorway Court
Falls Church, VA 22042
(703) 849-1733

FAX: (703) 849-1734

\section*{Domestic Sales Representatives}

\author{
Alabama \\ Giesting \& Associates \\ 4835 University Square \\ Suite 15 \\ Huntsville, AL 35816 \\ (205) 830-4554 \\ FAX: (205) 830-4699
}

\section*{Arizona}

Thom Luke Sales, Inc.
9700 North 91st St., Suite A-200
Scottsdale, AZ 85258
(602) 451-5400

FAX: (602) 451-0172

\section*{California}

TAARCOM
451 N. Shoreline Blvd.
Mountain View, CA 94043
(415) 960-1550

FAX: (415) 960-1999
TAARCOM
735 Sunrise Ave., Suite 200
Roseville, CA 95661
(916) 782-1776

FAX: (916) 782-1786

\section*{Canada}
bbd Electronics, Inc.
6685-1 Millcreek Dr.
Mississauga, Ontario L5N 5M5
(416) 821-7800

FAX: (416) 821-4541
bbd Electronics, Inc.
298 Lakeshore Rd., Ste. 203
Pointe Claire, Quebec H9S 4L3
(514) 697-0801

FAX: (514) 697-0277
bbd Electronics, Inc. - Ottawa
(613) 564-0014

FAX: (416) 821-4092
bbd Electronics, Inc. - Winnipeg
(204) 942-2977

FAX: (416) 821-4092

\section*{Western Canada}

Microwe Electronics Corporation 5330 Wallace Avenue
Delta, British Columbia V4M 1A1
(604) 943-5020

FAX: (604) 943-8184

\section*{Connecticut}

\section*{HLM}

3 Pembroke Rd.
Danbury, CT 06810
(203) 791-1878

FAX: (203) 791-1876

\section*{Florida}

CM Marketing
252 Springs Colony Circle, Unit 382
Altamonte Springs, FL 32714
(407) 682-7709

FAX: (407) 682-7995

CM Marketing
1435-C Gulf to Bay Blvd.
Clearwater, FL 34615
(813) 443-6390

FAX: (813) 443-6312
CM Marketing
664 Hollows Circle
Deerfield Beach, FL 33442
(305) 429-8626

FAX: (305) 429-3440

\section*{Georgia}

Giesting \& Associates
2434 Highway 120
Suite 108
Duluth, GA 30136
(404) 476-0025

FAX: (404) 476-2405

\section*{Illinois}

Micro Sales Inc.
901 W. Hawthorn Drive
Itasca, IL 60143
(708) 285-1000

FAX: (708) 285-1008

\section*{Indiana}

Technology Mktg. Corp.
1526 East Greyhound Pass
Carmel, IN 46032
(317) 844-8462

FAX: (317) 573-5472
Technology Mktg. Corp.
4630-10 W. Jefferson Blvd
Ft. Wayne, IN 46804
(219) 432-5553

FAX: (219) 432-5555
Technology Marketing Corp.
1214 Appletree Lane
Kokomo, IN 46902
(317) 459-5152

FAX: (317) 457-3822

\section*{Iowa}

Midwest Technical Sales
463 Northland Ave., N.E
Suite 101
Cedar Rapids, IA 52402
(319) 377-1688

FAX: (319) 377-2029

\section*{Kansas}

Midwest Technical Sales
13 Woodward Dr
Augusta, KS 67010
(316) 775-2565

FAX: (316) 775-3577
Midwest Technical Sales
15301 W. 87 Parkway, Ste. 200
Lenexa, KS 66219
(913) 888-5100

FAX: (913) 888-1103

\section*{Kentucky}

Technology Marketing Corp.
718 Amhurst Place
Louisville, KY 40223
(502) 245-7411

FAX: (502) 245-4818

\section*{Michigan}

Techrep
2200 North Canton Center Rd.
Suite 110
Canton, MI 48187
(313) 981-1950

FAX: (313) 981-2006

\section*{Missouri}

Midwest Technical Sales
514 Earth City Expwy., \#239
Earth City, MO 63045
(314) 298-8787

FAX: (314) 298-9843

\section*{Nevada}

TAARCOM
735 Sunrise Ave.
Suite 200-4
Roseville, CA 95661
(916) 782-1776

FAX: (916) 782-1786

\section*{New Jersey}

HLM
333 Littleton Rd.
Parsippany, NJ 07054
(201) 263-1535

FAX: (201) 263-0914

\section*{New York}

HLM
64 Mariners Lane
P.O. Box 328

Northport, NY 11768
(516) 757-1606

FAX: (516) 757-1636
Reagan/Compar
96 W. Forest Dr.
Rochester, NY 14624
(716) 271-2230

FAX: (716) 381-2840
Reagan/Compar
214 Dorchester Ave., \#3C
Syracuse, NY 13203
(315) 432-8232

FAX: (315) 432-8238
Reagan/Compar
3301 Country Club Road
Ste. 2211
P.O. Box 8635

Endwell, NY 13760
(607) 754-2171

FAX: (607) 754-4270

Domestic Sales Representatives (continued)

Ohio
KW Electronic Sales, Inc.
8514 North Main Street
Dayton, OH 45415
(513) \(890-2150\)

FAX: (513) 890-5408
KW Electronic Sales, Inc.
3645 Warrensville Center Rd. \#244
Shaker Heights, OH 44122
(216) 491-9177

FAX: (216) 491-9102

\section*{Oregon}

Northwest Marketing Associates
6975 S. W. Sandburg Rd, Ste. 330
Beaverton, OR 97223
(503) 620-0441

FAX: (503) 684-2541

\section*{Pennsylvania}
L. D. Lowery

2801 West Chester Pike
Broomall, PA 19008
(215) 356-5300

FAX: (215) 356-8710
KW Electronic Sales, Inc.
4068 Mt. Royal Blvd., Ste. 110
Allison Park, PA 15101
(412) 492-0777

FAX: (412) 492-0780

\section*{Puerto Rico}

Electronic Technical Sales P.O. Box 10758

Caparra Heights Station
San Juan, P.R. 00922
(809) 798-1300

FAX: (809) 798-3661

\section*{Utah}

Sierra Technical Sales
1192 E. Draper Parkway Suite 103
Draper, UT 84020
(801) 571-8195

FAX: (801) 571-8194

\section*{Washington}

Northwest Marketing Associates
12835 Bellevue-Redmond, Ste. 330N
Bellevue, WA 98005
(206) 455-5846

FAX: (206) 451-1130

\section*{Wisconsin}

Micro Sales Inc.
210 Regency Court
Suite L101
Waukesha, WI 53186
(414) 786-1403

FAX: (414) 786-1813 Sales Representatives and Distributors

\section*{International Direct Sales Offices}

\section*{Cypress Semiconductor \\ International-Europe}

Avenue Ernest Solvay, 7
B-1310 La Hulpe, Belgium
Tel: (32) 2-652-0270
Telex: 64677 CYPINT B
FAX: (32) 2-652-1504

\section*{France}

Cypress Semiconductor France Miniparc Bât. no 8
Avenue des Andes, 6
Z.A. de Courtaboeuf 91952 Les Ulis Cedex, France
Tel: (33) 1-69-07-55-46
FAX: (33) 1-69-07-55-71

\section*{Germany}

Cypress Semiconductor GmbH
Munchner Str. 15A
W-8011, Zorneding, Germany
Tel: (49) 81-06-2855
FAX: (49) 81-06-20087
Cypress Semiconductor GmbH
Büro Nord
Matthias-Claudius-Str. 17
W-2359 Henstedt-Ulzburg, Germany
Tel: (49) 4193-77217
FAX: (49) 4193-78259

\section*{Italy}

Cypress Semiconductor
Via del Poggio Laurentino 118
00144 Rome, Italy
Tel: (39) 65-920-723
FAX: (39) 65-921-577
Cypress Semiconductor
Interporto di Torino
Proma Strada n. 5/B
10043 Orbassano, Italy Tel: (39) 11-397-57-98
or (39) 11-397-57-57
FAX: (39) 11-397-58-10

\section*{Japan}

Cypress Semiconductor Japan K.K.
Fuchu-Minami Bldg., 2F
10-3, 1-Chome, Fuchu-machi, Fuchu-shi, Tokyo, Japan 183
Tel: (81) 423-69-82-11 FAX: (81) 423-69-82-10

\section*{Sweden}

Cypress Semiconductor
Scandinavia AB
Taby Centrum, Ingang S
S-18311 Taby, Sweden
Tel: (46) 86380100
FAX: (46) 87921560

\section*{United Kingdom}

Cypress Semiconductor U.K., Ltd.
3, Blackhorse Lane, Hitchin,
Hertfordshire, U.K., SG4 9EE
Tel: (44) 462-42-05-66
FAX: (44) 462-42-19-69
Cypress Semiconductor Manchester
27 Saville Rd. Cheadle
Gatley, Cheshire, U.K.
Tel: (44) 614-28-22-08
FAX: (44) 614-28-0746

\section*{Newtek}

Rue de L'Esterel, 8, Silic 583
F-94663 Rungis Cedex, France
Tel: (33) 1-46-87-22-00
Telex: 263046 F
FAX: (33) 1-46-87-80-49

\section*{Newtek}

Rue de l'Europe, 4
Zac Font-Ratel
38640 Claix, France
Tel: (33) 16-76-98-56-01
FAX: (33) 16-76-98-16-04
Scaib, SA
80 Rue d'Arcueil Silic 137
94523 Rungis, Cedex, France
Tel: (33) 1-46-87-23-13
FAX: (33) 1-45-60-55-49

\section*{Germany}

API Electronik GmbH
Lorenz-Brarenstr 32
W-8062 Markt, Indersdorf
Germany
Tel: (49) 81367092
Telex: 5270505
FAX: (49) 81367398

\section*{International Sales Representatives (continued)}

Metronik GmbH
Leonhardsweg 2, Postfach 1328
W-8025 Unterhaching,
Germany
Tel: (49) 89611080
Telex: 17897434 METRO D
FAX: (49) 896116468
Metronik GmbH
Laufamholzstrasse 118
W-8500 Nürnberg,
Germany
Tel: (49) 911544966
Telex: 626205
FAX: (49) 911542936
Metronik GmbH
Löewenstrasse 37
W-7000 Stuttgart 70
Germany
Tel: (49) 711764033
Telex: 7-255-228
FAX: (49) 7117655181
Metronik GmbH
Siemensstrasse 4-6
W-6805 Heddesheim, Germany
Tel: (49) 62034701
Telex: 465035
FAX: (49) 620345543
Metronik GmbH
Zum Lonnenhohl 38
W-4600 Dortmund 13, Germany
Tel: (49) 231217041
FAX: (49) 231210799
Metronik GmbH
Buckhorner Moor 81
W-2000 Norderstedt, Germany
Tel: (49) 405228091
Telex: 2162488
FAX: (49) 40-522 8093
Metronik Halle
Thalmannplatz 16/0904
O-4020 Halle, Germany

\section*{SASCO GmbH}

Hermann-Oberth-Str. 16
8011 Putzbrunn, Germany
Tel: (089) 4611-211
Telex: 529504 sasco d
FAX: (089) 4611-271
SASCO GmbH
Gibitzenhofstr. 62
8500 Nurnberg 70, Germany
Tel: (0911) 421065
Telex: 623097
FAX: (0911) 425794
SASCO GmbH
Stafflenbergstr. 24
7000 Stuttgart 1, Germany
Tel: (0711) 244521
Telex: 723936
FAX: (0711) 233963
SASCO GmbH
Am Gansacker 26
7801 Umkirch bei Freiburg
Tel: (07665) 7018
Telex: 7722945
FAX: (07665) 8778

SASCO GmbH
Hainer Weg 48
D-60599 Frankfurn, Germany
Tel: (49) 69610391
Telex: 414435
FAX: (49) 69618824
SASCO GmbH
Beratgerstr. 36
4600 Dortmund 1, Germany
Tel: (0231) 179791
Telex: 8227826
FAX: (0231) 172991
SASCO GmbH
Am Uhrturm 7
3000 Hannover 81, Germany
Tel: (0511) 839020
Telex: 921123
FAX: (0511) 8437618
SASCO GmbH
Europaallee 3
2000 Norderstedt, Germany
Tel: (040) 5232013
Telex: 2165623
FAX: (040) 5232378

\section*{Hong Kong}

Tekcomp Electronics, Ltd.
913-4 Bank Centre
636, Nathan Road, Mongkok
Kowloon, Hong Kong
Tel: (852) 3-880-629
Telex: 38513 TEKHL
FAX: (852) 7-805-871

\section*{India}

Spectra Innovations Inc.
Manipal Centre, Unit No. S-822
47, Dickenson Rd.
Bangalore-560,042
Karnataka, India
Tel: 80-588-323
Telex: 8452696 or 8055
(Attn: ICTP-705)
FAX: 80-586-872

\section*{Israel}

Talviton Electronics
P.O. Box 21104, 9 Biltmore Street

Tel Aviv 61 210, Israel
Tel: (972) 3-544-2430
Telex: 33400 VITKO
FAX: (972) 3-544-2085

\section*{Italy}

Dott. Ing. Guiseppe De Mico s.p.a.
V. Le Vittorio Veneto, 8

I-20060 Cassina d'Pechi
Milano, Italy
Tel: (39) 29-53-43-600
Telex: 330869 DEMICO I
FAX: (39) 29-52-19-12
Silverstar Ltd. SPA
Viale Fulvio Testi, 280
20126 Milano, Italy
Tel: (39) 2661251
Teles: 332189 SIL 7I
FAX: (39) 266101359

\section*{Japan}

Tomen Electronics Corp.
2-1-1 Uchisaiwai-Cho, Chiyoda-Ku
Tokyo, 100 Japan
Tel: (81) 3-3506-3673
Telex: 23548 TMELCA
FAX: (81) 3-3506-3497
CTC Components Systems Co. Ltd.
4-8-1, Tsuchihashi,
Miyamae-Ku, Kawasaki-Shi,
Kanagawa, 213 Japan
Tel: (81) 44-852-5121
Telex: 3842272 CTCEC J
FAX: (81) 44-877-4268
Fuji Electronics Co., Ltd.
Ochanomizu Center Bldg.
3-2-12 Hongo, Bunkyo-Ku
Tokyo, 113 Japan
Tel: (81) 3-3814-1411
Telex: J28603 FUJITRON
FAX: (81) 3-3814-1414
N.D.A. Co. Ltd.

The Second Preciza Bldg.
4-8-3 Iidabashi Chiyoda-Ku
Tokyo, 102 Japan
Tel: (81) 3-3264-1321
Telex: J29503 ISI JAPAN
FAX: (81) 3-3264-3419
Fujitsu Devices, Inc.
Osaki West Bldg.
8-8, Osaki 2-Chome,
Shinagawa-ku
Tokyo 141, Japan
Tel: (81) 3-3490-3321
FAX: (81) 3-3490-7274
Japan Electronics
Materials Co., Ltd (JEMCO)
2-20-10 Minamikaneda, Suita-shi, Osaka 564 Japan
Tel: (81) 6-385-6707
FAX: (81) 6-330-6814
Ryoyo Electro Corporation
Knowa Bldg., 1-12-22 Tsukiji,
Chuo-ku, Tokyo 104 Japan
Tel: (81) 3-5565-1531
FAX: (81) 3-5565-1546

\section*{Korea}

Logicom Inc.
1634-9 Bongchun-Dong
Kwanak-ku
Seoul, Korea 151-061
Tel: (822) 888-2858
FAX: (822) 888-7040
superCHIP Inc.
5th Floor, Sunjin Bldg. 82-8
Yangiae-dong, Seocho-ku
Seoul, Korea 137-130
Tel: (02) 576-2111
FAX: (02) 576-2177

International Sales Representatives (continued)

\section*{Netherlands}

Sonetech B.V.
Gulberg 33, NL-5674
Te Nuenen
The Netherlands
Tel: (31) 40-83-70-75
Telex: 59418 INTRA NL
FAX: (31) 40-83-23-00

\section*{Norway}

Avnet Nortec Electronics A/S
Smedsvingen 4, P.O. Box 123
N-1364 Hvalstad, Norway
Tel: (47) 66-84-62-10
Telex: 77546 NENAS N
FAX: (47) 66-84-65-45

\section*{Singapore}

Electec PTE Ltd.
Block 50, Kallang Bahru
\#04-21, Singapore 1233
Tel: (65) 294-8389
FAX: (65) 294-7623

\section*{Spain}

ATD Electronica
Avda. de la Industria No. 32
Nave 17, 2B, 28100 Alcobendas
Madrid, Spain
Tel: (34) 1-66-16-551
FAX: (34) 1-66-16-300

ATD Electronica, Lda. Edifício Altejo
Rua 3 piso 5th sala 505
Urbanizacäo da Matinha
1900 Lisboa, Portugal
Tel: (351) 1-858-0191/2
FAX: (351) 1-858-7841
ATD Electronica
Comte Borrell, 208-1
08029 Barcelona, Spain
Tel: (93) 451-58-93
FAX: (93) 451-40-70

\section*{Sweden}

TH:s Elektronik AB
P.O. Box 3027

Arrendevägen 36
S163 03 SPÅNGA, Sweden
Tel: (46) 8362970
Telex: 11145 tenik s
FAX: (46) 87613065

\section*{Switzerland}

Basix für Elektronik A. G.
Hardturmstrasse 181
CH-8010 Zurich, Switzerland
Tel: (41) 1-276-11-11
Telex: 822762 BAEZ CH
FAX: (41) 1-276-14-48

Taiwan R.O.C.
Prospect Technology Corp.
5F, No. 348, Section 7
Cheng-Teh Rd.
Taipei, Taiwan
Tel: (886) 2-820-5353
Telex: 14391 PROSTECH
FAX: (886) 2-820-5731

\section*{United Kingdom}

Ambar Components Ltd.
17 Thame Park Road
Thame, Oxfordshire
England, OX9 3XD
Tel: (44) 844-26-11-44
Telex: 837427
FAX: (44) 844-26-17-89
Arrow Electronics (UK) Ltd.
St. martins Business Centre
Cambridge Road
Bedford MK42 OLF, U.K.
Tel: (44) 234270272
FAX: (44) 234214674
Pronto Electronic System Ltd.
City Gate House
Eastern Avenue, 399-425
Gants Hill, llford,
Essex, U. K. IG2 6LR
Tel: (44) 81-554-62-22
Telex: 8954213 PRONTO G
FAX: (44) 81-518-32-22

\section*{Distributors}

Arrow Electronics:

\section*{Alabama}

Huntsville, AL 35816
(205) 837-6955

\section*{Arizona}

Tempe, AZ 85282
(602) 431-0030

\section*{California}

Calabasas, CA 91302
(818) 880-9686

San Diego, CA 92123
(619) 565-4800

San Jose, CA 95131
(408) 441-9700

San Jose, CA 95134
Tustin, CA 92680
(714) 587-0404

\section*{Canada}

Mississauga, Ontario L5T 1MA
(416) 670-7769

Dorval, Quebec H9P 2T5
(514) 421-7411

Neapean, Ontario K2E 7W5 (613) 226-6903

Quebec City, Quebec G2E 5RN
(418) 871-7500

Burnaby, British Columbia V5A 4T8 (604) 421-2333

\section*{Colorado}

Englewood, CO 80112
(303) 799-0258

\section*{Connecticut}

Wallingford, CT 06492
(203) 265-7741

\section*{Florida}

Deerfield Beach, FL 33441
(305) 429-8200

Florida (continued)
Lake Mary, FL 32746
(407) 333-9300

\section*{Georgia}

Deluth, GA 30071
(404) 497-1300

\section*{Illinois}

Itasca, IL 60143
(708) 250-0500

\section*{Indiana}

Indianapolis, IN 46268
(317) 299-2071

\section*{Kansas}

Lenexa, KS 66214
(913) 541-9542

\section*{Maryland}

Columbia, MD 21046
(410) 596-7800

Gathersburg, MD
(301) 596-7800

\section*{Massachusetts}

Wilmington, MA 01887
(617) 658-0900

\section*{Michigan}

Livonia, MI 48152
(313) 462-2290

\section*{Minnesota}

Eden Prairie, MS 55344
(612) 941-5280

\section*{Missouri}

St. Louis, MO 63146
(314) 567-6888

New Jersey
Marlton, NJ 08053
(609) 596-8000

Pinebrook, NJ 07058
(201) 227-7880

\section*{New York}

Rochester, NY 14623
(716) 427-0300

Hauppauge, NY 11788
(516) 231-1000

\section*{North Carolina}

Raleigh, NC 27604
(919) 876-3132

\section*{Ohio}

Centerville, OH 45458
(513) 435-5563

Solon, OH 44139
(216) 248-3990

\section*{Oklahoma}

Tulsa, OK 74146
(918) 252-7537

\section*{Oregon}

Beaverton, OR 97006-7312
(503) \(629-8090\)

\section*{Pennsylvania}

Pittsburgh, PA 15238
(412) 963-6807

\section*{Texas}

Austin, TX 78758
(512) 835-4180

Carrollton, TX 75006
(214) 380-6464

Houston, TX 77099
(713) 530-4700

\section*{Washington}

Bellevue, WA 98007
(206) 643-9992

Spokane, WA 99206-6606
(509) 924-9500

\section*{Wisconsin}

Brookfield, WI 53045
(414) 792-0150

Sales Representatives and Distributors

Distributors (continued)

Marshall Industries:

\section*{Alabama}

Huntsville, AL 35801
(205) 881-9235

\section*{Arizona}

Phoenix, AZ 85044
(602) 496-0290

\section*{California}

Marshall Industries, Corp. Headquarters
El Monte, CA 91731-3004
(818) 307-6000

Irvine, CA 92718
(714) 458-5301

Calabasas, CA 91302
(818) 878-7000

Rancho Cordova, CA 95670
(916) 635-9700

San Diego, CA 92123
(619) 627-4140

Milpitas, CA 95035
(408) 942-4600

\section*{Canada}

Brampton, Ontario L6T 5G3
(416) 458-8046

Ottawa, Ontario
(613) 564-0166

Pointe Claire, Quebec H9R 5P9
(514) 694-8142

\section*{Colorado}

Thornton, CO 80241
(303) 451-8383

\section*{Connecticut}

Wallingford, CT 06492-0200
(203) 265-3822

\section*{Florida}

Ft. Lauderdale, FL 33309
(305) 977-4880

Florida (continued)
Altamonte Springs, FL 32701
(407) 767-8585

St. Petersburg, FL 33716
(813) 573-1399

\section*{Georgia}

Norcross, GA 30093
(404) 923-5750

\section*{Illinois}

Schaumbrug, IL 60173
(708) 490-0155

\section*{Indiana}

Indianapolis, IN 46278
(317) 297-0483

\section*{Kansas}

Lenexa, KS 66214
(913) 492-3121

\section*{Maryland}

Silver Springs, MD 20904
(301) 622-1118

\section*{Massachusetts}

Wilmington, MA 01887
(508) 658-0810

\section*{Michigan}

Livonia, MI 48150
(313) 525-5850

\section*{Minnesota}

Plymouth, MN 55447
(612) 559-2211

\section*{Missouri}

Bridgeton, MO 63044
(314) 291-4650

\section*{New Jersey}

Fairfield, NJ 07006
(201) 882-0320

Mt. Laurel, NJ 08054
(609) 234-9100

\section*{New York}

Endicott, NY 13760
(607) 785-2345

Hauppage, NY 11788
(516) 273-2695

Rochester, NY 14624
(716) 235-7620

\section*{North Carolina}

Raleigh, NC 27604
(919) 878-9882

\section*{Ohio}

Solon, OH 44139
(216) 248-1788

Dayton, OH 45414
(513) 898-4480

\section*{Oregon}

Beaverton, OR 97005
(503) 644-5050

\section*{Pennsylvania}

Mt. Laurel, NJ 08054
(609) 234-9100

\section*{Texas}

Austin, TX 78754
(512) 837-1991

Richardson, TX 75081
(214) 705-0600

Houston, TX 77043
(713) 467-1666

\section*{Utah}

Salt Lake City, UT 84119
(801) 973-2288

\section*{Washington}

Bothell, WA 98011
(206) 486-5747

\section*{Wisconsin}

Waukesha, WI 53186
(414) 797-8400

Distributors (continued)

\section*{Semad:}

Calgary
Calgary, Alberta T2H 2S8
(403) 252-5664

FAX: (800) 565-9779
Montreal
Pointe Claire, Quebec H9R 427
(514) 694-0860

1-800-361-6558
FAX: (514) 694-0965

\section*{Ottawa}

Ottawa, Ontario K1B 1A7
(613) 526-4866

FAX: (613) 523-4372

\section*{Toronto}

Markham, Ontario L3R 4Z4
(416) 475-3922

FAX: (416) 475-4158

\section*{Vancouver}

Burnaby, British Columbia V5G 4M1
(604) 451-3444

1-800-663-8956
FAX: (604) 451-3445

\section*{Falcon Electronics:}

Milford, CT 06460
(203) 878-5272

Winter Park, FL 32792
(407) 671-3739

Hauppauge, LI, NY 11788
(516) 724-0980

\section*{Anthem Electronics, Inc.:}

Tempe, AZ 85281
(602) 966-6600

Chatsworth, CA 91311
(818) 775-1333

East Irvine, CA 92718
(714) 768-4444

Rocklin, CA 95677
(916) 624-9744

San Jose, CA 95131
(408) 453-1200

San Diego, CA 92121
(619) 453-9005

Englewood, CO 80112
(303) 790-4500

Waterbury, CT 06705
(203) 575-1575

Altamonte Springs, FL 32701 (407) 831-0007

Schaumburg, IL 60173
(708) 884-0200

Wilmington, MA 01887
(508) 657-5170

Columbia, MD 21046
(301) 995-6640

Eden Prairie, MN 55344
(612) 944-5454

Pine Brook, NJ 07058
(201) 227-7960

Commack, NY 11725
(516) 864-6600

Beaverton, OR 97005
(503) 643-1114

Horsham, PA 19044
(215) 443-5150

Richardson, TX 75081
(214) 238-7100

Salt Lake City, UT 84119
(801) 973-8555

Bothel, WA 98011
(206) 483-1700

\section*{Zeus Electronics:}

Yorba Linda, CA 92686
(714) 921-9000

San Jose, CA 95131
(408) 629-4789

Lake Mary, FL 32746
(407) 333-3055

Wilmington, MA 01887
(508) 658-4776

Port Chester, NY 10573
(914) 937-7400

Carrollton, TX 75006
(214) 380-4330

\section*{HIEE PEPFORMANGE DATA BOIK}

\section*{Cypress Semiconductor 3901 North First Street \\ San Jose, CA 95134}```


[^0]:    © Cypress Semiconductor Corporation, 1993. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress Semiconductor Corporation product. Nor does it convey or imply any license under patent or other rights. Cypress Semiconductor does not authorize its products for use as critical components in life-support systems where a malfunction or failure of the product may reasonably be expected to result in significant injury to the user. The inclusion of Cypress Semiconductor products in life-support systems applications implies that the manufacturer assumes all risk of such use and in so doing indemnifies Cypress Semiconductor against all damages.

[^1]:    $+=$ meets all performance specs but may not meet $\mathrm{I}_{\mathrm{CC}}$ or $\mathrm{I}_{\text {SB }}$

    * $=$ meets all performance specs except 2 V data retention-may not meet $\mathrm{I}_{\mathrm{CC}}$ or $\mathrm{I}_{\text {SB }}$
    - = functionally equivalent
    $\dagger=$ SOIC only
    $\ddagger=$ 32-pin LCC crosses to the 7C198M

[^2]:    Notes:
    11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.
    12. $\overline{\mathrm{WE}}$ is HIGH for read cycle.

[^3]:    Notes:
    26. $\overline{\mathrm{CE}}=$ HIGH for the duration of the above timing (both write and read cycle).
    27. $\mathrm{I} / \mathrm{O}_{0 \mathrm{R}}=\mathrm{I} / \mathrm{O}_{0 \mathrm{~L}}=$ LOW (request semaphore) $; \overline{\mathrm{CE}}_{\mathrm{R}}=\overline{\mathrm{CE}}_{\mathrm{L}}=\mathrm{HIGH}$
    29. If tSPS is violated, the semaphore will definitely be obtained by one side or the other, but there is no guarantee which side will control the semaphore.
    28. Semaphores are reset (available to both ports) at cycle start.

[^4]:    Shaded area contains preliminary information.

[^5]:    Shaded areas indicate advanced information.
    Note:

    1. For military specifications, see the $\mathrm{CY} 7 \mathrm{C} 161 \mathrm{~A} / \mathrm{CY} 7 \mathrm{C} 162 \mathrm{~A}$ datasheet.
[^6]:    Shaded areas indicate advanced information.

[^7]:    Shaded areas indicate advanced information.

[^8]:    Shaded area contains advanced information.

[^9]:    Notes:
    12. $\overline{\mathrm{WE}}$ is HIGH for read cycle.
    14. Address valid prior to or coincident with $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}$ transition LOW.
    13. Device is continuously selected, $\overline{\mathrm{CE}}_{1}, \overline{\mathrm{CE}}_{2}=\mathrm{V}_{\mathrm{IL}}$.

[^10]:    Shaded area contains preliminary information.

[^11]:    Shaded area contains preliminary information.

[^12]:    Pentium is a trademark of Intel Corporation.

[^13]:    Document \#: 38-A-00043

[^14]:    Shaded area contains advanced information.
    Pentium is a trademark of Intel Corporation.
    Note:

[^15]:    Shaded area contains preliminary information.

[^16]:    Shaded area contains advanced information.

[^17]:    Shaded areas contain advanced information.

[^18]:    Shaded area indicates advanced information.

[^19]:    Note:
    11. Device is continuously selected, $\overline{\mathrm{CE}}=\mathrm{V}_{\mathrm{IL}}$.

[^20]:    Shaded area contains advanced information.

[^21]:    Shaded area contains advanced information.

[^22]:    Shaded areas contain advanced information.

[^23]:    Shaded area contains advanced information.

[^24]:    Shaded area contains advanced information.

[^25]:    Shaded area contains preliminary information.

[^26]:    Shaded area contains preliminary information.

[^27]:    Shaded areas contain preliminary information.

[^28]:    Shaded area contains preliminary information.

[^29]:    Shaded area contains preliminary information

[^30]:    Shaded area contains preliminary information.

[^31]:    Shaded area contains advanced information.

[^32]:    Pentium is a trademark of Intel Corporation.

[^33]:    Shaded area contains advanced information.

[^34]:    - 

[^35]:    Document \#: 38-00245

[^36]:    Maximum Ratings
    (Above which the useful life may be impaired. For user guidelines, not tested.)

    Storage Temperature $. \ldots . . . . . . . . . . . . .-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
    Ambient Temperature with
    Power Applied .......................... $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
    Supply Voltage to Ground Potential . . . . . . . -0.5 V to +7.0 V
    DC Voltage Applied to Outputs
    in High Z State ............................ -0.5 V to +7.0 V
    DC Input Voltage . . . . . . . . . . . . . . . . . . . . . . . -3.0 V to +7.0 V
    DC Program Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13.0 V
    UV Exposure .................................. . 7258 Wsec/cm ${ }^{2}$
    Static Discharge Voltage . . . . . . . . . . . . . . . . . . . . . . . >2001V
    (per MIL-STD-883, Method 3015)

[^37]:    PAL is a registered trademark of Monoiithic Memories Inc.

[^38]:    QuickPro II is a trademark of Cypress Semiconductor Corporation.

[^39]:    PAL is a registered trademark of Monolithic Memories Inc.

[^40]:    PAL is a registered trademark of Monolithic Memories Inc.
    QuickProIl is a trademark of Cypress Semiconductor Corporation.

[^41]:    PAL is a registered trademark of Monolithic Memories Inc.

[^42]:    Document \#: 38-00067-E

[^43]:    Shaded area contains preliminary information.

[^44]:    Shaded area contains preliminary information.

[^45]:    Shaded area contains preliminary information.

[^46]:    Shaded area contains preliminary information.

[^47]:    Shaded area contains advanced information

[^48]:    Shaded area contains advanced information.

[^49]:    Shaded area contains advanced information.

[^50]:    *THETA JA $=45^{\circ} \mathrm{C}$ WATT FOR PLCC

[^51]:    ABEL is a trademark of Data I/O Corporation.
    CUPL is a trademark of Assisted Technology.
    ISDATA is a registered trademark of ISDATA GmbH.
    LOG/iC is a trademark of ISDATA GmbH.

[^52]:    Notes:
    7. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5 V and output loading of the specified $\mathrm{I}_{\mathrm{O}} / \mathrm{I}_{\mathrm{OH}}$ and 30 pF load capacitance, as in part (a) of AC TestLoad and Waveforms, unless otherwise specified.
    8. See the last page of this specification for Group A subgroup testing information.

[^53]:    13. $\overline{\mathrm{EF}}, \overline{\mathrm{HF}}$ and $\overline{\mathrm{FF}}$ may change state duringretransmit as a result of the off-
    14. $\boldsymbol{t}_{\mathrm{RTC}}=\mathrm{t}_{\mathrm{PRT}}+\mathrm{t}_{\mathrm{RTR}}$. set of the read and write pointers, but flags will be valid at $t_{R T C}$.
[^54]:    Note:
    15. Expansion Out of device $1\left(\mathrm{XO}_{1}\right)$ is connected to Expansion In of device $2\left(\mathbf{X I}_{2}\right)$.

[^55]:    429A-11

[^56]:    Notes:
    11. $\mathrm{t}_{\mathrm{MRSC}}=\mathrm{t}_{\mathrm{PMR}}+\mathrm{t}_{\mathrm{RMR}}$.
    12. $\overline{\mathrm{W}}$ and $\overline{\mathrm{R}} \geq \mathrm{V}_{\mathrm{HI}}$ for at least twpw or trip before the rising edge of $\overline{M R}$.

[^57]:    Note:
    Note:
    15. Expansion Out of device $1\left(\overline{\mathrm{XO}}_{1}\right)$ is connected to Expansion In of device $2\left(\overline{\mathrm{XI}}_{2}\right)$.

[^58]:    Note:

    1. $\mathrm{T}_{\mathrm{A}}$ is the "instant on" case temperature.
[^59]:    Notes:

    1. $71.4-\mathrm{MHz}$ operation is available only in the standalone configuration.
    2. The -14 device cannot be cascaded.
[^60]:    SPARC is a registered trademark of SPARC International, Inc.

[^61]:    SmartCAM is a trademark of Cypress Semiconductor Corporation.

[^62]:    Pentium is a trademark of Intel Corporation.

[^63]:    Notes:
    3 FB connected to an output selected for "zero" skew (i.e., $\mathrm{xF} 1=\mathrm{xF} 0=$ MID).
    4. Indicates case temperature.

[^64]:    $\mathrm{X}=$ Don't care. Electrically, the input shift pin is a TTL input internally connected to a three-state output that is in the high-impedance state.
    $\mathrm{A}=$ Register addressed by A inputs.
    $\mathrm{B}=$ Register addressed by B inputs.
    UP is toward MSB, DOWN is toward LSB.

[^65]:    $+=$ Plus; $-=$ Minus; $V=O R ; \wedge=$ AND; $\forall=$ EX-OR

[^66]:    Document \#: 38-M-00041-A

[^67]:    Shaded area contains preliminary information.

[^68]:    Note:
    13. If $\overline{\mathrm{CS}}$ goes HIGH simultaneously with $\overline{\mathrm{WE}} \mathrm{HIGH}$, the output remains in a high-impedance state.

[^69]:    Shaded area contains preliminary information.

[^70]:    Shaded areas contain preliminary information

[^71]:    2. Tested on a sample basis.
[^72]:    Document \#: 38-M-00046-B

[^73]:    Document \#: 38-M-00031-C

[^74]:    Document \#: 38-M-00052

[^75]:    Pin Configuration: CYM7232 Top View

[^76]:    Note:
    6. Reset is LOW.

[^77]:    Notes:
    7. Controlled by $\overline{\mathrm{FLUSH}}, \overline{\mathrm{ADS}}$, and $\mathrm{M} / \overline{\mathrm{IO}} ; \overline{\mathrm{CS}}$ is a don't care.
    8. A minimum of three clocks between consecutive $\overline{\mathrm{ADS}}$ signals is required during Flush cycles. Reset is LOW.
    9. Controlled by $\overline{\mathrm{CS}}, \overline{\mathrm{ADS}}$, and $\mathrm{M} / \overline{\mathrm{IO}} ; \overline{\mathrm{FLUSH}}$ is a don't care.

