
Graphics Library Programming Guide 11-1

Chapter 11

11. Pixels

This chapter describes the subroutines that allow you to address screen pixels
directly and perform pixel operations.

• Section 11.1, “Pixel Formats,”explains the formats used for pixel data.

• Section 11.2, “Reading and Writing Pixels Efficiently,” tells you how to
access pixels.

• Section 11.3, “Using pixmode,” tells you how to customize pixel
operations.

• Section 11.4, “Subimages within Images,” tells you how to access pixels
that are part of larger structures.

• Section 11.5, “Packing and Unpacking Pixel Data,” explains how pixel
data is compressed and decompressed.

• Section 11.6, “Order of Pixel Operations,” explains the hierarchy of pixel
operations.

• Section 11.7, “Old-Style Pixel Access,” describes methods of pixel access
that were used in early releases of the GL, and that are not recommended.

Pixels, like raster fonts, are not nearly as easy to transform (rotate and scale) as
geometric figures. Reading and writing pixels on the screen often requires the
program to get information about the window dimensions and the screen
resolution.

Another problem with reading and writing pixels is that the contents of each
pixel can mean different things depending on the display mode for that pixel.
The same physical bitplanes are used to store either color map indices or RGB
values; accordingly, the mode of the pixel determines whether the contents are
interpreted as RGB triples or as indices into a color map.

11-2 Pixels

Three methods of pixel access are supported.

The first method provides a high-performance interface to a flexible set of pixel
subroutines—lrectread() , lrectwrite() , rectcopy() , rectzoom() , and
pixmode() These subroutines operate on arbitrarily sized rectangles made up
of arbitrarily sized pixels. The behavior of these subroutines can be modified
by setting parameters for offset, stride, pixel size, zoom, and other features
described later. These functions operate in either RGB or color map mode.

The second method is compatible with older versions of the GL. It provides a
high-performance interface to operate on arbitrarily sized rectangles. This set
of subroutines includes rectread() , rectwrite() , and rectzoom() . The
behavior of these subroutines can be modified only for zoom. These functions
operate in either RGB or color map mode, but because they operate with 16-bit
unsigned shorts, they are not generally useful for RGB mode.

The third method is compatible with even older versions of the GL. It provides
mode-dependent subroutines to deal with, at most, one scanline at a time,
which is positioned according to the system’s “current character position”.
These subroutines are readpixels() , readRGB() . writepixels() , and
writeRGB() . Continued use of these subroutines is not suggested because
higher-performance, more flexible subroutines are available.

11.1 Pixel Formats

The following pixel formats are standard on most IRIS-4D systems:

• RGBA (Red-Green-Blue-Alpha) data is interpreted as four 8-bit
values packed into each 32-bit word. Bits 0-7 represent red, bits 8-15
represent green, bits 16-23 represent blue, and bits 24-31 represent
alpha.

For example, 0X01020304 corresponds to a pixel whose RGBA values
are 4, 3, 2, and 1, respectively. This is exactly the same format cpack()

uses.

• CI (Color Index) data is interpreted as 12-bit (low-order) indices into a
single, 4096-entry color map. The high-order 20 bits should be zero.

• z-buffer data is interpreted as 24-bit (low-order) data. The high-order 8
bits should be zero. Signed z-buffer data is sign-extended to 32 bits.

Graphics Library Programming Guide 11-3

• Other data used in overlay, underlay, and pop-up planes is interpreted as
a type of color map data. Because different systems and different
configurations support different pixel sizes for these resources, the
number of entries contained in the auxiliary color map vary.

On the IRIS Indigo, and the 8-bitplane Personal IRIS, these formats are used:

• RGB values are in 8 bit packed format. The framebuffer stores 8 bits
of RGB data (3 bits of red, 3 bits of green, and 2 bits of blue), but RGB
pixels are written as 24 bit RGB triples. When read back, the
least-significant 5 bits of red and green are zero and the
least-significant 6 bits of blue are zero.

• CI values are in 8 bit (3 red + 3 green + 2 blue) packet format in single
buffer mode and 4 bit (1 red + 2 green + 1 blue) in double buffer mode.

• Indigo z-buffer data is 32 bits in software. The 8-bitplane Personal IRIS
does not come standard with a z-buffer; however, if you have installed it
as an option, the z-buffer data is 24 bit, sign-extended to 32 bits.

The pixel formats described above are frame buffer formats. The format of the
pixel data in host memory can be packed in a more efficient format if
pixmode() is used with lrectread() and lrectwrite() . See Section 11.3,
“Using pixmode,” for information on pixmode() features.

11.2 Reading and Writing Pixels Efficiently

This section describes subroutines that read and write pixels with the highest
possible performance. The subroutines described in this section may not be
available on your system, see the man pages to find out if your system
supports these commands.

Note: No color mode checking is done, so RGB data read/written in color
map mode, and vice-versa, can return undesired results.

11-4 Pixels

11.2.1 Pixel Addressing

Pixel coordinates on the IRIS workstation are at the center of each pixel, as
mentioned in Chapters 2 and 7. Because of this, you need to specify pixel
boundaries in half-steps, so pixels will be centered on integer values. If you do
not do this, your pixel operations can be off by a pixel or more due to round-off
errors in the floating-point calculations.

Pixel operations can occur in any of the 4 GL framebuffers (bitplanes), as
selected by drawmode() . These subroutines establish sources and destinations
for pixel operations, as well as other drawing subroutines. Sources apply to
pixel reads and copies; destinations apply to pixel writes and copies.

drawmode

drawmode() determines the drawing mode, thereby, the destination for pixel
operations. NORMALDRAW is the default, OVERDRAW, UNDERDRAW, and PUPDRAW are
options. In NORMALDRAW mode, frontbuffer() , backbuffer() , and
zbuffer() apply. If you assert more than one destination in NORMALDRAW

mode, more than one destination is written.

readsource

readsource() determines the GL framebuffer source of pixels read by
rectread() , lrectread() , rectcopy() , readpixels() , and readRGB() . The
source depends on the current drawing mode, as set by drawmode() .

The default value of src is SRC_AUTO, which selects the front buffer of the
current GL framebuffer in single buffer mode and the back buffer in double
buffer mode. SRC_FRONT reads from the front buffer, and SRC_BACK reads from
the back buffer. SRC_ZBUFFER reads 24-bit data (32 bit for Indigo) from the
z-buffer. Other sources such as SRC_FRAMEGRABBER are available if special
hardware is installed. Some readsource() parameters are valid only on
certain models; see the readsource() man page for specific information about
source parameters.

Graphics Library Programming Guide 11-5

11.2.2 Reading Pixels

The following subroutines read screen pixels.

readdisplay

readdisplay() reads a rectangular screen region and returns displayed pixels
in packed RGB format. readdisplay() returns the displayed value of each
addressed pixel for all display bitplanes and modes. You specify the x and y
coordinates of the rectangular region. The pixels are read into parry
left-to-right, then bottom-to-top according to the hints provided. The hints are
modifiers, not directives; hence, they are ignored on systems that do not
support them.

Table 11-1 list the hints available and their descriptions.

rectread and lrectread

rectread() reads a rectangular array of pixels from the window where (x1,y1)
are the coordinates for the lower-left corner of the rectangle and (x2,y2) are the
coordinates for the upper-right corner. All coordinates are relative to the
lower-left corner of the window in screen coordinates. sarray is an array of
16-bit values. Only the low-order 16 bits of each pixel are read, so rectread()

Hint Description

RD_FREEZE freezes the screen by blocking all graphics calls until the
read is completed. This assures that the returned data
accurately represents the data displayed at the time of
the call.

RD_ALPHAONE returns all alpha values set to one (represented as 0xff for
this command.

RD_IGNORE_PUP ignores the contents of the popup framebuffer.

RD_IGNORE_OVERLAY ignores the contents of the overlay framebuffer.

RD_IGNORE_UNDERLAY ignores the contents of the underlay framebuffer.

RD_OFFSCREEN returns an error when attempting to read beyond the
framebuffer boundary.

Table 11-1 Hints for readdisplay()

11-6 Pixels

is useful primarily for windows drawn in color map mode. The data is loaded
into sarray left to right and bottom to top.

If the pixel data on the screen looks like this:

1 2 3 4
5 6 7 8
9 10 11 12

sarray contains {9,10,11,12,5,6,7,8,1,2,3,4}, that is, sarray[0]=9, sarray[1]=10, etc.
rectread() returns the number of pixels successfully read.

Normally, the number of pixels read is

(x2 − x1 + 1)∗(y2 − y1 + 1)

If any part of the specified rectangle is off the screen, or if the coordinates are
mixed up, the behavior of rectread() is undefined.

Errors occur only outside the screen, not outside the window. It is possible to
read pixels outside a window, as long as they are on the physical screen. This
can be useful for certain applications that magnify data from other windows,
or perform image processing on images produced by other programs. The
main difficulty is that the data can come from areas of the screen that are in
different color modes (color map or RGB mode). Because rectread() is not
restricted to the current window, any or all of the coordinates can be negative.

lrectread() is similar to rectread() except that larray contains 32-bit
quantities and the behavior of lrectread() is affected by pixmode() settings.
Using pixmode() with lrectread() provides useful data manipulation
functions as well as data packing functions to store and transfer data more
efficiently.

Graphics Library Programming Guide 11-7

11.2.3 Writing Pixels

The following subroutines write to screen pixels:

rectwrite and lrectwrite

rectwrite() writes a rectangular array of pixels to the window, where (x1,y1)
are the coordinates for the lower-left corner of the rectangle and (x2,y2) are the
coordinates for the upper-right corner. All coordinates are relative to the
lower-left corner of the window in screen coordinates. sarray is an array of
16-bit values. Only the low-order 16 bits of each pixel are written, so
rectwrite() is useful primarily for windows in color map mode. The data is
written from sarray from left to right, then bottom to top rectwrite() obeys
the zoom factors set by rectzoom() (see rectzoom() below). writemask()

and scrmask() apply as with other drawing primitives.

lrectwrite() is similar to rectwrite() except that larray contains 32-bit
quantities and the behavior of lrectwrite() is affected by pixmode()

settings. Using pixmode() with lrectwrite() provides useful data
manipulation functions as well as data unpacking functions to store and
transfer data more efficiently.

rectcopy

rectcopy() copies the pixels from a rectangular region of the screen to a new
region. As with rectread() and lrectread() , the source rectangle must be
on the physical screen, but not necessarily constrained to the current window.
The bitplane source is determined by readsource() , and the bitplane
destination is determined by drawmode() , frontbuffer() , backbuffer() ,
and zdraw() .

During a rectcopy() , the source rectangle can be zoomed by parameters
established with rectzoom() . In addition, data manipulation and mirroring
can be accomplished through pixmode() settings.

rectzoom

rectzoom() sets the independent x and y zoom factors for rectwrite() ,
lrectwrite() , and rectcopy() . xzoom and yzoom are positive floating point
values. Values less than 1.0 are allowed and cause rectangles to shrink. Some

11-8 Pixels

hardware platforms are not capable of providing noninteger zoom, so only the
integer portion of the zoom parameters apply in that case. See the rectzoom()

man page for system dependencies.

If the following rectangle is copied after calling rectzoom(2.0, 3.0) :

1 2
3 4

the following copy is made; the pixel on the bottom left-hand corner is at (new
x, new y):

1 1 2 2
1 1 2 2
1 1 2 2
3 3 4 4
3 3 4 4
3 3 4 4

The following sample program, zoom.c, is a simple magnification program. It
magnifies the rectangular area above and to the right of the cursor to fill the
window.

#include <gl/gl.h>
#include <gl/device.h>

#define X 0
#define Y 1
#define XY 2

#define ZOOM 3

main()
{

long org[XY], size[XY], readsize[XY];
Device dev;
short val;
Device mdev[XY];
short mval[XY];
Boolean run;

prefsize(400, 400);
winopen("zoom");
qdevice(ESCKEY);
qdevice(TIMER0);
noise(TIMER0, getgdesc(GD_TIMERHZ)/10);/* 10 samples/sec */
getorigin(&org[X], &org[Y]);

Graphics Library Programming Guide 11-9

getsize(&size[X], &size[Y]);
readsize[X] = size[X] / ZOOM;
readsize[Y] = size[Y] / ZOOM;
rectzoom((float)ZOOM, (float)ZOOM);
mdev[X] = MOUSEX;
mdev[Y] = MOUSEY;
run = TRUE;
while (run) {
switch (qread(&val)) {
case TIMER0:

getdev(XY, mdev, mval);
mval[X] -= org[X];
mval[Y] -= org[Y];
rectcopy(mval[X], mval[Y],

mval[X] + readsize[X], mval[Y] + readsize[Y], 0, 0);
break;
case ESCKEY:
 if (val == 0)

run = FALSE;
 break;
}

 }
 gexit();
 return 0;
}

After determining the size and shape of the window, the program simply
loops, copying an appropriately sized rectangle above and to the right of the
cursor into the window magnified by a factor of 3 in each direction. The
expressions x-xorg and y-yorg convert the cursor’s screen coordinates into
window coordinates.

To be a useful tool, the program should have a mechanism for changing to and
from RGB mode, perhaps a method to change zoom factor, and perhaps code
to avoid rectcopy() if the mouse has not moved since the last time. It might
also make a better user interface if the region around the cursor is magnified
rather than the area above and to the right of it. Using this tool as is, note that
regions of the screen drawn in RGB mode appear incorrect, and color-mapped
portions look fine. Also, notice that with double-buffered programs, the zoom
window appears to blink. This is caused by buffer swapping in the
double-buffered program, while zoom is always reading from the same buffer.
If the zoom window is magnified, a zoom recursion takes place and the effects
are interesting.

11-10 Pixels

11.3 Using pixmode

pixmode() allows you to customize pixel operations when you use
lrectwrite() , lrectread() , or rectcopy() . pixmode() is only available on
certain systems, see the pixmode() man page for It can be used to specify pixel
operations such as shifting, expansion, offsetting, and packing and unpacking.
Each function is selected by calling pixmode() with an argument indicating
the operation and a value for that operation. Any or all functions can be used
in combination. Once you select a pixmode() operation, it remains in effect
until you change it. pixmode() operations have no effect on rectread() or
rectwrite() or any of the old-style pixel access subroutines.

11.3.1 Shifting Pixels

32-bit pixel data can be shifted left or right before being written to a frame
buffer destination or before being read into memory using the pixmode()

operation PM_SHIFT.

For example, to shift all pixels written with lrectwrite() left by eight bits so
that the red byte is placed in the green byte’s position, the green byte is placed
in the blue byte’s position, the blue byte is placed in the alpha byte’s position,
and the alpha byte is lost, before calling lrectwrite() to write the pixel data,
call:

pixmode(PM_SHIFT,8);

To disable shifting after you have enabled it, use:

pixmode(PM_SHIFT,0);

You can achieve the same effect when copying pixel data using rectcopy() .
The same call also affects lrectread() , but in this case a right shift is indicated
with a negative value. Thus, if you perform the sequence of operations:

pixmode(PM_SHIFT,8);
lrectwrite();

then call lrectread() to read the pixels you just wrote, the pixels you get are
exactly the same (unshifted) pixels you wrote, but with the alpha byte stripped
off. This is because the pixels were shifted left eight bits when they were
written and then shifted right eight bits when they were read back.

Graphics Library Programming Guide 11-11

The allowable values for PM_SHIFT are 0, 1, 4, 8, 12, 16, and24. A
positive value indicates a left shift for lrectwrite() and rectcopy() and a
right shift for lrectread() ; a negative value indicates a right shift for
lrectwrite() and rectcopy() and a left shift for lrectread() . The default
value is 0.

11.3.2 Expanding Pixels

You can expand a single-bit pixel into one of two 32-bit values using
PM_EXPAND with PM_C0 and PM_C1. When you set the pixmode() value
PM_EXPAND to 1, the least significant bit of a pixel’s value controls the
conversion of that bit into PM_C0 or PM_C1. If the bit is 0, PM_C0 is selected; if it
is 1, PM_C1 is selected. For example, to convert a series of single-bit pixels
(32-bit pixels whose most significant 31 bits are ignored) into blue for 0 and
green for 1 in RGB mode; before calling lrectwrite() call:

pixmode(PM_EXPAND, 1);
pixmode(PM_C0, 0x00ff0000);
pixmode(PM_C1, 0x0000ff00);

The call pixmode(PM_EXPAND,1) turns expansion on. The next two calls set the
expansion values for the single-bit values 0 and 1, respectively.

To turn expansion off, call pixmode(PM_EXPAND, 0) . This is the default. You
can set PM_C0 and PM_C1 to any 32-bit value. In color map mode, the value of
the color index is replaced by either PM_C0 or PM_C1. Their default values are 0.

PM_SHIFT can be used with PM_EXPAND to cause expansion based on a bit other
than the least significant one.

11.3.3 Adding Pixels

You can add a constant signed 32-bit value to the least significant 24 bits of
each pixel transferred by calling:

pixmode(PM_ADD24, value);

where value is the signed 32-bit value. This feature is most effectively used
when transferring z data, but it also affects color data. To turn off pixel
addition, call pixmode(PM_ADD24, 0) . This is the default.

11-12 Pixels

11.3.4 Pixels Destined for the z-Buffer

You can specify that pixels be sent to the z-buffer by setting:

pixmode(PM_ZDATA,1);

Unlike setting zdraw(TRUE) , using pixmode(PM_ZDATA,1) treats transferred
pixels as z data rather than color data. If you have called zbuffer(TRUE) , the
writing is conditional based on a comparison of the pixel’s value with the
value present in the corresponding location of the z-buffer. The current setting
of zfunction() determines the write condition.

To turn off this feature, call:

pixmode(PM_ZDATA, 0);

This is the default. PM_ZDATA has no effect on lrectread() .

11.3.5 Changing Pixel Fill Directions

The default directions for reading, writing, and copying pixel rectangles are
left-to-right and bottom-to-top. For example, when writing a rectangle, the
first pixel is placed in the lower left-hand corner of the specified rectangle, the
next at the same screen y value but at a screen x value of one greater, and so on
until a line of pixels is complete. The next line is placed on top of the last until
the rectangle is complete.

You can change the default reading, writing, and copying directions. To make
the pixel transfer direction top-to-bottom, use the following command:

pixmode(PM_TTOB, 1);

Top-to-bottom mode provides faster pixel read/write performance on IRIS
Indigo Entry, XS, XS24, and Elan systems than does the default.

To make the fill direction right-to-left, use:

pixmode(PM_RTOL, 1);

For instance, you can mirror a pixel rectangle that is already in the framebuffer
about a vertical line to produce a new rectangle by calling:

pixmode(PM_RTOL, 1);
rectcopy(...);

Graphics Library Programming Guide 11-13

You can set both PM_TTOB and PM_RTOL to 1 if you choose. Reset the directions
to the defaults with:

pixmode(PM_TTOB, 0);
pixmode(PM_RTOL, 0);

These functions change the order in which pixels are filled, but do not affect
the fundamental row-major ordering of pixels. That is, a horizontal line of
pixels always occupies a set of contiguous words in memory, and a group of
words representing one line of pixels is followed in memory by a group of
words representing the next. Pixels are always arranged so that a group of
contiguous words forms a horizontal line, never a vertical line. Changing fill
directions does not allow interchanging a horizontal line of pixels for a vertical
one.

Fill direction does not affect the location of the destination rectangle for
rectcopy() . The destination rectangle is always specified by its lower-left
pixel, regardless of fill direction.

There are no restrictions on using these modes with lrectwrite() or
lrectread() .

11.4 Subimages within Images

Using pixmode() allows you to read and write pixel subrectangles to and from
a larger pixel rectangle. Suppose you have a 2000×1500 pixel image and want
to work with a 100×200 subimage whose origin is at (150,500) in the larger
rectangle. You need to tell the GL the width of the larger rectangle with
pixmode() :

pixmode(PM_STRIDE, 2000);

PM_STRIDE specifies the number of 32-bit words per scanline of your rectangle.
Next you need to compute the address of the starting pixel of your
subrectangle within the large rectangle. If p points to the lower-left pixel of the
large rectangle, then, assuming the default pixel fill directions, this address is

p + (2000 * 500) + 150

You can then call lrectread() or lrectwrite() :

lrectread(x, y, x + 99, y + 199, p + (2000 * 500) + 150);
lrectwrite(x, y, x + 99, y + 199, p + (2000 * 500) + 150);

11-14 Pixels

to read or write the subimage from or to the location (x,y) on the screen. The
GL figures out where the appropriate subimage is located in CPU memory to
effect the desired transfer within the larger rectangle. You can use this method
to work with sub-rectangles of any size and offset as long as you tell the GL the
width of the whole rectangle using PM_STRIDE.

The default value for PM_STRIDE is 0. PM_STRIDE has no effect on rectcopy() .

11.5 Packing and Unpacking Pixel Data

You can specify a number of bits-per-pixel other than 32 for pixels in CPU
memory using the pixmode() function PM_SIZE. You can use this feature to
obtain more efficient packing of pixel data in CPU memory. Setting PM_SIZE to
a value other than 32 (the default value) unpacks pixels from CPU memory
when written using lrectwrite() and packs pixels into CPU memory when
using lrectread() .

If you are ignoring alpha values and are using RGB mode, you can specify a
PM_SIZE of 24 and pack four RGB values into three words. If you set PM_SIZE

to n (allowable values are 1, 4, 8, 12, 16, 24, and 32), the first pixel goes in the n
most significant bits of the first word. The next pixel is packed adjacent to the
first, so that if n is less than 32, its bits are placed in the next most significant
bits of the first word after the first n. If there is not enough room in the first
word for all the bits of this second pixel, the leftover bits fill the most
significant bits of the following word. The second word is packed tightly in the
same way, and so on for the rest of the words until the end of a line of pixels.

Note: The next line of pixels starts in the most significant bit of a new word,
even if the last pixel of the previous line did not completely fill the last
word of the previous line.

For instance, for a 3×3 rectangle with PM_SIZE set to 12, the first pixel occupies
the first 12 most significant bits of the first word, the second pixel occupies the
next most significant 12 bits of the first word, and the third pixel occupies the
last 8 bits of the first word and the first 4 most significant bits of the second
word. The next pixel begins a new line, so it occupies the 12 most significant
bits of the third word, and so on.

Graphics Library Programming Guide 11-15

The packing scheme makes 8- and 16-bit packing equivalent to char and short
arrays, respectively, for a line of pixels. Recall, however, that an address passed
to lrectwrite() or lrectread() must be long-word aligned.

If PM_SIZE is not 32, pixels might not begin on a word boundary. This might
require using the pixmode() function PM_OFFSET when accessing
subrectangles within rectangles.

Calling pixmode(PM_OFFSET, n) where n is a value between 0 and 31,
indicates that the most significant n bits of the first word of each scanline are
to be ignored. Assume you have a subrectangle of 100×200. The whole image
is 1250×1250, the origin is at (150,500), and the pixels are packed at 24 bits per
pixel instead of 32. In this case, there are 1250 pixels at 24 bits per pixel, or
30,000 bits in each scanline. Thus there are 30,000/32 (rounded up to the
nearest integer, because each scanline begins with a new word), or 938 words
per scanline. To find the address of the beginning of the sub-rectangle, you
must find the offset of the 150th pixel from the first word of a scanline in the
large rectangle. This offset is (150 ∗ 24)/32, or 111, when rounded down. But
111 words is actually (111 ∗ 32) / 24 = (exactly) 148 pixels. The 149th pixel
occupies the most significant 24 bits of the 112th word, so the 150th pixel
begins 24 bits from the beginning of the 112th word.

Therefore, to access the subimage in this example, call:

pixmode(PM_SIZE, 24);
pixmode(PM_STRIDE, 938);
pixmode(PM_OFFSET, 24);

and give the pointer:

p + (500 * 938) + 112

to lrectread() or lrectwrite() as the location of the first pixel in the
subimage. The offset of (500 ∗ 938) accounts for the first 500 lines of the large
rectangle that must be skipped, while the offset of 112 brings the pointer to the
word containing the 150th pixel in the scanline. The call to
pixmode(PM_OFFSET, 24) effects the additional required offset of 24 bits to
get to the 150th pixel itself.

Setting packing or unpacking parameters, PM_SIZE or PM_OFFSET, has no effect
on rectcopy() .

11-16 Pixels

11.6 Order of Pixel Operations

Various pixmode() functions can be used together. The order of calls to
pixmode() is of no consequence. This is because pixmode() functions happen
in a predefined order. For lrectwrite() , this order is

unpack ➔ shift ➔ expand ➔ add24 ➔ zoom

For lrectread() , the order is

shift ➔ expand ➔ add24 ➔ pack

For rectcopy() the order is

shift ➔ expand ➔ add24 ➔ zoom.

As an example, one useful combination is to display a black and white image
in RGB mode from an efficiently packed 1-bit-per-pixel encoding in memory.
To do this, make the following calls:

pixmode(PM_SIZE, 1);
pixmode(PM_EXPAND, 1);
pixmode(PM_C0, 0x00000000);
pixmode(PM_C1, 0x00ffffff);

before writing the image with lrectwrite() . You might also set PM_STRIDE

and PM_OFFSET if you want to handle a subimage.

You can also read and pack a black and white image using a similar method
with lrectread() , but you would have to be certain that the black pixels had
least significant bits of 0 and the white pixels least significant bits of 1, because
the packing discards all but one bit. Also, when reading back the image, there
would be no need for expansion. In any case, the order in which you make the
pixmode() calls is unimportant.

11.7 Old-Style Pixel Access

The subroutines in this section read and write pixels. They determine the
location of the pixels on the basis of the current character position (see cmov()

and getcpos()). They attempt to read or write up to n pixel values, starting
from the current character position and moving along a single scanline
(constant y) in the direction of increasing x. The system updates that position

Graphics Library Programming Guide 11-17

to the pixel that follows the last one read or written. The current character
position becomes undefined if the next pixel position is greater than
getgdesc(GD_XMAX) . The system paints pixels from left to right and clips them
to the current screenmask.

These subroutines do not automatically wrap from one line to the next, and
they ignore zoom factors set by rectzoom() . They are sensitive to color mode.
The current color mode should be set appropriately when calling the following
subroutines. The behavior of readpixels() and writepixels() is undefined
in RGB mode. The behaviors of readRGB() and writeRGB() are undefined in
color map mode.

11.7.1 Reading Pixels

This section describes the old-style pixel reading subroutines.

readpixels

readpixels(n, colors) reads up to n pixel values from the bitplanes in color
map mode, to an array of shorts, colors. it returns the number of pixels the
system actually reads. The values of pixels read outside the physical screen are
undefined.

readRGB

readRGB(n, red, green, blue) reads up to n pixel values from the bitplanes
in RGB mode. It returns the number of pixels the system actually reads in the
arrays of chars red, green, and blue. The values of pixels read outside the
physical screen are undefined.

11-18 Pixels

11.7.2 Writing Pixels

This section describes the old-style pixel writing subroutines.

writepixels

writepixels(n, colors) paints a row of pixels on the screen in color map
mode. n specifies the number of pixels to paint and colors specifies an array
containing a color for each pixel.

writeRGB

writeRGB(n, red, green, blue) paints a row of pixels on the screen in RGB
mode. n specifies the number of pixels to paint. red, green, and blue specify
arrays of colors for each pixel. writeRGB() supplies a 24-bit RGB value
(8 bits each for red, green, and blue) for each pixel and writes that value
directly into the bitplanes.

