
Graphics Library Programming Guide 7-1

Chapter 7

7. Coordinate Transformations

This chapter describes the subroutines that you use to set up a graphics scene,
for example, how much of the screen to use, where to locate the viewing point,
where shapes in the scene are located in space, how much of the scene is
visible, and what type of view you are looking at.

• Section 7.1 describes the coordinate systems that the GL uses and
explains how they are derived.

• Section 7.2, “Projection Transformations,” describes how coordinates are
mapped to the screen and tells you how to set up your scene projection.

• Section 7.3, “Viewing Transformations,” tells you how to set up the view
of your scene.

• Section 7.4, “Modeling Transformations,” tells you how to locate a
geometry in space and how to change its size and orientation.

• Section 7.5, “Controlling the Order of Transformations,” explains how to
put the items in your scene where you want them to go and how to save a
scene setup for later use.

• Section 7.6, “Hierarchical Drawing with the Matrix Stack,” tells you how
to draw items that are grouped into hierarchies.

• Section 7.7, “Viewports, Screenmasks, and Scrboxes,” tell you how to
define the visible limits of your scene.

• Section 7.8, “User-Defined Transformations,” tells you how to define your
own way of looking at the scene and manipulating items in it.

• Section 7.9, “Additional Clipping Planes,” tells you how to define the
visible limits of your scene using boundaries that you create.

7-2 Coordinate Transformations

Changing how your graphics scene is viewed and changing where items are
placed in it are called transformations. Three-dimensional transformations are
difficult to describe, and even harder to visualize. You may need to read the
chapter more than once, study the illustrations, experiment with the sample
code, and write your own programs in order to gain an understanding of these
topics.

7.1 Coordinate Systems

You use many different coordinate systems in the process of drawing a
graphics scene. Figure 7-1 illustrates the coordinate systems used at different
stages of the drawing process.

Figure 7-1 Coordinate Systems

The coordinate systems on the IRIS begin with a 3-D system defined in
right-handed cartesian floating point coordinates, called the object coordinate
system. Geometry vertices that you specify in (x, y, z) triplets are in this

Coordinate System Operation

Object coordinates

Eye coordinates

Clip coordinates

Normalized coordinates

Window coordinates

Screen coordinates

ModelView matrix

Projection matrix

Divide by

Viewport transform

Window offset

Pixel values

w

Graphics Library Programming Guide 7-3

coordinate system. There are no limits to the size of coordinates in this system
(other than the largest legal floating point value).

The eye coordinate system is the result of transforming (through matrix
multiplication) the geometry coordinates by the contents of the modeling and
viewing (ModelView) matrix. The eye coordinate system is the system in which
lighting calculations are performed internally.

When the IRIS transforms points expressed in eye coordinates by the Projection
matrix, the output is expressed in clip coordinates. Values returned by a call to
getgpos() are expressed in this coordinate system.

The next system is called the normalized coordinate system. Clip coordinates are
converted to normalized coordinates by first limiting x, y, and z to the range
-w ≤ x,y,z ≤ w (clipping), then dividing x, y, and z by w. The result is
normalized coordinates in the range -1 ≤ x,y,z ≤ 1. The space of normalized
coordinates is called the 3-D unit cube.

The x and y coordinates of this 3D unit cube are scaled directly into the next
coordinate system, usually called the window coordinate system. The pixel at the
lower-left corner of a window has window coordinates (0,0).

Window coordinates, modified by a window offset that represents the
window’s location on the screen, represent the screen coordinate system, which
corresponds to pixel values. Screen coordinates are typically thought of as 2-D,
but in fact all three dimensions of the normalized coordinates are scaled, and
there is a screen z coordinate that can be used for hidden surface removal,
described in Chapter 8, or depth cueing, described in Chapter 11.

Note: If the ModelView matrix were separated into a Model matrix and a
View matrix, the coordinate system between these matrices would be
correctly referred to as the world coordinate system. Because the GL
concatenates modeling and viewing transformations into a single
matrix (ModelView), there are no world coordinates in the GL.

To get from geometry vertices to a scene displayed on your screen, you have
to specify a projection transformation, to define how images in your scene are
projected to the screen and a viewing transformation, to define what type of view
you have and where you are viewing the scene from. This is sort of like setting
up a camera to look through at the scene. You can move the camera around and
change lenses to get different views with these transformations.

7-4 Coordinate Transformations

7.2 Projection Transformations

You can project an image onto the screen in one of three ways:

• Perspective - Items far away are smaller than items close to you, and
parallel lines appear to recede into the distance toward a vanishing point.

This is how you see the real world through your eye’s ability to
perceive depth. Consequently, scenes with a perspective projection
will look and feel more natural to you, unless you have exaggerated
some parameter that causes distortion.

• Window - Items are seen in perspective, but it is possible to create an
asymmetric view of the scene.

• Orthographic - Items are projected through a rectangular viewing
volume, but are not seen in perspective.

All the projection transformations work basically the same way. A viewing
volume is mapped into the unit cube, the geometry outside the cube is clipped
out, and the remaining data is linearly scaled to fill the window (actually the
viewport, which is discussed in Section 7.7, “Viewports, Screenmasks, and
Scrboxes”). The viewpoint is where your eye is with respect to the viewing
volume. This is called the eye position, or simply the eye.

Projection transformations are either perspective or orthographic in nature.
The difference between the three projection transformations is the definitions
of their viewing volumes. Perspective projections create a volume that has the
shape of a pyramid with the top cut off. Orthographic projections create a
viewing volume that has parallel sides.

7.2.1 Perspective Projection

Viewing items in perspective on the computer screen is like looking through a
rectangular piece of perfectly transparent glass. Imagine drawing a line from
your eye through the glass until it hits the item, coloring a dot on the glass
where the line passes through the same color on the item. If this were done for
all possible lines through the glass, if the coloring were perfect, and if the eye
not allowed to move, the picture painted on the glass would be
indistinguishable from the true scene.

The collection of all the lines leaving your eye and passing through the glass
would form an infinite four-sided pyramid with its apex at your eye. Anything

Graphics Library Programming Guide 7-5

outside the pyramid would not appear on the glass, so the four planes passing
through your eye and the edges of the glass would block your view of the
portions of the items outside the glass. These are called the left, right, bottom,
and top clipping planes.

The geometry hardware also provides two other clipping planes that eliminate
anything too far or too near to be seen clearly with the eye, just like your eye
cannot focus on objects that are very far away or very close to you. These are
called the near and far clipping planes. Near and far clipping is always turned
on, but it is possible to set the near plane very close to the eye and/or the far
plane very far from the eye so that all the geometries of interest are visible.

Because floating point calculations are not exact, it is a good idea to move the
near plane as far as possible from the eye, and to bring in the far plane as close
as possible. This gives optimal resolution for distance-based operations such
as hidden surface removal and depth-cueing, as discussed in Chapters 8 and
11.

For a perspective view, the visible region of the world (your graphics scene)
looks like a pyramid with the top sliced off. The technical name for this is a
frustum, or rectangular viewing frustum.

In a perspective projection, the Projection matrix maps a frustum of eye
coordinates so that it exactly fills the unit cube (after x, y, and z are each divided
by w). This frustum is part of a pyramid whose apex is at the origin (0.0, 0.0,
0.0). The base of the pyramid is parallel to the x-y plane, and it extends along
the negative z axis.

In other words, it is the view obtained with the eye at the origin looking down
the negative z axis, and the plate of glass perpendicular to the line of sight.

Use perspective() to define a perspective projection:

void perspective(Angle fovy, float aspect, Coord znear, Coord zfar)

perspective() has four arguments: the field of view in the y direction, the
aspect ratio, and the distances to the near and far clipping planes.

The field of view (fovy) is an angle made by the top and bottom clipping planes
that is measured in tenths of degrees, so a 90 degree angle is specified as 900.

The aspect ratio is the ratio of the x dimension of the glass to its y dimension. It
is a floating point number. For example, if the aspect ratio is 2.0, the glass is

7-6 Coordinate Transformations

twice as wide as it is high. Typically, you choose the aspect ratio so that it is the
same as the aspect ratio of the window on the screen, but it need not be. The
distances to the near and far clipping planes are floating point values.

The keepaspect() subroutine tells the window manager to maintain the
window’s x and y dimensions in a 1 to 1 ratio, that is, a square. An equally
accurate picture could be made by setting a 2 to 1 ratio, but then the aspect
ratio in perspective() would have to be changed to 2.0. You might want to
try this to see how it looks. Also try varying other parameters of
perspective—change the field of view and the near and far clipping planes to
see the effects.

In a real application, you probably want to match the aspect ratio of
perspective() to the aspect ratio of the window when you sweep out a
window of arbitrary shape and size. Use getsize(x,y) to return the height
and width in pixels of a GL window.

Figure 7-2 shows a frustum that demonstrates eyepoint, FOV angles, clipping
planes, and aspect ratio.

Figure 7-2 Frustum

Far

Right

Left

Eyepoint
Line of Sight

Horizontal FOV

Aspect Ratio =
y
x

Near

Vertical FOV

Bottom

Top

y

x

Graphics Library Programming Guide 7-7

This sample program, perspective.c, draws a single rectangle whose shade
varies from bright red at z=0.0 to bright green at z=-4.0.

#include <stdio.h>
#include <gl/gl.h>
#define RGB_BLACK 0x000000
#define RGB_RED 0x0000ff
#define RGB_GREEN 0x00ff00

float v[4][3] = {
{-3.0, 3.0, 0.0},
{-3.0, -3.0, 0.0},
{ 2.0, -3.0, -4.0},
{ 2.0, 3.0, -4.0}

};

main()
{

long xsize, ysize;
float aspect;

if (getgdesc(GD_BITS_NORM_SNG_RED) == 0) {
fprintf(stderr, “Single buffered RGB not available\n”);

return 1;
}
prefsize(400, 400);
winopen("perspective");
mmode(MVIEWING);
getsize(&xsize, &ysize);
aspect = (float)xsize / (float)ysize;
perspective(900, aspect, 2.0, 5.0);
RGBmode();
gconfig();
cpack(RGB_BLACK);
clear();
bgnpolygon();

cpack(RGB_RED);
v3f(v[0]);
v3f(v[1]);
cpack(RGB_GREEN);
v3f(v[2]);
v3f(v[3]);

endpolygon();
sleep(10);
gexit();
return 0;

}

7-8 Coordinate Transformations

Figure 7-3 shows a top view of the scene drawn in the sample program
perspective.c. This view is not the view you see on your screen when you run
the program; this view lets you see outside of the viewing volume.

Figure 7-3 Clipping Planes

The heavy line shows the rectangle that the program draws. The eye is at (0.0,
0.0, 0.0), so the rectangle recedes into the distance, and because the field of
view is 90 degrees and the near clipping plane is at 2.0, the rectangle is clipped
by the top, bottom, and near clipping planes.

The visible part of the polygon nearest the eye is not bright red, but already
looks yellowish because the rectangle is clipped by the near clipping plane. If
you bring in the near clipping plane toward you, the near end of the polygon
looks more and more red.

right

x

near

far left

z

Graphics Library Programming Guide 7-9

7.2.2 Window Projection

A window() projection transformation shows the world in perspective view. It
is similar to perspective() , but its viewing frustum is defined in terms of
distances to the left, right, bottom, top, and near and far clipping planes:

void window(Coord left,Coord right,Coord bottom,Coord top,Coord near,Coord far)

Figure 7-4 illustrates the window projection transformation.

Figure 7-4 The window() Projection Transformation

Because window() allows separate specifications at all six surfaces of the
viewing frustum, it can be used to specify asymmetric volumes. These are
useful in special circumstances, such as multiple view simulations, and for
special operations, such as antialiasing using the accumulation buffer,
described in Chapter 15.

window() specifies the position and size of the rectangular viewing frustum
closest to the eye, the location of the near and far clipping planes. window()

projects a perspective view of the image onto the screen.

(left, top, near)

y

x

z

window (-5., 5., -3., 3., 1., 3.);
translate (0., 0., -2.)

(right, bottom, near)

(0, 0, far)

z

y

7-10 Coordinate Transformations

7.2.3 Orthographic Projections

The remaining two projection subroutines are the orthographic
transformations, ortho() and ortho2() . Their viewing volumes are
rectangular parallelepipeds (rectangular boxes). They correspond to the
limiting case of a perspective frustum as the eye moves infinitely far away and
the field of view decreases appropriately.

Another way to think of the ortho() subroutines is that the geometry outside
the box is clipped out, then the geometry inside is projected parallel to the z
axis onto a face parallel to the x-y plane.

Figure 7-5 shows an example of a 3D orthographic projection.

Figure 7-5 The ortho() Projection Transformation

ortho() allows you to specify the entire box—the x, y, and z limits. ortho2()

requires a specification of only the x and y limits. The z limits are -1 and 1.

near

y

x

z
far

ortho (-5., 5., -3., 3., 1., 3.);
translate (0., 0., -2.);

Graphics Library Programming Guide 7-11

ortho2() is usually used for 2-D drawing, where all the z coordinates are zero.
It is really a 3D transformation; if you use ortho2() and try to draw objects
with z coordinates outside the range –1.0 ≤ z ≤ 1.0, they are clipped out.

ortho

ortho() defines a box-shaped enclosure in the eye coordinate system:

void ortho(Coord left,Coord right,Coord bottom,Coord top,Coord znear,Coord zfar)

The arguments left, right, bottom, and top define the x and y clipping planes.
znear and zfar are distances along the line of sight and are negative. In other
words, the z clipping planes are located at z = −znear and z = −zfar.

Note: Because ortho() allows separate specification of the left, right,
bottom, and top clipping planes rather than just the width and height
of the viewing volume, it can move the effective viewpoint off the
positive z axis. Thus, although ortho() is a projection transformation,
it exhibits some aspects of a viewing transformation. Be careful when
using ortho() with asymmetric volume boundaries so that you do
not duplicate this viewpoint offset in your viewing transformation.

ortho2

ortho2() defines a 2-D clipping rectangle:

void ortho(Coord left,Coord right,Coord bottom,Coord top,Coord near,Coord far)

The arguments left, right, bottom, and top define the sides of the rectangle.
Choose the values for ortho2() carefully, because of the transformation of
floating point values to integers as the coordinate systems are modified to use
screen coordinates, and because of the need to align lines on pixel centers
rather than on pixel boundaries. You need to add a .5 to each value in the
ortho2() call, so that pixels are centered on whole numbers. If you do not do
this, you might find that accumulated round-off errors in the arithmetic of
pixel operations cause your pixel specifications to be off by a pixel or more.

The ortho2() statement in the following code fragment defines the correct
clipping rectangle for the window created with the corresponding
prefposition() statement:

prefposition(101, 500, 101, 500);
ortho2(100.5, 500.5, 100.5, 500.5);

7-12 Coordinate Transformations

This causes the clipping rectangle to clip only items that are completely within
the window defined by the prefposition() statement. These two statements
ensure that the ortho2() statement clips on (and point-samples within)
boundaries that are completely visible within the window defined by the
prefposition() statement.

7.3 Viewing Transformations

All the projection transformations discussed so far have assumed that the eye
is at least looking toward the negative z axis, and the two perspective
subroutines actually assume that the eye is at the origin. For the orthogonal
transformations, it does not make sense to talk about the exact position of the
eye, only about the direction it is looking.

The viewing transformations allow you to specify the position of the eye and
the direction toward which it is looking. polarview() and lookat() provide
convenient ways to do this.

polarview() assumes that the object you are viewing is near the origin. The
eye position is specified by a radius (distance from the origin) and by angles
measuring the azimuth and elevation. The specification is similar to a polar
coordinates. There is still one degree of freedom, because these values tell only
where the eye is relative to the object.

lookat() allows you to specify both the viewpoint and the reference point
toward which the eye is looking, and a twist angle to specify which way is up.

Both viewing subroutines work with a projection subroutine. If you want to
view a point (for example: 1, 2, 3) from another point (4, 5, 6) in a perspective
view, use both perspective() and lookat() .

When the orthographic projections are used, the exact position of the eye used
in the viewing subroutines does not make a difference; all that matters is the
viewing line of sight.

The viewing transformations work mathematically by transforming, with
rotations and translations, the position of the eye to the origin and the viewing
direction so that it lies along the negative z axis.

Graphics Library Programming Guide 7-13

7.3.1 Viewpoint in Polar Coordinates

polarview() defines the viewer’s position in polar coordinates. The first three
arguments, dist, azim, and inc, define a viewpoint. dist is the distance from the
viewpoint to the origin in world coordinates. azim is the azimuthal angle in the
x-y plane, measured from the y axis. inc is the incidence angle in the y-z plane,
measured from the z axis. The line of sight is the line between the viewpoint
and the origin (0,0,0).

The twist rotates the viewpoint around the line of sight using the right-hand rule
(as you look down the positive rotation axis to the origin, positive rotation is
counterclockwise). All angles are specified in tenths of degrees and are
integers.

Figure 7-6 shows examples of polarview() .You don’t see anything in the top
picture because the eye is positioned on the origin, looking at the origin.

Figure 7-6 The polarview() Viewing Transformation

polarview (0., 0, 0, 0);

polarview (10., 0, 0, 0);

z

x y

dist

7-14 Coordinate Transformations

7.3.2 Viewpoint along a Line of Sight

lookat() defines a viewpoint and a reference point on the line of sight in
world coordinates. The viewpoint is at (vx, vy, vz) and the reference point is at
(px, py, pz). These two points define the line of sight. The twist measures
right-hand rotation about the z axis in the eye coordinate system.

Figure 7-7 shows examples of lookat() .

Figure 7-7 The lookat() Viewing Transformation

The lookat.c sample program draws a wireframe cube centered at the origin. Its
window has an aspect ratio of 3:2, or 1.5:1, so the aspect ratio of perspective ()
is 1.5 to match. lookat() looks from the point (5.0, 4.0, 6.0) at the corner (1.0,
1.0, 1.0) of the cube, so that corner appears centered in the window.

The near and far clipping planes are at 0.1 and 10.0. Nothing is clipped out on
the near end, but the far corner of the cube is about 10.49 away from the eye,
so the far clipping plane clips a bit of the corner.

lookat (V , V , V , 0., 0., 0., 0);x y z

lookat (V , V , V , 0., 0., 0., 300);x y z

line of sight

y

x

zobj

obj

obj

y

x

zobj

obj

obj

twist

Graphics Library Programming Guide 7-15

This program, lookat.c, illustrates how to use a viewing transformation with a
projection transformation:

#include <gl/gl.h>

long v[8][3] = {
{-1, -1, -1},
{-1, -1, 1},
{-1, 1, 1},
{-1, 1, -1},
{ 1, -1, -1},
{ 1, -1, 1},
{ 1, 1, 1},
{ 1, 1, -1},

};
int path[16] = {

0, 1, 2, 3,
0, 4, 5, 6,
7, 4, 5, 1,
2, 6, 7, 3

};

void drawcube()
{

int i;
bgnline();
for (i = 0; i < 16; i++)

v3i(v[path[i]]);
endline();

}

main()
{

prefsize(600, 400);
winopen("lookat");
mmode(MVIEWING);
perspective(300, 1.5, 0.1, 10.0);
lookat(5.0, 4.0, 6.0, 1.0, 1.0, 1.0, 0);
color(BLACK);
clear();
color(WHITE);
drawcube();
sleep(10);
gexit();
return 0;

}

7-16 Coordinate Transformations

7.4 Modeling Transformations

When you create a geometry, the GL creates it with respect to its own
coordinate system. You can manipulate the entire object using the modeling
transformation subroutines: rotate() , rot() , translate() , and scale() .
Each time you specify a transformation such as rotate() or translate() , the
software automatically generates a transformation matrix that premultiplies the
current matrix by the factors by which the coordinate system is to be rotated
or translated. See Appendix C for the transformation matrices used by the GL.

Figure 7-8 shows some examples of modeling transformations.

Figure 7-8 Modeling Transformations

y

x

(a) original object at (0, 0, 0)

y

x

(b) rotate (300, "Z");

y

x

(c) translate (1., 1., 0.);

y

x

(d) scale (-.5, .5, 1.);

y

(e) scale (2., 1., 1.);

x

Graphics Library Programming Guide 7-17

7.4.1 Rotation

Use rotate() to rotate a geometry by specifying an angle and an axis of
rotation:

void rotate(Angle a, char axis)

The angle is given in tenths of degrees according to the right-hand rule. A
character (either upper- or lowercase x, y, or z), defines the axis of rotation. The
angle and axis are used to compute a 4x4 rotation matrix R (see Appendix C),
that premultiplies the current matrix T to give RT.

rot() is the same as rotate; it specifies an angle and an axis of rotation in
floating point values, but the angle is measured in degrees:

void rot(Angle a, char axis)

You need to pay close attention to the order in which you specify
transformation operations, or your program might provide you with
surprising results. See Section 7.5, “Controlling the Order of Transformations,”
and Figure 7-9 for more information about the importance of the order of
modeling transformations and how to preserve untransformed coordinates.

The geometry in Figure 7-8 (a) is rotated 30 degrees with respect to the y axis
in Figure 7-8 (b). All geometries drawn after you call rotate() or rot() are
rotated. Use pushmatrix() and popmatrix() to preserve and restore the
unrotated coordinate system.

7.4.2 Translation

Use translate() to move the coordinate system origin to a point (x,y,z)
specified in the current coordinate system:

void translate(Coord x, Coord y, Coord z)

The x,y, and z coordinates are used to compute a 4×4 translation matrix X (see
Appendix C), that premultiplies the current matrix T, to give XT.

The geometry in Figure 7-8 (a) is translated by (1,1,0) in Figure 7-8 (c).

All geometries drawn after you call translate() are translated. Use
pushmatrix() and popmatrix() to preserve and restore the untranslated
coordinate system.

7-18 Coordinate Transformations

7.4.3 Scaling

Use scale() to shrink, expand, or mirror a geometry:

void scale(float x, float y, float z)

The x, y, and z scale factors are used to compute a 4×4 scale matrix S (see
Appendix C) that premultiplies the current matrix T to give ST. Values with
magnitudes of more than 1 cause expansion; values with magnitudes of less
than 1 cause shrinkage. Negative values cause mirroring.

Note: There may be a performance penalty for using non-uniform scaling if
you are using lighting calculations.

The geometry in Figure 7-8 (a) is shrunk to one-quarter of its original size and
is mirrored about the y axis in Figure 7-8 (d). It is scaled only in the x direction
in Figure 7-8 (e). All geometries drawn after you call scale() are scaled. Use
pushmatrix() and popmatrix() to preserve and restore the unscaled
coordinate system.

You can combine rotate() , rot() , translate() , and scale() to produce
more complicated transformations. The order in which you apply these
transformations is important. Figure 7-9 shows two sequences of translate()

and rotate() . Each sequence has different results.

Figure 7-9 Effects of Sequence of Translations and Rotations

y

x

y

x

y

x

rot (600, 'Z'); trans (4., 0., 0);(a)

y

x

y

x

rot (600, 'Z');trans (4., 0., 0);(b)

y

x

Graphics Library Programming Guide 7-19

7.5 Controlling the Order of Transformations

Each time you specify a transformation such as rotate() or translate() , the
software automatically generates a transformation matrix that specifies the
amount by which the coordinate system is to be rotated or translated. The
current transformation matrix is then premultiplied by the generated matrix,
effecting the desired transformation. The actual transformations are done in an
order opposite to that specified. In other words, you specify the viewing
matrix first, followed by the modeling transformations, so that vertices are first
positioned correctly in world coordinates, then the eye point moves to the
origin looking down the negative z axis.

The reason for the reverse order is that the transformations are accomplished
in the hardware by matrix multiplication, and historically, the matrix
multiplication hardware allows only left multiplications. Thus, a vector v,
transformed by a modeling transformation M and a viewing transformation V
(in that order), undergoes the following multiplications:

v → vM → (vM)V = vMV

The hardware concatenates modeling and viewing transformations onto one
matrix to save time, but because it performs multiplication only on the left, it
must start with V, then generate MV. Because the Projection matrix is stored
separately from the ModelView matrix, it does not matter whether projection
is specified before or after the modeling and viewing transformations.

7.5.1 Current Matrix Mode (mmode)

The graphics system maintains three transformation matrices—the
ModelView matrix, the Projection matrix, and the Texture matrix. As described
at the beginning of this chapter, the ModelView matrix transforms coordinates
from object coordinates to eye coordinates. The Projection matrix transforms
coordinates from eye coordinates to clip coordinates. The Texture matrix
transforms texture coordinates directly from object coordinates to clip
coordinates. Its transformation is typically unrelated to that specified by the
ModelView and Projection matrices.

All programs should set matrix mode to MVIEWING, MPROJECTION, or
MTEXTURE, depending on which operation is to be done, before any matrix
operations are performed. A fourth matrix mode, MSINGLE, reconfigures the
graphics system to have only a single matrix that transforms vertices directly

7-20 Coordinate Transformations

from object coordinates to clip coordinates. This mode is obsolete and should
not be used. For historical reasons, however, MSINGLE is the default.

Use mmode() to specify which of three matrices is the current matrix:
ModelView (MVIEWING), Projection (MPROJECTION), or Texture (MTEXTURE):

void mmode(short m)

The current matrix is on the top of the matrix stack.

When you are not doing lighting calculations, you should use MVIEWING for
the modeling, viewing, and projection transformations. See Chapter 9 for
information about the transformation matrices when lighting is used.

Note: Even in mmode(MVIEWING), any calls to projection transformations
(perspective, window, ortho or ortho2) will affect the
Projection matrix.

7.6 Hierarchical Drawing with the Matrix Stack

A drawing can be composed of many copies of simpler drawings, each of
which can be composed of still simpler drawings, and so on. For example, if
you were writing a program to draw a picture of a bicycle, you might want to
have one subroutine that draws a wheel, and to call that subroutine twice to
draw two wheels, appropriately translated. The wheel itself might be drawn
by calling the spoke drawing subroutine 36 times, appropriately rotated. In a
still more complicated drawing of many bicycles, you might like to call the
bicycle drawing routine many times.

Suppose the bicycle is described in a coordinate system where the bottom
bracket (the hole through which the pedal crank’s axle runs) is the origin. You
would draw the frame relative to this origin, but translate forward a few inches
before drawing the front wheel (defined, say, relative to its axis). Then you
would like to remove the forward translation to get back to the bicycle’s frame
of reference, and translate back to draw another instance of the wheel.

The modeling transformation that describes the bicycle’s frame of reference is
M, and that S and T are transformations (relative to M) to move forward for
drawing the front wheel, and back for the back wheel, respectively. You would
like to draw the wheel using transformation SM for the front wheel and TM for
the back wheel.

Graphics Library Programming Guide 7-21

This is easily accomplished using the ModelView matrix stack. At any point in
a drawing, the current ModelView matrix sits at the top of the matrix stack; it
contains all the modeling and viewing transformations called thus far. In the
bicycle example, this lumped-together transformation is called M. Any vertex
is transformed by the top matrix, which is what you want to do for drawing
the frame.

Two subroutines, pushmatrix() and popmatrix() , push and pop the
ModelView matrix stack. pushmatrix() pushes the matrix stack down and
copies the current matrix to the new top. Thus, after a pushmatrix() , there are
two copies of M on top. Translating by a translation matrix T leaves the stack
with TM on top and M underneath. The wheel is then drawn once using the
SM transformation. popmatrix() eliminates the TM on top, leaving M, and
another pushmatrix() makes two copies of M.

 ... /* code to get M on top of the stack */
 pushmatrix();
 translate(-dist_to_back_wheel, 0.0, 0.0);
 drawwheel();
 popmatrix();
 pushmatrix();
 translate(dist_to_front_wheel, 0.0, 0.0);
 drawwheel();
 popmatrix();
 drawframe();

pushmatrix

Use pushmatrix() to push down the transformation stack, duplicating the
current matrix:

void pushmatrix(void)

If the transformation stack originally contains one matrix, M, it will contain
two copies of M (after a pushmatrix()). You can modify only the top copy.
Because only the ModelView matrix is stacked, you should call pushmatrix()

only while mmode() is MVIEWING.

popmatrix

Use popmatrix() to pop the top matrix off the transformation stack:

void popmatrix(void)

7-22 Coordinate Transformations

Call popmatrix() only while mmode() is MVIEWING.

Note: It is important to have the same number of matrix pushes and matrix
pops, so you don’t try to pop a matrix off an empty stack.

This sample program, hierarchy.c, uses a hierarchical description of a simple
car. It is so simple that the car body is a rectangle, the wheels are square, and
everything is 2D. Note that the positions and orientations of the nine cars are
independent, and each wheel has a different rotation.

#include <math.h>
#include <gl/gl.h>

#define X 0
#define Y 1
#define XY 2

float carbody[4][XY] = {
{-0.1, -0.05},
{ 0.1, -0.05},
{ 0.1, 0.05},
{-0.1, 0.05}

};
float wheel[4][XY] = {

{-0.015, -0.015},
{ 0.015, -0.015},
{ 0.015, 0.015},
{-0.015, 0.015}

};

void drawwheel()
{

color(GREEN);
bgnpolygon();

v2f(wheel[0]);
v2f(wheel[1]);
v2f(wheel[2]);
v2f(wheel[3]);

endpolygon();
}

Graphics Library Programming Guide 7-23

void drawcar()
{

int i;
color(RED);
bgnpolygon();

v2f(carbody[0]);
v2f(carbody[1]);
v2f(carbody[2]);
v2f(carbody[3]);

endpolygon();
for (i = 0; i < 4; i++) {

pushmatrix();
translate(carbody[i][X], carbody[i][Y], 0.0);
rotate(200*(i+1), 'z');
drawwheel();

popmatrix();
}

}
main()
{

float xoffset, yoffset;
Angle ang;

prefsize(400, 400);
winopen("hierarchy");
mmode(MVIEWING);
ortho2(-1.0, 1.0, -1.0, 1.0);
color(BLACK);
clear();
for (xoffset = -0.5; xoffset <= 0.5; xoffset += 0.5) {

for (yoffset = -0.5; yoffset <= 0.5; yoffset += 0.5) {
ang = 3600 * drand48();
pushmatrix();

translate(xoffset, yoffset, 0.0);
rotate(ang, 'z');
drawcar();

popmatrix();
}

 }
 sleep(10);
 gexit();
 return 0;
}

7-24 Coordinate Transformations

This shorter and perhaps more interesting program illustrates hierarchy and
more complex transformations. It is a computer model of a ring and gear
drawing toy. In the toy, a plastic ring is pinned to a piece of paper, and you
place a pen through a hole in a smaller gear inside the ring and rotate the gear.
As the moving gear rolls around the fixed gear, you draw interesting patterns.

#include <gl/gl.h>

#define PEN_TO_CENTER 0.2
#define R0 0.35
#define R1 0.6

void drawdot()
{

translate(PEN_TO_CENTER, 0.0, 0.0);
pnt2i(0, 0);

}

void draw1(theta)
float theta;
{

pushmatrix();
rot(theta, 'z');
translate(R1 + R0, 0.0, 0.0);
rot(-theta * R1 / R0, ‘z’);
drawdot();

popmatrix();
}

main()
{

float theta;

prefsize(400, 400);
winopen("spirograph");
mmode(MVIEWING);
ortho2(-2.0, 2.0, -2.0, 2.0);
color(BLACK);
clear();
color(WHITE);
for (theta = 0.0; theta < 3600.0; theta += 0.25)

draw1(theta);
sleep(10);
gexit();
return 0;

}

Graphics Library Programming Guide 7-25

In this example, R0 and R1 are the radii of the two gears. and
PEN_TO_CENTER is the distance from the pen to the center of the moving
gear. With a slight modification of this program, you can build a sophisticated
drawing program that has three levels of gears, each moving along the next at
a uniform rate. It would be difficult to build this one out of plastic!

#include <gl/gl.h>

#define PEN_TO_CENTER0 0.2
#define R0 0.35
#define R1 0.6
#define R2 0.8

void drawdot()
{

translate(PEN_TO_CENTER, 0.0, 0.0);
pnt2i(0, 0);

}

void draw1(theta)
float theta;
{

pushmatrix();
rot(theta, ‘z’);
translate(R1 + R0, 0.0, 0.0);
rot(-theta * R1 / R0, 'z');
drawdot();

popmatrix();
}

void drawx(theta)
float theta;
{

pushmatrix();
rot(theta, ‘z’);
translate(R2 + R1, 0.0, 0.0);
rot(-theta * R2 / R1, 'z');
draw1(theta);

popmatrix();
}

7-26 Coordinate Transformations

main()
{
 float theta;
 prefsize(400, 400);
 winopen("spirograph2");
 mmode(MVIEWING);
 ortho2(-3.0, 3.0, -3.0, 3.0);
 color(BLACK);
 clear();
 color(WHITE);
 for (theta = 0.0; theta < 18000.0; theta += 0.25)

drawx(theta);
 sleep(10);
 gexit();
 return 0;
}

7.7 Viewports, Screenmasks, and Scrboxes

The viewport is the area of the window that displays an image. You specify it in
window coordinates, where the coordinates of the pixel at the lower-left corner
of the window are (0, 0). The visible screen area varies from system to system.

viewport

Use viewport() to specify, in window coordinates, the area of the window
that displays an image:

void viewport(Screencoord left,
Screencoord right,
Screencoord bottom,
Screencoord top)

Its arguments (left, right, bottom, top) define a rectangular area on the window
by specifying the left, right, bottom, and top coordinates. The portion of eye
coordinates that window() , ortho() , or perspective() describes is mapped
into the viewport. By default, when you open a window on the screen, its
viewport is set to cover the whole window.

Although window coordinates are continuous, not discrete, the parameters
passed to viewport() are integer values. Thus, the viewport is always an
integer number of pixels wide and high. Pixel x,y is included in the viewport

Graphics Library Programming Guide 7-27

if x ≥ left and x ≤ right and y ≥ bottom and y ≤ top. Because pixel centers
have integer coordinates in the continuous window coordinate space, the
window area included in a viewport is exactly:

(left-0.5) ≤ x < (right+0.5), (bottom-0.5) ≤ y < (top+0.5)

Note: To correctly map object coordinates one-to-one to window
coordinates, call:

ortho(-0.5, width -0.5, -0.5, height-0.5)
viewport(0, width-1, 0, height-1);

where width and height are the integer pixel sizes of the window.

getviewport

Use getviewport() to return the current viewport:

void getviewport(Screencoord *left,
Screencoord *right,
Screencoord *bottom,
Screencoord *top)

The arguments (left, right, bottom, top) are the addresses of four memory
locations. These are assigned the left, right, bottom, and top coordinates of the
current viewport.

scrmask

The screenmask is a specified rectangular area of the screen to which all
drawings are clipped. Use scrmask() to define the screenmask:

void scrmask(Screencoord left,
Screencoord right,
Screencoord bottom,
Screencoord top)

The viewport maps coordinates to the window, and the screenmask specifies
the portion of the window to which the geometry can be drawn. The
screenmask is a setting that regards only the physical display within the
window. The screenmask and viewport are usually set to the same area.
viewport() sets both the viewport and the screenmask to the same area;
scrmask() sets only the screenmask, which must be placed entirely within the
viewport. See Chapter 3 for one use of a screenmask—clipping characters.

7-28 Coordinate Transformations

getscrmask

Use getscrmask() to return the coordinates of the current screenmask in the
arguments left, right, bottom, and top:

void getscrmask(Screencoord *left,
Screencoord *right,
Screencoord *bottom,
Screencoord *top)

pushviewport

The system maintains a stack of viewports, and the top element in the stack is
the current viewport. Use pushviewport() to duplicate the current viewport
and screenmask and push them onto the stack:

void pushviewport(void)

popviewport

Use popviewport() to pop the stack of viewports and set the viewport and
screenmask (the viewport on top of the stack is lost):

void popviewport(void)

scrbox

scrbox() is a dual of the scrmask capability. Rather than limiting drawing
effects to a screen-aligned subregion of the viewport, it tracks the
screen-aligned subregion (screen box) that has been affected. Unlike
scrmask() , which defaults to the viewport boundary if not explicitly enabled,
scrbox() must be explicitly turned on to be effective. Call scrbox with the
desired mode:

void scrbox(long arg)

While enabled (mode SB_TRACK), scrbox() maintains left-most, right-most,
lowest, and highest window coordinates of all pixels that are scan-converted.
By default, scrbox() is reset (mode SB_RESET), forcing the left-most and
lowest screen box values to be greater than the right-most and highest screen
box values. While scrbox() is set to mode SB_HOLD, the current boundary
values are unchanged, regardless of any drawing operations.

Graphics Library Programming Guide 7-29

Because scrbox() operates on the pixels that result from the scan conversion
of points, lines, polygons, and characters, it correctly handles wide lines,
antialiased (smooth) points and lines, and characters. scrbox() results are
only guaranteed to bound the modified frame buffer region, but they might
exceed the bounds of this region due to implementation.

getscrbox

Use getscrbox() to return the current scrbox into left, right, bottom, and top:

void getscrbox(long *left, long *right, long *bottom, long *top)

7.8 User-Defined Transformations

Modeling and viewing transformation commands premultiply the current
matrix (one of ModelView, Projection, or Texture) with a 4×4 matrix that they
compute based on their parameters.

The current matrix is the ModelView matrix on the top of the ModelView stack
if mmode() is MVIEWING, the Projection matrix if mmode() is MPROJECTION, or
the Texture matrix if mmode() is MTEXTURE.

You can also premultiply, or replace, the current matrix with a 4x4 matrix of
your own.

Use multmatrix() to premultiply the current matrix by the given matrix (m):

void multmatrix (Matrix m)

That is, if T is the current matrix, multmatrix(m) replaces T with MT.

Use getmatrix() to copy the current matrix to an array:

void getmatrix(Matrix m)

Use loadmatrix() to load a 4×4 floating point matrix, m, onto the stack,
replacing the current top of the stack:

void loadmatrix(Matrix m)

7-30 Coordinate Transformations

7.9 Additional Clipping Planes

Geometry is always clipped against the boundaries of the six-plane viewing
volume defined by the current Projection matrix. clipplane() allows the
specification of additional planes, not necessarily perpendicular to the x, y, or
z axis, against which all geometry is clipped. You can specify up to six
additional planes. Because the resulting clipping region is always the
intersection of the (up to) 12 half-spaces, it is always convex.

clipplane() uses the following format:

void clipplane(long index,long mode,float params[])

where:

index integer in the range 0 through 5. Indicates which of the six
clipping planes is being modified.

mode one of three tokens:

CP_DEFINE Use the plane equation passed in params to define a clipping
plane. The clipping plane is neither enabled nor disabled.

CP_ON Enable the (previously defined) clipping plane.

CP_OFF Disable the clipping plane (default).

params array of four floats that specify a plane equation. A plane
equation is usually thought of as the column vector A,B,C,D.
In this case, A is the first component of the params array, and
D is the last. A four-component vertex array (see v4f() in
Chapter 2) can be passed as a plane equation, where vertex x
becomes A, y becomes B, and so on.

clipplane() specifies a half-space using a four-component plane equation.
When you call clipplane with mode CP_DEFINE, this object coordinate plane
equation is transformed to eye coordinates using the inverse of the current
Model View matrix. (You cannot use clipplane() when the matrix mode is
MSINGLE).

Once you have defined a clipping plane, you enable it by calling clipplane()

with the CP_ON argument, and with arbitrary values passed in params.

Graphics Library Programming Guide 7-31

While the program is drawing, after a clipping plane has been defined and
enabled, each vertex is transformed to eye coordinates, where it is dotted with
the clipping plane Peye, as shown in (EQ 7-1).

(EQ 7-1)

Eye coordinates whose dot product with Peye is positive or zero are inside the
region, and require no clipping. Those eye coordinate vertices whose dot
product is negative are clipped. Because clipplane() clipping is done in eye
coordinates, changes to the Projection matrix have no effect on its operation.

By default, all six clipping planes are undefined and disabled. The behavior of
enabled but undefined clipping plane(s) is also undefined.

It is sometimes convenient to define a clipping plane based on a point, and a
direction in object coordinates. The plane equation is obtained from the dot
product of the point and the normal:

(EQ 7-2)

Pobject

A

B

C

D

=

Peye M 1–
modelview Pobject⋅=

Nx

Ny

Nz

Px Py Pz
–

Nx

Ny

Nz

•

A

B

C

D

=

Normal

Nx

Ny

Nz

=

Point Px Py Pz
=

Plane =

7-32 Coordinate Transformations

