
Graphics Library Programming Guide E-1

Appendix E

E. Using Graphics and Share Groups

Graphics is a shared attribute among processes that share virtual address
space by using the sproc system call. Prior to IRIX release 3.3, only a single
thread of a share group could perform a winopen() and be allowed access to
the graphics pipe. The flexibility of having any thread performing a graphics
call may result in increased performance for those applications that take
advantage of this feature, but there are a number of caveats that the
programmer should be aware of. This appendix describes the potential
problems and how to avoid them.

The graphics pipe on all architectures is a memory mapped device—that is,
loads and stores to memory locations send commands and data to the
hardware. Thus the graphics hardware is a region of virtual memory that is
made accessible to a graphics process once it has done a winopen() call. The
semantics of the PR_SADDR option of sproc are extended so that children created
with this option share this virtual address space as well as sharing regular
memory. Because access to other graphics resources (input queues, and so on)
is done through open file descriptors, the PR_SFDS option should be enabled
as well.

The resulting effect is that when one thread performs a graphics call, it is as if
all threads perform the call. For example, if one process performs a winopen() ,
all threads in the share group have access to the new window. If any thread
performs a winset() , any succeeding graphics call by any other thread is
applied to the new window. A color() call sets the display color for all
threads, and so on.

Unlike the library routines in libmpc.a, no code has been added to the IRIS GL
to prevent simultaneous access by separate processes to either GL data
structures or to the graphics pipe. Because the programming model presented
by the GL is fundamentally modal, the responsibility for the definition and

E-2 Using Graphics and Share Groups

protection of critical regions must be owned by the application program. For
example, suppose that one process within the share group wants to perform
the following sequence, each for a different polygon:

bgnpolygon(), v3f(), v3f(), ... endpolygon()

As soon as the process has made the bgnpolygon() call, any other process in
the share group may not perform a GL call until the first process has
performed the corresponding endpolygon() call. Thus, the application code
must make the above sequence a critical region in each process, in order to
ensure that the two processes do not interleave their sequences of calls. The
routines described in ussetlock that use test-and-set style spinlocks are one
effective way of enforcing the synchronization.

The effects of failing to synchronize access to the graphics pipe and associated
data structures are unpredictable. At the least, some display anomalies will
occur. The most catastrophic result is unexpected shutdown of the window
manager and the graphics subsystem.

There are two other rules to follow when using graphics share groups. These
are issues with the current implementation and may not apply to a future
release. First, the process that performed the initial winopen() must remain
alive while any thread performs GL calls. Second, unless a foreground() hint
call is made prior to the winopen() , the winopen() call should happen prior
to any call to sproc. This is because winopen() by default places a process in the
background by calling fork and having the original parent process die. The fork
will cause the new process to exit the share group. Delaying the sproc until after
the winopen() creates the share group after graphics has been initialized.

This list summarizes the rules for sharing graphics among processes:

1. Perform a sproc call with sharing options PR_SADDR and PR_SFDS.

2. Treat all atomic sequences of GL calls as critical regions.

3. The process that did the first winopen() must not exit until all threads are
finished performing GL calls.

4. Perform the sproc call after the winopen() call unless the foreground()

call is used.

