80C186/80C188

CMOS High-Integration 16-Bit Microprocessors

This amendment provides specifications for the industrial operating range at 20 MHz.

SWITCHING CHARACTERISTICS over INDUSTRIAL operating range

Major Cycle Timings (Read Cycle)

 $T_{A-IND} = -40^{\circ}C$ to +85°C, $V_{CC} = 5 V \pm 10\%$

			Preliminary			
		Parameter	20 MHz			
#	Sym	Description	Min	Max	Unit	
General Timing Requirements (listed more than once)						
1	t _{DVCL}	Data in Setup (A/D)	10		ns	
2	t _{CLDX}	Data in Hold (A/D)	3		ns	
Gen	eral Timin	g Responses (listed more than o	nce)	_		
3	t _{CHSV}	Status Active Delay	3	29	ns	
4	t _{CLSH}	Status Inactive Delay	3	29	ns	
5	t _{CLAV}	Address Valid Delay	3	25	ns	
6	t _{CLAX}	Address Hold	0		ns	
7	t _{CLDV}	Data Valid Delay	3	25	ns	
8	t _{CHDX}	Status Hold Time	10		ns	
9	t _{CHLH}	ALE Active Delay		20	ns	
10	t _{LHLL}	ALE Width	$t_{CLCL} - 15 = 35$		ns	
11	t _{CHLL}	ALE Inactive Delay		20	ns	
12	t _{AVLL}	Address Valid to ALE Low*	t _{CLCH} –10 = 10		ns	
13	t _{LLAX}	Address Hold from ALE Inactive*	t _{CHCL} -10 = 10		ns	
14	t _{AVCH}	Addr Valid to Clock High	0		ns	
15	t _{CLAZ}	Address Float Delay	$t_{CLAX} = 0$	17	ns	
16	t _{CLCSV}	Chip-Select Active Delay	3	25	ns	
17	t _{CXCSX}	Chip-Select Hold from Command Inactive*	t _{CLCH} –10 = 10		ns	
18	t _{CHCSX}	Chip-Select Inactive Delay	3	20	ns	
19	t _{DXDL}	Inactive to DT/ Low	0		ns	
20	t _{CVCTV}	Control Active Delay 1**	3	22	ns	
21	t _{CVDEX}	Inactive Delay	3	22	ns	
22	t _{CHCTV}	Control Active Delay 2**	3	22	ns	
23	t _{CLLV}	Valid/Invalid Delay	3	22	ns	
Timi	ing Respo	nses (Read Cycle)	-			
24	t _{AZRL}	Address Float to Active	0		ns	
25	t _{CLRL}	Active Delay	3	27	ns	
26	t _{RLRH}	Pulse Width	2t _{CLCL} -20= 80		ns	
27	t _{CLRH}	Inactive Delay	3	25	ns	
28	t _{RHLH}	Inactive to ALE High*	t _{CLCH} -10= 10		ns	
29	t _{RHAV}	Inactive to Addr Active*	t _{CLCL} -15= 35		ns	

Notes:

*Equal Loading **DEN, INTA, WR

All timings are measured at 1.5 V and 100 pF loading on CLKOUT unless otherwise noted. All output test conditions are with $C_L = 50-100$ pF (10–20 MHz).

For AC tests, input $V_{IL} = 0.45$ V and $V_{IH} = 2.4$ V, except at X1 where $V_{IH} = V_{CC} - 0.5$ V.

Notes:

1. Status inactive in state preceding t_4 .

DT/

2. If latched, A1 and A2 are selected instead of PCS5 and PCS6, only t_{CLCSV} is applicable.

(19) (Note 3)

- 3. For write cycle followed by read cycle.
- 4. t_1 of next bus cycle.
- 5. Changes in t-state preceding next bus cycle if followed by write.

H

(23)

(22)

22 (Note 5) -

23 (Note 4)

┝╾

SWITCHING CHARACTERISTICS over INDUSTRIAL operating range (continued)

Major Cycle Timings (Write Cycle)

 $T_{A-IND} = -40^{\circ}C$ to + 85°C, $V_{CC} = 5 V \pm 10\%$

			Prelimina	ary	
Parame		Parameter	20 MHz	2	
#	Sym	Description	Min	Max	Unit
Genera	al Timing I	Responses (listed more than once)			
3	t _{CHSV}	Status Active Delay	3	29	ns
4	t _{CLSH}	Status Inactive Delay	3	29	ns
5	t _{CLAV}	Address Valid Delay	3	25	ns
6	t _{CLAX}	Address Hold	0		ns
7	t _{CLDV}	Data Valid Delay	3	25	ns
8	t _{CHDX}	Status Hold Time	10		ns
9	t _{CHLH}	ALE Active Delay		20	ns
10	t _{LHLL}	ALE Width	t _{CLCL} -15 = 35		ns
11	t _{CHLL}	ALE Inactive Delay		20	ns
12	t _{AVLL}	Address Valid to ALE Low*	t _{CLCH} –10 = 10		ns
13	t _{LLAX}	Address Hold from ALE Inactive*	t _{CHCL} –10 = 10		ns
14	t _{AVCH}	Addr Valid to Clock High	0		ns
16	t _{CLCSV}	Chip-Select Active Delay	3	25	ns
17	t _{CXCSX}	Chip-Select Hold from Command Inactive*	t _{CLCH} –10= 10		ns
18	t _{CHCSX}	Chip-Select Inactive Delay	3	20	ns
19	t _{DXDL}	Inactive to DT/ Low	0		ns
20	t _{CVCTV}	Control Active Delay 1**	3	22	ns
23	t _{CLLV}	Valid/Invalid Delay	3	22	ns
Timing	Respons	es (Write Cycle)	_		
30	t _{CLDOX}	Data Hold Time	3		ns
31	t _{CVCTX}	Control Inactive Delay**	3	22	ns
32	t _{WLWH}	Pulse Width	$\begin{array}{c} 2t_{\text{CLCL}} - 20 = \\ 80 \end{array}$		ns
33	t _{WHLH}	Inactive to ALE High*	$\frac{t_{CLCH}-14}{6} =$		ns
34	t _{WHDX}	Data Hold after *	t _{CLCL} –15 = 35		ns
35	t _{WHDEX}	Inactive to Inactive*	$t_{\text{CLCH}} - 10 = 10$		ns

Notes:

*Equal Loading

** DEN, INTA, WR

All timings are measured at 1.5 V and 100 pF loading on CLKOUT unless otherwise noted. All output test conditions are with $C_L = 50-100$ pF (10–20 MHz).

For AC tests, input V_{IL} = 0.45 V and V_{IH} = 2.4 V, except at X1 where V_{IH} = V_{CC} – 0.5 V.

Notes:

- Status inactive in state preceding t₄.
 If latched, A1 and A2 are selected instead of PCS5 and PCS6, only t_{CLCSV} is applicable.
- 3. For write cycle followed by read cycle.
- 4. t_1 of next bus cycle.
- 5. Changes in t-state preceding next bus cycle if followed by read, INTA, or halt.

AMENDMENT

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (continued) Major Cycle Timings (Interrupt Acknowledge Cycle)

 $T_A = -40^\circ C$ to +85°C, $V_{CC} = 5~V \pm 10\%$

			Preliminary		
Parameter		20 MHz			
#	Sym	Description	Min	Max	Unit
80C	186 Gener	al Timing Requirements (listed n	nore than once)		-
1	t _{DVCL}	Data in Setup (A/D)	10		ns
2	t _{CLDX}	Data in Hold (A/D)	3		ns
80C	186 Gener	al Timing Responses (listed mor	e than once)		
3	t _{CHSV}	Status Active Delay	3	29	ns
4	t _{CLSH}	Status Inactive Delay	3	29	ns
5	t _{CLAV}	Address Valid Delay	3	25	ns
6	t _{CLAX}	Address Hold	0		ns
7	t _{CLDV}	Data Valid Delay	3	25	ns
8	t _{CHDX}	Status Hold Time	10		ns
9	t _{CHLH}	ALE Active Delay		20	ns
10	t _{LHLL}	ALE Width	t _{CLCL} -15 = 35		ns
11	t _{CHLL}	ALE Inactive Delay		20	ns
12	t _{AVLL}	Address Valid to ALE Low*	t _{CLCH} –10 = 10		ns
13	t _{LLAX}	Address Hold from ALE Inactive*	t _{CHCL} -10 = 10		ns
14	t _{AVCH}	Addr Valid to Clock High	0		ns
15	t _{CLAZ}	Address Float Delay	$t_{CLAX} = 0$	17	ns
19	t _{DXDL}	Inactive to DT/ Low*	0		ns
20	t _{CVCTV}	Control Active Delay 1**	3	22	ns
21	t _{CVDEX}	Inactive Delay (Non-Write Cycles)	3	22	ns
22	t _{CHCTV}	Control Active Delay 2**	3	22	ns
23	t _{CLLV}	Valid/Invalid Delay	3	22	ns
31	t _{CVCTX}	Control Inactive Delay**	3	22	ns

Notes:

*Equal Loading

**DEN, INTA, WR

All timings are measured at 1.5 V and 100 pF loading on CLKOUT unless otherwise noted. All output test conditions are with $C_L = 50-200$ pF (10 MHz) and $C_L = 50-100$ pF (12.5-20 MHz). For AC tests, input $V_{IL} = 0.45$ V and $V_{IH} = 2.4$ V, except at X1 where $V_{IH} = V_{CC} - 0.5$ V.

80C186/80C188 Interrupt Acknowledge Cycle Waveforms

Notes:

- Status inactive in state preceding t₄
 <u>The data hold time lasts only until INTA goes inactive, even if the INTA transition occurs prior to t_{CLDX} (min).
 </u>
- 3. INTA occurs one clock later in Slave Mode.
- 4. For write cycle followed by interrupt acknowledge cycle.
- 5. \overline{LOCK} is active upon t_1 of the first interrupt acknowledge cycle and inactive upon t_2 of the second interrupt acknowledge cycle.
- 6. Changes in t-state preceding next bus cycle if followed by write.

AMD

SWITCHING CHARACTERISTICS over INDUSTRIAL operating ranges (continued) Software Halt Cycle Timings

 T_A = –40°C to 85°C, V_{CC} = 5 V ±10%

			Preliminary		
Parameter		20 MHz			
#	Sym	Description	Min	Max	Unit
80C	186 Gener	al Timing Responses (listed mor	e than once)	-	_
3	t _{CHSV}	Status Active Delay	3	29	ns
4	t _{CLSH}	Status Inactive Delay	3	29	ns
5	t _{CLAV}	Address Valid Delay	3	25	ns
9	t _{CHLH}	ALE Active Delay		20	ns
10	t _{LHLL}	ALE Width	$t_{CLCL} - 15 = 35$		ns
11	t _{CHLL}	ALE Inactive Delay		20	ns
19	t _{DXDL}	Inactive to DT/ Low*	0		ns
22	t _{CHCTV}	Control Active Delay 2**	3	22	ns

Notes:

*Equal Loading

**DEN, INTA, WR

All timings are measured at 1.5 V and 100 pF loading on CLKOUT unless otherwise noted. All output test conditions are with $C_L = 50-200$ pF (10 MHz) and $C_L = 50-100$ pF (12.5-20 MHz). For AC tests, input $V_{IL} = 0.45$ V and $V_{IH} = 2.4$ V, except at X1 where $V_{IH} = V_{CC} - 0.5$ V.

Note:

1. For write cycle followed by halt cycle.

Clock Waveforms

SWITCHING CHARACTERISTICS over INDUSTRIAL operating range (continued) **Clock Timings**

 $T_{A-IND} = -40^{\circ}C$ to +85°C, $V_{CC} = 5 \text{ V} \pm 10\%$

		Preliminary						
Parameter			20 MHz					
#	Sym	Description	Min	Max	Unit			
CLK Mea nect	CLKIN Requirements Measurements taken with: external clock input to X1 and X2 not con- nected (Float).							
36	t _{CKIN}	CLKIN Period	25		ns			
37	t _{CLCK}	CLKIN Low Time 1.5 V ⁽²⁾	7		ns			
38	t _{CHCK}	CLKIN High Time 1.5 V ⁽²⁾	8		ns			
39	t _{CKHL}	CLKIN Fall Time 3.5 – 1.0 V		5	ns			
40	t _{CKLH}	CLKIN Rise Time 1.0 – 3.5 V		5	ns			
CLK	OUT Timi	ng						
41	t _{CICO}	CLKIN to CLKOUT Skew		17	ns			
42	t _{CLCL}	CLKOUT Period	50		ns			
43	^t CLCH	CLKOUT Low Time C _L = 50 pF ⁽³⁾	$0.5 t_{CLCL} - 5 = 20$		ns			
		C _L = 100 pF ⁽²⁾	0.5 t _{CLCL} – 7 = 18					
44	t _{CHCL}	CLKOUT High Time C_L = 50 pF ⁽³⁾	0.5 t _{CLCL} – 5 = 20		ns			
		C _L = 100 pF ⁽⁴⁾	0.5 t _{CLCL} – 7 = 18					
45	t _{CH1CH2}	CLKOUT Rise Time 1.0 – 3.5 V		8	ns			
46	t _{CL2CL1}	CLKOUT Fall Time 3.5 – 1.0 V		8	ns			

Notes:

All timings are measured at 1.5 V and 100 pF loading on CLKOUT unless otherwise noted. All output test conditions are with $C_L = 50-100 \text{ pF} (10-20 \text{ MHz})$.

For AC tests, input V_{IL} = 0.45 V and V_{IH} = 2.4 V, except at X1 where V_{IH} = V_{CC} - 0.5 V.

1. t_{CLCK} and t_{CHCK} (CLKIN Low and High times) should not have a duration less than 40% of t_{CKIN}.

2. Tested under worst case conditions: V_{CC}=5.5 V @ 20 MHz, T_A=70°C.

3. Not tested.

4. Tested under worst case conditions: V_{CC} =4.5 V @ 20 MHz, T_A =0°C.

To guarantee proper operation.
 To guarantee recognition at clock edge.

7. To guarantee recognition at next clock.

SWITCHING CHARACTERISTICS over INDUSTRIAL operating range (continued) Ready, Peripheral, and Queue Status Timings

 $T_{A-IND} = -40^{\circ}C$ to +85°C, $V_{CC} = 5 \text{ V} \pm 10\%$

			Preliminar	у			
Parameter		20 MHz					
#	Sym	Description	Min	Max	Unit		
Rea	dy and Pe	ripheral Timing Requirements					
47	t _{SRYCL}	SRDY Transition Setup Time ⁽⁵⁾	15		ns		
48	t _{CLSRY}	SRDY Transition Hold Time ⁽⁵⁾	10		ns		
49	t _{ARYCH}	ARDY Res. Transition Setup Time ⁽⁶⁾	10		ns		
50	t _{CLARX}	ARDY Active Hold Time ⁽⁵⁾	10		ns		
51	t _{ARYCHL}	ARDY Inactive Holding Time	10		ns		
52	t _{ARYLCL}	ARDY Setup Time ⁽⁵⁾	20		ns		
53	t _{INVCH}	Peripheral Setup ⁽⁶⁾ : INTx, NMI, TMR IN, /BUSY	15		ns		
54	t _{INVCL}	DRQ0, DRQ1 Setup Time ⁽⁶⁾	15		ns		
Peri	Peripheral and Queue Status Timing Responses						
55	t _{CLTMV}	Timer Output Delay		22	ns		
56	t _{CHQSV}	Queue Status Delay		23	ns		

All timings are measured at 1.5 V and 100 pF loading on CLKOUT unless otherwise noted. All output test conditions are with $C_L = 50-100 \text{ pF} (10-20 \text{ MHz})$.

For AC tests, input $V_{IL} = 0.45$ V and $V_{IH} = 2.4$ V, except at X1 where $V_{IH} = V_{CC} - 0.5$ V.

Notes:

t_{CLCK} and t_{CHCK} (CLKIN Low and High times) should not have a duration less than 40% of t_{CKIN}.
 Tested under worst case conditions: V_{CC}=5.5 V @ 20 MHz, T_A=70° C.

80C186/80C188 Microprocessors

3. Not tested.

4. Tested under worst case conditions: V_{CC}=4.5 V @ 20 MHz, T_A =0°C.

5. To guarantee proper operation.

6. To guarantee recognition at clock edge.

7. To guarantee recognition at next clock.

Synchronous Ready (SRDY) Waveforms

Asynchronous Ready (ARDY) Waveforms

Peripheral and Queue Status Waveforms

RESET Waveforms

AMD

SWITCHING CHARACTERISTICS over INDUSTRIAL operating range (continued) **RESET and HOLD/HLDA Timings**

 $T_{A-IND} = -40^{\circ}C$ to +85°C, $V_{CC} = 5 \text{ V} \pm 10\%$

			Preliminary					
Parameter			20 MHz					
#	Sym	Description	Min	Max	Unit			
RES	ET and H	OLD/HLDA Timing Requirements						
57	t _{RESIN}	RES Setup	10		ns			
58	t _{HVCL}	HOLD Setup ⁽⁷⁾	10		ns			
15	t _{CLAZ}	Address Float Delay	0	17	ns			
5	t _{CLAV}	Address Valid Delay	3	25	ns			
RES	RESET and HOLD/HLDA Timing Requirements							
61	t _{CLRO}	Reset Delay		22	ns			
62	t _{CLHAV}	HLDA Valid Delay	3	22	ns			
63	t _{CHCZ}	Command Lines Float Delay		25	ns			
64	t _{CHCV}	Command Lines Valid Delay (after Float)		25	ns			

Notes:

All timings are measured at 1.5 V and 100 pF loading on CLKOUT unless otherwise noted. All output test conditions are with $C_L = 50-100 \text{ pF} (10-20 \text{ MHz})$.

For AC tests, input V_{IL} = 0.45 V and V_{IH} = 2.4 V, except at X1 where V_{IH} = V_{CC} - 0.5 V.

- 1. t_{CLCK} and t_{CHCK} (CLKIN Low and High times) should not have a duration less than 40% of t_{CKIN} . 2. Tested under worst case conditions: $V_{CC} = 5.5 V @ 20 MHz$, $T_A = 70^{\circ} C$.
- 3. Not tested.
- 4. Tested under worst case conditions: $V_{CC} = 4.5 \text{ V} @ 20 \text{ MHz}$, $T_A = 0^{\circ}C$.
- 5. To guarantee proper operation.
- 6. To guarantee recognition at clock edge.
- 7. To guarantee recognition at next clock.

80C186/80C188 HOLD/HLDA Waveforms (Entering HOLD)

80C186/80C188 HOLD/HLDA Waveforms (Leaving HOLD)

