
Am186 and Am188 Family
Instruction Set Manual

February, 1997

© 1997 Advanced Micro Devices, Inc.

Advanced Micro Devices reserves the right to make changes in its products
without notice in order to improve design or performance characteristics.

This publication neither states nor implies any warranty of any kind, including but not limited to implied warrants of merchantability or fitness for
a particular application. AMD assumes no responsibility for the use of any circuitry other than the circuitry in an AMD product.

The information in this publication is believed to be accurate in all respects at the time of publication, but is subject to change without notice. AMD
assumes no responsibility for any errors or omissions, and disclaims responsibility for any consequences resulting from the use of the
information included herein. Additionally, AMD assumes no responsibility for the functioning of undescribed features or parameters.

Trademarks

AMD, the AMD logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc.

Am186, Am188, and E86 are trademarks of Advanced Micro Devices, Inc.
FusionE86 is a service mark of Advanced Micro Devices, Inc.

Product names used in this publication are for identification purposes only and may be trademarks of their respective companies.

PREFACE
INTRODUCTION AND OVERVIEW
AMD has a strong history in x86 architecture and its E86™ family meets customer
requirements of low system cost, high performance, quality vendor reputation, quick time
to market, and an easy upgrade strategy.

The 16-bit Am186™ and Am188™ family of microcontrollers is based on the architecture
of the original 8086 and 8088 microcontrollers, and currently includes the 80C186, 80C188,
80L186, 80L188, Am186EM, Am186EMLV, Am186ER, Am186ES, Am186ESLV,
Am188EM, Am188EMLV, Am188ER, Am188ES, and Am188ESLV. Throughout this
manual, the term Am186 and Am188 microcontrollers refers to any of these microcontrollers
as well as future members based on the same core.

The Am186EM/ER/ES and Am188EM/ES/ER microcontrollers build on the 80C186/
80C188 microcontroller cores and offer 386-class performance while lowering system cost.
Designers can reduce the cost, size, and power consumption of embedded systems, while
increasing performance and functionality. This is achieved by integrating key system
peripherals onto the microcontroller. These low-cost, high-performance microcontrollers for
embedded systems provide a natural migration path for 80C186/80C188 designs that need
performance and cost enhancements.

PURPOSE OF THIS MANUAL
Each member of the Am186 and Am188 family of microcontrollers shares the standard 186
instruction set. This manual describes that instruction set. Details on technical features of
family members can be found in the user’s manual for that specific device. Additional
information is available in the form of data sheets, application notes, and other
documentation provided with software products and hardware-development tools.

INTENDED AUDIENCE
This manual is intended for computer hardware and software engineers and system
architects who are designing or are considering designing systems based on the Am186
and Am188 family of microcontrollers.

MANUAL OVERVIEW
The information in this manual is organized into 4 chapters and 1 appendix.

n Chapter 1 provides a programming overview of the Am186 and Am188
microcontrollers, including the register set, instruction set, memory organization and
address generation, I/O space, segments, data types, and addressing modes.

n Chapter 2 offers an instruction set overview, detailing the format of the instructions.

n Chapter 3 contains an instruction set listing, both by functional type and in alphabetical
order.

n Chapter 4 describes in detail each instruction in the Am186 and Am188 microcontrollers
instruction set.

n Appendix A provides an instruction set summary table, as well as a guide to the
instruction set by hex and binary opcode.
Introduction and Overview iii

AMD DOCUMENTATION

E86 Family
ORDER NO. DOCUMENT TITLE

19168 Am186EM and Am188EM Microcontrollers Data Sheet
Hardware documentation for the Am186EM, Am186EMLV, Am188EM, and
Am188EMLV microcontrollers: pin descriptions, functional descriptions, abso-
lute maximum ratings, operating ranges, switching characteristics and wave-
forms, connection diagrams and pinouts, and package physical dimensions.

20732 Am186ER and Am188ER Microcontrollers Data Sheet
Hardware documentation for the Am186ER and Am188ER microcontrollers: pin
descriptions, functional descriptions, absolute maximum ratings, operating rang-
es, switching characteristics and waveforms, connection diagrams and pinouts,
and package physical dimensions.

20002 Am186ES and Am188ES Microcontrollers Data Sheet
Hardware documentation for the Am186ES, Am186ESLV, Am188ES, and
Am188ESLV microcontrollers: pin descriptions, functional descriptions, absolute
maximum ratings, operating ranges, switching characteristics and waveforms,
connection diagrams and pinouts, and package physical dimensions.

20071 E86 Family Support Tools Brief
Lists available E86 family software and hardware development tools, as well as
contact information for suppliers.

19255 FusionE86SM Catalog
Provides information on tools that speed an E86 family embedded product to
market. Includes products from expert suppliers of embedded development so-
lutions.

21058 FusionE86 Development Tools Reference CD
Provides a single-source multimedia tool for customer evaluation of AMD prod-
ucts as well as Fusion partner tools and technologies that support the E86 family
of microcontrollers and microprocessors. Technical documentation for the E86
family is included on the CD in PDF format.

To order literature, contact the nearest AMD sales office or call 800-222-9323 (in the U.S.
and Canada) or direct dial from any location 512-602-5651. Literature is also available in
postscript and PDF formats on the AMD web site. To access the AMD home page, go to http:/
/www.amd.com.
Introduction and Overviewiv

TABLE OF CONTENTS
PREFACE INTRODUCTION AND OVERVIEW III
PURPOSE OF THIS MANUAL . III
INTENDED AUDIENCE . III
MANUAL OVERVIEW . III
AMD DOCUMENTATIONiv

E86 Family . iv

CHAPTER 1 PROGRAMMING
1.1 REGISTER SET . 1-1

1.1.1 Processor Status Flags Register . 1-2
1.2 INSTRUCTION SET. 1-3
1.3 MEMORY ORGANIZATION AND ADDRESS GENERATION 1-3
1.4 I/O SPACE . 1-5
1.5 SEGMENTS . 1-5
1.6 DATA TYPES . 1-5
1.7 ADDRESSING MODES . 1-7

Register and Immediate Operands . 1-7
Memory Operands . 1-7

CHAPTER 2 INSTRUCTION SET OVERVIEW
2.1 OVERVIEW . 2-1
2.2 INSTRUCTION FORMAT. 2-1

2.2.1 Instruction Prefixes . 2-1
2.2.2 Segment Override Prefix . 2-2
2.2.3 Opcode . 2-2
2.2.4 Operand Address . 2-2
2.2.5 Displacement . 2-3
2.2.6 Immediate . 2-3

2.3 NOTATION. 2-3
2.4 USING THIS manual . 2-4

2.4.1 Mnemonics and Names . 2-4
2.4.2 Forms of the Instruction . 2-4
2.4.3 What It Does . 2-6
2.4.4 Syntax . 2-6
2.4.5 Description . 2-6
2.4.6 Operation It Performs . 2-7
2.4.7 Flag Settings After Instruction . 2-7
2.4.8 Examples . 2-7
2.4.9 Tips . 2-8
2.4.10 Related Instructions . 2-8

CHAPTER 3 INSTRUCTION SET LISTING
3.1 INSTRUCTION SET BY TYPE. 3-1

3.1.1 Address Calculation and Translation . 3-1
3.1.2 Binary Arithmetic . 3-2
Table of Contents v

3.1.4 Comparison . 3-3
3.1.5 Control Transfer . 3-3
3.1.6 Data Movement . 3-5
3.1.7 Decimal Arithmetic . 3-6
3.1.8 Flag . 3-7
3.1.9 Input/Output . 3-8
3.1.10 Logical Operation . 3-8
3.1.11 Processor Control . 3-9
3.1.12 String . 3-9

3.2 INSTRUCTION SET in alphabetical order . 3-11

CHAPTER 4 INSTRUCTION SET
4.1 INSTRUCTIONS . 4-1

AAA ASCII Adjust AL After Addition... 4-2
AAD ASCII Adjust AX Before Division.. 4-4
AAM ASCII Adjust AL After Multiplication ... 4-6
AAS ASCII Adjust AL After Subtraction.. 4-8
ADC Add Numbers with Carry .. 4-10
ADD Add Numbers .. 4-14
AND Logical AND ... 4-17
BOUND Check Array Index Against Bounds ... 4-19
CALL Call Procedure ... 4-21
CBW Convert Byte Integer to Word... 4-24
CLC Clear Carry Flag... 4-26
CLD Clear Direction Flag ... 4-29
CLI Clear Interrupt-Enable Flag.. 4-31
CMC Complement Carry Flag ... 4-33
CMP Compare Components ... 4-34
CMPS Compare String Components... 4-36
CWD Convert Word Integer to Doubleword... 4-40
DAA Decimal Adjust AL After Addition ... 4-42
DAS Decimal Adjust AL After Subtraction .. 4-45
DEC Decrement Number by One ... 4-48
DIV Divide Unsigned Numbers ... 4-50
ENTER Enter High-Level Procedure... 4-53
ESC Escape ... 4-56
HLT Halt... 4-57
IDIV Divide Integers ... 4-60
IMUL Multiply Integers ... 4-63
IN Input Component from Port.. 4-67
INC Increment Number by One... 4-69
INS Input String Component from Port ... 4-71
INT Generate Interrupt.. 4-73
IRET Interrupt Return .. 4-76
JA Jump If Above .. 4-78
JAE Jump If Above or Equal.. 4-80
JB Jump If Below... 4-82
JBE Jump If Below or Equal .. 4-84
JC Jump If Carry.. 4-86
JCXZ Jump If CX Register Is Zero... 4-87
JE Jump If Equal ... 4-89
Table of Contentsvi

JG Jump If Greater .. 4-91
JGE Jump If Greater or Equal.. 4-93
JL Jump If Less... 4-95
JLE Jump If Less or Equal .. 4-97
JMP Jump Unconditionally ... 4-99
JNA Jump If Not Above.. 4-102
JNAE Jump If Not Above or Equal ... 4-103
JNB Jump If Not Below .. 4-104
JNBE Jump If Not Below or Equal.. 4-105
JNC Jump If Not Carry ... 4-106
JNE Jump If Not Equal... 4-107
JNG Jump If Not Greater.. 4-109
JNGE Jump If Not Greater or Equal ... 4-110
JNL Jump If Not Less .. 4-111
JNLE Jump If Not Less or Equal.. 4-112
JNO Jump If Not Overflow.. 4-113
JNP Jump If Not Parity... 4-115
JNS Jump If Not Sign... 4-116
JNZ Jump If Not Zero .. 4-118
JO Jump If Overflow .. 4-119
JP Jump If Parity ... 4-121
JPE Jump If Parity Even .. 4-122
JPO Jump If Parity Odd ... 4-124
JS Jump If Sign ... 4-126
JZ Jump If Zero ... 4-128
LAHF Load AH with Flags .. 4-129
LDS Load DS with Segment and Register with Offset 4-131
LEA Load Effective Address ... 4-133
LEAVE Leave High-Level Procedure.. 4-135
LES Load ES with Segment and Register with Offset 4-138
LOCK Lock the Bus .. 4-140
LODS Load String Component ... 4-141
LOOP Loop While CX Register Is Not Zero .. 4-146
LOOPE Loop If Equal .. 4-148
LOOPNE Loop If Not Equal ... 4-150
LOOPZ Loop If Zero.. 4-152
MOV Move Component... 4-153
MOVS Move String Component .. 4-156
MUL Multiply Unsigned Numbers ... 4-160
NEG Two’s Complement Negation ... 4-163
NOP No Operation.. 4-165
NOT One’s Complement Negation ... 4-167
OR Logical Inclusive OR .. 4-169
OUT Output Component to Port ... 4-171
OUTS Output String Component to Port... 4-173
POP Pop Component from Stack ... 4-175
POPA Pop All 16-Bit General Registers from Stack................................ 4-178
POPF Pop Flags from Stack... 4-180
PUSH Push Component onto Stack ... 4-181
Table of Contents vii

PUSHA Push All 16-Bit General Registers onto Stack.......................... 4-184
PUSHF Push Flags onto Stack ... 4-186
RCL Rotate through Carry Left... 4-187
RCR Rotate through Carry Right .. 4-189
REP Repeat.. 4-191
REPE Repeat While Equal ... 4-193
REPNE Repeat While Not Equal... 4-197
REPZ Repeat While Zero ... 4-201
RET Return from Procedure... 4-202
ROL Rotate Left.. 4-205
ROR Rotate Right ... 4-207
SAHF Store AH in Flags ... 4-209
SAL Shift Arithmetic Left .. 4-211
SAR Shift Arithmetic Right.. 4-214
SBB Subtract Numbers with Borrow .. 4-216
SCAS Scan String for Component.. 4-219
SHL Shift Left ... 4-224
SHR Shift Right... 4-225
STC Set Carry Flag .. 4-228
STD Set Direction Flag... 4-231
STI Set Interrupt-Enable Flag ... 4-235
STOS Store String Component... 4-237
SUB Subtract Numbers .. 4-240
TEST Logical Compare .. 4-243
WAIT Wait for Coprocessor ... 4-245
XCHG Exchange Components.. 4-246
XLAT Translate Table Index to Component....................................... 4-248
XOR Logical Exclusive OR ... 4-251

APPENDIX A INSTRUCTION SET SUMMARY

INDEX
Table of Contentsviii

LIST OF FIGURES
Figure 1-1 Register Set . 1-2
Figure 1-2 Processor Status Flags Register (FLAGS) . 1-2
Figure 1-3 Physical-Address Generation . 1-4
Figure 1-4 Memory and i/O Space . 1-4
Figure 1-5 Supported Data Types . 1-6
Figure 2-1 Instruction Mnemonic and Name Sample . 2-4
Figure 2-2 Instruction Forms Table Sample . 2-4

LIST OF TABLES
Table 1-1 Segment Register Selection Rules . 1-5
Table 1-2 Memory Addressing Mode Examples . 1-7
Table 2-1 mod field . 2-2
Table 2-2 aux field . 2-3
Table 2-3 r/m field . 2-3
Table 3-4 Instruction Set . 3-11
Table of Contents ix

Table of Contentsx

CHAPTER
1
 PROGRAMMING
All members of the Am186 and Am188 family of microcontrollers contain the same basic
set of registers, instructions, and addressing modes, and are compatible with the original
industry-standard 186/188 parts.

1.1 REGISTER SET
The base architecture for Am186 and Am188 microcontrollers has 14 registers (see Figure
1-1), which are controlled by the instructions detailed in this manual. These registers are
grouped into the following categories.

n General Registers—Eight 16-bit general purpose registers can be used for arithmetic
and logical operands. Four of these (AX, BX, CX, and DX) can be used as 16-bit registers
or split into pairs of separate 8-bit registers (AH, AL, BH, BL, CH, CL, DH, and DL). The
Destination Index (DI) and Source Index (SI) general-purpose registers are used for
data movement and string instructions. The Base Pointer (BP) and Stack Pointer (SP)
general-purpose registers are used for the stack segment and point to the bottom and
top of the stack, respectively.

– Base and Index Registers—Four of the general-purpose registers (BP, BX, DI, and
SI) can also be used to determine offset addresses of operands in memory. These
registers can contain base addresses or indexes to particular locations within a
segment. The addressing mode selects the specific registers for operand and address
calculations.

– Stack Pointer Register—All stack operations (POP, POPA, POPF, PUSH, PUSHA,
PUSHF) utilize the stack pointer. The Stack Pointer (SP) register is always offset
from the Stack Segment (SS) register, and no segment override is allowed.

n Segment Registers—Four 16-bit special-purpose registers (CS, DS, ES, and SS)
select, at any given time, the segments of memory that are immediately addressable
for code (CS), data (DS and ES), and stack (SS) memory.

n Status and Control Registers—Two 16-bit special-purpose registers record or alter certain
aspects of the processor state—the Instruction Pointer (IP) register contains the offset
address of the next sequential instruction to be executed and the Processor Status Flags
(FLAGS) register contains status and control flag bits (see Figure 1-2).

Note that all members of the Am186 and Am188 family of microcontrollers have additional
peripheral registers, which are external to the processor. These peripheral registers are
not directly accessible by the instruction set. However, because the processor treats these
peripheral registers like memory, instructions that have operands that access memory can
also access peripheral registers. The above processor registers, as well as the additional
peripheral registers, are described in the user’s manual for each specific part.
Programming 1-1

Figure 1-1 Register Set

1.1.1 Processor Status Flags Register
The 16-bit processor status flags register (see Figure 1-2) records specific characteristics
of the result of logical and arithmetic instructions (bits 0, 2, 4, 6, 7, and 11) and controls the
operation of the microcontroller within a given operating mode (bits 8, 9, and 10).

After an instruction is executed, the value of a flag may be set (to 1), cleared/reset (to 0),
unchanged, or undefined. The term undefined means that the flag value prior to the execution
of the instruction is not preserved, and the value of the flag after the instruction is executed cannot
be predicted. The documentation for each instruction indicates how each flag bit is affected by
that instruction.

Figure 1-2 Processor Status Flags Register (FLAGS)

Bits 15–12—Reserved.

Bit 11: Overflow Flag (OF)—Set if the signed result cannot be expressed within the number
of bits in the destination operand, cleared otherwise.

AHByte
Addressable

(8-Bit
Register
Names
Shown)

Loop/Shift/Repeat/Count

Base Registers

Code Segment

Data Segment

Stack Segment

Extra Segment

Processor Status Flags

Instruction PointerGeneral
Registers Status and Control

Registers

Segment Registers

15 0

15 0

7 0 7 0

15 0

CS

FLAGS

IP

16-Bit
Register

Name

Special
Register

Functions

DS

SS

ES

AX

DX

CX

BX

BP

SI

DI

SP

DH

CH

BH

AL

DL

CL

BL

Index Registers

Stack Pointer

Multiply/Divide
I/O Instructions

16-Bit
Register

Name

base pointer

source index

destination index

15 7 0

IF
TF
SF

ZF

Res

CFPF

Reserved

Res

AF

Res

OF

DF
Programming1-2

Bit 10: Direction Flag (DF)—Causes string instructions to auto decrement the appropriate
index registers when set. Clearing DF causes auto-increment. See the CLD and STD
instructions, respectively, for how to clear and set the Direction Flag.

Bit 9: Interrupt-Enable Flag (IF)—When set, enables maskable interrupts to cause the
CPU to transfer control to a location specified by an interrupt vector. See the CLI and STI
instructions, respectively, for how to clear and set the Interrupt-Enable Flag.

Bit 8: Trace Flag (TF)—When set, a trace interrupt occurs after instructions execute. TF
is cleared by the trace interrupt after the processor status flags are pushed onto the stack.
The trace service routine can continue tracing by popping the flags back with an IRET
instruction.

Bit 7: Sign Flag (SF)—Set equal to high-order bit of result (set to 0 if 0 or positive, 1 if
negative).

Bit 6: Zero Flag (ZF)—Set if result is 0; cleared otherwise.

Bit 5: Reserved

Bit 4: Auxiliary Carry (AF)—Set on carry from or borrow to the low-order 4 bits of the AL
general-purpose register; cleared otherwise.

Bit 3: Reserved

Bit 2: Parity Flag (PF)—Set if low-order 8 bits of result contain an even number of 1 bits;
cleared otherwise.

Bit 1: Reserved

Bit 0: Carry Flag (CF)—Set on high-order bit carry or borrow; cleared otherwise. See the
CLC, CMC, and STC instructions, respectively, for how to clear, toggle, and set the Carry
Flag. You can use CF to indicate the outcome of a procedure, such as when searching a
string for a character. For instance, if the character is found, you can use STC to set CF to
1; if the character is not found, you can use CLC to clear CF to 0. Then, subsequent
instructions that do not affect CF can use its value to determine the appropriate course of
action.

1.2 INSTRUCTION SET
Each member of the Am186 and Am188 family of microcontrollers shares the standard 186
instruction set. An instruction can reference from zero to several operands. An operand
can reside in a register, in the instruction itself, or in memory. Specific operand addressing
modes are discussed on page 1-7.

Chapter 2 provides an overview of the instruction set, describing the format of the
instructions. Chapter 3 lists all the instructions for the Am186 and Am188 microcontrollers
in both functional and alphabetical order. Chapter 4 details each instruction.

1.3 MEMORY ORGANIZATION AND ADDRESS GENERATION
The Am186 and Am188 microcontrollers organize memory in sets of segments. Memory
is addressed using a two-component address that consists of a 16-bit segment value and
a 16-bit offset. Each segment is a linear contiguous sequence of 64K (216) 8-bit bytes of
memory in the processor’s address space. The offset is the number of bytes from the
beginning of the segment (the segment address) to the data or instruction which is being
accessed.

The processor forms the physical address of the target location by taking the segment
address, shifting it to the left 4 bits (multiplying by 16), and adding this to the 16-bit offset.
Programming 1-3

The result is a 20-bit address of the target data or instruction. This allows for a 1-Mbyte physical
address size.

For example, if the segment register is loaded with 12A4h and the offset is 0022h, the
resultant address is 12A62h (see Figure 1-3). To find the result:

1. The segment register contains 12A4h.

2. The segment register is shifted 4 places and is now 12A40h.

3. The offset is 0022h.

4. The shifted segment address (12A40h) is added to the offset (00022h) to get 12A62h.

5. This address is placed on the address bus pins of the controller.

All instructions that address operands in memory must specify (implicitly or explicitly) a 16-
bit segment value and a 16-bit offset value. The 16-bit segment values are contained in one
of four internal segment registers (CS, DS, ES, and SS). See "Addressing Modes” on page
1-7 for more information on calculating the segment and offset values. See "Segments" on
page 1-5 for more information on the CS, DS, ES, and SS registers.

In addition to memory space, all Am186 and Am188 microcontrollers provide 64K of I/O space
(see Figure 1-4). The I/O space is described on page 1-5.

Figure 1-3 Physical-Address Generation

Figure 1-4 Memory and i/O Space

1 2 A 4 0

0 0 0 2 2

1 2 A 6 2

1 2 A 4

0 0 2 2

Segment
Base

Logical Address

Shift Left
4 Bits

Physical Address

To Memory

15 0

19 0

19 0

15 0

15 0

Offset

Memory
Space

I/O
Space

1M

64K
Programming1-4

1.4 I/O SPACE
The I/O space consists of 64K 8-bit or 32K 16-bit ports. The IN and OUT instructions address
the I/O space with either an 8-bit port address specified in the instruction, or a 16-bit port
address in the DX register. 8-bit port addresses are zero-extended so that A15–A8 are
Low. I/O port addresses 00F8h through 00FFh are reserved. The Am186 and Am188
microcontrollers provide specific instructions for addressing I/O space.

1.5 SEGMENTS
The Am186 and Am188 microcontrollers use four segment registers:

1. Data Segment (DS): The processor assumes that all accesses to the program’s
variables are from the 64K space pointed to by the DS register. The data segment holds
data, operands, etc.

2. Code Segment (CS): This 64K space is the default location for all instructions. All code
must be executed from the code segment.

3. Stack Segment (SS): The processor uses the SS register to perform operations that
involve the stack, such as pushes and pops. The stack segment is used for temporary
space.

4. Extra Segment (ES): Usually this segment is used for large string operations and for
large data structures. Certain string instructions assume the extra segment as the
segment portion of the address. The extra segment is also used (by using segment
override) as a spare data segment.

When a segment register is not specified for a data movement instruction, it’s assumed to
be a data segment. An instruction prefix can be used to override the segment register (see
"Segment Override Prefix" on page 2-2).For speed and compact instruction encoding, the
segment register used for physical-address generation is implied by the addressing mode
used (see Table 1-1).

Table 1-1 Segment Register Selection Rules

1.6 DATA TYPES
The Am186 and Am188 microcontrollers directly support the following data types:

n Integer—A signed binary numeric value contained in an 8-bit byte or a 16-bit word. All
operations assume a two’s complement representation.

n Ordinal—An unsigned binary numeric value contained in an 8-bit byte or a 16-bit word.

n Double Word—A signed binary numeric value contained in two sequential 16-bit
addresses, or in a DX::AX register pair.

n Quad Word—A signed binary numeric value contained in four sequential 16-bit
addresses.

n BCD—An unpacked byte representation of the decimal digits 0–9.

Memory Reference Needed Segment Register Used Implicit Segment Selection Rule

Local Data Data (DS) All data references

Instructions Code (CS) Instructions (including immediate data)

Stack Stack (SS) All stack pushes and pops
Any memory references that use the BP register

External Data (Global) Extra (ES) All string instruction references that use the DI register as an index
Programming 1-5

n ASCII—A byte representation of alphanumeric and control characters using the ASCII
standard of character representation.

n Packed BCD—A packed byte representation of two decimal digits (0–9). One digit is
stored in each nibble (4 bits) of the byte.

n String—A contiguous sequence of bytes or words. A string can contain from 1 byte up
to 64 Kbyte.

n Pointer—A 16-bit or 32-bit quantity, composed of a 16-bit offset component or a 16-bit
segment base component plus a 16-bit offset component.

In general, individual data elements must fit within defined segment limits. Figure 1-5
graphically represents the data types supported by the Am186 and Am188 microcontrollers.

Figure 1-5 Supported Data Types

7 0Signed
Byte

Magnitude

Magnitude

7 0

MSB

Unsigned
Byte

Signed
Word

Magnitude
MSB

+1 0

Magnitude
MSB

+3 +2 +1 0

Signed
Quad
Word

Magnitude

MSB

63 48 47 32 31 16 15 0

Unsigned
Word

Magnitude
MSB

+1 0

7 0 7 0 7 0
+N +1 0

. . .

7 0 7 0 7 0
+N +1 0

. . .

7 0 7 0 7 0+N +1 0

. . .

Binary
Coded

Decimal
(BCD)

BCD
Digit N

BCD
Digit 1

BCD
Digit 0

ASCII
CharacterN

ASCII
Character1

ASCII
Character0

ASCII

Most
Significant Digit

Least
Significant Digit

Packed
BCD

7 0 7 0+N +1 0

. . .
Byte/WordN Byte/Word1 Byte/Word0

String

+3 +2 +1 0

Segment Base Offset

Pointer

31 1615 0

015

+3 +2 +1+6 +5 +4 +0+7

1514 8 7 0

7 0
Signed
Double

Word

Sign Bit

Sign Bit

Sign Bit

Sign Bit
Programming1-6

1.7 ADDRESSING MODES
The Am186 and Am188 microcontrollers use eight categories of addressing modes to
specify operands. Two addressing modes are provided for instructions that operate on
register or immediate operands; six modes are provided to specify the location of an
operand in a memory segment.

Register and Immediate Operands
1. Register Operand Mode—The operand is located in one of the 8- or 16-bit registers.

2. Immediate Operand Mode—The operand is included in the instruction.

Memory Operands
A memory-operand address consists of two 16-bit components: a segment value and an
offset. The segment value is supplied by a 16-bit segment register either implicitly chosen
by the addressing mode (described below) or explicitly chosen by a segment override prefix
(see "Segment Override Prefix" on page 2-2). The offset, also called the effective address,
is calculated by summing any combination of the following three address elements:

n Displacement—an 8-bit or 16-bit immediate value contained in the instruction

n Base—contents of either the BX or BP base registers

n Index—contents of either the SI or DI index registers

Any carry from the 16-bit addition is ignored. Eight-bit displacements are sign-extended to
16-bit values.

Combinations of the above three address elements define the following six memory
addressing modes (see Table 1-2 for examples).

1. Direct Mode—The operand offset is contained in the instruction as an 8- or 16-bit
displacement element.

2. Register Indirect Mode—The operand offset is in one of the BP, BX, DI, or SI registers.

3. Based Mode—The operand offset is the sum of an 8- or 16-bit displacement and the contents
of a base register (BP or BX).

4. Indexed Mode—The operand offset is the sum of an 8- or 16-bit displacement and the
contents of an index register (DI or SI).

5. Based Indexed Mode—The operand offset is the sum of the contents of a base register
(BP or BX) and an index register (DI or SI).

6. Based Indexed Mode with Displacement—The operand offset is the sum of a base
register’s contents, an index register’s contents, and an 8-bit or 16-bit displacement.

Table 1-2 Memory Addressing Mode Examples

Addressing Mode Example

Direct mov ax, ds:4

Register Indirect mov ax, [si]

Based mov ax, [bx]4

Indexed mov ax, [si]4

Based Indexed mov ax, [si][bx]

Based Indexed with Displacement mov ax, [si][bx]4
Programming 1-7

Programming1-8

CHAPTER
2
 INSTRUCTION SET OVERVIEW
2.1 OVERVIEW
The instruction set used by the Am186 and Am188 family of microcontrollers is identical to
the original 8086 and 8088 instruction set, with the addition of seven instructions (BOUND,
ENTER, INS, LEAVE, OUTS, POPA, and PUSHA), and the enhancement of nine
instructions (immediate operands were added to IMUL, PUSH, RCL, RCR, ROL, ROR,
SAL/SHL, SAR, and SHR). In addition, three valid instructions are not supported with the
necessary processor pinout (ESC, LOCK and WAIT). All of these instructions are marked
as such in their description.

2.2 INSTRUCTION FORMAT
When assembling code, an assembler replaces each instruction statement with its
machine-language equivalent. In machine language, all instructions conform to one basic
format. However, the length of an instruction in machine language varies depending on the
operands used in the instruction and the operation that the instruction performs.

An instruction can reference from zero to several operands. An operand can reside in a
register, in the instruction itself, or in memory.

The Am186 and Am188 microcontrollers use the following instruction format. The shortest
instructions consist of only a single opcode byte.

2.2.1 Instruction Prefixes
The REP, REPE, REPZ, REPNE and REPNZ prefixes can be used to repeatedly execute
a single string instruction.

The LOCK prefix may be combined with the instruction and segment override prefixes, and
causes the processor to assert its bus LOCK signal while the instruction that follows
executes.

Instruction Prefixes

Segment Override Prefix

Opcode

Operand Address

Displacement

Immediate
Instruction Set Overview 2-1

2.2.2 Segment Override Prefix
To override the default segment register, place the following byte in front of the instruction,
where RR determines which register is used. Only one segment override prefix can be
used per instruction.

2.2.3 Opcode
This specifies the machine-language opcode for an instruction. The format for the opcodes
is described on page 2-5. Although most instructions use only one opcode byte, the AAD
(D5 0A hex) and AAM (D4 0A hex) instructions use two opcodes.

2.2.4 Operand Address
The following illustration shows the structure of the operand address byte. The operand
address byte controls the addressing for an instruction.

Table 2-1 mod field

mod Description

11 r/m is treated as a reg field

00 DISP = 0, disp-low and disp-high are absent

01 DISP = disp-low sign-extended to 16-bits, disp-high
is absent

10 DISP = disp-high: disp-low

01234567

Segment Override
Prefix

0 0 1 1 1 0

00 = ES Register
01 = CS Register
10 = SS Register
11 = DS Register

 R R

01234567

Along with r/m, the Modifier field determines whether the Register/Memory field is
interpreted as a register or the address of a memory operand. For a memory
operand, the Modifier field also indicates whether the operand is addressed directly
or indirectly. For indirectly addressed memory operands, the Modifier field specifies
the number of bytes of displacement that appear in the instruction. See Table 2-1
for mod values.

The Auxiliary field specifies an opcode extension or a register
that is used as a second operand. See Table 2-2 for aux values

Along with mod, the Register/Memory field
specifies a general register or the address of a
memory operand. See Table 2-3 for r/m values.

Operand Address mod aux r/m
Instruction Set Overview2-2

2.2.5 Displacement
The displacement is an 8- or 16-bit immediate value to be added to the offset portion of the
address.

2.2.6 Immediate
The immediate bytes contain up to 16 bits of immediate data.

2.3 NOTATION

Table 2-2 aux field

aux If mod=11 and w=0 If mod=11 and w=1

000 AL AX

001 CL CX

010 DL DX

011 BL BX

100 AH SP

101 CH BP

110 DH SI

111 BH DI

* – When mod≠11, depends on instruction

Table 2-3 r/m field

r/m Description

000 EA* = (BX)+(SI)+DISP

001 EA = (BX)+(DI)+DISP

010 EA = (BP)+(SI)+DISP

011 EA = (BP)+(DI)+DISP

100 EA = (SI)+DISP

101 EA = (DI)+DISP

110 EA = (BP)+DISP (except if mod=00, then EA = disp-high:disp:low)

111 EA = (BX)+DISP

* – EA is the Effective Address

This parameter Indicates that

: The component on the left is the segment for a component located in
memory. The component on the right is the offset.

:: The component on the left is concatenated with the component on the right.
Instruction Set Overview 2-3

2.4 USING THIS MANUAL
Each instruction is detailed in Chapter 4. The following sections explain the format used
when describing each instruction.

2.4.1 Mnemonics and Names
The primary assembly-language mnemonic and its name appear at the top of the first page
for an instruction (see Figure 2-1). Some instructions have additional mnemonics that
perform the same operation. These synonyms are listed below the primary mnemonic.

Figure 2-1 Instruction Mnemonic and Name Sample

MUL Multiply Unsigned Numbers

2.4.2 Forms of the Instruction
Many instructions have more than one form. The forms for each instruction are listed in a
table just below the mnemonics (see Figure 2-2).

Figure 2-2 Instruction Forms Table Sample

Form

The Form column specifies the syntax for the different forms of an instruction. Each form
includes an instruction mnemonic and zero or more operands. Items in italics are
placeholders for operands that must be provided. A placeholder indicates the size and type
of operand that is allowed.

Form Opcode Description
Clocks

Am186 Am188

MUL r/m8 F6 /4 AX=(r/m byte)•AL 26–28/32–34 26–28/32–34

MUL r/m16 F7 /4 DX::AX=(r/m word)•AX 35–37/41–43 35–37/45–47

This operand Is a placeholder for

imm8 An immediate byte: a signed number between –128 and 127
imm16 An immediate word: a signed number between –32768 and 32767
m An operand in memory
m8 A byte string in memory pointed to by DS:SI or ES:DI
m16 A word string in memory pointed to by DS:SI or ES:DI
m16&16 A pair of words in memory
m16:16 A doubleword in memory that contains a full address (segment:offset)
moffs8 A byte in memory that contains a signed, relative offset displacement
moffs16 A word in memory that contains a signed, relative offset displacement
ptr16:16 A full address (segment:offset)
r8 A general byte register: AL, BL, CL, DL, AH, BH, CH, or DH
r16 A general word register: AX, BX, CX, DX, BP, SP, DI, or SI
r/m8 A general byte register or a byte in memory
r/m16 A general word register or a word in memory
rel8 A signed, relative offset displacement between –128 and 127
rel16 A signed, relative offset displacement between –32768 and 32767
sreg A segment register
Instruction Set Overview2-4

Opcode

The Opcode column specifies the machine-language opcodes for the different forms of an
instruction. (For instruction prefixes, this column also includes the prefix.) Each opcode
includes one or more numbers in hexadecimal format, and zero or more parameters, which
are shown in italics. A parameter provides information about the contents of the Operand
Address byte for that particular form of the instruction.

This parameter Indicates that

/0–/7 The Auxiliary (aux) Field in the Operand Address byte specifies an
extension (from 0 to 7) to the opcode instead of a register. So for example,
the opcode for adding (ADD) an immediate byte to a general byte register
or a byte in memory is "80 /0 ib". So the second byte of the opcode is
"mod 000 r/m", where mod and r/m are as defined in "Operand Address"
on page 2-2.

/0 The aux field is 0.

/1 The aux field is 1.

/2 The aux field is 2.

/3 The aux field is 3.

/4 The aux field is 4.

/5 The aux field is 5.

/6 The aux field is 6.

/7 The aux field is 7.

/r The Auxiliary (aux) field in the Operand Address byte specifies a register
instead of an opcode extension. If the Opcode byte specifies a byte register,
the registers are assigned as follows: AL=0, CL=1, DL=2, BL=3, AH=4,
CH=5, DH=6, and BH=7. If the Opcode byte specifies a word register, the
registers are assigned as follows: AX=0, CX=1, DX=2, BX=3, SP=4, BP=5,
SI=6, and DI=7.

/sr The Auxiliary (aux) field in the Operand Address byte specifies a segment
register as follows: ES=0, CS=1, SS=2, and DS=3.

cb The byte following the Opcode byte specifies an offset.

cd The doubleword following the Opcode byte specifies an offset and, in some
cases, a segment.

cw The word following the Opcode byte specifies an offset and, in some cases,
a segment.

ib The parameter is an immediate byte. The Opcode byte determines whether
it is interpreted as a signed or unsigned number.

iw The parameter is an immediate word. The Opcode byte determines whether
it is interpreted as a signed or unsigned number.

rb The byte register operand is specified in the Opcode byte. To determine
the Opcode byte for a particular register, add the hexadecimal value on the
left of the plus sign to the value of rb for that register, as follows:
AL=0, CL=1, DL=2, BL= 3, AH=4, CH=5, DH=6, and BH=7. So for example,
the opcode for moving an immediate byte to a register (MOV) is "B0+rb".
So B0–B7 are valid opcodes, and B0 is "MOV AL,imm8".

rw The word register operand is specified in the Opcode byte. To determine
the Opcode byte for a particular register, add the hexadecimal value on the
left of the plus sign to the value of rw for that register, as follows:
AX=0, CX=1, DX=2, BX=3, SP=4, BP=5, SI=6, DI=7.
Instruction Set Overview 2-5

Description

The Description column contains a brief synopsis of each form of the instruction.

Clocks

The Clocks columns (one for the Am186 and one for the Am188 microcontrollers) specify
the number of clock cycles required for the different forms of an instruction.

2.4.3 What It Does
This section contains a brief description of the operation the instruction performs.

2.4.4 Syntax
This section shows the syntax for the instruction. Instructions with more than one mnemonic
show the syntax for each mnemonic.

2.4.5 Description
This section contains a more in-depth description of the instruction.

This parameter Indicates that

/ The number of clocks required for a register operand is different than the
number required for an operand located in memory. The number to the
left corresponds with a register operand; the number to the right
corresponds with an operand located in memory.

, The number of clocks depends on the result of the condition tested. The
number to the left corresponds with a True or Pass result, and the number
to the right corresponds with a False or Fail result.

n The number of clocks depends on the number of times the instruction is
repeated. n is the number of repetitions.
Instruction Set Overview2-6

2.4.6 Operation It Performs
This section uses a combination of C-language and assembler syntax to describe the
operation of the instruction in detail. In some cases, pseudo-code functions are used to
simplify the code. These functions and the actions they perform are as follows:

2.4.7 Flag Settings After Instruction
This section identifies the flags that are set, cleared, modified according to the result,
unchanged, or left undefined by the instruction. Each instruction has the graphic below,
and shows values for the flag bits after the instruction is performed. A "?" in the bit field
indicates the value is undefined; a "–" indicates the bit value is unchanged. See "Processor
Status Flags Register" on page 1-2 for more information on the flags.

2.4.8 Examples
This section contains one or more examples that illustrate possible uses for the instruction.

The beginning of each example is marked with a printout icon; a summary of the example’s
function appears next to it. The example code follows the summary. Note that some of the
examples use assembler directives: CONST (define constant data), DB (define byte), DD
(define double), DW (define word), EQU (equate), LENGTH (length of array), PROC (begin
procedure), SEGMENT (define segment), SIZE (return integer size) and TYPE (return
integer type).

Pseudo-Code Function Action

cat(componenta,componentb) Component A is concatenated with component B.
execute(instruction) Execute the instruction.
interrupt(type) Issue an interrupt request to the microcontroller.
interruptRequest() Return True if the microcontroller receives a maskable

interrupt request.
leastSignificantBit(component) Return the least significant bit of the component.
mostSignificantBit(component) Return the most significant bit of the component.
nextMostSignificantBit(component) Return the next most significant bit of the component.
nmiRequest() Return True if the microcontroller receives a nonmaskable

interrupt request.
operands() Return the number of operands present in the instruction.
pop() Read a word from the top of the stack, increment SP, and

return the value.
pow(n,component) Raise component to the nth power.
push(component) Decrement SP and copy the component to the top of the

stack.
resetRequest() Return True if a device resets the microcontroller by asserting

the RES signal.
serviceInterrupts() Service any pending interrupts.
size(component) Return the size of the component in bits.
stopExecuting() Suspend execution of current instruction sequence.

? = unknown; – = unchanged

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

res res res
Instruction Set Overview 2-7

2.4.9 Tips
This section contains hints and ideas about some of the ways in which the instruction can
be used.

Tips are marked with this icon.

2.4.10 Related Instructions
This section lists other instructions related to the described instruction.
Instruction Set Overview2-8

CHAPTER
3
 INSTRUCTION SET LISTING
This chapter lists all the instructions for the Am186 and Am188 family of microcontrollers.
The instructions are first grouped by type (see page 3-1) and then listed in alphabetical
order (see page 3-11)

3.1 INSTRUCTION SET BY TYPE
The instructions can be classified into groups according to the type of operation they
perform. Instructions that are used for more than one purpose are listed under each category
to which they belong. The functional groups are:

n "Address Calculation and Translation" on page 3-1

n "Binary Arithmetic" on page 3-2

n "Block-Structured Language" on page 3-3

n "Comparison" on page 3-3

n "Control Transfer" on page 3-3

n "Data Movement" on page 3-5

n "Decimal Arithmetic" on page 3-6

n "Flag" on page 3-7

n "Input/Output" on page 3-8

n "Logical Operation" on page 3-8

n "Processor Control" on page 3-9

n "String" on page 3-9

3.1.1 Address Calculation and Translation

Address Calculation Instructions

Address Translation Instructions

Mnemonic Name See Page

LDS Load DS with Segment and Register with Offset 4-131

LEA Load Effective Address 4-133

LES Load ES with Segment and Register with Offset 4-138

Mnemonic Name See Page

XLAT Translate Table Index to Component 4-248

XLATB Translate Table Index to Byte (Synonym for XLAT) 4-248
Instruction Set Listing 3-1

3.1.2 Binary Arithmetic
The microcontroller supports binary arithmetic using numbers represented in the two’s
complement system. The two’s complement system uses the high bit of an integer (a signed
number) to determine the sign of the number. Unsigned numbers have no sign bit.

Binary Addition Instructions

Binary Subtraction Instructions

Binary Multiplication Instructions

Binary Division Instructions

Binary Conversion Instructions

Mnemonic Name See Page

ADC Add Numbers with Carry 4-10

ADD Add Numbers 4-14

INC Increment Number by One 4-69

Mnemonic Name See Page

DEC Decrement Number by One 4-48

SBB Subtract Numbers with Borrow 4-216

SUB Subtract Numbers 4-240

Mnemonic Name See Page

IMUL Multiply Integers 4-63

MUL Multiply Unsigned Numbers 4-160

SAL Shift Arithmetic Left 4-211

SHL Shift Left (Synonym for SAL) 4-211

Mnemonic Name See Page

DIV Divide Unsigned Numbers 4-50

IDIV Divide Integers 4-60

SAR Shift Arithmetic Right 4-214

SHR Shift Right 4-225

Mnemonic Name See Page

CBW Convert Byte Integer to Word 4-24

CWD Convert Word Integer to Doubleword 4-40

NEG Two’s Complement Negation 4-163
Instruction Set Listing3-2

3.1.3 Block-Structured Language

Block-Structured Language Instructions

3.1.4 Comparison
General Comparison Instructions

String Comparison Instructions

3.1.5 Control Transfer

Conditional Jump Instructions to Use after Integer Comparisons

Mnemonic Name See Page

ENTER Enter High-Level Procedure 4-53

LEAVE Leave High-Level Procedure 4-135

Mnemonic Name See Page

CMP Compare Components 4-34

TEST Logical Compare 4-243

Mnemonic Name See Page

CMPS Compare String Components 4-36

CMPSB Compare String Bytes (Synonym for CMPS) 4-36

CMPSW Compare String Words (Synonym for CMPS) 4-36

SCAS Scan String for Component 4-219

SCASB Scan String for Byte (Synonym for SCAS) 4-219

SCASW Scan String for Word (Synonym for SCAS) 4-219

Mnemonic Name See Page

JG Jump If Greater 4-91

JGE Jump If Greater or Equal 4-93

JL Jump If Less 4-95

JLE Jump If Less or Equal 4-97

JNG Jump If Not Greater (Synonym for JLE) 4-97

JNGE Jump If Not Greater or Equal (Synonym for JL) 4-95

JNL Jump If Not Less (Synonym for JGE) 4-93

JNLE Jump If Not Less or Equal (Synonym for JG) 4-91
Instruction Set Listing 3-3

Conditional Jump Instructions to Use after Unsigned Number Comparisons

Conditional Jump Instructions That Test for Equality

Conditional Jump Instructions That Test Flags

Conditional Interrupt Instructions

Mnemonic Name See Page

JA Jump If Above 4-78

JAE Jump If Above or Equal 4-80

JB Jump If Below 4-82

JBE Jump If Below or Equal 4-84

JNA Jump If Not Above (Synonym for JBE) 4-84

JNAE Jump If Not Above or Equal (Synonym for JB) 4-82

JNB Jump If Not Below (Synonym for JAE) 4-80

JNBE Jump If Not Below or Equal (Synonym for JA) 4-78

Mnemonic Name See Page

JE Jump If Equal 4-89

JNE Jump If Not Equal 4-107

Mnemonic Name See Page

JC Jump If Carry (Synonym for JB) 4-82

JNC Jump If Not Carry (Synonym for JAE) 4-80

JNO Jump If Not Overflow 4-113

JNP Jump If Not Parity (Synonym for JPO) 4-124

JNS Jump If Not Sign 4-116

JNZ Jump If Not Zero (Synonym for JNE) 4-107

JO Jump If Overflow 4-119

JP Jump If Parity (Synonym for JPE) 4-121

JPE Jump If Parity Even 4-122

JPO Jump If Parity Odd 4-124

JS Jump If Sign 4-126

JZ Jump If Zero (Synonym for JE) 4-89

Mnemonic Name See Page

BOUND Check Array Index Against Bounds 4-19

IDIV Divide Integers 4-60

INTO Generate Interrupt If Overflow (Conditional form of INT) 4-73
Instruction Set Listing3-4

Conditional Loop Instructions

Unconditional Transfer Instructions

3.1.6 Data Movement

General Movement Instructions

String Movement Instructions

Mnemonic Name See Page

JCXZ Jump If CX Register Is Zero 4-87

LOOP Loop While CX Register is Not Zero 4-146

LOOPE Loop If Equal 4-148

LOOPNE Loop If Not Equal 4-150

LOOPNZ Loop If Not Zero (Synonym for LOOPNE) 4-150

LOOPZ Loop If Zero (Synonym for LOOPE) 4-148

Mnemonic Name See Page

CALL Call Procedure 4-21

INT Generate Interrupt 4-73

IRET Interrupt Return 4-76

JMP Jump Unconditionally 4-99

RET Return from Procedure 4-202

Mnemonic Name See Page

MOV Move Component 4-153

XCHG Exchange Components 4-246

Mnemonic Name See Page

LODS Load String Component 4-141

LODSB Load String Byte (Synonym for LODS) 4-141

LODSW Load String Word (Synonym for LODS) 4-141

MOVS Move String Component 4-156

MOVSB Move String Byte (Synonym for MOVS) 4-156

MOVSW Move String Word (Synonym for MOVS) 4-156

STOS Store String Component 4-237

STOSB Store String Byte (Synonym for STOS) 4-237

STOSW Store String Word (Synonym for STOS) 4-237
Instruction Set Listing 3-5

Stack Movement Instructions

General I/O Movement Instructions

String I/O Movement Instructions

Flag Movement Instructions

3.1.7 Decimal Arithmetic
In addition to binary arithmetic, the microcontroller supports arithmetic using numbers
represented in the binary-coded decimal (BCD) system. The BCD system uses four bits to
represent a single decimal digit. When two decimal digits are stored in a byte, the number
is called a packed decimal number. When only one decimal digit is stored in a byte, the
number is called an unpacked decimal number.

To perform decimal arithmetic, the microcontroller uses a subset of the binary arithmetic
instructions and a special set of instructions that convert unsigned binary numbers to
decimal.

Arithmetic Instructions That Are Used with Decimal Numbers

Mnemonic Name See Page

POP Pop Component from Stack 4-175

POPA Pop All 16-Bit General Registers from Stack 4-178

POPF Pop Flags from Stack 4-180

PUSH Push Component onto Stack 4-181

PUSHA Push All 16-Bit General Registers onto Stack 4-184

PUSHF Push Flags onto Stack 4-186

Mnemonic Name See Page

IN Input Component from Port 4-67

OUT Output Component to Port 4-171

Mnemonic Name See Page

INS Input String Component from Port 4-71

INSB Input String Byte from Port (Synonym for INS) 4-71

INSW Input String Word from Port (Synonym for INS) 4-71

OUTS Output String Component to Port 4-173

OUTSB Output String Byte to Port (Synonym for OUTS) 4-173

OUTSW Output String Word to Port (Synonym for OUTS) 4-173

Mnemonic Name See Page

LAHF Load AH with Flags 4-129

SAHF Store AH in Flags 4-209

Mnemonic Name See Page

ADD Add Numbers 4-14

DIV Divide Unsigned Numbers 4-50

MUL Multiply Unsigned Numbers 4-160

SUB Subtract Numbers 4-240
Instruction Set Listing3-6

Unpacked-Decimal Adjustment Instructions

Packed-Decimal Adjustment Instructions

Consider using decimal arithmetic instead of binary arithmetic under the following
circumstances:

n When the numbers you are using represent only decimal quantities.
Manipulating numbers in binary and converting them back and forth between binary and
decimal can introduce rounding errors.

n When you need to read or write many ASCII numbers.
Converting a number between ASCII and decimal is simpler than converting it between
ASCII and binary.

3.1.8 Flag

Single-Flag Instructions

Multiple-Flag Instructions

Mnemonic Name See Page

AAA ASCII Adjust AL After Addition 4-2

AAD ASCII Adjust AX Before Division 4-4

AAM ASCII Adjust AL After Multiplication 4-6

AAS ASCII Adjust AL After Subtraction 4-8

Mnemonic Name See Page

DAA Decimal Adjust AL After Addition 4-42

DAS Decimal Adjust AL After Subtraction 4-45

Mnemonic Name See Page

CLC Clear Carry Flag 4-26

CLD Clear Direction Flag 4-29

CLI Clear Interrupt-Enable Flag 4-31

CMC Complement Carry Flag 4-33

RCL Rotate through Carry Left 4-187

RCR Rotate through Carry Right 4-189

STC Set Carry Flag 4-228

STD Set Direction Flag 4-231

STI Set Interrupt-Enable Flag 4-235

Mnemonic Name See Page

POPF Pop Flags from Stack 4-180

SAHF Store AH in Flags 4-209
Instruction Set Listing 3-7

3.1.9 Input/Output

General I/O Instructions

String I/O Instructions

3.1.10 Logical Operation
Boolean Operation Instructions

Shift Instructions

Rotate Instructions

Mnemonic Name See Page

IN Input Component from Port 4-67

OUT Output Component to Port 4-171

Mnemonic Name See Page

INS Input String Component from Port 4-71

INSB Input String Byte from Port (Synonym for INS) 4-71

INSW Input String Word from Port (Synonym for INS) 4-71

OUTS Output String Component to Port 4-173

OUTSB Output String Byte to Port (Synonym for OUTS) 4-173

OUTSW Output String Word to Port (Synonym for OUTS) 4-173

Mnemonic Name See Page

AND Logical AND 4-17

NOT One’s Complement Negation 4-167

OR Logical Inclusive OR 4-169

XOR Logical Exclusive OR 4-251

Mnemonic Name See Page

SAL Shift Arithmetic Left 4-211

SAR Shift Arithmetic Right 4-214

SHL Shift Left (Synonym for SAL) 4-211

SHR Shift Right 4-225

Mnemonic Name See Page

RCL Rotate through Carry Left 4-187

RCR Rotate through Carry Right 4-189

ROL Rotate Left 4-205

ROR Rotate Right 4-207
Instruction Set Listing3-8

3.1.11 Processor Control

Processor Control Instructions

Coprocessor Interface Instructions

3.1.12 String
A string is a contiguous sequence of components stored in memory. For example, a string
might be composed of a list of ASCII characters or a table of numbers.

A string instruction operates on a single component in a string. To manipulate more than
one component in a string, the string instruction prefixes (REP/REPE/REPNE/REPNZ/
REPZ) can be used to repeatedly execute the same string instruction.

A string instruction uses an index register as the offset of a component in a string. Most
string instructions operate on only one string, in which case they use either the Source
Index (SI) register or the Destination Index (DI) register. String instructions that operate on
two strings use SI as the offset of a component in one string and DI as the offset of the
corresponding component in the other string.

After executing a string instruction, the microcontroller automatically increments or
decrements SI and DI so that they contain the offsets of the next components in their strings.
The microcontroller determines the amount by which the index registers must be
incremented or decremented based on the size of the components.

The microcontroller can process the components of a string in a forward direction (from
lower addresses to higher addresses), or in a backward direction (from higher addresses
to lower ones). The microcontroller uses the value of the Direction Flag (DF) to determine
whether to increment or decrement SI and DI. If DF is cleared to 0, the microcontroller
increments the index registers; otherwise, it decrements them.

String-Instruction Prefixes

Mnemonic Name See Page

HLT Halt 4-57

LOCK Lock the Bus 4-140

NOP No Operation 4-165

Mnemonic Name See Page

ESC Escape 4-56

WAIT Wait for Coprocessor 4-245

Mnemonic Name See Page

REP Repeat 4-191

REPE Repeat While Equal 4-193

REPNE Repeat While Not Equal 4-197

REPNZ Repeat While Not Zero (Synonym for REPNE) 4-197

REPZ Repeat While Zero (Synonym for REPE) 4-193
Instruction Set Listing 3-9

String Direction Instructions

String Movement Instructions

String Comparison Instructions

String I/O Instructions

Mnemonic Name See Page

CLD Clear Direction Flag 4-29

STD Set Direction Flag 4-231

Mnemonic Name See Page

LODS Load String Component 4-141

LODSB Load String Byte (Synonym for LODS) 4-141

LODSW Load String Word (Synonym for LODS) 4-141

MOVS Move String Component 4-156

MOVSB Move String Byte (Synonym for MOVS) 4-156

MOVSW Move String Word (Synonym for MOVS) 4-156

STOS Store String Component 4-237

STOSB Store String Byte (Synonym for STOS) 4-237

STOSW Store String Word (Synonym for STOS) 4-237

Mnemonic Name See Page

CMPS Compare String Components 4-36

CMPSB Compare String Bytes (Synonym for CMPS) 4-36

CMPSW Compare String Words (Synonym for CMPS) 4-36

SCAS Scan String for Component 4-219

SCASB Scan String for Byte (Synonym for SCAS) 4-219

SCASW Scan String for Word (Synonym for SCAS) 4-219

Mnemonic Name See Page

INS Input String Component from Port 4-71

INSB Input String Byte from Port (Synonym for INS) 4-71

INSW Input String Word from Port (Synonym for INS) 4-71

OUTS Output String Component to Port 4-173

OUTSB Output String Byte to Port (Synonym for OUTS) 4-173

OUTSW Output String Word to Port (Synonym for OUTS) 4-173
Instruction Set Listing3-10

3.2 INSTRUCTION SET IN ALPHABETICAL ORDER
Table 3-1 provides an alphabetical list of the instruction set for the Am186 and Am188
microcontrollers.

Table 3-1 Instruction Set

Mnemonic Instruction Name See Page

AAA ASCII Adjust AL After Addition 4-2
AAD ASCII Adjust AX Before Division 4-4
AAM ASCII Adjust AL After Multiplication 4-6
AAS ASCII Adjust AL After Subtraction 4-8
ADC Add Numbers with Carry 4-10
ADD Add Numbers 4-14
AND Logical AND 4-17
BOUND Check Array Index Against Bounds 4-19
CALL Call Procedure 4-21
CBW Convert Byte Integer to Word 4-24
CLC Clear Carry Flag 4-26
CLD Clear Direction Flag 4-29
CLI Clear Interrupt-Enable Flag 4-31
CMC Complement Carry Flag 4-33
CMP Compare Components 4-34
CMPS Compare String Components 4-36
CMPSB Compare String Bytes (Synonym for CMPS) 4-36
CMPSW Compare String Words (Synonym for CMPS) 4-36
CWD Convert Word Integer to Doubleword 4-40
DAA Decimal Adjust AL After Addition 4-42
DAS Decimal Adjust AL After Subtraction 4-45
DEC Decrement Number by One 4-48
DIV Divide Unsigned Numbers 4-50
ENTER Enter High-Level Procedure 4-53
ESC Escape 4-56
HLT Halt 4-57
IDIV Divide Integers 4-60
IMUL Multiply Integers 4-63
IN Input Component from Port 4-67
INC Increment Number by One 4-69
INS Input String Component from Port 4-71
INSB Input String Byte from Port (Synonym for INS) 4-71
INSW Input String Word from Port (Synonym for INS) 4-71
INT Generate Interrupt 4-73
INTO Generate Interrupt If Overflow (Conditional form of INT) 4-73
IRET Interrupt Return 4-76
JA Jump If Above 4-78
JAE Jump If Above or Equal 4-80
JB Jump If Below 4-82
JBE Jump If Below or Equal 4-84
JC Jump If Carry (Synonym for JB) 4-82
JCXZ Jump If CX Register Is Zero 4-87
Instruction Set Listing 3-11

Table 3-1 Instruction Set (continued)

Mnemonic Instruction Name See Page

JE Jump If Equal 4-89
JG Jump If Greater 4-91
JGE Jump If Greater or Equal 4-93
JL Jump If Less 4-95
JLE Jump If Less or Equal 4-97
JMP Jump Unconditionally 4-99
JNA Jump If Not Above (Synonym for JBE) 4-84
JNAE Jump If Not Above or Equal (Synonym for JB) 4-82
JNB Jump If Not Below (Synonym for JAE) 4-80
JNBE Jump If Not Below or Equal (Synonym for JA) 4-78
JNC Jump If Not Carry (Synonym for JAE) 4-80
JNE Jump If Not Equal 4-107
JNG Jump If Not Greater (Synonym for JLE) 4-97
JNGE Jump If Not Greater or Equal (Synonym for JL) 4-95
JNL Jump If Not Less (Synonym for JGE) 4-93
JNLE Jump If Not Less or Equal (Synonym for JG) 4-91
JNO Jump If Not Overflow 4-113
JNP Jump If Not Parity (Synonym for JPO) 4-124
JNS Jump If Not Sign 4-116
JNZ Jump If Not Zero (Synonym for JNE) 4-107
JO Jump If Overflow 4-119
JP Jump If Parity (Synonym for JPE) 4-122
JPE Jump If Parity Even 4-122
JPO Jump If Parity Odd 4-124
JS Jump If Sign 4-126
JZ Jump If Zero (Synonym for JE) 4-89
LAHF Load AH with Flags 4-129
LDS Load DS with Segment and Register with Offset 4-131
LEA Load Effective Address 4-133
LEAVE Leave High-Level Procedure 4-135
LES Load ES with Segment and Register with Offset 4-138
LOCK Lock the Bus 4-140
LODS Load String Component 4-141
LODSB Load String Byte (Synonym for LODS) 4-141
LODSW Load String Word (Synonym for LODS) 4-141
LOOP Loop While CX Register Is Not Zero 4-146
LOOPE Loop If Equal 4-148
LOOPNE Loop If Not Equal 4-150
LOOPNZ Loop If Not Zero (Synonym for LOOPNE) 4-150
LOOPZ Loop If Zero (Synonym for LOOPE) 4-148
MOV Move Component 4-153
MOVS Move String Component 4-156
MOVSB Move String Byte (Synonym for MOVS) 4-156
MOVSW Move String Word (Synonym for MOVS) 4-156
MUL Multiply Unsigned Numbers 4-160
NEG Two’s Complement Negation 4-163
NOP No Operation 4-165
Instruction Set Listing3-12

Table 3-1 Instruction Set (continued)

Mnemonic Instruction Name See Page

NOT One’s Complement Negation 4-167
OR Logical Inclusive OR 4-169
OUT Output Component to Port 4-171
OUTS Output String Component to Port 4-173
OUTSB Output String Byte to Port (Synonym for OUTS) 4-173
OUTSW Output String Word to Port (Synonym for OUTS) 4-173
POP Pop Component from Stack 4-175
POPA Pop All 16-Bit General Registers from Stack 4-178
POPF Pop Flags from Stack 4-180
PUSH Push Component onto Stack 4-181
PUSHA Push All 16-Bit General Registers onto Stack 4-184
PUSHF Push Flags onto Stack 4-186
RCL Rotate through Carry Left 4-187
RCR Rotate through Carry Right 4-189
REP Repeat 4-191
REPE Repeat While Equal 4-193
REPNE Repeat While Not Equal 4-197
REPNZ Repeat While Not Zero (Synonym for REPNE) 4-197
REPZ Repeat While Zero (Synonym for REPE) 4-193
RET Return from Procedure 4-202
ROL Rotate Left 4-205
ROR Rotate Right 4-207
SAHF Store AH in Flags 4-209
SAL Shift Arithmetic Left 4-211
SAR Shift Arithmetic Right 4-214
SBB Subtract Numbers with Borrow 4-216
SCAS Scan String for Component 4-219
SCASB Scan String for Byte (Synonym for SCAS) 4-219
SCASW Scan String for Word (Synonym for SCAS) 4-219
SHL Shift Left (Synonym for SAL) 4-211
SHR Shift Right 4-225
STC Set Carry Flag 4-228
STD Set Direction Flag 4-231
STI Set Interrupt-Enable Flag 4-235
STOS Store String Component 4-237
STOSB Store String Byte (Synonym for STOS) 4-237
STOSW Store String Word (Synonym for STOS) 4-237
SUB Subtract Numbers 4-240
TEST Logical Compare 4-243
WAIT Wait for Coprocessor 4-245
XCHG Exchange Components 4-246
XLAT Translate Table Index to Component 4-248
XLATB Translate Table Index to Byte (Synonym for XLAT) 4-248
XOR Logical Exclusive OR 4-251
Instruction Set Listing 3-13

Instruction Set Listing3-14

CHAPTER
4
 INSTRUCTION SET
4.1 INSTRUCTIONS
This chapter contains a complete description of each instruction that is supported by the
Am186 and Am188 family of microcontrollers. For an explanation of the format of each
instruction, see Chapter 2.
Instruction Set 4-1

AAA ASCII Adjust AL After Addition AAA

What It Does

AAA converts an 8-bit unsigned binary number that is the sum of two unpacked decimal
(BCD) numbers to its unpacked decimal equivalent.

Syntax

Description

Use the AAA instruction after an ADD or ADC instruction that leaves a byte result in the
AL register. The lower nibbles of the operands of the ADD or ADC instruction should be in
the range 0–9 (BCD digits). The AAA instruction adjusts the AL register to contain the
correct decimal digit result. If the addition produced a decimal carry, AAA increments the
AH register and sets the Carry and Auxiliary-Carry Flags (CF and AF). If there is no decimal
carry, AAA clears CF and AF and leaves the AH register unchanged. AAA sets the top
nibble of the AL register to 0.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

AAA 37 ASCII-adjust AL after addition 8 8

AAA

if (((AL = AL & 0x0F) > 9) || (AF == 1))
/* AL is not yet in BCD format */
/* (note high nibble of AL is cleared either way) */
{

/* convert AL to decimal and unpack */
AL = (AL + 6) & 0x0F;
AH = AH + 1;

/* set carry flags */
CF = AF = 1;

}
else

/* clear carry flags */
CF = AF = 0;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

? – – – ? ? res res ? res

AF=1 if carry or borrow to low nibble
AF=0 otherwise

CF=1 for carry or borrow to high-order bit
CF=0 otherwise
Instruction Set4-2

AAA AAA
Examples

This example adds two unpacked decimal numbers.

Tips

To convert an unpacked decimal digit to its ASCII equivalent, use OR after AAA to add 30h
(ASCII 0) to the digit.

ADC, ADD, SBB, and SUB set AF when the result needs to be converted for decimal
arithmetic. AAA, AAS, DAA, and DAS use AF to determine whether an adjustment is
needed. This is the only use for AF.

Related Instructions

If you want to See

Add two numbers and the value of CF ADC

Add two numbers ADD

Convert an 8-bit unsigned binary sum to its packed decimal equivalent DAA

UADDEND1 DB 05h ; 5 unpacked BCD
UADDEND2 DB 07h ; 7 unpacked BCD

; add unpacked decimal numbers
XOR AX,AX ; clear AX
MOV AL,UADDEND1 ; AL = 05h = 5 unpacked BCD
ADD AL,UADDEND2 ; AX = 000Ch = 12
AAA ; AX = 0102h = 12 unpacked BCD

; the AF and CF flags will be set, indicating the carry into AH
Instruction Set 4-3

AAD ASCII Adjust AX Before Division AAD

What It Does

AAD converts a two-digit unpacked decimal (BCD) number—ordinarily the dividend of an
unpacked decimal division—to its unsigned binary equivalent.

Syntax

Description

AAD prepares two unpacked BCD digits—the least significant digit in the AL register and
the most significant digit in the AH register—for division by an unpacked BCD digit. The
instruction sets the AL register to AL + (10•AH) and then clears the AH register. The AX
register then equals the binary equivalent of the original unpacked two-digit number.

Operation It Performs

Flag Settings After Instruction

Examples

This example divides a two-digit unpacked decimal number by a one-digit unpacked
decimal number.

Form Opcode Description
Clocks

Am186 Am188

AAD D5 0A ASCII-adjust AX before division 15 15

AAD

/* convert AX to binary */
AL = (AH * 10) + AL;
AH = 0;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

? – – – res ? res res ?

UDIVIDEND DW 0409h ; 49 unpacked BCD
UDIVISOR DB 03h ; 3 unpacked BCD

; divide unpacked decimal numbers (two digit by one digit)
MOV AX,UDIVIDEND ; AX = 0409h = 49 unpacked BCD
AAD ; AX = 0031h = 49
DIV UDIVISOR ; AL = 10h = 16, the quotient

; AH = 01h = 1, the remainder
MOV BL,AH ; save remainder, BL = 01h = 1
AAM ; AX = 0106h = 16 unpacked BCD
Instruction Set4-4

AAD AAD
This example uses AAD to convert a two-digit unpacked decimal number to its binary
equivalent.

Tips

The microcontroller can only divide unpacked decimal numbers. To divide packed decimal
numbers, unpack them first.

Related Instructions

If you want to See

Divide an unsigned number by another unsigned number DIV

UBCD DW 0801h ; 81 unpacked BCD

; convert unpacked decimal number to binary
MOV AX,UBCD ; AX = 0801h = 81 unpacked BCD
AAD ; AX = 0051h = 81
Instruction Set 4-5

AAM ASCII Adjust AL After Multiplication AAM

What It Does

AAM converts an 8-bit unsigned binary number—ordinarily the product of two unpacked
decimal (BCD) numbers—to its unpacked decimal equivalent.

Syntax

Description

Use AAM only after executing the MUL instruction between two unpacked BCD operands
with the result in the AX register. Because the result is 99 or less, it resides entirely in the
AL register. AAM unpacks the AL result by dividing AL by 10, leaving the quotient (most
significant digit) in AH and the remainder (least significant digit) in AL.

Operation It Performs

Flag Settings After Instruction

Examples

This example multiplies two unpacked decimal digits.

Form Opcode Description
Clocks

Am186 Am188

AAM D4 0A ASCII-adjust AL after multiplication 19 19

AAM

/* convert AL to decimal */
AH = AL / 10;
AL = AL % 10;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

? – – – res ? res res ?

UMULTIPLICAND DB 07h ; 7 unpacked BCD
UMULTIPLIER DB 06h ; 6 unpacked BCD

; multiply unpacked decimal numbers
MOV AL,UMULTIPLICAND ; AL = 07h = 7 unpacked BCD
MUL UMULTIPLIER ; AL = 2Ah = 42
AAM ; AX = 0402h = 42 unpacked BCD
Instruction Set4-6

AAM AAM
This example uses AAM to divide an unsigned binary number by 10. (The binary number
must be 99 or less.) Note that the quotient occupies the high byte of the result, and the
remainder occupies the low byte of the result. If you use DIV to divide an unsigned number
by 10, the quotient and remainder occupy the opposite halves of the result.

Tips

The microcontroller can only multiply unpacked decimal numbers. To multiply packed
decimal numbers, unpack them first.

To convert an unpacked decimal digit to its ASCII equivalent, use OR after AAM to add
30h (ASCII 0) to the digit.

Related Instructions

If you want to See

Multiply two unsigned numbers MUL

UBINARY DB 44h ; 68

; divide unsigned binary number by 10
MOV AL,UBINARY ; AL = 44h = 68
AAM ; AH = 06h = 6, the quotient

; AL = 08h = 8, the remainder
Instruction Set 4-7

AAS ASCII Adjust AL After Subtraction AAS

What It Does

AAS converts an 8-bit unsigned binary number that is the difference of two unpacked
decimal (BCD) numbers to its unpacked decimal equivalent.

Syntax

Description

Use AAS only after a SUB or SBB instruction that leaves the byte result in AL. The lower
nibbles of the operands of the SUB or SBB instruction must be in the range 0–9 (BCD).
AAS adjusts AL so that it contains the correct decimal result. If the subtraction produced a
decimal borrow, AAS decrements AH and sets CF and AF. If there is no decimal borrow,
AAS clears CF and AF and leaves AH unchanged. AAS sets the top nibble of AL to 0.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

AAS 3F ASCII-adjust AL after subtraction 7 7

AAS

if (((AL = AL & 0x0F) > 9) || (AF == 1))
/* AL is not yet decimal */
/* (note high nibble of AL is cleared either way */
{

/* convert AL to decimal and unpack */
AL = (AL - 6) & 0x0F;
AH = AH - 1;

/* set carry flags */
CF = AF = 1;

}
else

/* clear carry flags */
CF = AF = 0;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

? – – – ? ? res res ? res

AF=1 if carry or borrow to low nibble
AF=0 otherwise

CF=1 for carry or borrow to high-order bit
CF=0 otherwise
Instruction Set4-8

AAS AAS
Examples

This example subtracts one unpacked decimal number (the subtrahend) from another
unpacked decimal number (the minuend).

Tips

To convert an unpacked decimal digit to its ASCII equivalent, use OR after AAS to add 30h
(ASCII 0) to the digit.

ADC, ADD, SBB, and SUB set AF when the result needs to be converted for decimal
arithmetic. AAA, AAS, DAA, and DAS use AF to determine whether an adjustment is
needed. This is the only use for AF.

Related Instructions

If you want to See

Convert an 8-bit unsigned binary difference to its packed decimal equivalent DAS

Subtract a number and the value of CF from another number SBB

Subtract a number from another number SUB

UMINUEND DW 0103h ; 13 unpacked BCD
USUBTRAHEND DB 05h ; 5 unpacked BCD

; subtract unpacked decimal numbers
MOV AX,UMINUEND ; AX = 0103h = 13 unpacked BCD
SUB AL,USUBTRAHEND ; AX = 01FEh
AAS ; AL = 08h = 8 unpacked BCD
Instruction Set 4-9

ADC Add Numbers with Carry ADC

What It Does

ADC adds two integers or unsigned numbers and the value of the Carry Flag (CF).

Syntax

Description

ADC performs an integer addition of the two operands and the value of CF. ADC assigns
the result to sum and sets CF as required. ADC is typically part of a multibyte or multiword
addition operation. ADC sign-extends immediate-byte values to the appropriate size before
adding to a word operand.

Operation It Performs

Form Opcode Description
Clocks

Am186 Am188

ADC AL,imm8 14 ib Add immediate byte to AL with carry 3 3

ADC AX,imm16 15 iw Add immediate word to AX with carry 4 4

ADC r/m8,imm8 80 /2 ib Add immediate byte to r/m byte with carry 4/16 4/16

ADC r/m16,imm16 81 /2 iw Add immediate word to r/m word with carry 4/16 4/20

ADC r/m16,imm8 83 /2 ib Add sign-extended immediate byte to r/m word with carry 4/16 4/20

ADC r/m8,r8 10 /r Add byte register to r/m byte with carry 3/10 3/10

ADC r/m16,r16 11 /r Add word register to r/m word with carry 3/10 3/14

ADC r8,r/m8 12 /r Add r/m byte to byte register with carry 3/10 3/10

ADC r16,r/m16 13 /r Add r/m word to word register with carry 3/10 3/14

ADC sum,addend

if (addend == imm8)
if (size(sum) > 8)

/* extend sign of addend */
if (addend < 0)

addend = 0xFF00 | addend;
else

addend = 0x00FF & addend;

/* add with carry */
sum = sum + addend + CF;
Instruction Set4-10

ADC ADC
Flag Settings After Instruction

Examples

This example adds two 32-bit unsigned numbers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

OF=1 if result larger than destination operand
OF=0 otherwise

AF=1 if carry or borrow to low nibble
AF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

CF=1 for carry or borrow to high-order bit
CF=0 otherwise

– – – res res res

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

UADDEND1 DD 592535620 ; 23516044h
UADDEND2 DD 3352720 ; 00332890h

; 32-bit unsigned addition: UADDEND1 = UADDEND1 + UADDEND2

; add left words (bytes and words reversed in memory)
MOV AX,WORD PTR UADDEND2
ADD WORD PTR UADDEND1,AX

; add right words
MOV AX,WORD PTR UADDEND2+2
ADC WORD PTR UADDEND1+2,AX ; UADDEND1 = 238488D4h

; = 595888340
Instruction Set 4-11

ADC ADC
This example adds two 3-byte packed decimal numbers.

Tips

To add two integers or two unsigned numbers that are both stored in memory, copy one
of them to a register before using ADC.

ADC requires both operands to be the same size. Before adding an 8-bit integer to a 16-
bit integer, convert the 8-bit integer to its 16-bit equivalent using CBW. To convert an 8-bit
unsigned number to its 16-bit equivalent, use MOV to copy 0 to AH.

To add numbers larger than 16 bits, use ADD to add the low words, and then use ADC to
add each of the subsequently higher words.

The microcontroller does not provide an instruction that performs decimal addition. To add
decimal numbers, use ADD to perform binary addition, and then convert the result to decimal
using AAA or DAA.

ADC, ADD, SBB, and SUB set AF when the result needs to be converted for decimal
arithmetic. AAA, AAS, DAA, and DAS use AF to determine whether an adjustment is
needed. This is the only use for AF.

PADDEND1 DB 00h,25h,86h,17h ; 258617 packed BCD
PADDEND2 DB 00h,04h,21h,45h ; 42145 packed BCD

; multibyte packed decimal addition: PADDEND1 = PADDEND1 + PADDEND2

; add right bytes
MOV AL,PADDEND1 + 3
ADD AL,PADDEND2 + 3
DAA
MOV PADDEND1 + 3,AL

; add next bytes
MOV AL,PADDEND1 + 2
ADC AL,PADDEND2 + 2
DAA
MOV PADDEND1 + 2,AL

; add next bytes
MOV AL,PADDEND1 + 1
ADC AL,PADDEND2 + 1
DAA
MOV PADDEND1 + 1,AL

; if CF is 1, propagate carry into left byte
JC ADD_CARRY
JMP CONTINUE

ADD_CARRY:
MOV PADDEND1,1

CONTINUE:
...
Instruction Set4-12

ADC ADC
Related Instructions

If you want to See

Convert an 8-bit unsigned binary sum to its unpacked decimal equivalent AAA

Add two numbers ADD

Convert an 8-bit integer to its 16-bit equivalent CBW

Convert an 8-bit unsigned binary sum to its packed decimal equivalent DAA

Change the sign of an integer NEG
Instruction Set 4-13

ADD Add Numbers ADD

What It Does

ADD adds two integers or unsigned numbers.

Syntax

Description

ADD performs an integer addition of the two operands. ADD assigns the result to sum and
sets the flags accordingly. ADD sign-extends immediate byte values to the appropriate size
before adding to a word operand.

Operation It Performs

Form Opcode Description
Clocks

Am186 Am188

ADD AL,imm8 04 ib Add immediate byte to AL 3 3

ADD AX,imm16 05 iw Add immediate word to AX 4 4

ADD r/m8,imm8 80 /0 ib Add immediate byte to r/m byte 4/16 4/16

ADD r/m16,imm16 81 /0 iw Add immediate word to r/m word 4/16 4/20

ADD r/m16,imm8 83 /0 ib Add sign-extended immediate byte to r/m word 4/16 4/20

ADD r/m8,r8 00 /r Add byte register to r/m byte 3/10 3/10

ADD r/m16,r16 01 /r Add word register to r/m word 3/10 3/14

ADD r8,r/m8 02 /r Add r/m byte to byte register 3/10 3/10

ADD r16,r/m16 03 /r Add r/m word to word register 3/10 3/14

ADD sum,addend

if (addend == imm8)
if (size(sum) > 8)

/* extend sign of addend */
if (addend < 0)

addend = 0xFF00 | addend;
else

addend = 0x00FF & addend;

/* add */
sum = sum + addend;
Instruction Set4-14

ADD ADD
Flag Settings After Instruction

Examples

This example adds two 16-bit integers.

This example adds two 32-bit unsigned numbers.

Tips

To add two integers or two unsigned numbers that are both stored in memory, copy one
of them to a register before using ADD.

ADD requires both operands to be the same size. Before adding an 8-bit integer to a 16-
bit integer, convert the 8-bit integer to its 16-bit equivalent using CBW. To convert an 8-bit
unsigned number to its 16-bit equivalent, use MOV to copy 0 to AH.

To add numbers larger than 16 bits, use ADD to add the low words, and then use ADC to
add each of the subsequently higher words.

Use INC instead of ADD within a loop when you want to increase a value by 1 each time
the loop is executed.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

OF=1 if result larger than destination operand
OF=0 otherwise

AF=1 if carry or borrow to low nibble
AF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

CF=1 for carry or borrow to high-order bit
CF=0 otherwise

– – – res res res

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

SADDEND1 DW -6360 ; E6ECh
SADDEND2 DW 723 ; 02D3h

; add signed numbers
MOV AX,SADDEND2 ; AX = 723
ADD SADDEND1,AX ; SADDEND1 = -5637

UADDEND1 DD 592535620 ; 23516044h
UADDEND2 DD 3352720 ; 00332890h

; 32-bit unsigned addition: UADDEND1 = UADDEND1 + UADDEND2

; add left words (bytes and words reversed in memory)
MOV AX,WORD PTR UADDEND2 ; AX=2890h
ADD WORD PTR UADDEND1,AX ; UADEND1=2351h::(2890h+6044h)

 =235188D4h
; add right words
MOV AX,WORD PTR UADDEND2+2 ; AX=0033h
ADC WORD PTR UADDEND1+2,AX ; UADDEND1=(2351h+0033h)::88D4h

; =238488D4h
; =595888340
Instruction Set 4-15

ADD ADD
The microcontroller does not provide an instruction that performs decimal addition. To add
decimal numbers, use ADD to perform binary addition, and then convert the result to decimal
using AAA or DAA.

ADC, ADD, SBB, and SUB set AF when the result needs to be converted for decimal
arithmetic. AAA, AAS, DAA, and DAS use AF to determine whether an adjustment is
needed. This is the only use for AF.

Related Instructions

If you want to See

Convert an 8-bit unsigned binary sum to its unpacked decimal equivalent AAA

Add two numbers and the value of CF ADC

Convert an 8-bit integer to its 16-bit equivalent CBW

Convert an 8-bit unsigned binary sum to its packed decimal equivalent DAA

Add 1 to a number INC

Change the sign of an integer NEG
Instruction Set4-16

AND Logical AND AND

What It Does

AND clears particular bits of a component to 0 according to a mask.

Syntax

Description

AND computes the logical AND of the two operands. If corresponding bits of the operands
are 1, the resulting bit is 1. If either bit or both are 0, the result is 0. The answer replaces
component.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

AND AL,imm8 24 ib AND immediate byte with AL 3 3

AND AX,imm16 25 iw AND immediate word with AX 4 4

AND r/m8,imm8 80 /4 ib AND immediate byte with r/m byte 4/16 4/16

AND r/m16,imm16 81 /4 iw AND immediate word with r/m word 4/16 4/20

AND r/m16,imm8 83 /4 ib AND sign-extended immediate byte with r/m word 4/16 4/20

AND r/m8,r8 20 /r AND byte register with r/m byte 3/10 3/10

AND r/m16,r16 21 /r AND word register with r/m word 3/10 3/14

AND r8,r/m8 22 /r AND r/m byte with byte register 3/10 3/10

AND r16,r/m16 23 /r AND r/m word with word register 3/10 3/14

AND component,mask

/* AND component with mask */
component = component & mask;

/* clear overflow and carry flags */
OF = CF = 0;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

0 – – – res ? res res 0
Instruction Set 4-17

AND AND
Examples

This example converts an ASCII number to its unpacked decimal equivalent.

This example extracts the middle byte of a word so it can be used by another instruction.

Tips

To convert an ASCII number (30–39h) to its unpacked decimal equivalent, use AND with
a mask of 0Fh to clear the bits in the high nibble of the byte.

Related Instructions

If you want to See

Toggle all bits of a component NOT

Set particular bits of a component to 1 OR

Toggle particular bits of a component XOR

BCD_MASK EQU 0Fh ; ASCII-to-decimal mask
ASCII_NUM DB 36h ; ASCII ’6’

; convert ASCII number to decimal
MOV AL,ASCII_NUM ; AL = 36h = ASCII ”6”
AND AL,BCD_MASK ; AL = 06h = decimal 6

SETTINGS DW 1234h

; extract middle byte of AX and place in AH
MOV AX,SETTINGS ; AX = 1234h
AND AX,0FF0h ; mask middle byte: AX = 0230h
SHL AX,4 ; shift middle byte into AH: AX = 2300h
Instruction Set4-18

BOUND*Check Array Index Against Bounds BOUND

What It Does

BOUND determines whether an integer falls between two boundaries.

Syntax

Description

BOUND ensures that a signed array index is within the limits specified by a block of memory
between an upper and lower bound. The first operand (from the specified register) must
be greater than or equal to the lower bound value, but not greater than the upper bound.
The lower bound value is stored at the address specified by the second operand. The upper
bound value is stored at a consecutive higher memory address (+2). If the first operand is
out of the specified bounds, BOUND issues an Interrupt 5 Request. The saved IP points
to the BOUND instruction.

Operation It Performs

Flag Settings After Instruction

* – This instruction was not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

BOUND r16,m16&16 62 /r Check to see if word register is within bounds 33–35 33–35

BOUND index,bounds

if ((index < [bounds]) || (index > [bounds + 2]))
/* integer is outside of boundaries */

interrupt(5);

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-19

BOUND BOUND
Examples

This example compares a word in a table to the value in AX. Before the comparison, BOUND
checks to see if the table index is within the range of the table. If it is not, the microcontroller
generates Interrupt 5.

Tips

Use BOUND to check a signed index value to see if it falls within the range of an array.

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Generate an interrupt INT

BOUNDARIES DW 0,256
TABLE DW 4096 DUP (?)

; search table for value in AX

; fill table with values and load AX with search key
CALL FILL_TABLE
CALL GET_KEY

; load SI with index
...

; check index before comparison
BOUND SI,BOUNDARIES ; if out of bounds, call interrupt 5
CMP TABLE[SI],AX ; compare components
...
Instruction Set4-20

CALL Call Procedure CALL

What It Does

CALL calls a procedure.

Syntax

Description

CALL suspends execution of the current instruction sequence, saves the segment (if
necessary) and offset addresses of the next instruction, and begins executing the procedure
named by the operand. A return at the end of the called procedure exits the procedure and
starts execution at the instruction following the CALL instruction.

CALL rel16 and CALL r/m16 are near calls. They use the current Code Segment register
value. Near calls push the offset of the next instruction (IP) onto the stack. The near RET
instruction in the procedure pops the instruction offset when it returns control.

n Near direct calls (relative): CALL rel16 adds a signed offset to the address of the next
instruction to determine the destination. CALL stores the result in the IP register.

n Near indirect calls (absolute): CALL r/m16 specifies a register or memory location
from which the 16-bit absolute segment offset is fetched. CALL stores the result in the
IP register.

CALL ptr16:16 and CALL m16:16 are far calls. They use a long pointer to the called
procedure. The long pointer provides 16 bits for the CS register and 16 for the IP register.
Far calls push both the CS and IP registers as a return address. A far return must be used
to pop both CS and IP from the stack.

n Far direct calls: CALL ptr16:16 uses a 4-byte operand as a long pointer to the called
procedure.

n Far indirect calls: CALL m16:16 fetches the long pointer from the memory location
specified (indirection).

A CALL-indirect-through-memory, using the stack pointer (SP) as a base register,
references memory before the call. The base is the value of SP before the instruction
executes.

Form Opcode Description
Clocks

Am186 Am188

CALL rel16 E8 cw Call near, displacement relative to next instruction 15 19

CALL r/m16 FF /2 Call near, register indirect/memory indirect 13/19 17/27

CALL ptr16:16 9A cd Call far to full address given 23 31

CALL m16:16 FF /3 Call far to address at m16:16 word 38 54

CALL procedure
Instruction Set 4-21

CALL CALL
Operation It Performs

Flag Settings After Instruction

Examples

This example calls a procedure whose address is stored in a doubleword in memory.

/* save return offset */
push(IP);

if (procedure == rel16)
/* near direct call */

IP = IP + rel16;

if (procedure == r/m16)
/* near indirect call */

IP = [r/m16];

if ((procedure == ptr16:16) || (procedure == m16:16))
/* far call */
{

/* save return segment */
push(CS);

if (procedure == ptr16:16)
/* far direct call */

CS:IP = ptr16:16;
else
/* far indirect call */

CS:IP = [m16:16];
}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –

PROC_ADDR DD ? ; full address of current procedure

; store address of current procedure in PROC_ADDR
...

LDS SI,PROC_ADDR ; load segment of procedure into DS
; and offset of procedure into SI

; call procedure at address stored in doubleword in memory
CALL DWORD PTR [SI]
Instruction Set4-22

CALL CALL
Tips

The assembler generates the correct call (near or far) based on the declaration of the called
procedure.

Related Instructions

If you want to See

Stop executing the current sequence of instructions and begin executing another JMP

End a procedure and return to the calling procedure RET
Instruction Set 4-23

CBW Convert Byte Integer to Word CBW

What It Does

CBW converts an 8-bit integer to a sign-extended 16-bit integer.

Syntax

Description

CBW converts the signed byte in the AL register to a signed word in the AX register by
extending the most significant bit of the AL register (the sign bit) into all of the bits of the
AH register.

Operation It Performs

Flag Settings After Instruction

Examples

This example converts an 8-bit integer to its 16-bit equivalent before adding it to another
16-bit integer.

Form Opcode Description
Clocks

Am186 Am188

CBW 98 Put signed extension of AL in AX 2 2

CBW

/* extend sign of AL to AX */
if (AL < 0)

AH = 0xFF;
else

AH = 0x00;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –

SADDEND1 DB -106 ; 96h
SADDEND2 DW 25000 ; 61A8h

; add word integer to byte integer
MOV AL,SADDEND1 ; AL = 96h = -106
CBW ; AX = FF96h = -106
ADD AX,SADDEND2 ; AX = 613Eh = 24894
Instruction Set4-24

CBW CBW
This example converts an 8-bit integer to its 16-bit equivalent before dividing it by an 8-bit
integer.

Tips

To convert an 8-bit unsigned number in AL to its 16-bit equivalent, use MOV to copy 0 to AH.

Related Instructions

If you want to See

Add two numbers with the value of CF ADC

Add two numbers ADD

Convert a 16-bit integer to its 32-bit equivalent CWD

Divide an integer by another integer IDIV

Subtract a number and the value of CF from another number SBB

Subtract a number from another number SUB

SDIVIDEND DB 101 ; 65h
SDIVISOR DB -3 ; FDh

; divide byte integers
MOV AL,SDIVIDEND ; AL = 65h = 101
CBW ; AX = 0065h = 101
IDIV SDIVISOR ; AL = DFh = -33, the quotient

, AH = 02h = 2, the remainder
Instruction Set 4-25

CLC Clear Carry Flag CLC

What It Does

CLC clears the Carry Flag (CF) to 0.

Syntax

Description

CLC clears CF.

Operation It Performs

Flag Settings After Instruction

Examples

This example rotates the bits of a byte to the left, making sure that the high bit remains 0.

Form Opcode Description
Clocks

Am186 Am188

CLC F8 Clear Carry Flag 2 2

CLC

/* clear carry flag */
CF = 0;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res 0

; rotate byte, maintaining 0 in high bit
MOV AL,01101011b ; AL = 01101011b
CLC ; CF = 0
RCR AL,1 ; AL = 00110101b, CF = 1
Instruction Set4-26

CLC CLC
This example scans a string in memory until it finds a character or until the entire string is
scanned. The microcontroller scans the bytes, one by one, from first to last. If the string
contains the character, the microcontroller sets the Carry Flag (CF) to 1; otherwise, it clears
CF to 0.

STRING DB 10 DUP (?)
NULL EQU 0

; notify assembler that DS and ES specify
; the same segment of memory
ASSUME DS:DATASEG, ES:DATASEG

; set up segment registers with same segment
MOV AX,DATASEG ; copy data segment to AX
MOV DS,AX ; copy AX to DS
MOV ES,AX ; copy AX to ES

; initialize and use string
...

; set up registers and flags
MOV AL,NULL ; copy character to AL
LEA DI,STRING ; load offset (segment = ES)
MOV CX,LENGTH STRING ; set up counter
CLD ; process string low to high

; scan string for character
REPNE SCASB

; if string contains character
JE FOUND
; else
JMP NOT_FOUND

FOUND:
STC ; indicate found
JMP CONTINUE

NOT_FOUND:
CLC ; indicate not found

CONTINUE:
...
Instruction Set 4-27

CLC CLC
Tips

You can use CF to indicate the outcome of a procedure, such as when searching a string
for a character. For instance, if the character is found, you can use STC to set CF to 1; if
the character is not found, you can use CLC to clear CF to 0. Then, subsequent instructions
that do not affect CF can use its value to determine the appropriate course of action.

To rotate a 0 into a component, use CLC to clear CF to 0 before using RCL or RCR.

Related Instructions

If you want to See

Toggle the value of CF CMC

Rotate the bits of a component and CF to the left RCL

Rotate the bits of a component and CF to the right RCR

Set CF to 1 STC
Instruction Set4-28

CLD Clear Direction Flag CLD

What It Does

CLD clears the Direction Flag (DF) to 0, causing subsequent repeated string instructions
to process the components of a string from a lower address to a higher address.

Syntax

Description

CLD clears DF, causing subsequent string operations to increment the index registers on
which they operate: SI and/or DI.

Operation It Performs

Flag Settings After Instruction

Examples

This example fills a string in memory with a character. Because the Direction Flag (DF) is
cleared to 0 using CLD, the bytes are filled, one by one, from first to last.

Form Opcode Description
Clocks

Am186 Am188

CLD FC Clear Direction Flag so the Source Index (SI) and/or the
Destination Index (DI) registers will increment during
string instructions

2 2

CLD

/* process string components from lower to higher addresses */
DF = 0;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– 0 – – – – res – res – res –

STRING DB 128 DUP (?)
POUND DB ’#’ ; 2Ah

; fill string with character

; set up registers and flags
MOV AX,SEG STRING
MOV ES,AX
MOV AL,POUND ; copy character to AL
LEA DI,STRING ; load offset (segment = ES)
MOV CX,LENGTH STRING ; set up counter
CLD ; process string going forward

; fill string
REP STOSB
Instruction Set 4-29

CLD CLD
This example copies one string of 16-bit integers in memory to another string in the same
segment. Because the Direction Flag (DF) is cleared to 0 using CLD, the microcontroller
copies the words, one by one, from first to last.

Tips

Before using one of the string instructions (CMPS, INS, LODS, MOVS, OUTS, SCAS, or
STOS), always set up CX with the length of the string, and use CLD (forward) or STD
(backward) to establish the direction for string processing.

The string instructions always advance SI and/or DI, regardless of the use of the REP prefix.
Be sure to set or clear DF before any string instruction.

Related Instructions

If you want to See

Compare a component in one string with a component in another string CMPS

Copy a component from a port in I/O memory to a string in main memory INS

Copy a component from a string in memory to a register LODS

Copy a component from one string in memory to another string in memory MOVS

Copy a component from a string in main memory to a port in I/O memory OUTS

Compare a string component located in memory to a register SCAS

Process string components from higher to lower addresses STD

Copy a component from a register to a string in memory STOS

; defined in SEG_1 segment
SOURCE DW 350,-4821,-276,449,10578
DEST DW 5 DUP (?)

; direct assembler that DS and ES point to
; the same segment of memory
ASSUME DS:SEG_1, ES:SEG_1

; set up DS and ES with same segment address
MOV AX,SEG_1 ; copy data segment to AX
MOV DS,AX ; copy AX to DS
MOV ES,AX ; copy AX to ES

; set up registers and flags
LEA SI,SOURCE ; load source offset (segment = DS)
LEA DI,DEST ; load dest. offset (segment = ES)
MOV CX,5 ; set up counter
CLD ; process string low to high

; copy source string to destination string
REP MOVSW
Instruction Set4-30

CLI Clear Interrupt-Enable Flag CLI

What It Does

CLI clears the Interrupt-Enable Flag (IF), disabling all maskable interrupts.

Syntax

Description

CLI clears IF. Maskable external interrupts are not recognized at the end of the CLI
instruction—or from that point on—until IF is set.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

CLI FA Clear Interrupt-Enable Flag (IF) 2 2

CLI

/* disable maskable interrupts */
IF = 0;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – 0 – – – res – res – res –
Instruction Set 4-31

CLI CLI
Examples

This example of an interrupt-service routine: enables interrupts so that interrupt nesting
can occur, resets a device, disables interrupts until the interrupted procedure is resumed,
and then clears the in-service bits in the In-Service (INSERV) register by writing to the End-
Of-Interrupt (EOI) register.

Tips

When the Interrupt-Enable Flag (IF) is cleared to 0 so that all maskable interrupts are
disabled, you can still use INT to generate an interrupt, even if it is masked by its interrupt
control register.

Software interrupts and traps, and nonmaskable interrupts are not affected by the IF flag.

The IRET instruction restores the value of the Processor Status Flags register from the
value pushed onto the stack when the interrupt was taken. Modifying the Processor Status
Flags register via the STI, CLI or other instruction will not affect the flags after the IRET.

If you disable maskable interrupts using CLI, the microcontroller does not recognize
maskable interrupt requests until the instruction that follows STI is executed.

After using CLI to disable maskable interrupts, use STI to enable them as soon as possible
to reduce the possibility of missing maskable interrupt requests.

Related Instructions

If you want to See

Enable maskable interrupts that are not masked by their interrupt control registers STI

; the microcontroller pushes the flags onto
; the stack before executing this routine

; enable interrupt nesting during routine
ISR1 PROC FAR

PUSHA ; save general registers
STI ; enable unmasked maskable interrupts

mRESET_DEVICE1 ; perform operation (macro)
CLI ; disable maskable interrupts until IRET

; reset in-service bits by writing to EOI register
MOV DX,INT_EOI_ADDR ; address of EOI register
MOV AX,8000h ; non-specific EOI
OUT DX,AX ; write to EOI register

POPA ; restore general registers
IRET

ISR1 ENDP

; the microcontroller pops the flags from the stack
; before returning to the interrupted procedure
Instruction Set4-32

CMC Complement Carry Flag CMC

What It Does

CMC toggles the value of the Carry Flag (CF).

Syntax

Description

CMC reverses the setting of CF.

Operation It Performs

Flag Settings After Instruction

Related Instructions

Form Opcode Description
Clocks

Am186 Am188

CMC F5 Complement Carry Flag 2 2

If you want to See

Clear the value of CF to 0 CLC

Rotate the bits of a component and CF to the left RCL

Rotate the bits of a component and CF to the right RCR

Set the value of CF to 1 STC

CMC

/* toggle value of carry flag */
CF = ~ CF;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

CF contains the complement of its original value

– – – – – – res – res – res
Instruction Set 4-33

CMP Compare Components CMP

What It Does

CMP compares two components using subtraction and sets the flags accordingly.

Syntax

Description

CMP subtracts the second operand from the first, but does not store the result. CMP only
changes the flag settings. The CMP instruction is typically used in conjunction with
conditional jumps. If an operand greater than one byte is compared to an immediate byte,
the byte value is first sign-extended.

Operation It Performs

Form Opcode Description
Clocks

Am186 Am188

CMP AL,imm8 3C ib Compare immediate byte to AL 3 3

CMP AX,imm16 3D iw Compare immediate word to AX 4 4

CMP r/m8,imm8 80 /7 ib Compare immediate byte to r/m byte 3/10 3/10

CMP r/m16,imm16 81 /7 iw Compare immediate word to r/m word 3/10 3/14

CMP r/m16,imm8 83 /7 ib Compare sign-extended immediate byte to r/m word 3/10 3/14

CMP r/m8,r8 38 /r Compare byte register to r/m byte 3/10 3/10

CMP r/m16,r16 39 /r Compare word register to r/m word 3/10 3/14

CMP r8,r/m8 3A /r Compare r/m byte to byte register 3/10 3/10

CMP r16,r/m16 3B /r Compare r/m word to word register 3/10 3/14

CMP value1,value2

if (value2 == imm8)
if (size(value1) > 8)

/* extend sign of value2 */
if (value2 < 0)

value2 = 0xFF00 | value2;
else

value2 = 0x00FF & value2;

/* compare values */
temp = value1 - value2;

/* don’t store result, but set appropriate flags */
Instruction Set4-34

CMP CMP
Flag Settings After Instruction

Examples

This example waits for a character from the serial port. DEC, JCXZ, and JMP implement
a construct equivalent to the C-language do-while loop. CMP and JNE implement an
if statement within the loop.

Tips

Don’t compare signed values with unsigned values. Compare either two integers or two
unsigned numbers.

Related Instructions

If you want to See

Determine whether particular bits of a component are set to 1 TEST

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

OF=1 if result larger than destination operand
OF=0 otherwise

AF=1 if carry or borrow to low nibble
AF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

CF=1 for carry or borrow to high-order bit
CF=0 otherwise

– – – res res res

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

; loop for a maximum number of times or until a
; serial-port character is ready

MOV CX,100h ; set up counter

LOOP_TOP:
CHAR_READY ; read character into AH (macro)
CMP AH,0 ; is a character ready?
JNE GOT_CHAR ; if so, then jump out with character
DEC CX ; subtract 1 from counter
JCXZ NO_CHAR ; if CX is 0, jump out without character
JMP LOOP_TOP ; if not, jump to top of loop

GOT_CHAR:
...

NO_CHAR:
...
Instruction Set 4-35

CMPS Compare String Components CMPS
CMPSB Compare String Bytes
CMPSW Compare String Words

What It Does

CMPS compares a component in one string to a component in another string.

Syntax

Description

CMPS compares the byte or word pointed to by the SI register with the byte or word pointed
to by the DI register. You must preload the registers before executing CMPS.

CMPS subtracts the DI indexed operand from the SI indexed operand. No result is stored;
only the flags reflect the change. The operand size determines whether bytes or words are
compared. The first operand (SI) uses the DS register unless a segment override byte is
present. The second operand (DI) must be addressable from the ES register; no segment
override is possible. After the comparison, both the source-index register and the
destination-index register are automatically advanced. If DF is 0, the registers increment
according to the operand size (byte=1; word=2); if DF is 1, the registers decrement.

CMPSB and CMPSW are synonymous with the byte and word CMPS instructions,
respectively.

Form Opcode Description
Clocks

Am186 Am188

CMPS m8,m8 A6 Compare byte ES:[DI] to byte segment:[SI] 22 22

CMPS m16,m16 A7 Compare word ES:[DI] to word segment:[SI] 22 26

CMPSB A6 Compare byte ES:[DI] to byte DS:[SI] 22 22

CMPSW A7 Compare word ES:[DI] to word DS:[SI] 22 26

CMPS source,destination

CMPSB

CMPSW

To override the default source
segment (DS) and to have the
assembler type-check your operands,
use this form. In this form, source is
segment:[SI]. The assembler uses the
segment in DS unless you specify a
different segment register as part of
the source string component. The
assembler uses the definitions of the
string components to determine their
sizes.

Regardless of the form of CMPS
you use, destination is always
ES:[DI]. Before using any form of
CMPS, make sure that: ES
contains the segment of the
destination string, DI contains
the offset of the destination
string, and SI contains the offset
of the source string.

To compare a byte within a string
located in the destination segment
specified in ES to a byte within a string
located in the source segment
specified in DS, use this form.

To compare a word within a string
located in the destination segment
specified in ES to a word within a string
located in the source segment
specified in DS, use this form.
Instruction Set4-36

CMPS CMPS
Operation It Performs

Flag Settings After Instruction

if (size(destination) == 8)
/* compare bytes */
{

temp = DS:[SI] - ES:[DI]; /* compare */
if (DF == 0) /* forward */

increment = 1;
else /* backward */

increment = -1;
}

if (size(destination) == 16)
/* compare words */
{

temp = DS:[SI] - ES:[DI];
if (DF == 0) /* forward */

increment = 2;
else /* backward */

increment = -2;
}

/* point to next string component */
SI = SI + increment;
DI = DI + increment;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

OF=1 if result larger than destination operand
OF=0 otherwise

AF=1 if carry or borrow to low nibble
AF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

CF=1 for carry or borrow to high-order bit
CF=0 otherwise

– – – res res res

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0
Instruction Set 4-37

CMPS CMPS
Examples

This example compares for equality one string of nonzero words stored in the segment
specified in ES to another string of nonzero words located in the same segment. The
microcontroller compares the words, one by one, from first to last, unless any two words
being compared don’t match. If both strings are the same, the microcontroller loads 0 into
AX; otherwise, it loads the word that was different in the second string into AX.

; defined in SEG_E segment
STRING1 DW 64 DUP (?)
STRING2 DW LENGTH STRING1 DUP (?)

; compare strings for equality

; notify assembler: DS and ES point to
; different segments of memory
ASSUME DS:SEG_D, ES:SEG_E

; set up DS and ES with different segment addresses
MOV AX,SEG_D ; load one segment into DS
MOV DS,AX ; DS points to SEG_D
MOV AX,SEG_E ; load another segment into ES
MOV ES,AX ; ES points to SEG_E

; initialize and use strings
...

; set up registers and flags
LEA SI,ES:STRING1 ; load source offset (segment = ES)
LEA DI,STRING2 ; load dest. offset (segment = ES)
MOV CX,LENGTH STRING1 ; set up counter
CLD ; process string low to high

; compare strings for equality using segment override
; for source

REPE CMPS ES:STRING1,STRING2

; if both strings are the same, then jump
JE SAME

; else, load unequal word into AX
MOV AX,STRING2[DI]
JMP CONTINUE

SAME:
; indicate both strings are the same
MOV AX,0

CONTINUE:
...
Instruction Set4-38

CMPS CMPS
Tips

Before using CMPS, always set up CX with the length of the string, and use CLD (forward)
or STD (backward) to establish the direction for string processing.

To determine whether one string is the same as another, use the REPE (or REPZ) prefix
to execute CMPS repeatedly. If all the corresponding components match, ZF is set to 1.

To determine whether one string is different from another, use the REPNE (or REPNZ)
prefix to execute CMPS repeatedly. If no corresponding components match, ZF is cleared
to 0.

The string instructions always advance SI and/or DI, regardless of the use of the REP prefix.
Be sure to set or clear DF before any string instruction.

Related Instructions

If you want to See

Process string components from lower to higher addresses CLD

Repeat one string comparison instruction while the components are the same REPE

Repeat one string comparison instruction while the components are not the same REPNE

Compare a component in a string to a register SCAS

Process string components from higher to lower addresses STD
Instruction Set 4-39

CWD Convert Word Integer to Doubleword CWD

What It Does

CWD converts a 16-bit integer to a sign-extended 32-bit integer.

Syntax

Description

CWD converts the signed word in the AX register to a signed doubleword in the DX::AX
register pair by extending the most significant bit of the AX register into all the bits of the
DX register.

Operation It Performs

Flag Settings After Instruction

Examples

This example divides one 16-bit integer by another 16-bit integer.

Form Opcode Description
Clocks

Am186 Am188

CWD 99 Put signed extension of AX in DX::AX 4 4

CWD

/* extend sign of AX into DX */
if (AX < 0)

DX = 0xFFFF;
else

DX = 0x0000;

? = unknown; – = unchanged

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –

SDIVIDEND DW 5800 ; 16A8h
SDIVISOR DW -45 ; FFD3h

; divide word integers
MOV AX,SDIVIDEND ; AX = 16A8h = 5800
CWD ; DX::AX = 000016A8h = 5800
IDIV SDIVISOR ; AX = FF80h = -128, the quotient

; DX = 0028h = -40, the remainder
Instruction Set4-40

CWD CWD
This example divides one 16-bit integer by another 16-bit integer.

Tips

If you want to divide a 16-bit integer (the dividend) by another 16-bit integer (the divisor):
use MOV to copy the dividend to AX, use CWD to convert the dividend into its 32-bit
equivalent, and then use IDIV to perform the division.

Related Instructions

If you want to See

Convert an 8-bit integer to its 16-bit equivalent CBW

Divide an integer by another integer IDIV

SDIVIDEND DW -1675 ; F975h
SDIVISOR DW 200 ; 00C8h

; divide word integers
MOV AX,SDIVIDEND ; AX = F975h = -1675
CWD ; DX::AX = FFFFF975h = -1675
IDIV SDIVISOR ; AX = FFF8h = -8, the quotient

; DX = FFB5h = -75, the remainder
Instruction Set 4-41

DAA Decimal Adjust AL After Addition DAA

What It Does

DAA converts an 8-bit unsigned binary number that is the sum of two single-byte packed
decimal (BCD) numbers to its packed decimal equivalent.

Syntax

Description

Execute DAA only after executing an ADD or ADC instruction that leaves a two-BCD-digit
byte result in the AL register. The ADD or ADC operands should consist of two packed
BCD digits. DAA adjusts the AL register to contain the correct two-digit packed decimal
result.

Operation It Performs

Form Opcode Description
Clocks

Am186 Am188

DAA 27 Decimal-adjust AL after addition 4 4

DAA

if (((AL & 0x0F) > 9) || (AF == 1))
/* low nibble of AL is not yet in BCD format */
{

/* convert low nibble of AL to decimal */
AL = AL + 6;

/* set auxiliary (decimal) carry flag */
AF = 1;

}
else

/* clear auxiliary (decimal) carry flag */
AF = 0;

if ((AL > 0x9F) || (CF == 1))
/* high nibble of AL is not yet in BCD format */
{

/* convert high nibble of AL to decimal */
AL = AL + 0x60;

/* set carry flag */
CF = 1;

}
else

/* clear carry flag */
CF = 0;
Instruction Set4-42

DAA DAA
Flag Settings After Instruction

Examples

This example adds two 3-byte packed decimal numbers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

AF=1 if carry or borrow to low nibble
AF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

CF=1 for carry or borrow to high-order bit
CF=0 otherwise

? – – – res res res

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

PADDEND1 DB 00h,24h,17h,08h ; 241708 packed BCD
PADDEND2 DB 00h,19h,30h,11h ; 193011 packed BCD

; multibyte packed decimal addition: PADDEND1 = PADDEND1 + PADDEND2

; add right bytes
MOV AL,PADDEND1 + 3
ADD AL,PADDEND2 + 3
DAA
MOV PADDEND1 + 3,AL

; add next bytes
MOV AL,PADDEND1 + 2
ADC AL,PADDEND2 + 2
DAA
MOV PADDEND1 + 2,AL

; add next bytes
MOV AL,PADDEND1 + 1
ADC AL,PADDEND2 + 1
DAA
MOV PADDEND1 + 1,AL

; if CF is 1, propagate carry into left byte
JC ADD_CARRY
JMP CONTINUE

ADD_CARRY:
MOV PADDEND1,1

CONTINUE:
...
Instruction Set 4-43

DAA DAA
Tips

ADC, ADD, SBB, and SUB set AF when the result needs to be converted for decimal
arithmetic. AAA, AAS, DAA, and DAS use AF to determine whether an adjustment is
needed. This is the only use for AF.

Related Instructions

If you want to See

Convert an 8-bit unsigned binary sum to its unpacked decimal equivalent AAA

Add two numbers and the value of CF ADC

Add two numbers ADD

Convert an 8-bit unsigned binary difference to its packed decimal equivalent DAS
Instruction Set4-44

DAS Decimal Adjust AL After Subtraction DAS

What It Does

DAS converts an 8-bit unsigned binary number that is the difference of two single-byte
packed decimal (BCD) numbers to its packed decimal equivalent.

Syntax

Description

Execute DAS only after a SUB or SBB instruction that leaves a two-BCD-digit byte result
in the AL register. The SUB or SBB operands should consist of two packed BCD digits.
DAS adjusts the AL register to contain the correct packed two-digit decimal result.

Operation It Performs

Form Opcode Description
Clocks

Am186 Am188

DAS 2F Decimal-adjust AL after subtraction 4 4

DAS

if (((AL & 0x0F) > 9) || (AF == 1))
/* low nibble of AL is not yet in BCD format */
{

/* convert low nibble of AL to decimal */
AL = AL - 6;

/* set auxiliary (decimal) carry flag */
AF = 1;

}
else

/* clear auxiliary (decimal) carry flag */
AF = 0;

if ((AL > 0x9F) || (CF == 1))
/* high nibble of AL is not yet in BCD format */
{

/* convert high nibble of AL to decimal */
AL = AL - 0x60;

/* set carry flag */
CF = 1;

}
else

/* clear carry flag */
CF = 0;
Instruction Set 4-45

DAS DAS
Flag Settings After Instruction

Examples

This example subtracts two 3-byte packed decimal numbers.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

AF=1 if carry or borrow to low nibble
AF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

CF=1 for carry or borrow to high-order bit
CF=0 otherwise

? – – – res res res

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

PBCD1 DB 24h,17h,08h ; 241708 packed BCD
PBCD2 DB 19h,30h,11h ; 193011 packed BCD

; multibyte packed decimal subtraction: PBCD1 = PBCD1 - PBCD2

; subtract right bytes
MOV AL,PBCD1 + 2
SBB AL,PBCD2 + 2
DAS
MOV PBCD1 + 2,AL

; subtract next bytes
MOV AL,PBCD1 + 1
SBB AL,PBCD2 + 1
DAS
MOV PBCD1 + 1,AL

; subtract left bytes
MOV AL,PBCD1
SBB AL,PBCD2
DAS
MOV PBCD1,AL

; if CF is 1, the last subtraction generated a borrow
JC INVALID ; result is an error
JMP CONTINUE

INVALID:
...

CONTINUE:
...
Instruction Set4-46

DAS DAS
Tips

ADC, ADD, SBB, and SUB set AF when the result needs to be converted for decimal
arithmetic. AAA, AAS, DAA, and DAS use AF to determine whether an adjustment is
needed. This is the only use for AF.

Related Instructions

If you want to See

Convert an 8-bit unsigned binary difference to its unpacked decimal equivalent AAS

Convert an 8-bit unsigned binary sum to its packed decimal equivalent DAA

Subtract a number and the value of CF from another number SBB

Subtract a number from another number SUB
Instruction Set 4-47

DEC Decrement Number by One DEC

What It Does

DEC subtracts 1 from an integer or an unsigned number.

Syntax

Description

DEC subtracts 1 from the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

DEC r/m8 FE /1 Subtract 1 from r/m byte 3/15 3/15

DEC r/m16 FF /1 Subtract 1 from r/m word 3/15 3/19

DEC r16 48+rw Subtract 1 from word register 3 3

DEC minuend

/* decrement minuend */
minuend = minuend - 1;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

OF=1 if result larger than destination operand
OF=0 otherwise

AF=1 if carry or borrow to low nibble
AF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

– – – res res res –

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0
Instruction Set4-48

DEC DEC
Examples

This example sends events to another device. CMP, JE, DEC, and JMP implement a
construct equivalent to the C-language while loop.

Tips

Use SUB instead of DEC when you need to detect either a borrow to the highest bit of an
unsigned result, or an integer result that is too large to fit in the destination.

Use DEC within a loop when you want to decrease a value by 1 each time the loop is
executed.

The LOOP instruction can be used to combine the decrement (DEC CX only) and conditional
jump into one instruction.

Related Instructions

If you want to See

Add 1 to a number INC

Set CF to 1 if there is a borrow to the highest bit of the unsigned result,
or set OF to 1 if the integer result is too large to fit in the destination

SUB

COUNT DW 1048 ; number of events to send

; send events to another device
SEND:

CMP COUNT,0 ; is count 0?
JE DONE ; if so, then jump out of loop

CALL SEND_EVENT ; send an event
DEC COUNT ; subtract 1 from counter
JMP SEND ; jump to top of loop

DONE:
...
Instruction Set 4-49

DIV Divide Unsigned Numbers DIV

What It Does

DIV divides one unsigned number by another unsigned number.

Syntax

Description

DIV operates on unsigned numbers. The operand you specify is the divisor. DIV assumes
that the number to be divided—the dividend—is in AX or DX::AX. (DIV uses a dividend that
is twice the size of the divisor.)

DIV replaces the high half of the dividend with the remainder and the low half of the dividend
with the quotient. If the quotient is too large to fit in the low half of the dividend (such as
when dividing by 0), DIV generates Interrupt 0 instead of setting CF. DIV truncates
nonintegral quotients toward 0.

Operation It Performs

Form Opcode Description
Clocks

Am186 Am188

DIV r/m8 F6 /6 AL=AX/(r/m byte); AH=remainder 29/35 29/35

DIV r/m16 F7 /6 AX=DX::AX/(r/m word); DX=remainder 38/44 38/48

DIV divisor

if (size(divisor) == 8)
/* unsigned byte division */
{

temp = AX / divisor;
if (size(temp) > size(AL))
/* quotient too large */

interrupt(0);
else
{

AH = AX % divisor; /* remainder */
AL = temp; /* quotient */

}
}
if (size(divisor) == 16)
/* unsigned word division */
{

temp = DX::AX / divisor;

if (size(temp) > size(AX))
/* quotient too large */

interrupt(0);
else

{
DX = DX::AX % divisor; /* remainder */
AX = temp; /* quotient */

}
}

Instruction Set4-50

DIV DIV
Flag Settings After Instruction

Examples

This example divides an 8-bit unsigned number by another 8-bit unsigned number.

This example divides a 32-bit unsigned number by a 16-bit unsigned number. Before
dividing, the example checks the divisor to make sure it is not 0. This practice avoids division
by 0, thereby preventing DIV from generating Interrupt 0.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

? – – – ? ? res ? res ? res ?

UDIVIDEND DB 97 ; 61h
UDIVISOR DB 6 ; 06h

; divide byte by byte
MOV AL,UDIVIDEND ; AL = 61h = 97
MOV AH,0 ; AX = 0061h = 97
DIV UDIVISOR ; AL = 10h = 16, the quotient

; AH = 01h = 1, the remainder

UDIVIDEND DD 875600 ; 000D5C50h
UDIVISOR DW 57344 ; E000h

; divide doubleword by word

; test for 0 divisor
CMP UDIVISOR,0 ; is divisor 0?
JE DIV_ZERO ; if so, then jump

; copy dividend to registers
; (bytes in memory are store in reverse order)
MOV DX,WORD PTR UDIVIDEND+2
MOV AX,WORD PTR UDIVIDEND ; DX::AX = 000D5C50h
DIV UDIVISOR ; AX = 000Fh = 15,

; the quotient
; DX = 3C50h = 15440,
; the remainder

...

DIV_ZERO:
...
Instruction Set 4-51

DIV DIV
Tips

DIV requires the dividend to be twice the size of the divisor. To convert an 8-bit unsigned
dividend to its 16-bit equivalent (or a 16-bit dividend to its 32-bit equivalent), use MOV to
load the high half with 0.

If the unsigned dividend will fit in a 16-bit register and you don’t need the remainder, use
SHR to divide unsigned numbers by powers of 2. When dividing an unsigned number by
a power of 2, it is faster to use SHR than DIV.

The Am186 and Am188 microcontrollers do not provide an instruction that performs decimal
division. To divide a decimal number by another decimal number, use AAD to convert the
dividend to binary and then perform binary division using DIV.

Related Instructions

If you want to See

Convert a two-digit unpacked decimal dividend to its unsigned binary equivalent AAD

Divide an integer by another integer IDIV

Divide an unsigned number by a power of 2 SHR
Instruction Set4-52

Ins
4

ENTER* Enter High-Level Procedure ENTER

What It Does

ENTER reserves storage on the stack for the local variables of a procedure.

Syntax

Description

ENTER creates the stack frame required by most block-structured high-level languages.
The microcontroller uses BP as a pointer to the stack frame and SP as a pointer to the top
of the stack.

The first operand (bytes) specifies the number of stack bytes to allocate for the local
variables of the procedure.

The second operand (level) specifies the lexical nesting level (0–31) of the procedure within
the high-level-language source code. The nesting level determines the number of stack-
frame pointers that are copied to the new stack frame from the preceding frame.

If level is 0, ENTER pushes BP onto the stack, sets BP to the current value of SP, and
subtracts bytes from SP.

* – This instruction was not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

ENTER imm16,imm8 C8 iw ib Create stack frame for nested procedure 22+16(n–1) 26+20(n–1)

ENTER imm16,0 C8 iw 00 Create stack frame for non-nested procedure 15 19

ENTER imm16,1 C8 iw 01 Create stack frame for nested procedure 25 29

ENTER bytes,level
truction Set 4-53

ENTER ENTER
Operation It Performs

Flag Settings After Instruction

Examples

This example procedure uses ENTER to: push the current frame pointer (BP) onto the
stack, set up BP to point to its stack frame, reserve 4 bytes on the stack for its local variables,
and indicate that it is not called by another procedure.

/* convert level to a number between 0 and 31 */
level = level % 32;

/* save base and frame pointers */
push(BP);
framePointer = SP;

if (level > 0)
/* reserve storage for each nesting level */
{

for (i = 1;i < level;i++)
{

BP = BP - 2;
push(BP);

}
push(framePointer);

}

/* update base and frame pointers */
BP = framePointer;
SP = SP - bytes;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –

; procedure that is not called by another
Main PROC FAR

ENTER 4,0 ; reserve 4 bytes for variables
; procedure is not called by another

; perform operations
...

; save AX
PUSH AX

; perform operations
...

LEAVE ; remove variables from stack
RET 2 ; remove saved AX from stack

Main ENDP
Instruction Set4-54

ENTER ENTER
This example includes two procedures, each of which uses ENTER to create its own stack
frame. Each procedure uses LEAVE to destroy its stack frame before returning to the
procedure that called it.

Tips

Before you use ENTER, use MOV to copy the stack segment to SS and the stack offset to
SP.

If a procedure is not called by another, then use ENTER with a level of 0.

If a procedure is called by another, then use ENTER with a level of 1 for the main procedure,
use ENTER with a level of 2 for the procedure it calls, and so on.

Related Instructions

If you want to See

Remove the local variables of a procedure from the stack LEAVE

; top-level procedure
Main PROC FAR

ENTER 6,1 ; reserve 6 bytes for variables
; level 1 procedure

; perform operations
...

LEAVE ; remove variables from stack
RET

Main ENDP

; second-level procedure
Sub2 PROC FAR

ENTER 20,2 ; reserve 20 bytes for variables
; level 2 procedure

; perform operations
...

LEAVE ; remove variables from stack
RET

Sub2 ENDP
Instruction Set 4-55

ESC* Escape ESC

What It Does

ESC is unimplemented and takes a trap 7.

Syntax

Description

The Am186 and Am188 family of microcontrollers do not support a coprocessor interface.

Operation It Performs

Flag Settings After Instruction

* – This instruction is not supported with the necessary pinout.

Form Opcode Description
Clocks

Am186 Am188

ESC m D8 /0 Takes trap 7. N/A N/A

ESC m D9 /1 Takes trap 7. N/A N/A

ESC m DA /2 Takes trap 7. N/A N/A

ESC m DB /3 Takes trap 7. N/A N/A

ESC m DC /4 Takes trap 7. N/A N/A

ESC m DD /5 Takes trap 7. N/A N/A

ESC m DE /6 Takes trap 7. N/A N/A

ESC m DF /7 Takes trap 7. N/A N/A

ESC opcode,source

INT 7 ; take trap 7

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – 0 0 – – res – res – res –
Instruction Set4-56

HLT Halt HLT

What It Does

HLT causes the microcontroller to suspend instruction execution until it receives an interrupt
request or it is reset.

Syntax

Description

HLT places the microcontroller in a suspended state, leaving the CS and IP registers
pointing to the instruction following HLT. The microcontroller remains in the suspended
state until one of the following events occurs:

n An external device resets the microcontroller by asserting the RES signal.

The microcontroller immediately clears its internal logic and enters a dormant state.
Several clock periods after the external device de-asserts RES, the microcontroller
begins fetching instructions.

n The Interrupt-Enable Flag (IF) is 1 and an external device or peripheral asserts one of
the microcontroller’s maskable interrupt requests that is not masked off by its interrupt
control register (or an external device issues a nonmaskable interrupt request by
asserting the microcontroller’s nonmaskable interrupt signal).

The microcontroller resumes executing instructions at the location specified by the
corresponding pointer in the microcontroller’s interrupt vector table. After the interrupt
procedure is done, the microcontroller begins executing the sequence of instructions
following HLT.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

HLT F4 Suspend instruction execution 2 2

HLT

stopExecuting();
/* CS:IP points to the following instruction */

/* wait for interrupt or reset */
do {
} while (!(interruptRequest() || nmiRequest() || resetRequest()))

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-57

HLT HLT
Examples

This example interrupt-service routine (ISR) flashes the LEDs that are mapped to eight of
the microcontroller’s programmable input/output (PIO) pins and then suspends instruction
execution.

This example implements a polling of a PIO-based request, which is done based on a timer
or any other interrupt.

; flash the LEDs a few times and stop executing instructions
ISR_DEFAULT:

PUSHA ; save general registers

; turn the PIOs on as outputs to the LEDs in case
; this has not already been done
MOV DX,PIO_MODE0_ADDR
MOV AX,0C07Fh
OUT DX,AX
MOV DX,PIO_DIR0_ADDR
MOV AX,0
OUT DX,AX

MOV CX,0FFh
ISR_D_LOOP:

MOV AX,0Fh ; bottom 4 LEDs
mLED_OUTPUT ; turn them on (macro)
MOV AX,0F0h ; top 4 LEDs
mLED_OUTPUT ; turn them on (macro)
DEC CX ; subtract 1 from counter
JNZ ISR_D_LOOP ; if counter is not zero, then jump

; suspend instruction execution
HLT

; return never expected, but just in case
POPA ; restore general registers
IRET ; return to interrupted procedure

; set up timer for periodic interrupts
; this specifies the maximum time between polls
LOOP_START:

HLT ; wait for an interrupt, then poll
; after ISR returns

MOV AX,PIO_DATA0
TEST AX,PIO_ACTION_INDICATOR
JNZ DO_ACTION
JMP LOOP_START

DO_ACTION:
; do whatever action needs to be taken
JMP LOOP_START ;return to idle state
Instruction Set4-58

HLT HLT
Tips

If you want a procedure to wait for an interrupt request, use HLT instead of an endless loop.

On-board peripherals including timers, serial ports, and DMA continue to operate in HLT.
These devices may issue interrupts which bring the processor out of HLT.

Related Instructions

If you want to See

Disable all maskable interrupts CLI

Enable maskable interrupts that are not masked by their interrupt control registers STI
Instruction Set 4-59

IDIV Divide Integers IDIV

What It Does

IDIV divides one integer by another integer.

Syntax

Description

IDIV operates on signed numbers (integers). The operand you specify is the divisor. IDIV
assumes that the number to be divided (the dividend) is in AX or DX::AX. (IDIV uses the
dividend that is twice the size of the divisor.)

IDIV replaces the high half of the dividend with the remainder and the low half of the dividend
with the quotient. As in traditional mathematics, the sign of the remainder is always the
same as the sign of the dividend.

If the quotient is too large to fit in the low half of the dividend (such as when dividing by 0),
IDIV generates Interrupt 0 instead of setting OF. IDIV truncates nonintegral quotients
toward 0.

Form Opcode Description
Clocks

Am186 Am188

IDIV r/m8 F6 /7 AL=AX/(r/m byte); AH=remainder 44–52/50–58 44–52/50–58

IDIV r/m16 F7 /7 AX=DX::AX/(r/m word); DX=remainder 53–61/59–67 53–61/63–71

IDIV divisor
Instruction Set4-60

IDIV IDIV
Operation It Performs

Flag Settings After Instruction

Examples

This example divides one 16-bit integer by an 8-bit integer.

if (size(divisor) == 8)
/* signed byte division */
{

temp = AX / divisor;

if (size(temp) > size(AL))
/* quotient too large */

interrupt(0);
else
{

AH = AX % divisor; /* remainder */
AL = temp; /* quotient */

}
}

if (size(divisor) == 16)
/* signed word division */
{

temp = DX::AX / divisor;

if (size(temp) > size(AX))
/* quotient too large */

interrupt(0);
else
{

DX = DX::AX % divisor; /* remainder */
AX = temp; /* quotient */

}
}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

? – – – ? ? res ? res ? res ?

SDIVIDEND DW -14500 ; C75Ch
SDIVISOR DB 123 ; 7Bh

; divide word integer by byte integer
MOV AX,SDIVIDEND ; AX = C75Ch = -14500
IDIV SDIVISOR ; AL = 8Bh = -117, the quotient

; AH = 93h = -109, the remainder
Instruction Set 4-61

IDIV IDIV
This example divides one 16-bit integer by another.

Tips

IDIV requires the dividend to be twice the size of the divisor. To convert an 8-bit integer
dividend to its 16-bit equivalent, use CBW. To convert a 16-bit dividend to its 32-bit
equivalent, use CWD.

If the integer dividend will fit in a 16-bit register and you don’t need the remainder, use SAR
to divide integers by powers of 2. When dividing an integer by a power of 2, it is faster to
use SAR than IDIV.

When dividing unsigned numbers, use DIV instead of IDIV to make it obvious to someone
who reads your code that you are operating on unsigned numbers.

Related Instructions

If you want to See

Convert an 8-bit integer dividend to its 16-bit equivalent CBW

Convert a 16-bit integer dividend to its 32-bit equivalent CWD

Divide an unsigned number by another unsigned number DIV

Change the sign of an integer NEG

Divide an integer by a power of 2 SAR

SDIVIDEND DW 4800 ; 12C0h
SDIVISOR DW -321 ; FEBFh

; divide word integers
MOV AX,SDIVIDEND ; AX = 12C0h = 4800
CWD ; DX::AX = 000012C0h = 4800
IDIV SDIVISOR ; AX = 00F2h = -14, the quotient

; DX = 0132h = -306, the remainder
Instruction Set4-62

IMUL* Multiply Integers IMUL

What It Does

IMUL multiplies two integers.

Syntax

Description

IMUL operates on signed numbers (integers). The operation it performs depends on the
number of operands you specify. For example:

n One operand: The operand you specify is the multiplicand. IMUL assumes that the
integer by which it is to be multiplied (the multiplier) is in AL or AX. (IMUL uses the
multiplier that is the same size as the multiplicand.)

IMUL places the product in AX or DX::AX. (The destination is always twice the size of
the multiplicand.)

n Two operands: You specify the destination register for the product and the immediate
integer by which the multiplicand is to be multiplied (the multiplier). IMUL uses the
destination register as the multiplicand and then overwrites it with the product.

n Three operands: This form of IMUL is the same as the two-operand form, except that
IMUL preserves the multiplicand. You specify the destination register for the product,
the multiplicand, and the immediate integer by which the multiplicand is to be multiplied
(the multiplier). IMUL preserves the multiplicand.

* – Integer immediate multiplies were not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

IMUL r/m8 F6 /5 AX=(r/m byte)•AL 25–28/31–34 25–28/31–34

IMUL r/m16 F7 /5 DX::AX=(r/m word)•AX 34–37/40–43 34–37/44–47

IMUL r16,r/m16,imm8 6B /r ib (word register)=(r/m word)•(sign-ext. byte integer) 22–25 22–25

IMUL r16,imm8 6B /r ib (word register)=(word register)•(sign-ext. byte integer) 22–25 22–25

IMUL r16,r/m16,imm16 69 /r iw (word register)=(r/m word)•(sign-ext. word integer) 29–32 29–32

IMUL r16,imm16 69 /r iw (word register)=(word register)•(sign-ext. word integer) 29–32 29–32

IMUL multiplicand

IMUL product,multiplicand,multiplier

IMUL product,multiplier

Use this form to multiply an integer in
memory or in a register by AL or AX,
and store the result in AX or DX::AX.

Use this form to multiply an integer in
memory or in a register by an
immediate integer, and specify the
register in which to place the result.Use this form to multiply an integer

in a register by an immediate
integer, and overwrite the register
with the result.
Instruction Set 4-63

IMUL IMUL
Operation It Performs

if (operands() == 1)
/* multiply multiplicand with accumulator */
{

if (size(multiplicand) == 8)
/* signed byte multiplication */
{

temp = multiplicand * AL;
if (size(temp) == size(AL))
/* byte result */
{

/* store result */
AL = temp;
if (AL < 0)
/* extend sign into AX */

AH = 0xFF;
else

AH = 0x00;
/* clear overflow and carry flags */
OF = CF = 0;

}
else
/* word result */
{

/* store result */
AX = temp;
/* set overflow and carry flags */
OF = CF = 1;

}
}
if (size(multiplicand) == 16)
/* signed word multiplication */
{

temp = multiplicand * AX;
if (size(temp) == size(AX))
/* word result */
{

/* store result */
AX = temp;
if (AX < 0)
/* extend sign into DX */

DX = 0xFF;
else

DX = 0x00;
/* clear overflow and carry flags */
OF = CF = 0;

}
else
/* doubleword result */
{

/* store result */
DX::AX = temp;
/* set overflow and carry flags */
OF = CF = 1;

}
}

}

Instruction Set4-64

IMUL IMUL

Flag Settings After Instruction

Examples

This example uses the single-operand form of IMUL to multiply an 8-bit integer in memory
by an integer in AL.

/* (continued) */

if (operands() == 2)
/* substitute ”product” for multiplicand */

multiplicand = product;

if (operands() >= 2)
{

temp = multiplicand * multiplier;

if (size(temp) == size(product))
/* product will fit */
{

/* store result */
product = temp;

/* clear overflow and carry flags */
OF = CF = 0;

}
else
/* product won’t fit */
{

/* store only lower half of result */
product = 0x00FF & temp;

/* set overflow and carry flags */
OF = CF = 1;

}
}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

For the single-operand form:

CF and OF = 1 if the product is large enough to
require the full destination.

CF and OF = 0 if the product is small enough to fit
in the low half of the destination.

– – – ? ? res ? res ? res

For the two- and three-operand forms:

CF and OF = 1 if the product is too large to fit in the
destination.

CF and OF = 0 if the product is small enough to fit
in the destination.

BMULTIPLICAND DB -10 ; F6h

; 8-bit integer multiplication: AX = BMULTIPLICAND * AL
MOV AL,7 ; AL = 07h = 7
IMUL BMULTIPLICAND ; AX = FFBAh = -70
Instruction Set 4-65

IMUL IMUL
Tips

Use SAL instead of IMUL to multiply integers by powers of 2. When multiplying an integer
by a power of 2, it is faster to use SAL than IMUL.

When using the single-operand form of IMUL, you can often ignore the high half of the
destination because the product is small enough to fit in only the low half of the destination.
If it is, IMUL clears CF and OF to 0; otherwise, IMUL sets CF and OF to 1.

When using the two- or three-operand forms of IMUL, the product can easily be large
enough so that it does not fit in the destination. Before using the result of either of these
forms, make sure that the destination contains the entire product. If it does, IMUL clears
CF and OF to 0; otherwise, IMUL sets CF and OF to 1.

Related Instructions

If you want to See

Convert an 8-bit integer to its 16-bit equivalent CBW

Multiply two unsigned numbers MUL

Change the sign of an integer NEG

Multiply an integer by a power of 2 SAL
Instruction Set4-66

IN Input Component from Port IN

What It Does

IN copies a component from a port in I/O space to a register.

Syntax

Description

IN transfers a data byte or word from the port numbered by the second operand (port) into
the register (AL or AX) specified by the first operand (destination). Access any port from 0
to 65535 by placing the port number in the DX register and using an IN instruction with the
DX register as the second operand. The upper eight bits of the port address will be 0 when
an 8-bit port number is used.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

IN AL,imm8 E4 ib Input byte from immediate port to AL 10 10

IN AX,imm8 E5 ib Input word from immediate port to AX 10 14

IN AL,DX EC Input byte from port in DX to AL 8 8

IN AX,DX ED Input word from port in DX to AX 8 12

IN destination,port

if (size(port) == 8)
/* extend port address */

port = 0x00FF & port;

/* move component */
destination = [port];

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-67

IN IN
Examples

This example reads ASCII characters from a port in I/O space to a string in memory. The
microcontroller copies the bytes and stores them, one by one, from first to last.

Tips

Use IN to talk to the peripheral registers, since they are initially set to I/O space (and not
memory-mapped).

Related Instructions

If you want to See

Copy a component from a port in I/O memory to a string in main memory INS

Copy a component from a register to a port in I/O memory OUT

Copy a component from a string in main memory to a port in I/O memory OUTS

STRING DB 128 DUP (?)

; read characters from I/O port to string

; set up registers and flags
LEA DI,STRING ; load offset into DI (segment = ES)
MOV CX,LENGTH STRING ; set up counter
CLD ; process string low to high

READ_CHAR:
IN AL,51h ; copy character from I/O port to AL
STOSB ; copy character from AL to string
LOOP READ_CHAR ; while CX is not 0, jump to top of loop
Instruction Set4-68

INC Increment Number by One INC

What It Does

INC adds 1 to an integer or an unsigned number.

Syntax

Description

INC adds 1 to the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

INC r/m8 FE /0 Increment r/m byte by 1 3/15 3/15

INC r/m16 FF /0 Increment r/m word by 1 3/15 3/19

INC r16 40+rw Increment word register by 1 3 3

INC addend

/* increment addend */
addend = addend + 1;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

OF=1 if result larger than destination operand
OF=0 otherwise

AF=1 if carry or borrow to low nibble
AF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

– – – res res res –

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0
Instruction Set 4-69

INC INC
Examples

This example writes pixel values to a buffer. INC, CMP, and JL implement a construct
equivalent to the C-language do-while loop.

Tips

Use ADD instead of INC when you need to detect a carry from the highest bit of an unsigned
result, or detect a signed result that is too large to fit in the destination.

Use INC within a loop when you want to increase a value by 1 each time the loop is executed.

Related Instructions

If you want to See

Add two numbers ADD

Subtract 1 from a number DEC

COUNT DB 128

; write pixel values to buffer

MOV CL,0 ; set up counter
WRITE:

; write a pixel
CALL WRITE_PIXEL

INC CL ; add 1 to counter
CMP CL,COUNT ; have all pixels been written?
JL WRITE ; if not, then jump to top of loop
Instruction Set4-70

INS* Input String Component from Port INS
INSB Input String Byte from Port
INSW Input String Word from Port

What It Does

INS copies a component from a port in I/O space to a string in memory.

Syntax

Description

INS transfers data from the input port numbered by the DX register to the memory byte or
word at ES:DI. The memory operand must be addressable from the ES register; no segment
override is possible.

The INS instruction does not allow the specification of the port number as an immediate
value. You must address the port through the DX register value. Similarly, the destination
index register determines the destination address. Before executing the INS instruction,
you must preload the DX register value into the DX register and the correct index into the
destination index register.

After the transfer is made, the DI register advances automatically. If DF is 0 (a CLD
instruction was executed), the DI register increments; if DF is 1 (an STD instruction was
executed), the DI register decrements. The DI register increments or decrements by 1 if
the input is a byte, or by 2 if it is a word.

The INSB and INSW instructions are synonyms for the byte and word INS instructions,
respectively.

* – This instruction was not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

INS m8,DX 6C Input byte from port in DX to ES:[DI] 14 14

INS m16,DX 6D Input word from port in DX to ES:[DI] 14 14

INSB 6C Input byte from port in DX to ES:[DI] 14 14

INSW 6D Input word from port in DX to ES:[DI] 14 14

To have the assembler type-check
your operands, use this form. The
assembler uses the definition of the
string component to determine its
size. Regardless of the form of INS you

use, destination is always ES:[DI],
and port is always DX. Before using
any form of INS, make sure that: ES
contains the segment of the string, DI
contains the offset of the string, and
DX contains the number of the port.

To copy a byte from the I/O port
specified in DX to a byte within a string
located in the segment specified in
ES, use this form.

INS destination,port

INSB

INSW

To copy a word from the I/O port
specified in DX to a word within a
string located in the segment
specified in ES, use this form.
Instruction Set 4-71

INS INS
Operation It Performs

Flag Settings After Instruction

Tips

Before using INS, always be sure to: set up ES:[DI] with the offset of the string, set up CX
with the length of the string, and use CLD (forward) or STD (backward) to establish the
direction for string processing.

The string instructions always advance SI and/or DI, regardless of the use of the REP prefix.
Be sure to set or clear DF before any string instruction.

Related Instructions

If you want to See

Process string components from lower to higher addresses CLD

Copy a component from a port in I/O memory to a register IN

Copy a component from a register to a port in I/O memory OUT

Copy a component from a string in main memory to a port in I/O memory OUTS

Repeat one string instruction REP

Process string components from higher to lower addresses STD

if (size(destination) == 8)
/* input bytes */
{

ES:DI = [DX]; /* byte in I/O memory */
if DF == 0 /* forward */

increment = 1;
else /* backward */

increment = -1;
}

if (size(destination) == 16)
/* input words */
{

ES:DI = [DX]; /* word in I/O memory */
if DF == 0 /* forward */

increment = 2;
else /* backward */

increment = -2;
}

/* point to location for next string component */
DI = DI + increment;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-72

INT Generate Interrupt INT
INTO Generate Interrupt If Overflow

What It Does

INT generates an interrupt via software.

Syntax

Description

INT suspends execution of the current procedure, pushes the Processor Status Flags
(FLAGS) register and the segment (CS) and offset (IP) addresses of the next instruction
onto the stack, and begins executing an interrupt handler (also known as an interrupt service
routine).

The operand you specify is the interrupt type, which can range from 0 to 255. The
microcontroller computes the address of the appropriate vector in the interrupt vector table
by shifting type left two times (in effect, multiplying it by 4). Then the microcontroller jumps
to the interrupt handler pointed to by that vector.

INTO is a conditional form of INT that is specifically used to handle arithmetic overflow
conditions. If the Overflow Flag (OF) is set to 1 when the microcontroller executes INTO,
then INTO generates a type 4 interrupt. This is equivalent to executing INT 4. If OF is
cleared to 0, INTO does nothing, and the microcontroller begins executing the instruction
following INTO.

Am186 and Am188 microcontrollers reserve some of the low-numbered interrupts for
software traps and exceptions, and for on-board peripheral devices. See the User’s Manual
for the specific device for more information.

IF is not cleared automatically when executing a software interrupt trap. No end-of-interrupt
(EOI) is required even if the interrupt type is the same as that for a peripheral.

Form Opcode Description
Clocks

Am186 Am188

INT 3 CC Generate interrupt 3 (trap to debugger) 45 45

INT imm8 CD ib Generate type of interrupt specified by immediate byte 47 47

INTO CE Generate interrupt 4 if Overflow Flag (OF) is 1 48,4 48,4

INT type

INTO

To generate an unconditional interrupt, use this form

To generate an interrupt only if OF is set to 1, use this
form. When OF is 1, this form is the same as INT 4.
Instruction Set 4-73

INT INT
Operation It Performs

Flag Settings After Instruction

If INTO does not take an interrupt, flags are not affected. Otherwise, flags for INT and INTO
are affected as shown below:

Tips

Before using INT, use MOV to copy the stack segment to SS and the stack offset to SP.

When the Interrupt-Enable Flag (IF) is cleared to disable all maskable interrupts, INT can
be used to generate an interrupt, even if it is masked by its interrupt control register.

INT operates like a far call except that the contents of the Processor Status Flags register
are pushed onto the stack before the return address.

Unlike interrupts generated by external hardware, INT does not set an interrupt’s in-service
bit in the In-Service (INSERV) register.

Use IRET to end an interrupt handler and resume the interrupted procedure.

/* save flags */
push(FLAGS);

/* clear trap and interrupt flags */
TF = IF = 0;

/* save address of next instruction */
push(CS);
push(IP);

/* begin execution at location indicated by vector */
/* in interrupt vector table */
CS = [type << 2;] /* CS value is fetched at address type shifted by 2 */
IP = [(type << 2) + 2;] /* IP value is fetched at address type */

 /* shifted by 2, plus 2 */

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – 0 0 – – res – res – res –
Instruction Set4-74

INT INT
Related Instructions

If you want to See

Call a procedure CALL

End an interrupt handler and resume the interrupted procedure IRET

End a procedure and return to the calling procedure RET
Instruction Set 4-75

IRET Interrupt Return IRET

What It Does

IRET ends an interrupt handler and resumes the interrupted procedure.

Syntax

Description

Used at the end of an interrupt handler, IRET restores the Instruction Pointer (IP) register,
the Code Segment (CS) register, and the Processor Status Flags (FLAGS) register from
the stack, and then resumes the interrupted procedure.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

IRET CF Return from interrupt handler to interrupted procedure 28 28

IRET

/* restore address of next instruction */
IP = pop();
CS = pop();

/* restore flags */
FLAGS = pop();

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

Restores value of FLAGS register that was stored
on the stack when the interrupt was taken.

res res res
Instruction Set4-76

IRET IRET
Examples

This example interrupt-service routine resets the Timer 1 Count (T1CNT) register.

Tips

IRET always performs a far return, restoring both IP and CS, and then popping the
Processor Status Flags register from the stack.

Related Instructions

If you want to See

Call a procedure CALL

Clear the interrupt-enable flag and disable all maskable interrupts CLI

Generate a software interrupt INT

End a procedure and return to the calling procedure RET

Set the interrupt-enable flag, enabling all maskable interrupts STI

; reset Timer 1
ISR_T0:

PUSHA ; save general registers

; reset Timer 1
MOV DX,TMR1_CNT_ADDR ; address of T1CNT register
MOV AX,0 ; reset count
OUT DX,AX ; write count to register

; clear in-service bit
MOV DX,INT_EOI_ADDR ; address of End-Of-Interrupt (EOI) register
MOV AX,ITYPE_TMR0 ; EOI type
OUT DX,AX ; clear in-service bit

POPA ; restore general registers
IRET
Instruction Set 4-77

Ins4-78
4

JA Jump If Above JA
JNBE Jump If Not Below or Equal

What It Does

If the previous instruction clears the Carry Flag (CF) and the Zero Flag (ZF), JA and JNBE
stop executing the current sequence of instructions and begin executing a new sequence
of instructions; otherwise, execution continues with the next instruction.

Syntax

Description

JA and JNBE test the flags set by a previous instruction. The terms above and below
indicate an unsigned number comparison. If the given condition is true, a short jump is
made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JA rel8 77 cb Jump short if above (CF=0 and ZF=0) 13,4 13,4

JNBE rel8 77 cb Jump short if not below or equal (CF=0 and ZF=0) 13,4 13,4

JA label

JNBE label

To jump if the result of a previous
unsigned comparison was above, use
JA or its synonym, JNBE. Both forms
perform the same operation.

if ((CF == 0) && (ZF == 0))
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
truction Set

JA JA
Examples

This example converts a zero-terminated string to uppercase and replaces the
original string.

Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JNA nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JA condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump if the result of a previous unsigned comparison was below or equal JBE

Jump if the result of a previous integer comparison was greater JG

Jump unconditionally JMP

Set the flags according to whether particular bits of a component are set to 1 TEST

astring dup30db (?)

; set DS:[SI] and ES:[DI] to both point to astring

PUSH DS ; save DS and ES
PUSH ES

MOV AX, SEG astring
MOV DS,AX
MOV ES,AX
MOV DI,offset astring
MOV SI,offset astring

LCONVERT_START:
LODSB AL,[SI] ; get the character in AL
CMP AL,’a’ ; compare against ’a’
JB LWRITE_IT ; not in range, don’t convert
CMP AL,’z’ ; compare against ’z’
JA LWRITE_IT ; not in range, don’t convert
ADD AL,’A’-’a’ ; convert

LWRITE_IT:
STOSB ; write it out
CMP AL,0 ; are we done?
JNE LCONVERT_START ; not done so loop
POP ES ; restore original DS and ES values
POP DS
Instruction Set 4-79

JAE Jump If Above or Equal JAE
JNB Jump If Not Below
JNC Jump If Not Carry

What It Does

If the previous instruction clears the Carry Flag (CF), JAE, JNB, and JNC stop executing
the current sequence of instructions and begin executing a new sequence of instructions;
otherwise, execution continues with the next instruction.

Syntax

Description

JAE, JNB, and JNC test the flag set by a previous instruction. The terms above and below
indicate an unsigned number comparison. If the given condition is true, a short jump is
made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JAE rel8 73 cb Jump short if above or equal (CF=0) 13,4 13,4

JNB rel8 73 cb Jump short if not below (CF=0) 13,4 13,4

JNC rel8 73 cb Jump short if not carry (CF=0) 13,4 13,4

JAE label To jump if the result of a previous unsigned
comparison was above or equal, use JAE
or one of its synonyms, JNB or JNC. Each
form performs the same operation.

JNB label

JNC label

if (CF == 0)
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-80

JAE JAE
Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JNAE nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JAE condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump if the result of a previous unsigned comparison was below JB

Jump if the result of a previous integer comparison was greater or equal JGE

Jump unconditionally JMP

Set the flags according to whether particular bits of a component are set to 1 TEST
Instruction Set 4-81

JB Jump If Below JB
JC Jump If Carry
JNAE Jump If Not Above or Equal

What It Does

If the previous instruction sets the Carry Flag (CF), JB, JC, and JNAE stop executing the
current sequence of instructions and begin executing a new sequence of instructions;
otherwise, execution continues with the next instruction.

Syntax

Description

JB, JC, and JNAE test the flag set by a previous instruction. The terms above and below
indicate an unsigned number comparison. If the given condition is true, a short jump is
made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JB rel8 72 cb Jump short if below (CF=1) 13,4 13,4

JC rel8 72 cb Jump short if carry (CF=1) 13,4 13,4

JNAE rel8 72 cb Jump short if not above or equal (CF=1) 13,4 13,4

JB label
To jump if the result of a previous
unsigned comparison was below or
equal, use JB or one of its synonyms, JC
or JNAE. Each form performs the same
operation.

JC label

JNAE label

if (CF == 1)
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-82

JB JB
Examples

This example checks the selection of 10 numbered items.

Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JNB nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JB condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump if the result of a previous unsigned comparison was above or equal JAE

Jump if the result of a previous integer comparison was less JL

Jump unconditionally JMP

Set the flags according to whether particular bits of a component are set to 1 TEST

; check selection of 0-n+ item

Num_items=10 ; 10 total items numbered (0-9)

START_SEL:
mGetSelection ; value in AL
CMP AL,Num_items ; compare to max# of items
JNAE SEL_GOOD ; okay, selection in 0-(n-1)
mPrintError
JMP START_SEL

SEL_GOOD:
 ...
Instruction Set 4-83

JBE Jump If Below or Equal JBE
JNA Jump If Not Above

What It Does

If the previous instruction sets the Carry Flag (CF) or the Zero Flag (ZF), JBE and JNA stop
executing the current sequence of instructions and begin executing a new sequence of
instructions; otherwise, execution continues with the next instruction.

Syntax

Description

JBE and JNA test the flags set by a previous instruction. The terms above and below
indicate an unsigned number comparison. If the given condition is true, a short jump is
made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JBE rel8 76 cb Jump short if below or equal (CF=1 or ZF=1) 13,4 13,4

JNA rel8 76 cb Jump short if not above (CF=1 or ZF=1) 13,4 13,4

JBE label
To jump if the result of a previous
unsigned comparison was below or
equal, use JBE or its synonym, JNA.
Both forms perform the same operation.JNA label

if ((CF == 1) || (ZF == 1))
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-84

JBE JBE
Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JNBE nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JBE condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump if the result of a previous unsigned comparison was above JA

Jump if the result of a previous integer comparison was less or equal JLE

Jump unconditionally JMP

Set the flags according to whether particular bits of a component are set to 1 TEST
Instruction Set 4-85

JC Jump If Carry JC

What It Does

If the previous instruction sets the Carry Flag (CF), JB, JC, and JNAE stop executing the
current sequence of instructions and begin executing a new sequence of instructions;
otherwise, execution continues with the next instruction.

See JB on page 4-82 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

JC rel8 72 cb Jump short if carry (CF=1) 13,4 13,4
Instruction Set4-86

JCXZ Jump If CX Register Is Zero JCXZ

What It Does

If the previous instruction leaves 0 in CX, JCXZ stops executing the current sequence of
instructions and begins executing a new sequence of instructions; otherwise, execution
continues with the next instruction.

Syntax

Description

JCXZ tests the CX register modified by a previous instruction. If the given condition is true
(CX=0), a short jump is made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JCXZ rel8 E3 cb Jump short if CX register is 0 15,5 15,5

JCXZ label To jump if CX is 0, use JCXZ.

if (CX == 0)
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-87

JCXZ JCXZ
Examples

This example waits for a character from the serial port. DEC, JCXZ, and JMP implement
a construct equivalent to the C-language do-while loop. CMP and JNE implement an
if statement within the loop.

Tips

Use JCXZ to determine if CX is 0 before executing a loop that does not check the value of
CX until the bottom of the loop.

Related Instructions

If you want to See

Jump to the top of a loop if CX is not 0 LOOP

Jump to the top of a loop if CX is not 0 and two compared components are equal LOOPE

Jump to the top of a loop if CX is not 0 and two compared components are not equal LOOPNE

; loop for a maximum number of times or until a
; serial-port character is ready

MOV CX,100h ; set up counter

LOOP_TOP:
mCHAR_READY ; read character into AH (macro)
CMP AH,0 ; is a character ready?
JNE GOT_CHAR ; if so, then jump out with character
DEC CX ; subtract 1 from counter
JCXZ NO_CHAR ; if CX is 0, jump out without character
JMP LOOP_TOP ; if not, jump to top of loop

GOT_CHAR:
...

NO_CHAR:
...
Instruction Set4-88

JE Jump If Equal JE
JZ Jump If Zero

What It Does

If the previous instruction sets the Zero Flag (ZF), JE and JZ stop executing the current
sequence of instructions and begin executing a new sequence of instructions; otherwise,
execution continues with the next instruction.

Syntax

Description

JE and JZ test the flag set by a previous instruction. If the given condition is true (ZF=1),
a short jump is made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JE rel8 74 cb Jump short if equal (ZF=1) 13,4 13,4

JZ rel8 74 cb Jump short if 0 (ZF=1) 13,4 13,4

JE label
To jump if the result of a previous integer
or unsigned comparison was equal, use
JE or its synonym, JZ. Both forms
perform the same function.

JZ label

if (ZF == 1)
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-89

JE JE
Examples

This example reads a character from the serial port, and then uses that character to select
a menu item. CMP, JE, and JMP implement a construct equivalent to the C-language switch
statement.

Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JNE nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JE condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump unconditionally JMP

Jump if the result of a previous integer or unsigned comparison was not equal JNE

Set the flags according to whether particular bits of a component are set to 1 TEST

; display menu and read character from serial port into AX

MENU:
mREAD_SPORT_CHAR ; read character into AX (macro)

CMP AX,’1’ ; did user select item 1?
JE ITEM1 ; if so, then jump

CMP AX,’2’ ; did user select item 2?
JE ITEM2 ; if so, then jump

; if user didn’t select valid item, jump back to menu
JMP MENU

ITEM1:
...

ITEM2:
...
Instruction Set4-90

JG Jump If Greater JG
JNLE Jump If Not Less or Equal

What It Does

If the previous instruction clears the Zero Flag (ZF), and modifies the Sign Flag (SF) and
the Overflow Flag (OF) so that they are the same, JG and JNLE stop executing the current
sequence of instructions and begin executing a new sequence of instructions; otherwise,
execution continues with the next instruction.

Syntax

Description

JG and JNLE test the flags set by a previous instruction. The terms greater and less indicate
an integer (signed) comparison. If the given condition is true (ZF=0 and SF=OF), a short
jump is made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JG rel8 7F cb Jump short if greater (ZF=0 and SF=OF) 13,4 13,4

JNLE rel8 7F cb Jump short if not less or equal (ZF=0 and SF=OF) 13,4 13,4

JG label
To jump if the result of a previous integer
comparison was greater, use JG or its
synonym, JNLE. Both forms perform the
same operation.JNLE label

if ((ZF == 0) && (SF == OF))
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-91

JG JG
Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JNG nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JG condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump if the result of a previous unsigned comparison was above JA

Jump if the result of a previous integer comparison was less or equal JLE

Jump unconditionally JMP

Set the flags according to whether particular bits of a component are set to 1 TEST
Instruction Set4-92

JGE Jump If Greater or Equal JGE
JNL Jump If Not Less

What It Does

If the previous instruction modifies the Sign Flag (SF) and the Overflow Flag (OF) so that
they are the same, JGE and JNL stop executing the current sequence of instructions and
begin executing a new sequence of instructions; otherwise, execution continues with the
next instruction.

Syntax

Description

JGE and JNL test the flags set by a previous instruction. The terms greater and less indicate
an integer (signed) comparison. If the given condition is true (SF=OF), a short jump is made
to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JGE rel8 7D cb Jump short if greater or equal (SF=OF) 13,4 13,4

JNL rel8 7D cb Jump short if not less (SF=OF) 13,4 13,4

JGE label
To jump if the result of a previous integer
comparison was greater or equal, use
JGE or its synonym, JNL. Both forms
perform the same operation.

JNL label

if (SF == OF)
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-93

JGE JGE
Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JNGE nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JGE condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump if the result of a previous unsigned comparison was above or equal JAE

Jump if the result of a previous integer comparison was less JL

Jump unconditionally JMP

Set the flags according to whether particular bits of a component are set to 1 TEST
Instruction Set4-94

JL Jump If Less JL
JNGE Jump If Not Greater or Equal

What It Does

If the previous instruction modifies the Sign Flag (SF) and the Overflow Flag (OF) so that
they are not the same, JL and JNGE stop executing the current sequence of instructions
and begin executing a new sequence of instructions; otherwise, execution continues with
the next instruction.

Syntax

Description

JL and JNGE test the flags set by a previous instruction. The terms greater and less indicate
an integer (signed) comparison. If the given condition is true (SF≠OF), a short jump is made
to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JL rel8 7C cb Jump short if less (SF≠ OF) 13,4 13,4

JNGE rel8 7C cb Jump short if not greater or equal (SF≠OF) 13,4 13,4

JL label
To jump if the result of a previous integer
comparison was less, use JL or its
synonym, JNGE. Both forms perform the
same operation.JNGE label

if (SF != OF)
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-95

JL JL
Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JNL nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JL condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump if the result of a previous unsigned comparison was below JB

Jump if the result of a previous integer comparison was greater or equal JGE

Jump unconditionally JMP

Set the flags according to whether particular bits of a component are set to 1 TEST
Instruction Set4-96

JLE Jump If Less or Equal JLE
JNG Jump If Not Greater

What It Does

If the previous instruction sets the Zero Flag (ZF), or modifies the Sign Flag (SF) and the
Overflow Flag (OF) so that they are not the same, JLE and JNG stop executing the current
sequence of instructions and begin executing a new sequence of instructions; otherwise,
execution continues with the next instruction.

Syntax

Description

JLE and JNG test the flags set by a previous instruction. The terms greater and less indicate
an integer (signed) comparison. If the given condition is true (ZF=1 or SF≠OF), a short jump
is made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JLE rel8 7E cb Jump short if less or equal (ZF=1 or SF≠OF) 13,4 13,4

JNG rel8 7E cb Jump short if not greater (ZF=1 or SF≠OF) 13,4 13,4

JLE label
To jump if the result of a previous integer
comparison was less or equal, use JLE
or its synonym, JNG. Both forms perform
the same operation.

JNG label

if ((ZF == 1) || (SF != OF))
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-97

JLE JLE
Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JNLE nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JLE condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump if the result of a previous unsigned comparison was below or equal JBE

Jump if the result of a previous integer comparison was greater JG

Jump unconditionally JMP

Set the flags according to whether particular bits of a component are set to 1 TEST
Instruction Set4-98

JMP Jump Unconditionally JMP

What It Does

JMP stops executing the current sequence of instructions and begins executing a new
sequence of instructions.

Syntax

Description

JMP transfers control to a different point in the instruction stream without recording return
information. The instruction has several different forms, as follows:

n Short Jumps: To determine the destination, the JMP rel8 form adds a signed offset to
the address of the instruction following JMP. This offset can range from 128 bytes before
or 127 bytes after the instruction following JMP.

JMP rel16 and JMP r/m16 are near jumps. They use the current segment register value.

n Near Direct Jumps: To determine the destination, the JMP rel16 form adds an offset
to the address of the instruction following JMP. The JMP rel16 form is used for 16-bit
operand-size attributes (segment-size attribute 16 only). The result is stored in the 16-
bit IP register.

n Near Indirect Jumps: The JMP r/m16 form specifies a register or memory location from
which the procedure absolute offset is fetched. The offset is 16 bits.

JMP ptr16:16 and JMP m16:16 are far jumps. They use a long pointer to the destination.
The long pointer provides 16 bits for the CS register and 16 bits for the IP register.

n Far Direct Jumps: The JMP ptr16:16 form uses a 4-byte operand as a long pointer to
the destination.

n Far Indirect Jumps: The JMP m16:16 form fetches the long pointer from the specified
memory location (an indirect jump).

Form Opcode Description
Clocks

Am186 Am188

JMP rel8 EB cb Jump short direct, displacement relative to next instruction 14 14

JMP rel16 E9 cw Jump near direct, displacement relative to next instruction 14 14

JMP r/m16 FF /4 Jump near indirect 11/17 11/21

JMP ptr16:16 EA cd Jump far direct to doubleword immediate address 14 14

JMP m16:16 FF /5 Jump m16:16 indirect and far 26 34

JMP label To jump unconditionally, use JMP.
Instruction Set 4-99

JMP JMP
Operation It Performs

Flag Settings After Instruction

if (label == rel8)/* short direct */
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

if (label == rel16)/* near direct */
/* branch to labeled instruction */
IP = IP + label;

if (label == r/m16)/* near indirect */
/* branch to labeled instruction */
IP = [label];

if (label == ptr16:16)/* far direct */
/* branch to labeled instruction */
CS:IP = label;

if (label == m16:16)/* far indirect */
/* branch to labeled instruction */
CS:IP = [label];

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-100

JMP JMP
Examples

This example uses the integer in DX to determine the course of action. CMP and JL
implement a construct equivalent to a C-language if statement. CMP, JG, and JMP
implement an if-else statement.

Tips

JMP is the only jump instruction that transfers execution to a far address (modifies both
CS and IP).

Related Instructions

If you want to See

Call a procedure CALL

; branch according to the value of the integer in DX

CMP DX,0 ; is DX negative?
JL NEAR_NEG ; if so, jump to near label
JG NEAR_POS ; if DX > 0, jump to near label
JMP FAR_ZERO ; else, jump to far label (DX is 0)

NEAR_NEG:
...

NEAR_POS:
...

; different code segment
FAR_ZERO:

...
Instruction Set 4-101

JNA Jump If Not Above JNA

What It Does

If the previous instruction sets the Carry Flag (CF) or the Zero Flag (ZF), JBE and JNA stop
executing the current sequence of instructions and begin executing a new sequence of
instructions; otherwise, execution continues with the next instruction.

See JBE on page 4-84 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

JNA rel8 76 cb Jump short if not above (CF=1 or ZF=1) 13,4 13,4
Instruction Set4-102

JNAE Jump If Not Above or Equal JNAE

What It Does

If the previous instruction sets the Carry Flag (CF), JB, JC, and JNAE stop executing the
current sequence of instructions and begin executing a new sequence of instructions;
otherwise, execution continues with the next instruction.

See JB on page 4-82 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

JNAE rel8 72 cb Jump short if not above or equal (CF=1) 13,4 13,4
Instruction Set 4-103

JNB Jump If Not Below JNB

What It Does

If the previous instruction clears the Carry Flag (CF), JAE, JNB, and JNC stop executing
the current sequence of instructions and begin executing a new sequence of instructions;
otherwise, execution continues with the next instruction.

See JAE on page 4-80 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

JNB rel8 73 cb Jump short if not below (CF=0) 13,4 13,4
Instruction Set4-104

JNBE Jump If Not Below or Equal JNBE

What It Does

If the previous instruction clears the Carry Flag (CF) and the Zero Flag (ZF), JA and JNBE
stop executing the current sequence of instructions and begin executing a new sequence
of instructions; otherwise, execution continues with the next instruction.

See JA on page 4-78 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

JNBE rel8 77 cb Jump short if not below or equal (CF=0 and ZF=0) 13,4 13,4
Instruction Set 4-105

JNC Jump If Not Carry JNC

What It Does

If the previous instruction clears the Carry Flag (CF), JAE, JNB, and JNC stop executing
the current sequence of instructions and begin executing a new sequence of instructions;
otherwise, execution continues with the next instruction.

See JAE on page 4-80 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

JNC rel8 73 cb Jump short if not carry (CF=0) 13,4 13,4
Instruction Set4-106

JNE Jump If Not Equal JNE
JNZ Jump If Not Zero

What It Does

If the previous instruction clears the Zero Flag (ZF), JNE and JNZ stop executing the current
sequence of instructions and begin executing a new sequence of instructions; otherwise,
execution continues with the next instruction.

Syntax

Description

JNE and JNZ test the flag set by a previous instruction. If the given condition is true (ZF=0),
a short jump is made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JNE rel8 75 cb Jump short if not equal (ZF=0) 13,4 13,4

JNZ rel8 75 cb Jump short if not zero (ZF=0) 13,4 13,4

JNE label
To jump if the result of a previous integer
comparison was not equal, use JNE or
its synonym, JNZ. Both forms perform
the same operation.

JNZ label

if (ZF == 0)
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-107

JNE JNE
Examples

This example subtracts an integer or an unsigned number in DX from another number of
the same type in AX, and then uses the difference to determine the course of action. SUB
and JNE implement a construct equivalent to a C-language if statement.

Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JE nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JNE condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump if the result of a previous integer or unsigned comparison was equal JE

Jump unconditionally JMP

Set the flags according to whether particular bits of a component are set to 1 TEST

; branch according to the result of the integer or
; unsigned subtraction

SUB AX,DX ; are AX and DX the same?
JNE DIFFERENCE ; if not, then jump
...

DIFFERENCE:
...
Instruction Set4-108

JNG Jump If Not Greater JNG

What It Does

If the previous instruction sets the Zero Flag (ZF), or modifies the Sign Flag (SF) and the
Overflow Flag (OF) so that they are not the same, JLE and JNG stop executing the current
sequence of instructions and begin executing a new sequence of instructions; otherwise,
execution continues with the next instruction.

See JLE on page 4-97 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

JNG rel8 7E cb Jump short if not greater (ZF=1 or SF≠OF) 13,4 13,4
Instruction Set 4-109

JNGE Jump If Not Greater or Equal JNGE

What It Does

If the previous instruction modifies the Sign Flag (SF) and the Overflow Flag (OF) so that
they are not the same, JL and JNGE stop executing the current sequence of instructions
and begin executing a new sequence of instructions; otherwise, execution continues with
the next instruction.

See JL on page 4-95 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

JNGE rel8 7C cb Jump short if not greater or equal (SF≠OF) 13,4 13,4
Instruction Set4-110

JNL Jump If Not Less JNL

What It Does

If the previous instruction modifies the Sign Flag (SF) and the Overflow Flag (OF) so that
they are the same, JGE and JNL stop executing the current sequence of instructions and
begin executing a new sequence of instructions; otherwise, execution continues with the
next instruction.

See JGE on page 4-93 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

JNL rel8 7D cb Jump short if not less (SF=OF) 13,4 13,4
Instruction Set 4-111

JNLE Jump If Not Less or Equal JNLE

What It Does

If the previous instruction clears the Zero Flag (ZF), and modifies the Sign Flag (SF) and
the Overflow Flag (OF) so that they are the same, JG and JNLE stop executing the current
sequence of instructions and begin executing a new sequence of instructions; otherwise,
execution continues with the next instruction.

See JG on page 4-91 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

JNLE rel8 7F cb Jump short if not less or equal (ZF=0 and SF=OF) 13,4 13,4
Instruction Set4-112

JNO Jump If Not Overflow JNO

What It Does

If the previous instruction clears the Overflow Flag (OF), JNO stops executing the current
sequence of instructions and begins executing a new sequence of instructions; otherwise,
execution continues with the next instruction.

Syntax

Description

JNO tests the flag set by a previous instruction. If the given condition is true (OF=0), a short
jump is made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JNO rel8 71 cb Jump short if not overflow (OF=0) 13,4 13,4

JNO label To jump if the result of a previous
operation cleared OF to 0, use JNO.

if (OF == 0)
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-113

JNO JNO
Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JO nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JNO condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump unconditionally JMP

Jump if the result of a previous operation set OF to 1 JO

Set the flags according to whether particular bits of a component are set to 1 TEST
Instruction Set4-114

JNP Jump If Not Parity JNP

What It Does

If the previous instruction clears the Parity Flag (PF), JPO and JNP stop executing the
current sequence of instructions and begin executing a new sequence of instructions;
otherwise, execution continues with the next instruction.

See JPO on page 4-124 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

JNP rel8 7B cb Jump short if not parity (PF=0) 13,4 13,4
Instruction Set 4-115

JNS Jump If Not Sign JNS

What It Does

If the previous instruction clears the Sign Flag (SF), JNS stops executing the current
sequence of instructions and begins executing a new sequence of instructions; otherwise,
execution continues with the next instruction.

Syntax

Description

JNS tests the flag set by a previous instruction. If the given condition is true (SF=0), a short
jump is made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JNS rel8 79 cb Jump short if not sign (SF=0) 13,4 13,4

JNS label To jump if the result of a previous
operation cleared SF to 0, use JNS.

if (SF == 0)
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-116

JNS JNS
Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JS nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JNS condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump unconditionally JMP

Jump if the result of a previous operation set SF to 1 JS

Set the flags according to whether particular bits of a component are set to 1 TEST
Instruction Set 4-117

JNZ Jump If Not Zero JNZ

What It Does

If the previous instruction clears the Zero Flag (ZF), JNE and JNZ stop executing the current
sequence of instructions and begin executing a new sequence of instructions; otherwise,
execution continues with the next instruction.

See JNE on page 4-107 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

JNZ rel8 75 cb Jump short if not zero (ZF=0) 13,4 13,4
Instruction Set4-118

JO Jump If Overflow JO

What It Does

If the previous instruction sets the Overflow Flag (OF), JO stops executing the current
sequence of instructions and begins executing a new sequence of instructions; otherwise,
execution continues with the next instruction.

Syntax

Description

JO tests the flag set by a previous instruction. If the given condition is true (OF=1), a short
jump is made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JNO nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JO condition.

nearlabel:

Form Opcode Description
Clocks

Am186 Am188

JO rel8 70 cb Jump short if overflow (OF=1) 13,4 13,4

JO label To jump if the result of a previous
operation set OF to 1, use JO.

if (OF == 1)
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-119

JO JO
Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump unconditionally JMP

Jump if the result of a previous operation cleared OF to 0 JNO

Set the flags according to whether particular bits of a component are set to 1 TEST
Instruction Set4-120

JP Jump If Parity JP

What It Does

If the previous instruction sets the Parity Flag (PF), JPE and JP stop executing the current
sequence of instructions and begin executing a new sequence of instructions; otherwise,
execution continues with the next instruction.

See JPE on page 4-122 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

JP rel8 7A cb Jump short if parity (PF=1) 13,4 13,4
Instruction Set 4-121

JPE Jump If Parity Even JPE
JP Jump If Parity

What It Does

If the previous instruction sets the Parity Flag (PF), JPE and JP stop executing the current
sequence of instructions and begin executing a new sequence of instructions; otherwise,
execution continues with the next instruction.

Syntax

Description

JPE and JP test the flag set by a previous instruction. If the given condition is true (PF=1),
a short jump is made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JPE rel8 7A cb Jump short if parity even (PF=1) 13,4 13,4

JP rel8 7A cb Jump short if parity (PF=1) 13,4 13,4

JPE label
To jump if the result of a previous
operation set PF to 1, use JPE or its
synonym, JP. Both forms perform the
same operation.JP label

if (PF == 1)
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-122

JPE JPE
Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JPO nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JPE condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump unconditionally JMP

Jump if the result of a previous operation cleared PF to 0 JPO

Set the flags according to whether particular bits of a component are set to 1 TEST
Instruction Set 4-123

JPO Jump If Parity Odd JPO
JNP Jump If Not Parity

What It Does

If the previous instruction clears the Parity Flag (PF), JPO and JNP stop executing the
current sequence of instructions and begin executing a new sequence of instructions;
otherwise, execution continues with the next instruction.

Syntax

Description

JPO and JNP test the flag set by a previous instruction. If the given condition is true (PF=0),
a short jump is made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JPO rel8 7B cb Jump short if parity odd (PF=0) 13,4 13,4

JNP rel8 7B cb Jump short if not parity (PF=0) 13,4 13,4

JPO label
To jump if the result of a previous
operation cleared PF to 0, use JPO or
its synonym, JNP. Both forms perform
the same operation.JNP label

if (PF == 0)
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-124

JPO JPO
Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JPE nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JPO condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump unconditionally JMP

Jump if the result of a previous operation set PF to 1 JPE

Set the flags according to whether particular bits of a component are set to 1 TEST
Instruction Set 4-125

JS Jump If Sign JS

What It Does

If the previous instruction sets the Sign Flag (SF), JS stops executing the current sequence
of instructions and begins executing a new sequence of instructions; otherwise, execution
continues with the next instruction.

Syntax

Description

JS tests the flag set by a previous instruction. If the given condition is true (SF=1), a short
jump is made to the location provided as the operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

JS rel8 78 cb Jump short if sign (SF=1) 13,4 13,4

JS label To jump if the result of a previous
operation set SF to 1, use JS.

if (SF == 1)
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* branch to labeled instruction */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-126

JS JS
Tips

If you need to jump to an instruction at farlabel that is more than 128 bytes away, use the
following sequence of statements:

JNS nearlabel ; This does the equivalent of a long jump
JMP farlabel ; based on the JS condition.

nearlabel:

Related Instructions

If you want to See

Compare two components using subtraction and set the flags accordingly CMP

Jump unconditionally JMP

Jump if the result of a previous operation cleared SF to 0 JNS

Set the flags according to whether particular bits of a component are set to 1 TEST
Instruction Set 4-127

JZ Jump If Zero JZ

What It Does

If the previous instruction sets the Zero Flag (ZF), JE and JZ stop executing the current
sequence of instructions and begin executing a new sequence of instructions; otherwise,
execution continues with the next instruction.

See JE on page 4-89 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

JZ rel8 74 cb Jump short if 0 (ZF=1) 13,4 13,4
Instruction Set4-128

Ins
4

LAHF Load AH with Flags LAHF

What It Does

LAHF copies the low byte of the Processor Status Flags (FLAGS) register to AH.

Syntax

Description

LAHF copies the Processor Status Flags (FLAGS) register to the AH register. After the
copy, the bits shadow the flags as follows:

n AH bit 0 = Carry Flag

n AH bit 2 = Parity Flag

n AH bit 4 = Auxiliary Flag

n AH bit 6 = Zero Flag

n AH bit 7 = Sign Flag

Operation It Performs

Flag Settings After Instruction

Examples

This example clears the Carry Flag (CF) to 0. Normally, you use CLC to perform this
operation.

Form Opcode Description
Clocks

Am186 Am188

LAHF 9F Load AH with low byte of Processor Status Flags register 2 2

LAHF

/* copy FLAGS to AH */
AH = FLAGS & 0x00FF;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –

; clear CF to 0
LAHF ; copy low byte of FLAGS to AH
AND AH,11111110b ; clear bit 0 (CF) to 0
SAHF ; copy AH to low byte of FLAGS
truction Set 4-129

LAHF LAHF
This example prevents an intervening instruction from modifying the Carry Flag (CF), which
is used to indicate the status of a hardware device.

Tips

LAHF is provided for compatibility with the 8080 microprocessor. It is now customary to
use PUSHF instead.

Related Instructions

If you want to See

Pop the top component from the stack into the Processor Status Flags register POPF

Push the Processor Status Flags register onto the stack PUSHF

Copy AH to the low byte of the Processor Status Flags register SAHF

SMINUEND DW -6726
SSUBTRAHEND DW 22531

; prevent subtraction from modifying CF, which is used
; as a device status indicator

; check to see if device is on or off
; return result in CF: 1 = on, 0 = off
CALL CHECK_DEVICE

; set up registers
MOV CX,SMINUEND ; CX = 1A46h
MOV BX,SSUBTRAHEND ; BX = BD93h

; save lower five flags in AH
LAHF

; unsigned subtraction: CX = CX - BX
SUB CX,BX ; CF = 1

; restore saved flags from AH
SAHF ; CF = outcome of CHECK_DEVICE

; if device is on, then perform next action
; else, alert user to turn on device
JC OKAY
JMP ALERT_USER

OKAY:
...

ALERT_USER:
...
Instruction Set4-130

LDS Load DS with Segment and Register with Offset LDS

What It Does

LDS copies the segment portion of a full address stored in a doubleword to DS, and copies
the offset portion of the full address to another register.

Syntax

Description

LDS reads a full pointer from memory and stores it in a register pair consisting of the DS
register and a second operand-specified register. The first 16 bits are in DS and the
remaining 16 bits are placed into the register specified by offset.

Operation It Performs

Flag Settings After Instruction

Examples

This example calls a procedure whose address is stored in a doubleword in memory.

Form Opcode Description
Clocks

Am186 Am188

LDS r16,m16:16 C5 /r Load DS:r16 with segment:offset from memory 18 26

LDS offset,pointer

/* copy offset portion of pointer */
offset = pointer;

/* copy segment portion of pointer */
DS = pointer + 2;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –

PROC_ADDR DD ? ; full address of current procedure

; store address of current procedure in PROC_ADDR
...

LDS SI,PROC_ADDR ; load segment of procedure into DS
 ; and offset of procedure into SI

; call procedure at address stored in doubleword in memory
CALL DWORD PTR [SI]
Instruction Set 4-131

LDS LDS
Related Instructions

If you want to See

Load the offset of a memory component into a register LEA

Load a full address stored in a doubleword into ES and another register LES
Instruction Set4-132

LEA Load Effective Address LEA

What It Does

LEA loads the offset of a memory component into a register.

Syntax

Description

LEA calculates the effective address (offset part) of the component and stores it in the
specified register.

Operation It Performs

Flag Settings After Instruction

Examples

This example fills a string in memory with a character. Because the Direction Flag (DF) is
cleared to 0 using CLD, the bytes are filled, one by one, from first to last.

Form Opcode Description
Clocks

Am186 Am188

LEA r16,m16 8D /r Load offset for m16 word in 16-bit register 6 6

LEA offset,component

/* copy offset of component */
offset = &component;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –

STRING DB 128 DUP (?)
ASTERISK DB ’*’ ; 2Ah

; fill string with character

; set up registers and flags
MOV AX,SEG STRING
MOV ES,AX
MOV AL,ASTERISK ; copy character to AL
LEA DI,STRING ; load offset (segment = ES)
MOV CX,LENGTH STRING ; set up counter
CLD ; process string low to high

; fill string
REP STOSB
Instruction Set 4-133

LEA LEA
Related Instructions

If you want to See

Load a full address stored in a doubleword into DS and another register LDS

Load a full address stored in a doubleword into ES and another register LES
Instruction Set4-134

LEAVE* Leave High-Level Procedure LEAVE

What It Does

LEAVE removes the storage for the local variables of a procedure from the stack.

Syntax

Description

LEAVE destroys the stack frame created by ENTER. LEAVE releases the portion of the
stack allocated for the procedure’s local variables by copying BP to SP, and then restores
the calling procedure’s frame by popping its frame pointer into BP.

Operation It Performs

Flag Settings After Instruction

* – This instruction was not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

LEAVE C9 Destroy procedure stack frame 8 8

LEAVE

/* update stack and base pointers */
SP = BP;
BP = pop();

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-135

LEAVE LEAVE
Examples

This example procedure uses ENTER to: push the current frame pointer (BP) onto the
stack, set up BP to point to its stack frame, reserve 4 bytes on the stack for its local variables,
and indicate that it is not called by another procedure. The procedure uses LEAVE to
remove the local variables from the stack and restore BP.

; procedure that is not called by another
Main PROC FAR

ENTER 4,0 ; reserve 4 bytes for variables
; procedure is not called by another

; perform operations
...

; save AX
PUSH AX

; perform operations
...

LEAVE ; remove variables from stack
RET 2 ; remove saved AX from stack

Main ENDP
Instruction Set4-136

LEAVE LEAVE
This example includes two procedures, each of which uses ENTER to create its own stack
frame. Each procedure uses LEAVE to destroy its stack frame before returning to the
procedure that called it.

Tips

Before you use LEAVE, use MOV to copy the stack segment to SS and the stack offset to SP.

If a procedure receives input parameters via the stack from the calling procedure, but it
does not need to pass them back as output parameters, use RET components after LEAVE
to return and pop the input parameters from the stack.

Related Instructions

If you want to See

Reserve storage on the stack for the local variables of a procedure ENTER

; top-level procedure
Main PROC FAR

ENTER 6,1 ; reserve 6 bytes for variables
; level 1 procedure

; perform operations
...

LEAVE ; remove variables from stack
RET

Main ENDP

; second-level procedure
Sub2 PROC FAR

ENTER 20,2 ; reserve 20 bytes for variables
; level 2 procedure

; perform operations
...

LEAVE ; remove variables from stack
RET

Sub2 ENDP
Instruction Set 4-137

LES Load ES with Segment and Register with Offset LES

What It Does

LES copies the segment portion of a full address stored in a doubleword to ES, and copies
the offset portion of the full address to another register.

Syntax

Description

LES reads a full pointer from memory and stores it in a register pair consisting of the ES
register and a second operand-specified register. The first 16 bits are in ES and the
remaining 16 bits are placed into the register specified by offset.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

LES r16,m16:16 C4 /r Load ES:r16 with segment:offset from memory 18 26

LES offset,pointer

/* copy offset portion of pointer */
offset = pointer;

/* copy segment portion of pointer */
ES = pointer + 2;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-138

LES LES
Examples

This example copies several of the characters in a string stored in memory to a series of
bytes in the same string that overlap the original characters. The microcontroller copies the
bytes, one by one, from last to first to avoid overwriting the source bytes.

Related Instructions

If you want to See

Load a full address stored in a doubleword into DS and another register LDS

Load the offset of a memory component into a register LEA

; defined in SEG_1 segment
STRING DB ”Am186EM*”,8 DUP (?); source and dest.
STRING_ADDR DD STRING ; full address of STRING
NUMCHARS EQU 8 ; copy eight characters
DELTA EQU 4 ; 4 bytes away

; direct assembler that DS and ES point to
; different segments of memory
ASSUME DS:SEG_1, ES:SEG_2

; set up DS and ES with different segment addresses
MOV AX,SEG_1 ; load one segment into DS
MOV DS,AX ; DS points to SEG_1
MOV AX,SEG_2 ; load another segment into ES
MOV ES,AX ; ES points to SEG_2

; load source offset (segment = DS)
; SIZE and TYPE are assembler directives
LEA SI,STRING + SIZE STRING - TYPE STRING

; load dest. segment (DS) into ES and offset into DI
LES DI,ES(STRING+SIZE STRING-TYPE STRING-DELTA)
MOV CX,NUMCHARS ; set up counter
STD ; process string high to low

; copy eight bytes of string to destination within string
REP MOVS STRING,ES:STRING
Instruction Set 4-139

s.
LOCK* Lock the Bus LOCK

What It Does

The LOCK prefix asserts the LOCK signal for the specified instruction to prevent an external
master from requesting the bus.

Syntax

Description

LOCK is a prefix for a single instruction. On 186 processors with a LOCK pin assignment,
the LOCK pin is asserted for the duration of the prefixed instruction. The LOCK prefix may
be combined with the segment override and/or REP prefix.

Operation It Performs

Flag Settings After Instruction

Instruction prefixes do not affect the flags. See the instruction being prefixed for the flag
values.

Tips

The LOCK pin will assert for the entire repeated instruction.

LOCK prevents DMA cycles until the entire LOCK instruction is complete (this includes a
LOCK REP string instruction).

LOCK prevents the processor from acknowledging a HOLD or taking an interrupt except
for a nonmaskable interrupt.

Related Instructions

* – The external LOCK pin is only available on some members of the Am186 and Am188 family of microcontroller
However, LOCK internal logic is still in effect on parts without the LOCK pin.

Form

Prefix
to
Opcode Description

Clocks
Am186 Am188

LOCK F0 Asserts LOCK during an instruction execution 1 1

If you want to See

Copy a component to a register or to a location in memory MOV

Repeatedly execute a single string instruction REP

Exchange one component with another component XCHG

LOCK instr

assert LOCK#
execute(instruction)
de-assert LOCK#
Instruction Set4-140

LODS Load String Component LODS
LODSB Load String Byte
LODSW Load String Word

What It Does

LODS copies a component from a string to a register.

Syntax

Description

LODS loads the memory byte or word at the location pointed to by the source-index register into
the AL or AX register. After the transfer, the instruction automatically advances the source-index
register. If DF=0 (the CLD instruction was executed), the source index increments; if DF=1 (the
STD instruction was executed), it decrements. The increment/decrement rate is 1 for a byte or
2 for a word. The source data address is determined solely by the contents of the source-index
register; load the correct index value into the register before executing LODS. DS is the default
source segment.

LODSB and LODSW are synonyms for the byte and word LODS instructions, respectively.

Form Opcode Description
Clocks

Am186 Am188

LODS m8 AC Load byte segment:[SI] in AL 12 12

LODS m16 AD Load word segment:[SI] in AX 12 16

LODSB AC Load byte DS:[SI] in AL 12 12

LODSW AD Load word DS:[SI] in AX 12 16

LODS source

LODSB

LODSW

Before using any form of LODS,
make sure that SI contains the offset
of the string.

To copy a byte within a string located
in the segment specified in DS to AL,
use this form.

To copy a word within a string located
in the segment specified in DS to AX,
use this form.

To override the default source segment
(DS), and to have the assembler type-
check your operand, use this form. In
this form, source is segment:[SI]. The
assembler uses the segment in DS un-
less you specify a different segment
register as part of the string compo-
nent. The assembler uses the definition
of the string component to determine
which destination register to use.
Instruction Set 4-141

LODS LODS
Operation It Performs

Flag Settings After Instruction

if (size(source) == 8)
/* load bytes */
{

AL = DS:[SI];
if (DF == 0) /* forward */

increment = 1;
else /* backward */

increment = -1;
}

if (size(source) == 16)
/* load words */
{

AX = DS:[SI];
if (DF == 0) /* forward */

increment = 2;
else /* backward */

increment = -2;
}

/* point to next string component */
SI = SI + increment;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-142

LODS LODS
Examples

This example copies a string of 16-bit integers in one segment to a string in another
segment. The microcontroller copies the words and changes their sign—one by one, from
first to last—before storing them in the other string. Before setting up the registers for the
string operation, this example exchanges DS for ES in order to address the destination
string using ES.

; defined in SEG_S segment
SOURCE DW 16 DUP (?)
; defined in SEG_D segment
DESTINATION DW LENGTH SOURCE DUP (?)

; notify assembler: DS and ES specify different segments
ASSUME DS:SEG_D, ES:SEG_S

; set up segment registers with different segments
MOV AX,SEG_D ; load one segment into DS
MOV DS,AX ; DS points to SEG_D, destination
MOV AX,SEG_S ; load another segment into ES
MOV ES,AX ; ES points to SEG_S, source

; initialize and use source string
...

; exchange DS for ES: the microcontroller does not allow
; you to override the segment register it uses to address
; the destination string (ES)
PUSH ES ; ES points to SEG_S, source
PUSH DS ; DS points to SEG_D, destination
POP ES ; ES points to SEG_D, destination
POP DS ; DS points to SEG_S, source

; set up registers and flags
LEA SI,SOURCE ; load source offset (segment = DS)
LEA DI,DESTINATION ; load dest. offset (segment = ES)
MOV CX,LENGTH SOURCE ; set up counter

; LENGTH is an assembler directive
CLD ; process string low to high

LOAD:
; load integers, change their sign, and store them
LODSW ; copy integer from source to AX
NEG AX ; change sign of integer in AX
STOSW ; copy integer from AX to dest.
LOOP LOAD ; while CX is not zero,

; jump to top of loop

; exchange DS for ES
PUSH ES ; ES points to SEG_D, destination
PUSH DS ; DS points to SEG_S, source
POP ES ; ES points to SEG_S, source
POP DS ; DS points to SEG_D, destination
Instruction Set 4-143

LODS LODS
This example counts the number of carriage returns in a string of characters in memory.
The microcontroller copies the bytes and compares them with the carriage-return character,
one by one, from first to last.

Tips

Before using LODS, always be sure to: set up SI with the offset of the string, set up CX
with the length of the string, and then use CLD (forward) or STD (backward) to establish
the direction for string processing.

To inspect each component in a string, use LODS within a loop.

To perform a custom operation on each component in a string, use LODS and STOS within
a loop. Within the loop, use the following sequence of instructions: use LODS to copy a
component from memory, use other instructions to perform the custom operation, and then
use STOS to copy the component back to memory. To overwrite the original string with the
results, set up DI with the same offset as SI before beginning the loop.

The string instructions always advance SI and/or DI, regardless of the use of the REP prefix.
Be sure to set or clear DF before any string instruction.

STRING DB 512 DUP (?)
CR DB 0Dh ; carriage return

; count number of carriage returns in string

; initialize and use string
...

; set up registers and flags
LEA SI,STRING ; load offset (segment = DS)
MOV CX,LENGTH STRING ; set up counter

; LENGTH is an assembler directive
CLD ; process string low to high
MOV DX,0 ; set up total

LOAD:
; load character and compare
LODSB ; copy character to AL
CMP AL,CR ; is it a carriage return?

; if not, then load next character
JNE NEXT
; else, add 1 to number of carriage returns
INC DX

NEXT:
LOOP LOAD ; while CX is not zero,

; jump to top of loop
Instruction Set4-144

LODS LODS
Related Instructions

If you want to See

Process string components from lower to higher addresses CLD

Copy a component from a port in I/O memory to a string in main memory INS

Copy a component from one string to another string MOVS

Copy a component from a string in main memory to a port in I/O memory OUTS

Repeat one string instruction REP

Process string components from higher to lower addresses STD

Copy a component from a register to a string STOS
Instruction Set 4-145

LOOP Loop While CX Register Is Not Zero LOOP

What It Does

LOOP repeatedly executes a sequence of instructions; an unsigned number in CX tells the
microcontroller how many times to execute the sequence.

Syntax

Description

At the bottom of a loop, LOOP subtracts 1 from CX, and then performs a short jump to the
label at the top of the loop if CX is not 0. The label must be in the range from 128 bytes
before LOOP to 127 bytes after LOOP. The microcontroller performs the following sequence
of operations:

1. Executes the instructions between label and LOOP label.

2. Subtracts 1 from the unsigned number in CX.

3. Performs a short jump to the label if CX is not 0.

When CX is 0, the microcontroller begins executing the instruction following LOOP.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

LOOP rel8 E2 Decrement count; jump short if CX≠ 0 16,6 16,6

LOOP label

/* decrement counter */
CX = CX - 1;

if (CX != 0)
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* loop */
IP = IP + displacement;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-146

LOOP LOOP
Examples

This example converts a list of unpacked decimal digits in memory to their ASCII
equivalents.

Related Instructions

If you want to See

Jump to another sequence of instructions if CX is 0 JCXZ

Jump unconditionally to another sequence of instructions JMP

Jump to the top of a loop if CX is not 0 and two compared components are equal LOOPE

Jump to the top of a loop if CX is not 0 and two compared components are not equal LOOPNE

LIST DB 01h,08h,06h
L_LENGTH EQU 3

; convert a list of unpacked BCD digits to ASCII

MOV SI,0 ; point to first byte in list
MOV CX,L_LENGTH ; set up counter

CONVERT:
; convert unpacked BCD digit to ASCII
OR LIST[SI],30h
INC SI ; point to next byte in list
LOOP CONVERT ; while CX is not 0, jump to top of loop
Instruction Set 4-147

LOOPE Loop If Equal LOOPE
LOOPZ Loop If Zero

What It Does

LOOPE and LOOPZ repeatedly execute a sequence of instructions in which two
components are compared; an unsigned number in CX tells the microcontroller the
maximum number of times to execute the sequence. Once the microcontroller compares
two components and finds they are not equal, the loop is no longer executed.

Syntax

Description

At the bottom of a loop, LOOPE subtracts 1 from CX, and then performs a short jump to
the label at the top of the loop if the following conditions are met: CX is not 0, and the two
components that were just compared are equal. The label must be in the range from 128
bytes before LOOPE to 127 bytes after LOOPE. The microcontroller performs the following
sequence of operations:

1. Executes the instructions between label and LOOPE label.

2. Subtracts 1 from the unsigned number in CX.

3. Performs a short jump to the label if CX is not 0 and the Zero Flag (ZF) is 1.

When CX is 0 or ZF is 0, the microcontroller begins executing the instruction following
LOOPE. LOOPZ is a synonym for LOOPE.

Operation It Performs

Form Opcode Description
Clocks

Am186 Am188

LOOPE rel8 E1 cb Decrement count; jump short if CX≠ 0 and ZF=1 16,6 16,6

LOOPZ rel8 E1 cb Decrement count; jump short if CX≠ 0 and ZF=1 16,6 16,6

LOOPE label

LOOPZ label

To repeat a loop until CX is 0 or two
components compared inside the
loop are not equal, use LOOPE or its
synonym, LOOPZ. Both forms
perform the same operation.

/* decrement counter */
CX = CX - 1;

if ((CX != 0) && (ZF == 1))
/* equal */
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* loop */
IP = IP + displacement;

}

Instruction Set4-148

LOOPE LOOPE
Flag Settings After Instruction

Examples

This example searches one row of a table in memory for a number other than 0. If the row
contains a number other than 0, the microcontroller sets the Carry Flag (CF) to 1; otherwise,
it sets CF to 0.

Related Instructions

If you want to See

Jump to another sequence of instructions if CX is 0 JCXZ

Jump unconditionally to another sequence of instructions JMP

Jump to the top of a loop if CX is not 0 LOOP

Jump to the top of a loop if CX is not 0 and two compared components are not equal LOOPNE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –

ROW DW 8 DUP (?)
TABLE DW 20 * (SIZE ROW) DUP (?) ; 20 x 8 table

; initialize and use table
...

; point to third row
MOV BX,2 * (SIZE ROW) ; SIZE ROW = 16 bytes
MOV SI,-2 ; set up row index
MOV CX,LENGTH ROW ; set up counter

SEARCH:
ADD SI,2 ; point to word in row (ADD before

; CMP to avoid changing flags)
CMP TABLE[BX][SI],0 ; is word 0?
LOOPZ SEARCH ; while CX is not 0 (and word is 0),

; jump to top of loop

; if word is not 0, then jump
JNE OTHER

; indicate that all words are 0
CLC
JMP CONTINUE

OTHER:
STC ; indicate that at least one word is not 0

CONTINUE:
...
Instruction Set 4-149

LOOPNE Loop If Not Equal LOOPNE
LOOPNZ Loop If Not Zero

What It Does

LOOPNE and LOOPNZ repeatedly execute a sequence of instructions in which two
components are compared; an unsigned number in CX tells the microcontroller the
maximum number of times to execute the sequence. Once the microcontroller compares
two components and finds they are equal, the loop is no longer executed.

Syntax

Description

At the bottom of a loop, LOOPNE subtracts 1 from CX, and then performs a short jump to
the label at the top of the loop if the following conditions are met: CX is not 0, and the two
components that were just compared are not equal. The label must be in the range from
128 bytes before LOOPNE to 127 bytes after LOOPNE. The microcontroller performs the
following sequence of operations:

1. Executes the instructions between label and LOOPNE label.

2. Subtracts 1 from the unsigned number in CX.

3. Performs a short jump to the label if CX is not 0 and the Zero Flag (ZF) is 0.

When CX is 0 or ZF is 1, the microcontroller begins executing the instruction following
LOOPNE. LOOPNZ is a synonym for LOOPNE.

Operation It Performs

Form Opcode Description
Clocks

Am186 Am188

LOOPNE rel8 E0 cb Decrement count; jump short if CX≠ 0 and ZF=0 16,6 16,6

LOOPNZ rel8 E0 cb Decrement count; jump short if CX≠ 0 and ZF=0 16,6 16,6

To repeat a loop until CX is 0 or two
components compared inside the loop
are equal, use LOOPNE or its syn-
onym, LOOPNZ. Both forms perform
the same operation.

LOOPNE label

LOOPNZ label

/* decrement counter */
CX = CX - 1;

if ((CX != 0) && (ZF == 0))
/* not equal */
{

/* extend sign of label */
if (label < 0)

displacement = 0xFF00 | label;
else

displacement = 0x00FF & label;

/* loop */
IP = IP + displacement;

}

Instruction Set4-150

LOOPNE LOOPNE
Flag Settings After Instruction

Examples

This example searches a list of characters stored in memory for a null character. If the list
contains a null character, the microcontroller sets the Carry Flag (CF) to 1; otherwise, it
sets CF to 0.

Related Instructions

If you want to See

Jump to another sequence of instructions if CX is 0 JCXZ

Jump unconditionally to another sequence of instructions JMP

Jump to the top of a loop if CX is not 0 LOOP

Jump to the top of a loop if CX is not 0 and two compared components are equal LOOPE

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –

CHARS DB 128 DUP (?)
NULL DB 0

; search a list for a null character

; initialize and use list
...

; set up registers
MOV SI,-1 ; set up list index
MOV CX,LENGTH CHARS ; set up counter

SEARCH:
INC SI ; point to byte in list (INC before

; CMP to avoid changing flags)
CMP CHARS[SI],NULL ; is byte a null?
LOOPNE SEARCH ; while CX is not 0 (and byte is not

; a null), jump to top of loop

; if byte is a null, then jump
JE FOUND
; else, indicate that list doesn’t contain a null
CLC
JMP CONTINUE

FOUND:
STC ; indicate that list contains a null

CONTINUE:
...
Instruction Set 4-151

LOOPZ Loop If Zero LOOPZ

What It Does

LOOPE and LOOPZ repeatedly execute a sequence of instructions in which two
components are compared; an unsigned number in CX tells the microcontroller the
maximum number of times to execute the sequence. Once the microcontroller compares
two components and finds they are not equal, the loop is no longer executed.

See LOOPE on page 4-148 for a complete description.

Form Opcode Description
Clocks

Am186 Am188

LOOPZ rel8 E1 cb Decrement count; jump short if CX≠ 0 and ZF=1 16,6 16,6
Instruction Set4-152

MOV Move Component MOV

What It Does

MOV copies a component to a register or to a location in memory.

Syntax

Description

MOV copies the second operand to the first operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

MOV r/m8,r8 88 /r Copy register to r/m byte 2 2

MOV r/m16,r16 89 /r Copy register to r/m word 12 16

MOV r8,r/m8 8A /r Copy r/m byte to register 2 2

MOV r16,r/m16 8B /r Copy r/m word to register 9 13

MOV r/m16,sreg 8C /sr Copy segment register to r/m word 2/11 2/15

MOV sreg,r/m16 8E /sr Copy r/m word to segment register 2/9 2/13

MOV AL,moffs8 A0 Copy byte at segment:offset to AL 8 8

MOV AX,moffs16 A1 Copy word at segment:offset to AX 8 12

MOV moffs8,AL A2 Copy AL to byte at segment:offset 9 9

MOV moffs16,AX A3 Copy AX to word at segment:offset 9 13

MOV r8,imm8 B0+rb Copy immediate byte to register 3 3

MOV r16,imm16 B8+rw Copy immediate word to register 3 4

MOV r/m8,imm8 C6 /0 Copy immediate byte to r/m byte 12 12

MOV r/m16,imm16 C7 /0 Copy immediate word to r/m word 12 13

MOV copy,source

/* copy component */
copy = source;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-153

MOV MOV
Examples

This example defines and sets up the stack for a program.

This example for the SD186EM demonstration board controls the LEDs that are mapped
(using negative logic) to eight of the microcontroller’s programmable input/output (PIO) pins
according to the signal levels in AL. Because some of the LEDs on the board are mapped
to the low eight PIO pins (5–0)—and some are mapped to the next eight PIO pins (15–
14)—the example duplicates the signal levels in AH. Before writing the PIO signal levels
to the PIO Data 0 (PDATA0) register, the example uses NOT to convert them to negative
logic.

This example sets up the Data Segment (DS) register and the Extra Segment (ES) register
with the same segment address. This is useful if you will be using MOVS to copy one string
to another string stored in the same segment. If you set up DS and ES with different segment
addresses, you must copy the value in one of them to the other—or override the source
segment—before using MOVS.

; define stack segment
SEG_STACK SEGMENT ’STACK’

DB 500 DUP (?)
STACK:
SEG_STACK ENDS

; set up stack (in code segment)
MOV AX,SEG_STACK ; load stack segment into SS
MOV SS,AX ; SS points to SEG_STACK
MOV AX,STACK ; load stack offset into SP
MOV SP,AX ; SP points to STACK

; control LEDs mapped using negative logic

; load eight LED signal levels into AL
...

; write to LEDs
MOV DX,PIO_DATA0_ADDR ; address of PDATA0 register
MOV AH,AL ; copy AL to AH
NOT AX ; LEDs are negative logic
OUT DX,AX ; write out signals to port

; set up DS and ES with same segment address

; direct assembler that both DS and ES point to
; the same segment of memory
ASSUME DS:SEG_C, ES:SEG_C

; set up DS and ES with SEG_C segment
; (can’t copy directly from memory location
; to segment register)
MOV AX,SEG_C ; load same segment into DS and ES
MOV DS,AX ; DS points to SEG_C
MOV ES,AX ; ES points to SEG_C
Instruction Set4-154

MOV MOV
This example sets up the Data Segment (DS) register and the Extra Segment (ES) register
with different segment addresses.

Tips

You cannot use MOV to copy directly from a memory location to a segment register. To
copy a segment address to a segment register, first copy the segment address to a general
register, and then copy the value in the general register to the segment register.

Related Instructions

If you want to See

Copy a component from a port in I/O memory to a string in main memory INS

Copy a component from one string in memory to another string in memory MOVS

Copy a component from a string in main memory to a port in I/O memory OUTS

; set up DS and ES with different segment addresses

; direct assembler that DS and ES point to
; different segments of memory
ASSUME DS:SEG_A, ES:SEG_B

; set up DS with SEG_A segment and ES with SEG_B segment
; (can’t copy directly from memory location
; to segment register)
MOV AX,SEG_A ; load one segment into DS
MOV DS,AX ; DS points to SEG_A
MOV AX,SEG_B ; load another segment into ES
MOV ES,AX ; ES points to SEG_B
Instruction Set 4-155

MOVS Move String Component MOVS
MOVSB Move String Byte
MOVSW Move String Word

What It Does

MOVS copies a component from one string to another string.

Syntax

Description

MOVS copies the byte or word at segment:[SI] to the byte or word at ES:[DI]. The destination
operand must be addressable from the ES register; no segment override is possible for the
destination. You can use a segment override for the source operand. The default is the DS
register. The contents of SI and DI determine the source and destination addresses. Load
the correct index values into the SI and DI registers before executing the MOVS instruction.
After moving the data, MOVS advances the SI and DI registers automatically. If the Direction
Flag (DF) is 0 (see STC on page 4-228), the registers increment. If DF is 1 (see STD on
page 4-231), the registers decrement. The stepping is 1 for a byte, or 2 for a word operand.

MOVSB and MOVSW are synonyms for the byte and word MOVS instructions, respectively.

Form Opcode Description
Clocks

Am186 Am188

MOVS m8,m8 A4 Copy byte segment:[SI] to ES:[DI] 14 14

MOVS m16,m16 A5 Copy word segment:[SI] to ES:[DI] 14 18

MOVSB A4 Copy byte DS:[SI] to ES:[DI] 14 14

MOVSW A5 Copy word DS:[SI] to ES:[DI] 14 18

MOVS destination,source

MOVSB

MOVSW

To override the default source segment
(DS) and to have the assembler type-
check your operands, use this form. In
this form, source is segment:[SI]. The
assembler uses the segment in DS un-
less you specify a different segment
register as part of the source string
component. The assembler uses the
definitions of the string components to
determine their sizes.

Regardless of the form of MOVS
you use, destination is always
ES:[DI]. Before using any form
of MOVS, make sure that ES
contains the segment of the des-
tination string, DI contains the
offset of the destination string,
and SI contains the offset of the
source string.

To copy a byte within a string located
in the source segment specified in DS
to a byte within a string located in the
destination segment specified in ES,
use this form.

To copy a word within a string located
in the source segment specified in DS
to a word within a string located in the
destination segment specified in ES,
use this form.
Instruction Set4-156

MOVS MOVS
Operation It Performs

Flag Settings After Instruction

if (size(destination) == 8)
/* copy bytes */
{

ES:[DI] = DS:[SI];
if (DF == 0) /* forward */

increment = 1;
else /* backward */

increment = -1;
}

if (size(destination) == 16)
/* copy words */
{

ES:[DI] = DS:[SI];
if (DF == 0) /* forward */

increment = 2;
else /* backward */

increment = -2;
}

/* point to next string component */
DI = DI + increment;
SI = SI + increment;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-157

MOVS MOVS
Examples

This example copies several of the characters in a string stored in memory to a series of
bytes in the same string that overlap the original characters. The microcontroller copies the
bytes, one by one, from last to first to avoid overwriting the source bytes.

; defined in SEG_1 segment
STRING DB ”Am186EM*”,8 DUP (?); source and dest.
STRING_ADDR DD STRING ; full address of STRING
NUMCHARS EQU 8 ; copy eight characters
DELTA EQU 4 ; 4 bytes away

; direct assembler that DS and ES point to
; different segments of memory
ASSUME DS:SEG_1, ES:SEG_2

; set up DS and ES with different segment addresses
MOV AX,SEG_1 ; load one segment into DS
MOV DS,AX ; DS points to SEG_1
MOV AX,SEG_2 ; load another segment into ES
MOV ES,AX ; ES points to SEG_2

PUSH ES ; save ES

; load source offset (segment = DS)
LEA SI,STRING + SIZE STRING - TYPE STRING

; load dest. segment (DS) into ES and offset into DI
LES DI,ES:STRING+SIZE ES:STRING-TYPE ES:STRING-DELTA
MOV CX,NUMCHARS ; set up counter
STD ; process string high to low

; copy eight bytes of string to destination within string
REP MOVS STRING,ES:STRING

POP ES ; restore saved ES
Instruction Set4-158

MOVS MOVS
This example copies one string of 16-bit integers stored in memory to another string located
in the same segment. Because the Direction Flag (DF) is cleared to 0 using CLD, the
microcontroller copies the words, one by one, from first to last.

Tips

Before using MOVS, always be sure to: set up SI with the offset of the source string and
DI with the offset of the destination string, set up CX with the length of the strings, and use
CLD (forward) or STD (backward) to establish the direction for string processing.

To copy one string to another, use the REP prefix to execute MOVS repeatedly.

To fill a string with a pattern, use MOV to: copy each component of the pattern to the first
several components in the string, load SI with the offset of the string, load DI with the offset
of the first component in the string that is not part of the pattern, load CX with the length of
the string less the number of components in the pattern, and then use the REP prefix to
execute MOVS repeatedly.

The string instructions always advance SI and/or DI, regardless of the use of the REP prefix.
Be sure to set or clear DF before any string instruction.

Related Instructions

If you want to See

Process string components from lower to higher addresses CLD

Copy a component from a port in I/O memory to a string in main memory INS

Copy a component from a string in memory to a register LODS

Copy a component from a string in main memory to a port in I/O memory OUTS

Process string components from higher to lower addresses STD

Copy a component from a register to a string in memory STOS

; defined in SEG_Z segment
SOURCE DW 350,-4821,-276,449,10578
DEST DW 5 DUP (?)

; copy one string to another in the same segment

; direct assembler that DS and ES point to
; the same segment of memory
ASSUME DS:SEG_Z, ES:SEG_Z

; set up DS and ES with same segment address
MOV AX,SEG_Z ; load segment into DS and ES
MOV DS,AX ; DS points to SEG_Z
MOV ES,AX ; ES points to SEG_Z

; set up registers and flags
LEA SI,SOURCE ; load source offset (segment = DS)
LEA DI,DEST ; load dest. offset (segment = ES)
MOV CX,5 ; set up counter
CLD ; process string low to high

; copy source string to destination string
REP MOVSW
Instruction Set 4-159

MUL Multiply Unsigned Numbers MUL

What It Does

MUL multiplies two unsigned numbers.

Syntax

Description

MUL operates on unsigned numbers. The operand you specify is the multiplicand. MUL
assumes that the number by which it is to be multiplied (the multiplier) is in AL or AX. (MUL
uses the multiplier that is the same size as the multiplicand.)

MUL places the result in AX or DX::AX. (The destination is always twice the size of the
multiplicand.)

Form Opcode Description
Clocks

Am186 Am188

MUL r/m8 F6 /4 AX=(r/m byte)•AL 26–28/32–34 26–28/32–34

MUL r/m16 F7 /4 DX::AX=(r/m word)•AX 35–37/41–43 35–37/45–47

mul multiplicand
Instruction Set4-160

MUL MUL
Operation It Performs

/* multiply multiplicand with accumulator */
if (size(multiplicand) == 8)
/* unsigned byte multiplication */
{

temp = multiplicand * AL;

if (size(temp) == size(AL))
/* byte result */
{

/* store result */
AL = temp;
/* extend into AX */
AH = 0x00;
/* clear overflow and carry flags */
OF = CF = 0;

}
else
/* word result */
{

/* store result */
AX = temp;

/* set overflow and carry flags */
OF = CF = 1;

}
}
if (size(multiplicand) == 16)
/* unsigned word multiplication */
{

temp = multiplicand * AX;

if (size(temp) == size(AX))
/* word result */
{

/* store result */
AX = temp;
/* extend into DX */
DX = 0x00;
/* clear overflow and carry flags */
OF = CF = 0;

}
else
/* doubleword result */
{

/* store result */
DX::AX = temp;

/* set overflow and carry flags */
OF = CF = 1;

}
}

Instruction Set 4-161

MUL MUL
Flag Settings After Instruction

Examples

This example multiplies a 16-bit unsigned number in CX by a 16-bit unsigned number in
AX. If the product is small enough to fit in only the low word of the destination, this example
stores only the low word of the destination in memory.

Tips

Use SHL instead of MUL to multiply unsigned numbers by powers of 2. When multiplying
an unsigned number by a power of 2, it is faster to use SHL than MUL.

Much of the time, you can ignore the high half of the result because the product is small
enough to fit in only the low half of the destination. If it is, MUL clears CF and OF to 0;
otherwise, MUL sets CF and OF to 1.

If the result will fit in a register that is the size of the multiplicand, and you either want to
multiply an unsigned number by an immediate number or you don’t want the result to
overwrite AL or AX, use the second and third forms of IMUL instead of MUL. Although
designed for multiplying integers, these forms of IMUL calculate the same result as MUL
while letting you specify more than one operand.

Related Instructions

If you want to See

Convert an 8-bit unsigned binary product to its unpacked decimal equivalent AAM

Multiply two integers IMUL

Multiply an unsigned number by a power of 2 SHL

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

OF and CF = 0 if upper half of result is 0
OF and CF = 1 otherwise

– – – ? ? res ? res ? res

WPRODUCTH DW ?
WPRODUCTL DW ?

; 16-bit unsigned multiplication: DX::AX = CX * AX
MOV CX,32
MOV AX,300
MUL CX ; DX::AX = 00002580h = 9600

; store low word of product
MOV WPRODUCTL,AX

; if product fits in only low half of destination, then jump
JNC CONTINUE ; ignore high half

; store high word of product
MOV WPRODUCTH,DX

CONTINUE:
...
Instruction Set4-162

NEG Two’s Complement Negation NEG

What It Does

NEG changes the sign of an integer.

Syntax

Description

NEG replaces the value of a register or memory operand with its two’s complement. The
operand is subtracted from zero and the result is placed in the operand.

NEG sets CF if the operand is not zero. If the operand is zero, it is not changed and NEG
clears CF.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

NEG r/m8 F6 /3 Perform a two’s complement negation of r/m byte 3/10 3/10

NEG r/m16 F7 /3 Perform a two’s complement negation of r/m word 3/10 3/14

NEG integer

if (integer == 0)
/* clear carry flag */
CF = 0;

else
/* set carry flag
CF = 1;

/* change sign of integer */
integer = 0 - integer;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

OF=1 if result larger than destination operand
OF=0 otherwise

AF=1 if carry or borrow to low nibble
AF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

CF=1 if operand is not equal to 0
CF=0 if operand is equal to 0

– – – res res res

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0
Instruction Set 4-163

NEG NEG
Examples

This example uses addition to find the difference between two integers.

This example copies a string of 8-bit integers stored in memory to another string located
in the same segment. The microcontroller copies the bytes and changes their sign—one
by one, from first to last—before storing them in the other string.

Related Instructions

If you want to See

Toggle all bits of a component NOT

Subtract a number and the value of CF from another number SBB

Subtract a number from another number SUB

INTEGER1 DW 2000 ; 7D0h
INTEGER2 DW 1600 ; 640h

; calculate difference using sign change and addition
NEG INTEGER2 ; INTEGER2 = F9C0h = -1600
; signed addition: INTEGER1 = INTEGER1 + INTEGER2
ADD INTEGER1,INTEGER2 ; INTEGER1 = 0190h = 400

; defined in SEG_C segment
SOURCE DB 20 DUP (?)
DESTINATION DB LENGTH SOURCE DUP (?)

; notify assembler: DS and ES point to the
; same segment of memory
ASSUME DS:SEG_C, ES:SEG_C

; set up DS and ES with same segment address
MOV AX,SEG_C ; load segment into DS and ES
MOV DS,AX ; DS points to SEG_C
MOV ES,AX ; ES points to SEG_C

; initialize and use source string
...

; save ES
PUSH ES

; set up registers and flags
LEA SI,SOURCE ; load source offset (segment = DS)
LEA DI,DESTINATION ; load dest. offset (segment = ES)
MOV CX,LENGTH SOURCE ; set up counter
CLD ; process string low to high

LOAD:
LODSB ; copy integer to AL
NEG AL ; change sign of integer in AL
STOSB ; copy AL to destination string
LOOP LOAD ; while CX is not zero,

; jump to top of loop

; restore ES
POP ES
Instruction Set4-164

NOP No Operation NOP

What It Does

NOP expends clock cycles exchanging AX with itself.

Syntax

Description

NOP performs no operation. It is a 1-byte instruction that takes up space in the code
segment, but affects none of the machine context except the instruction pointer.

Operation It Performs

Flag Settings After Instruction

Examples

This example shows a delay loop.

Form Opcode Description
Clocks

Am186 Am188

NOP 90 Perform no operation 3 3

NOP

/* exchange AX with AX to pass time */
temp = AX;
AX = AX;
AX = temp;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –

; perform delay loop to insert real-time

MOV AX,0FFFFh; set up counter
LOOP1:

; waste time
NOP
NOP
NOP
NOP
DEC AX ; subtract 1 from counter
JNZ LOOP1 ; if AX is not 0, jump to top of loop
Instruction Set 4-165

NOP NOP
Tips

Use NOP during a debugging session to fill code space left vacant after replacing an
instruction with a shorter instruction.

Related Instructions

If you want to See

Suspend instruction execution HLT
Instruction Set4-166

NOT One’s Complement Negation NOT

What It Does

NOT toggles all bits of a component.

Syntax

Description

NOT inverts the operand. Every 1 becomes a 0, and vice versa. NOT is equivalent to XOR
with a mask of all 1s.

Operation It Performs

Flag Settings After Instruction

Examples

This example complements all bits of an 8-bit value in memory. The microcontroller changes
each 0 to a 1 and each 1 to a 0.

Form Opcode Description
Clocks

Am186 Am188

NOT r/m8 F6 /2 Complement each bit in r/m byte 3/10 3/10

NOT r/m16 F7 /2 Complement each bit in r/m word 3/10 3/14

NOT component

/* complement bits of component */
component = ~ component;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –

INDICATORS DB 11001010b

; complement indicators
NOT INDICATORS ; INDICATORS = 00110101b
Instruction Set 4-167

NOT NOT
This example for the SD186EM demonstration board controls the LEDs that are mapped
(using negative logic) to eight of the microcontroller’s programmable input/output (PIO) pins
according to the signal levels in AL. Because some of the LEDs on the board are mapped
to the low eight PIO pins (5–0)—and some are mapped to the next eight PIO pins (15–
14)—the example duplicates the signal levels in AH. Before writing the PIO signal levels
to the PIO Data 0 (PDATA0) register, the example uses NOT to convert them to negative
logic.

Related Instructions

If you want to See

Clear particular bits of a component to 0 AND

Change the sign of an integer NEG

Set particular bits of a component to 1 OR

Toggle particular bits of a component XOR

; control LEDs mapped using negative logic

; load eight LED signal levels into AL
...

; write to LEDs
MOV DX,PIO_DATA0_ADDR ; address of PDATA0 register
MOV AH,AL ; copy AL to AH
NOT AX ; LEDs are negative logic
OUT DX,AX ; write out signals to port
Instruction Set4-168

OR Logical Inclusive OR OR

What It Does

OR sets particular bits of a component to 1 according to a mask.

Syntax

Description

OR computes the inclusive OR of its two operands and places the result in the first operand.
Each bit of the result is 0 if both corresponding bits of the operands are 0; otherwise, each
bit is 1.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

OR AL,imm8 0C ib OR immediate byte with AL 3 3

OR AX,imm16 0D iw OR immediate word with AX 4 4

OR r/m8,imm8 80 /1 ib OR immediate byte with r/m byte 4/16 4/16

OR r/m16,imm16 81 /1 iw OR immediate word with r/m word 4/16 4/20

OR r/m16,imm8 83 /1 ib OR immediate byte with r/m word 4/16 4/20

OR r/m8,r8 08 /r OR byte register with r/m byte 3/10 3/10

OR r/m16,r16 09 /r OR word register with r/m word 3/10 3/14

OR r8,r/m8 0A /r OR r/m byte with byte register 3/10 3/10

OR r16,r/m16 0B /r OR r/m word with word register 3/10 3/14

OR component,mask

/* OR component with mask */
component = component | mask;

/* clear overflow and carry flags */
OF = CF = 0;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

0 – – – res ? res res 0
Instruction Set 4-169

OR OR
Examples

This example converts an unpacked decimal digit to its ASCII equivalent.

Tips

To convert an unpacked decimal digit to its ASCII equivalent, use OR to add 30h (ASCII 0)
to the digit.

Related Instructions

If you want to See

Clear particular bits of a component to 0 AND

Toggle all bits of a component NOT

Toggle particular bits of a component XOR

ASCII_MASK EQU 30h ; decimal-to-ASCII mask
BCD_NUM DB 06h ; 6

; convert decimal number to ASCII
MOV AL,BCD_NUM ; AL = 06h = 6
OR AL,ASCII_MASK ; AL = 36h = ASCII ’6’
Instruction Set4-170

OUT Output Component to Port OUT

What It Does

OUT copies a component from a register to a port in I/O memory.

Syntax

Description

OUT transfers a data byte from the register (AL or AX) given as the second operand (source)
to the output port numbered by the first operand (port). Output to any port from 0 to 65535
is performed by placing the port number in the DX register and then using an OUT instruction
with the DX register as the first operand. If the instruction contains an 8-bit port number,
that value is zero-extended to 16 bits.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

OUT imm8,AL E6 ib Output AL to immediate port 9 9

OUT imm8,AX E7 ib Output AX to immediate port 9 13

OUT DX,AL EE Output AL to port in DX 7 7

OUT DX,AX EF Output AX to port in DX 7 11

OUT port, source

/* extend port number */
if (size(port) == 8)

port = 0x00FF & port;

/* move component */
[port] = source;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-171

OUT OUT
Examples

This example for the SD186EM demonstration board lights all of the LEDs that are mapped
to eight of the PIO pins on the microcontroller.

This example sets the baud rate divisor for the asynchronous serial port on the Am186EM
controller.

Tips

Use OUT to talk to the peripheral registers, since they are initially set to I/O space (and not
memory-mapped).

Related Instructions

If you want to See

Copy a component from a port in I/O memory to a register IN

Copy a component from a port in I/O memory to a string in main memory INS

Copy a component from a string in main memory to a port in I/O memory OUTS

; assert PIO pins 15-14 and 5-0

; set up PIO pins 15-0 as outputs
MOV DX,PIO_DIR0_ADDR ; address of PDIR0 register
MOV AX,0 ; 0 = output
OUT DX,AX ; write directions to register

; PIO pins 15-0 will be asserted
MOV DX,PIO_DATA0_ADDR ; address of PDATA0 register
MOV AX,0FFFFh ; 1 = high
OUT DX,AX ; write levels to register

; only enable PIOs 15-14 and 5-0, the other PIO pins
; will perform their preassigned functions
MOV DX,PIO_MODE0_ADDR ; address of PIOMODE0 register
MOV AX,0C07Fh ; PIOs 15-14 and 5-0
OUT DX,AX ; write modes to register

; set baud rate divisor for asynchronous serial port

MOV DX,SPRT_BDV_ADDR ; address of SPBAUD register
MOV AX,129 ; 9600 baud at 40 MHz
OUT DX,AX ; write out baud rate to register
Instruction Set4-172

OUTS* Output String Component to Port OUTS
OUTSB Output String Byte to Port
OUTSW Output String Word to Port

What It Does

OUTS copies a component from a string in main memory to a port in I/O memory.

Syntax

Description

OUTS transfers data from the address indicated by the source-index register (SI) to the
output port addressed by the DX register. OUTS does not allow specification of the port
number as an immediate value. You must address the port through the DX register value.
Load the correct values into the DX register and the source-index (SI) register before
executing the OUTS instruction.

After the transfer, the source-index register advances automatically. If the Direction Flag
(DF) is 0 (see CLD on page 4-29), the source-index register increments. If DF is 1 (see
STD on page 4-231), it decrements. The SI register increments or decrements by 1 for a
byte or 2 for a word.

OUTSB and OUTSW are synonyms for the byte and word OUTS instructions.

You can use the REP prefix with the OUTS instruction for block output of CX bytes or words.

* – This instruction was not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

OUTS DX,m8 6E Output byte DS:[SI] to port in DX 14 14

OUTS DX,m16 6F Output word DS:[SI] to port in DX 14 14

OUTSB 6E Output byte DS:[SI] to port in DX 14 14

OUTSW 6F Output word DS:[SI] to port in DX 14 14

To have the assembler type-check
your operands, use this form. The as-
sembler uses the definition of the
string component to determine its
size.

Regardless of the form of OUTS you
use, source is always DS:[SI], and
port is always DX. Before using any
form of OUTS, make sure that DS
contains the segment of the string,
SI contains the offset of the string,
and DX contains the number of the
port.

To copy a byte from within a string
located in the segment specified in
DS to the I/O port specified in DX, use
this form.

OUTS port,source

OUTSB

OUTSW

To copy a word from within a string
located in the segment specified in
DS to the I/O port specified in DX, use
this form.
Instruction Set 4-173

OUTS OUTS
Operation It Performs

Flag Settings After Instruction

Tips

Before using OUTS, always be sure to: set up SI with the offset of the string, set up CX
with the length of the string, and use CLD (forward) or STD (backward) to establish the
direction for string processing.

The string instructions always advance SI and/or DI, regardless of the use of the REP prefix.
Be sure to set or clear DF before any string instruction.

Related Instructions

If you want to See

Process string components from lower to higher addresses CLD

Copy a component from a port in I/O memory to a register IN

Copy a component from a port in I/O memory to a string located in main memory INS

Copy a component from a register to a port in I/O memory OUT

Repeat one string instruction REP

Process string components from higher to lower addresses STD

if (size(source) == 8)
/* output bytes */
{

[DX] = DS:[SI];
if (DF == 0) /* forward */

increment = 1;
else /* backward */

increment = -1;
}

if (size(source) == 16)
/* output words */
{

[DX] = DS:[SI];
if (DF == 0) /* forward */

increment = 2;
else /* backward */

increment = -2;
}

/* point to location for next string component */
SI = SI + increment;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-174

Ins
4

POP Pop Component from Stack POP

What It Does

POP copies a component from the top of the stack and then removes the storage space
for the component from the stack.

Syntax

Description

POP loads the word at the top of the processor stack into the destination specified by the
operand. The top of the stack is specified by the contents of SS and the Stack Pointer
register, SP. The stack pointer increments by 2 to point to the new top of stack.

A POP SS instruction inhibits all interrupts, including nonmaskable interrupts, until after
execution of the next instruction. This allows sequential execution of POP SS and POP SP
instructions without danger of having an invalid stack during an interrupt.

A pop-to-memory instruction that uses the stack pointer as a base register references
memory after the POP. The base is the value of the stack pointer after the instruction has
been executed.

Note that POP CS is not a valid instruction; use RET to pop from the stack into CS.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

POP m16 8F /0 Pop top word of stack into memory word 20 24

POP r16 58+rw Pop top word of stack into word register 10 14

POP DS 1F Pop top word of stack into DS 8 12

POP ES 07 Pop top word of stack into ES 8 12

POP SS 17 Pop top word of stack into SS 8 12

POP component

/* copy component from stack */
destination = SS:[SP];

/* remove storage from stack */
SP = SP + 2;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
truction Set 4-175

POP POP
Examples

This example copies a string of 16-bit integers in one segment of memory to a string in
another segment. The words are copied, one by one, from last to first.

; defined in SEG_A
STRING1 DW -30000,10250,31450,21540,-16180
S1_LENGTH EQU 5

; defined in SEG_B
STRING2 DW S1_LENGTH DUP (?)
S2_END_ADDR DD STRING2 + SIZE STRING2 - TYPE STRING2

; notify assembler: DS and ES specify
; different segments of memory
ASSUME DS:SEG_A, ES:SEG_B

; set up segment registers with different segments
MOV AX,SEG_A ; load one segment into DS
MOV DS,AX ; DS points to SEG_A
MOV AX,SEG_B ; load another segment into ES
MOV ES,AX ; ES points to SEG_B

; copy string in segment A to string in segment B

; save ES
PUSH ES

; set up registers and flags
LEA SI,STRING1 ; load source offset (segment = DS)

; load dest. segment into ES and offset into DI
LES DI,ES:S2_END_ADDR
MOV CX,S1_LENGTH ; set up counter
STD ; process string high to low

; copy source string to destination
REP MOVSW

; restore saved ES
POP ES
Instruction Set4-176

POP POP
This example procedure for the SD186EM demonstration board turns an LED on or off by
toggling the signal level of programmable I/O (PIO) pin 3 in the PIO Data 0 (PDATA0)
register.

Tips

Before you use POP, use MOV to copy the stack segment to SS and the stack offset to SP.

Before you can pop a component from the stack, you must push one onto the stack.

To copy one segment register to another, use PUSH to place the contents of the first
segment register on the stack, and then use POP to load the other segment register.

Use the stack to pass parameters from one procedure to another. In the calling procedure,
use PUSH to push the parameters onto the stack, use CALL to call another procedure, and
then use POP to pop the parameters from the stack.

Use PUSH to temporarily save the intermediate results of a multistep calculation.

Use PUSH to save the value of a register you want to temporarily use for another purpose.
Use POP to restore the saved register value when you are done.

Related Instructions

If you want to See

Pop components from the stack into the 16-bit general registers POPA

Pop a component from the stack into the Processor Status Flags register POPF

Push a component onto the stack PUSH

PIO3_MASK EQU 0008h ; PDATA0 bit 3

; toggle PDATA0 bit 3
TOGGLE_PIO3 PROC NEAR

; save registers
PUSH AX
PUSH DX

MOV DX,PIO_DATA0_ADDR ; address of PDATA0 register
IN AX,DX ; read PDATA0 into AX
XOR AX,PIO3_MASK ; toggle bit 3
OUT DX,AX ; write AX to PDATA0

; restore saved registers
POP DX
POP AX

RET

TOGGLE_PIO3ENDP
Instruction Set 4-177

POPA* Pop All 16-Bit General Registers from Stack POPA

What It Does

POPA copies each of eight components from the top of the stack to one of the 16-bit general
registers and then removes the storage space for the components from the stack.

Syntax

Description

POPA pops the eight 16-bit general registers, but it discards the SP value instead of loading
it into the SP register. POPA reverses a previous PUSHA, restoring the general registers
to their values before the PUSHA instruction was executed. POPA pops the DI register first.

Operation It Performs

Flag Settings After Instruction

* – This instruction was not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

POPA 61 Pop DI, SI, BP, BX, DX, CX, and AX 51 83

POPA

/* pop 16-bit general registers from stack */
DI = pop();
SI = pop();
BP = pop();

/* skip stack pointer */
SP = SP + 2;

/* continue popping */
BX = pop();
DX = pop();
CX = pop();
AX = pop();

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-178

POPA POPA
Examples

This example of an interrupt-service routine enables interrupts so that interrupt nesting can
occur, resets a device, disables interrupts until the interrupted procedure is resumed, and
then clears the in-service bits in the In-Service (INSERV) register by writing to the End-Of-
Interrupt (EOI) register.

Tips

Before you use POPA, use MOV to copy the stack segment to SS and the stack offset to SP.

To prevent a called procedure from destroying register values that are necessary for the
successful execution of the calling procedure, use PUSHA at the beginning of each
procedure, and then use POPA at the end. If you want to pass a parameter to the calling
procedure using a general register, copy the parameter to the register after POPA.

Related Instructions

If you want to See

Pop a component from the stack POP

Pop a component from the stack into the Processor Status Flags register POPF

Push the 16-bit general registers onto the stack PUSHA

; the microcontroller pushes the flags onto
; the stack before executing this routine

; enable interrupt nesting during routine
ISR1 PROC FAR

PUSHA ; save general registers
STI ; enable unmasked maskable interrupts

mRESET_DEVICE1 ; perform operation (macro)
CLI ; disable maskable interrupts until IRET

; reset in-service bits by writing to EOI register
MOV DX,INT_EOI_ADDR ; address of EOI register
MOV AX,8000h ; nonspecific EOI
OUT DX,AX ; write to EOI register

POPA ; restore general registers
IRET

ISR1 ENDP

; the microcontroller pops the flags from the stack
; before returning to the interrupted procedure
Instruction Set 4-179

POPF Pop Flags from Stack POPF

What It Does

POPF copies a component from the top of the stack, loads it into the Processor Status
Flags (FLAGS) register, and then removes the storage space for the component from the
stack.

Syntax

Description

POPF pops a word from the top of the stack and stores the value in the FLAGS register.

Operation It Performs

Flag Settings After Instruction

Tips

Before you use POPF, use MOV to copy the stack segment to SS and the stack offset to SP.

To prevent an instruction or a called procedure from modifying flags that are necessary for
the successful execution of the following instructions or calling procedure, use PUSHF to
save the Processor Status Flags register. After the instruction or the procedure CALL, use
POPF to restore the saved flags.

Related Instructions

Form Opcode Description
Clocks

Am186 Am188

POPF 9D Pop top word of stack into Processor Status Flags register 8 12

If you want to See

Pop a component from the stack POP

Pop components from the stack into the 16-bit general registers POPA

Push the Processor Status Flags register onto the stack PUSHF

Copy AH to the low byte of the Processor Status Flags register SAHF

POPF

/* copy flags from stack */
FLAGS = SS:[SP];

/* delete storage from stack */
SP = SP + 2;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

Values in word at top of stack are copied into
FLAGS register bits.

res res res
Instruction Set4-180

PUSH* Push Component onto Stack PUSH

What It Does

PUSH creates storage space for a component on the stack and then copies the component
to the stack.

Syntax

Description

PUSH decrements the stack pointer by 2. Then PUSH places the operand on the new stack
top, indicated by the stack pointer.

Operation It Performs

Flag Settings After Instruction

* – PUSH immediates were not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

PUSH m16 FF /6 Push memory word onto stack 16 20

PUSH r16 50+rw Push register word onto stack 10 14

PUSH imm8 6A Push sign-extended immediate byte onto stack 10 14

PUSH imm16 68 Push immediate word onto stack 10 14

PUSH CS 0E Push CS onto stack 9 13

PUSH SS 16 Push SS onto stack 9 13

PUSH DS 1E Push DS onto stack 9 13

PUSH ES 06 Push ES onto stack 9 13

PUSH component

/* create storage on stack */
SP = SP - 2;

/* copy component to stack */
SS:[SP] = source;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-181

PUSH PUSH
Examples

This example copies a string of 16-bit integers in one segment to a string in another
segment. The microcontroller copies the words and changes their sign—one by one, from
first to last—before storing them in the other string. Before setting up the registers for the
string operation, this example exchanges DS for ES in order to address the destination
string using ES.

; defined in SEG_S segment
SOURCE DW 16 DUP (?)
; defined in SEG_D segment
DESTINATIONDW LENGTH SOURCE DUP (?)

; notify assembler: DS and ES specify different segments
ASSUME DS:SEG_D, ES:SEG_S

; set up segment registers with different segments
MOV AX,SEG_D ; load one segment into DS
MOV DS,AX ; DS points to SEG_D, destination
MOV AX,SEG_S ; load another segment into ES
MOV ES,AX ; ES points to SEG_S, source

; initialize and use source string
...

; exchange DS for ES: the microcontroller does not allow
; you to override the segment register it uses to address
; the destination string (ES)
PUSH ES ; ES points to SEG_S, source
PUSH DS ; DS points to SEG_D, destination
POP ES ; ES points to SEG_D, destination
POP DS ; DS points to SEG_S, source

; set up registers and flags
LEA SI,SOURCE ; load source offset (segment = DS)
LEA DI,DESTINATION ; load dest. offset (segment = ES)
MOV CX,LENGTH SOURCE ; set up counter
CLD ; process string low to high

LOAD:
; load integers, change their sign, and store them
LODSW ; copy integer from source to AX
NEG AX ; change sign of integer in AX
STOSW ; copy integer from AX to dest.
LOOP LOAD ; while CX is not zero,

; jump to top of loop

; exchange DS for ES
PUSH ES ; ES points to SEG_D, destination
PUSH DS ; DS points to SEG_S, source
POP ES ; ES points to SEG_S, source
POP DS ; DS points to SEG_D, destination
Instruction Set4-182

PUSH PUSH
This example procedure turns an LED on or off by toggling the signal level of programmable
I/O (PIO) pin 3 in the PIO Data 0 (PDATA0) register.

Tips

Before you use PUSH, use MOV to copy the stack segment to SS and the stack offset to SP.

You must push a component onto the stack before you can pop one from the stack.

To copy one segment register to another, use PUSH to place the contents of the first
segment register on the stack, and then use POP to load the other segment register.

Use the stack to pass parameters from one procedure to another. In the calling procedure,
use PUSH to push the parameters onto the stack, use CALL to call another procedure, and
then use POP to pop the parameters from the stack.

Use PUSH to temporarily save the intermediate results of a multistep calculation.

Use PUSH to save the value of a register you want to temporarily use for another purpose.
Use POP to restore the saved register value when you are done.

Related Instructions

If you want to See

Pop a component from the stack POP

Push the 16-bit general registers onto the stack PUSHA

Push the Processor Status Flags register onto the stack PUSHF

PIO3_MASK EQU 0008h ; PDATA0 bit 3

; toggle PDATA0 bit 3
TOGGLE_PIO3 PROC NEAR

; save registers
PUSH AX
PUSH DX

MOV DX,PIO_DATA0_ADDR ; address of PDATA0 register
IN AX,DX ; read PDATA0 into AX
XOR AX,PIO3_MASK ; toggle bit 3
OUT DX,AX ; write AX to PDATA0

; restore saved registers
POP DX
POP AX

RET

TOGGLE_PIO3 ENDP
Instruction Set 4-183

PUSHA* Push All 16-Bit General Registers onto Stack PUSHA

What It Does

PUSHA creates storage space for eight components on the stack and then copies each of
the eight 16-bit general registers to the stack.

Syntax

Description

PUSHA saves the 16-bit general registers on the processor stack. PUSHA decrements the
stack pointer (SP) by 16 to accommodate the required 8-word field. Because the registers
are pushed onto the stack in the order in which they were given, they appear in the 16 new
stack bytes in reverse order. The last register pushed is the DI register.

Operation It Performs

Flag Settings After Instruction

* – This instruction was not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

PUSHA 60 Push AX, CX, DX, BX, original SP, BP, SI, and DI 36 68

PUSHA

/* save stack pointer */
temp = SP;

/* push 16-bit general registers onto stack */
push(AX);
push(CX);
push(DX);
push(BX);

/* push stack pointer */
push(temp);

/* continue pushing */
push(BP);
push(SI);
push(DI);

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-184

PUSHA PUSHA
Examples

This example of an interrupt-service routine enables interrupts so that interrupt nesting can
occur, resets a device, disables interrupts until the interrupted procedure is resumed, and
then clears the in-service bits in the In-Service (INSERV) register by writing to the End-Of-
Interrupt (EOI) register.

Tips

Before you use PUSHA, use MOV to copy the stack segment to SS and the stack offset to
SP.

To prevent a called procedure from destroying register values that are necessary for the
successful execution of the calling procedure, use PUSHA at the beginning of each
procedure, and then use POPA at the end. If you want to pass a parameter to the calling
procedure using a general register, copy the parameter to the register after POPA.

Related Instructions

If you want to See

Pop components from the stack into the 16-bit general registers POPA

Push a component onto the stack PUSH

Push the Processor Status Flags register onto the stack PUSHF

; the microcontroller pushes the flags onto
; the stack before executing this routine

; enable interrupt nesting during routine
ISR1 PROC FAR

PUSHA ; save general registers
STI ; enable unmasked maskable interrupts

mRESET_DEVICE1 ; perform operation (macro)
CLI ; disable maskable interrupts until IRET

; reset in-service bits by writing to EOI register
MOV DX,INT_EOI_ADDR ; address of EOI register
MOV AX,8000h ; nonspecific EOI
OUT DX,AX ; write to EOI register

POPA ; restore general registers
IRET

ISR1 ENDP

; the microcontroller pops the flags from the stack
; before returning to the interrupted procedure
Instruction Set 4-185

PUSHF Push Flags onto Stack PUSHF

What It Does

PUSHF creates storage space for a component on the stack and then copies the Processor
Status Flags (FLAGS) register to the stack.

Syntax

Description

PUSHF decrements the stack pointer by 2 and copies the FLAGS register to the new top
of stack.

Operation It Performs

Flag Settings After Instruction

Tips

Before you use PUSHF, use MOV to copy the stack segment to SS and the stack offset to
SP.

To prevent an instruction or a called procedure from modifying flags that are necessary for
the successful execution of the following instructions or calling procedure, use PUSHF to
save the Processor Status Flags register. After the instruction or the procedure call, use
POPF to restore the saved flags.

Related Instructions

Form Opcode Description
Clocks

Am186 Am188

PUSHF 9C Push Processor Status Flags register 9 13

If you want to See

Copy the low byte of the Processor Status Flags register to AH LAHF

Pop a component from the stack into the Processor Status Flags register POPF

Push a component onto the stack PUSH

Push the 16-bit general registers onto the stack PUSHA

PUSHF

/* create storage on stack */
SP = SP - 2;

/copy flags to stack */
SS:[SP] = FLAGS;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-186

RCL* Rotate through Carry Left RCL

What It Does

RCL shifts the bits of a component to the left, copies the Carry Flag (CF) to the lowest bit
of the component, and then overwrites CF with the bit shifted out of the component.

Syntax

Description

RCL shifts CF into the bottom bit and shifts the top bit into CF. The second operand (count)
indicates the number of rotations. The operand is either an immediate number or the CL
register contents. The microcontroller does not allow rotation counts greater than 31. If the
count is greater than 31, only the bottom 5 bits of the operand are rotated.

Operation It Performs

* – Rotate immediates were not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

RCL r/m8,1 D0 /2 Rotate 9 bits of CF and r/m byte left once 2/15 2/15

RCL r/m8,CL D2 /2 Rotate 9 bits of CF and r/m byte left CL times 5+n/17+n 5+n/17+n

RCL r/m8,imm8 C0 /2 ib Rotate 9 bits of CF and r/m byte left imm8 times 5+n/17+n 5+n/17+n

RCL r/m16,1 D1 /2 Rotate 17 bits of CF and r/m word left once 2/15 2/15

RCL r/m16,CL D3 /2 Rotate 17 bits of CF and r/m word left CL times 5+n/17+n 5+n/17+n

RCL r/m16,imm8 C1 /2 ib Rotate 17 bits of CF and r/m word left imm8 times 5+n/17+n 5+n/17+n

RCL component,count

while (i = count; i != 0; i--)
/* perform shifts */
{

/* save highest bit */
temp = mostSignificantBit(component);

/* shift left and fill vacancy with carry flag */
component = (component << 1) + CF;

/* replace carry flag with saved bit */
CF = temp;

}

if (count == 1)
/* single shift */

if (mostSignificantBit(component) != CF)
/* set overflow flag */
OF = 1;

else
/* clear overflow flag */
OF = 0;
Instruction Set 4-187

RCL RCL
Flag Settings After Instruction

If count=0, flags are unaffected. Otherwise, flags are affected as shown below:

Examples

This example rotates the bits of a word in memory, maintaining a 1 in the low bit of the word.

Tips

Use RCL to change the order of the bits within a component and the value of one of the bits.

Related Instructions

If you want to See

Clear CF to 0 CLC

Toggle the value of CF CMC

Rotate the bits of a component and the value of CF to the right RCR

Rotate the bits of a component to the left ROL

Rotate the bits of a component to the right ROR

Multiply an integer by a power of 2 SAL/SHL

Divide an integer by a power of 2 SAR

Shift the bits of the operand downward SHR

Set CF to 1 STC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

Undefined unless single-bit rotation, then:
OF=1 if result larger than destination operand
OF=0 otherwise

? – – – – – res – res – res

CF=value of bit shifted into it

BITS DW 0100100010001001b; 4889h

; rotate word, maintaining 1 in low bit
STC ; maintain 1 in low bit: CF = 1
RCL BITS,1 ; BITS = 9113h = 1001000100010011b

; CF = 0
Instruction Set4-188

RCR* Rotate through Carry Right RCR

What It Does

RCR shifts the bits of a component to the right, copies the Carry Flag (CF) to the highest
bit of the component, and then overwrites CF with the bit shifted out of the component.

Syntax

Description

RCR shifts CF into the top bit and shifts the bottom bit into CF. The second operand (count)
indicates the number of rotations. The operand is either an immediate number or the CL
register contents. The microcontroller does not allow rotation counts greater than 31. If the
count is greater than 31, only the bottom 5 bits of the operand are rotated.

Operation It Performs

* – Rotate immediates were not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

RCR r/m8,1 D0 /3 Rotate 9 bits of CF and r/m byte right once 2/15 2/15

RCR r/m8,CL D2 /3 Rotate 9 bits of CF and r/m byte right CL times 5+n/17+n 5+n/17+n

RCR r/m8,imm8 C0 /3 ib Rotate 9 bits of CF and r/m byte right imm8 times 5+n/17+n 5+n/17+n

RCR r/m16,1 D1 /3 Rotate 17 bits of CF and r/m word right once 2/15 2/15

RCR r/m16,CL D3 /3 Rotate 17 bits of CF and r/m word right CL times 5+n/17+n 5+n/17+n

RCR r/m16,imm8 C1 /3 ib Rotate 17 bits of CF and r/m word right imm8 times 5+n/17+n 5+n/17+n

RCR component,count

while (i = count; i != 0; i--)
/* perform shifts */
{

/* save lowest bit */
temp = leastSignificantBit(component);

/* shift right and fill vacancy with carry flag */
component = (component >> 1) + (CF * pow(2, size(component) - 1));

/* replace carry flag with saved bit */
CF = temp;

}

if (count == 1)
/* single shift */

if (mostSignificantBit(component) != nextMostSignificantBit(component))
/* set overflow flag */
OF = 1;

else
/* clear overflow flag */
OF = 0;
Instruction Set 4-189

RCR RCR
Flag Settings After Instruction

If count=0, flags are unaffected. Otherwise, flags are affected as shown below:

Examples

This example rotates the bits of a byte to the left, making sure that the high bit remains 0.

Tips

Use RCR to change the order of the bits within a component and the value of one of the bits.

Related Instructions

If you want to See

Clear CF to 0 CLC

Toggle the value of CF CMC

Rotate the bits of a component and the value of CF to the left RCL

Rotate the bits of a component to the left ROL

Rotate the bits of a component to the right ROR

Multiply an integer by a power of 2 SAL/SHL

Divide an integer by a power of 2 SAR

Shift the bits of the operand downward SHR

Set CF to 1 STC

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

Undefined unless single-bit rotation, then:
OF=1 if result larger than destination operand
OF=0 otherwise

? – – – – – res – res – res

CF=value of bit shifted into it

; rotate byte, maintaining 0 in high bit
MOV AL,01101011b ; AL = 01101011b
CLC ; CF = 0
RCR AL,1 ; AL = 00110101b, CF = 1
Instruction Set4-190

REP Repeat REP

What It Does

REP repeatedly executes a single string instruction; an unsigned number in CX tells REP
how many times to execute the instruction.

Syntax

Description

REP is a prefix that repeatedly executes a single string instruction (INS, LODS, MOVS,
OUTS, or STOS). While CX is not 0 and ZF is 1, the microcontroller repeats the following
sequence of operations:

1. Acknowledges and services any pending interrupts

2. Executes the string instruction

3. Subtracts 1 from the unsigned number in CX

When CX is 0, the microcontroller begins executing the next instruction.

Operation It Performs

Form Prefix Opcode Description
Clocks

Am186 Am188

REP INS m8,DX F3 6C Input CX bytes from port in DX to ES:[DI] 8+8n 8+8n

REP INS m16,DX F3 6D Input CX words from port in DX to ES:[DI] 8+8n 12+8n

REP LODS m8 F3 AC Load CX bytes from segment:[SI] in AL 6+11n 6+11n

REP LODS m16 F3 AD Load CX words from segment:[SI] in AX 6+11n 10+11n

REP MOVS m8,m8 F3 A4 Copy CX bytes from segment:[SI] to ES:[DI] 8+8n 8+8n

REP MOVS m16,m16 F3 A5 Copy CX words from segment:[SI] to ES:[DI] 8+8n 12+8n

REP OUTS DX,m8 F3 6E Output CX bytes from DS:[SI] to port in DX 8+8n 8+8n

REP OUTS DX,m16 F3 6F Output CX words from DS:[SI] to port in DX 8+8n 12+8n

REP STOS m8 F3 AA Fill CX bytes at ES:[DI] with AL 6+9n 6+9n

REP STOS m16 F3 AB Fill CX words at ES:[DI] with AX 6+9n 10+9n

REP instruction

while (CX != 0)
/* repeat */
{

serviceInterrupts();
execute(instruction);

/* decrement counter */
CX = CX - 1;

if (ZF == 0)
/* not equal */

break;
}

Instruction Set 4-191

REP REP
Flag Settings After Instruction

Instruction prefixes do not affect the flags. See the instruction being repeated for the flag
values.

Examples

This example copies one string of ASCII characters stored in memory to another string in
the same segment. The microcontroller copies the characters, one by one, from first to last.

Tips

To repeat a block of instructions, use LOOP or another looping construct.

Related Instructions

If you want to See

Process string components from lower to higher addresses CLD

Copy a component from a port in I/O memory to a string in main memory INS

Copy a component from a string in memory to a register LODS

Copy a component from one string in memory to another string in memory MOVS

Copy a component from a string in main memory to a port in I/O memory OUTS

Repeat one string comparison instruction while the components are the same REPE

Repeat one string comparison instruction while the components are not the same REPNE

Process string components from higher to lower addresses STD

Copy a component from a register to a string in memory STOS

; defined in SEG_A segment
SOURCE DB ”Source string”
DESTINATION DB 13 DUP (?)

; notify assembler: DS and ES specify
; the same segment
ASSUME DS:SEG_A, ES:SEG_A

; set up segment registers with same segment
MOV AX,SEG_A ; load segment into DS
MOV DS,AX ; DS points to SEG_A, source
MOV ES,AX ; ES points to SEG_A, destination

; copy one string to another

; set up registers and flags
LEA SI,SOURCE ; load source offset (segment = DS)
LES DI,DESTINATION ; load dest. offset
MOV CX,13 ; set up counter
CLD ; process string low to high

; copy source string to destination
REP MOVSB
Instruction Set4-192

REPE Repeat While Equal REPE
REPZ Repeat While Zero

What It Does

REPE and REPZ repeatedly execute a single string comparison instruction; an unsigned
number in CX tells the microcontroller the maximum number of times to execute the
instruction. Once the instruction compares two components and finds they are not equal,
the instruction is no longer executed.

Syntax

Description

REPE is a prefix that repeatedly executes a single string comparison instruction (CMPS or
SCAS). While CX is not 0 and ZF is 1, the microcontroller repeats the following sequence
of operations:

1. Acknowledges and services any pending interrupts

2. Executes the string comparison instruction

3. Subtracts 1 from the unsigned number in CX

4. Compares ZF with 0

When CX is 0 or ZF is 0, the microcontroller begins executing the next instruction.

REPZ is a synonym for REPE.

Form Prefix Opcode Description
Clocks

Am186 Am188

REPE CMPS m8,m8 F3 A6 Find nonmatching bytes in ES:[DI] and segment:[SI] 5+22n 5+22n

REPE CMPS m16,m16 F3 A7 Find nonmatching words in ES:[DI] and segment:[SI] 5+22n 9+22n

REPE SCAS m8 F3 AE Find non-AL byte starting at ES:[DI] 5+15n 5+15n

REPE SCAS m16 F3 AF Find non-AX word starting at ES:[DI] 5+15n 9+15n

REPZ CMPS m8,m8 F3 A6 Find nonmatching bytes in ES:DI and segment:[SI] 5+22n 5+22n

REPZ CMPS m16,m16 F3 A7 Find nonmatching words in ES:DI and segment:[SI] 5+22n 9+22n

REPZ SCAS m8 F3 AE Find non-AL byte starting at ES:DI 5+15n 5+15n

REPZ SCAS m16 F3 AF Find non-AX word starting at ES:DI 5+15n 9+15n

To repeat a string comparison instruction
until CX is 0 or two components are not
equal, use REPE or its synonym, REPZ.
Both forms perform the same operation.

REPE instruction

REPZ instruction
Instruction Set 4-193

REPE REPE
Operation It Performs

Flag Settings After Instruction

Instruction prefixes do not affect the flags. See the instruction being repeated for the flag
values.

while (CX != 0)
/* repeat while equal */
{

serviceInterrupts();
execute(instruction);

/* decrement counter */
CX = CX - 1;

if (ZF == 0)
/* not equal */

break;
}

Instruction Set4-194

REPE REPE
Examples

This example compares one string of bytes in memory with another string in the same
segment until it finds a mismatch or all bytes are compared. The microcontroller copies the
bytes, one by one, from first to last. If the strings are different, the following instructions
save the segment and offset of the first mismatch.

; defined in SEG_E segment
STRING1 DB 20h DUP (?)
STRING2 DB LENGTH STRING1 DUP (?)

; notify assembler: DS and ES specify
; the same segment
ASSUME DS:SEG_E, ES:SEG_E

; set up segment registers with same segment
MOV AX,SEG_E ; load segment into DS
MOV DS,AX ; DS points to SEG_E, source
MOV ES,AX ; ES points to SEG_E, destination

; compare one string for equality to another
; initialize and use both strings
...

; save ES
PUSH ES

; set up registers and flags
LEA SI,STRING1 ; load source offset (segment = DS)
LES DI,STRING2 ; load dest. offset (segment = ES)
MOV CX,LENGTH STRING1 ; set up counter
CLD ; process string low to high

; compare first string for equality to second string
REPE CMPSB

; if strings are identical, then jump
JE EQUAL

; else, load segment of mismatch into ES and offset into DI
DEC DI ; mismatch is back one byte
LES DI,STRING2[DI]
JMP CONTINUE

EQUAL:
...

CONTINUE:
...

; restore ES
POP ES
Instruction Set 4-195

REPE REPE
Tips

To determine the appropriate course of action after a repeated string comparison
instruction, use JCXZ to test CX, and use JZ and JNZ to test ZF.

To repeat a block of instructions, use LOOPE or another looping construct.

Related Instructions

If you want to See

Process string components from lower to higher addresses CLD

Compare a component in one string to a component in another string CMPS

Repeat one string instruction REP

Repeat one string comparison instruction while the components are not the same REPNE

Compare a string component in memory to a register SCAS

Process string components from higher to lower addresses STD
Instruction Set4-196

REPNE Repeat While Not Equal REPNE
REPNZ Repeat While Not Zero

What It Does

REPNE and REPNZ repeatedly execute a single string comparison instruction; an unsigned
number in CX tells the microcontroller the maximum number of times to execute the
instruction. Once the instruction compares two components and finds they are equal, the
instruction is no longer executed.

Syntax

Description

REPNE is a prefix that repeatedly executes a single string comparison instruction (CMPS
and SCAS). While CX is not 0 and ZF is 0, the microcontroller repeats the following
sequence of operations:

1. Acknowledges and services any pending interrupts

2. Executes the string comparison instruction

3. Subtracts 1 from the unsigned number in CX

4. Compares ZF with 1

When CX is 0 or ZF is 1, the microcontroller begins executing the next instruction.

REPNZ is a synonym for REPNE.

Form Prefix Opcode Description
Clocks

Am186 Am188

REPNE CMPS m8,m8 F2 A6 Find matching bytes in ES:DI and segment:[SI] 5+22n 5+22n

REPNE CMPS m16,m16 F2 A7 Find matching words in ES:DI and segment:[SI] 5+22n 9+22n

REPNZ CMPS m8,m8 F2 A6 Find matching bytes in ES:DI and segment:[SI] 5+22n 5+22n

REPNZ CMPS m16,m16 F2 A7 Find matching words in ES:DI and segment:[SI] 5+22n 9+22n

REPNE SCAS m8 F2 AE Find AL, starting at ES:DI 5+15n 5+15n

REPNE SCAS m16 F2 AF Find AX, starting at ES:DI 5+15n 9+15n

REPNZ SCAS m8 F2 AE Find AL, starting at ES:DI 5+15n 5+15n

REPNZ SCAS m16 F2 AF Find AX, starting at ES:DI 5+15n 9+15n

To repeat a string comparison instruction until
CX is 0 or two components are equal, use
REPNE or its synonym, REPNZ. Both forms
perform the same operation.

REPNE instruction

REPNZ instruction
Instruction Set 4-197

REPNE REPNE
Operation It Performs

Flag Settings After Instruction

Instruction prefixes do not affect the flags. See the instruction being repeated for the flag
values.

while (CX != 0)
/* repeat while not equal */
{

serviceInterrupts();
execute(instruction);

/* decrement counter */
CX = CX - 1;

if (ZF == 1)
/* equal */

break;
}

Instruction Set4-198

REPNE REPNE
Examples

This example scans a string of 16-bit integers in memory until it finds a particular integer
or the entire string is scanned. The microcontroller scans the words, one by one, from first
to last. If the string contains the integer, the following instructions save the segment and
offset of the integer.

; defined in SEG_S segment
STRING DW 16 DUP (?)
INTEGER DW -1024 ; FC00h

; notify assembler: DS and ES specify the same segment
ASSUME DS:SEG_S, ES:SEG_S

; set up segment registers with same segment
MOV AX,SEG_S ; load segment into DS
MOV DS,AX ; DS points to SEG_S
MOV ES,AX ; ES points to SEG_S

; scan string for integer

; initialize and use string
...

; save ES
PUSH ES

; set up registers and flags
MOV AX,INTEGER ; AX = INTEGER
LEA DI,STRING ; load offset (segment = DS)
MOV CX,LENGTH STRING ; set up counter
CLD ; process string low to high

; scan string for integer
REPNE SCASB

; if the string does not contain -1024, then jump
JNE NOT_FOUND

; load segment of integer into ES and offset into DI
SUB DI,2 ; integer is back one word
LES DI,STRING[DI]
JMP FOUND

NOT_FOUND:
...

FOUND:
...

; restore ES
POP ES
Instruction Set 4-199

REPNE REPNE
Tips

To determine the appropriate course of action after a repeated string comparison
instruction, use JCXZ to test CX, and use JZ and JNZ to test ZF.

To repeat a block of instructions, use LOOPNE or another looping construct.

Related Instructions

If you want to See

Process string components from lower to higher addresses CLD

Compare a component in one string to a component in another string CMPS

Repeat one string instruction REP

Repeat one string comparison instruction while the components are the same REPE

Compare a string component in memory to a register SCAS

Process string components from higher to lower addresses STD
Instruction Set4-200

REPZ Repeat While Zero REPZ

What It Does

REPE and REPZ repeatedly execute a single string comparison instruction; an unsigned
number in CX tells the microcontroller the maximum number of times to execute the
instruction. Once the instruction compares two components and finds they are not equal,
the instruction is no longer executed.

See REPE on page 4-193 for a complete description.

Form Prefix Opcode Description
Clocks

Am186 Am188

REPZ CMPS m8,m8 F3 A6 Find nonmatching bytes in ES:DI and segment:[SI] 5+22n 5+22n

REPZ CMPS m16,m16 F3 A7 Find nonmatching words in ES:DI and segment:[SI] 5+22n 9+22n

REPZ SCAS m8 F3 AE Find non-AL byte starting at ES:DI 5+15n 5+15n

REPZ SCAS m16 F3 AF Find non-AX word starting at ES:DI 5+15n 9+15n
Instruction Set 4-201

RET Return from Procedure RET

What It Does

Used at the end of a called procedure, RET restores the Instruction Pointer (IP) register
and the Code Segment (CS) register (if necessary) and releases any input parameters from
the stack before resuming the calling procedure.

Syntax

Description

RET transfers control to a return address located on the stack. The address is usually
placed on the stack by a CALL instruction, and the return is made to the instruction that
follows the CALL instruction. The optional numeric parameter to the RET instruction gives
the number of stack bytes to be released after the return address is popped. These items
are typically used as input parameters to the called procedure. For the intrasegment (near)
return, the address on the stack is an offset, which is popped into the instruction pointer.
The CS register is unchanged.

For the intersegment (far) return, the address on the stack is a long pointer. The offset is
popped first, followed by the segment.

Form Opcode Description
Clocks

Am186 Am188

RET C3 Return near to calling procedure 16 20

RET CB Return far to calling procedure 22 30

RET imm16 C2 iw Return near; pop imm16 parameters 18 22

RET imm16 CA iw Return far; pop imm16 parameters 25 33

If the calling procedure doesn’t use the stack to pass input
parameters to this procedure, use this form. Also use this
form if the calling procedure uses the stack to pass input
parameters, and it requires this procedure to pass them
back as output parameters.

If the calling procedure uses the stack to pass input
parameters to this procedure, but it doesn’t need this
procedure to pass them back as output parameters,
use this form to return and pop the input parameters
from the stack.

RET

RET components
Instruction Set4-202

RET RET
Operation It Performs

Flag Settings After Instruction

/* copy return offset from stack */
IP = SS:[SP];

/* remove storage from stack */
SP = SP + 2;

/* If far return */
if opcode==CB or opcode==CA

/* copy return segment from stack */
CS = SS:[SP];

if (operands() = 1)
{

/* remove storage from stack */
SP = SP + 2;
SP = SP + components;

}

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-203

RET RET
Examples

This example writes a zero-terminated string to the serial port in polled mode. The full
address (segment:offset) of the string is passed as an input parameter on the stack.

Tips

The assembler automatically generates a different machine-language opcode for RET
depending on the type of procedure (near or far) in which it is used.

Related Instructions

If you want to See

Call a procedure CALL

Reserve storage on the stack for the local variables of a procedure ENTER

Resume an interrupted procedure IRET

Stop executing the current sequence of instructions and begin another sequence JMP

Remove the local variables of a procedure from the stack LEAVE

; initialize and program serial port for transmit
...

; write zero-terminated string to serial port in polled mode
; input parameters: offset of string pushed on stack

segment of string pushed on stack

SendSerialString PROC NEAR

MOV BP,SP ; use BP to access parameters
PUSHA ; save general registers
PUSH DS ; save DS

MOV AX,[BP]+2 ; get segment of string
MOV DS,AX ; DS points to string segment
MOV AX,[BP]+4 ; get offset of string
MOV SI,AX ; SI points to string offset
CLD ; process string from low to high

SENDSS_LOOP:
LODSB ; load byte from string to AL
CMP AL,0 ; is character a null?
JZ SENDSS_DONE ; if so, then done
mSPRT_TXCHAR_P ; transmit character (macro)
JMP SENDSS_LOOP ; jump to top of loop

SENDSS_DONE:
POP DS ; restore saved DS
POPA ; restore general registers
RET 4 ; pop string address and return

SendSerialString ENDP
Instruction Set4-204

ROL* Rotate Left ROL

What It Does

ROL shifts the bits of a component to the left, overwrites the Carry Flag (CF) with the bit
shifted out of the component, and then copies CF to the lowest bit of the component.

Syntax

Description

ROL shifts the bits upward, except for the top bit, which becomes the bottom bit; ROL also
copies the bit to CF. The second operand (count) indicates the number of rotations. The
operand is either an immediate number or the CL register contents. The microcontroller
does not allow rotation counts greater than 31. If count is greater than 31, only the bottom
5 bits of the operand are rotated.

Operation It Performs

* – Rotate immediates were not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

ROL r/m8,1 D0 /0 Rotate 8 bits of r/m byte left once 2/15 2/15

ROL r/m8,CL D2 /0 Rotate 8 bits of r/m byte left CL times 5+n/17+n 5+n/17+n

ROL r/m8,imm8 C0 /0 ib Rotate 8 bits of r/m byte left imm8 times 5+n/17+n 5+n/17+n

ROL r/m16,1 D1 /0 Rotate 16 bits of r/m word left once 2/15 2/15

ROL r/m16,CL D3 /0 Rotate 16 bits of r/m word left CL times 5+n/17+n 5+n/17+n

ROL r/m16,imm8 C1 /0 ib Rotate 16 bits of r/m word left imm8 times 5+n/17+n 5+n/17+n

ROL component,count

while (i = count; i != 0; i--)
/* perform shifts */
{

/* store highest bit in carry flag */
CF = mostSignificantBit(component);

/* shift left and fill vacancy with bit shifted out */
component = (component << 1) + CF;

}

if (count == 1)
/* single shift */

if (mostSignificantBit(component) != CF)
/* set overflow flag */
OF = 1;

else
/* clear overflow flag */
OF = 0;
Instruction Set 4-205

ROL ROL
Flag Settings After Instruction

If count=0, flags are unaffected. Otherwise, flags are affected as shown below:

Tips

Use ROL to change the order of the bits within a component.

Related Instructions

If you want to See

Rotate the bits of a component and the value of CF to the left RCL

Rotate the bits of a component and the value of CF to the right RCR

Rotate the bits of a component to the right ROR

Multiply an integer by a power of 2 SAL/SHL

Divide an integer by a power of 2 SAR

Shift the bits of the operand downward SHR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

Undefined unless single-bit rotation, then:
OF=1 if result larger than destination operand
OF=0 otherwise

? – – – – – res – res – res

CF=value of top bit copied into it
Instruction Set4-206

ROR* Rotate Right ROR

What It Does

ROR shifts the bits of a component to the right, overwrites the Carry Flag (CF) with the bit
shifted out of the component, and then copies CF to the highest bit of the component.

Syntax

Description

ROR shifts the bits downward, except for the bottom bit, which becomes the top bit. ROR
also copies the bit to CF. The second operand (count) indicates the number of rotations to
make. The operand is either an immediate number or the CL register contents. The
processor does not allow rotation counts greater than 31, using only the bottom five bits of
the operand if it is greater than 31.

Operation It Performs

* – Rotate immediates were not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

ROR r/m8,1 D0 /1 Rotate 8 bits of r/m byte right once 2/15 2/15

ROR r/m8,CL D2 /1 Rotate 8 bits of r/m byte right CL times 5+n/17+n 5+n/17+n

ROR r/m8,imm8 C0 /1 ib Rotate 8 bits of r/m byte right imm8 times 5+n/17+n 5+n/17+n

ROR r/m16,1 D1 /1 Rotate 16 bits of r/m word right once 2/15 2/15

ROR r/m16,CL D3 /1 Rotate 16 bits of r/m word right CL times 5+n/17+n 5+n/17+n

ROR r/m16,imm8 C1 /1 ib Rotate 16 bits of r/m word right imm8 times 5+n/17+n 5+n/17+n

ROR component,count

while (i = count; i != 0; i--)
/* perform shifts */
{

/* store lowest bit in carry flag */
CF = leastSignificantBit(component);

/* shift right and fill vacancy with bit shifted out */
component = (component >> 1) + (CF * pow(2, size(component) - 1));

}

if (count == 1)
/* single shift */

if (leastSignificantBit(component) != nextMostSignificantBit(component))
/* set overflow flag */
OF = 1;

else
/* clear overflow flag */
OF = 0;
Instruction Set 4-207

ROR ROR
Flag Settings After Instruction

If count=0, flags are unaffected. Otherwise, flags are affected as shown below:

Examples

This example determines the number of bits which are set in the AX register.

Tips

Use ROR to change the order of the bits within a component.

Related Instructions

If you want to See

Rotate the bits of a component and the value of CF to the left RCL

Rotate the bits of a component and the value of CF to the right RCR

Rotate the bits of a component to the left ROL

Multiply an integer by a power of 2 SAL/SHL

Divide an integer by a power of 2 SAR

Shift the bits of the operand downward SHR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

Undefined unless single-bit rotation, then:
OF=1 if result larger than destination operand
OF=0 otherwise

? – – – – – res – res – res

CF=value of top bit copied into it

MOV CX,16
MOV BX,0 ; BX contains the number of bits

; which are set in AX
LOOP_START:

ROR AX,1
JC INC_COUNT ; if carry flag is set, increment the count
LOOP LOOP_START
JMP DONE

INC_COUNT:
INC BX ; increment the count
LOOP LOOP_START

DONE:
Instruction Set4-208

Ins
4

SAHF Store AH in Flags SAHF

What It Does

SAHF copies AH to the low byte of the Processor Status Flags (FLAGS) register.

Syntax

Description

SAHF loads the SF, ZF, AF, PF, and CF bits in the FLAGS register with values from the
AH register, from bits 7, 6, 4, 2, and 0, respectively.

Operation It Performs

Flag Settings After Instruction

Examples

This example sets the Carry Flag (CF) to 1. Normally, you use STC to perform this operation.

Form Opcode Description
Clocks

Am186 Am188

SAHF 9E Store AH in low byte of the Processor Status Flags register 3 3

SAHF

/* copy AH to low byte of FLAGS */
FLAGS = FLAGS | (0x00FF & (AH & 0xD5));

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

AF=value in bit 4 of AH register

PF=value in bit 2 of AH register

CF=value in bit 0 of AH register

– – – – res res res

SF=value in bit 7 of AH register

ZF=value in bit 6 of AH register

; set CF to 1
LAHF ; copy low byte of FLAGS to AH
OR AH,00000001b ; set bit 0 (CF) to 1
SAHF ; copy AH to low byte of FLAGS
truction Set 4-209

SAHF SAHF
This example prevents an intervening instruction from modifying the Carry Flag (CF), which
is used to indicate the status of a hardware device.

Tips

SAHF is provided for compatibility with the 8080 microprocessor. It is now customary to
use POPF instead.

Related Instructions

If you want to See

Process string components from lower to higher addresses CLD

Disable all maskable interrupts CLI

Copy the low byte of the Processor Status Flags register to AH LAHF

Pop the top component from the stack into the Processor Status Flags register POPF

Push the Processor Status Flags register onto the stack PUSHF

Process string components from higher to lower addresses STD

Enable maskable interrupts that are not masked by their interrupt control registers STI

UMINUEND DW 6726 ; 1A46h
USUBTRAHEND DW 48531 ; BD93h

; check to see if device is on or off
; return result in CF: 1 = on, 0 = off
CALL CHECK_DEVICE

; set up registers
MOV CX,UMINUEND ; CX = 1A46h
MOV BX,USUBTRAHEND ; BX = BD93h

; save lower five flags in AH
LAHF

; unsigned subtraction: CX = CX - BX
SUB CX,BX ; CX = 5CB3h, CF = 1

; restore saved flags from AH
SAHF ; CF = outcome of CHECK_DEVICE

; if device is off
JNC ALERT_USER

; else
JMP OKAY

ALERT_USER:
...
JMP CONTINUE

OKAY:
...

CONTINUE:
...
Instruction Set4-210

SAL* Shift Arithmetic Left SAL
SHL Shift Left

What It Does

SAL and SHL shift the bits of a component to the left, filling vacant bits with 0s.

Syntax

Description

SAL and SHL shift the bits of the operand upward. They shift the high-order bit into CF and
clear the low-order bit. The second operand (count) indicates the number of shifts to make.
The operand is either an immediate number or the CL register contents. The processor
does not allow shift counts greater than 31; it uses only the bottom five bits of the operand
if it is greater than 31.

* – Shift immediates were not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

SAL r/m8,1 D0 /4 Multiply r/m byte by 2, once 2/15 2/15

SAL r/m8,CL D2 /4 Multiply r/m byte by 2, CL times 5+n/17+n 5+n/17+n

SAL r/m8,imm8 C0 /4 ib Multiply r/m byte by 2, imm8 times 5+n/17+n 5+n/17+n

SAL r/m16,1 D1 /4 Multiply r/m word by 2, once 2/15 2/15

SAL r/m16,CL D3 /4 Multiply r/m word by 2, CL times 5+n/17+n 5+n/17+n

SAL r/m16,imm8 C1 /4 ib Multiply r/m word by 2, imm8 times 5+n/17+n 5+n/17+n

SHL r/m8,1 D0 /4 Multiply r/m byte by 2, once 2/15 2/15

SHL r/m8,CL D2 /4 Multiply r/m byte by 2, CL times 5+n/17+n 5+n/17+n

SHL r/m8,imm8 C0 /4 ib Multiply r/m byte by 2, imm8 times 5+n/17+n 5+n/17+n

SHL r/m16,1 D1 /4 Multiply r/m word by 2, once 2/15 2/15

SHL r/m16,CL D3 /4 Multiply r/m word by 2, CL times 5+n/17+n 5+n/17+n

SHL r/m16,imm8 C1 /4 ib Multiply r/m word by 2, imm8 times 5+n/17+n 5+n/17+n

SAL component,count

SHL component,count
Instruction Set 4-211

SAL SAL
Operation It Performs

Flag Settings After Instruction

If count=0, flags are unaffected. Otherwise, flags are affected as shown below:

Examples

This example multiplies a 16-bit integer in memory by 8.

This example multiplies an 8-bit unsigned number in AL by 16.

while (i = count; i != 0; i--)
/* perform shifts */
{

/* store highest bit in carry flag */
CF = mostSignificantBit(component);

/* shift left and fill vacancy with 0 */
component = component << 1;

}

if (count == 1)
/* single shift */

if (mostSignificantBit(component) != CF)
/* set overflow flag */
OF = 1;

else
/* clear overflow flag */
OF = 0;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

Undefined unless single-bit shift, then:
OF=1 if result larger than destination operand
OF=0 otherwise

? – – – res ? res res 0

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

CF=0 unless shift lengths are less than or
equal to the size of the shifted operand,
then:
CF=1 for carry or borrow to high-order bit
CF=0 otherwise

POWER2 EQU 3 ; multiply by 8
INTEGER DW -360 ; FE98h

; signed multiplication by 8: INTEGER = INTEGER * pow(2,POWER2)
SAL INTEGER,POWER2 ; INTEGER = F4C0h = -2880

POWER2 EQU 4 ; multiply by 16
UNUMBER DB 10 ; 0Ah

; unsigned multiplication by 16: AL = AL * pow(2,POWER2)
MOV AL,UNUMBER ; AL = 0Ah = 10
SHL AL,POWER2 ; AL = A0h = 160
Instruction Set4-212

SAL SAL
This example extracts the middle byte of a word so it can be used by another instruction.

Tips

Use SHL to isolate part of a component.

Use SAL to multiply integers by powers of 2. When multiplying an integer by a power of 2,
it is faster to use SAL than IMUL.

Related Instructions

If you want to See

Multiply two integers IMUL

Multiply two unsigned numbers MUL

Rotate the bits of a component and the value of CF to the left RCL

Rotate the bits of a component and the value of CF to the right RCR

Rotate the bits of a component to the left ROL

Rotate the bits of a component to the right ROR

Divide an integer by a power of 2 SAR

Shift the bits of the operand downward SHR

SETTINGS DW 1234h

; extract middle byte of AX and place in AH
MOV AX,SETTINGS ; AX = 1234h
AND AX,0FF0h ; mask middle byte: AX = 0230h
SHL AX,4 ; shift middle byte into AH: AX = 2300h
Instruction Set 4-213

SAR* Shift Arithmetic Right SAR

What It Does

SAR shifts the bits of a component to the right, filling vacant bits with the highest bit of the
original component.

Syntax

Description

SAR shifts the bits of the operand downward and shifts the low-order bit into CF. The effect
is to divide the operand by 2. SAR performs a signed divide with rounding toward negative
infinity (unlike IDIV); the high-order bit remains the same. The second operand (count)
indicates the number of shifts to make. The operand is either an immediate number or the
CL register contents. The processor does not allow shift counts greater than 31; it only
uses the bottom five bits of the operand if it is greater than 31.

Operation It Performs

* – Shift immediates were not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

SAR r/m8,1 D0 /7 Perform a signed division of r/m byte by 2, once 2/15 2/15

SAR r/m8,CL D2 /7 Perform a signed division of r/m byte by 2, CL times 5+n/17+n 5+n/17+n

SAR r/m8,imm8 C0 /7 ib Perform a signed division of r/m byte by 2, imm8 times 5+n/17+n 5+n/17+n

SAR r/m16,1 D1 /7 Perform a signed division of r/m word by 2, once 2/15 2/15

SAR r/m16,CL D3 /7 Perform a signed division of r/m word by 2, CL times 5+n/17+n 5+n/17+n

SAR r/m16,imm8 C1 /7 ib Perform a signed division of r/m word by 2, imm8 times 5+n/17+n 5+n/17+n

SAR component,count

/* store highest bit */
temp = mostSignificantBit(component);

while (i = count; i != 0; i--)
/* perform shifts */
{

/* save lowest bit in carry flag */
CF = leastSignificantBit(component);

/* shift right and fill vacancy with sign */
component = cat(temp,(component>>1));

}

if (count == 1)
/* single shift */

OF = 0;
Instruction Set4-214

SAR SAR
Flag Settings After Instruction

If count=0, flags are unaffected. Otherwise, flags are affected as shown below:

Examples

This example divides an 8-bit integer in memory by 2.

This example divides a 16-bit integer in DX by 4.

Tips

If the integer dividend will fit in a 16-bit register and you don’t need the remainder, use SAR
to divide integers by powers of 2. When dividing an integer by a power of 2, it is faster to
use SAR than IDIV.

Related Instructions

If you want to See

Divide an unsigned number by another unsigned number DIV

Divide an integer by another integer IDIV

Rotate the bits of a component and the value of CF to the left RCL

Rotate the bits of a component and the value of CF to the right RCR

Rotate the bits of a component to the left ROL

Rotate the bits of a component to the right ROR

Multiply an integer by a power of 2 SAL/SHL

Divide an unsigned number by a power of 2 SHR

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

Undefined unless single-bit shift, then:
OF=1 if result larger than destination operand
OF=0 otherwise

? – – – res ? res res 0

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

CF=0 unless shift lengths are less than or
equal to the size of the shifted operand,
then:
CF=1 for carry or borrow to high-order bit
CF=0 otherwise

INTEGER DB -45 ; D3h

; signed division by 2: INTEGER = INTEGER / 2
SAR INTEGER,1 ; INTEGER = EAh = -22

; remainder in CF

POWER2 EQU 2 ; divide by 4
INTEGER DW -21 ; FFEBh

; signed division by 4: DX = DX / pow(2,POWER2)
MOV DX,INTEGER ; DX = FFEBh = -21
SAR DX,POWER2 ; DX = FFFBh = -5

; remainder is lost
Instruction Set 4-215

SBB Subtract Numbers with Borrow SBB

What It Does

SBB subtracts an integer or an unsigned number and the value of the Carry Flag (CF) from
another number of the same type.

Syntax

Description

SBB adds the second operand (subtrahend) to CF and subtracts the result from the first
operand (difference). The result of the subtraction is assigned to the first operand and the
flags are set accordingly.

Operation It Performs

Form Opcode Description
Clocks

Am186 Am188

SBB AL,imm8 1C ib Subtract immediate byte from AL with borrow 3 3

SBB AX,imm16 1D iw Subtract immediate word from AX with borrow 4 4

SBB r/m8,imm8 80 /3 ib Subtract immediate byte from r/m byte with borrow 4/16 4/16

SBB r/m16,imm16 81 /3 iw Subtract immediate word from r/m word with borrow 4/16 4/20

SBB r/m16,imm8 83 /3 ib Subtract sign-extended imm. byte from r/m word with borrow 4/16 4/20

SBB r/m8,r8 18 /r Subtract byte register from r/m byte with borrow 3/10 3/10

SBB r/m16,r16 19 /r Subtract word register from r/m word with borrow 3/10 3/14

SBB r8,r/m8 1A /r Subtract r/m byte from byte register with borrow 3/10 3/10

SBB r16,r/m16 1B /r Subtract r/m word from word register with borrow 3/10 3/14

SBB difference,subtrahend

if (size(difference) == 16)
if (size(subtrahend) == 8)
/* extend sign of subtrahend */

if (subtrahend < 0)
subtrahend = 0xFF00 | subtrahend;

else
subtrahend = 0x00FF & subtrahend;

/* subtract with borrow */
difference = difference - subtrahend - CF;
Instruction Set4-216

SBB SBB
Flag Settings After Instruction

Examples

This example subtracts one 64-bit unsigned number in a register (the subtrahend) from
another 64-bit unsigned number in memory (the minuend).

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

OF=1 if result larger than destination operand
OF=0 otherwise

AF=1 if carry or borrow to low nibble
AF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

CF=1 for carry or borrow to high-order bit
CF=0 otherwise

– – – res res res

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

UMINUEND DQ 3B865520F4DE89A1h
USUBTRAHEND DQ 0C285DE70893BB2Ah
WSIZE EQU 2
QSIZE EQU 8

; 64-bit unsigned subtraction: UMINUEND = UMINUEND - USUBTRAHEND
; left (low) word subtraction
MOV AX,WORD PTR USUBTRAHEND ; copy subtrahend
SUB WORD PTR UMINUEND,AX ; subtract

; set up bases and index
MOV SI,WORD PTR UMINUEND ; minuend base
MOV DI,WORD PTR USUBTRAHEND ; subtrahend base
MOV BX,WSIZE ; set up index

NEXT:
; next higher word subtraction
MOV AX,[BX][DI] ; copy subtrahend
SBB [BX][SI],AX ; subtract with borrow

; increase index and compare
ADD BX,WSIZE ; point to next word
CMP BX,QSIZE ; is this the last word?

; if not last word, then jump to top of loop
JNE NEXT
Instruction Set 4-217

SBB SBB
This example subtracts one 32-bit integer in a register (the subtrahend) from another 32-
bit integer in memory (the minuend). This is accomplished by subtracting one word at a
time. The first subtraction uses SUB, and the subsequent subtraction uses SBB in case a
borrow was generated by the previous subtraction. (CF doubles as the borrow flag. If CF
is set, the previous subtraction generated a borrow. Otherwise, the previous subtraction
did not generate a borrow.)

Tips

To subtract an integer or an unsigned number located in memory from another number of
the same type that is also located in memory, copy one of them to a register before using
SBB.

SBB requires both operands to be the same size. Before subtracting an 8-bit integer from
a 16-bit integer, convert the 8-bit integer to its 16-bit equivalent using CBW. To convert an
8-bit unsigned number to its 16-bit equivalent, use MOV to copy 0 to AH.

To subtract numbers larger than 16 bits, use SUB to subtract the low words, and then use
SBB to subtract each of the subsequently higher words.

The processor does not provide an instruction that performs decimal subtraction. To
subtract decimal numbers, use SBB or SUB to perform binary subtraction, and then convert
the result to decimal using AAS or DAS.

ADC, ADD, SBB, and SUB set AF when the result needs to be converted for decimal
arithmetic. AAA, AAS, DAA, and DAS use AF to determine whether an adjustment is
needed. This is the only use for AF.

Related Instructions

If you want to See

Convert an integer to its 16-bit equivalent CBW

Convert an 8-bit unsigned binary difference to its packed decimal equivalent DAS

Change the sign of an integer NEG

Subtract a number from another number SUB

SMINUEND DD 44761089 ; 02AB0001h
SSUBTRAHEND DD -990838848 ; C4F0FFC0h

; 32-bit integer subtraction: SMINUEND = SMINUEND - SSUBTRAHEND

; low word subtraction
MOV AX,WORD PTR SSUBTRAHEND ; copy subtrahend
SUB WORD PTR SMINUEND,AX ; subtract

; high word subtraction
MOV AX,WORD PTR SSUBTRAHEND + 2 ; copy subtrahend
SBB WORD PTR SMINUEND + 2,AX ; subtract with borrow

; SMINUEND = C79BFFC1h
; = -946077759
Instruction Set4-218

SCAS Scan String for Component SCAS
SCASB Scan String for Byte
SCASW Scan String for Word

What It Does

SCAS compares a component in a string to a register.

Syntax

Description

SCAS subtracts the memory byte or word at the destination index register from the AL or
AX register. The result is discarded and only the flags are set. The operand must be
addressable from the ES segment. No segment override is possible. The contents of the
destination index register determine the address of the memory data being compared, not
the SCAS instruction operand. The operand validates ES segment addressability and
determines the data type. Load the correct index value into the DI register before executing
the SCAS instruction.

After the comparison, the destination index register automatically updates. If the Direction
Flag (DF) is 0 (see CLD on page 4-231), the destination index register increments. If DF
is 1 (see STD on page 4-231), it decrements. The increment or decrement amount is 1 for
bytes or 2 for words.

The SCASB and SCASW instructions are synonyms for the byte and word SCAS
instructions that do not require operands. They are simpler to code, but provide no type or
segment checking.

Form Opcode Description
Clocks

Am186 Am188

SCAS m8 AE Compare byte AL to ES:[DI]; update DI 15 19

SCAS m16 AF Compare word AX to ES:[DI]; update DI 15 19

SCASB AE Compare byte AL to ES:[DI]; update DI 15 19

SCASW AF Compare word AX to ES:[DI]; update DI 15 19

Regardless of the form of SCAS
you use, destination is always
ES:[DI]. Before using any form of
SCAS, make sure that ES contains
the segment of the string and DI
contains the offset of the string.

To compare AL to a byte within a string
located in the segment specified in
ES, use this form.

To compare AX to a word within a string
located in the segment specified in ES,
use this form.

To have the assembler type-check
your operand, use this form. The
assembler uses the definition of the
string component to determine which
register to use.

SCAS destination

SCASB

SCASW
Instruction Set 4-219

SCAS SCAS
Operation It Performs

Flag Settings After Instruction

if (size(destination) == 8)
/* compare bytes */
{

temp = AL - ES:[DI];
if (DF == 0) /* forward */

increment = 1;
else /* backward */

increment = -1;
}

if (size(destination) == 16)
/* compare words */
{

temp = AX - ES:[DI];
if (DF == 0) /* forward */

increment = 2;
else /* backward */

increment = -2;
}

/* point to next string component */
DI = DI + increment;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

OF=1 if result larger than destination operand
OF=0 otherwise

AF=1 if carry or borrow to low nibble
AF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

CF=1 for carry or borrow to high-order bit
CF=0 otherwise

– – – res res res

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0
Instruction Set4-220

SCAS SCAS
Examples

This example scans a list of words in memory until it finds a value that is different or all
words are compared. The microcontroller scans the words, one by one, from first to last.

; defined in SEG_L
LIST DW 32 DUP (?)
FILL EQU FFFFh

; notify assembler: DS and ES specify the
; same segment of memory
ASSUME DS:SEG_L, ES:SEG_L

; set up segment registers with same segment
MOV AX,SEG_L ; load segment into DS and ES
MOV DS,AX ; DS points to SEG_L
MOV ES,AX ; ES points to SEG_L

; initialize and use list
...

; set up registers and flags
MOV AX,FILL ; copy value to AL
LEA DI,LIST ; load offset (segment = ES)
MOV CX,LENGTH LIST ; set up counter
CLD ; process list low to high

; scan list for different value
REPZ SCASW

; if list contains different value
JNZ ERROR
; else
JMP OKAY

ERROR:
...
JMP CONTINUE

OKAY:
...

CONTINUE:
...
Instruction Set 4-221

SCAS SCAS
This example scans a string in memory until it finds a character or the entire string is
scanned. The microcontroller scans the bytes, one by one, from first to last. If the string
contains the character, the microcontroller sets the Carry Flag (CF) to 1; otherwise, it clears
CF to 0.

; defined in SEG_R segment
STRING DB 10 DUP (?)
AT_SIGN EQU ’@’ ; 40h

; notify assembler: DS and ES specify the
; same segment of memory
ASSUME DS:SEG_R, ES:SEG_R

; set up segment registers with same segment
MOV AX,SEG_R ; load segment into DS and ES
MOV DS,AX ; DS points to SEG_R
MOV ES,AX ; ES points to SEG_R

; scan string for character

; initialize and use string
...

; set up registers and flags
MOV AL,AT_SIGN ; copy character to AL
LEA DI,STRING ; load offset (segment = ES)
MOV CX,LENGTH STRING ; set up counter
CLD ; process string low to high

; scan string for character
REPNE SCASB

; if string contains character
JE FOUND
; else
JMP NOT_FOUND

FOUND:
STC ; indicate found
JMP CONTINUE

NOT_FOUND:
CLC ; indicate not found

CONTINUE:
...
Instruction Set4-222

SCAS SCAS
Tips

Before using SCAS, always be sure to: set up DI with the offset of the string, set up CX
with the length of the string, and use CLD (forward) or STD (backward) to establish the
direction for string processing.

To scan a string for a value that is different from a given value, use the REPE (or REPZ)
prefix to execute SCAS repeatedly. If all the components match the given value, ZF is set
to 1.

To scan a string for a value that is the same as a given value, use the REPNE (or REPNZ)
prefix to execute SCAS repeatedly. If no components match the given value, ZF is cleared
to 0.

The string instructions always advance SI and/or DI, regardless of the use of the REP prefix.
Be sure to set or clear DF before any string instruction.

Related Instructions

If you want to See

Process string components from lower to higher addresses CLD

Compare a component in one string with a component in another string CMPS

Repeat one string comparison instruction while the components are the same REPE

Repeat one string comparison instruction while the components are not the same REPNE

Process string components from higher to lower addresses STD
Instruction Set 4-223

SHL* Shift Left SHL

What It Does

SAL and SHL shift the bits of a component to the left, filling vacant bits with 0s.

See SAL on page 4-211 for a complete description.

* – Shift immediates were not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

SHL r/m8,1 D0 /4 Multiply r/m byte by 2, once 2/15 2/15

SHL r/m8,CL D2 /4 Multiply r/m byte by 2, CL times 5+n/17+n 5+n/17+n

SHL r/m8,imm8 C0 /4 ib Multiply r/m byte by 2, imm8 times 5+n/17+n 5+n/17+n

SHL r/m16,1 D1 /4 Multiply r/m word by 2, once 2/15 2/15

SHL r/m16,CL D3 /4 Multiply r/m word by 2, CL times 5+n/17+n 5+n/17+n

SHL r/m16,imm8 C1 /4 ib Multiply r/m word by 2, imm8 times 5+n/17+n 5+n/17+n
Instruction Set4-224

SHR* Shift Right SHR

What It Does

SHR shifts the bits of a component to the right, filling vacant bits with 0s.

Syntax

Description

SHR shifts the bits of the operand downward. SHR shifts the low-order bit into CF. The
effect is to divide the operand by 2. SHR performs an unsigned divide and clears the high-
order bit. The second operand indicates the number of shifts to make. The operand is either
an immediate number or the CL register contents. The processor does not allow shift counts
greater than 31; it only uses the bottom 5 bits of the operand if it is greater than 31.

Operation It Performs

* – Shift immediates were not available on the original 8086/8088 systems.

Form Opcode Description
Clocks

Am186 Am188

SHR r/m8,1 D0 /5 Divide unsigned r/m byte by 2, once 2/15 2/15

SHR r/m8,CL D2 /5 Divide unsigned r/m byte by 2, CL times 5+n/17+n 5+n/17+n

SHR r/m8,imm8 C0 /5 ib Divide unsigned r/m byte by 2, imm8 times 5+n/17+n 5+n/17+n

SHR r/m16,1 D1 /5 Divide unsigned r/m word by 2, once 2/15 2/15

SHR r/m16,CL D3 /5 Divide unsigned r/m word by 2, CL times 5+n/17+n 5+n/17+n

SHR r/m16,imm8 C1 /5 ib Divide unsigned r/m word by 2, imm8 times 5+n/17+n 5+n/17+n

SHR component,count

while (i = count; i != 0; i--)
/* perform shifts */
{

/* save lowest bit in carry flag */
CF = leastSignificantBit(component);

/* shift right and fill vacancy with 0 */
component = component >> 1;

}

if (count == 1)
/* single shift */

OF = temp;
Instruction Set 4-225

SHR SHR
Flag Settings After Instruction

If count=0, flags are unaffected. Otherwise, flags are affected as shown below:

Examples

This example divides an 8-bit unsigned number in memory by 2.

This example counts the number of bits in a word that are set to 1. LOOP implements
a construct equivalent to the C-language do-while loop. AND and JZ implement an
if statement within the loop.

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

Undefined unless single-bit shift, then:
OF=1 if result larger than destination operand
OF=0 otherwise

? – – – res ? res res 0

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

CF=0 unless shift lengths are less than or
equal to the size of the shifted operand,
then:
CF=1 for carry or borrow to high-order bit
CF=0 otherwise

POWER2 EQU 1 ; divide by 2
UNUMBER DB 253 ; FDh

; unsigned division by 2: UNUMBER = UNUMBER / pow(2,POWER2)
SHR UNUMBER,POWER2 ; UNUMBER = 7Dh = 125

; remainder is lost

INDICATORS DW 10110111b ; B7h

; count number of set bits in word
; set up registers
MOV DX,INDICATORS ; DX = B7h
MOV CX,8 * (SIZE INDICATORS) ; set up counter
MOV BX,0 ; initialize # of set bits

TEST_BIT:
MOV AX,DX ; load copy of indicators into AX
AND AX,1h ; is low bit set?
JZ NEXT_BIT ; if not, then jump
INC BX ; if so, add 1 to total

NEXT_BIT:
SHR DX,1 ; shift next bit into low bit
LOOP TEST_BIT ; decrement CX

; if CX is not 0, jump to top of loop
Instruction Set4-226

SHR SHR
Tips

Use SHR to isolate part of a component.

If the dividend will fit in a 16-bit register and you don’t need the remainder, use SHR to
divide unsigned numbers by powers of 2. When dividing an unsigned number by a power
of 2, it is faster to use SHR than DIV.

Related Instructions

If you want to See

Divide an unsigned number by another unsigned number DIV

Divide an integer by another integer IDIV

Rotate the bits of a component and the value of CF to the left RCL

Rotate the bits of a component and the value of CF to the right RCR

Rotate the bits of a component to the left ROL

Rotate the bits of a component to the right ROR

Multiply an integer by a power of 2 SAL/SHL

Divide an integer by a power of 2 SAR
Instruction Set 4-227

STC Set Carry Flag STC

What It Does

STC sets the Carry Flag (CF) to 1.

Syntax

Description

STC sets CF.

Operation It Performs

Flag Settings After Instruction

Examples

This example rotates the bits of a word in memory, maintaining a 1 in the low bit of the word.

Form Opcode Description
Clocks

Am186 Am188

STC F9 Set the Carry Flag to 1 2 2

STC

/* set carry flag */
CF = 1;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res 1

BITS DW 0100100010001001b ; 4889h

; rotate word, maintaining 1 in low bit
STC ; maintain 1 in low bit: CF = 1
RCL BITS,1 ; BITS = 9113h = 1001000100010011b

; CF = 0
Instruction Set4-228

STC STC
This example scans a string in memory until it finds a character or the entire string is
scanned. The microcontroller scans the bytes, one by one, from first to last. If the string
contains the character, the microcontroller sets the Carry Flag (CF) to 1; otherwise, it clears
CF to 0.

; defined in SEG_R segment
STRING DB 10 DUP (?)
AT_SIGN EQU ’@’ ; 40h

; notify assembler: DS and ES specify the
; same segment of memory
ASSUME DS:SEG_R, ES:SEG_R

; set up segment registers with same segment
MOV AX,SEG_R ; load segment into DS and ES
MOV DS,AX ; DS points to SEG_R
MOV ES,AX ; ES points to SEG_R

; scan string for character

; initialize and use string
...

; set up registers and flags
MOV AL,AT_SIGN ; copy character to AL
LEA DI,STRING ; load offset (segment = ES)
MOV CX,LENGTH STRING ; set up counter
CLD ; process string low to high

; scan string for character
REPNE SCASB

; if string contains character
JE FOUND
; else
JMP NOT_FOUND

FOUND:
STC ; indicate found
JMP CONTINUE

NOT_FOUND:
CLC ; indicate not found

CONTINUE:
...
Instruction Set 4-229

STC STC
Tips

You can use CF to indicate the outcome of a procedure, such as when searching a string
for a character. For instance, if the character is found, you can use STC to set CF to 1; if
the character is not found, you can use CLC to clear CF to 0. Then, subsequent instructions
that do not affect CF can use its value to determine the appropriate course of action.

To rotate a 1 into a component, use STC to set CF to 1 before using RCL or RCR.

Related Instructions

If you want to See

Clear CF to 0 CLC

Toggle the value of CF CMC
Instruction Set4-230

STD Set Direction Flag STD

What It Does

STD sets the Direction Flag (DF) to 1, causing subsequent string instructions to process
the components of a string from a higher address to a lower address.

Syntax

Description

STD sets the Direction Flag, causing all subsequent string operations to decrement the
index registers on which they operate, SI or DI or both.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

STD FD Set the Direction Flag so the Source Index (SI) and/or
the Destination Index (DI) registers will decrement during
string instructions

2 2

STD

/* process string components from higher to lower addresses */
DF = 1;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– 1 – – – – res – res – res –
Instruction Set 4-231

STD STD
Examples

This example fills a workspace in memory with multiple copies of a string of ASCII characters
(a pattern) in the same segment. The characters are copied, one by one, from last to first.

; defined in SEG_T segment
WORKSPACE DB 100h DUP (?)
; the following code requires FILLER to be
; reserved immediately following WORKSPACE
FILLER DB ”Am186EM-”

; notify assembler: DS and ES specify the
; same segment of memory
ASSUME DS:SEG_T, ES:SEG_T

; set up segment registers with same segment
MOV AX,SEG_T ; load segment into DS and ES
MOV DS,AX ; DS points to SEG_T
MOV ES,AX ; ES points to SEG_T

; fill workspace with pattern

; load source offset (segment = DS)
LEA SI,FILLER + SIZE FILLER - TYPE FILLER

; load destination offset (segment = ES)
LEA DI,FILLER - TYPE FILLER

MOV CX,LENGTH WORKSPACE ; set up counter
STD ; process string high to low

; fill destination string with pattern
REP MOVSB
Instruction Set4-232

STD STD
This example copies a string of 16-bit integers in one segment of memory to a string in
another segment. The words are copied, one by one, from last to first.

; defined in SEG_A
STRING1 DW -30000,10250,31450,21540,-16180
S1_LENGTH EQU 5

; defined in SEG_B
STRING2 DW S1_LENGTH DUP (?)
S2_END_ADDR DD STRING2 + SIZE STRING2 - TYPE STRING2

; notify assembler: DS and ES specify
; different segments of memory
ASSUME DS:SEG_A, ES:SEG_B

; set up segment registers with different segments
MOV AX,SEG_A ; load one segment into DS
MOV DS,AX ; DS points to SEG_A
MOV AX,SEG_B ; load another segment into ES
MOV ES,AX ; ES points to SEG_B

; copy string in segment A to string in segment B

; save ES
PUSH ES

; set up registers and flags
LEA SI,STRING1 ; load source offset (segment = DS)

; load dest. segment into ES and offset into DI
LES DI,ES:S2_END_ADDR
MOV CX,S1_LENGTH ; set up counter
STD ; process string high to low

; copy source string to destination
REP MOVSW

; restore saved ES
POP ES
Instruction Set 4-233

STD STD
Tips

Before using one of the string instructions (CMPS, INS, LODS, MOVS, OUTS, SCAS, or
STOS), always set up CX with the length of the string, and use CLD (forward) or STD
(backward) to establish the direction for string processing.

The string instructions always advance SI and/or DI, regardless of the use of the REP prefix.
Be sure to set or clear DF before any string instruction.

Related Instructions

If you want to See

Process string components from lower to higher addresses CLD

Compare a component in one string with a component in another string CMPS

Copy a component from a port in I/O memory to a string in main memory INS

Copy a component from a string in memory to a register LODS

Copy a component from one string in memory to another string in memory MOVS

Copy a component from a string in main memory to a port in I/O memory OUTS

Compare a component in a string to a register SCAS

Copy a component from a register to a string in memory STOS
Instruction Set4-234

STI Set Interrupt-Enable Flag STI

What It Does

STI sets the Interrupt-Enable Flag (IF), enabling all maskable interrupts that are not masked
by their interrupt control registers.

Syntax

Description

STI sets the Interrupt-Enable Flag (IF). The processor responds to external interrupts after
executing the next instruction if that instruction does not clear IF. If external interrupts are
disabled and the program executes STI before a RET instruction (such as at the end of a
subroutine), RET executes before processing any external interrupts. If external interrupts
are disabled and the program executes STI before a CLI instruction, no external interrupts
are processed because CLI clears IF.

STI has no affect on nonmaskable interrupts, or on software-generated interrupts or traps
(i.e., INT x).

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

STI FB Enable maskable interrupts after the next instruction 2 2

STI

/* enable maskable interrupts */
IF = 1;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – 1 – – – res – res – res –
Instruction Set 4-235

STI STI
Examples

This example of an interrupt-service routine: enables interrupts so that interrupt nesting
can occur, resets a device, disables interrupts until the interrupted procedure is resumed,
and then clears the in-service bits in the In-Service (INSERV) register by writing to the End-
Of-Interrupt (EOI) register.

Tips

Before you use STI, make sure that the stack is initialized (SP and SS).

If you disable maskable interrupts using CLI, the microcontroller does not recognize
maskable interrupt requests until the instruction that follows STI is executed.

After using CLI to disable maskable interrupts, use STI to enable them as soon as possible
to reduce the possibility of missing maskable interrupt requests.

INT clears IF to 0.

IRET restores IF to its value prior to calling the interrupt routine.

Related Instructions

If you want to See

Disable all maskable interrupts CLI

; the microcontroller pushes the flags onto
; the stack before executing this routine

; enable interrupt nesting during routine
ISR1 PROC FAR

PUSHA ; save general registers
STI ; enable unmasked maskable interrupts

mRESET_DEVICE1 ; perform operation (macro)
CLI ; disable maskable interrupts until IRET

; reset in-service bits by writing to EOI register
MOV DX,INT_EOI_ADDR ; address of EOI register
MOV AX,8000h ; nonspecific EOI
OUT DX,AX ; write to EOI register

POPA ; restore general registers
IRET

ISR1 ENDP

; the microcontroller pops the flags from the stack
; before returning to the interrupted procedure
Instruction Set4-236

STOS Store String Component STOS
STOSB Store String Byte
STOSW Store String Word

What It Does

STOS copies a component from a register to a string.

Syntax

Description

STOS transfers the contents of the AL or AX register to the memory byte or word given by
the destination register (DI) relative to the ES segment. The destination operand must be
addressable from the ES register. A segment override is not possible. The contents of the
destination register determine the destination address. STOS does not use an explicit
operand. This operand only validates ES segment addressability and determines the data
type. You must load the correct index value into the destination register before executing
the STOS instruction.

After the transfer, STOS automatically updates the Destination Index (DI) register. If the
Direction Flag (DF) is 0 (see CLD on page 4-29), the register increments. If DF is 1 (see
STD on page 4-231), the register decrements. The increment or decrement amount is 1
for a byte or 2 for a word.

STOSB and STOSW are synonyms for the byte and word STOS instructions. These forms
do not require an operand and are simpler to use, but provide no type or segment checking.

Form Opcode Description
Clocks

Am186 Am188

STOS m8 AA Store AL in byte ES:[DI]; update DI 10 10

STOS m16 AB Store AX in word ES:[DI]; update DI 10 14

STOSB AA Store AL in byte ES:[DI]; update DI 10 10

STOSW AB Store AX in word ES:[DI]; update DI 10 14

STOS destination

STOSB

STOSW

To have the assembler type-check
your operand, use this form. The
assembler uses the definition of the
string component to determine which
register to use.

Regardless of the form of STOS
you use, destination is always
ES:[DI]. Before using any form of
STOS, make sure that ES contains
the segment of the string and DI
contains the offset of the string.

To copy AL to a byte within a string
located in the segment specified in
ES, use this form.

To copy AX to a word within a string
located in the segment specified in ES,
use this form.
Instruction Set 4-237

STOS STOS
Operation It Performs

Flag Settings After Instruction

Examples

This example fills a string in memory with a character. Because the Direction Flag (DF) is
cleared to 0 using CLD, the bytes are filled, one by one, from first to last.

if (size(destination) == 8)
/* store bytes */
{

ES:[DI] = AL;
if (DF == 0) /* forward */

increment = 1;
else /* backward */

increment = -1;
}

if (size(destination) == 16)
/* store words */
{

ES:[DI] = AX;
if (DF == 0) /* forward */

increment = 2;
else /* backward */

increment = -2;
}

/* point to location for next string component */
DI = DI + increment;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –

STRING DB 128 DUP (?)
ASTERISK DB ’*’ ; 2Ah

; fill string with character

; set up registers and flags
MOV AL,ASTERISK ; copy character to AL
LEA DI,STRING ; load offset (segment = DS)
MOV CX,LENGTH STRING ; set up counter
CLD ; process string low to high

; fill string
REP STOSB
Instruction Set4-238

STOS STOS
Tips

Before using STOS, always be sure to: set up DI with the offset of the string, set up CX
with the length of the string, and use CLD (forward) or STD (backward) to establish the
direction for string processing.

To fill a string with a given value, use the REP prefix to execute STOS repeatedly.

To perform a custom operation on each component in a string, use LODS and STOS within
a loop. Within the loop, use the following sequence of instructions: Use LODS to copy a
component from memory, use other instructions to perform the custom operation, and then
use STOS to copy the component back to memory. To overwrite the original string with the
results, set up DI with the same offset as SI before beginning the loop.

The string instructions always advance SI and/or DI, regardless of the use of the REP prefix.
Be sure to set or clear DF before any string instruction.

Related Instructions

If you want to See

Process string components from lower to higher addresses CLD

Copy a component from a port in I/O memory to a string in main memory INS

Copy a component from a string in memory to a register LODS

Copy a component from one string in memory to another string in memory MOVS

Copy a component from a string in main memory to a port in I/O memory OUTS

Repeat one string instruction REP

Process string components from higher to lower addresses STD
Instruction Set 4-239

SUB Subtract Numbers SUB

What It Does

SUB subtracts an integer or an unsigned number from another number of the same type.

Syntax

Description

SUB subtracts the second operand (subtrahend) from the first operand (difference). The
first operand is assigned the result of the subtraction and the flags are set accordingly. If
an immediate byte value is subtracted from a word operand, the immediate value is first
sign-extended to the size of the destination operand.

Operation It Performs

Form Opcode Description
Clocks

Am186 Am188

SUB AL,imm8 2C ib Subtract immediate byte from AL 3 3

SUB AX,imm16 2D iw Subtract immediate word from AX 4 4

SUB r/m8,imm8 80 /5 ib Subtract immediate byte from r/m byte 4/16 4/16

SUB r/m16,imm16 81 /5 iw Subtract immediate word from r/m word 4/16 4/20

SUB r/m16,imm8 83 /5 ib Subtract sign-extended immediate byte from r/m word 4/16 4/20

SUB r/m8,r8 28 /r Subtract byte register from r/m byte 3/10 3/10

SUB r/m16,r16 29 /r Subtract word register from r/m word 3/10 3/14

SUB r8,r/m8 2A /r Subtract r/m byte from byte register 3/10 3/10

SUB r16,r/m16 2B /r Subtract r/m word from word register 3/10 3/14

SUB difference,subtrahend

if (size(difference) == 16)
if (size(subtrahend) == 8)
/* extend sign of subtrahend */

if (subtrahend < 0)
subtrahend = 0xFF00 | subtrahend;

else
subtrahend = 0x00FF & subtrahend;

/* subtract */
difference = difference - subtrahend;
Instruction Set4-240

SUB SUB
Flag Settings After Instruction

Examples

This example subtracts one 16-bit unsigned number in memory (the subtrahend) from
another 16-bit unsigned number in a register (the minuend).

This example subtracts one 32-bit integer in a register (the subtrahend) from another 32-
bit integer in memory (the minuend). This is accomplished by subtracting one word at a
time. The first subtraction uses SUB, and the subsequent subtraction uses SBB in case a
borrow was generated by the previous subtraction. (CF doubles as the borrow flag. If CF
is set, the previous subtraction generated a borrow. Otherwise, the previous subtraction
did not generate a borrow.)

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

OF=1 if result larger than destination operand
OF=0 otherwise

AF=1 if carry or borrow to low nibble
AF=0 otherwise

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

CF=1 for carry or borrow to high-order bit
CF=0 otherwise

– – – res res res

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

UMINUEND DW 364 ; 016Ch
USUBTRAHEND DW 25 ; 0019h

; 16-bit unsigned subtraction: AX = AX - USUBTRAHEND
MOV AX,UMINUEND ; AX = 016Ch = 364
SUB AX,USUBTRAHEND ; AX = 0153h = 339

SMINUEND DD 44761089 ; 02AB0001h
SSUBTRAHEND DD -990838848 ; C4F0FFC0h

; 32-bit integer subtraction: SMINUEND = SMINUEND - SSUBTRAHEND

; low word subtraction
MOV AX,WORD PTR SSUBTRAHEND ; copy subtrahend
SUB WORD PTR SMINUEND,AX ; subtract

; high word subtraction
MOV AX,WORD PTR SSUBTRAHEND + 2 ; copy subtrahend
SBB WORD PTR SMINUEND + 2,AX ; subtract with borrow

; SMINUEND = C79BFFC1h
; = -946077759
Instruction Set 4-241

SUB SUB
Tips

To subtract an integer or an unsigned number located in memory from another number of
the same type that is also located in memory, copy one of them to a register before using
SUB.

SUB requires both operands to be the same size. Before subtracting an 8-bit integer from
a 16-bit integer, convert the 8-bit integer to its 16-bit equivalent using CBW. To convert an
8-bit unsigned number to its 16-bit equivalent, use MOV to copy 0 to AH.

To subtract numbers larger than 16 bits, use SUB to subtract the low words, and then use
SBB to subtract each of the subsequently higher words.

Use DEC instead of SUB within a loop when you want to decrease a value by 1 each time
the loop is executed.

The processor does not provide an instruction that performs decimal subtraction. To
subtract decimal numbers, use SBB or SUB to perform binary subtraction, and then convert
the result to decimal using AAS or DAS.

ADC, ADD, SBB, and SUB set AF when the result needs to be converted for decimal
arithmetic. AAA, AAS, DAA, and DAS use AF to determine whether an adjustment is
needed. This is the only use for AF.

Related Instructions

If you want to See

Convert an 8-bit unsigned binary difference to its unpacked decimal equivalent AAS

Convert an integer to its 16-bit equivalent CBW

Compare two components using subtraction and set the flags accordingly CMP

Convert an 8-bit unsigned binary difference to its packed decimal equivalent DAS

Decrement an integer or unsigned number by 1 DEC

Change the sign of an integer NEG

Subtract a number and the value of CF from another number SBB
Instruction Set4-242

TEST Logical Compare TEST

What It Does

TEST determines whether particular bits of a component are set to 1 by comparing the
component to a mask.

Syntax

Description

TEST computes the bitwise logical AND of its two operands. Each bit of the result is 1 if
both of the corresponding bits of the operands are 1; otherwise, each bit is 0. The result of
the operation is discarded and only the flags are modified.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

TEST AL,imm8 A8 ib AND immediate byte with AL 3 3

TEST AX,imm16 A9 iw AND immediate word with AX 4 4

TEST r/m8,imm8 F6 /0 ib AND immediate byte with r/m byte 4/10 4/10

TEST r/m16,imm16 F7 /0 iw AND immediate word with r/m word 4/10 4/14

TEST r/m8,r8 84 /r AND byte register with r/m byte 3/10 3/10

TEST r/m16,r16 85 /r AND word register with r/m word 3/10 3/14

TEST component,mask

/* compare component to mask */
temp = component & mask;

/* clear overflow and carry flags */
OF = CF = 0;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

0 – – – res ? res res 0
Instruction Set 4-243

TEST TEST
Examples

This example tests the value of a bit that a particular device sets to 1 when an error occurs.
If the tested bit is 1, the microcontroller jumps to an instruction sequence designed to reset
the device. Otherwise, the microcontroller continues with the following instruction.

Tips

If you want a procedure to branch depending on the value of one or more bits, use TEST
to test those bits and affect ZF, and then use JZ or JNZ.

Related Instructions

If you want to See

Clear particular bits of a component to 0 AND

Compare two values using subtraction and set the flags accordingly CMP

DEVICE5 EQU 00100000b ; device 5 mask
DEVICES DB ?

; test for device error
; update device status bits
...

TEST DEVICES,DEVICE5 ; did device 5 log an error?
JNZ RESET5 ; if so, try to reset device 5
...

RESET5:
...
Instruction Set4-244

WAIT* Wait for Coprocessor WAIT

What It Does

WAIT is unimplemented and performs a NOP.

Syntax

Description

Members of the Am186 and Am188 family of microcontrollers do not have a TEST pin, and
executing WAIT is the same as performing a NOP.

Operation It Performs

Flag Settings After Instruction

* – This instruction is not supported with the necessary pinout.

Form Opcode Description
Clocks

Am186 Am188

WAIT 9B Performs a NOP. N/A N/A

WAIT

NOP ; does nothing

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set 4-245

XCHG Exchange Components XCHG

What It Does

XCHG exchanges one component with another component.

Syntax

Description

XCHG exchanges two operands. The operands can be in either order.

Operation It Performs

Flag Settings After Instruction

Examples

This example exchanges an integer in one register with an integer in another register.

Form Opcode Description
Clocks

Am186 Am188

XCHG AX,r16 90+rw Exchange word register with AX 3 3

XCHG r16,AX 90+rw Exchange AX with word register 3 3

XCHG r/m8,r8 86 /r Exchange byte register with r/m byte 4/17 4/17

XCHG r8,r/m8 86 /r Exchange r/m byte with byte register 4/17 4/17

XCHG r/m16,r16 87 /r Exchange word register with r/m word 4/17 4/21

XCHG r16,r/m16 87 /r Exchange r/m word with word register 4/17 4/21

XCHG component1,component2

/* save first component */
temp = component1;

/* copy second component to first component */
component1 = component2;

/* copy saved component to second component */
component2 = temp;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –

; exchange BX with CX
MOV BX,-300 ; BX = -300
MOV CX,700 ; CX = 700
XCHG BX,CX ; BX = 700, CX = -300
Instruction Set4-246

XCHG XCHG
This example performs a bubble sort on a list of unsigned numbers in memory. The
microcontroller rearranges the list from smallest to largest.

Tips

To exchange two components that are both stored in memory, use MOV to copy the first
component to a register, use XCHG to exchange the register with the second component,
and then use MOV again to copy the register to the first component.

XCHG requires both operands to be the same size. To convert an 8-bit integer to its 16-
bit equivalent, use CBW. To convert a 16-bit integer to its 32-bit equivalent, use CWD. To
convert another type of component to its extended equivalent, use MOV to copy 0 to the
high byte or word.

You cannot use XCHG to exchange a word with a segment register. To copy a segment
address to a segment register, use MOV to copy the segment address to a general register,
and then use MOV to copy the value in the general register to the segment register.

Related Instructions

If you want to See

Copy a component to a register or a location in memory MOV

LIST DB 3,5,2,9,7
L_LENGTH EQU 5

; sort unsigned numbers

MOV SI,0 ; set up list index
MOV DX,L_LENGTH - 1 ; get length of list
MOV CX,DX ; set up counter

SORT:
MOV AL,LIST[SI] ; copy this number
CMP AL,LIST[SI]+1 ; is this number <= next number?
JLE NEXT ; if so, then jump

XCHG AL,LIST[SI]+1 ; write larger number to next byte
MOV LIST[SI],AL ; write smaller number to this byte

NEXT:
INC SI ; point to next number
LOOP SORT ; while CX is not zero, jump

; to top of loop

DEC DX ; set up length of sublist
MOV SI,0 ; reset sublist index
MOV CX,DX ; set up sublist counter
LOOP SORT ; while CX is not zero, jump

; to top of loop
Instruction Set 4-247

XLAT Translate Table Index to Component XLAT
XLATB Translate Table Index to Byte

What It Does

XLAT translates the offset index of a byte stored in memory to the value of that byte.

Syntax

Description

XLAT changes the AL register from the table index to the table entry. The AL register should
be an unsigned index into a table addressed by the DS:BX register pair.

The operand allows for the possibility of a segment override, but the instruction uses the
contents of the BX register even if it differs from the offset of the operand. Load the operand
offset into the BX register—and the table index into AL—before executing XLAT.

Use the no-operand form, XLATB, if the table referenced by BX resides in the DS segment.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

XLAT m8 D7 Set AL to memory byte segment:[BX+unsigned AL] 11 15

XLATB D7 Set AL to memory byte DS:[BX+unsigned AL] 11 15

Use this form to override the default source segment
(DS), and to have the assembler type-check your
operand. In this form, base is segment:[BX].

XLAT base

XLATB

To translate AL to the value of the byte
located at offset [BX][AL] in the segment
specified in DS, use this form.

/* extend index */
temp = 0x00FF & AL;

/* store indexed component in AL */
AL = DS:[BX + temp];

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

– – – – – – res – res – res –
Instruction Set4-248

XLAT XLAT
Examples

This example translates a string of ASCII numbers in memory to unpacked decimal digits.
The microcontroller translates the numbers, one by one, from first to last.

This example translates the offset (base+index) of a byte within a table in memory to the
value of that byte.

; defined in SEG_D segment
TABLE DB 0,1,2,3,4,5,6,7,8,9
STRING DB ”0123456789”

; notify assembler: DS and ES specify the
; same segment of memory
ASSUME DS:SEG_D, ES:SEG_D

; set up DS and ES with the same segment address
MOV AX,SEG_D ; load segment into DS and ES
MOV DS,AX ; DS points to SEG_D
MOV ES,AX ; ES points to SEG_D

; translate ASCII numbers to unpacked decimal digits
; set up for string operation
LEA SI,STRING ; load source offset (segment = DS)
LEA DI,STRING ; load dest. offset (segment = DS)
MOV CX,10 ; set up counter
CLD ; process string from low to high
LEA BX,TABLE ; load table base (segment = DS)

ASCII2BCD:
; translate bytes
LODSB ; copy ASCII # from string to AL
XLATB ; translate to unpacked decimal
STOSB ; copy back to string
LOOP ASCII2BCD ; while CX is not 0, jump

; to top of loop

; defined in SEG_B segment
TABLE DB 3,6,12,24,48,96,192

; notify assembler: DS and ES point to
; different segments of memory
ASSUME DS:SEG_A, ES:SEG_B

; set up DS and ES with different segment addresses
MOV AX,SEG_A ; load one segment into DS
MOV DS,AX ; DS points to SEG_A
MOV AX,SEG_B ; load another segment into ES
MOV ES,AX ; ES points to SEG_B

; translate index to component (override default segment)
MOV AL,3 ; set up index: AL = 3
LEA BX,ES:TABLE ; load table base into BX
XLAT ES:[BX] ; translate: AL = 24
Instruction Set 4-249

XLAT XLAT
Tips

Use XLAT to translate bytes from one code system to another (e.g., from unpacked decimal
numbers to ASCII numbers or from ASCII characters to EBCDIC characters).

Related Instructions

If you want to See

Load the offset of a table in memory into BX LEA
Instruction Set4-250

XOR Logical Exclusive OR XOR

What It Does

XOR complements particular bits of a component according to a mask.

Syntax

Description

XOR computes the exclusive OR of the two operands. If corresponding bits of the operands
are different, the resulting bit is 1. If the bits are the same, the result is 0. The answer
replaces the first operand.

Operation It Performs

Flag Settings After Instruction

Form Opcode Description
Clocks

Am186 Am188

XOR AL,imm8 34 ib XOR immediate byte with AL 3 3

XOR AX,imm16 35 iw XOR immediate word with AX 4 4

XOR r/m8,imm8 80 /6 ib XOR immediate byte with r/m byte 4/16 4/16

XOR r/m16,imm16 81 /6 iw XOR immediate word with r/m word 4/16 4/20

XOR r/m16,imm8 83 /6 ib XOR sign-extended immediate byte with r/m word 4/16 4/20

XOR r/m8,r8 30 /r XOR byte register with r/m byte 3/10 3/10

XOR r/m16,r16 31 /r XOR word register with r/m word 3/10 3/14

XOR r8,r/m8 32 /r XOR r/m byte with byte register 3/10 3/10

XOR r16,r/m16 33 /r XOR r/m word with word register 3/10 3/14

XOR component,mask

/* XOR component with mask */
component = component ^ mask;

/* clear overflow and carry flags */
OF = CF = 0;

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Processor Status
Flags Register

reserved

OF DF IF TF SF ZF AF PF CF

? = undefined; – = unchanged

SF=1 if result is 0 or positive
SF=0 if result is negative

ZF=1 if result equal to 0
ZF=0 if result not equal to 0

PF=1 if low byte of result has even number of set bits
PF=0 otherwise

0 – – – res ? res res 0
Instruction Set 4-251

XOR XOR
Examples

This example turns on Timer 2 by setting the Enable (EN) and Inhibit (INH) bits in the
Timer 2 Mode and Control (T2CON) register.

This example procedure turns an LED on or off by toggling the signal level of programmable
I/O (PIO) pin 3 in the PIO Data 0 (PDATA0) register.

Tips

To clear a register to 0, use XOR to exclusive OR the register with itself.

Related Instructions

If you want to See

Clear particular bits of a component to 0 AND

Toggle all bits of a component NOT

Set particular bits of a component to 1 OR

TMR2_CNT_ON EQU 0C000h ; mask for enable & inhibit bits

; turn on Timer 2
MOV DX,TMR2_CTL_ADDR ; address of T2CON register
IN AX,DX ; read T2CON into AX
XOR AX,TMR2_CTL_ON ; set enable & inhibit bits
OUT DX,AX ; write AX to T2CON

PIO3_MASK EQU 0008h ; PDATA0 bit 3

; toggle PDATA0 bit 3
TOGGLE_PIO3 PROC NEAR

; save registers
PUSH AX
PUSH DX

MOV DX,PIO_DATA0_ADDR ; address of PDATA0 register
IN AX,DX ; read PDATA0 into AX
XOR AX,PIO3_MASK ; toggle bit 3
OUT DX,AX ; write AX to PDATA0

; restore saved registers
POP DX
POP AX

RET

TOGGLE_PIO3 ENDP
Instruction Set4-252

APPENDIX
A
 INSTRUCTION SET SUMMARY
This appendix provides several tables that summarize the instructions for the Am186 and
Am188 family of microcontrollers:

n Table A-2, “Instruction Set Summary by Mnemonic,” on page A-3

n Table A-3, “Instruction Set Summary by Opcode,” on page A-10

n Table A-4, “Instruction Set Summary by Partial Opcode,” on page A-20

The variables used in these tables are described in Table A-1 on page A-2. Table A-4 also
uses the variables in Table A-5 on page A-22. The format for the instructions is described
in "Forms of the Instruction" on page 2-4.

Instruction Set Summary A-1

Table A-1 Variables Used In Instruction Set Summary Tables

Variable Function Values Description
d Specifies direction. 0 to r/m

1 to reg

data-8
data-low
data-high
data-SX

Specifies a non-address constant data used by the
instruction. The "8" indicates an 8-bit constant; "low",
the low-order byte of a 16-bit constant; "high", the
high order byte of a 16-bit constant; and "SX", an 8-
bit constant that is sign-extended for a 16-bit
operation.

disp-8
disp-low
disp-high

Specifies the displacement. The "8" indicates an 8-
bit displacement; "low", the low-order byte of a 16-bit
displacement; and "high", the high-order byte of a 16-
bit displacement. For some forms of MOV, specifies
a 0-relative address.

mod Along with r/m, determines the effective address of
the memory operand.

11 r/m is treated as a reg field

00 DISP = 0, disp-low and disp-high are absent

01 DISP = disp-low sign-extended to 16-bits, disp-high is absent

10 DISP = disp-high: disp-low

r/m Along with mod, determines the effective address of
the memory operand.

000 EA = (BX)+(SI)+DISP

001 EA = (BX)+(DI)+DISP

010 EA = (BP)+(SI)+DISP

011 EA = (BP)+(DI)+DISP

100 EA = (SI)+DISP

101 EA = (DI)+DISP

110 EA = (BP)+DISP (except if mod=00, then EA = disp-high:disp:low)

111 EA = (BX)+DISP

reg Represents a register, and is assigned according to
the value of w and reg.

000 AL, if w=0 or implicit 8-bit
AX, if w=1 or implicit 16-bit

001 CL, if w=0 or implicit 8-bit
CX, if w=1 or implicit 16-bit

010 DL, if w=0 or implicit 8-bit
DX, if w=1 or implicit 16-bit

011 BL, if w=0 or implicit 8-bit
BX, if w=1 or implicit 16-bit

100 AH, if w=0 or implicit 8-bit
SP, if w=1 or implicit 16-bit

101 CH, if w=0 or implicit 8-bit
BP, if w=1 or implicit 16-bit

110 DH, if w=0 or implicit 8-bit
SI, if w=1 or implicit 16-bit

111 BH, if w=0 or implicit 8-bit
DI, if w=1 or implicit 16-bit

s Specifies immediate operand sign-extension. 0 no sign extension

1 sign-extend (for 16-bit operations only, w=1)

seg-low
seg-high

Specifies the segment base address value.
Represents the high-order 16 bits of a 20-bit address,
with an implicit 4 low-order 0 bits.

sreg Specifies a segment register. 00 ES register

01 CS register

10 SS register

11 DS register

w Specifies an 8- or 16-bit value. 0 8-bit value

1 16-bit value

XXX YYY Specifies opcode to proc. ext.

Notes:

1 – DISP follows the operand address (before data if required).

2 – The physical addresses of all operands addressed by the BP register are computed using the SS segment register. The physical addresses
of the destination operands of the string primitive operations (those addressed by the DI register) are computed using the ES segment, which
cannot be overridden.
Instruction Set SummaryA-2

Table A-2 Instruction Set Summary by Mnemonic

Instruction Opcode

For
More
Info.,
See

Page

AAA = ASCII adjust AL after add 0 0 1 1 0 1 1 1 4-2

AAD = ASCII adjust AX before divide 1 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 4-4

AAM = ASCII adjust AL after multiply 1 1 0 1 0 1 0 0 0 0 0 0 1 0 1 0 4-6

AAS = ASCII adjust AL after subtract 0 0 1 1 1 1 1 1 4-8

ADC = Add numbers with carry: 4-10

Reg/memory and register to either 0 0 0 1 0 0 d w mod reg r/m

Immediate to register/memory 1 0 0 0 0 0 s w mod 010 r/m data-8/data-low data-high if sw=01

(sw≠10)

Immediate to accumulator 0 0 0 1 0 1 0 w data-8/data-low data-high if w=1

ADD = Add numbers: 4-14

Reg/mem and register to either 0 0 0 0 0 0 d w mod reg r/m

Immediate to register/memory 1 0 0 0 0 0 s w mod 000 r/m data-8/data-low data-high if sw=01

(sw≠10)

Immediate to accumulator 0 0 0 0 0 1 0 w data-8/data-low data-high if w=1

AND = Logical AND: 4-17

Reg/memory and register to either 0 0 1 0 0 0 d w mod reg r/m

Immediate to register/memory 1 0 0 0 0 0 s w mod 100 r/m data-8/data-low data-high if sw=01

(sw≠10)

Immediate to accumulator 0 0 1 0 0 1 0 w data-8/data-low data-high if w=1

BOUND = Check array index against
bounds*

0 1 1 0 0 0 1 0 mod reg r/m 4-19

CALL = Call procedure: 4-21

Direct within segment 1 1 1 0 1 0 0 0 disp-low disp-high

Register mem. indirect within seg. 1 1 1 1 1 1 1 1 mod 010 r/m

Direct intersegment 1 0 0 1 1 0 1 0 disp-low disp-high

seg-low seg-high

Indirect intersegment 1 1 1 1 1 1 1 1 mod 011 r/m (mod ≠ 11)

CBW = Convert byte integer to word 1 0 0 1 1 0 0 0 4-24

CLC = Clear carry flag 1 1 1 1 1 0 0 0 4-26

CLD = Clear direction flag 1 1 1 1 1 1 0 0 4-29

CLI = Clear interrupt-enable flag 1 1 1 1 1 0 1 0 4-31

CMC = Complement carry flag 1 1 1 1 0 1 0 1 4-33

Notes:

* Indicates instructions not available in 8086 or 8088 systems.
**Indicates instructions that are not supported with the necessary pinout.
***The external LOCK pin is only available on some members of the Am186 and Am188 family of microcontrollers. However, LOCK internal
logic is still in effect on parts without the LOCK pin.
Instruction Set Summary A-3

CMP = Compare: 4-34

Reg/memory and register to either 0 0 1 1 1 0 d w mod reg r/m

Immediate with register/memory 1 0 0 0 0 0 s w mod 111 r/m data-8/data-low data-high if sw=01

(sw≠10)

Immediate with accumulator 0 0 1 1 1 1 0 w data-8/data-low data-high if w=1

CMPS/CMPSB/CMPSW = Compare
string

1 0 1 0 0 1 1 w 4-36

CS = CS segment register override
prefix

0 0 1 0 1 1 1 0 2-2

CWD = Convert word integer to doubleword 1 0 0 1 1 0 0 1 4-40

DAA = Decimal adjust AL after add 0 0 1 0 0 1 1 1 4-42

DAS = Decimal adjust AL after subtract 0 0 1 0 1 1 1 1 4-45

DEC = Decrement by 1: 4-48

Register/memory 1 1 1 1 1 1 1 w mod 001 r/m

Register 0 1 0 0 1 reg

DIV = Divide unsigned numbers 1 1 1 1 0 1 1 w mod 110 r/m 4-50

DS = DS segment register override
prefix

0 0 1 1 1 1 1 0 2-2

ENTER = Enter high-level procedure* 1 1 0 0 1 0 0 0 data-low data-high data-8 4-53

ES = ES segment register override prefix 0 0 1 0 0 1 1 0 2-2

ESC = Processor extension escape** 1 1 0 1 1 X X X mod YYY r/m (XXX YYY are opcode to proc. ext.) 4-56

HLT = Halt 1 1 1 1 0 1 0 0 4-57

IDIV = Integer divide (signed) 1 1 1 1 0 1 1 w mod 111 r/m 4-60

IMUL = Integer multiply (signed) 1 1 1 1 0 1 1 w mod 101 r/m 4-63

IMUL = Integer immediate multiply
(signed)*

0 1 1 0 1 0 s 1 mod reg r/m data-8/data-low data-high if s=0 4-63

IN = Input from: 4-67

Fixed port 1 1 1 0 0 1 0 w data-8

Variable port 1 1 1 0 1 1 0 w

INC = Increment by 1: 4-69

Register/memory 1 1 1 1 1 1 1 w mod 000 r/m

Register 0 1 0 0 0 reg

INS/INSB/INSW = Input string from DX
port*

0 1 1 0 1 1 0 w 4-71

INT = Interrupt: 4-73

Type specified 1 1 0 0 1 1 0 1 data-8

Type 3 1 1 0 0 1 1 0 0

Table A-2 Instruction Set Summary by Mnemonic

Instruction Opcode

For
More
Info.,
See

Page

Notes:

* Indicates instructions not available in 8086 or 8088 systems.
**Indicates instructions that are not supported with the necessary pinout.
***The external LOCK pin is only available on some members of the Am186 and Am188 family of microcontrollers. However, LOCK internal
logic is still in effect on parts without the LOCK pin.
Instruction Set SummaryA-4

INTO = Interrupt on overflow 1 1 0 0 1 1 1 0 4-73

IRET = Interrupt return 1 1 0 0 1 1 1 1 4-76

JA/JNBE = Jump on: above/not below
or equal

0 1 1 1 0 1 1 1 disp-8 4-78

JAE/JNB/JNC = Jump on: above or
equal/not below/not carry

0 1 1 1 0 0 1 1 disp-8 4-80

JB/JC/JNAE = Jump on: below/
compare/not above or equal

0 1 1 1 0 0 1 0 disp-8 4-82

JBE/JNA = Jump on: below or equal/not
above

0 1 1 1 0 1 1 0 disp-8 4-84

JCXZ = Jump on CX = zero 1 1 1 0 0 0 1 1 disp-8 4-87

JE/JZ = Jump on: equal/zero 0 1 1 1 0 1 0 0 disp-8 4-89

JG/JNLE = Jump on: greater/not less or
equal

0 1 1 1 1 1 1 1 disp-8 4-91

JGE/JNL = Jump on: greater or equal/
not less

0 1 1 1 1 1 0 1 disp-8 4-93

JL/JNGE = Jump on: less/not greater or
equal

0 1 1 1 1 1 0 0 disp-8 4-95

JLE/JNG = Jump on: less or equal/not
greater

0 1 1 1 1 1 1 0 disp-8 4-97

JMP = Unconditional jump: 4-99

Short/long 1 1 1 0 1 0 1 1 disp-8

Direct within segment 1 1 1 0 1 0 0 1 disp-low disp-high

Register/mem indirect within seg. 1 1 1 1 1 1 1 1 mod 100 r/m

Direct intersegment 1 1 1 0 1 0 1 0 disp-low disp-high

seg-low seg-high

Indirect intersegment 1 1 1 1 1 1 1 1 mod 101 r/m (mod ≠ 11)

JNE/JNZ = Jump on: not equal/not zero 0 1 1 1 0 1 0 1 disp-8 4-107

JNO = Jump on not overflow 0 1 1 1 0 0 0 1 disp-8 4-113

JNS = Jump on not sign 0 1 1 1 1 0 0 1 disp-8 4-116

JO = Jump on overflow 0 1 1 1 0 0 0 0 disp-8 4-119

JPE/JP = Jump on: parity even/parity 0 1 1 1 1 0 1 0 disp-8 4-122

JPO/JNP = Jump on: parity odd/not
parity

0 1 1 1 1 0 1 1 disp-8 4-124

JS = Jump on sign 0 1 1 1 1 0 0 0 disp-8 4-126

LAHF = Load AH with flags 1 0 0 1 1 1 1 1 4-129

LDS = Load pointer to DS 1 1 0 0 0 1 0 1 mod reg r/m (mod≠11) 4-131

LEA = Load EA to register 1 0 0 0 1 1 0 1 mod reg r/m 4-133

Table A-2 Instruction Set Summary by Mnemonic

Instruction Opcode

For
More
Info.,
See

Page

Notes:

* Indicates instructions not available in 8086 or 8088 systems.
**Indicates instructions that are not supported with the necessary pinout.
***The external LOCK pin is only available on some members of the Am186 and Am188 family of microcontrollers. However, LOCK internal
logic is still in effect on parts without the LOCK pin.
Instruction Set Summary A-5

LEAVE = Leave procedure* 1 1 0 0 1 0 0 1 4-135

LES = Load pointer to ES 1 1 0 0 0 1 0 0 mod reg r/m (mod ≠ 11) 4-138

LOCK = Bus lock prefix*** 1 1 1 1 0 0 0 0 4-140

LODS/LODSB/LODSW = Load string to
AL/AX

1 0 1 0 1 1 0 w 4-141

LOOP = Loop CX Times 1 1 1 0 0 0 1 0 disp-8 4-146

LOOPE/LOOPZ = Loop while: equal/
zero

1 1 1 0 0 0 0 1 disp-8 4-148

LOOPNE/LOOPNZ = Loop while: not
equal/not zero

1 1 1 0 0 0 0 0 disp-8 4-150

MOV = Move: 4-153

Register to register/memory 1 0 0 0 1 0 0 w mod reg r/m

Register/memory to register 1 0 0 0 1 0 1 w mod reg r/m

Immediate to register/memory 1 1 0 0 0 1 1 w mod 000 r/m data-8/data-low data-high if w=1

Immediate to register 1 0 1 1 w reg data-8/data-low data-high if w=1

Memory to accumulator 1 0 1 0 0 0 0 w disp-low disp-high

Accumulator to memory 1 0 1 0 0 0 1 w disp-low disp-high

Register/mem. to segment register 1 0 0 0 1 1 1 0 mod 0 sreg r/m

Segment reg. to register/memory 1 0 0 0 1 1 0 0 mod 0 sreg r/m

MOVS/MOVSB/MOVSW = Move string
to byte/word

1 0 1 0 0 1 0 w 4-156

MUL = Multiply (unsigned) 1 1 1 1 0 1 1 w mod 100 r/m 4-160

NEG = Change sign reg./memory 1 1 1 1 0 1 1 w mod 011 r/m 4-163

NOP = No Operation 1 0 0 1 0 0 0 0 4-165

NOT = Invert register/memory 1 1 1 1 0 1 1 w mod 010 r/m 4-167

OR = Or: 4-169

Reg/memory and register to either 0 0 0 0 1 0 d w mod reg r/m

Immediate to register/memory 1 0 0 0 0 0 s w mod 001 r/m data-8/data-low data-high if sw=01

(sw≠10)

Immediate to accumulator 0 0 0 0 1 1 0 w data-8/data-low data-high if w=1

OUT = Output to: 4-171

Fixed port 1 1 1 0 0 1 1 w data-8

Variable port 1 1 1 0 1 1 1 w

OUTS/OUTSB/OUTSW = Output string
to DX port*

0 1 1 0 1 1 1 w 4-173

Table A-2 Instruction Set Summary by Mnemonic

Instruction Opcode

For
More
Info.,
See

Page

Notes:

* Indicates instructions not available in 8086 or 8088 systems.
**Indicates instructions that are not supported with the necessary pinout.
***The external LOCK pin is only available on some members of the Am186 and Am188 family of microcontrollers. However, LOCK internal
logic is still in effect on parts without the LOCK pin.
Instruction Set SummaryA-6

POP = Pop: 4-175

Memory 1 0 0 0 1 1 1 1 mod 000 r/m

Register 0 1 0 1 1 reg

Segment register 0 0 0 sreg 1 1 1 (sreg ≠01)

POPA = Pop All* 0 1 1 0 0 0 0 1 4-178

POPF = Pop flags 1 0 0 1 1 1 0 1 4-180

PUSH = Push: 4-181

Memory 1 1 1 1 1 1 1 1 mod 110 r/m

Register 0 1 0 1 0 reg

Segment register 0 0 0 sreg 1 1 0

Immediate* 0 1 1 0 1 0 s 0 data-8/data-low data-high if s=0

PUSHA = Push All* 0 1 1 0 0 0 0 0 4-184

PUSHF = Push flags 1 0 0 1 1 1 0 0 4-186

RCL = Rotate through carry left 4-187

Register/Memory by 1 1 1 0 1 0 0 0 w mod 010 r/m

Register/Memory by CL 1 1 0 1 0 0 1 w mod 010 r/m

Register/Memory by Count* 1 1 0 0 0 0 0 w mod 010 r/m data-8

RCR = Rotate through carry right 4-189

Register/Memory by 1 1 1 0 1 0 0 0 w mod 011 r/m

Register/Memory by CL 1 1 0 1 0 0 1 w mod 011 r/m

Register/Memory by Count* 1 1 0 0 0 0 0 w mod 011 r/m data-8

REP (repeat by count in CX) 4-191

 INS = Input string from DX port* 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 w

 LODS = Load string 1 1 1 1 0 0 1 1 1 0 1 0 1 1 0 w

 MOVS = Move string 1 1 1 1 0 0 1 1 1 0 1 0 0 1 0 w

 OUTS = Output string* 1 1 1 1 0 0 1 1 0 1 1 0 1 1 1 w

 STOS = Store string 1 1 1 1 0 0 1 1 1 0 1 0 1 0 1 w

REPE/REPZ (repeat by count in CX while equal/while zero) 4-193

 CMPS = Compare string 1 1 1 1 0 0 1 1 1 0 1 0 0 1 1 w

 SCAS = Scan string 1 1 1 1 0 0 1 1 1 0 1 0 1 1 1 w

REPNE/REPNZ (repeat by count in CX while not equal/while not zero) 4-197

 CMPS = Compare string 1 1 1 1 0 0 1 0 1 0 1 0 0 1 1 w

 SCAS = Scan string 1 1 1 1 0 0 1 0 1 0 1 0 1 1 1 w

Table A-2 Instruction Set Summary by Mnemonic

Instruction Opcode

For
More
Info.,
See

Page

Notes:

* Indicates instructions not available in 8086 or 8088 systems.
**Indicates instructions that are not supported with the necessary pinout.
***The external LOCK pin is only available on some members of the Am186 and Am188 family of microcontrollers. However, LOCK internal
logic is still in effect on parts without the LOCK pin.
Instruction Set Summary A-7

RET = Return from CALL: 4-202

Within segment 1 1 0 0 0 0 1 1

Within seg adding immed. to SP 1 1 0 0 0 0 1 0 data-low data-high

Intersegment 1 1 0 0 1 0 1 1

Intersegment adding immed. to SP 1 1 0 0 1 0 1 0 data-low data-high

ROL = Rotate left 4-205

Register/Memory by 1 1 1 0 1 0 0 0 w mod 000 r/m

Register/Memory by CL 1 1 0 1 0 0 1 w mod 000 r/m

Register/Memory by Count* 1 1 0 0 0 0 0 w mod 000 r/m data-8

ROR = Rotate right 4-207

Register/Memory by 1 1 1 0 1 0 0 0 w mod 001 r/m

Register/Memory by CL 1 1 0 1 0 0 1 w mod 001 r/m

Register/Memory by Count* 1 1 0 0 0 0 0 w mod 001 r/m data-8

SAHF = Store AH in flags 1 0 0 1 1 1 1 0 4-209

SAL/SHL = Shift arithmetic left/shift left 4-211

Register/Memory by 1 1 1 0 1 0 0 0 w mod 100 r/m

Register/Memory by CL 1 1 0 1 0 0 1 w mod 100 r/m

Register/Memory by Count* 1 1 0 0 0 0 0 w mod 100 r/m data-8

SAR = Shift arithmetic right 4-214

Register/Memory by 1 1 1 0 1 0 0 0 w mod 111 r/m

Register/Memory by CL 1 1 0 1 0 0 1 w mod 111 r/m

Register/Memory by Count* 1 1 0 0 0 0 0 w mod 111 r/m data-8

SBB = Subtract with borrow: 4-216

Reg/memory and register to either 0 0 0 1 1 0 d w mod reg r/m

Immediate from register/memory 1 0 0 0 0 0 s w mod 011 r/m data-8/data-low data-high if sw=01

(sw≠10)

Immediate from accumulator 0 0 0 1 1 1 0 w data-8/data-low data-high if w=1

SCAS/SCASB/SCASW = Scan string
for byte/word

1 0 1 0 1 1 1 w 4-219

SHR = Shift right 4-225

Register/Memory by 1 1 1 0 1 0 0 0 w mod 101r/m

Register/Memory by CL 1 1 0 1 0 0 1 w mod 101 r/m

Register/Memory by Count* 1 1 0 0 0 0 0 w mod 101 r/m data-8

SS = SS segment register override prefix 0 0 1 1 0 1 1 0 2-2

STC = Set carry flag 1 1 1 1 1 0 0 1 4-228

Table A-2 Instruction Set Summary by Mnemonic

Instruction Opcode

For
More
Info.,
See

Page

Notes:

* Indicates instructions not available in 8086 or 8088 systems.
**Indicates instructions that are not supported with the necessary pinout.
***The external LOCK pin is only available on some members of the Am186 and Am188 family of microcontrollers. However, LOCK internal
logic is still in effect on parts without the LOCK pin.
Instruction Set SummaryA-8

STD = Set direction flag 1 1 1 1 1 1 0 1 4-231

STI = Set interrupt-enable flag 1 1 1 1 1 0 1 1 4-235

STOS/STOSB/STOSW = Store string 1 0 1 0 1 0 1 w 4-237

SUB = Subtract: 4-240

Reg/memory and register to either 0 0 1 0 1 0 d w mod reg r/m

Immediate from register/memory 1 0 0 0 0 0 s w mod 101 r/m data-8/data-low data-high if sw=01

(sw≠10)

Immediate from accumulator 0 0 1 0 1 1 0 w data-8/data-low data-high if w=1

TEST = AND function to flags, no result: 4-243

Register/memory and register 1 0 0 0 0 1 0 w mod reg r/m

Immediate data and register/mem. 1 1 1 1 0 1 1 w mod 000 r/m data-8/data-low data-high if w=1

Immediate data and accumulator 1 0 1 0 1 0 0 w data-8/data-low data-high if w=1

WAIT = Wait** 1 0 0 1 1 0 1 1 4-245

XCHG = Exchange: 4-246

Register/memory with register 1 0 0 0 0 1 1 w mod reg r/m

Register with accumulator 1 0 0 1 0 reg

XLAT/XLATB = Translate byte to AL 1 1 0 1 0 1 1 1 4-248

XOR = Logical exclusive OR: 4-251

Reg/memory and register to either 0 0 1 1 0 0 d w mod reg r/m

Immediate to register/memory 1 0 0 0 0 0 s w mod 110 r/m data-8/data-low data-high if sw=01

(sw≠10)

Immediate to accumulator 0 0 1 1 0 1 0 w data-8/data-low data-high if w=1

Table A-2 Instruction Set Summary by Mnemonic

Instruction Opcode

For
More
Info.,
See

Page

Notes:

* Indicates instructions not available in 8086 or 8088 systems.
**Indicates instructions that are not supported with the necessary pinout.
***The external LOCK pin is only available on some members of the Am186 and Am188 family of microcontrollers. However, LOCK internal
logic is still in effect on parts without the LOCK pin.
Instruction Set Summary A-9

Table A-3 Instruction Set Summary by Opcode

Opcode
Instruction Format Byte 1

Hex Binary
Byte 2 Bytes 3–6

00 0000 0000 mod reg r/m (disp-low),(disp-high) ADD r/m8,r8

01 0000 0001 mod reg r/m (disp-low),(disp-high) ADD r/m16,r16

02 0000 0010 mod reg r/m (disp-low),(disp-high) ADD r8,r/m8

03 0000 0011 mod reg r/m (disp-low),(disp-high) ADD r16,r/m16

04 0000 0100 data-8 ADD AL,imm8

05 0000 0101 data-low data-high ADD AX,imm16

06 0000 0110 PUSH ES

07 0000 0111 POP ES

08 0000 1000 mod reg r/m (disp-low),(disp-high) OR r/m8,r8

09 0000 1001 mod reg r/m (disp-low),(disp-high) OR r/m16,r16

0A 0000 1010 mod reg r/m (disp-low),(disp-high) OR r8,r/m8

0B 0000 1011 mod reg r/m (disp-low),(disp-high) OR r16,r/m16

0C 0000 1100 data-8 OR AL,imm8

0D 0000 1101 data-low data-high OR AX,imm16

0E 0000 1110 PUSH CS

0F 0000 1111 reserved
10 0001 0000 mod reg r/m (disp-low),(disp-high) ADC r/m8,r8

11 0001 0001 mod reg r/m (disp-low),(disp-high) ADC r/m16,r16

12 0001 0010 mod reg r/m (disp-low),(disp-high) ADC r8,r/m8

13 0001 0011 mod reg r/m (disp-low),(disp-high) ADC r16,r/m16

14 0001 0100 data-8 ADC AL,imm8

15 0001 0101 data-low data-high ADC AX,imm16

16 0001 0110 PUSH SS

17 0001 0111 POP SS

18 0001 1000 mod reg r/m (disp-low),(disp-high) SBB r/m8,r8

19 0001 1001 mod reg r/m (disp-low),(disp-high) SBB r/m16,r16

1A 0001 1010 mod reg r/m (disp-low),(disp-high) SBB r8,r/m8

1B 0001 1011 mod reg r/m (disp-low),(disp-high) SBB r16,r/m16

1C 0001 1100 data-8 SBB AL,imm8

1D 0001 1101 data-low data-high SBB AX,imm16

1E 0001 1110 PUSH DS

1F 0001 1111 POP DS

20 0010 0000 mod reg r/m (disp-low),(disp-high) AND r/m8,r8

21 0010 0001 mod reg r/m (disp-low),(disp-high) AND r/m16,r16

22 0010 0010 mod reg r/m (disp-low),(disp-high) AND r8,r/m8

23 0010 0011 mod reg r/m (disp-low),(disp-high) AND r16,r/m16

24 0010 0100 data-8 AND AL,imm8

25 0010 0101 data-low data-high AND AX,imm16

26 0010 0110 (ES segment register
override prefix)

27 0010 0111 DAA

28 0010 1000 mod reg r/m (disp-low),(disp-high) SUB r/m8,r8

29 0010 1001 mod reg r/m (disp-low),(disp-high) SUB r/m16,r16
Instruction Set SummaryA-10

2A 0010 1010 mod reg r/m (disp-low),(disp-high) SUB r8,r/m8

2B 0010 1011 mod reg r/m (disp-low),(disp-high) SUB r16,r/m16

2C 0010 1100 data-8 SUB AL,imm8

2D 0010 1101 data-low data-high SUB AX,imm16

2E 0010 1110 (CS segment register
override prefix)

2F 0010 1111 DAS

30 0011 0000 mod reg r/m (disp-low),(disp-high) XOR r/m8,r8

31 0011 0001 mod reg r/m (disp-low),(disp-high) XOR r/m16,r16

32 0011 0010 mod reg r/m (disp-low),(disp-high) XOR r8,r/m8

33 0011 0011 mod reg r/m (disp-low),(disp-high) XOR r16,r/m16

34 0011 0100 data-8 XOR AL,imm8

35 0011 0101 data-low data-high XOR AX,imm16

36 0011 0110 (SS segment register
override prefix)

37 0011 0111 AAA

38 0011 1000 mod reg r/m (disp-low),(disp-high) CMP r/m8,r8

39 0011 1001 mod reg r/m (disp-low),(disp-high) CMP r/m16,r16

3A 0011 1010 mod reg r/m (disp-low),(disp-high) CMP r8,r/m8

3B 0011 1011 mod reg r/m (disp-low),(disp-high) CMP r16,r/m16

3C 0011 1100 data-8 CMP AL,imm8

3D 0011 1101 data-low data-high CMP AX,imm16

3E 0011 1110 (DS segment register
override prefix)

3F 0011 1111 AAS

40 0100 0000 INC AX

41 0100 0001 INC CX

42 0100 0010 INC DX

43 0100 0011 INC BX

44 0100 0100 INC SP

45 0100 0101 INC BP

46 0100 0110 INC SI

47 0100 0111 INC DI

48 0100 1000 DEC AX

49 0100 1001 DEC CX

4A 0100 1010 DEC DX

4B 0100 1011 DEC BX

4C 0100 1100 DEC SP

4D 0100 1101 DEC BP

4E 0100 1110 DEC SI

4F 0100 1111 DEC DI

50 0101 0000 PUSH AX

51 0101 0001 PUSH CX

52 0101 0010 PUSH DX

Table A-3 Instruction Set Summary by Opcode

Opcode
Instruction Format Byte 1

Hex Binary
Byte 2 Bytes 3–6
Instruction Set Summary A-11

53 0101 0011 PUSH BX

54 0101 0100 PUSH SP

55 0101 0101 PUSH BP

56 0101 0110 PUSH SI

57 0101 0111 PUSH DI

58 0101 1000 POP AX

59 0101 1001 POP CX

5A 0101 1010 POP DX

5B 0101 1011 POP BX

5C 0101 1100 POP SP

5D 0101 1101 POP BP

5E 0101 1110 POP SI

5F 0101 1111 POP DI

60 0110 0000 PUSHA

61 0110 0001 POPA

62 0110 0010 mod reg r/m (disp-low),(disp-high) BOUND r16,m16&16

63 0110 0011 reserved
64 0110 0100 reserved
65 0110 0101 reserved
66 0110 0110 reserved
67 0110 0111 reserved
68 0110 1000 data-low data-high PUSH imm16

69 0110 1001 mod reg r/m (disp-low),(disp-high),data-low, data-high IMUL r16,r/m16,imm16
IMUL r16,imm16

6A 0110 1010 data-8 PUSH imm8

6B 0110 1011 mod reg r/m (disp-low),(disp-high),data-8 IMUL r16,r/m16,imm8
IMUL r16,imm8

6C 0110 1100 INS m8,DX
INSB

6D 0110 1101 INS m16,DX
INSW

6E 0110 1110 OUTS DX,r/m8
OUTSB

6F 0110 1111 OUTS DX,r/m16
OUTSW

70 0111 0000 disp-8 JO rel8

71 0111 0001 disp-8 JNO rel8

72 0111 0010 disp-8 JB rel8
JC rel8
JNAE rel8

73 0111 0011 disp-8 JAE rel8
JNB rel8
JNC rel8

74 0111 0100 disp-8 JE rel8
JZ rel8

Table A-3 Instruction Set Summary by Opcode

Opcode
Instruction Format Byte 1

Hex Binary
Byte 2 Bytes 3–6
Instruction Set SummaryA-12

75 0111 0101 disp-8 JNE rel8
JNZ rel8

76 0111 0110 disp-8 JBE rel8
JNA rel8

77 0111 0111 disp-8 JA rel8
JNBE rel8

78 0111 1000 disp-8 JS rel8

79 0111 1001 disp-8 JNS rel8

7A 0111 1010 disp-8 JPE rel8
JP rel8

7B 0111 1011 disp-8 JPO rel8
JNP rel8

7C 0111 1100 disp-8 JL rel8
JNGE rel8

7D 0111 1101 disp-8 JGE rel8
JNL rel8

7E 0111 1110 disp-8 JLE rel8
JNG rel8

7F 0111 1111 disp-8 JG rel8
JNLE rel8

80 1000 0000 mod 000 r/m (disp-low),(disp-high),data-8 ADD r/m8,imm8

mod 001 r/m (disp-low),(disp-high),data-8 OR r/m8,imm8

mod 010 r/m (disp-low),(disp-high),data-8 ADC r/m8,imm8

mod 011 r/m (disp-low),(disp-high),data-8 SBB r/m8,imm8

mod 100 r/m (disp-low),(disp-high),data-8 AND r/m8,imm8

mod 101 r/m (disp-low),(disp-high),data-8 SUB r/m8,imm8

mod 110 r/m (disp-low),(disp-high),data-8 XOR r/m8,imm8

mod 111 r/m (disp-low),(disp-high),data-8 CMP r/m8,imm8

81 1000 0001 mod 000 r/m (disp-low),(disp-high),data-low, data-high ADD r/m16,imm16

mod 001 r/m (disp-low),(disp-high),data-low, data-high OR r/m16,imm16

mod 010 r/m (disp-low),(disp-high),data-low, data-high ADC r/m16,imm16

mod 011 r/m (disp-low),(disp-high),data-low, data-high SBB r/m16,imm16

mod 100 r/m (disp-low),(disp-high),data-low, data-high AND r/m16,imm16

mod 101 r/m (disp-low),(disp-high),data-low, data-high SUB r/m16,imm16

mod 110 r/m (disp-low),(disp-high),data-low, data-high XOR r/m16,imm16

mod 111 r/m (disp-low),(disp-high),data-low, data-high CMP r/m16,imm16

82 1000 0010 reserved
83 1000 0011 mod 000 r/m (disp-low),(disp-high),data-SX ADD r/m16,imm8

mod 001 r/m (disp-low),(disp-high),data-SX OR r/m16,imm8

mod 010 r/m (disp-low),(disp-high),data-SX ADC r/m16,imm8

mod 011 r/m (disp-low),(disp-high),data-SX SBB r/m16,imm8

mod 100 r/m (disp-low),(disp-high),data-SX AND r/m16,imm8

mod 101 r/m (disp-low),(disp-high),data-SX SUB r/m16,imm8

mod 110 r/m (disp-low),(disp-high),data-SX XOR r/m16,imm8

mod 111 r/m (disp-low),(disp-high),data-SX CMP r/m16,imm8

Table A-3 Instruction Set Summary by Opcode

Opcode
Instruction Format Byte 1

Hex Binary
Byte 2 Bytes 3–6
Instruction Set Summary A-13

84 1000 0100 mod reg r/m (disp-low),(disp-high) TEST r/m8,r8

85 1000 0101 mod reg r/m (disp-low),(disp-high) TEST r/m16,r16

86 1000 0110 mod reg r/m (disp-low),(disp-high) XCHG r/m8,r8
XCHG r8,r/m8

87 1000 0111 mod reg r/m (disp-low),(disp-high) XCHG r/m16,r16
XCHG r16,r/m16

88 1000 1000 mod reg r/m (disp-low),(disp-high) MOV r/m8,r8

89 1000 1001 mod reg r/m (disp-low),(disp-high) MOV r/m16,r16

8A 1000 1010 mod reg r/m (disp-low),(disp-high) MOV r8,r/m8

8B 1000 1011 mod reg r/m (disp-low),(disp-high) MOV r16,r/m16

8C 1000 1100 mod 0 sreg r/m (disp-low),(disp-high) MOV r/m16,sreg

8D 1000 1101 mod reg r/m (disp-low),(disp-high) LEA r16,m16

8E 1000 1110 mod 0 sreg r/m (disp-low),(disp-high) MOV sreg,r/m16

8F 1000 1111 mod 000 r/m (disp-low),(disp-high) POP m16

90 1001 0000 NOP
XCHG AX,AX

91 1001 0001 XCHG AX,CX
XCHG CX,AX

92 1001 0010 XCHG AX,DX
XCHG DX,AX

93 1001 0011 XCHG AX,BX
XCHG BX,AX

94 1001 0100 XCHG AX,SP
XCHG SP,AX

95 1001 0101 XCHG AX,BP
XCHG BP,AX

96 1001 0110 XCHG AX,SI
XCHG SI,AX

97 1001 0111 XCHG AX,DI
XCHG DI,AX

98 1001 1000 CBW

99 1001 1001 CWD

9A 1001 1010 disp-low disp-high,seg-low,seg-high CALL ptr16:16

9B 1001 1011 WAIT

9C 1001 1100 PUSHF

9D 1001 1101 POPF

9E 1001 1110 SAHF

9F 1001 1111 LAHF

A0 1010 0000 disp-low disp-high MOV AL,moffs8

A1 1010 0001 disp-low disp-high MOV AX,moffs16

A2 1010 0010 disp-low disp-high MOV moffs8,AL

A3 1010 0011 disp-low disp-high MOV moffs16,AX

A4 1010 0100 MOVS m8,m8
MOVSB

Table A-3 Instruction Set Summary by Opcode

Opcode
Instruction Format Byte 1

Hex Binary
Byte 2 Bytes 3–6
Instruction Set SummaryA-14

A5 1010 0101 MOVS m16,m16
MOVSW

A6 1010 0110 CMPS m8,m8
CMPSB

A7 1010 0111 CMPS m16,m16
CMPSW

A8 1010 1000 data-8 TEST AL,imm8

A9 1010 1001 data-low data-high TEST AX,imm16

AA 1010 1010 STOS m8
STOSB

AB 1010 1011 STOS m16
STOSW

AC 1010 1100 LODS m8
LODSB

AD 1010 1101 LODS m16
LODSW

AE 1010 1110 SCAS m8
SCASB

AF 1010 1111 SCAS m16
SCASW

B0 1011 0000 data-8 MOV AL,imm8

B1 1011 0001 data-8 MOV CL,imm8

B2 1011 0010 data-8 MOV DL,imm8

B3 1011 0011 data-8 MOV BL,imm8

B4 1011 0100 data-8 MOV AH,imm8

B5 1011 0101 data-8 MOV CH, imm8

B6 1011 0110 data-8 MOV DH,imm8

B7 1011 0111 data-8 MOV BH,imm8

B8 1011 1000 data-low data-high MOV AX,imm16

B9 1011 1001 data-low data-high MOV CX,imm16

BA 1011 1010 data-low data-high MOV DX,imm16

BB 1011 1011 data-low data-high MOV BX,imm16

BC 1011 1100 data-low data-high MOV SP,imm16

BD 1011 1101 data-low data-high MOV BP,imm16

BE 1011 1110 data-low data-high MOV SI,imm16

BF 1011 1111 data-low data-high MOV DI,imm16

C0 1100 0000 mod 000 r/m (disp-low),(disp-high),data-8 ROL r/m8,imm8

mod 001 r/m (disp-low),(disp-high),data-8 ROR r/m8,imm8

mod 010 r/m (disp-low),(disp-high),data-8 RCL r/m8,imm8

mod 011 r/m (disp-low),(disp-high),data-8 RCR r/m8,imm8

mod 100 r/m (disp-low),(disp-high),data-8 SAL r/m8,imm8
SHL r/m8,imm8

mod 101 r/m (disp-low),(disp-high),data-8 SHR r/m8,imm8

mod 110 r/m reserved
mod 111 r/m (disp-low),(disp-high),data-8 SAR r/m8,imm8

Table A-3 Instruction Set Summary by Opcode

Opcode
Instruction Format Byte 1

Hex Binary
Byte 2 Bytes 3–6
Instruction Set Summary A-15

C1 1100 0001 mod 000 r/m (disp-low),(disp-high),data-8 ROL r/m16,imm8

mod 001 r/m (disp-low),(disp-high),data-8 ROR r/m16,imm8

mod 010 r/m (disp-low),(disp-high),data-8 RCL r/m16,imm8

mod 011 r/m (disp-low),(disp-high),data-8 RCR r/m16,imm8

mod 100 r/m (disp-low),(disp-high),data-8 SAL r/m16,imm8
SHL r/m16,imm8

mod 101 r/m (disp-low),(disp-high),data-8 SHR r/m16,imm8

mod 110 r/m reserved
mod 111 r/m (disp-low),(disp-high),data-8 SAR r/m16,imm8

C2 1100 0010 data-low data-high RET imm16

C3 1100 0011 RET

C4 1100 0100 mod reg r/m (disp-low),(disp-high) LES r16,m16:16

C5 1100 0101 mod reg r/m (disp-low),(disp-high) LDS r16,m16:16

C6 1100 0110 mod 000 r/m (disp-low),(disp-high),data-8 MOV r/m8,imm8

C7 1100 0111 mod 000 r/m (disp-low),(disp-high),data-low, data-high MOV r/m16,imm16

C8 1100 1000 data-low data-high, data-8 ENTER imm16,imm8

C9 1100 1001 LEAVE

CA 1100 1010 data-low data-high RET imm16

CB 1100 1011 RET

CC 1100 1100 INT 3

CD 1100 1101 data-8 INT imm8

CE 1100 1110 INTO

CF 1100 1111 IRET

D0 1101 0000 mod 000 r/m (disp-low),(disp-high) ROL r/m8,1

mod 001 r/m (disp-low),(disp-high) ROR r/m8,1

mod 010 r/m (disp-low),(disp-high) RCL r/m8,1

mod 011 r/m (disp-low),(disp-high) RCR r/m8,1

mod 100 r/m (disp-low),(disp-high) SAL r/m8,1
SHL r/m8,1

mod 101 r/m (disp-low),(disp-high) SHR r/m8,1

mod 110 r/m reserved
mod 111 r/m (disp-low),(disp-high) SAR r/m8,1

D1 1101 0001 mod 000 r/m (disp-low),(disp-high) ROL r/m16,1

mod 001 r/m (disp-low),(disp-high) ROR r/m16,1

mod 010 r/m (disp-low),(disp-high) RCL r/m16,1

mod 011 r/m (disp-low),(disp-high) RCR r/m16,1

mod 100 r/m (disp-low),(disp-high) SAL r/m16,1
SHL r/m16,1

mod 101 r/m (disp-low),(disp-high) SHR r/m16,1

mod 110 r/m reserved
mod 111 r/m (disp-low),(disp-high) SAR r/m16,1

Table A-3 Instruction Set Summary by Opcode

Opcode
Instruction Format Byte 1

Hex Binary
Byte 2 Bytes 3–6
Instruction Set SummaryA-16

D2 1101 0010 mod 000 r/m (disp-low),(disp-high) ROL r/m8,CL

mod 001 r/m (disp-low),(disp-high) ROR r/m8,CL

mod 010 r/m (disp-low),(disp-high) RCL r/m8,CL

mod 011 r/m (disp-low),(disp-high) RCR r/m8,CL

mod 100 r/m (disp-low),(disp-high) SAL r/m8,CL
SHL r/m8,CL

mod 101 r/m (disp-low),(disp-high) SHR r/m8,CL

mod 110 r/m reserved
mod 111 r/m (disp-low),(disp-high) SAR r/m8,CL

D3 1101 0011 mod 000 r/m (disp-low),(disp-high) ROL r/m16,CL

mod 001 r/m (disp-low),(disp-high) ROR r/m16,CL

mod 010 r/m (disp-low),(disp-high) RCL r/m16,CL

mod 011 r/m (disp-low),(disp-high) RCR r/m16,CL

mod 100 r/m (disp-low),(disp-high) SAL r/m16,CL
SHL r/m16,CL

mod 101 r/m (disp-low),(disp-high) SHR r/m16,CL

mod 110 r/m reserved
mod 111 r/m (disp-low),(disp-high) SAR r/m16,CL

D4 1101 0100 0000 1010 AAM

D5 1101 0101 0000 1010 AAD

D6 1101 0110 reserved
D7 1101 0111 XLAT m8

XLATB

D8 1101 1000 mod 000 r/m (disp-low),(disp-high) ESC m

D9 1101 1001 mod 001 r/m (disp-low),(disp-high) ESC m

DA 1101 1010 mod 010 r/m (disp-low),(disp-high) ESC m

DB 1101 1011 mod 011 r/m (disp-low),(disp-high) ESC m

DC 1101 1100 mod 100 r/m (disp-low),(disp-high) ESC m

DD 1101 1101 mod 101 r/m (disp-low),(disp-high) ESC m

DE 1101 1110 mod 110 r/m (disp-low),(disp-high) ESC m

DF 1101 1111 mod 111 r/m (disp-low),(disp-high) ESC m

E0 1110 0000 disp-8 LOOPNE rel8
LOOPNZ rel8

E1 1110 0001 disp-8 LOOPE rel8
LOOPZ rel8

E2 1110 0010 disp-8 LOOP rel8

E3 1110 0011 disp-8 JCXZ rel8

E4 1110 0100 data-8 IN AL,imm8

E5 1110 0101 data-8 IN AX,imm8

E6 1110 0110 data-8 OUT imm8,AL

E7 1110 0111 data-8 OUT imm8,AX

E8 1110 1000 disp-low disp-high CALL rel16

E9 1110 1001 disp-low disp-high JMP rel16

EA 1110 1010 disp-low disp-high,seg-low,seg-high JMP ptr16:16

Table A-3 Instruction Set Summary by Opcode

Opcode
Instruction Format Byte 1

Hex Binary
Byte 2 Bytes 3–6
Instruction Set Summary A-17

EB 1110 1011 disp-8 JMP rel8

EC 1110 1100 IN AL,DX

ED 1110 1101 IN AX,DX

EE 1110 1110 OUT DX,AL

EF 1110 1111 OUT DX,AX

F0 1111 0000 LOCK (prefix)

F1 1111 0001 reserved
F2 1111 0010 1010 0110 REPNE CMPS m8,m8

REPNZ CMPS m8,m8

1010 0111 REPNE CMPS m16,m16
REPNZ CMPS m16,m16

1010 1110 REPNE SCAS m8
REPNZ SCAS m8

1010 1111 REPNE SCAS m16
REPNZ SCAS m16

F3 1111 0011 0110 1100 REP INS r/m8,DX

0110 1101 REP INS r/m16,DX

0110 1110 REP OUTS DX,r/m8

0110 1111 REP OUTS DX,r/m16

1010 0100 REP MOVS m8,m8

1010 0101 REP MOVS m16,m16

1010 0110 REPE CMPS m8,m8
REPZ CMPS m8,m8

1010 0111 REPE CMPS m16,m16
REPZ CMPS m16,m16

1010 1010 REP STOS m8

1010 1011 REP STOS m16

1010 1100 REP LODS m8

1010 1101 REP LODS m16

1010 1110 REPE SCAS m8
REPZ SCAS m8

1010 1111 REPE SCAS m16
REPZ SCAS m16

F4 1111 0100 HLT

F5 1111 0101 CMC

F6 1111 0110 mod 000 r/m (disp-low),(disp-high),data-8 TEST r/m8,imm8

mod 001 r/m reserved
mod 010 r/m (disp-low),(disp-high) NOT r/m8

mod 011 r/m (disp-low),(disp-high) NEG r/m8

mod 100 r/m (disp-low),(disp-high) MUL r/m8

mod 101 r/m (disp-low),(disp-high) IMUL r/m8

mod 110 r/m (disp-low),(disp-high) DIV r/m8

mod 111 r/m (disp-low),(disp-high) IDIV r/m8

Table A-3 Instruction Set Summary by Opcode

Opcode
Instruction Format Byte 1

Hex Binary
Byte 2 Bytes 3–6
Instruction Set SummaryA-18

F7 1111 0111 mod 000 r/m (disp-low),(disp-high),data-low, data-high TEST r/m16,imm16

mod 001 r/m reserved
mod 010 r/m (disp-low),(disp-high) NOT r/m16

mod 011 r/m (disp-low),(disp-high) NEG r/m16

mod 100 r/m (disp-low),(disp-high) MUL r/m16

mod 101 r/m (disp-low),(disp-high) IMUL r/m16

mod 110 r/m (disp-low),(disp-high) DIV r/m16

mod 111 r/m (disp-low),(disp-high) IDIV r/m16

F8 1111 1000 CLC

F9 1111 1001 STC

FA 1111 1010 CLI

FB 1111 1011 STI

FC 1111 1100 CLD

FD 1111 1101 STD

FE 1111 1110 mod 000 r/m (disp-low),(disp-high) INC r/m8

mod 001 r/m (disp-low),(disp-high) DEC r/m8

mod 010 r/m reserved
mod 011 r/m reserved
mod 100 r/m reserved
mod 101 r/m reserved
mod 110 r/m reserved
mod 111 r/m reserved

FF 1111 1111 mod 000 r/m (disp-low),(disp-high) INC r/m16

mod 001 r/m (disp-low),(disp-high) DEC r/m16

mod 010 r/m (disp-low),(disp-high) CALL r/m16

mod 011 r/m (disp-low),(disp-high) CALL m16:16

mod 100 r/m (disp-low),(disp-high) JMP r/m16

mod 101 r/m (disp-low),(disp-high) JMP m16:16

mod 110 r/m (disp-low),(disp-high) PUSH m16

mod 111 r/m reserved

Table A-3 Instruction Set Summary by Opcode

Opcode
Instruction Format Byte 1

Hex Binary
Byte 2 Bytes 3–6
Instruction Set Summary A-19

Table A-4 Instruction Set Summary by Partial Opcode

x0 x1 x2 x3 x4 x5 x6 x7

0x
ADD

r/m8,r8

ADD
r/m16,r16

ADD
r8,r/m8

ADD
r16,r/m16

ADD
AL,imm8

ADD
AX,imm16

PUSH
ES

POP
ES

1x
ADC

r/m8,r8

ADC
r/m16,r16

ADC
r8,r/m8

ADC
r16,r/m16

ADC
AL,imm8

ADC
AX,imm16

PUSH
SS

POP
SS

2x
AND

r/m8,r8

AND
r/m16,r16

AND
r8,r/m8

AND
r16,r/m16

AND
AL,imm8

AND
AX,imm16

(ES seg. reg.
override
prefix)

DAA

3x
XOR

r/m8,r8

XOR
r/m16,r16

XOR
r8,r/m8

XOR
r16,r/m16

XOR
AL,imm8

XOR
AX,imm16

(SS seg. reg.
override
prefix)

AAA

4x
INC
AX

INC
CX

INC
DX

INC
BX

INC
SP

INC
BP

INC
SI

INC
DI

5x
PUSH

AX

PUSH
CX

PUSH
DX

PUSH
BX

PUSH
SP

PUSH
BP

PUSH
SI

PUSH
DI

6x
PUSHA POPA BOUND

r16,m16&16

(reserved) (reserved) (reserved) (reserved) (reserved)

7x
JO
rel8

JNO
rel8

JB/JC/JNAE
rel8

JAE/JNB/JNC
rel8

JE/JZ
rel8

JNE/JNZ
rel8

JBE/JNA
rel8

JA/JNBE
rel8

8x

Immed
r/m8,imm8

Immed
r/m16,imm16

(reserved) Immed
r/m16,imm8

TEST
r/m8,r8

TEST
r/m16,r16

XCHG
r/m8,r8

XCHG
r8,r/m8

XCHG
r/m16,r16

XCHG
r16,r/m16

9x

NOP

XCHG
AX,AX

XCHG
AX,CX

XCHG
CX,AX

XCHG
AX,DX

XCHG
DX,AX

XCHG
AX,BX

XCHG
BX,AX

XCHG
AX,SP

XCHG
SP,AX

XCHG
AX,BP

XCHG
BP,AX

XCHG
AX,SI

XCHG
SI,AX

XCHG
AX,DI’

XCHG
DI,AX

Ax

MOV
AL,moffs8

MOV
AX,moffs16

MOV
moffs8,AL

MOV
moffs16,AX

MOVS
m8,m8

MOVSB

MOVS
m16,m16

MOVSW

CMPS
m8,m8

CMPSB

CMPS
m16,m16

CMPSW

Bx
MOV

AL,imm8

MOV
CL,imm8

MOV
DL,imm8

MOV
BL,imm8

MOV
AH,imm8

MOV
CH, imm8

MOV
DH,imm8

MOV
BH,imm8

Cx
Shift

r/m8,imm8

Shift
r/m16,imm8

RET
imm16

RET LES
r16,m16:16

LDS
r16,m16:16

MOV
r/m8,imm8

MOV
r/m16,imm16

Dx

Shift
r/m8,1

Shift
r/m16,1

Shift
r/m8,CL

Shift
r/m16,CL

AAM AAD (reserved) XLAT
m8

XLATB

Ex
LOOPNE/
LOOPNZ

rel8

LOOPE/
LOOPZ

rel8

LOOP
rel8

JCXZ
rel8

IN
AL,imm8

IN
AX,imm8

OUT
imm8,AL

OUT
imm8,AX

Fx
LOCK (prefix) (reserved) REPNE/

REPNZ
(prefix)

REP/REPE/
REPZ
(prefix)

HLT CMC Instr1
r/m8

Instr1
r/m16

Opco
de
Instruction Set SummaryA-20

Table A-4 Instruction Set Summary by Partial Opcode (continued)

x8 x9 xA xB xC xD xE xF

0x
OR

r/m8,r8

OR
r/m16,r16

OR
r8,r/m8

OR
r16,r/m16

OR
AL,imm8

OR
AX,imm16

PUSH
CS

(reserved)

1x
SBB

r/m8,r8

SBB
r/m16,r16

SBB
r8,r/m8

SBB
r16,r/m16

SBB
AL,imm8

SBB
AX,imm16

PUSH
DS

POP
DS

2x
SUB

r/m8,r8

SUB
r/m16,r16

SUB
r8,r/m8

SUB
r16,r/m16

SUB
AL,imm8

SUB
AX,imm16

(CS seg.
reg. override

prefix)

DAS

3x
CMP

r/m8,r8

CMP
r/m16,r16

CMP
r8,r/m8

CMP
r16,r/m16

CMP
AL,imm8

CMP
AX,imm16

(DS seg.
reg. override

prefix)

AAS

4x
DEC

AX

DEC
CX

DEC
DX

DEC
BX

DEC
SP

DEC
BP

DEC
SI

DEC
DI

5x
POP

AX

POP
CX

POP
DX

POP
BX

POP
SP

POP
BP

POP
SI

POP
DI

6x

PUSH
imm16

IMUL
r16,r/m16,imm16

IMUL
r16,imm16

PUSH
imm8

IMUL
r16,r/m16,imm8

IMUL
r16,imm8

INS
m8,DX

INSB

INS
m16,DX

INSW

OUTS
DX,r/m8

OUTSB

OUTS
DX,r/m16

OUTSW

7x
JS
rel8

JNS
rel8

JPE/JP
rel8

JPO/JNP
rel8

JL/JNGE
rel8

JGE/JNL
rel8

JLE/JNG
rel8

JG/JNLE
rel8

8x
MOV
r/m8,r8

MOV
r/m16,r16

MOV
r8,r/m8

MOV
r16,r/m16

MOV
r/m16,sreg

LEA
r16,m16

MOV
sreg,r/m16

POP
m16

9x
CBW CWD CALL

ptr16:16

WAIT PUSHF POPF SAHF LAHF

Ax

TEST
AL,imm8

TEST
AX,imm16

STOS
m8

STOSB

STOS
m16

STOSW

LODS
m8

LODSB

LODS
m16

LODSW

SCAS
m8

SCASB

SCAS
m16

SCASW

Bx
MOV

AX,imm16

MOV
CX,imm16

MOV
DX,imm16

MOV
BX,imm16

MOV
SP,imm16

MOV
BP,imm16

MOV
SI,imm16

MOV
DI,imm16

Cx
ENTER

imm16,imm8

LEAVE RET
imm16

RET INT 3 INT
imm8

INTO IRET

Dx
ESC

m

ESC
m

ESC
m

ESC
m

ESC
m

ESC
m

ESC
m

ESC
m

Ex
CALL
rel16

JMP
rel16

JMP
ptr16:16

JMP
rel8

IN
AL,DX

IN
AX,DX

OUT
DX,AL

OUT
DX,AX

Fx
CLC STC CLI STI CLD STD Instr2

r/m8

Instr3

Opco
de
Instruction Set Summary A-21

Table A-5 Abbreviations for Table A-4

Instruction Group

Byte 2
Immed Shift Instr1 Instr2 Instr3

mod 000 r/m ADD ROL TEST INC INC r/m16

mod 001 r/m OR ROR (reserved) DEC DEC r/m16

mod 010 r/m ADC RCL NOT (reserved) CALL r/m16

mod 011 r/m SBB RCR NEG (reserved) CALL m16:16

mod 100 r/m AND SAL/SHL MUL (reserved) JMP r/m16

mod 101 r/m SUB SHR IMUL (reserved) JMP m16:16

mod 110 r/m XOR (reserved) DIV (reserved) PUSH m16

mod 111 r/m CMP SAR IDIV (reserved) (reserved)

Note:

mod and r/m determine the Effective Address (EA) calculation. See Table A-1 for definitions.
Instruction Set SummaryA-22

INDEX
A
AAA (ASCII Adjust AL after Addition) instruction, 4-2

AAD (ASCII Adjust AX before Division) instruction, 4-4

AAM (ASCII Adjust AL after Multiplication) instruction,
4-6

AAS (ASCII Adjust AL after Subtraction) instruction, 4-8

abbreviations for partial opcode table, A-22

ADC (Add Numbers with Carry) instruction, 4-10

ADD (Add Numbers) instruction, 4-14

address calculation and translation instructions
LDS (Load DS with Segment and Register with Offset)

instruction, 4-131
LEA (Load Effective Address) instruction, 4-133
LES (Load ES with Segment and Register with Offset)

instruction, 4-138
list of, 3-1
XLAT (Translate Table Index to Component)

instruction, 4-248
XLATB (Translate Table Index to Byte) instruction,

4-248

addressing modes, 1-7
memory operands, 1-7
register and immediate operands, 1-7
register indirect mode, 1-7

addressing notation, 2-3

AND (Logical AND) instruction, 4-17

B
base and index registers, 1-1

binary arithmetic instructions
ADC (Add Numbers with Carry) instruction, 4-10
ADD (Add Numbers) instruction, 4-14
CBW (Convert Byte Integer to Word) instruction, 4-24
CWD (Convert Word Integer to Doubleword)

instruction, 4-40
DEC (Decrement Number by One) instruction, 4-48
DIV (Divide Unsigned Numbers) instruction, 4-50
IDIV (Divide Integers) instruction, 4-60
IMUL (Multiply Integers) instruction, 4-63
INC (Increment Number by One) instruction, 4-69
list of, 3-2
MUL (Multiply Unsigned Numbers) instruction, 4-160
NEG (Two’s Complement Negation) instruction, 4-163

SAL (Shift Arithmetic Left) instruction, 4-211
SAR (Shift Arithmetic Right) instruction, 4-214
SBB (Subtract Numbers with Borrow) instruction,

4-216
SHL (Shift Left) instruction, 4-211, 4-224
SHR (Shift Right) instruction, 4-225
SUB (Subtract Numbers) instruction, 4-240

block-structured language instructions
ENTER (Enter High-Level Procedure) instruction,

4-53
LEAVE (Leave High-Level Procedure) instruction,

4-135
list of, 3-3

BOUND (Check Array Index Against Bounds)
instruction, 4-19

C
CALL (Call Procedure) instruction, 4-21

CBW (Convert Byte Integer to Word) instruction, 4-24

CLC (Clear Carry Flag) instruction, 4-26

CLD (Clear Direction Flag) instruction, 4-29

CLI (Clear Interrupt-Enable Flag) instruction, 4-31

CMC (Complement Carry Flag) instruction, 4-33

CMP (Compare Components) instruction, 4-34

CMPS (Compare String Components) instruction, 4-36

CMPSB (Compare String Bytes) instruction, 4-36

CMPSW (Compare String Words) instruction, 4-36

comparison instructions
CMP (Compare Components) instruction, 4-34
CMPS (Compare String Components) instruction,

4-36
CMPSB (Compare String Bytes) instruction, 4-36
CMPSW (Compare String Words) instruction, 4-36
list of, 3-3
SCAS (Scan String for Component) instruction, 4-219
SCASB (Scan String for Byte) instruction, 4-219
SCASW (Scan String for Word) instruction, 4-219
TEST (Logical Compare) instruction, 4-243

control transfer instructions
BOUND (Check Array Index Against Bounds)

instruction, 4-19
CALL (Call Procedure) instruction, 4-21
IDIV (Divide Integers) instruction, 4-60
Index I-1

INT (Generate Interrupt) instruction, 4-73
INTO (Generate Interrupt If Overflow) instruction, 4-73
IRET (Interrupt Return) instruction, 4-76
JA (Jump If Above) instruction, 4-78
JAE (Jump If Above or Equal) instruction, 4-80
JB (Jump If Below) instruction, 4-82
JBE (Jump If Below or Equal) instruction, 4-84
JC (Jump If Carry) instruction, 4-82
JCXZ (Jump If CX Register Is Zero) instruction, 4-87
JE (Jump If Equal) instruction, 4-89
JG (Jump If Greater) instruction, 4-91
JGE (Jump If Greater or Equal) instruction, 4-93
JL (Jump If Less) instruction, 4-95
JLE (Jump If Less or Equal) instruction, 4-97
JMP (Jump) instruction, 4-99
JNA (Jump If Not Above) instruction, 4-84
JNAE (Jump If Not Above or Equal) instruction, 4-82
JNB (Jump If Not Below) instruction, 4-80
JNBE (Jump If Not Below or Equal) instruction, 4-78
JNC (Jump If Not Carry) instruction, 4-80
JNE (Jump If Not Equal) instruction, 4-107
JNG (Jump If Not Greater) instruction, 4-97
JNGE (Jump If Not Greater or Equal) instruction, 4-95
JNL (Jump If Not Less) instruction, 4-93
JNLE (Jump If Not Less or Equal) instruction, 4-91
JNO (Jump If Not Overflow) instruction, 4-113
JNP (Jump If Not Parity) instruction, 4-124
JNS (Jump If Not Sign) instruction, 4-116
JNZ (Jump If Not Zero) instruction, 4-107
JO (Jump If Overflow) instruction, 4-119
JP (Jump If Parity) instruction, 4-122
JPE (Jump If Parity Even) instruction, 4-122
JPO (Jump If Parity Odd) instruction, 4-124
JS (Jump If Sign) instruction, 4-126
JZ (Jump If Zero) instruction, 4-89
list of, 3-3
LOOP (Loop While CX Register Is Not Zero)

instruction, 4-146
LOOPE (Loop If Equal) instruction, 4-148
LOOPNE (Loop If Not Equal) instruction, 4-150
LOOPNZ (Loop If Not Zero) instruction, 4-150
LOOPZ (Loop If Zero) instruction, 4-148
RET (Return from Procedure) instruction, 4-202

CWD (Convert Word Integer to Doubleword) instruction,
4-40

D
DAA (Decimal Adjust AL after Addition) instruction, 4-42

DAS (Decimal Adjust AL after Subtraction) instruction,
4-45

data movement instructions
IN (Input Component from Port) instruction, 4-67
INS (Input String Component from Port) instruction,

4-71
INSB (Input String Byte from Port) instruction, 4-71
INSW (Input String Word from Port) instruction, 4-71

LAHF (Load AH with Flags) instruction, 4-129
list of, 3-5
LODS (Load String Component) instruction, 4-141
LODSB (Load String Byte) instruction, 4-141
LODSW (Load String Word) instruction, 4-141
MOV (Move Component) instruction, 4-153
MOVS (Move String Component) instruction, 4-156
MOVSB (Move String Byte) instruction, 4-156
MOVSW (Move String Word) instruction, 4-156
OUT (Output Component to Port) instruction, 4-171
OUTS (Output String Component to Port) instruction,

4-173
OUTSB (Output String Byte to Port) instruction, 4-173
OUTSW (Output String Word to Port) instruction,

4-173
POP (Pop Component from Stack) instruction, 4-175
POPA (Pop All 16-Bit General Registers from Stack)

instruction, 4-178
POPF (Pop Flags from Stack) instruction, 4-180
PUSH (Push Component onto Stack) instruction,

4-181
PUSHA (Push All 16-Bit General Registers onto

Stack) instruction, 4-184
PUSHF (Push Flags onto Stack) instruction, 4-186
SAHF (Store AH in Flags) instruction, 4-209
STOS (Store String Component) instruction, 4-237
STOSB (Store String Byte) instruction, 4-237
STOSW (Store String Word) instruction, 4-237
XCHG (Exchange Components) instruction, 4-246

data types
ASCII, 1-6
BCD, 1-5
double word, 1-5
integer, 1-5
ordinal, 1-5
packed BCD, 1-6
pointer, 1-6
quad word, 1-5
string, 1-6
supported data types, 1-6

DEC (Decrement Number by One) instruction, 4-48

decimal arithmetic instructions
AAA (ASCII Adjust AL after Addition) instruction, 4-2
AAD (ASCII Adjust AX before Division) instruction, 4-4
AAM (ASCII Adjust AL after Multiplication) instruction,

4-6
AAS (ASCII Adjust AL after Subtraction) instruction,

4-8
ADD (Add Numbers) instruction, 4-14
DAA (Decimal Adjust AL after Addition) instruction,

4-42
DAS (Decimal Adjust AL after Subtraction) instruction,

4-45
DIV (Divide Unsigned Numbers) instruction, 4-50
list of, 3-6
MUL (Multiply Unsigned Numbers) instruction, 4-160
SUB (Subtract Numbers) instruction, 4-240

development tools
IndexI-2

third-party products, iv

DIV (Divide Unsigned Numbers) instruction, 4-50

documentation
AMD E86 Family publications, iv

E
ENTER (Enter High-Level Procedure) instruction, 4-53

ESC (Escape) instruction, 4-56

F
flag instructions

CLC (Clear Carry Flag) instruction, 4-26
CLD (Clear Direction Flag) instruction, 4-29
CLI (Clear Interrupt-Enable Flag) instruction, 4-31
CMC (Complement Carry Flag) instruction, 4-33
list of, 3-7
POPF (Pop Flags from Stack) instruction, 4-180
RCL (Rotate through Carry Left) instruction, 4-187
RCR (Rotate through Carry Right) instruction, 4-189
SAHF (Store AH in Flags) instruction, 4-209
STC (Set Carry Flag) instruction, 4-228
STD (Set Direction Flag) instruction, 4-231
STI (Set Interrupt-Enable Flag) instruction, 4-235

G
general registers

base and index registers, 1-1
description of, 1-1
stack pointer register, 1-1

H
HLT (Halt) instruction, 4-57

I
I/O space

description of, 1-5

IDIV (Divide Integers) instruction, 4-60

IMUL (Multiply Integers) instruction, 4-63

IN (Input Component from Port) instruction, 4-67

INC (Increment Number by One) instruction, 4-69

input/output instructions
IN (Input Component from Port) instruction, 4-67
INS (Input String Component from Port) instruction,

4-71
INSB (Input String Byte from Port) instruction, 4-71
INSW (Input String Word from Port) instruction, 4-71
list of, 3-8

OUT (Output Component to Port) instruction, 4-171
OUTS (Output String Component to Port) instruction,

4-173
OUTSB (Output String Byte to Port) instruction, 4-173
OUTSW (Output String Word to Port) instruction,

4-173

INS (Input String Component from Port) instruction, 4-71

INSB (Input String Byte from Port) instruction, 4-71

instruction format, 2-1
instruction prefixes, 2-1
opcode, 2-2
operand address, 2-2
segment override prefix, 2-1

instruction forms table sample, 2-4

instruction set, 1-3
alphabetical order list, 3-11
by type, 3-1
summary table by mnemonic, A-3– A-9
summary table by opcode, A-10– A-19
summary table by partial opcode A-20–, A-21

INSW (Input String Word from Port) instruction, 4-71

INT (Generate Interrupt) instruction, 4-73

INTO (Generate Interrupt If Overflow) instruction, 4-73

IRET (Interrupt Return) instruction, 4-76

J
JA (Jump If Above) instruction, 4-78

JAE (Jump If Above or Equal) instruction, 4-80

JB (Jump If Below) instruction, 4-82

JBE (Jump If Below or Equal) instruction, 4-84

JC (Jump If Carry) instruction, 4-82

JCXZ (Jump If CX Register Is Zero) instruction, 4-87

JE (Jump If Equal) instruction, 4-89

JG (Jump If Greater) instruction, 4-91

JGE (Jump If Greater or Equal) instruction, 4-93

JL (Jump If Less) instruction, 4-95

JLE (Jump If Less or Equal) instruction, 4-97

JMP (Jump) instruction, 4-99

JNA (Jump If Not Above) instruction, 4-84

JNAE (Jump If Not Above or Equal) instruction, 4-82

JNB (Jump If Not Below) instruction, 4-80

JNBE (Jump If Not Below or Equal) instruction, 4-78

JNC (Jump If Not Carry) instruction, 4-80

JNE (Jump If Not Equal) instruction, 4-107

JNG (Jump If Not Greater) instruction, 4-97

JNGE (Jump If Not Greater or Equal) instruction, 4-95
Index I-3

JNL (Jump If Not Less) instruction, 4-93

JNLE (Jump If Not Less or Equal) instruction, 4-91

JNO (Jump If Not Overflow) instruction, 4-113

JNP (Jump If Not Parity) instruction, 4-124

JNS (Jump If Not Sign) instruction, 4-116

JNZ (Jump If Not Zero) instruction, 4-107

JO (Jump If Overflow) instruction, 4-119

JP (Jump If Parity) instruction, 4-122

JPE (Jump If Parity Even) instruction, 4-122

JPO (Jump If Parity Odd) instruction, 4-124

JS (Jump If Sign) instruction, 4-126

JZ (Jump If Zero) instruction, 4-89

L
LAHF (Load AH with Flags) instruction, 4-129

LDS (Load DS with Segment and Register with Offset)
instruction, 4-131

LEA (Load Effective Address) instruction, 4-133

LEAVE (Leave High-Level Procedure) instruction, 4-135

LES (Load ES with Segment and Register with Offset)
instruction, 4-138

LOCK (Lock the Bus) instruction, 4-140

LODS (Load String Component) instruction, 4-141

LODSB (Load String Byte) instruction, 4-141

LODSW (Load String Word) instruction, 4-141

logical operation instructions
AND (Logical AND) instruction, 4-17
list of, 3-8
NOT (One’s Complement Negation) instruction, 4-167
OR (Logical Inclusive OR) instruction, 4-169
RCL (Rotate through Carry Left) instruction, 4-187
RCR (Rotate through Carry Right) instruction, 4-189
ROL (Rotate Left) instruction, 4-205
ROR (Rotate Right) instruction, 4-207
SAL (Shift Arithmetic Left) instruction, 4-211
SAR (Shift Arithmetic Right) instruction, 4-214
SHL (Shift Left) instruction, 4-211, 4-224
SHR (Shift Right) instruction, 4-225
XOR (Logical Exclusive OR) instruction, 4-251

LOOP (Loop While CX Register Is Not Zero) instruction,
4-146

LOOPE (Loop If Equal) instruction, 4-148

LOOPNE (Loop If Not Equal) instruction, 4-150

LOOPNZ (Loop If Not Zero) instruction, 4-150

LOOPZ (Loop If Zero) instruction, 4-148

M
memory addressing modes

based indexed mode, 1-7
based indexed mode with displacement, 1-7
based mode, 1-7
direct mode, 1-7
examples, 1-7
indexed mode, 1-7

memory and I/O space, 1-4

memory operands, 1-7
base, 1-7
displacement, 1-7
index, 1-7

MOV (Move Component) instruction, 4-153

MOVS (Move String Component) instruction, 4-156

MOVSB (Move String Byte) instruction, 4-156

MOVSW (Move String Word) instruction, 4-156

MUL (Multiply Unsigned Numbers) instruction, 4-160

N
NEG (Two’s Complement Negation) instruction, 4-163

NOP (No Operation) instruction, 4-165

NOT (One’s Complement Negation) instruction, 4-167

O
opcode, 2-5

operand address
aux field, 2-3
displacement, 2-3
immediate, 2-3
mod field, 2-2
r/m field, 2-3

OR (Logical Inclusive OR) instruction, 4-169

OUT (Output Component to Port) instruction, 4-171

OUTS (Output String Component to Port) instruction,
4-173

OUTSB (Output String Byte to Port) instruction, 4-173

OUTSW (Output String Word to Port) instruction, 4-173

overview
instruction set, 2-1

P
physical-address generation, 1-4

POP (Pop Component from Stack) instruction, 4-175
IndexI-4

POPA (Pop All 16-Bit General Registers from Stack)
instruction, 4-178

POPF (Pop Flags from Stack) instruction, 4-180

processor control instructions
ESC (Escape) instruction, 4-56
HLT (Halt) instruction, 4-57
list of, 3-9
LOCK (Lock the Bus) instruction, 4-140
NOP (No Operation) instruction, 4-165
WAIT (Wait for Coprocessor) instruction, 4-245

processor status flags register, 1-2

PUSH (Push Component onto Stack) instruction, 4-181

PUSHA (Push All 16-Bit General Registers onto Stack)
instruction, 4-184

PUSHF (Push Flags onto Stack) instruction, 4-186

R
RCL (Rotate through Carry Left) instruction, 4-187

RCR (Rotate through Carry Right) instruction, 4-189

register and immediate operands, 1-7

register set, 1-2
general registers, 1-1
segment registers, 1-1
status and control registers, 1-1

REP (Repeat) instruction, 4-191

REPE (Repeat While Equal) instruction, 4-193

REPNE (Repeat While Not Equal) instruction, 4-197

REPNZ (Repeat While Not Zero) instruction, 4-197

REPZ (Repeat While Zero) instruction, 4-193, 4-201

RET (Return from Procedure) instruction, 4-202

ROL (Rotate Left) instruction, 4-205

ROR (Rotate Right) instruction, 4-207

S
SAHF (Store AH in Flags) instruction, 4-209

SAL (Shift Arithmetic Left) instruction, 4-211

SAR (Shift Arithmetic Right) instruction, 4-214

SBB (Subtract Numbers with Borrow) instruction, 4-216

SCAS (Scan String for Component) instruction, 4-219

SCASB (Scan String for Byte) instruction, 4-219

SCASW (Scan String for Word) instruction, 4-219

segment registers, 1-1

segments
code segment (CS), 1-5
data segment (DS), 1-5

extra segment (ES), 1-5
segment register selection rules, 1-5
stack segment (SS), 1-5

SHL (Shift Left) instruction, 4-211, 4-224

SHR (Shift Right) instruction, 4-225

stack pointer register, 1-1

status and control registers, 1-1

STC (Set Carry Flag) instruction, 4-228

STD (Set Direction Flag) instruction, 4-231

STI (Set Interrupt-Enable Flag) instruction, 4-235

STOS (Store String Component) instruction, 4-237

STOSB (Store String Byte) instruction, 4-237

STOSW (Store String Word) instruction, 4-237

string instructions
CLD (Clear Direction Flag) instruction, 4-29
CMPS (Compare String Components) instruction,

4-36
CMPSB (Compare String Bytes) instruction, 4-36
CMPSW (Compare String Words) instruction, 4-36
INS (Input String Component from Port) instruction,

4-71
INSB (Input String Byte from Port) instruction, 4-71
INSW (Input String Word from Port) instruction, 4-71
list of, 3-9
LODS (Load String Component) instruction, 4-141
LODSB (Load String Byte) instruction, 4-141
LODSW (Load String Word) instruction, 4-141
MOVS (Move String Component) instruction, 4-156
MOVSB (Move String Byte) instruction, 4-156
MOVSW (Move String Word) instruction, 4-156
OUTS (Output String Component to Port) instruction,

4-173
OUTSB (Output String Byte to Port) instruction, 4-173
OUTSW (Output String Word to Port) instruction,

4-173
REP (Repeat) instruction, 4-191
REPE (Repeat While Equal) instruction, 4-193
REPNE (Repeat While Not Equal) instruction, 4-197
REPNZ (Repeat While Not Zero) instruction, 4-197
REPZ (Repeat While Zero) instruction, 4-193, 4-201
SCAS (Scan String for Component) instruction, 4-219
SCASB (Scan String for Byte) instruction, 4-219
SCASW (Scan String for Word) instruction, 4-219
STD (Set Direction Flag) instruction, 4-231
STOS (Store String Component) instruction, 4-237
STOSB (Store String Byte) instruction, 4-237
STOSW (Store String Word) instruction, 4-237

SUB (Subtract Numbers) instruction, 4-240
Index I-5

summary tables
abbreviations for partial opcode table, A-22
instruction set summary by mnemonic, A-3–, A-9
instruction set summary by opcode, A-10–, A-19
instruction set summary by partial opcode, A-20–,

A-21
variables used in instruction set, A-2

T
TEST (Logical Compare) instruction, 4-243

U
using this manual, 2-4

description, 2-6
examples, 2-7
flag settings after instruction, 2-7
forms of the instruction, 2-4
mnemonics, 2-4

sample, 2-4
names

sample, 2-4
operations, 2-7
related instructions, 2-8
syntax, 2-6
tips, 2-8

V
variables used in instruction set summary tables, A-2

W
WAIT (Wait for Coprocessor) instruction, 4-245

X
XCHG (Exchange Components) instruction, 4-246

XLAT (Translate Table Index to Component) instruction,
4-248

XLATB (Translate Table Index to Byte) instruction, 4-248

XOR (Logical Exclusive OR) instruction, 4-251
IndexI-6

	Preface: Introduction and Overview
	Purpose of This Manual
	Intended Audience
	Manual Overview
	AMD Documentation
	E86 Family

	Table of Contents
	List of Figures
	List of Tables

	Chapter 1: Programming
	1.1 Register Set
	1.1.1 Processor Status Flags Register
	Figure 1-2 Processor Status Flags Register (FLAGS)...

	1.2 Instruction Set
	1.3 Memory Organization and Address generation
	Figure 1-3 Physical-Address Generation
	Figure 1-4 Memory and i/O Space

	1.4 I/O Space
	1.5 Segments
	Table 1-1 Segment Register Selection Rules

	1.6 Data Types
	Figure 1-5 Supported Data Types

	1.7 Addressing Modes
	Register and Immediate Operands
	Memory Operands
	Table 1-2 Memory Addressing Mode Examples

	Chapter 2: Instruction Set Overview
	2.1 Overview
	2.2 Instruction Format
	2.2.1 Instruction Prefixes
	2.2.2 Segment Override Prefix
	2.2.3 Opcode
	2.2.4 Operand Address
	Table 2-1 mod field
	Table 2-2 aux field
	Table 2-3 r/m field
	2.2.5 Displacement
	2.2.6 Immediate

	2.3 Notation
	2.4 Using This Manual
	2.4.1 Mnemonics and Names
	Figure 2-1 Instruction Mnemonic and Name Sample
	2.4.2 Forms of the Instruction
	Figure 2-2 Instruction Forms Table Sample
	2.4.3 What It Does
	2.4.4 Syntax
	2.4.5 Description
	2.4.6 Operation It Performs
	2.4.7 Flag Settings After Instruction
	2.4.8 Examples
	2.4.9 Tips
	2.4.10 Related Instructions

	Chapter 3: Instruction Set Listing
	3.1 Instruction Set by Type
	3.1.1 Address Calculation and Translation
	3.1.2 Binary Arithmetic
	3.1.3 Block-Structured Language
	3.1.4 Comparison
	3.1.5 Control Transfer
	3.1.6 Data Movement
	3.1.7 Decimal Arithmetic
	3.1.8 Flag
	3.1.9 Input/Output
	3.1.10 Logical Operation
	3.1.11 Processor Control
	3.1.12 String

	3.2 Instruction Set in Alphabetical Order
	Table 3-1 Instruction Set
	Table 3-1 Instruction Set (continued)
	Table 3-1 Instruction Set (continued)

	Chapter 4: Instruction Set
	4.1 Instructions
	AAA ASCII Adjust AL After Addition AAA
	AAD ASCII Adjust AX Before Division AAD
	AAM ASCII Adjust AL After Multiplication AAM
	AAS ASCII Adjust AL After Subtraction AAS
	ADC Add Numbers with Carry ADC
	ADD Add Numbers ADD
	AND Logical AND AND
	BOUND Check Array Index Against Bounds BOUND
	CALL Call Procedure CALL
	CBW Convert Byte Integer to Word CBW
	CLC Clear Carry Flag CLC
	CLD Clear Direction Flag CLD
	CLI Clear Interrupt-Enable Flag CLI
	CMC Complement Carry Flag CMC
	CMP Compare Components CMP
	CMPS Compare String Components CMPS
	CWD Convert Word Integer to Doubleword CWD
	DAA Decimal Adjust AL After Addition DAA
	DAS Decimal Adjust AL After Subtraction DAS
	DEC Decrement Number by One DEC
	DIV Divide Unsigned Numbers DIV
	ENTER Enter High-Level Procedure ENTER
	ESC Escape ESC
	HLT Halt HLT
	IDIV Divide Integers IDIV
	IMUL Multiply Integers IMUL
	IN Input Component from Port IN
	INC Increment Number by One INC
	INS Input String Component from Port INS
	INT Generate Interrupt INT
	IRET Interrupt Return IRET
	JA Jump If Above JA
	JAE Jump If Above or Equal JAE
	JB Jump If Below JB
	JBE Jump If Below or Equal JBE
	JC Jump If Carry JC
	JCXZ Jump If CX Register Is Zero JCXZ
	JE Jump If Equal JE
	JG Jump If Greater JG
	JGE Jump If Greater or Equal JGE
	JL Jump If Less JL
	JLE Jump If Less or Equal JLE
	JMP Jump Unconditionally JMP
	JNA Jump If Not Above JNA
	JNAE Jump If Not Above or Equal JNAE
	JNB Jump If Not Below JNB
	JNBE Jump If Not Below or Equal JNBE
	JNC Jump If Not Carry JNC
	JNE Jump If Not Equal JNE
	JNG Jump If Not Greater JNG
	JNGE Jump If Not Greater or Equal JNGE
	JNL Jump If Not Less JNL
	JNLE Jump If Not Less or Equal JNLE
	JNO Jump If Not Overflow JNO
	JNP Jump If Not Parity JNP
	JNS Jump If Not Sign JNS
	JNZ Jump If Not Zero JNZ
	JO Jump If Overflow JO
	JP Jump If Parity JP
	JPE Jump If Parity Even JPE
	JPO Jump If Parity Odd JPO
	JS Jump If Sign JS
	JZ Jump If Zero JZ
	LAHF Load AH with Flags LAHF
	LDS Load DS with Segment and Register with Offset ...
	LEA Load Effective Address LEA
	LEAVE Leave High-Level Procedure LEAVE
	LES Load ES with Segment and Register with Offset ...
	LOCK Lock the Bus LOCK
	LODS Load String Component LODS
	LOOP Loop While CX Register Is Not Zero LOOP
	LOOPE Loop If Equal LOOPE
	LOOPNE Loop If Not Equal LOOPNE
	LOOPZ Loop If Zero LOOPZ
	MOV Move Component MOV
	MOVS Move String Component MOVS
	MUL Multiply Unsigned Numbers MUL
	NEG Two’s Complement Negation NEG
	NOP No Operation NOP
	NOT One’s Complement Negation NOT
	OR Logical Inclusive OR OR
	OUT Output Component to Port OUT
	OUTS Output String Component to Port OUTS
	POP Pop Component from Stack POP
	POPA Pop All 16-Bit General Registers from Stack P...
	POPF Pop Flags from Stack POPF
	PUSH Push Component onto Stack PUSH
	PUSHA Push All 16-Bit General Registers onto Stack...
	PUSHF Push Flags onto Stack PUSHF
	RCL Rotate through Carry Left RCL
	RCR Rotate through Carry Right RCR
	REP Repeat REP
	REPE Repeat While Equal REPE
	REPNE Repeat While Not Equal REPNE
	REPZ Repeat While Zero REPZ
	RET Return from Procedure RET
	ROL Rotate Left ROL
	ROR Rotate Right ROR
	SAHF Store AH in Flags SAHF
	SAL Shift Arithmetic Left SAL
	SAR Shift Arithmetic Right SAR
	SBB Subtract Numbers with Borrow SBB
	SCAS Scan String for Component SCAS
	SHL Shift Left SHL
	SHR Shift Right SHR
	STC Set Carry Flag STC
	STD Set Direction Flag STD
	STI Set Interrupt-Enable Flag STI
	STOS Store String Component STOS
	SUB Subtract Numbers SUB
	TEST Logical Compare TEST
	WAIT Wait for Coprocessor WAIT
	XCHG Exchange Components XCHG
	XLAT Translate Table Index to Component XLAT
	XOR Logical Exclusive OR XOR

	Appendix A: Instruction Set Summary
	Index

