
Historically, computer architects have
taken two different approaches to
high-performance computing: in-

struction-level parallelism and data-level par-
allelism. The ILP paradigm seeks to execute
several instructions each cycle. It does this by
exploring a sequential instruction stream and
extracting independent instructions to send
to several execution units in parallel. The DLP
paradigm, on the other hand, uses vectoriza-
tion techniques. A vector instruction specifies
a series of operations to be performed on a
stream of data. Each operation performed on
each individual element is independent of all
others, and, therefore, a vector instruction is
highly parallel and can be easily pipelined.
In this article, we propose a third approach to
high-performance computing that combines
the best of ILP and DLP techniques to pro-
vide an order of magnitude increase in per-
formance at low complexity.

Processor generations
Figure 1 illustrates three microarchitecture

generations in the DLP world. The first vec-
tor generation, shown in Figure 1a, intro-
duced in-order, pipelined execution of
vector instructions. This generation’s proto-
typical machine is Cray Research’s Cray-1.

The second DLP generation, in Figure 1b,
exploited the parallel semantics of vector
instructions to implement multipipe function-
al units—unit replication that allows process-
ing of more than one pair of operands per
cycle. Cray Research’s C90 or Nippon Electric
Corp.’s SX-3 exemplified the multipipe
processor. However, this generation still used
the in-order execution model. Useful ILP tech-
niques such as out-of-order execution or reg-
ister renaming, which fight memory latency
and improve processor throughput in the
microprocessor world, have never been used
in commercial vector computers.

The third DLP generation, depicted in

Figure 1c, is the one we are proposing in
this article. This processor merges ILP and
DLP in a single-processor architecture that
combines three key technologies:

• vector instructions,
• out-of-order execution with register

renaming, and
• simultaneous multithreaded execution.

This combination yields a simultaneous mul-
tithreaded vector, or SMV, architecture.

Vectorizable code
For many years, most scientific comput-

ing applications have largely followed the
DLP model. Much of the vectorizable code
optimized for yesterday’s vector supercom-
puters runs on today’s superscalar micro-
processors. These codes still retain their DLP
characteristics. Moreover, in recent years
applications containing highly regular DLP
code have multiplied. In particular, many
DSP and multimedia applications—graph-
ics, compression, encryption—are superbly
suited for vector implementation.1

SMV architectures
Vector instruction sets and vector archi-

tectures are an excellent match for the char-
acteristics of data-parallel codes. Other
architectures such as chip multiprocessors
or multiscalar processors2 are also good can-
didates to extract high performance from
data-parallel code. However, vector instruc-
tion sets use fewer processor control
resources and they directly (and easily) con-
vey parallelism to the hardware.

The vector instruction set is thus our basic
building block for high performance. Data-
level parallelism, however, is not enough. For
large memory latencies, the DLP model suf-
fers severe performance degradation. This is
where the ILP model’s out-of-order execution

20 IEEE Micro 0272-1732/97/$10.00 © 1997 IEEE

Simultaneous

multithreaded vector

architectures combine

the best of data-level

and instruction-level

parallelism and

perform better than

either approach could

separately. Our design

achieves performance

equivalent to

executing 15 to 26

scalar

instructions/cycle for

numerical

applications.

EXPLOITING INSTRUCTION-
AND DATA-LEVEL

PARALLELISM
Roger Espasa

Mateo Valero

Polytechnic University of
Catalunya-Barcelona

.

and register renaming come into play. Out-of-order execution
reorders instructions and reduces the interference between
computation and memory instructions. Reordering makes bet-
ter use of the memory ports and masks memory latency.
Register renaming, while not essential for a newly defined
architecture, helps manage the processor state and provide
precise exceptions, always a difficult thing in vector proces-
sors. Renaming can also improve the use of the register pool.

But even out-of-order execution is not enough when we
consider large numbers of resources such as memory ports
and arithmetic units. At some point, a program’s intrinsic
instruction-level parallelism limits the number of functional
units that can be used simultaneously. Here multithreading
comes to the rescue. By multiplexing several threads onto the
same processor, we can fully use all resources. Simultaneous
multithreading, moreover, indicates that there are no explic-
it context switches between threads. Rather, instructions from
different threads can coexist at the same time in the reorder
buffer. Simultaneous multithreading logically follows in a
DLP machine that already has out-of-order execution and
register renaming. A few bits of thread information in the
instruction queues and per-thread rename tables are enough
to achieve the desired SMV architecture.

Design challenges
Although the SMV approach is, as we will show, a solid

candidate for handling a billion transistors on one chip, build-
ing tomorrow’s billion-transistor processors means first fac-
ing three major concerns:

• Wire delays. The difference between transistor com-
mutation speed and signal propagation speed on a wire
determines that today’s cycle times are mostly domi-
nated by signal propagation delays. Wire delays will
determine the maximum chip area that a single clock
can control. It may also force the use of two-level clock-
ing: fast local clocks in close proximity regions and
slower clocks to connect distant regions inside a chip.

• Processor-to-memory performance gap. Memory access
time is today’s most important problem regarding high-
performance microprocessors.3 Currently, microprocessor
performance improves at the rate of 60% each year, while
dynamic RAM speed improves at less than 10% each year.
Research indicates that, to reduce this gap, the best
approach is to merge memory and logic on the same
chip. The intelligent RAM (IRAM)4 and PIM5 (Processor in
Memory) proposals both target this approach.

• Parallelism inside a program. Parallelism is defined as
the number of independent tasks (instructions) that can
be executed in parallel while preserving the original
program semantics. If many independent operations are
available, a processor might attempt to execute them
simultaneously, thus improving the instructions per
cycle (IPC) rate. However, there is a limit to how many
independent tasks the processor can successfully detect
and execute simultaneously. Without a compiler tech-
nology breakthrough, current software standards dic-
tate that only a few instructions might be available for
parallel execution.

Scalability problems
How do the two high-performance models face future chal-

lenges? Compare one scalar instruction from the ILP para-
digm to one instruction from the DLP paradigm. A scalar
instruction requires many stages to be processed yet specifies
only a very simple operation. Meanwhile, the vector instruc-
tion has a few setup and shutdown stages but has many more
useful stages involving actual computations. In a scalar
instruction, most of its execution phases are devoted to book-
keeping activities required to maintain the processor’s con-
sistency. Adding more execution resources to a superscalar
processor requires many extra control resources. On the con-
trary, in a DLP processor we can speed up vector computa-
tions simply by replicating functional units (see Figure 1b).

To understand how these semantic differences will be
affected by the three design bottlenecks, consider Equation
1. It characterizes the speed at which a computer can exe-
cute a given program.

(1)

In this equation, CPI (cycles per instruction) is the average
number of cycles required to execute each instruction. The
time to complete a program (T) equals the number of instruc-
tions executed (N) times (CPI) times the machine cycle time
Tc. Note that CPI is just the inverse of the IPC rate described
earlier.

Number of instructions (N). Data-level parallelism lets
us reduce the number of instructions by making each vec-
tor instruction longer. However, each vector instruction per-
forms many operations and, therefore, can take many cycles
to complete, which increases CPI. Nonetheless, the higher

 T N CPI Tc= × ×

September/October 1997 21

(a)

(b)

(c)

Execution stage

Figure 1. Three DLP microarchitecture generations: vector
processor (a); multipipe vector processor (b); and simulta-
neous multithreaded vector (SMV) processor (c).

.

semantic content of vector instructions has indirect benefits.
To perform a given task, a vector program must specify many
fewer address computations, loop counter increments, and
branch computations, because these are typically implicit in
vector instructions. The DLP paradigm achieves an overall N
× CPI product that is much better than that of an ILP machine.

Cycle time (Tc). Wire delays inside a chip take up increas-
ing amounts of today’s microprocessor cycle times, and ILP
processors present clear scalability problems in this regard.
Analysis of current superscalar processors’6 circuit complex-
ity shows that the wake-up and select logic needed in wide-
issue machines scales unfavorably when designers decrease
feature size. These results pose serious obstacles to the fea-
sibility of very wide centralized superscalar machines (16-
or 32-wide issue). Researchers believe that high performance
will come only by replication of very fast building blocks
that work more or less asynchronously. The DLP model sup-
ports independent, replicated building blocks very well. The
operations inside a vector instruction do not interchange
information and can be physically partitioned into indepen-
dent sub-blocks that need not communicate with each other.

Cycles per instruction (CPI). Many factors affect the
CPI part of the equation, but we focus on memory access
time and instruction-level parallelism. (We use the terms CPI
and IPC depending on the context, since both measures are
equivalent.)

Memory access time. Memory-accessing instructions account
for 30% to 40% of all instructions. Thus, the larger the differ-
ence between CPU and memory speed, the longer it takes
each memory instruction to complete. This means the CPI

component grows very fast. To compensate for this large per-
formance gap, current superscalar micros use increasingly
large caches to sustain performance. Nonetheless, despite out-
of-order execution, nonblocking caches, and prefetching,
superscalar micros do not efficiently use their memory hier-
archies. Since load/store instructions are mixed with compu-
tation and setup code, dependencies and resource constraints
prevent memory operations from being launched every cycle.
The result is that each cache miss turns out to have very long
latency. Scalar instruction sets have severe shortcomings where
high memory latencies are concerned. For example, to hide
a memory latency of 100 processor cycles, a superscalar
machine should have more than a hundred in-flight opera-
tions. It is a daunting task to extract so many independent
operations from a sequentially specified program.

Vector advantages. Vectors, however, have inherent advan-
tages when it comes to memory usage. A single instruction
can precisely specify a long sequence of memory addresses.
Consequently, the hardware has considerable advance knowl-
edge regarding memory references, can schedule these access-
es efficiently, and need access no more data than required. In
addition, a vector memory operation can amortize start-up
latencies over a potentially long stream of vector elements.
Research has shown that by coupling ILP techniques with a
DLP engine, up to 100 cycles of main memory latency can be
tolerated with only slightly degraded performance.7 Regarding
memory bandwidth, a DLP machine can much more effec-
tively use whatever amount of bandwidth it has by request-
ing several data items with a single memory address.

Parallelism inside a program. For designers to achieve

22 IEEE Micro

Microarchitecture

0

1

2

3

4
In

st
ru

ct
io

ns
 p

er
 c

yc
le

In
st

ru
ct

io
ns

 p
er

 c
yc

le

I4_RC_RM
I4_RC_PM
I4_PC_RM
I4_PC_PM

0

2

4

6

8

10

I16_RC_RM
I16_RC_PM
I16_PC_RM
I16_PC_PM

sw
m

25
6

hy
dr

o2
D

na
sa

7

su
2c

or

to
m

ca
tv

w
av

e

m
dl

jd
p2

sw
m

25
6

hy
dr

o2
D

na
sa

7

su
2c

or

to
m

ca
tv

w
av

e

m
dl

jd
p2

RC
RM
PC
PM

Real control
Real memory
Perfect control
Perfect memory

(a) (b)

Figure 2. Performance, in terms of instructions per cycle, for a superscalar processor closely modeled after a Mips
R10000. (a) It issues 4 instructions per cycle, with 2 floating-point units, 2 integer units, and 1 memory port. Perfor-
mance, in terms of IPC, for a scaled version of the superscalar processor. (b) Issue width is 16; it has 8 floating-point units,
8 integer units, and 4 memory ports. The reorder buffer has been increased from 32 to 128, as has the Branch Target
Buffer (from 512 entries to 2,048).

.

high performance, they will have to extract large amounts
of operation parallelism. Machines exploiting ILP have
applied hardware techniques to discover instruction paral-
lelism. Meanwhile, DLP machines have relied on the com-
piler to discover parallelism and convey it to the hardware
through vector instructions. Research has highlighted the lim-
itations to expect when designers try to exploit ILP.8 It seems
reasonable, therefore, to exploit all available parallelism in
a program, at both the instruction and the data level.

Performance analysis of ILP machines. What happens
when we scale up today’s 4-wide-issue superscalar processors
to 16 issues? To find out, we modeled a superscalar proces-
sor and ran it against seven highly vectorized SPECfp bench-
mark programs. Figure 2 presents our results in terms of IPC.

Figure 2a presents, for each program, four performance
bars. The first one corresponds to a model of a real machine.
It simulates both a real control—that is, assumes real branch
penalties—and a real memory system. In the other three bars,
we eliminated the real control and real memory restrictions
and simulated ideal machines, which have either perfect con-
trol, perfect memory, or both. We achieved perfect control
by assuming that all branches are correctly predicted and by
enlarging the reorder buffer up to 512 entries. We simulated
perfect memory by assuming that all loads and stores hit in
the first-level cache with a latency of one cycle. We per-
formed the simulations with the SimpleScalar tool set.9

Notice that real performance was about 25% of peak (an
IPC of 1 out of 4). By assuming ideal conditions, IPC did
increase substantially, but it hardly reached 50% of the peak
rate. When we scaled up the machine to a 16-issue width
with four times more hardware resources, performance cer-
tainly improved but efficiency worsened. That is, although
we went from an average IPC of around 2 up to an average
IPC closer to 5, on the 16-wide-issue machine we reached
only about 30–40% of the peak execution rate.

Proposed SMV processor
Our design approach to high-performance processing,

which could accommodate a billion transistors, is based on
several technology assumptions. We made these according
to current technology projections:10

• Packaging technology will allow around 2,000 pins con-
nected to a single die.

• A billion transistors will fit on a single die. Nonetheless,
power and thermal considerations may force a restrict-
ed use of these transistors. We assume that at least half
of all transistors will have to be used in memory struc-
tures, such as caches and/or DRAMs. Memory structures
consume and dissipate much less heat than logic gates.

• Clock distribution will be a major design problem due
to wire delays. Designs will require some degree of reg-
ularity, in the sense of independent major sub-blocks
that can work almost asynchronously.

• Sending signals out of the chip—to access whatever
external form of main memory is available—will take at
least one order of magnitude longer than the internal CPU
cycle time. Therefore, we expect external memory refer-
ences to require between 20 and 100 processor cycles.

Figure 3 (next page) depicts our architecture. It combines
DLP with several techniques borrowed from ILP: out-of-order
execution, register renaming, and multithreading.11 If we ignore
the vector unit and multithreading features, the block diagram
in this figure somewhat resembles that of a Mips R10000.

Multithreading is seen only at the fetch, decode, and com-
mit stages. (In the commit stage, the processor retires in strict
order those instructions that have been marked as “done and
ready to be completed.”) The fetch engine selects one of
eight threads and fetches four instructions on its behalf. The
decoder renames the instructions, using a per-thread rename
table, then sends all instructions to several common execu-
tion queues. Inside the queues, the instructions are indistin-
guishable, and no thread information is kept except in the
reorder buffer and memory queue. Register names preserve
all dependencies. Independent threads use independent
rename tables, which prevents false dependencies and con-
flicts from occurring.

Except for the fetch, decode, and commit stages, where
thread information is important, all other stages look like
those of today’s superscalar microprocessors. Register files
hold pools of physical registers, shared dynamically among
threads. At any time, the same or different threads can use
all functional units.

Vector organization. The vector unit has 128 vector reg-
isters, each holding 128 64-bit registers, and has four gener-
al-purpose, independent functional units. The number of
registers is the product of the number of threads (8) and of
physical registers (16) required to sustain good performance
on each thread.7 The length of each register (128 elements)
was selected to match that of typical vector machines, such
as the Convex C34 or Cray T90. Each vector functional unit
processes K pairs of operands and produces K results per
cycle. For large values of K, for example 8, the designer
divides each register into K “lanes,” where each lane holds
every Kth element from each vector register. Assuming K =
8, lane 0 would hold register elements 0, 8, 16, and so forth,
while lane 1 would hold register elements 1, 9, 17, and so on.
The key to this replication strategy is that all lanes work com-
pletely synchronously and completely independently.
Therefore, the dispatch logic in the vector queue only rec-
ognizes four vector units.

Memory port organization. In Figure 3, the maximum
bandwidth for scalar memory references is two words per
cycle. Clearly, much more bandwidth is required to keep the
K-wide vector functional units busy, even for low values of
K. The solution is to provide two K-word-wide data paths
connecting the memory system and the vector unit.

On vector memory references, then, the processor can
take advantage of stride information. (Stride is the distance
between consecutive memory accesses.) For stride-1 access-
es, only every Kth element needs to be requested to the
memory system to get K words of data back. Similarly, stride-
2 accesses proceed at a rate of K/2 words per cycle, stride-
4 at K/4, and so forth. Once the stride is equal or larger than
K, the memory operation proceeds at a maximum of one
word per cycle. This scheme, while not the most powerful,
has two advantages: It cuts down the number of address pins
required, and it allows a very inexpensive memory system

September/October 1997 23

.

to be designed around the SMV.
Using the same DRAM technology of
current superscalar workstations, we
could use the DRAM lines to provide
the K words required for stride-1
accesses.

Execution. On each cycle, the
fetch unit fetches four instructions on
behalf of a certain thread. These
instructions are renamed and can be
any mixture of scalar or vector
instructions. Once renamed, each
type of instruction moves to its cor-
responding queue. From the instruc-
tion queues, any combination of
instructions that are independent
and that may or may not belong to
the same thread can be dispatched
to execute onto the functional units.
Out-of-order execution happens

24 IEEE Micro

Microarchitecture

8 8 8 8 8 8 8 84 4 4 4 4 4 4 4

4 4 4 4

2 2 2 2 2 2 2 2

1 1 1 1

C1(MPC = 1, RPC = 2)

C4(MPC = 4, RPC = 8) C8(MPC = 8, RPC = 16) C16(MPC = 16, RPC = 32)

C2(MPC = 2, RPC = 4)

1 1 1 1 1 1 1 1

Memory ports
Functional

units

2 2

1 11

2 2 2 2

MPC
RPC

Memory operations per cycle
Vector operations per cycle

Figure 4. Several possible configurations for future SMV machines, each with a
larger number of resources.

Instruction fetch Instruction decode

Reorder buffer

Instruction issue Execution pipelines

K
K

K
K

K
K

K
K

K
VFU 1

K
VFU 2

K
VFU 3

K
VFU 4

K (data)

K (data)

FPU 1

FPU 2

2 (data)

ALU 1

ALU 2

Addr gen

Addr gen
1

1

Floating-
point

register
file

(128
registers)

Integer
register

file

(128
registers)

Vector
register

file

(128
registers;
1 read,
1 write

per
register)

Floating-
point queue
(64 entries)

Integer queue
(64 entries)

Memory queue
(64 entries)

Vector queue
(64 entries)

Decode

I F V

8 rename
table sets,

(one per thread)

I cache

PC

8 program
counters,

(one per thread)

Thread Id

Instruction slots

Memory

C
ro

ss
ba

rs

VFU Vector functional unit

Figure 3. Simultaneous multithreaded vector architecture.

.

between all types of instructions:
scalar and vector. However, the indi-
vidual operations inside vector
instructions are executed in order,
albeit in a K-way parallel mode. That
is, once a vector instruction seizes a
resource, it will use it until comple-
tion, without allowing other vector
instructions to share it.

SMV performance
Our proposed architecture could

be implemented in a variety of con-
figurations, each with different per-
formance potential. The possibilities
range from small SMV processors that
might appear in a few processor gen-
erations up to very large configura-
tions that will require a billion
transistors. We discuss the simula-
tions we ran on several possible SMV
configurations (Figure 4). The figure
shows only the logical organization
of the vector unit.

EIPC measure. We used a per-
formance measure that indicates
how well an ILP processor should
perform to match the speed of the SMV machine under study.
The measure is EIPC, or equivalent IPC, where IPC indicates
the number of instructions executed per cycle in the
machine. We define EIPC as follows:

(2)

To compute EIPC, we ran our benchmark programs on a
Mips R10000 processor. Using its hardware performance
counters, we counted the total number of instructions exe-
cuted (graduated) for each program. Then, we added all
these instructions to get the numerator of Equation 2. Simply,
an EIPC of 10 indicates that a superscalar machine should
sustain a performance of 10 instructions executed each cycle
to match SMV machine performance.

SMV simulation methodology. We used a trace-driven
approach to estimate the performance achievable with an
SMV architecture. We vectorized eight programs, selected
from the Perfect Club and SPECfp92 suites, on a Convex C34
machine. We processed them with the Dixie tool,12 which
generates suitable traces for simulation. Then we simulta-
neously ran all benchmark programs several times on the
eight hardware contexts available in the architecture and
measured total execution cycles.

We began by randomly ordering the eight programs—
flo52, swm256, su2cor, tomcatv, nasa7, hydro2d, bdna,
arc2d—to generate a list. Next, we replicated this list three
times. We began the simulations by running the first eight
programs from the list. When a program completed, we start-
ed the next yet-to-be-run program from the list on the hard-
ware context that just became available. We continued until
all programs were fully executed at least once.

EIPC results. Figure 5 plots the performance results we
obtained from the SMV for the five configurations shown in
Figure 4. In this figure we assumed two different (extreme)
values for memory latency, 1 and 100 cycles.

In the figure, the “perfect speedup” curve plots the best
possible speedup achievable when scaling up Figure 4’s C1
configuration 16 times. Curve SMV plots the performance of
the architecture described previously.

For a memory latency of one cycle, the scalability of the
SMV architecture is very good, running almost parallel to the
perfect speedup line up to configuration C8. When memo-
ry latency increases to 100 cycles, as in Figure 5b, the SMV
only degrades its performance by 8%, which is trivial when
compared to a 100-fold increase in memory latency.

Performance factors. Multithreading, out-of-order exe-
cution, and vector instructions all contribute heavily to per-
formance. To find out how much, we tested the three other
architectures in Figure 5. Curve DLP represents a tradition-
al, in-order vector architecture with no special ILP features.
Curve DLP + OOO represents a vector architecture aug-
mented with out-of-order execution and register renaming.7

Curve DLP + MTH represents a vector architecture aug-
mented with multithreading (but no out-of-order execu-
tion).12 Finally, for the sake of comparison, a dashed
horizontal line, labeled 16-SS, at the bottom of each graph
plots the best-case performance of the 16-wide-issue super-
scalar machine we described earlier.

Each feature contributes different amounts to final perfor-
mance. Out-of-order execution yields a speedup of 1.47 over
pure in-order DLP execution, while multithreading outper-
forms pure DLP by a factor of 2.39 and DLP + OOO by a fac-
tor of 1.63. The SMV machine outperforms DLP + MTH by a

EIPC =

total Mips R10000 instructions

SMV cycles

September/October 1997 25

0

10

20

30

E
IP

C
0

10

20

30

40 40

E
IP

C

Perf. speedup
SMV
DLP+MTH
DLP+OOO
DLP
16-SS

Perf. speedup
SMV

DLP+MTH
DLP+OOO

DLP
16-SS

Perfect speedup
Simultaneous multithreaded vector
Data-level parallelism plus multithreading
Data-level parallelism plus out-of-order execution
Data-level parallelism
16-wide-issue superscalar

C1 C2 C4 C8 C16
Latency = 1 cycle

C1C2 C4 C8 C16
Latency = 100 cycles

(a) (b)

Figure 5. Performance of several architecture paradigms for five possible configu-
rations.

.

factor of 1.23. Although the SMV machine does not reach the
speedup that we would expect from a linear combination of
the MTH and OOO features, it is actually quite close.

With a memory latency of 100 cycles, the behavior of all
architectures changes substantially. Performance of the DLP,
DLP + OOO, and DLP + MTH suddenly degrades severely.
The SMV machine, however, experiences only an 8% drop
in performance. This difference in behavior results because
no single ILP technique can successfully tackle very large
memory latencies and, at the same time, fully saturate many
resources. Note that, for configurations C1, C2, and C4, per-
formance degradation is not significant in the 100-cycle laten-
cy case, but the degradation rises sharply in C8 and C16.

Our simulations confirm that, together, multithreading,
vector instructions, and out-of-order execution are neces-
sary for a high-performance machine in an environment with
large memory latencies.

Transistor budget
Given our technology assumptions, one might ask if the

SMV is even feasible. Concerning I/O pins, the C16 machine
requires a minimum of 4 data ports × 4 (words/port) × 64
(bits/word) = 1,024 pins, plus 4 address ports × 64 = 256 pins,
totaling 1,280 pins. This value must be increased to account
for error-correcting codes and should then include all nec-
essary power, ground, and clock pins. Although the grand
total would be very near the 2,000 limit we have assumed, it
might well be possible to fit that many I/O pins into a chip.

With respect to transistor count, we must distinguish
between functional units and register space. We considered
all functional units in the architecture to be fully general pur-
pose. In the maximum configuration, we have 32 vector
units, plus 2 integer and 2 floating-point units. Two floating-
point units of the IBM Power2 floating-point chip use 1.3
million transistors in 0.45-µm technology.13 We will charge 0.7
million transistors for every single functional unit. Therefore,
the 36 functional units present in the C16 SMV configuration
would require 25.2 million transistors (0.7 × 36).

For storage, we have 128 × 128, or 16,384, individual reg-
isters in the vector register file, plus 256 registers in the two
scalar register files. At 64 bits, each register holds a total of
1 Mbit. Assuming an equivalent of 10 transistors per bit, the
register files would hold 10 million transistors.

Finally, the crossbar connecting the vector register files
and the vector functional units would also take a significant
amount of space. There are eight read crossbars and eight
write crossbars, one pair in each vector subunit. Each read
crossbar connects 128 registers to eight inputs to the func-
tional units; each write crossbar connects four functional unit
outputs to the 128 registers.

The transistor count here is somewhat insignificant, but
the area taken by the connecting wires is crucial. In a very
simplistic design, the area would comprise 128 × 64, or 8,192,
metal wires coming out of the registers. These would go in
the x-axis direction, crossed by 8 × 64, or 512, metal wires
going in the y-axis direction and feeding the functional units.
If we use perhaps two metal layers to compact this crossbar
layout, and we assume that each metal wire requires 10λ,
we have an area close to 40,960λ × 2,560λ, or 104.9 × 106λ2.

To get a transistor equivalent, we divide by the area occu-
pied by a medium-sized transistor, about 500λ2, yielding an
equivalent of 0.21 million transistors per read crossbar. If we
factor the necessary cuts, control lines, and switches, we are
probably underestimating the total cost by a factor of 4.
Therefore, we will charge a total of 4 × 16 × 0.21, or 13.44,
million transistors for our 16 crossbars.

Current-generation 4-wide-issue microprocessors are
implemented using 2 to 4 million transistors in the proces-
sor’s logic; the rest is spent in cache implementation. Since
the control complexity of our SMV machine is slightly more
than that of today’s microprocessors, we charge 16 million
transistors for the SMV control.

The grand total of our estimates adds up to around 55 mil-
lion transistors, well under the budget of a billion.

Using the extra transistors
Assuming our transistor estimates were a little low, we

could have roughly 900 million unused transistors if we were
to implement the biggest—to date—SMV machine. What
would we do with the extra transistors?

Three possibilities. First, we could further expand con-
figuration C16 into a hypothetical C32 or C64 machine.
However, this would be very difficult, since doubling the
number of pins, as C32 would require, greatly exceeds the
2,000 limit dictated by reasonable projections.

A second possibility is multiprocessing: putting more than
one SMV processor in the same chip. This possibility is not
very attractive because a single SMV processor already uses
up 80% of all available cycles on the address pins. Thus, a
second SMV processor on the same chip would not have
enough address bandwidth.

Third, and most likely, we could use the extra transistors
to provide a very large cache or memory structure. DRAM
structures are dense, and we could conceivably store 1 bit of
information in around 1.2 transistors. This could allow rough-
ly 80 to 90 Mbytes of information to be stored inside the
processor itself.

Memory effect. The most positive effect of large memo-
ry on our architecture would be in providing an enormous
extra memory bandwidth. Also, researchers looking at the
IRAM and PIM proposals claim that a second very positive
effect would be reduced latency. However, we have already
seen that we incur only an 8% performance hit when going
from 1 to 100 cycles of memory latency. For SMV architec-
tures, latency is clearly not an issue.

With the extra bandwidth, we could develop a C32 or C64
configuration inside the chip and use the C16 memory struc-
ture to go out of the chip. This scheme would be an alterna-
tive to driving our vector unit with four 4-word-wide memory
ports. Such a scheme would provide two to four times more
bandwidth inside the chip than outside. Simulations show
that performance for the C32 machine, with eight ports each
4 words wide (at a memory latency of 1 cycle), has an equiv-
alent IPC of 38. If we go to the C64 machine, for eight ports,
each 8 words wide, we reach an equivalent IPC of 48.

Ramifications. With the results achieved thus far, we can
predict the performance of future SMV processors. For exam-
ple, if large on-chip RAM is available, the performance would

26 IEEE Micro

Microarchitecture

.

be 40 to 50 EIPC. The performance would be around 23 EIPC
without a RAM structure. This measure would also hold if a
certain application did not fit inside the 90 Mbytes of avail-
able space and had to go outside the chip.

VECTORIZABLE CODE IS OF GREAT IMPORTANCE
to workstation and server class machines running numerical
codes. It will only be more significant as designers incorpo-
rate multimedia and DSP into future chips. To extract high
performance from this wide range of vectorizable applica-
tions, designers should exploit all forms of parallelism in a
program rather than stubbornly concentrating only on
instruction-level parallelism. As researchers strive for ever-
growing performance, both the programming and physical
limitations of extracting large numbers of independent
instructions from a sequential program will become more
obvious. Data-level parallelism, through the use of vector
instructions, can be of great value for those applications that
are fully or even only partially vectorizable. The SMV archi-
tecture we have proposed is a very good candidate for effi-
ciently executing this type of code with simple hardware and
a relative independence of memory performance.

Acknowledgments
We thank the anonymous referees for many valuable com-

ments and especially our two editors, Jim Goodman and
Doug Burger, for extensive help, feedback, and dedication.
We also thank Francisca Quintana for providing the ILP sim-
ulations. This work was supported by the Ministry of
Education of Spain under contract TIC 0429/95 and by the
CEPBA (European Center for Parallelism of Barcelona).

References
1. J. Wawrzynek et al., “Spert-II: A Vector Microprocessor System,”

Computer, Mar. 1996, pp. 79–86.
2. G.S. Sohi, S.E. Breach, and T.N. Vijaykumar, “Multiscalar

Processors,” Proc. 22nd Ann. Int’l Symp. Computer Architecture,
ACM Press, New York, 1995, pp. 414–425.

3. A. Saulsbury, F. Pong, and A. Nowatzyk, “Missing the Memory
Wall: The Case for Processor/Memory Integration,” Proc. 23rd
Ann. Int’l Symp. Computer Architecture, ACM Press, New York,
1996, pp. 90–101.

4. D. Patterson et al., “A Case for Intelligent RAM,” IEEE Micro,
Mar./Apr. 1997, pp. 34–44.

5. D. Burger, S. Kaxiras, and J.R. Goodman, “DataScalar
Architectures,” Proc. 24th Ann. Int’l Symp. Computer
Architecture, ACM Press, New York, 1997, pp. 338–349.

6. S. Palacharla, N.P. Jouppi, and J.E. Smith, “Complexity-Effective
Superscalar Processors,” Proc. 24th Ann. Int’l Symp. Computer
Architecture, ACM Press, New York, 1997, pp. 206–218.

7. R. Espasa, M. Valero, and J.E. Smith, “Out-of-Order Vector
Architectures,” Proc. 30th Int’l Symp. Microarchitecture, IEEE
Press, Piscataway, N.J., 1997, to appear.

8. N.P. Jouppi and D.W. Wall, “Available Instruction Level
Parallelism for Superscalar and Superpipelined Machines,” Int’l
Conf. Architectural Support for Programming Languages and
Operating Systems (ASPLOS-III Proc.), ACM Press, New York,

1989, pp. 272–282.
9. D. Burger and T. Austin, “The SimpleScalar Tool Set, V. 2.0,”

Tech. Report UWCS-1342, Computer Sci. Dept., Univ. of
Wisconsin-Madison, June 1997.

10. A. Yu, “The Future of Microprocessors,” IEEE Micro, Dec. 1996,
pp. 46–53.

11. D.M. Tullsen et al., “Exploiting Choice: Instruction Fetch and
Issue on an Implementable Simultaneous Multithreading
Processor,” Proc. 23rd Ann. Int’l Symp. Computer Architecture,
ACM Press, New York, 1996, pp. 191–202.

12. R. Espasa and M. Valero, “Multithreaded Vector Architectures,”
Proc. Third Int’l Symp. High-Performance Computer Architecture
(HPCA-3), IEEE Computer Society Press, Los Alamitos, Calif.,
1997, pp. 237–249.

13. S.W. White and S. Dhawan, “POWER2: Next Generation of the
RISC System/6000 Family,” IBM J. Research and Development,
Vol. 38, No. 5, Sept. 1994, pp. 489–648.

Roger Espasa is an assistant professor
in the Computer Architecture Depart-
ment at the Polytechnic University of
Catalunya-Barcelona. His research inter-
ests are high-performance architectures
and memory systems with special
emphasis on instruction-level parallelism

and efficient use of memory hierarchies. Espasa received an
MS and a PhD in computer science from the Polytechnic Uni-
versity of Catalunya-Barcelona.

Mateo Valero is a professor in the
Computer Architecture Department at the
Polytechnic University of Catalunya-
Barcelona. His research interests are high-
performance architectures with a special
emphasis on processor organization,
memory hierarchy, interconnection net-

works, compilation techniques, and computer benchmarking.
Valero received an MS from the Polytechnic University of

Madrid and a PhD from the Polytechnic University of
Barcelona, both in telecommunications. He is a member of
the IEEE, director of the Catalan Center for Computation and
Communications, and a member of the Spanish Engineering
Academy.

Direct questions to Roger Espasa, Campus Nord, C6-E202,
Dept. Arquitectura Computadors, Universitat Politècnica de
Catalunya, Gran Capita S/N, 08034 Barcelona, Spain;
roger@ac.upc.es.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate
number on the Reader Interest Card.

Low 153 Medium 154 High 155

September/October 1997 27

x

	Banner: From the companion CD-ROM to the IEEE CS Press book, "The Anatomy of a Microprocessor: A Systems Perspective," by Shriver & Smith

