
ERRATA C-1

ERRATA FOR IDT WINCHIP 2, 2A AND 3

1. INTRODUCTION
This document describes the IDT WinChip 2, 2A and 3 processor
errata: differences between the actual IDT WinChip behavior
and the expected results.

The IDT WinChip C6 is the predecessor of the IDT WinChip 2
and has a different set of errata described in a separate
document. Use the Model ID to distinguish the IDT WinChip 2,
2A and 3 from its predecessor. The Model ID is part of the
processor identification signature as returned by the CPUID
instruction or in EDX following Reset.

The IDT WinChip 2 and IDT WinChip 2A have different errata
(the IDT WinChip 2A and IDT WinChip 3 have the same
errata). Use the Stepping ID to distinguish between versions of
the processor. Table C-1 describes the values returned.

Table C-1

Code Processor Type ID Family ID Model ID Stepping ID

IDT WinChip C6 0 5 4 Varies

B IDT WinChip 2 0 5 8 5

C IDT WinChip 2A 0 5 8 7, 8, or 9

D IDT WinChip 3 0 5 9 Varies

Tables C-2 and C-3 describe the codes used to define the status
and action plan of each individual erratum.

Table C-2

Status
Code

Description

X This version of the processor has the erratum

N/A This erratum does not apply to this version of the processor

Fixed in this version of processor

Table C-3

Plan
Code

Description

Fixed This erratum is fixed in the latest version of the processor

Fix This erratum may be fixed in some future version of the
processor

NoFix There are no plans to fix this erratum in future steppings of
the IDT WinChip 2 processor

The IDT WinChip 2 processor errata described here is complete
and is described in considerable detail. This detailed exposure is
consistent with the Centaur philosophy of openness. However,
the errata do not, as far as we know, represent a real
compatibility exposure. The errata were found only by
specialized design-verification tests, which perform unnatural
acts.

Table C-4 summarizes the errata and provides the codes which
describes the status and action plan for each individual
erratum. The details of each erratum are described in
subsequent sections.

Table C-4

ID Code (see
Table C-1)

Plans Errata

B C D

F-1 X X X NoFix FPU environment may be different from P55
in certain cases

F-2 X X X NoFix FPU transcendental may return a denormal
value without underflow

F-3 X Fixed FPU FIST,FISTP do not handle overflow
correctly

F-4 X Fixed FPU compare of denormal memory operand
may not set flags correctly

F-5 X Fixed FPU FIST,FISTP of negative unnormal data
may be wrong in the least significant bit

F-6 X X X Fix FPU FPREM1 of denormal data may be
wrong under certain conditions

I-1 X X X NoFix INTR is missed if deasserted while processor
executes consecutive STIs

I-2 X X X NoFix Certain invalid instructions may result in page

ERRATA C-3

ID Code (see
Table C-1)

Plans Errata

B C D

faults instead of INT6

I-3 X X X NoFix BUSCHK# does not work as in P54 in certain
cases

I-4 X X X NoFix Inconsistent fault when length limit exceeded
with invalid LOCK prefix

I-5 X Fixed BIST return code (EAX) may indicate false
failures

I-6 N/A X X Fix MSR FCR4[5:2] may not return correct value

D-1 X X Fixed 3DNOW! 24-bit precision reciprocal square
root is wrong in certain rare cases

B-1 X Fixed Setting FCR.DTLOCK to ‘0’ may result in hang

2. FLOATING-POINT ERRATA

F-1. FPU environment may be different from P55 in
certain cases

PROBLEM: An FSTP QWORD that crosses a page
boundary and gets a page fault will set the floating point
environment, technically it should not. An FRSTOR that
crosses a segment limit of 4GB will partially load floating-
point state.

IMPLICATION: These errata are not believed to occur in
any application or operating system.

WORKAROUND: None

F-2. FPU transcendental may return a denormal value
without underflow

PROBLEM: The transcendental instructions (FSIN,
FCOS, FSINCOS, FPTAN, FPATAN, FYL2X, FYL2XP1,
F2XM1) may, in some cases, return a denormal value
without underflow. This can occur whenever the internal
approximation algorithm computes a precise denormal
result (i.e. no loss of precision occurred in the computation
of the approximation).

In these cases, the transcendental instructions behave like
the arithmetic instructions. This is technically incorrect,
since transcendental approximations are inherently
inexact.

If the transcendental approximation algorithm computes
an exact denormal result, UE is not set in FPSW, and if
UE is unmasked, the unmasked underflow response does
not occur.

Examples:
FSIN(denormal x) = x with no underflow
FYL2X(2, denormal y) = y with no underflow

IMPLICATION: Applications that run with the underflow
exception masked, and do not check the UE bit in FPSW
(virtually all applications fall into this category) are
unaffected.

WORKAROUND: In applications that do respond to
underflow, this condition can be detected by examining
result of a transcendental operation with FXAM to see if it
is denormal, and if it is, handling that case as underflow.

For applications that expect the unmasked underflow
response, the translation of the value to the middle of the
normal range can computed without loss of precision in
user code:
if (denormal result)
result = result * 2 ^ 24576

ERRATA C-5

F-3. FPU FIST,FISTP do not handle overflow correctly

PROBLEM: The FIST and FISTP instructions will not
handle overflow correctly when the following conditions are
met:

• the operand of FIST/FISTP is positive and

• the rounding control in the Floating Point control word
is either ‘up’ or ‘to nearest’ and

• the rounded operand does not fit in the destination
integer and

• the rounded operand would have fit in the destination
integer if rounding had been in the other direction and

• the invalid-arithmetic-operand exception is masked

 The processor will store the maximum integer value and
set both FPSW.IE and FPSW.PE (and raise precision
exception if it is unmasked). The correct processor
response is to store the integer indefinite to memory and
set only FPSW.IE; it should not set or raise precision
exception. The following table describes the incorrect
processor response based on the Floating Point control
word:

 FPCW.IE masked FPCW.IE
unmasked

 FPCW.PE
masked

 Stores maximum integer instead
of integer indefinite. Sets
FPSW.PE.

 Correct
response

 FPCW.PE
unmasked

 Stores maximum integer instead
of integer indefinite. Sets
FPSW.PE and raises FPSW.PE
exception.

 Correct
response

 The following table specifies the range of operands ‘x’ for
which the processor stores the wrong result:

 FPCW.RC=’up’ FPCW.RC=’to nearest’

 FIST[P]
m16int

 2^15 – 1 < x < 2^15 2^15 – 0.5 <= x < 2^15

 FIST[P]
m32int

 2^31 – 1 < x < 2^31 2^31 – 0.5 <= x < 2^31

 FISTP
m64int

 2^63 – 1 < x < 2^63 2^63 – 0.5 <= x < 2^63

 IMPLICATION: Applications relying on the integer
indefinite being stored when FIST/FISTP overflows will
fail. This erratum has not been determined to cause any
problems during compatibility testing. Virtually all
applications run with precision exception masked, so it is
unlikely there will be compatibility problems due to an
unexpected precision exception.

 WORKAROUND: Any of these workarounds will avoid
the problem:

• Set the rounding control in the Floating Point control
word (FPCW.RC) to round ‘toward zero’ or ‘down’.

• Run with invalid operation exception unmasked.

• Check the range of the operand and avoid executing
FIST/FISTP when the input operand is greater than
MAXINT-1.

 F-4. FPU compare of denormal memory operand may
not set flags correctly

 PROBLEM: The C0 or C3 flag in the floating-point status
word may be cleared incorrectly after a floating-point
compare instruction if the operand in the stack top (ST)
was a denormal operand in single or double precision
previously loaded from memory. This erratum will occur
when the following conditions are met:

• an FLD m32real or FLD m64real instruction loads a
denormal value (single- or double-real memory operand)
onto the top of stack (call this the A-operand)

ERRATA C-7

• the A-operand is not operated on, except perhaps copied
by FLD or FXCH or modified by FABS or FCHS

• an FCOM, FCOMP, FCOMPP, FUCOM, FUCOMP or
FUCOMPP instruction compares the A-operand in the
stack top with another operand (call this the B-operand)
on the register stack or in memory

• the B-operand is not a NaN, not an unsupported
format, and not a single or double-real denormal in
memory, nor was it loaded from such a denormal (it is
unlike the A-operand in this respect)

• the A-operand has the same sign as the B-operand

• the magnitude of the B-operand is greater than or equal
to the A-operand but less than the smallest normal
value that can be represented in the precision in which
the A-operand was stored (single or double-precision)

 The processor will incorrectly clear both C0 and C3 in the
floating-point status word, indicating that the A-operand is
greater than the B-operand. The correct processor
response is to set either C0 or C3 indicating that the A-
operand is less than or equal to the B-operand.

 IMPLICATION: There is a small range of numbers in the
single or double-real range which is affected by this
erratum. It is unlikely that both operands to a floating-
point compare would fall in this range. In the event that
an application encounters this erratum it would cause a
conditional branch to be evaluated incorrectly. This
erratum has not been determined to cause any problems
during compatibility testing.

 WORKAROUND: Run with denormal operand exception
unmasked. The exception handler could determine if the
exception is due to the load of a denormal operand and, if
so, add zero to the operand on the top of stack and resume
execution. The FADD operation causes the processor to
adjust the operand on the top of stack and avoids this
erratum on a subsequent floating-point compare.

 F-5. FPU FIST,FISTP of negative unnormal data may be
wrong in the least significant bit

 PROBLEM: The FIST and FISTP instructions do not store
the correct result for certain values of unnormal data.

• an FLD m64real instruction loads an unnormal
(unsupported format) value (double-real memory
operand) onto the top of stack

• this value is not operated on, except perhaps copied by
FLD or FXCH or modified by FABS and/or FCHS

• a FIST or FISTP stores the value to memory (m16int,
m32int or m64int)

• the operand is the maximum negative integer that fits
in the destination (m16int, m32int or m64int)

• due to this erratum the data stored is incorrect in the
least significant bit (‘1’ instead of ‘0’)

 The values that produce the wrong result are very special,
as summarized by the following table:

 Register value Incorrect output

 FIST[P]
m16int

 0xC00E0000xxxxxxxxxxxx 0x8001

 FIST[P]
m32int

 0xC01E00000000xxxxxxxx 0x80000001

 FISTP
m64int

 0xC03E0000000000000000 0x8000000000000001

 IMPLICATION: The numbers affected by this erratum
are in a small range of the unnormals (which is a subset of
the unsupported formats). These numbers are never
generated by the processor as the result of an arithmetic
operation and are therefore unlikely to ever be the operand
of a FIST or FISTP instruction. This erratum has not been
determined to cause any problems during compatibility
testing.

 WORKAROUND: None needed, see above.

ERRATA C-9

 F-6. FPU FPREM1 of denormal data may be wrong
under certain conditions

 PROBLEM: The FPREM1 instruction will produce the
wrong result under the following conditions.

• An operand of the FPREM1 instruction is a denormal or
pseudodenormal value

• The other operand is normal, denormal or
pseudodenormal value

• FPSW.PE is ‘1’

• FPCW.PE is ‘1’, masked precision exception

• FPCW.DE is ‘1’ masked denormalized operand
exception

• The exponent difference between the operands is less
than 64

• This is the final reduction (FPSW.C2 = ‘0’)

• The quotient of ST and ST(1) is precise and exactly
half-way between two integers (the fractional part of
the quotient is precisely 0.5).

• due to this erratum the processor may adjust the result
attempting to roundup when it shouldn’t or may not
roundup when it should

 IMPLICATION: Denormals and pseudodenormals are
rarely the input to FPREM1, making the exact conditions
that may cause an incorrect result very unlikely. This
erratum has not been determined to cause any problems
during compatibility testing.

 WORKAROUND: A denormal operand could be detected
by software and corrective action taken to avoid this
erratum if the denormalized operand exception is
unmasked (FPCW.DE = ‘0’).

 3. INTEGER ERRATA

 I-1. INTR is missed if deasserted while processor
executes consecutive STIs

 PROBLEM: If the processor is executing a sequence of
more than one STI and an INTR is asserted and then
deasserted before the processor ends the sequence of STIs
then INTR will not be recognized.

 IMPLICATION:

 This situation should not happen on a PC system because:

• INTR is level sensitive, the interrupt controller must
latch interrupts from devices and assert INTR until the
processor acknowledges.

• There is no reason for software to use consecutive STIs.

 WORKAROUND: None needed, see above.

 I-2. Certain invalid instructions may result in page faults
instead of INT6

 PROBLEM: The illegal opcode 0F, 71h 72h and 73h with
ModR/m memory (Group A MMX shift) is not flagged as an
invalid opcode if the instruction crosses a page boundary
and the second page faults, the processor presents a page
fault exception instead

 IMPLICATION: If this were to happen the operating
system will allocate the second page and resume the
faulting task which would then get the invalid opcode
exception (INT6).

 WORKAROUND: None needed, see above.

 I-3. BUSCHK# does not work as in P54 in certain cases

 PROBLEM: If BUSHCK# and SMI# are asserted while in
HALT state the processor correctly takes BUSCHK# first
but Auto Halt Restart slot in SMRAM is not set when
SMM is entered. A similar BUSCHK# erratum is that the
ESI I/O restart slot may be incorrect if BUSCHK# and
SMI# are asserted during an I/O operation.

 IMPLICATION: BUSCHK# is not used in PC systems.

ERRATA C-11

 WORKAROUND: None needed in a PC system, see above.

 I-4. Inconsistent fault when length limit exceeded with
invalid LOCK prefix

 PROBLEM: The LOCK prefix (0xF0) is valid only for
certain instructions. The LOCK prefix is not valid, for
example, when the operands are all in registers. The
correct processor response for such an invalid use of the
LOCK prefix is to generate an Invalid Opcode exception
(INT 6).

 The use of redundant prefixes could result in the
instruction length exceeding 15 bytes; the correct processor
response is to generate a General Protection fault (INT 13).

 When an instruction has an invalid LOCK prefix and the
length exceeds 15 bytes the resulting exception (INT 6 or
INT 13) is implementation-dependent. The Pentium
processor (P54) responds with INT 6 whereas the Pentium
Processor with MMX Technology (P55) responds with INT
13. The IDT WinChip 2 processor response is not
consistent, for some opcodes it responds with INT 6 (like a
P54) and for others with INT 13 (like a P55).

 IMPLICATION: This erratum has not been determined to
cause any problems during compatibility testing.

 WORKAROUND: Do not rely on implementation-
dependent behavior.

 I-5. BIST return code (EAX) may indicate false failures

 PROBLEM: The Built-in Self Test (BIST) can be
requested as part of the IDT WinChip 2 processor reset
sequence (INIT asserted as RESET deasserted). The BIST
result is indicated by a code in EAX. Normally EAX is zero
after reset. A ‘zero’ in EAX after BIST Reset means that no
failures were detected. Any value other than ‘zero’
indicates an error has occurred during BIST. Due to this
erratum the processor may return a value other than ‘zero’
in EAX, even though no failures were detected.

• Bit 15 of EAX may be set to ‘one’, falsely indicating an
error that does not exist

 IMPLICATION: Certain newer motherboards in PC
systems request BIST. In these systems the BIOS may
report false BIST failures due to this erratum.

 WORKAROUND: In systems where BIST is desired the
following sequence will avoid the problem:

• RESET the processor normally (this initializes part of
the machine which needs to happen to avoid this
erratum).

• Check a location in volatile RAM to see if BIST has
been requested (use a special signature value that is not
expected in volatile RAM when the system powers up)

• If the location in volatile RAM does not have the special
signature, then store the special value and request
BIST

• Otherwise (special signature found in volatile RAM)
then EAX has the BIST return code.

 I-6. MSR FCR4[5:2] may not return correct value

 PROBLEM: In the IDT WinChip 2A and IDT WinChip 3
the read-only machine specific register FCR4 contains two
fields which provide the bus frequency multiplier and
divider as selected by pins BF2, BF1, and BF0. The IDT
WinChip 2 does not support fractional bus ratios, has a
different FCR4 and is not affected by this erratum.
FCR4[5:2] should return the bus frequency divider but due
to this erratum the value returned in this field may not be
correct.

 IMPLICATION: System software that relies on FCR4[5:2]
to determine the bus frequency ratio may get the wrong
result.

 WORKAROUND: System software should first check to
see if the processor is an IDT WinChip 2A or IDT WinChip
3 by using the CPUID instruction. For these processors the
bus frequency divider should be read from MSR 0x0147
bits 26:23.

ERRATA C-13

 4. 3DNOW! ERRATA

 D-1. 3DNOW! 24-bit precision reciprocal square root is
wrong in certain rare cases

 PROBLEM: The PFRSQRT instruction returns an
estimate of the reciprocal square root of the input number.
If software requires a more precise answer it can refine the
answer by using the PFRSQIT1 and PFRCPIT2
instructions using the original number and the square of
the estimate provided by PFRSQRT (this computes a
Newton-Raphson iteration). Due to this erratum there are
certain cases of the input number for which the
combination of PFRSQRT and PFRSQIT1 instructions will
yield the wrong result (even though the estimate by
PFRSQRT is correct). The affected input numbers are
normal single precision reals (positive or negative) which
have an odd exponent (biased) less than +252 and a
mantissa with all ‘1’s except for the two least significant
bits, which may be ‘0’ or ‘1’.

 Due to this erratum the result of the Newton-Raphson
iteration is one half of the correct result when the input
number is one of these special cases. The numbers affected
are slightly less than (within 4 ULPs) certain powers of
two (… 0.125, 0.5, 2.0, 8.0, …), as follows:

 Sign Biased Exp Mantissa

 x xxxxxxx1

 (not 11111101)

 111111111111111111111xx

 ‘x’ can be ‘0’ or ‘1’

 IMPLICATION: Most programs that use 3DNow!
instructions are games, where the reciprocal square root is
used in lighting calculations. For most programs this
erratum is therefore insignificant since the occasional pixel
with the wrong intensity will go unnoticed.

 WORKAROUND: The action necessary to avoid this
erratum depends on the precision required for the
reciprocal square root. If 15 bit precision is sufficient, then
the result of PFRSQRT is good enough. If a program
requires a 24-bit precision reciprocal square root then it
should use the floating point unit to compute the Newton-
Raphson iteration (PFRSQRT can still be used to provide
the estimate).

 5. BUS ERRATA

 B-1. Setting FCR.DTLOCK to ‘0’ may result in hang

 PROBLEM: The IDT WinChip 2 processor has a mode
(the default) to improve performance that allows the
processor to update the accessed and dirty bits in PDE/PTE
entries without locking the bus or flushing data from the
D-Cache. This mode is controlled by FCR.DTLOCK, ‘1’ by
default. When FCR.DTLOCK is ‘0’ updates to the accessed
and dirty bits in PDE/PTE entries are performed using the
locked read-modify-write semantics which flushes the data
from the D-Cache (like Pentium processor). Due to this
erratum the processor may hang when the following
conditions are met:

• paging is enabled

• the accessed bit in a PDE/PTE entry needs to be set

• FCR.DTLOCK has been set to ‘0’

• there is a branch instruction in the processor pipeline

Due to this erratum the processor executes the branch one
clock too soon, causing erratic behavior (most likely a
hang).

 IMPLICATION: This erratum should not occur in a PC
system because there is no reason for system software to
modify the default setting of FCR.DTLOCK.

 WORKAROUND: To avoid the erratum leave
FCR.DTLOCK set to ‘1’, the default value.

