
Intel386 TM DX
MICROPROCESSOR

 SPECIFICATION UPDATE

Release Date: July, 1996

Order Number 272874-001

The Intel386TM DX Microprocessor may contain design defects or errors known as errata.
Characterized errata that may cause the Intel386TM DX Microprocessor’s behavior to deviate from
published specifications are documented in this specification update.

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

ii July, 1996 272874-001

Information in this document is provided in connection with Intel products. No license, express or implied, by
estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in
Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever, and Intel
disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or
warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright
or other intellectual property right. Intel products are not intended for use in medical, life saving, or life
sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

The Intel386TM DX Microprocessor may contain design defects or errors known as errata. Current characterized
errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications before placing your
product order.

* Third-party brands and names are the property of their respective owners.

Copies of documents which have an ordering number and are referenced in this document, or other Intel
literature, may be obtained from:

Intel Corporation
P.O. Box 7641
Mt. Prospect, IL 60056-7641

or call in North America 1-800-879-4683, Europe 44-0-1793-431-155, France 44-0-1793-421-777,

Germany 44-0-1793-421-333 other Countries 708-296-9333

Copyright  1996, Intel Corporation

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

272874-001 July, 1996 iii

CONTENTS

REVISION HISTORY.. 1

PREFACE... 2

SUMMARY TABLE OF CHANGES ... 4

IDENTIFICATION INFORMATION... 6

ERRATA ... 7

SPECIFICATION CHANGES ... 10

SPECIFICATION CLARIFICATIONS... 12

DOCUMENTATION CHANGES ... 16

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

272874-001 July, 1996 1 of 16

REVISION HISTORY

This document applies to the F-step of the dynamic Intel386TM DX Processor. The
errata and information that has changed in this technical note since the last revision are
outlined below:

Date of Revision Version Description

07/01/96 001 This is the new Specification Update document. It contains all
identified errata published prior to this date.

07/29/92 1.00 Specification Changes:

 • Move from 16-bit Segment/System Register to 32-bit Destination

 • IDIV instruction interrupt0 due to overflow

 • Clearing prefetch queue when transitioning into paging

Errata:

 • TSS Limit Check

 • POPA/POPAD Instruction Malfunction

 • Fault During Task Switch with Single Step Enabled

 • Incorrect Exception by a Page Faulting LOCKed Instruction

Specification Clarifications:

 • Read cycles require valid data bus levels

 • Use of ESP as a base register with CALL, PUSH, and POP

 Instructions

 • Use of code breaks to debug 86/286 Operating Systems

 • Use of ESP in 16-bit Code with 32-bit Interrupt Handlers

 • Debug breakpoints

 • Breakpoint exceptions

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

2 of 16 July, 1996 272874-001

PREFACE

As of July, 1996, Intel's Semiconductor Products Group has consolidated available
historical device and documentation errata into this new document type called the
Specification Update. We have endeavored to include all documented errata in the
consolidation process, however, we make no representations or warranties concerning
the completeness of the Specification Update.

This document is an update to the specifications contained in the Affected
Documents/Related Documents table below. This is the first release of the Intel386TM

DX Processor Specification Update. This document is a compilation of device and
documentation errata, specification clarifications and changes. It is intended for
hardware system manufacturers and software developers of applications, operating
systems, or tools.

Information types defined in Nomenclature are consolidated into the specification
update and are no longer published in other documents.

This document may also contain additional information that was not previously
published.

Affected Documents/Related Documents

Title Order

Intel386TM DX Microprocessor datasheet 241267-001

Nomenclature

Errata are design defects or errors. These may cause the published (component,
board, system) behavior to deviate from published specifications. Hardware and
software designed to be used with any component, board, and system must consider
all errata documented.

Specification Changes are modifications to the current published specifications.
These changes will be incorporated in any new release of the specification.

Specification Clarifications describe a specification in greater detail or further
highlight a specification’s impact to a complex design situation. These clarifications will
be incorporated in any new release of the specification.

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

272874-001 July, 1996 3 of 16

Documentation Changes include typos, errors, or omissions from the current
published specifications. These changes will be incorporated in any new release of the
specification.

NOTE:

Errata remain in the specification update throughout the product’s
lifecycle, or until a particular stepping is no longer commercially
available. Under these circumstances, errata removed from the
specification update are archived and available upon request.
Specification changes, specification clarifications and documentation
changes are removed from the specification update when the
appropriate changes are made to the appropriate product specification
or user documentation (datasheets, manuals, etc.).

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

4 of 16 July, 1996 272874-001

SUMMARY TABLE OF CHANGES

The following table indicates the errata, specification changes, specification
clarifications, or documentation changes which apply to the Intel386TM DX Processor.
Intel may fix some of the errata in a future stepping of the component, and account for
the other outstanding issues through documentation or specification changes as noted.
This table uses the following notations:

Codes Used in Summary Table

Steps

X: Errata exists in the stepping indicated. Specification
Change or Clarification that applies to this stepping.

(No mark)
or (Blank box): This erratum is fixed in listed stepping or specification

change does not apply to listed stepping.

Page

(Page): Page location of item in this document.

Status

Doc: Document change or update will be implemented.
Fix: This erratum is intended to be fixed in a future step of the

component.
Fixed: This erratum has been previously fixed.
NoFix: There are no plans to fix this erratum.
Eval: Plans to fix this erratum are under evaluation.

Row

Change bar to left of table row indicates this erratum is
either new or modified from the previous version of the
document.

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

272874-001 July, 1996 5 of 16

Errata
No. Steppings Page Status ERRATA

F0

9600001 X 7 NoFix TSS Limit Check

9600002 X 7 NoFix POPA/POPAD Instruction Malfunction

9600003 X 8 NoFix Fault During Task Switch With Single Step
Enabled

9600004 X 9 NoFix Incorrect Exception By A Page Faulting Locked
Instruction

Specification Changes
No. Steppings Page Status SPECIFICATION CHANGES

F0

001 X 10 Move From 16-Bit Segment/System Register To
32-Bit Destination

002 X 10 IDIV Instruction Interrupt0 Due To Overflow

003 X 11 Clearing Prefetch Queue When Transitioning Into
Paging

Specification Clarifications
No. Steppings Page Status SPECIFICATION CLARIFICATIONS

F0

001 X 12 Read Cycles Require Valid Data Bus Levels

002 X 13 Use Of ESP As A Base Register With CALL,
PUSH, And POP

Instructions

003 X 13 Use Of Code Breaks To Debug 86/286 Operating
Systems

004 X 14 Use Of ESP In 16-Bit Code With 32-Bit Interrupt
Handlers

005 X 14 Debug Breakpoints

006 X 16 Breakpoint Exceptions

Documentation Changes
No. Document Revision Page Status DOCUMENTATION CHANGES

None for this revision of this specification update.

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

6 of 16 July, 1996 272874-001

IDENTIFICATION INFORMATION

Markings

The F0 part is identified with the following marks:

i386 DX CPU-F0 (CHMOS IV)

 Legend

MHz S-Spec# S-Spec#

16 S X6894 S X689

20 S X6904 S X690

25 S X6914 S X691

25 S X6914 S X692

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

272874-001 July, 1996 7 of 16

ERRATA

9600001. TSS Limit Check

PROBLEM: The TSS limit is checked to determine if the segment being set aside is
large enough. If the TSS limit is not large enough, an exception #10 is generated to
indicate the error. The current microcode generates the exception for limits less than
101 bytes. This exception should be generated for limits less than 103 bytes. By not
generating exception #10 for TSS limits of 101 and 102 bytes, the microcode allows
task state segments that do not contain the I/O Protection Bit Map Offset.

IMPLICATION: The omission of the I/O Protection Bit Map Offset leads to a fault
whenever an attempt is made to access the I/O Protection Bit Map Offset. These
accesses occur in systems running protected mode and attempting to perform task
switches.

WORKAROUND: The problem is avoided by verifying that a task state segment is
generated with a minimum limit of 103 (67H) bytes. A task state segment of this size is
large enough to contain all of the required fields.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600002. POPA/POPAD Instruction Malfunction

PROBLEM: Under certain conditions when the POPA or POPAD instruction is used,
the Intel386 DX CPU executes improperly. The Intel386 DX CPU inadvertently corrupts
the EAX register when either the POPA or POPAD instruction is immediately followed
by an instruction that uses a base address register AND an additional register other
than EAX or AX as an index register to form its effective address.

The following sample code is an example of the problem:

MOV EDX,4

POPAD

MOV EBX, dword ptr [EDX + EBX*4]

Additionally, whenever a POPA (16-bit version) instruction is immediately followed by
an instruction which uses the EAX (32-bit register) as a base OR index register to form
its effective address, the Intel386TM DX Processor will hang.

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

8 of 16 July, 1996 272874-001

The following sample code is an example of the problem:

MOV EAX,4

POPA

MOV EBX, dword ptr [EAX]

IMPLICATION: Depending on the above conditions, the EAX register will contain an
undefined value or the processor will stop execution. Proper operation of the processor
cannot be guaranteed after this sequence is executed until a hardware reset occurs.
This sequence of instructions can occur in the Real, Protected and Virtual 86 modes of
the Intel386 DX CPU.

WORKAROUND: Never execute the described instruction sequences. A workaround
which has proven to be successful in all cases is to insert a NOP instruction after every
POPA(D) instruction. Examples are shown below:

EXAMPLE 1 EXAMPLE 2

MOV EDX,4 MOV EAX,4

POPAD POPA

NOP NOP

MOV EBX, dword ptr [EDX + EBX*4] MOV EBX, dword ptr [EAX]

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600003. Fault During Task Switch with Single Step Enabled

PROBLEM: If a fault occurs during a task switch and if single step is enabled (TF=1)
the potential exists for the new task to be entered with single step enabled. This will
only happen if the following three conditions are met:

1) The TF (single step) flag is set to 1 when the task switch occurs.

2) A fault is detected while the processor is saving the state of the current task.

3) A task gate is used to handle the fault.

IMPLICATION: The problem only occurs during the debug phase of code generation.
Application code is not affected since single step would not be enabled while executing
code. Also, the only faults possible during the problem window are exception 10 and
exception 14. Exception 10 will only be encountered during this window if the TSS limit
is altered after the task was entered. Exception 14 will only be encountered if the
current page is marked "Not Present." Neither of these procedures is recommended
programming practice.

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

272874-001 July, 1996 9 of 16

WORKAROUND: Eliminate one of the necessary conditions. The easiest is to follow
recommended programming techniques. Do not alter the TSS limit of the current task
and do not mark the current page "Not Present."

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

9600004. Incorrect Exception by a Page Faulting LOCKed Instruction

PROBLEM: When a LOCKed instruction crosses a page boundary and the next page is
marked “Not Present,” a page fault should be generated (exception 14), but instead the
CPU may generate an invalid opcode violation (exception 6). This only occurs if the
page boundary falls between any two bytes of the entire LOCKed instruction.

IMPLICATION: The only effect this problem has on the system is that it may generate
the wrong exception if above conditions are met. This behavior is expected more on
multi-processing and in multi-thread code where use of LOCK instruction is common.

On sensing the fault, the CPU saves the CS and EIP values before transferring control
to the handler. As faults are fully restartable, the faulting program can be resumed after
"fixing" the cause of the exception.

WORKAROUND: There are at least two ways to avoid this problem.

1) Rewrite the exception 6 handler to check for the following conditions:

 a) Did any part of the instruction (prefix, opcode, operand) cross a page
boundary?

 b) Does the instruction have a LOCK prefix?

 c) Is the next page where the fault occurred marked not present?

If these conditions are met, the modified exception 6 handler can invoke a page
fault handler to bring in the faulting page, and simply restart the instruction by
executing an IRET instruction.

2) Avoid putting a LOCKed instruction on a page boundary with the next page being not

 present.

STATUS: Refer to Summary Table of Changes to determine the affected stepping(s).

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

10 of 16 July, 1996 272874-001

SPECIFICATION CHANGES

001. Move from 16-bit Segment/System Register to 32-bit Destination

ISSUE: This clarifies how certain instructions (which imply a 16-bit operand size)
behave with various operands and operand sizes. These instructions are: MOV
r/ml6,Sreg; STR r/ml6; SLDT r/ml6; and SMSW r/ml6. When a 32-bit operand size is
selected, and the destination is a register, the 16-bit source operand is copied into the
lower 16 bits of the destination register, and the upper 16 bits of the destination register
are undefined. With a 16-bit operand size and a register operand, only the lower 16 bits
of the destination register are affected (the upper 16 bits remain unchanged). With a
memory operand, the source is written to memory as a 16-bit quantity, regardless of
operand size. Thus, 32-bit software should always treat the destination as 16-bits, and
mask bits 16-31 if necessary.

002. IDIV Instruction Interrupt0 Due To Overflow

ISSUE: The IDIV instruction operands need to be sign-extended to avoid incurring an
overflow condition (interrupt0 exception).

An extremely limited subset of IDIV calculations may not properly generate an overflow
interrupt0 exception subsequent to the actual occurrence of an overflow calculation.
This inhibited interrupt0 exception condition results in an incorrect IDIV quotient
calculation. Fortran and C, however require that arithmetic operations be performed on
operands of equal length; compilers thus already either extend the shorter operand or
extend both operands to a common larger size. To accommodate both positive and
negative numbers, compilers establish this equal length by performing sign-extension.
The IDIV instruction does not incur the overflow condition when the described sign-
extension is conducted. Direct assembly language programming should also perform
sign-extension prior to executing IDIV to preclude the occurrence of the overflow
condition (sign-extension of the divisor is used to prevent the overflow condition, sign-
extension of the dividend is used to satisfy the IDIV instruction format). The Intel386TM

CPU instruction set incorporates several commands to facilitate sign-extension. The
CBW, CWD(CWDE), and CDQ instructions are often utilized to automatically sign-
extend byte, word, and double-word data.

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

272874-001 July, 1996 11 of 16

003. Clearing Prefetch Queue When Transitioning Into Paging

ISSUE: After setting the PG (paging enable) bit in CR0, a short, aligned jmp instruction
should be executed to clear the prefetch queue. If this is not done, a queue corruption
problem may occur. However, if the addresses before and after enabling paging are the
same, the short, aligned jmp instruction is unnecessary.

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

12 of 16 July, 1996 272874-001

SPECIFICATION CLARIFICATIONS

001. Read Cycles Require Valid Data Bus Levels

ISSUE: The Intel386 DX CPU requires that all data bus pins be at a valid logic state
(high or low) at the end of each read cycle, when READY# is asserted. The system
MUST be designed to meet this requirement. Therefore, do NOT allow any data lines to
be floating when the read cycle completes. This requirement applies to the following
bus cycles: Memory Data Read, Memory Code Read, I/O Data Read, and Interrupt
Acknowledge (see datasheet table 5-2. Bus Cycle Definition).

If the device being read is a 32-bit device, such as a 32-bit memory, the system should
present 32-bits of data to the Intel386TM DX CPU even if not all of the Intel386TM DX CPU
byte enables are asserted.

If the device being read is a 16-bit or an 8-bit device, however, pullup resistors can be
used to guarantee valid logic levels on the upper data lines, which otherwise would be
floating. Note that bus cycles to 16-bit and 8-bit devices typically include several wait
states, but always calculate the effects of R-C time constants to ensure the pullups will
drive proper logic levels onto the bus within the time required.

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

272874-001 July, 1996 13 of 16

002. Use of ESP as a Base Register With CALL, PUSH, and POP
Instructions

ISSUE: This clarifies how ESP behaves with instructions that implicitly reference the
stack and explicitly reference another location in memory using ESP as a base register.

Instruction Explicit Memory
Reference uses
the ESP value

ESP value
used as base

CALL-indirect
thru-memory

before
decrementing

old ESP

PUSH-from
memory

before
decrementing

old ESP

POP-to memory after
incrementing

new ESP

This is consistent in that the CALL-indirect-thru-memory and the PUSH-from-memory
both use the same ESP value.

Furthermore, the relation between PUSH-from-memory and POP-to-memory is such
that it allows the instruction sequence:

PUSH [ESP+n]

POP [ESP+n]

to have the desirable property of both instructions referencing the same memory
location.

003. Use of Code Breaks to Debug 86/286 Operating Systems

ISSUE: The RF bit in the EFLAGS register is cleared by a 16-bit IRET, making it
difficult to use the on-chip debug registers to set code breakpoints to debug 16-bit
operating systems. Data breakpoints work fine in all cases, and code breakpoints work
fine as long as all interrupt handlers are 32-bits and return with 32-bit IRETs or task
switches. In 16-bit environments, software debuggers should use the CC (single byte
INT 3 instruction) to place software breakpoints in code.

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

14 of 16 July, 1996 272874-001

004. Use Of ESP In 16-Bit Code With 32-Bit Interrupt Handlers

ISSUE: When a 32-bit IRET is used to return to another privilege level, and the old
level uses a 4G stack (D/B bit in the segment register = 1), while the new level uses a
64k stack (D/B bit = 0), then only the lower word of ESP is updated. The upper word
remains unchanged. This is fine for pure 16-bit code, as well as pure 32-bit code.
However, when 32-bit interrupt handlers are present, 16-bit code should avoid any
dependence on the upper word of ESP. No changes are necessary in existing 16-bit
code, since the only way to access ESP in USE16 segments is through the 32-bit
address size prefix.

005. Debug Breakpoints

ISSUE: Under certain debug conditions, the fetches of interruptable instructions (ESC
and REP + string instructions) are repeated. This problem occurs in the following
cases:

Case 1:

Code breakpoint set on the instruction following an interruptable instruction

If the interruptable instruction is an ESC instruction waiting for the BUSY# signal to go
inactive (indicating the Intel387 DX math co-processor has completed the previous
ESC instruction), the ESC instruction will be repeatedly fetched for the duration of the
wait. If the interruptable instruction is a REP + string instruction, the instruction will be
fetched once for each iteration indicated by the REP. In both cases, once the
interruptable instruction is completed, control will be transferred to the user's debug
handler.

Case 2:

Single stepping through ESC instructions

In the case where TF=1 and the BUSY# signal (from a previous ESC instruction) is still
active, the single step handler will be entered with the ESC instruction not executed
and with the EIP still pointing to the same instruction. On returning from the handler, the
same instruction, ESC, will be fetched again. In the event the BUSY# signal is still
active after the second fetch of the ESC instruction, the debug handler will be entered
once again. After completely executing the ESC instruction, the debug handler will be
entered with the EIP pointing to the next instruction.

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

272874-001 July, 1996 15 of 16

Neither case alters the result of the execution. The only implication is that users may
see the additional fetches. The extra fetches of cases 1 and 2 could show up to users
who monitor the address bus during debug or to users who have an ICE part and
observe the trace data buffer or the ICE0-3 pins. Users who single step on an
instruction mix that contains long ESC instructions could notice multiple entries to the
debug handler for the same instruction.

Intel386 TM DX PROCESSOR SPECIFICATION UPDATE

16 of 16 July, 1996 272874-001

006. Breakpoint Exceptions

ISSUE: There are four circumstances under which a breakpoint exception will be
missed. All code will continue to run properly - all instructions will be executed
completely and correctly.

Case 1

If a data breakpoint is set to a mem16 operand of a VERR, VERW, LSL, or LAR
instruction and the segment with the selector at mem16 is not accessible, the
breakpoint will be missed.

Case 2

The loop of a REP MOVS instruction consists of two bus cycles, a read cycle and a
write cycle. The breakpoint exception will be missed when the data breakpoint is set to
the operand of the write cycle of the REP MOVS instruction, and the read cycle of the
next iteration of the REP MOVS instruction gets a fault.

Case 3

Normally a CODE breakpoint after a MOV or POP to SS instruction will cause a debug
exception after the following instruction. However, if the following instruction has an
execution time of more than 2 clocks, the debug exception will not occur.

Case 4

Normally a DATA breakpoint set to the operand of a MOV to SS instruction will cause a
debug exception after the following instruction is executed. However if the execution
time of the following instruction is more than 2 clocks, the debug exception will not
occur.

DOCUMENTATION CHANGES

None for this revision of this specification update.

	REVISION HISTORY
	PREFACE
	SUMMARY TABLE OF CHANGES
	IDENTIFICATION INFORMATION
	ERRATA
	9600001. TSS Limit Check
	9600002. POPA/POPAD Instruction Malfunction
	9600003. Fault During Task Switch with Single Step Enabled
	9600004. Incorrect Exception by a Page Faulting LOCKed Instruction

	SPECIFICATION CHANGES
	001. Move from 16-bit Segment/System Register to 32-bit Destination
	002. IDIV Instruction Interrupt0 Due To Overflow
	003. Clearing Prefetch Queue When Transitioning Into Paging

	SPECIFICATION CLARIFICATIONS
	001. Read Cycles Require Valid Data Bus Levels
	002. Use of ESP as a Base Register With CALL, PUSH, and POP Instructions
	003. Use of Code Breaks to Debug 86/286 Operating Systems
	004. Use Of ESP In 16-Bit Code With 32-Bit Interrupt Handlers
	005. Debug Breakpoints
	006. Breakpoint Exceptions

	DOCUMENTATION CHANGES

