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S A27 A26 A23 NC AI4 VSS AI2 VSS vss vss vss VSS AIO VSS A6 A4 AOS# 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

R A2B A25 vee VSS AlB VCC AI5 VCC VCC VCC VCC All AB VCC A3 BLAST# NC 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Q A31 VSS AI7 AI9 A21 A24 A22 A20 AI6 AI3 A9 A5 A7 A2 BREQ PLOCK# PCHK# 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P DO A29 AlO HlOA VCC VSS 

0 0 0 0 0 0 

N 02 01 OPO lOCK# N/IO# W /R# 
0 0 0 0 0 0 

M vss VCC 04 O/C# VCC vss 
0 0 0 0 0 0 

L VSS 06 07 PWT VCC VSS 

0 0 0 0 0 0 

K vss vcc OU 486 TW MIcroprocessor BEON VCC vss 
0 0 0 PIN SIDE VIEW 0 0 0 

J VCC 05 016 BE2# BEI# PCO 

0 0 0 0 0 0 

H vss D3 OP2 BROY# vee VSS 

0 0 0 0 0 0 

G VSS VCC 012 NC VCC VSS 
0 0 0 0 0 0 

F OPI DB 015 KEN# ROY# BEl# 
0 0 0 0 0 0 

E VSS VCC 010 HOLD VCC VSS 

0 0 0 0 0 0 

D 09 013 017 A20N# BSB# BOFF# 

0 0 0 0 0 0 

C 011 OIB ClK VCC VCC 027 026 028 030 NC NC NC NC FERR# FlUSH# RESET BSI6# 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

B 019 021 VSS VSS vss 025 vcc 031 VCC NC vcc HC NC NC Nt.l1 NC EAOS# 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

A 020 022 NC 023 OP3 024 VSS 029 VSS HC VSS NC NC NC IGHHE# INTR AHOlO 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
240440-2 

Figure 1.1 
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AOS# A4 A6 VSS Al0 vss vss vss vss vss A12 vss A14 NC A23 A26 A27 S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

NC BLAST# A3 vcc AB All vee vee vcc VCC A15 vee AlB VSS VCC A25 A2B R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

PCHK# PlOCK# BREQ A2 A7 AS A9 A13 A16 A20 A22 A24 A21 A19 A17 VSS A31 Q 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

VSS VCC HlDA A30 A29 DO P 0 0 0 0 0 0 

W /R# M/IO# lOCK# OPO 01 02 N 0 0 0 0 0 0 

VSS vee O/en 04 vcc VSS M 0 0 0 0 0 0 

VSS VCC PWT 07 06 VSS L 0 0 0 0 0 0 

VSS vcc BEO# 486n.t Microprocessor Pinout 014 VCC VSS K 0 0 0 TOP SIDE VIEW 0 0 0 

PCO BE1# BE2N 016 05 VCC J 0 0 0 0 0 0 

VSS VCC BROY# OP2 03 VSS H 0 0 0 0 0 0 

VSS VCC NC 012 VCC VSS G 0 0 0 0 0 0 

BE3# ROY# KEN# 015 OS OPl F 0 0 0 0 0 0 

VSS VCC HOLD 010 VCC VSS E 0 0 0 0 0 0 

BOFF# BSS# A20M# 017 013 09 D 0 0 0 0 0 0 

BS 16# RESET FlUSH# FERR# NC NC NC NC 030 02B 026 027 vee vee ClK 01B 011 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

EAOS# NC Nhli NC NC NC VCC NC VCC 031 vee 025 VSS VSS VSS 021 019 B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

AHOlO INTR IGNNE# NC HC NC VSS NC VSS 029 VSS 024 OP3 023 NC 022 020 A 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 
240440-3 

Figure 1.2 
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Pin Cross Reference by Pin Name 

Pin 
Location 

Name 
Pin 

Location 
Name 

Pin 
Location 

Name 
Pin 

Location 
Name 

A2 014 8S16# C17 HLOA P15 VSS 84 
A3 R15 CLK C3 HOLD E15 Vss 85 
A4 S16 DO P1 IGNNE# A15 VSS E1 
A5 012 01 N2 INTR A16 Vss E17 
A6 S15 02 N1 KEN# F15 Vss G1 
A7 013 03 H2 LOCK# N15 VSS G17 
A8 R13 04 M3 M/IO# N16 Vss H1 
A9 011 05 J2 NMI 815 VSS H17 
A10 S13 06 L2 PCO J17 Vss K1 
A11 R12 07 L3 PCHK# 017 VSS K17 
A12 S7 08 F2 PWT L15 VSS L1 
A13 010 09 01 PLOCK# 016 Vss M1 
A14 S5 010 E3 ROY# F16 VSS M17 
A15 R7 011 C1 RESET C16 Vss P17 
A16 09 012 G3 Vee 87 VSS 02 
A17 03 013 02 Vee 89 VSS R4 
A18 R5 014 K3 Vee 811 VSS S6 
A19 04 015 F3 Vee C4 VSS S8 
A20 08 016 J3 Vee C5 VSS S9 
A21 05 017 03 Vee E2 VSS S10 
A22 07 018 C2 Vee E16 VSS S11 
A23 S3 019 81 Vee G2 VSS S12 
A24 06 020 A1 Vee G16 VSS S14 
A25 R2 021 82 Vee H16 W/R# N17 
A26 S2 022 A2 Vee J1 
A27 S1 023 A4 Vee K2 NC A3 
A28 R1 024 A6 Vee K16 NC A10 
A29 P2 025 86 Vee L16 NC A12 
A30 P3 026 C7 Vee M2 NC A13 
A31 01 027 C6 Vee M16 NC A14 
A20M# 015 028 C8 Vee P16 NC 810 
AOS# S17 029 A8 Vee R3 NC 812 
AHOLO A17 030 C9 Vee R6 NC 813 
8EO# K15 031 88 Vee R8 NC 814 
8E1# J16 O/C# M15 Vee R9 NC 816 
8E2# J15 OPO N3 Vee R10 NC C10 
8E3# F17 OP1 F1 Vee R11 NC C11 
8LAST# R16 OP2 H3 Vee R14 NC C12 
80FF# 017 OP3 A5 Vss A7 NC C13 
8ROY# H15 EAOS# 817 Vss A9 NC G15 
8REO 015 FERR# C14 Vss A11 NC R17 
8S8# 016 FLUSH# C15 Vss 83 NC S4 

NOTE: 
Pins identified as Ne should remain completely unconnected. 
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Pin Cross Reference By Location 

Location 
Pin 

Name 
Location 

Pin 
Name 

Location 
Pin 

Name 
Location 

Pin 
Name 

A1 020 C9 030 J15 8E2# 010 A13 
A2 022 C10 NC J16 8E1# 011 A9 
AS NC CII NC J17 FCD Q12 A5 
A4 023 C12 NC K1 Vss 013 A7 
A5 OP3 C13 NC K2 Vee 014 A2 
A6 024 C14 FERR# K3 014 015 8REO 
A7 Vss C15 FLU8H# K15 8EO# 016 PLOCK# 
A8 029 C16 RE8ET K16 Vee 017 PCHK# 
A9 Vss C17 8816# K17 Vss R1 A28 
A10 NC 01 09 L1 Vss R2 A25 
A11 Vss 02 013 L2 06 R3 Vee 
A12 NC 03 017 L3 07 R4 Vss 
A13 NC 015 A20M# L15 PWT R5 A18 
A14 NC 016 888# L16 Vee R6 Vee 
A15 IGNNE# 017 80FF# L17 Vss R7 A15 
A16 INTR E1 Vss M1 Vss R8 Vee 
A17 AHOLO E2 Vee M2 Vee R9 Vee 
81 019 E3 010 M3 04 R10 Vee 
82 021 E15 HOLO M15 O/C# R11 Vee 
83 Vss E16 Vee M16 Vee R12 A11 
84 Vss E17 Vss M17 Vss R13 A8 
85 Vss F1 OP1 N1 02 R14 Vee 
86 025 F2 08 N2 01 R15 A3 
87 Vee F3 015 N3 OPO R16 8LA8T# 
88 031 F15 KEN# N15 LOCK# R17 NC 
89 Vee F16 ROY# N16 MIIO# 81 A27 
810 NC F17 8E3# N17 W/R# 82 A26 
811 Vee G1 Vss P1 00 83 A23 
812 NC G2 Vee P2 A29 84 NC 
813 NC G3 012 P3 A30 85 A14 
814 NC G15 NC P15 HLOA 86 Vss 
815 NMI G16 Vee P16 Vee 87 A12 
816 NC G17 Vss P17 Vss 88 Vss 
817 EA08# H1 Vss 01 A31 89 Vss 
C1 011 H2 03 02 Vss 810 Vss 
C2 018 H3 OP2 03 A17 811 Vss 
C3 CLK H15 8ROY# 04 A19 812 Vss 
C4 Vee H16 Vee 05 A21 813 A10 
C5 Vee H17 Vss 06 A24 814 Vss 
C6 027 J1 Vee 07 A22 815 A6 
C7 026 J2 05 08 A20 816 A4 
C8 028 J3 016 09 A16 817 A08# 

NOTE: 
All pins identified as Ne should remain completely unconnected. 
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QUICK PIN REFERENCE 

What follows is a brief pin description. For detailed signal descriptions refer to Section 6. 

Symbol Type Name and Function 

ClK I Clock provides the fundamental timing and the internal operating frequency for the 486 
microprocessor. All external timing parameters are specified with respect to the rising 
edge ofClK. 

ADDRESS BUS 

A31-A4 1/0 A31-A2 are the address lines of the microprocessor. A31-A2 together with the byte 
A2-A3 0 enables, BEO#-BE3#, define the physical area of memory or input/output space 

accessed. Address lines A31-A4 are used to drive addresses into the microprocessor to 
perform cache line invalidations. Input Signals must meet setup and hold times t22 and 
t23. A31-A2 are active HIGH and are not driven during bus or address hold. 

BE3# 0 The byte enable signals indicate active bytes during read and write cycles. Ouring the 
BE2# 0 first cycle of a cache fill, the external system should assume that all byte enables are 
BE1# 0 active. BE3# applies to 024-031, BE2# applies to 016-D23, BE1 # applies to D8-
BEO# 0 D15 and BEO# applies to DO-D7. BEO#-BE3# are active lOW and are not driven 

during bus hold. 

DATA BUS 

031-DO 1/0 These are the data lines for the 486 microprocessor. Lines DO-D7 define the least 
significant byte of the data bus while lines D24-D31 define the most significant byte of 
the data bus. These signals must meet setup and hold times t22 and t23 for proper 
operation on reads. These pins are active HIGH and are driven during the second and 
subsequent clocks of write cycles. 

DATA PARITY 

DPO-DP3 1/0 There is one data parity pin for each byte of the data bus. Oata parity is generated on all 
write data cycles with the same timing as the data driven by the 486 microprocessor. 
Even parity information must be driven back into the microprocessor on the data parity 
pins with the same timing as read information to insure that the correct parity check 
status is indicated by the 486 microprocessor. The signals read on these pins do not 
affect program execution. 
Input signals must meet setup and hold times t22 and t23. OPO-OP3 should be 
connected to Vee through a pullup resistor in systems which do not use parity. OPO-DP3 
are active HIGH and are driven during the second and subsequent clocks of write cycles. 

PCHK# 0 Parity Status is driven on the PCH K # pin the clock after ready for read operations. The 
parity status is for data sampled at the end of the previous clock. A parity error is 
indicated by PCHK# being lOW. Parity status is only checked for enabled bytes as 
indicated by the byte enable and bus size Signals. PCHK# is valid only in the clock 
immediately after read data is returned to the microprocessor. At all other times PCH K # 
is inactive (HIGH). PCHK# is never floated. 

BUS CYCLE DEFINITION 

MIIO# 0 The memory/input-output. data/control and write/read lines are the primary bus 
D/C# 0 definition signals. These Signals are driven valid as the ADS# signal is asserted. 
W/R# 0 M/IO# D/C# W/R# Bus Cycle Initiated 

0 0 0 Interrupt Acknowledge 
0 0 1 Halt/Special Cycle 
0 1 0 I/O Read 
0 1 1 I/O Write 
1 0 0 Code Read 
1 0 1 Reserved 
1 1 0 Memory Read 
1 1 1 Memory Write 

The bus definition signals are not driven during bus hold and follow the timing of the 
address bus. Refer to Section 7.2.11 for a description of the special bus cycles. 
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QUICK PIN REFERENCE (Continued) 

Symbol Type Name and Function 

BUS CYCLE DEFINITION (Continued) 

LOCK# a The bus lock pin indicates that the current bus cycle is locked. The 486 microprocessor 
will not allow a bus hold when LOCK # is asserted (but address holds are allowed). 
LOCK # goes active in the first clock of the first locked bus cycle and goes inactive after 
the last clock of the last locked bus cycle. The last locked cycle ends when ready is 
returned. LOCK# is active LOW and is not driven during bus hold. Locked read cycles 
will not be transformed into cache fill cycles if KEN is returned active. 

PLOCK # a The pseudo-lock pin indicates that the current bus transaction requires more than one 
bus cycle to complete. Examples of such operations are floating point long reads and 
writes (64 bits), segment table descriptor reads (64 bits), in addition to cache line fills 
(128 bits). The 486 microprocessor will drive PLOCK # active until the addresses for the 
last bus cycle of the transaction have. been driven regardless of whether ROY # or 
BROY # have been returned. 
Normally PLOCK # and BLAST # are inverse of each other. However during the first bus 
cycle of a 64-bit floating point write, both PLOCK # and BLAST # will be asserted. 
PLOCK# is a function of the BS8#, BS16# and KEN# inputs. PLOCK# should be 
sampled only in the clock ready is returned. PLOCK # is active LOW and is not driven 
during bus hold. 

BUS CONTROL 

AOS# a The address status output indicates that a valid bus cycle definition and address are 
available on the cycle definition lines and address bus. AOS# is driven active in the same 
clock as the addresses are driven. AOS# is active LOW and is not driven during bus hold. 

ROY# I The non-burst ready input indicates that the current bus cycle is complete. ROY # 
indicates that the external system has presented valid data on the data pins in response 
to a read or that the external system has accepted data from the 486 microprocessor in 
response to a write. ROY # is ignored when the bus is idle and at the end of the first clock 
of the bus cycle. 
ROY # is active during address hold. Data can be returned to the processor while AHOLO 
is active. 
ROY # is active LOW, and is not provided with an internal pullup resistor. ROY # must 
satisfy setup and hold times t16 and t17 for proper chip operation. 

BURST CONTROL 

BRDY# I The burst ready input performs the same function during a burst cycle that RDY # 
performs during a non-burst cycle. BRDY # indicates that the external system has 
presented valid data in response to a read or that the external system has accepted data 
in response to a write. BRDY # is ignored when the bus is idle and at the end of the first 
clock in a bus cycle. 
BROY # is sampled in the second and subsequent clocks of a burst cycle. The data 
presented on the data bus will be strobed into the microprocessor when BRDY # is 
sampled active. If ROY # is returned simultaneously with BROY #, BRDY # is ignored and 
the burst cycle is prematurely aborted. 
BRDY # is active LOW and is provided with a small pullup resistor. BROY # must satisfy 
the setup and hold times t16 and t17. 

BLAST # a The burst last Signal indicates that the next time BROY # is returned the burst bus cycle is 
complete. BLAST # is active for both burst and non-burst bus cycles. BLAST # is active 
LOW and is not driven during bus hold. 
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QUICK PIN REFERENCE (Continued) 

Symbol Type Name and Function 

INTERRUPTS 

RESET I The reset input forces the 486 microprocessor to begin execution at a known state. The 
microprocessor cannot begin execution of instructions until at least 1 ms after Vee and 
CLK have reached their proper DC and AC specifications. The RESET pin should remain 
active during this time to insure proper microprocessor operation. RESET is active HIGH. 
RESET is asynchronous but must meet setup and hold times t20 and t21 for recognition in 
any specific clock. 

INTR I The maskable interrupt indicates that an external interrupt has been generated. If the 
internal interrupt flag is setin EFLAGS, active interrupt processing will be initiated. The 
486 microprocessor will generate two locked interrupt acknowledge bus cycles in 
response to the INTR pin going active. INTR must remain active until the interrupt 
acknowledges have been performed to assure that the interrupt is recognized. 
INTR is active HIGH and is not provided with an internal pulldown resistor. INTR is 
asynchronous, but must meet setup and hold times t20 and t21 for recognition in any 
specific clock. 

NMI I The non-maskable interrupt request Signal indicates that an external non-maskable 
interrupt has been generated. NMI is rising edge sensitive. NMI must be held LOW for at 
least four CLK periods before this rising edge. NMI is not provided with an internal 
pulldown resistor. NMI is asynchronous, but must meet setup and hold times t20 and t21 
for recognition in any specific clock. 

BUS ARBITRATION 

BREQ a The internal cycle pending signal indicates that the 486 microprocessor has internally 
generated a bus request. BREQ is generated whether or not the 486 microprocessor is 
driving the bus. BREQ is active HIGH and is never floated. 

HOLD I The bus hold request allows another bus master complete control of the 486 
microprocessor bus. In response to HOLD going active the 486 microprocessor will float 
most of its output and input/output pins. HLDA will be asserted after completing the 
current bus cycle, burst cycle or sequence of locked cycles. The 486 microprocessor will 
remain in this state until HOLD is deasserted. HOLD is active high and is not provided with 
an internal pulldown resistor. HOLD must satisfy setup and hold times t18 and t19 for 
proper operation. 

HLDA a Hold acknowledge goes active in response to a hold request presented on the HOLD pin. 
HLDA indicates that the 486 microprocessor has given the bus to another local bus 
master. HLDA is driven active in the same clock that the 486 microprocessor floats its 
bus. HLDA is driven inactive when leaving bus hold. HLDA is active HIGH and remains 
driven during bus hold. 

BOFF# I The backoffinput forces the 486 microprocessor to float its bus in the next clock. The 
microprocessor will float all pins normally floated during bus hold but HLDA will not be 
asserted in response to BOFF #. BOFF # has higher priority than RDY # or BRDY #; if 
both are returned in the same clock, BOFF # takes effect. The microprocessor remains in 
bus hold until BOFF # is negated. If a bus cycle was in progress when BOFF # was 
asserted the cycle will be restarted. BOFF # is active LOW and must meet setup and hold 
times t18 and t19 for proper operation. 

CACHE INVALIDATION 

AHOLD I The address hold request allows another bus master access to the 486 microprocessor's 
address bus for a cache invalidation cycle. The 486 microprocessor will stop driving its 
address bus in the clock following AHOLD going active. Only the address bus will be 
floated during address hold, the remainder of the bus will remain active. AHOLD is active 
HIGH and is provided with a small internal pulldown resistor. For proper operation AHOLD 
must meet setup and hold times t18 and t19. 
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QUICK PIN REFERENCE (Continued) 

Symbol Type Name and Function 

CACHE INVALIDATION (Continued) 

EADS I This signal indicates that a valid external address has been driven onto the 486 
microprocessor address pins. This address will be used to perform an internal cache 
invalidation cycle. EADS# is active LOVv' and is piovided with an internal puiiup resistor. 
EADS# must satisfy setup and hold times t12 and t13 for proper operation. 

CACHE CONTROL 

KEN# I The cache enable pin is used to determine whether the current cycle is cacheable. When 
the 486 microprocessor generates a cycle that can be cached and KEN # is active, the 
cycle will become a cache line fill cycle. Returning KEN # active one clock before ready 
during the last read in the cache line fill will cause the line to be placed in the on-chip 
cache. KEN # is active LOW and is provided with a small internal pullup resistor. KEN # 
must satisfy setup and hold times t14 and t15 for proper operation. 

FLUSH # I The cache flush input forces the 486 microprocessor to flush its entire internal cache. 
FLUSH # is active low and need only be asserted for one clock. FLUSH # is 
asynchronous but setup and hold times t20 and t21 must be met for recognition in any 
specific clock. 

PAGE CACHEABILITY 

PWT 0 The page write-through and page cache disable pins reflect the state of the page 
PCD 0 attribute bits, PWT and PCD, in the page table entry or page directory entry. If paging is 

disabled or for cycles that are not paged, PWT and PCD reflect the state of the PWT and 
PCD bits in control register 3. PWT and PCD have the same timing as the cycle definition 
pins (M/IO#, D/C# and W/R#). PWT and PCD are active HIGH and are not driven 
during bus hold. PCD is masked by the cache enable bit (CE) in Control Register O. 

NUMERIC ERROR REPORTING 

FERR# 0 The floating point error pin is driven active when a floating point error occurs. FERR # is 
similar to the ERROR # pin on the 387TM math coprocessor. FERR # is included for 
compatibility with systems using DOS type floating point error reporting. FERR # is active 
LOW, and is not floated during bus hold. 

IGNNE# I When the ignore numeric error pin is asserted the 486 microprocessor will ignore a 
numeric error and continue executing non-control floating point instructions. When 
IGNNE # is deasserted the 486 microprocessor will freeze on a non-control floating point 
instruction, if a previous floating point instruction caused an error. IGNNE# has no effect 
when the NE bit in control register 0 is set. IGNNE# is active LOW and is provided with a 
small internal pullup resistor. IGNNE# is asynchronous but setup and hold times t20 and 
t21 must be met to insure recognition on any specific clock. 

BUS SIZE CONTROL 

8516# I The bus size 16 and bus size 8 pins (bus sizing pins) cause the 486 microprocessor to run 
8S8# I multiple bus cycles to complete a request from devices that cannot provide or accept 32 

bits of data in a single cycle. The bus sizing pins are sampled every clock. The state of 
these pins in the clock before ready is used by the 486 microprocessor to determine the 
bus size. These Signals are active LOW and are provided with internal pullup resistors. 
These inputs must satisfy setup and hold times t14 and t15 for proper operation. 

ADDRESS MASK 

A20M# I When the address bit 20 mask pin is asserted, the 486 microprocessor masks phYSical 
address bit 20 (A20) before performing a lookup to the internal cache or driving a memory 
cycle on the bus. A20M # emulates the address wraparound at one Mbyte which occurs 
on the 8086. A20M # is active LOW and should be asserted only when the processor is in 
real mode. This pin is asynchronous but should meet setup and hold times t20 and t21 for 
recognition in any specific clock. 
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Table 1.1. Output Pins Table 1.2. Input Pins 

Name 
Active When 
Level Floated Name 

Active Synchronousl 
Level Asynchronous 

BREQ HIGH CLK 
HLDA HIGH RESET HIGH Asynchronous 

BEO#-BE3# LOW Bus Hold HOLD HIGH Synchronous 
PWT,PCD HIGH Bus Hold AHOLD HIGH Synchronous 

W/R#, D/C#, M/IO# HIGH Bus Hold EADS# LOW Synchronous 
LOCK# LOW Bus Hold BOFF# LOW Synchronous 

PLOCK# LOW Bus Hold FLUSH# LOW Asynchronous 
ADS# LOW Bus Hold A20M# LOW Asynchronous 

BLAST # LOW Bus Hold BS16#, BS8# LOW Synchronous 
PCHK# LOW KEN# LOW Synchronous 
FERR# LOW RDY# LOW Synchronous 
A2-A3 HIGH Bus, Address Hold BRDY# LOW Synchronous 

INTR HIGH Asynchronous 
NMI HIGH Asynchronous 

IGNNE# LOW Asynchronous 

Table 1.3.lnput/Output Pins 

Name 
Active When 
Level Floated 

DO-D31 HIGH Bus Hold 
DPO-DP3 HIGH Bus Hold 
A4-A31 HIGH Bus, Address Hold 

17 
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2.0 ARCHITECTURAL OVERVIEW 

The 486 microprocessor is a 32-bit architecture with 
on-chip memory management, floating point and 
cache memory units. 

The 486 microprocessor contains all the features of 
the 386™ microprocessor with enhancements to in
crease performance. The instruction set includes the 
complete 386 microprocessor instruction set along 
with extensions to serve new applications. The on
chip memory management unit (MMU) is completely 
compatible with the 386 microprocessor MMU. The 
486 microprocessor brings the 387TM math coproc
essor on-chip. All software written for the 386 micro
processor, 387 math coprocessor and previous 
members of the 86/87 architectural family will run on 
the 486 microprocessor without any modifications. 

Several enhancements have been added to the 486 
microprocessor to increase performance. On-chip 
cache memory allows frequently used data and 
code to be stored on-chip reducing accesses to the 
external bus. RiSe design techniques have been 
used to reduce instruction cycle times. A burst bus 
feature enables fast cache fills. All of these features 
combined, lead to performance greater than twice 
that of a 386 microprocessor. 

The memory management unit (MMU) consists of a 
segmentation unit and a paging unit. Segmentation 
allows management of the logical address space by 
providing easy data and code relocatibility and effi
cient sharing of global resources. The paging mech
anism operates beneath segmentation and is trans
parent to the segmentation process. Paging is op
tional and can be disabled by system software. Each 
segment can be divided into one or more 4 Kbyte 
segments. To implement a virtual memory system, 
the 486 microprocessor supports full restartability 
for all page and segment faults. 

Memory is organized into one or more variable 
length segments, each up to four gigabytes (232 
bytes) in size. A segment can have attributes associ
ated with it which include its location, size, type (i.e., 
stack, code or data), and protection characteristics. 
Each task on a 486 microprocessor can have a max
imum of 16,381 segments each up to four gigabytes 
in size. Thus each task has a maximum of 64 tera
bytes (trillion bytes) of virtual memory. 

The segmentation unit provides four-levels of pro
tection for isolating and protecting applications and 
the operating system from each other. The hardware 
enforced protection allows the deSign of systems 
with a high degree of integrity. 

The 486 microprocessor has two modes of opera
tion: Real Address Mode (Real Mode) and Protected 
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Mode Virtual Address Mode (Protected Mode). In 
Real Mode the 486 microprocessor operates as a 
very fast 8086. Real Mode is required primarily to 
setup the processor for Protected Mode operation. 
Protected Mode provides access to the sophisticat
ed memory management paging and privilege capa
bilities of the processor. 

Within Protected Mode, software can perform a task 
switch to enter into tasks designated as Virtual 8086 
Mode tasks. Each virtual 8086 task behaves with 
8086 semantics, allowing 8086 software (an applica
tion program or an entire operating system) to exe
cute. 

The on-chip floating point unit operates in parallel 
with the arithmetic and logic unit and provides arith
metic instructions for a variety of numeric data types. 
It executes numerous built-in transcendental func
tions (e.g., tangent, sine, cosine, and log functions). 
The floating point unit fully conforms to the ANSI! 
IEEE standard 754-1985 for floating pOint arithmetic. 

The on-chip cache is 8 Kbytes in size. It is 4-way set 
associative and follows a write-through policy. The 
on-chip cache includes features to provide flexibility 
in external memory system design .. Individual pages 
can be designated as cacheable or non-cacheable 
by software or hardware. The cache can also be en
abled and disabled by software or hardware. 

Finally the 486 microprocessor has features to facili
tate high performance hardware designs. The 1 X 
clock eases high frequency board level designs. The 
burst bus feature enables fast cache fills. These fea
tures are described beginning in Section 6. 

2.1 Register Set 

The 486 microprocessor register set includes all the 
registers contained in the 386 microprocessor and 
the 387 math coprocessor. The register set can be 
split into the following categories: 

Base Architecture Registers 

General Purpose Registers 

Instruction Pointer 

Flags Register 

Segment Registers 

Systems Level Registers 

Control Registers 

System Address Registers 
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Floating Point Registers 

Data Registers 

Tag Word 

Status Word 

Instruction and Data Pointers 

Control Word 

Debug and Test Registers 

The base architecture and floating point registers 
are accessible by the applications program. The sys
tem level registers are only accessible at privilege 
level 0 and are used by the systems level program. 
The debug and test registers are also only accessi
ble at privilege level o. 

2.1.1 BASE ARCHITECTURE REGISTERS 

Figure 2.1 shows the 486 microprocessor base ar
chitecture registers. The contents of these registers 
are task-specific and are automatically loaded with a 
new context upon a task switch operation. 

General Purpose Registers 
31 24123 16 15 8 L7 0 

AH AX AL EAX 

BH BX BL EBX 

CH CX CL ECX 

DH DX DL EDX 

Sl ESI 

DI EDI 

BP EBP 

SP ESP 

Segment Registers 
15 0 

CS Code Segment 

SS Stack Segment 

") ES 
Data Segments 

FS 

GS 

Instruction Pointer 
31 16 15 0 

I I IP I EIP 

Flags Register 

I I FLAGS I EFLAGS 

Figure 2.1. Base Architecture Registers 
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The base architecture includes six directly accessi
ble descriptors, each specifying a segment up to 4 
Gbytes in size. The descriptors are indicated by the 
selector values placed in the 486 microprocessor 
segment registers. Various selector values can be 
loaded as a program executes. 

The selectors are also task-specific, so the segment 
registers are automatically loaded with new context 
upon a task switch operation. 

2.1.1.1 General Purpose Registers 

The eight 32-bit general purpose registers are 
shown in Figure 2.1. These registers hold data or 
address quantities. The general purpose registers 
can support data operands of 1, 8, 16 and 32 bits, 
and bit fields of 1 to 32 bits. Address operands of 16 
and 32 bits are supported. The 32-bit registers are 
named EAX, EBX, ECX, EDX, ESI, EDI, EBP and 
ESP. 

The least significant 16 bits of the general purpose 
registers can be accessed separately by using the 
16-bit names of the registers AX, BX, CX, DX, SI, DI, 
BP and SP. The upper 16 bits of the register are not 
changed when the lower 16 bits are accessed sepa
rately. 

Finally 8-bit operations can individually access the 
lowest byte (bits 0-7) and the higher byte (bits 8-
15) of the general purpose registers AX, BX, CX and 
DX. The lowest bytes are named AL, BL, CL and DL 
respectively. The higher bytes are named AH, BH, 
CH and DH respectively. The individual byte acces
sibility offers additional flexibility for data operations 
but is not used for effective address calculation. 

2.1.1.2 Instruction Pointer 

The instruction pointer, shown in Figure 2.1, is a 32-
bit register named EIP. EIP holds the offset of the 
next instruction to be executed. The offset is always 
relative to the base of the code segment (CS). The 
lower 16 bits (bits 0-15) of the EIP contain the 16-bit 
instruction pointer named IP, which is used for 16-bit 
addressing. 

2.1.1.3 Flags Register 

The flags register is a 32-bit register named 
EFLAGS. The defined bits and bit fields within 
EFLAGS control certain operations and indicate 
status of the 486 microprocessor. The lower 16 bits 
(bit 0-15) of EFLAGS contain the 16-bit register 
named FLAGS, which is most useful when executing 
8086 and 80286 code. EFLAGS is shown in Figure 
2.2. 
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FLAGS 

3 3 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 0 9 8 7 6 5 4 3 2 1 0 

EFLAGS 

ALIGNMENT CHECK-----...1 
VIRTUAL MOIDE--------~ 
RESUME FLAG--------....I 
NESTED TASK 
I/O 
OVERFLOW-------------....I 
D.IRECTION 

CARRY FLAG 
L---PARITY FLAG 

CARRY 
"------ZERO FLAG 

L-------SIGN FLAG 
L...,.....------TRAP FLAG 

INTERRUPT EN~'BLI~---------------' 

240440-6 

NOTE: 
I indicates Intel Reserved: do not define; see Section 2.1.6. 

Figure 2.2. Flags Register 

EFLAGS bits 1, 3, 5,15 and 19-31 are "undefined". 
When these bits are stored during interrupt process
ing or with a PUSHF instruction (push flags onto 
stack), a one is stored in bit 1 and zeros in bits 3, 5, 
15 and 19-31. 

The EFLAGS register in the 486 microprocessor 
contains a new bit not available in the 386 micro
processor. The new bit, AC, is defined in the upper 
16 bits of the register and it enables faults on ac
cesses to misaligned data. 

AC (Alignment Check, bit 18) 

The AC bit enables the generation of faults if a 
memory reference is to a misaligned address. 
Alignment faults are enabled when AC is set 
to 1. A mis-aligned address is a word access 

to an odd address, a dword access to an ad
dress that is not on a dword boundary, or an 
8-byte reference to an address that is not on a 
64-bit word boundary. See Section 7.1.6 for 
more information on operand alignment. 

Alignment faults are only generated by pro
grams running at privilege level 3. The AC bit 
setting is ignored at privilege levels 0, 1 and 2. 
Note that references to the descriptor tables 
(for selector loads), or the task state segment 
(TSS), are implicitly level 0 references even if 
the instructions causing the references are 
executed at level 3. Alignment faults are re
ported through interrupt 17, with an error code 
of O. Table 2.1 gives the alignment required 
for the 486 microprocessor data types. 

Table 2.1. Data Type Alignment Requirements 

Memory Access Alignment (Byte Boundary) 

Word 2 
Dword 4 
Single Precision Real 4 
Double Precision Real 8 
Extended Precision Real 8 
Selector 2 
48-Bit Segmented Pointer 4 
32-Bit Flat Pointer 4 
32-Bit Segmented Pointer 2 
48-Bit .. Pseudo-Descriptor" 4 
FSTENV IFLDENV Save Area 4/2 (On Operand Size) 
FSAVE/FRSTOR Save Area 4/2 (On Operand Size) 
Bit String 4 
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IMPLEMENTATION NOTE: 
Several instructions on the 486 microprocessor 
generate misaligned references, even if their mem
ory address is aligned. For example, on the 486 mi
croprocessor the LGDT /LiDT (load global/interrupt 
descriptor table) and SGDT/SIDT (store global/in
terrupt descriptor table) instructions read/write two 
bytes, and then read/write four bytes from a "pseu
do-descriptor" at the given address. The 486 mi
croprocessor will generate misaligned references 
unless the address is on a dword boundary. The 
FSAVE and FRSTOR instructions (floating point 
save and restore state) will generate misaligned 
references for % of the register save/restore cy
cles. The 486 microprocessor will not cause any 
AC faults if the effective address given in the in
struction has the proper alignment. 

VM (Virtual 8086 Mode, bit 17) 

The VM bit provides Virtual 8086 Mode within 
Protected Mode. If set while the 486 Micro
processor is in Protected Mode, the 486 Mi
croprocessor will switch to Virtual 8086 opera
tion, handling segment loads as the 8086 
does, but generating exception 13 faults on 
privileged opcodes. The VM bit can be set 
only in Protected Mode, by the IRET instruc
tion (if current privilege level = 0) and by task 
switches at any privilege level. The VM bit is 
unaffected by POPF. PUSHF always pushes a 
o in this bit, even if executing in virtual 8086 
Mode. The EFLAGS image pushed during in
terrupt processing or saved during task 
switches will contain a 1 in this bit if the inter
rupted code was executing as a Virtual 8086 
Task. 

RF (Resume Flag, bit 16) 

The RF flag is used in conjunction with the 
debug register breakpoints. It is checked at 
instruction boundaries before breakpoint pro
cessing. When RF is set, it causes any debug 
fault to be ignored on the next instruction. RF 
is then automatically reset at the successful 
completion of every instruction (no faults are 
signalled) except the IRET instruction, the 
POPF instruction, (and JMP, CALL, and INT 
instructions causing a task switch). These in
structions set RF to the value specified by the 
memory image. For example, at the end of the 
breakpoint service routine, the IRET instruc
tion can pop an EFLAG image having the RF 
bit set and resume the program's execution at 
the breakpoint address without generating an
other breakpoint fault on the same location. 

NT (Nested Task, bit 14) 

This flag applies to Protected Mode. NT is set 
to indicate that the execution of this task is 
nested within another task. If set, it indicates 
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that the current nested task's Task State Seg
ment (TSS) has a valid back link to the previ
ous task's TSS. This bit is set or reset by con
trol transfers to other tasks. The value of NT 
in EFLAGS is tested by the IRET instruction to 
determine whether to do an inter-task return 
or an intra-task return. A POPF or an IRET 
instruction will affect the setting of this bit ac
cording to the image popped, at any privilege 
level. 

10PL (Input/Output Privilege Level, bits 12-13) 

This two-bit field applies to Protected Mode. 
10PL indicates the numerically maximum CPL 
(current privilege level) value permitted to ex
ecute I/O instructions without generating an 
exception 13 fault or consulting the I/O Per
mission Bitmap. It also indicates the maximum 
CPL value allowing alteration of the IF (INTR 
Enable Flag) bit when new values are popped 
into the EFLAG register. POPF and IRET in
struction can alter the 10PL field when execut
ed at CPL = O. Task switches can always al
ter the 10PL field, when the new flag image is 
loaded from the incoming task's TSS. 

OF (Overflow Flag, bit 11) 

OF is set if the operation resulted in a signed 
overflow. Signed overflow occurs when the 
operation resulted in carry/borrow into the 
sign bit (high-order bit) of the result but did not 
result in a carry/borrow out of the high-order 
bit, or vice-versa. For 8-, 16-, 32-bit opera
tions, OF is set according to overflow at bit 7, 
15, 31 , respectively. 

OF (Direction Flag, bit 10) 

OF defines whether ESI and/or EDI registers 
postdecrement or postincrement during the 
string instructions. Postincrement occurs if OF 
is reset. Postdecrement occurs if OF is set. 

IF (lNTR Enable Flag, bit 9) 

The IF flag, when set, allows recognition of 
external interrupts signalled on the INTR pin. 
When IF is reset, external interrupts signalled 
on the INTR are not recognized. 10PL indi
cates the maximum CPL value allowing altera
tion of the IF bit when new values are popped 
into EFLAGS or FLAGS. 

TF (Trap Enable Flag, bit 8) 

TF controls the generation of exception 1 trap 
when single-stepping through code. When TF 
is set, the 486 Microprocessor generates an 
exception 1 trap after the next instruction is 
executed. When TF is reset, exception 1 traps 
occur only as a function of the breakpoint ad
dresses loaded into debug registers DRO
DR3. 
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SF (Sign Flag, bit 7) 

SF is set if the high-order bit of the result is 
set, it is reset otherwise. For 8-, 16-, 32-bit 
operations, SF reflects the state of bit 7, 15, 
31 respectively. 

ZF (Zero Flag, bit 6) 

ZF is sei if ali biis or the resuit are O. Other
wise it is reset. 

AF (Auxiliary Carry Flag, bit 4) 

The Auxiliary Flag is used to simplify the addi
tion and subtraction of packed BCD quanti
ties. AF is set if the operation resulted in a 
carry out of bit 3 (addition) or a borrow into bit 
3 (subtraction). Otherwise AF is reset. AF is 
affected by carry out of, or borrow into bit 3 
only, regardless of overall operand length: 8, 
16 or 32 bits. 

PF (Parity Flags, bit 2) 

PF is set if the low-order eight bits of the oper
ation contains an even number of "1 's" (even 
parity). PF is reset if the low-order eight bits 
have odd parity. PF is a function of only the 
low-order eight bits, regardless of operand 
size. 

CF (Carry Flag, bit 0) 

CF is set if the operation resulted in a carry 
out of (addition), or a borrow into (subtraction) 
the high-order bit. Otherwise CF is reset. For 
8-, 16- or 32-bit operations, CF is set accord
ing to carry/borrow at bit 7, 15 or 31, respec
tively. 

SEGMENT 

NOTE: 
In these descriptions, "set" means "set to 1," and 
"reset" means "reset to 0." 

2.1.1.4 Segment Registers 

Six 16-bit segment registers hold segment selector 
values identifying the currently addressable memory 
segments. In protected mode, each segment may 
range in size from one byte up to the entire linear 
and physical address space of the machine, 4 
Gbytes (232 bytes). In real address mode, the maxi
mum segment size is fixed at 64 Kbytes (216 bytes). 

The six addressable segments are defined by the 
segment registers CS, SS, OS, ES, FS and GS. The 
selector in CS indicates the current code segment; 
the selector in SS indicates the current stack seg
ment; the selectors in OS, ES, FS and GS indicate 
the current data segments. 

2.1.1.5 Segment Descriptor Cache Registers 

The segment descriptor cache registers are not pro
grammer visible, yet it is very useful to understand 
their content. A programmer invisible descriptor 
cache register is associated with each programmer
visible segment register, as shown by Figure 2.3. 
Each descriptor cache register holds a 32-bit base 
address, a 32-bit segment limit, and the other neces
sary segment attributes. 

REGISTERS DESCRIPTOR REGISTERS (LOADED AUTOMATICALLY) 
~ • r "\ r Other "\ 

Segment 
15 0 Physical Base Address Segment Limit Attributes from Descriptor 

Selector CS- -
Selector SS- - -
Selector DS- - - -
Selector ES- - - -
Selector FS- - - -
Selector GS- - - -

Figure 2.3. i486TM Microprocessor Segment Registers and Associated Descriptor Cache Registers 
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When a selector value is loaded into a segment reg
ister, the associated descriptor cache register is au
tomatically updated with the correct information. In 
Real Address Mode, only the base address is updat
ed directly (by shifting the selector value four bits to 
the left), since the segment maximum limit and attri
butes are fixed in Real Mode. In Protected Mode, 
the base address, the limit, and the attributes are all 
updated per the contents of the segment descriptor 
indexed by the selector. 

Whenever a memory reference occurs, the segment 
descriptor cache register associated with the seg
ment being used is automatically involved with the 
memory reference. The 32-bit segment base ad
dress becomes a component of the linear address 
calculation, the 32-bit limit is used for the limit-check 
operation, and the attributes are checked against 
the type of memory reference requested. 

2_1.2 SYSTEM LEVEL REGISTERS 

The system level registers, Figure 2.4, control opera
tion of the on-chip cache, the on-chip floating point 
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unit (FPU) and the segmentation and paging mecha
nisms. These registers are only accessible to pro
grams running at privilege level 0, the highest privi
lege level. 

The system level registers include three control reg
isters and four segmentation base registers. The 
three control registers are CRO, CR2 and CR3. CR1 
is reserved for future Intel processors. The four seg
mentation base registers are the Global Descriptor 
Table Register (GDTR), the Interrupt Descriptor Ta
ble Register (GDTR), the Local Descriptor Table 
Register (LDTR) and the Task State Segment Regis
ter (TR). 

2.1.2.1 Control Registers 

Control Register 0 (CRO) 

CRO, shown in Figure 2.5, contains 10 bits for con
trol and status purposes. Five of the bits defined in 
the 486 microprocessor's CRO are not contained in 
the 386 microprocessor's CRO. The new bits are CE, 
WT, AM, WP and NE. The function of the bits in CRO 
can be categorized as follows: 

al7 0 

CRO 

PAGE FAULT LINEAR ADDRESS REGISTER CR2 

PAGE DIRECTORY BASE REGISTER I CR3 

SYSTEM ADDRESS REGISTERS 
47 32-BIT LINEAR BASE ADDRESS 16 15 LIMIT 0 

GDTRI 
IDTR I I 

SYSTEM SEGMENT 
REGISTERS DESCRIPTOR REGISTERS (AUTOMATICALLY LOADED) 

~ • ( 
32·BIT LINEAR BASE ADDRESS 20-BIT SEGMENT LIMIT ATTRIBUTES\ 

TR I SELECTOR I 
I I I I II LDTR I SELECTOR I 

Figure 2.4. System Level Registers 

\~---------------r--------------~) 

NOTE: 
;; indicates Intel reserved: Do not define; See Section 2.1.6 

Figure 2.5. Control Register 0 
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486 Microprocessor Operating Modes: PG, PE 
(Table 2.2) 

On-Chip Cache Control Modes: CE, WT (Table 2.3) 

On-Floating Point Unit Control: TS, EM, MP, NE 
(Table 2.4) 

Alignment Check Control: AM 

Supervisor Write Protect: WP 

Table 2.2. Processor Operating Modes 

PG PE Mode 

0 0 REAL Mode. Exact 8086 semantics, 
with 32-bit extensions available with 
prefixes. 

0 1 Protected Mode. Exact 80286 
semantics, plus 32-bit extensions 
through both prefixes and "default" 
prefix setting associated with code 
segment descriptors. Also, a s.ub-
mode is defined to support a virtual 
8086 within the context of the 
extended 80286 protection model. 

1 0 UNDEFINED. Loading CRO with this 
combination of PG and PE bits will 
raise a GP fault with error code O. 

1 1 Paged Protected Mode. All the 
facilities of Protected mode, with 
paging enabled underneath 
segmentation. 

Table 2.3. On-Chip Cache Control Modes 

CE WT Operating Mode 

0 0 Cache fills disabled, write-through and 
invalidates disabled. 

0 1 Cache fills disabled, write-through and 
invalidates enabled. 

1 0 INVALID. If CRO is loaded with this 
configuration of bits, a GP fault with 
error code is raised. 

1 1 Cache fills enabled, write-through and 
invalidates enabled. 

Table 2.4. On-Chip Floating Point Unit Control 

CROBIT Instruction Type 

EM TS MP Floating-Point Wait 

0 0 0 Execute Execute 
0 0 1 Execute Execute 
0 1 0 Trap? Execute 
0 1 1 Trap? Trap? 
1 0 0 Trap? Execute 
1 0 1 Trap? Execute 
1 1 0 Trap? Execute 
1 1 1 Trap? Trap? 
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The low-order 16 bits of CRO are also known as the 
Machine Status Word (MSW), for compatibility with 
the 80286 protected mode. LMSW and SMSW (load 
and store MSW) instructions are taken as special 
aliases of the load and store CRO operations, where 
only the low-order 16 bits of CRO are involved. The 
LMSW and SMSW instructions in the 486 microoroc
essor work in an identical fashion to the LMSW and 
SMSW instructions in the 80286 (i.e., they only oper
ate on the low-order 16 bits of CRO and ignores the 
new bits). New 486 microprocessor operating sys
tems should use the MOV CRO, Reg instruction. 

The defined CRO bits are described below. 

PG (Paging Enable, bit 31) 

The PG bit is used to indicate whether paging is 
enabled (PG = 1) or disabled (PG = 0). See Ta
ble 2.2. 

CE (Cache Enable, bit 30) 

The CE bit is used to enable the on-chip cache. 
When CE = 0, the cache will not be filled on 
cache misses. When CE = 1, cache fills may be 
performed on misses. See Table 2.3. 

The state of the CE bit, the cache enable input 
pin (KEN #), and the relevant page cache dis
able (PC D) bit determine if a line read in re
sponse to a cache miss will be installed in the 
cache. A line is installed in the cache only if 
CE = 1 and KEN # and PCD are both zero. The 
relevant PCD bit comes from either the page 
table entry, page directory entry or control reg
ister 3. Refer to Section 5.6 for more details on 
page cacheability. 

CE is set to zero after RESET for compatibility 
with the 386 microprocessor. 

WT (Writes Transparent, bit 29) 

The WT bit enables on-chip cache write
throughs and write-invalidate cycles (WT= 1). 
When WT= 1, all writes, including cache hits, 
are sent out to the pins. Invalidate cycles are 
enabled when WT = 1. During an invalidate cy
cle a line will be removed from the cache if the 
invalidate address hits in the cache. See Table 
2.3. 

When WT = 0, write-throughs and write-invali
date cycles are disabled. A write will not be sent 
to the pins if the write hits in the cache. With 
WT = 0 the only write cycles that reach the ex
ternal bus are cache misses. Write hits with 
WT=O will never update main memory. Invali
date cycles are ignored when WT = o. 

AM (Alignment Mask, bit 18) 

The AM bit controls whether the alignment 
check (AG) bit in the flag register (EFLAGS) can 
allow an alignment fault. AM = 0 disables the 
AC bit. AM = 1 enables the AC bit. AM = 0 is the 
386 microprocessor compatible mode. 
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386 microprocessor software may load incor
rect data into the AC bit in the EFLAGS register. 
Setting AM = 0 will prevent AC faults from oc
curring before the 486 microprocessor has cre
ated the AC interrupt service routine. 

WP (Write Protect, bit 16) 

WP protects read-only pages from supervisor 
write access. The 386 microprocessor allows a 
read-only page to be written from privilege lev
els 0-2. The 486 microprocessor is compatible 
with the 386 microprocessor when WP = O. 
WP = 1 forces a fault on a write to a read-only 
page from any privilege level. Operating sys
tems with Copy-on-Write features can be sup
ported with the WP bit. Refer to Section 4.5.3 
for further details on use of the WP bit. 

NE (Numerics Exception, bit 5) 

The NE bit controls whether unmasked floating 
point exceptions (UFPE) are handled through 
interrupt vector 16 (NE = 1) or through an exter
nal interrupt (NE = 0). NE = 0 (default at reset) 
supports the DOS operating system error re
porting scheme from the 8087, 80287 and 387 
math coprocessor. In DOS systems, math co
processor errors are reported via external inter
rupt vector 13. DOS uses interrupt vector 16 for 
an operating system call. Refer to Sections 
6.2.13 and 7.2.14 for more information on float
ing pOint error reporting. 

For any UFPE the floating point error output pin 
(FERR#) will be driven active. 

For NE = 0, the 486 microprocessor works in 
conjunction with the ignore numeric error input 
(IGNNE#) and the FERR# output pins. When a 
UFPE occurs and the IGNNE# input is inactive, 
the 486 microprocessor freezes immediately 
before executing the next floating point instruc
tion. An external interrupt controller will supply 
an interrupt vector when FERR # is driven ac
tive. The UFPE is ignored if IGNNE# is active 
and floating point execution continues. 

NOTE: 

The freeze does not take place if the next in
struction is one of the control instructions 
FNCLEX, FNINIT, FNSAVE, FNSTENV, 
FNSTCW, FNSTSW, FNSTSW AX, FNENI, 
FNDISI and FNSETPM. The freeze does occur 
if the next instruction is WAIT. 

For NE = 1, any UFPE will result in a software 
interrupt 16, immediately before executing the 
next non-control floating point or WAIT instruc
tion. The ignore numeric error input (IGNNE#) 
signal will be ignored. 
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TS (Task Switched, bit 3) 

The TS bit is set whenever a task switch opera
tion is performed. Execution of a floating point 
instruction with TS = 1 will cause a device not 
available (DNA) fault (trap vector 7). If TS= 1 
and MP = 1 (monitor coprocessor in CRO) a 
WAIT instruction will cause a DNA fault. See 
Table 2.4. 

EM (Emulate Coprocessor, bit 2) 

The EM bit determines whether floating point 
instructions are trapped (EM = 1) or executed. If 
EM = 1, all floating point instructions will cause 
fault 7. 

NOTE: 
WAIT instructions are not affected by the state 
of EM. See Table 2.4. 

MP (Monitor Coprocessor, bit 1) 

The MP bit is used in conjunction with the TS bit 
to determine if WAIT instructions should trap. If 
MP=1 and TS=1, WAIT instructions cause 
fault 7. Refer to Table 2.4. The TS bit is set to 1 
on task switches by the 486 microprocessor. 
Floating point instructions are not affected by 
the state of the MP bit. It is recommended that 
the MP bit be set to one for the normal opera
tion of the 486 microprocessor. 

PE (Protection Enable, bit 0) 

The PE bit enables the segment based protec
tion mechanism. If PE = 1 protection is enabled. 
When PE = 0 the 486 microprocessor operates 
in REAL mode, with segment based protection 
disabled, and addresses formed as in an 8086. 
Refer to Table 2.2. 

All new CRO bits added to the 386 and 486 micro
processors, except for ET and NE, are upwards 
compatible with the 80286 because they are in reg
ister bits not defined in the 80286. For strict compati
bility with the 80286, the load machine status word 
(LMSW) instruction is defined to not change the ET 
or NE bits. 

Control Register 1 (CR1) 

CR1 is reserved for use in future Intel microproces
sors. 

Control Register 2 (CR2) 

CR2, shown in Figure 2.6, holds the 32-bit linear ad
dress that caused the last page fault detected. The 
error code pushed onto the page fault handler's 
stack when it is invoked provides additional status 
information on this page fault. 
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31 0 

~I ___________________________ P_A_G_E_F_A_U_LT __ R_EG __ IS_T_E_R __________________________ --"ICR2 

31 4 3 o 

PAGE DIRECTORY BASE REGISTER CR3 

NOTE: 
, I indicates Intel reserved: Do not define; See Section 2.1.6. 

Figure 2.6. Control Registers 2 and 3 

Control Register 3 (CR3) 

CR3, shown in Figure 2.6, contains the physical 
base address of the page directory table. The 486 
microprocessor page directory is always page 
aligned (4 Kbyte-aligned). This alignment is enforced 
by only storing bits 20-31 in CR3. 

In the 486 microprocessor CR3 contains two new 
bits, page write-through (PWT) (bit 3) and page 
cache disable (PCD) (bit 4). The page table entry 
(PTE) and page directory entry (PDE) also contain 
PWT and PCD bits. PWT and PCD control page 
cacheability. When a page is accessed in external 
memory, the state of PWT and PCD are driven out 
on the PWT and PCD pins. The source of PWT and 
PCD can be CR3, the PTE or the PDE. PWT and 
PCD are sourced from CR3 under two conditions: 
when paging is disabled (PG = 0 in CRO) or when the 
PDE is being updated. 

A task switch through a task state segment (TSS) 
which changes the values in CR3, or an explicit load 
into CR3 with any value, will invalidate all cached 
page table entries in the translation lookaside buffer 
(TLB). If the value in CR3 does not change during 
the task switch,the page table entries in the TLB are 
not flushed. 

The page directory base address in CR3 is a physi
cal address. The. page directory can be paged out 
while its associated task is suspended, but the oper
ating system must ensure that the page directory is 
resident in physical memory before the task is dis
patched. The entry in the TSS for CR3 has a physi
cal address, with no provision for a present bit. This 
means that the page directory for a task must be 
resident in physical memory. The CR3 image in a 
TSS must point to this area, before the task can be 
dispatched through its TSS. 
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2.1.2.2 System Address Registers 

Four special registers are defined to reference the 
tables or segments supported by the 80286, 386 
and 486 microprocessor protection model. These ta
bles or segments are: 

GDT (Global Descriptor Table) 
IDT (Interrupt Descriptor Table) 
LDT (Local Descriptor Table) 
TSS (Task State Segment) 

The addresses of these tables and segments are 
stored in special registers, the System Address and 
System Segment Registers, illustrated in Figure 2.4. 
These registers are named GDTR, IDTR, LDTR and 
TR respectively. Section 4, Protected Mode Archi
tecture, describes the use of these registers. 

System Address Registers: GDTR and IDTR 

The GDTR and IDTR hold the 32-bit linear base ad
dress and 16-bit limit of the GDT and IDT, respec
tively. 

Since the GDT and IDT segments are global to all 
tasks in the system, the GDT and IDT are defined by 
32-bit linear addresses (subject to page translation if 
paging is enabled) and 16-bit limit values. 

System Segment Registers: LDTR and TR 

The LDTR and TR hold the 16-bit selector for the 
LDT descriptor and the TSS descriptor, respectively. 

Since the LDT and TSS segments are task specific 
segments, the LDT and TSS are defined by selector 
values stored in the system segment registers. 

NOTE: 
A programmer-invisible segment descriptor register 
is associated with each system segment register. 
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2.1.3 FLOATING POINT REGISTERS 

Figure 2.7 shows the floating point register set. The 
on-chip FPU contains eight data registers, a tag 
word, a control register, a status register, an instruc-. 
tion pointer and a data pointer. 

RO 

R1 

R2 

R3 

R4 

R5 

R6 

R7 

79 78 64 

Sign Exponent 

15 0 

Control Register 

Status Register 

Tag Word 

63 

47 

Tag 
Field 

0 1 0 
~ 

Significand e--
-
-
-

-
-
I-

L--

0 

Instruction Pointer 

Data Pointer I 

Figure 2.7. Floating Point Registers 

The operation of the 486 microprocessors on-chip 
floating point unit is exactly the same as the 387 
math coprocessor. Software written for the 387 
math coprocessor will run on the on-chip floating 
point unit (FPU) without any modifications. 

2.1.3.1 Data Registers 

Floating point computations use the 486 microproc
essor's FPU data registers. These eight 80-bit regis
ters provide the equivalent capacity of twenty 32-bit 
registers. Each of the eight data registers is divided 

15 

TAG (7) TAG (6) TAG (5) TAG (4) 

NOTE: 

into "fields" corresponding to the FPU's extended
precision data type. 

The FPU's register set can be accessed either as a 
stack, with instructions operating on the top one or 
two stack elements, or as a fixed register set, with 
instructions operating on explicitly designated regis
ters. The TOP field in the status word identifies the 
current top-of-stack register. A "push" operation 
decrements TOP by one and loads a value into the 
new top register. A "pop" operation stores the value 
from the current top register and then increments 
TOP by one. Like other 486 microprocessor stacks 
in memory, the FPU register stack grows "down" 
toward lower-addressed registers. 

Instructions may address the data registers either 
implicitly or explicitly. Many instructions operate on 
the register at the TOP of the stack. These instruc
tions implicitly address the register at which TOP 
points. Other instructions allow the programmer to 
explicitly specify which register to use. This explicit 
register addressing is also relative to TOP. 

2.1.3.2 Tag Word 

The tag word marks the content of each numeric 
data register, as shown in Figure 2.8. Each two-bit 
tag represents one of the eight data registers. The 
principal function of the tag word is to optimize the 
FPUs performance and stack handling by making it 
possible to distinguish between empty and nonemp
ty register locations. It also enables exception han
dlers to check the contents of a stack location with
out the need to perform complex decoding of the 
actual data. 

2.1.3.3 Status Word 

The 16-bit status word reflects the overall state of 
the FPU. The status word is shown in Figure 2.9 and 
is located in the status register. 

o 
TAG (3) TAG (2) TAG (1) TAG (0) 

The index i of tag (i) is not top-relative. A program typically uses the "top" field of Status Word to determine which tag (i) 
field refers to logical top of stack. 
TAG VALUES: 

00 = Valid 
01 = Zero 
10 = QNaN, SNaN, Infinity, Denormal and Unsupported Formats 
11 = Empty 

Figure 2.8. FPU Tag Word 
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.-------------------------------------BUSY 

r--r-""T""--------------------------- TOP OF STACK POINTER 

.-+-++--r---,--,--------------------- CONDITION CODE 

ERROR SUMMARY STATUS __________ --.J 

STACK FLAG ---------------' 

EXCEPTION FLAGS: 
PRECISION ------------------' 

UNDERFLOW -------------------' 
OVERFLOW ----------------------' 

ZERO DIVIDE ______________________ --.J 

DENORMALIZED OPERAND _________________________ ..J 

o 

INVALID OPERATION -----------------------------' 

ES is set if any unmasked exception bit is set; cleared otherwise. 
See Table 2.5 for interpretation of condition code. 
TOP values: 

000 = Register 0 is Top of Stack 
001 = Register 1 is Top of Stack . 
111 = Register 7 is Top of Stack 

For definitions of exceptions, refer to the Section entitled 
"Exception Handling". 

Figure 2.9. FPU Status Word 

240440-7 

The B bit (Busy, bit 15) is included for 8087 compati
bility. The B bit reflects the contents of the ES bit (bit 
7 of the status word). 

The four numeric condition code bits, CO-C3, are 
similar to the flags in EFLAGS. Instructions that per
form arithmetic operations update CO-C3 to reflect 
the outcome. The effects of these instructions on 
the condition codes are summarized in Tables 2.5 
through 2.8. 

Bits 13-11 (TOP) point to the FPU register that is 
the current top-of-stack. 

28 



inter i486™ MICROPROCESSOR 

Table 2.5. FPU Condition Code Interpretation 

Instruction CO(S) I C3(Z) C1 (A) C2 (C) 

FPREM, FPREM1 Three least significant bits 
Reduction 

(see Table 2.3) of quotient 
0= complete 

02 00 01 
orO/U# 1 = incomplete 

FCOM, FCOMP, 
FCOMPP, FTST, Result of comparison 

Zero 
Operand is not 

FUCOM, FUCOMP, (see Table 2.7) 
orO/U# 

comparable 
FUCOMPP, FICOM, (Table 2.7) 
FICOMP 

FXAM Operand class Sign Operand class 
(see Table 2.8) orO/U# (Table 2.8) 

FCHS, FABS, FXCH, 
FINCTOP, FDECTOP, 
Constant loads, 

UNDEFINED 
Zero 

UNDEFINED 
FXTRACT, FLD, orO/U# 
FILD, FBLD, 
FSTP (ext real) 

FIST, FBSTP, 
FRNDINT, FST, 
FSTP, FADD, FMUL, 
FDIV, FDIVR, 

UNDEFINED 
Roundup 

UNDEFINED 
FSUB, FSUBR, orO/U# 
FSCALE, FSORT, 
FPATAN, F2XM1, 
FYL2X, FYL2XP1 

FPTAN, FSIN Roundup Reduction 
FCOS, FSINCOS UNDEFINED orO/U#, 0= complete 

undefined 1 = incomplete 
ifC2 = 1 

FLDENV, FRSTOR Each bit loaded from memory 

FLDCW, FSTENV, 
FSTCW, FSTSW, UNDEFINED 
FCLEX, FIN IT, 
FSAVE 

O/U# When both IE and SF bits of status word are set, indicating a stack exception, this bit 
distinguishes between stack overflow (C1 = 1) and underflow (C1 == 0). 

Reduction If FPREM or FPREM1 produces a remainder that is less than the modulus, reduction is 
complete. When reduction is incomplete the value at the top of the stack is a partial 
remainder, which can be used as input to further reduction. For FPTAN, FSIN, FCOS, and 
FSINCOS, the reduction bit is set if the operand at the top of the stack is too large. In this 
case the original operand remains at the top of the stack. 

Roundup When the PE bit of the status word is set, this bit indicates whether the last rounding in the 
instruction was upward. 

UNDEFINED Do not rely on finding any specific value in these bits. 
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Table 2.6. Condition Code Interpretation after FPREM and FPREM11nstructions 

Condition Code 
Interpretation after FPREM and FPREM1 

C2 C3 C1 CO 

Incomplete Reduction: 
1 X X X further interaction required 

for complete reduction 

01 oa 02 o MOD8 

a a a a 
a 1 a 1 

Complete Reduction: 
1 a a 2 a 
1 1 a 3 

ca, C3, C1 contain three least 

a a 1 4 
significant bits of quotient 

a 1 1 5 
1 a 1 6 
1 1 1 7 

Table 2.7. Condition Code Resulting from Comparison 

Order C3 C2 CO 

TOP> Operand a a a 
TOP < Operand a a 1 
TOP = Operand 1 a a 
Unordered 1 1 1 

Table 2.8. Condition Code Defining Operand Class 

C3 C2 C1 CO Value at TOP 

a a a a + Unsupported 
a a a 1 + NaN 
a a 1 a - Unsupported 
a a 1 1 - NaN 
a 1 a a + Normal 
a 1 a 1 + Infinity 
0 1 1 a - Normal 
a 1 1 1 - Infinity 
1 a a a +a 
1 a a 1 + Empty 
1 a 1 a -a 
1 a 1 1 - Empty 
1 1 a a + Denormal 
1 1 1 a - Denormal 
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Bit 7 is the error summary (ES) status bit. The ES bit 
is set if any unmasked exception bit (bits 0-5 in the 
status word) is set; ES is clear otherwise. The 
FERR # (floating point error) signal is asserted when 
ES is set. 

Bit 6 is the stack flag (SF). This bit is used to distin
guish invalid operations due to stack overflow or un
derflow. When SF is set, bit 9 (C1) distinguishes be
tween stack overflow (C1 =1) and underflow 
(C1 =0). 

Table 2.9 shows the six exception flags in bits 0-5 
of the status word. Bits 0-5 are set to indicate that 
the FPU has detected an exception while executing 
an instruction. 

The six exception flags in the status word can be 
individually masked by mask bits in the FPU control 
word. Table 2.9 lists the exception conditions, and 
their causes in order of precedence. Table 2.9 also 
shows the action taken by the FPU if the corre
sponding exception flag is masked. 

An exception that is not masked by the control word 
will cause three things to happen: the corresponding 
exception flag in the status word will be set, the ES 
bit in the status word will be set and the FERR # 
output signal will be asserted. When the 486 micro
processor attempts to execute another floating point 
or WAIT instruction, exception 16 occurs or an exter
nal interrupt happens if the NE = 1 in control register 

O. The exception condition must be resolved via an 
interrupt service routine. The FPU saves the address 
of the floating point instruction that caused the ex
ception and the address of any memory operand re
quired by that instruction in the instruction and data 
pointers (see Section 2.1.3.4). 

Note that when a new value is loaded into the status 
word by the FLDENV (load environment) or 
FRSTOR (restore state) instruction, the value of ES 
(bit 7) and its reflection in the B bit (bit 15) are not 
derived from the values loaded from memory. The 
values of ES and B are dependent upon the values 
of the exception flags in the status word and their 
corresponding masks in the control word. If ES is set 
in such a case, the FERR# output of the 486 micro
processor is activated immediately. 

2.1.3.4 Instruction and Data Pointers 

Because the FPU operates in parallel with the ALU 
(in the 486 microprocessor the arithmetic and logic 
unit (ALU) consists of the base architecture regis
ters), any errors detected by the FPU may be report
ed after the ALU has executed the floating point in
struction that caused it. To allow identification of the 
failing numeric instruction, the 486 microprocessor 
contains two pointer registers that supply the ad
dress of the failing numeric instruction and the ad
dress of its numeric memory operand (if appropri
ate). 

Table 2.9. FPU Exceptions 

Exception Cause 
Default Action 

(if exception is masked) 

Invalid Operation on a signaling NaN, unsupported format, Result is a quiet NaN, integer 
Operation indeterminate form (0* 00,0/0, (+ 00) + (- 00), etc.), or indefinite, or BCD indefinite 

stack overflow/underflow (SF is also set). 

Denormalized At least one of the operands is denormalized, Le., it has Normal processing 
Operand the smallest exponent but a nonzero significand. continues 

Zero Divisor The divisor is zero while the dividend is a noninfinite, Result is 00 
nonzero number. 

Overflow The result is too large in magnitude to fit in the specified Result is largest finite value 
format. or 00 

Underflow The true result is nonzero but too small to be Result is denormalized or 
represented in the specified format, and, if underflow zero 
exception is masked, denormalization causes loss of 
accuracy. 

Inexact The true result is not exactly representable in the Normal processing 
Result specified format (e.g., 1/3); the result is rounded continues 
(Precision) according to the rounding mode. 
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The instruction and data pointers are provided for 
user-written error handlers. These registers are ac
cessed by the FLDENV (load environment), 
FSTENV (store environment), FSAVE (save state) 
and FRSTOR (restore state) instructions. Whenever 
the 486 microprocessor decodes a new floating 
point instruction, it saves the instruction (including 
any prefixes that may be present), the address of 
the operand (if present) and the opcode. 

The instruction and data pointers appear in one of 
four formats depending on the operating mode of 
the 486 microprocessor (protected mode or real-ad-

dress mode) and depending on the operand-size at
tribute in effect (32-bit operand or 16-bit operand). 
When the 486 microprocessor is in the virtual-86 
mode, the real address mode formats are used. The 
four formats are shown in Figures 2.10-2.13. The 
floating point instructions FLDENV, FSTENV, 
FSAVE and FRSTOR are used to transfer these val
ues to and from memory. Note that the value of the 
data pointer is undefined if the prior floating point 
instruction did not have a memory operand. 

NOTE: 
The operand size attribute is the D bit in a segment 
descriptor. 

32-BIT PROTECTED MODE FORMAT 
31 23 15 7 0 

RESERVED CONTROL WORD 0 

RESERVED STATUS WORD 4 

RESERVED TAG WORD 8 

IPOFFSET C 

00000 I OPCODE 10 .. 0 CSSELECTOR 10 

DATA OPERAND OFFSET 14 

RESERVED OPERAND SELECTOR 18 

Figure 2.10. Protected Mode FPU Instruction and Data Pointer Image in Memory, 32-8it Format 

32-BIT REAL-ADDRESS MODE FORMAT 
31 23 15 7 0 

RESERVED CONTROL WORD 0 

RESERVED STATUS WORD 4 

RESERVED TAG WORD 8 

RESERVED INSTRUCTION POINTER 15 .. 0 C 

0000 I INSTRUCTION POINTER 31 .. 16 I o I OPCODE 10 .. 0 10 

RESERVED OPERAND POINTER 15 .. 0 14 

0000 I OPERAND POINTER 31 .. 16 I 0000 00000000 18 

Figure 2.11. Real Mode FPU Instruction and Data Pointer Image in Memory, 32-8it Format 
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16-BIT PROTECTED MODE FORMAT 
15 7 0 

CONTROL WORD 

STATUS WORD 

TAG WORD 

IPOFFSET 

CSSELECTOR 

OPERAND OFFSET 

OPERAND SELECTOR 

Figure 2.12. Protected Mode FPU 
Instruction and Data Pointer 

Image in Memory, 16-Bit Format 

2.1.3.5 FPU Control Word 

o 

2 

4 

6 

B 

A 

C 

15 

16-BIT REAL-ADDRESS MODE AND 
VIRTUAL-BOB6 MODE FORMAT 

7 

CONTROL WORD 

STATUS WORD 

TAG WORD 

INSTRUCTION POINTER 15 .. 0 

IP19.16 101 OPCODE 10 .. 0 

OPERAND POINTER 15 .. 0 

o 

DP 19.16 1 0 1 0 0 0 0 0 0 0 0 000 

Figure 2.13. Real Mode FPU 
Instruction and Data Pointer 

Image in Memory, 16·Bit Format 

o 

2 

4 

6 

B 

A 

C 

The FPU provides several processing options that are selected by loading a control word from memory into 
the control register. Figure 2.14 shows the format and encoding of fields in the control word. 

5 117 0 

RESERVED 

RESERVED" 
ROUNDING CONTROL 
PRECISION CONTROL 

I«xlxl + I + l<xl:I~I~I~I~I~1 
RESERVED 

EXC EPTION MASKS: 

PRECISION 

U NDERFLOW 
OVERFLOW 
ERO DIVIDE 
D OPERAND 

Z 
DE NORMALIZE 

INVALID OPERATION 

PreCision Control 
00-24 bits (single precision) 
01-(reserved) 
10-53 bits (double precision) 
11-64 bits (extended precision) 

" "0" AFTER RESET OR FIN IT; 
CHANGEABLE UPON LOADING THE 
CONTROL WORD (CW). PROGRAMS 
MUST IGNORE THIS BIT. 

Rounding Control 
OO-Round to nearest or even 
01-Round down (toward - 00) 
10-Round up (toward + 00) 
11-Chop (truncate toward zero) 

240440-8 

Figure 2.14_ FPU Control Word 
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The low-order byte of the FPU control word config
ures the FPU error and exception masking. Bits 0-5 
of the control word contain individual masks for each 
of the six exceptions that the FPU recognizes. 

The high-order byte of the control word configures 
the FPU operating mode, including precision and 
rounding. 

RC (Rounding Control, bits 10-11) 

The RC bits provide for directed rounding and 
true chop, as well as the unbiased round to 
nearest even mode specified in the IEEE stan
dard. Rounding control affects only those in
structions. that perform rounding at the end of 
the operation (and thus can generate a preci
sion exception); namely, FST, FSTP, FIST, all 
arithmetic instructions (except FPREM, 
FPREM1, FXTRACT, FABS and FCHS), and all 
transcendental instructions. 

PC (Precision Control, bits 8-9) 

The PC bits can be used to set the FPU internal 
operating precision of the significand at less 
than the default of 64 bits (extended precision). 
This can be useful in providing compatibility with 
early generation arithmetic processors of small
er precision. PC affects only the instructions 
ADD, SUB, DIV, MUL, and SORT. For all other 
instructions, either the precision is determined 
by the opcode or extended precision is used. 

2.1.4 DEBUG AND TEST REGISTERS 

2.1.4.1 Debug Registers 

The six programmer accessible debug registers, Fig
ure 2.15, provide on-chip support for debugging. De
bug registers DRO-3 specify the four linear break
points. The Debug control register DR?, is used to 
set the breakpoints and the Debug Status Register, 
DR6, displays the current state of the breakpoints. 
The use of the Debug registers is described in Sec
tion 9. 
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Debug Registers 

LINEAR BREAKPOINT ADDRESS 0 DRO 

LINEAR BREAKPOINT ADDRESS 1 DR1 

LINEAR BREAKPOINT ADDRESS 2 DR2 

UNE,ll.R BREAKPOINT ADDRESS 3 DR3 

Intel Reserved Do Not Define DR4 

Intel Reserved Do Not Define DR5 

BREAKPOINT STATUS DR6 

BREAKPOINT CONTROL DR? 

Test Registers 

CACHE TEST DATA TR3 

CACHE TEST STATUS TR4 

CACHE TEST CONTROL TR5 

TLB TEST CONTROL TA6 

TLB TEST STATUS TR? 

TLB = Translation Lookaside Buffer 

Figure 2.15 

2.1.4.2 Test Registers 

The 486 microprocessor contains five test registers. 
The test registers are shown in Figure 2.15. TR6 and 
TR? are used to control the testing of the translation 
lookaside buffer. TR3, TR4 and TR5 are used for 
testing the on-chip cache. The use of the test regis
ters is discussed in Section 8. 

2.1.5 REGISTER ACCESSIBILITY 

There are a few differences regarding the accessibil
ity of the registers in Real and Protected Mode. Ta
ble 2.10 summarizes these differences. See Section 
4, Protected Mode Architecture for further details. 
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Table 2.10. Register Usage 

Use in Use in Use in 

Register 
Real Mode Protected Mode Virtual 8086 Mode 

Load Store Load Store Load Store 

General Registers Yes Yes Yes Yes Yes Yes 

Segment Register Yes Yes Yes Yes Yes Yes 

Flag Register Yes Yes Yes Yes IOPL IOPL' 

Control Registers Yes Yes PL = 0 PL = 0 No Yes 

GDTR Yes Yes PL = 0 Yes No Yes 

IDTR Yes Yes PL = 0 Yes No Yes 

LDTR No No PL = 0 Yes No No 

TR No No PL = 0 Yes No No 

FPU Data Registers Yes Yes Yes Yes Yes Yes 

FPU Control Registers Yes Yes Yes Yes Yes Yes 

FPU Status Registers Yes Yes Yes Yes Yes Yes 

FPU Instruction Pointer Yes Yes Yes Yes Yes Yes 

FPU Data Pointer Yes Yes Yes Yes Yes Yes 

Debug Registers Yes Yes PL = 0 PL = 0 No No 

Test Registers Yes Yes PL = 0 PL = 0 No No 

NOTES: 
PL = 0: The registers can be accessed only when the current privilege level is zero. 
*IOPL: The PUSHF and POPF instructions are made I/O Privilege Level sensitive in Virtual 86 Mode. 

2.1.6 COMPATIBILITY 

VERY IMPORTANT NOTE: 
COMPATIBILITY WITH FUTURE PROCESSORS 

In the preceding register descriptions, note cer
tain 486 Microprocessor register bits are Intel re
served. When reserved bits are called out, treat 
them as fully undefined. This is essential for 
your software compatibility with future proces
sors! Follow the guidelines below: 

1) Do not depend on the states of any unde
fined bits when testing the values of defined 
register bits. Mask them out when testing. 

2) Do not depend on the states of any unde
fined bits when storing them to memory or 
another register. 
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3) Do not depend on the ability to retain infor
mation written into any undefined bits. 

4) When loading registers always load the unde
fined bits as zeros. 

5) However, registers which have been previ
ously stored may be reloaded without mask
ing. 

Depending upon the values of undefined regis~ 
ter bits will make your software dependent upon 
the unspecified 486 Microprocessor handling of 
these bits. Depending on undefined values risks 
making your software incompatible with future 
processors that define usages for the 486 Micro
processor-undefined bits. AVOID ANY SOFT
WARE DEPENDENCE UPON THE STATE OF UN
DEFINED 486 MICROPROCESSOR REGISTER 
BITS. 
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2.2 Instruction Set 

The 486 microprocessor instruction set can be divid
ed into 11 categories of operations: 

Data Transfer 
Arithmetic 
ShifURotate 
String Manipulation 
Bit Manipulation 
Control Transfer 
High Level Language Support 
Operating System Support 
Processor Control 
Floating Point 
Floating Point Control 

The 486 microprocessor instructions are listed in 
Section 10. Note that all floating point unit instruc
tion mnemonics begin with an F. 

All 486 microprocessor instructions operate on ei
ther 0, 1, 2 or 3 operands; where an operand resides 
in a register, in the instruction itself or in memory. 
Most zero operand instructions (e.g., CLI, STI) take 
only one byte. One operand instructions generally 
are two bytes long. The average instruction is 3.2 
bytes long. Since the 486 microprocessor has a 32-
byte instruction queue, an average of 10 instructions 
will be prefetched. The use of two operands permits 
the following types of common instructions: 

Register to Register 
Memory to Register 
Memory to Memory 
Immediate to Register 
Register to Memory 
Immediate to Memory 

The operands can be either 8, 16, or 32 bits long. As 
a general rule, when executing code written for the 
486 or 386 microprocessors (32-bit code), operands 
are 8 or 32 bits; when executing existing 80286 or 
8086 code (16-bit code), operands are 8 or 16 bits. 
Prefixes can be added to all instructions which over
ride the default length of the operands (i.e., use 32-
bit operands for 16-bit code, or 16-bit operands for 
32-bit code). 

2.3 Memory Organization 

Introduction 

Memory on the 486 Microprocessor is divided up 
into 8-bit quantities (bytes), 16-bit quantities (words), 
and 32-bit quantities (dwords). Words are stored in 
two consecutive bytes in memory with the low-order 
byte at the lowest address, the high order byte at the 
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high address. Dwords are stored in four consecutive 
bytes in memory with the low-order byte at the low
est address, the high-order byte at the highest ad
dress. The address of a word or dword is the byte 
address of the low-order byte. 

In addition to these basic data types, the 486 Micro
processor supports two larger units of memory: 
pages and segments. Memory can be divided up 
into one or more variable length segments, which 
can be swapped to disk or shared between pro
grams. Memory can also be organized into one or 
more 4 Kbyte pages. Finally, both segmentation and 
paging can be combined, gaining the advantages of 
both systems. The 486 Microprocessor supports 
both pages and segments in order to provide maxi
mum flexibility to the system designer. Segmentation 
and paging are complementary. Segmentation is 
useful for organizing memory in logical modules, and 
as such is a tool for the application programmer, 
while pages are useful for the system programmer 
for managing the physical memory of a system. 

2.3.1 ADDRESS SPACES 

The 486 Microprocessor has three distinct address 
spaces: logical, linear, and physical. A logical 
address (also known as a virtual address) consists 
of a selector and an offset. A selector is the con
tents of a segment register. An offset is formed by 
summing all of the addressing components (BASE, 
INDEX, DISPLACEMENT) discussed in Section 
2.5.3 Memory Addressing Modes into an effective 
address. Since each task on the 486 Microproces
sor has a maximum of 16K (214 -1) selectors, and 
offsets can be 4 gigabytes, (232 bits) this gives a 
total of 246 bits or 64 terabytes of logical address 
space per task. The programmer sees this virtual 
address space. 

The segmentation unit translates the logical ad
dress space into a 32-bit linear address space. If the 
paging unit is not enabled then the 32-bit linear ad
dress corresponds to the physical address. The 
paging unit translates the linear address space into 
the physical address space. The physical address 
is what appears on the address pins. 

The primary difference between Real Mode and Pro
tected Mode is how the segmentation unit performs 
the translation of the logical address into the linear 
address. In Real Mode, the segmentation unit shifts 
the selector left four bits and adds the result to the 
offset to form the linear address. While in Protected 
Mode every selector has a linear base address as
sociated with it. The linear base address is stored in 
one of two operating system tables (i.e., the Local 
Descriptor Table or Global Descriptor Table). The 
selector's linear base address is added to the offset 
to form the final linear address. 
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EFFECTIVE ADDRESS CALCULATION 

8E3 - 8EO 
A31 - A2 

31 0 

PHYSICAL 
MEMORY 

PHYSICAL 
3 2 0 LOGICAt~O:ESS SEGMENTATION 1-_..:.3:;,.2 ~I PAGING UNIT 

r---.,.-, VIRTUAL ADDRESS UNIT LINEAR (OPTIONAL USE) 

32 

ADDRESS 1-__ ..... ~13i'-::==::::::-_+L ____ ---l ADDRESS 
DESCRIPTOR 

SEGMENT 
REGISTER 

INDEX 

240440-4 

Figure 2.16. Address Translation 

Figure 2.16 shows the relationship between the vari
ous address spaces. 

2.3.2 SEGMENT REGISTER USAGE 

The main data structure used to organize memory is 
the segment. On the 486 Microprocessor, segments 
are variable sized blocks of linear addresses which 
have certain attributes associated with them. There 
are two main types of segments: code and data, the 
segments are of variable size and can be as small 
as 1 byte or as large as 4 gigabytes (232 bytes). 

In order to provide compact instruction encoding, 
and increase processor performance, instructions 
do not need to explicitly specify which segment reg
ister is used. A default segment register is automati
cally chosen according to the rules of Table 2.11 
(Segment Register Selection Rules). In general, data 
references use the selector contained in the OS reg
ister; Stack references use the SS register and In
struction fetches use the CS register. The contents 
of the Instruction Pointer provides the offset. Special 
segment override prefixes allow the ~xplicit u~e o.f ~ 
given segment register, and overnde the ImpliCit 
rules listed in Table 2.11. The override prefixes also 
allow the use of the ES, FS and GS segment regis
ters. 

There are no restrictions regarding the overlapping 
of the base addresses of any segments. Thus, all 6 
segments could have the base address set to zero 
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and create a system with a four gigabyte linear ad
dress space. This creates a system where the virtual 
address space is the same as the linear address 
space. Further details of segmentation are dis
cussed in Section 4.1. 

2.4 1/0 Space 

The 486 Microprocessor has two distinct physical 
address spaces: Memory and I/O. Generally, periph
erals are placed in I/O space although the 486 Mi
croprocessor also supports memory-mapped periph
erals. The I/O space consists of 64 Kbytes, it can be 
divided into 64K 8-bit ports, 32K 16-bit ports, or 16K 
32-bit ports, or any combination of ports which add 
up to less than 64 Kbytes. The 64K I/O ad~ress 
space refers to physical memory rather than linear 
address since I/O instructions do not go through the 
segmentation or paging hardw~re. The MIIC?# pin 
acts as an additional address line thus allOWing the 
system designer to easily determine which address 
space the processor is accessing. 

The I/O ports are .accessed via the IN and OUT I/O 
instructions, with the port address supplied as an 
immediate 8-bit constant in the instruction or in the 
OX register. All 8- and 16-bit port addresses are zero 
extended on the upper address lines. The I/O in
structions cause the M/IO# pin to be driven low. 

I/O port addresses OOF8H through OOFFH are re
served for use by Intel. 
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Table 2.11. Segment Register Selection Rules 

Type of 
Memory Reference 

Code Fetch 

Destination of PUSH, PUSHF, INT, 
C/\LL, PUSHA InstiuctioilS 

Source of POP, POPA, POPF, 
IRET, RET instructions 

Destination of STOS, MOVS, REP 
STOS, REP MOVS Instructions 
(DI is8ase Register) 

Other Data References, with 
Effective Address Using Base 
Register of: 

[EAX] 
[EBX] 
[ECX] 
[EDX] 
[ES!] 
[ED!] 
[EBP] 
[ESP] 

2.5 Addressing Modes 

2.5.1 ADDRESSING MODES OVERVIEW 

The 486 Microprocessor provides a total of 11 ad· 
dressing modes for instructions to specify operands. 
The addressing modes are optimized to allow the 
efficient execution of high level languages such as C 
and FORTRAN, and they cover the vast majority of 
data references needed by high·level languages. 

2.5.2 REGISTER AND IMMEDIATE MODES 

Two of the addressing modes provide for instruc· 
tions that operate on register or immediate oper· 
ands: 

Register Operand Mode: The operand is located in 
one of the 8·, 16· or 32·bit general registers. 

Immediate Operand Mode: The operand is includ· 
ed in the instruction as part of the opcode. 

Implied (Default) Segment Override 
Segment Use Prefixes Possible 
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CS None 

SS None 

SS None 

ES None 

DS 
DS 
DS 
DS 

All 
DS 
DS 
SS 
SS 

2.5.3 32-BIT MEMORY ADDRESSING MODES 

The remaining 9 modes provide a mechanism for 
specifying the effective address of an operand. The 
linear address consists of two components: the seg· 
ment base address and an effective address. The 
effective address is calculated by using combina· 
tions of the following four address elements: 

DISPLACEMENT: An 8·, or 32·bit immediate value, 
following the instruction. 

BASE: The contents of any general purpose regis· 
ter. The base registers are generally used by compil· 
ers to point to the start of the local variable area. 

INDEX: The contents of any general purpose regis· 
ter except for ESP. The index registers are used to 
access the elements of an array, or a string of char· 
acters. 

SCALE: The index register's value can be multiplied 
by a scale factor, either 1, 2, 4 or 8. Scaled index 
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mode is especially useful for accessing arrays or 
structures. 

Combinations of these 4 components make up the 9 
additional addressing modes. There is no perform
ance penalty for using any of these addressing com
binations, since the effective address calculation is 
pipelined with the execution of other instructions. 
The one exception is the simultaneous use of Base 
and Index components which requires one addition
al clock. 

As shown in Figure 2.17, the effective address (EA) 
of an operand is calculated according to the follow
ing formula. 

EA = Base Reg + (Index Reg' Scaling) + Displacement 

Direct Mode: The operand's offset is contained as 
part of the instruction as an 8-, 16- or 32-bit dis
placement. 
EXAMPLE: INC Word PTR [500] 

Register Indirect Mode: A BASE register contains 
the address of the operand. 
EXAMPLE: MOV [ECX], EDX 

SEGMENT REGISTER 

SS 
GS 

FS 
ES 

DS 

EFFECTIVE 
ADDRE SS 

LINEAR 

Based Mode: A BASE register's contents is added 
to a DISPLACEMENT to form the operands offset. 
EXAMPLE: MOV ECX, [EAX + 24] 

Index Mode: An INDEX register's contents is added 
to a DISPLACEMENT to form the operands offset. 
EXAMPLE: ADD EAX, TABLE[ESI] 

Scaled Index Mode: An INDEX register's contents is 
multiplied by a scaling factor which is added to a 
DISPLACEMENT to form the operands offset. 
EXAMPLE: IMUL EBX, TABLE[ESI*4],7 

Based Index Mode: The contents of a BASE register 
is added to the contents of an INDEX register to 
form the effective address of an operand. 
EXAMPLE: MOV EAX, [ESIl [EBX] 

Based Scaled Index Mode: The contents of an IN
DEX register is multiplied by a SCALING factor and 
the result is added to the contents of a BASE regis
ter to obtain the operands offset. 
EXAMPLE: MOV ECX, [EDX*S] [EAX] 

/ 
'\ 

SEGMENT 
LIMIT 

DESCRIPTOR REGISTERS o ADDRESS 

SS 
GS 

FS 
ES 

DS 

ACCESS RIGHTS CS 

LIMIT 

BASE ADDRESS 

• TARGET ADDRESS 

------~ 
SEGMENT BASE ADDRESS 

Figure 2.17. Addressing Mode Calculations 
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./ 

SELECTED 
SEGMENT 

240440-5 
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Based Index Mode with Displacement: The contents 
of an INDEX Register and a BASE register's con
tents and a DISPLACEMENT are all summed to
gether to form the operand offset. 
EXAMPLE: ADD EDX, [ES!] [EBP + OOFFFFFOH] 

Based Scaled Index Mode with Displacement: The 
contents of an iNDEX register are multiplied by a 
SCALING factor, the result is added to the contents 
of a BASE register and a DISPLACEMENT to form 
the operand's offset. 
EXAMPLE: MOV EAX, LOCALTABLE[EDI*4] 
[EBP+80] 

2.5.4 DIFFERENCES BETWEEN 16- AND 32-BIT 
~DDRESSES 

In order to provide software compatibility with the 
80286 and the 8086, the 486 Microprocessor can 
execute 16-bit instructions in Real and Protected 
Modes. The processor determines the size of the 
instructions it is executing by examining the 0 bit in 
the CS segment Descriptor. If the 0 bit is 0 then all 
operand lengths and effective addresses are as
sumed to be 16 bits long. If the 0 bit is 1 then the 
default length for operands and addresses is 32 bits. 
In Real Mode the default size for operands and ad
dresses is 16-bits. 

Regardless of the default precision of the operands 
or addresses, the 486 Microprocessor is able to exe
cute either 16- or 32-bit instructions. This is specified 
via the use of override prefixes. Two prefixes, the 
Operand Size Prefix and the Address Length Pre
fix, override the value of the 0 bit on an individual 
instruction basis. These prefixes are automatically 
added by Intel assemblers. 

Example: The processor is executing in Real Mode 
and the programmer needs to access the EAX regis
ters. The assembler code for this might be MOV 
EAX, 32-bit MEMORYOP, ASM486 Macro Assem
bler automatically determines that an Operand Size 
Prefix is needed and generates it. 

Example: The 0 bit is 0, and the programmer wishes 
to use Scaled Index addressing mode to access an 
array. The Address Length Prefix allows the use of 
MOV OX, TABLE[ESI*2]. The assembler uses an 

Address Length Prefix since, with 0 = 0, the default 
addressing mode is 16-bits. 

Example: The 0 bit is 1, and the program wants to 
store a 16-bit quantity. The Operand Length Prefix is 
used to specify only a 16-bit value; MOV MEM16, 
OX. 

The OPERAND LENGTH and Address Length Pre
fixes can be applied separately or in combination to 
any instruction. The Address Length Prefix does not 
allow addresses over 64 Kbytes to be accessed in 
Real Mode. A memory address which exceeds 
FFFFH will result in a General Protection Fault. An 
Address Length Prefix only allows the use of the ad
ditional 486 Microprocessor addressing modes. 

When executing 32-bit code, the 486 Microproces
sor uses either 8-, or 32-bit displacements, and any 
register can be used as base or index registers. 
When executing 16-bit code, the displacements are 
either 8, or 16 bits, and the base and index register 
conform to the 80286 model. Table 2.12 illustrates 
the differences. 

2.6 Data Formats 

2.6.1 DATA TYPES 

The 486 microprocessor can support a wide-variety 
of data types. In the following descriptions, the on
chip floating point unit (FPU) consists of the floating 
point registers. The central processing unit (CPU) 
consists of the base architecture registers. 

2.6.1.1 Unsigned Data Types 

The FPU does not support unsigned data types. Re
fer to Table 2.13. 

Byte: Unsigned 8-bit quantity 

Word: Unsigned 16-bit quantity 

Dword: Unsigned 32-bit quantity 

The least significant bit (LSB) in a byte is bit 0, and 
the most significant bit is 7. 

Table 2.12. BASE and INDEX Registers for 16- and 32-Bit Addresses 

16-Bit Addressing 32-Bit Addressing 

BASE REGISTER BX,BP Any 32-bit GP Register 
INDEX REGISTER SI,DI Any 32-bit GP Register 

Except ESP 
SCALE FACTOR none 1,2,4,8 
DISPLACEMENT 0,8,16 bits 0,8,32 bits 
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2.6.1.2 Signed Data Types 

All signed data types assume 2's complement nota
tion. The signed data types contain two fields, a sign 
bit and a magnitude. The sign bit is the most signifi
cant bit (MSB). The number is negative if the sign bit 
is 1. If the sign bit is 0, the number is positive. The 
magnitude field consists of the remaining bits in the 
number. Refer to Table 2.13. 

8-bit Integer: Signed 8-bit quantity 

16-bit Integer: Signed 16-bit quantity 

32-bit Integer: Signed 32-bit quantity 

64-bit Integer: Signed 64-bit quantity 

The FPU only supports 16-, 32- and 64-bit integers. 
The CPU only supports 8-, 16- and 32-bit integers. 

2.6.1.3 Floating Point Data Types 

Floating point data type in the 486 microprocessor 
contain three fields, sign, significand and exponent. 
The sign field is one bit and is the MSB of the float
ing point number. The number is negative if the sign 
bit is 1. If the sign bit is 0, the number is positive. The 
significand gives the significant bits of the number. 
The exponent field contains the power of 2 needed 
to scale the significand. Refer to Table 2.13. 

Only the FPU supports floating point data types. 

Single Precision Real: 23-bit significand and 8-
bit exponent. 32 bits total. 

Double Precision Real: 52-bit significand and 11-
bit exponent. 64 bits total. 

Extended Precision Real: 64-bit significand and 15-
bit exponent. 80 bits total. 
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2.6.1.4 BCD Data Types 

The 486 microprocessor supports packed and un
packed binary coded decimal (BCD) data types. A 
packed BCD data type contains two digits per byte, 
the lower digit is in bits 0-3 and the upper digit in 
bits 4-7. An unpacked BCD data type contains 1 
digit per byte stored in bits 0-3. 

The CPU supports a-bit packed and unpacked BCD 
data types. The FPU only supports 80-bit packed 
BCD data types. Refer to Table 2.13. 

2.6.1.5 String Data Types 

A string data type is a contiguous sequence of bits, 
bytes, words or dwords. A string may contain be
tween 1 byte and 4 Gbytes. Refer to Table 2.14. 

String data types are only supported by the CPU. 

Byte String: Contiguous sequence of bytes. 

Word String: Contiguous sequence of words. 

Dword String: Contiguous sequence of dwords. 

Bit String: A set of contiguous bits. In the 486 micro
processor bit strings can be up to 4 gigabits long. 

2.6.1.6 ASCII Data Types 

The 486 microprocessor supports ASCII (American 
Standard Code for Information Interchange) strings 
and can perform arithmetic operations (such as ad
dition and division) on ASCII data. The CPU can only 
operate on ASCII data. Refer to Table 2.14. 
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Table 2.13. i486TM Microprocessor Data Types 
Supported by Supported by 

Base Registers FPU Least Significant Byte 
! ! ! 

Data Format Range Precision 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 01 7 0 

7 0 

Byte X 0-255 8 bits C 
15 0 

Word X OK-64K 16 bits I 

31 0 

Dword X 01-'-41-' 32 bits I 

7 0 

8·Bit Integer X 102 8 bits Two's .. 0= Complement 

Sign Bil i 

15 0 

16-Bit Integer X X 104 16 bits 
Two's 

I I Complement 
Sign Bit i 

31 0 

32-Bit Integer X X 109 32 bits 
Two's I I Complement 

Sign Bit i 

63 0 

64-Bit Integer X 1019 64 bits Two's I I 
Complement 

Sign Bit i 

7 0 

8-Bit Unpacked BCD X 0-9 1 Digit One BCD Digit per Byte I 

7 0 

8-Bit Packed BCD X 0-9 2 Digits Two BCD Digits per Byte I 

79 72 0 

80-Bit Packed BCD X 18 Digits I Ignored I 

i Sign Bit 

31 23 0 

Single Precision Real X 10±38 24 Bits I IB~I Significand 

Sign Bit i 

63 52 0 

Double Precision Real X 10±308 53 Bits I IB::I 
Significand 

Sign B~ i 

79 63 0 

Extended Precision Real X 10±4932 64 Bits I 

Biased 
11 

Slgnlficand 
Exp. 

i SlgnBlt 
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Table 2.14. String and ASCII Data Types 

String Data Types 

Address A+N A+l A 

c:J 17 

1 

017 

0 

01 
Byte String ... 

A+2N+l A+2N A+3 A+2 A+l A 

115 

I 

01 115 

I 

0115 

I 

01 
Word String N ... 1 0 

A+4N+3 A+4N+2 A+4N+l A+4N A+7 A+6 A+5 A+4 A+3 A+2 A+l A 

Dwordl 
i I i 

01 131 

i I i 

0131 

i I i 

01 
N ... 1 0 

String 31 

A + 266,435,455 A - 268,435,456 
.L A+3 A+2 A+l A A-l A-2 A-3 .L 

Bit I 
String 7 017 01 II 17 017 017 017 ... 1 017 017 017 01 II 17 017 01 

i i t t i 
+2,147,483,647 +7 +10 -2,147,483,648 

ASCII Data Types 

ASCII Character D 
2.6.1.7 Pointer Data Types Table 2.15. Pointer Data Types 

A pointer data type contains a value that gives the 
address of a piece of data, The 486 microprocessor 
supports two types of pointers, Refer to Table 2,15, 

48-bit Pointer: 16-bit selector and 32-bit offset 

32-bit Pointer: 32-bit offset 
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Data Format I I I 

48-Bit Pointer 

32-Bit Pointer 

Least Sig Byte 

.L 

I I I I I I 
47 31 0 

I Selector I Offset 

31 0 

I Offset 
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2.6.2 LITTLE ENDIAN vs BIG ENDIAN 
DATA FORMATS 

The 486 microprocessor, as well as all other mem
bers of the 86 architecture use the "little-endian" 
method for storing data types that are larger than 
one byte. Words are stored in two consecutive bytes 
in memory with the low-order byte at the lowest ad
dress and the high order byte at the high address. 
Dwords are stored in four consecutive bytes in mem
ory with the low-order byte at the lowest address 
and the high order byte at the highest address. The 
address of a word or dword data item is the byte 
address of the low-order byte. 

Figure 2.18 illustrates the differences between the 
big-end ian and little-endian formats for dwords. The 
32 bits of data are shown with the low order bit num
bered bit 0 and the high order bit numbered 32. Big
end ian data is stored with the high-order bits at the 
lowest addressed byte. Little-endian data is stored 
with the high-order bits in the highest addressed 
byte. 

The 486 microprocessor has two instructions which 
can convert 16- or 32-bit data between the two byte 
orderings. BSWAP (byte swap) handles four byte 
values and XCHG (exchange) handles two byte val
ues. 

m+3 m+2 m+1 m 
31 24 23 16 15 8 7 0 

Dword In Little-Endian Memory Format 

m m+1 m+2 m+3 
31 24 23 16 15 8 7 0 

Dword in Big-Endian Memory Format 

Figure 2.18. Big vs Little Endian Memory Format 

2.7 Interrupts 

2.7.1 INTERRUPTS AND EXCEPTIONS 

Interrupts and exceptions alter the normal program 
flow, in order to handle external events, to report 
errors or exceptional conditions. The difference be
tween interrupts and exceptions is that interrupts are 
used to handle asynchronous external events while 
exceptions handle instruction faults. Although a pro
gram can generate a software interrupt via an INT N 
instruction, the processor treats software interrupts 
as exceptions. 
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Hardware interrupts occur as the result of an exter
nal event and are classified into two types: maskable 
or non-maskable. Interrupts are serviced after the 
execution of the current instruction. After the inter
rupt handler is finished servicing the interrupt, exe
cution proceeds with the instruction immediately 
after the interrupted instruction. Sections 2.7.3 and 
2.7.4 discuss the differences between Maskable and 
Non-Maskable interrupts. 

Exceptions are classified as faults, traps, or aborts 
depending on the way they are reported, and wheth
er or not restart of the instruction causing the excep
tion is supported. Faults are exceptions that are de
tected and serviced before the execution of the 
faulting instruction. A fault would occur in a virtual 
memory system, when the processor referenced a 
page or a segment which was not present. The oper
ating system would fetch the page or segment from 
disk, and then the 486 Microprocessor would restart 
the instruction. Traps are exceptions that are report
ed immediately after the execution of the instruction 
which caused the problem. User defined interrupts 
are examples of traps. Aborts are exceptions which 
do not permit the precise location of the instruction 
causing the exception to be determined. Aborts are 
used to report severe errors, such as a hardware 
error, or illegal values in system tables. 

Thus, when an interrupt service routine has been 
completed, execution proceeds from the instruction 
immediately following the interrupted instruction. On 
the other hand, the return address from an excep
tion fault routine will always point at the instruction 
causing the exception and include any leading in
struction prefixes. Table 2.16 summarizes the possi
ble interrupts for the 486 Microprocessor and shows 
where the return address points. 

The 486 Microprocessor has the ability to handle up 
to 256 different interrupts/exceptions. In order to 
service the interrupts, a table with up to 256 interrupt 
vectors must be defined. The interrupt vectors are 
simply pointers to the appropriate interrupt service 
routine. In Real Mode (see Section 3.1), the vectors 
are 4 byte quantities, a Code Segment plus a 16-bit 
offset; in Protected Mode, the interrupt vectors are 8 
byte quantities, which are put in an Interrupt Descrip
tor Table (see Section 4.3.3.4). Of the 256 possible 
interrupts, 32 are reserved for use by Intel, the re
maining 224 are free to be used by the system de
signer. 

2.7.2 INTERRUPT PROCESSING 

When an interrupt occurs the following actions hap
pen. First, the current program address and the 
Flags are saved on the stack to allow resumption of 
the interrupted program. Next, an 8-bit vector is sup
plied to the 486 Microprocessor which identifies the 
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2.7.3 MASKABLE INTERRUPT appropriate entry in the interrupt table. The table 
contains the starting address of the interrupt service 
routine. Then, the user supplied interrupt service 
routine is executed. Finally, when an IRET instruC
tion is executed the old processor state is restored 
and program execution resumes at the appropriate 
instruction. 

The 8-bit interrupt vector is supplied to the 486 Mi
croprocessor in several different ways: exceptions 
supply the interrupt vector internally; software INT 
instructions contain or imply the vector; maskable 
hardware interrupts supply the 8-bit vector via the 
interrupt acknowledge bus sequence. Non-Maska
ble hardware interrupts are assigned to interrupt 
vector 2. 

Maskable interrupts are the most common way used 
by the 486 Microprocessor to respond to asynchro
nous external hardware events. A hardware interrupt 
occurs when the INTR is pulled high and the Inter
rupt Flag bit (IF) is enabled. The processor only re
sponds to interrupts between instructions, (REPeat 
String" instructions, have an "interrupt window", be
tween memory moves, which allows interrupts dur
ing long string moves). When an interrupt occurs the 
processor reads an 8-bit vector supplied by the 
hardware which identifies the source of the interrupt, 
(one of 224 user defined interrupts). The exact na
ture of the interrupt sequence is discussed in Sec
tion 7.2.10. 

Table 2.16. Interrupt Vector Assignments 

Instruction Which 
Return Address 

Function 
Interrupt 

Can Cause 
Points to 

Type 
Number 

Exception 
Faulting 

Instruction 

Divide Error 0 DIV,IDIV YES FAULT 

Debug Exception 1 Any Instruction YES TRAP' 

NMllnterrupt 2 INT20rNMI NO NMI 

One Byte Interrupt 3 INT NO TRAP 

Interrupt on Overflow 4 INTO NO TRAP 

Array Bounds Check 5 BOUND YES FAULT 

Invalid OP-Code 6 Any Illegal Instruction YES FAULT 

Device Not Available 7 ESC,WAIT YES FAULT 

Double Fault 8 Any Instruction That Can ABORT 
Generate an Exception 

Intel Reserved 9 

InvalidTSS 10 JMP, CALL, IRET, INT YES FAULT 

Segment Not Present 11 Segment Register Instructions YES FAULT 

Stack Fault 12 Stack References YES FAULT 

General Protection Fault 13 Any Memory Reference YES FAULT 

Page Fault 14 Any Memory Access or Code Fetch YES FAULT 

Intel Reserved 15 

Floating Point Error 16 Floating Point, WAIT YES FAULT 

Alignment Check Interrupt 17 Unaligned Memory Access YES FAULT 

Intel Reserved 18-32 

Two Byte Interrupt 0-255 INTn NO TRAP 

'Some debug exceptions may report both traps on the prevIous Instruction, and faults on the next instruction. 
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The IF bit in the EFLAG registers is reset when an 
interrupt is being serviced. This effectively disables 
servicing additional interrupts during an interrupt 
service routine. However, the IF may be set explicitly 
by the interrupt handler, to allow the nesting of inter
rupts. When an IRET instruction is executed the 
original state of the IF is restored. 

2.7.4 NON-MASKABLE INTERRUPT 

Non-maskable interrupts provide a method of servic
ing very high priority interrupts. A common example 
of the use of a non-maskable interrupt (NMI) would 
be to activate a power failure routine. When the NMI 
input is pulled high it causes an interrupt with an 
internally supplied vector value of 2. Unlike a normal 
hardware interrupt, no interrupt acknowledgment se
quence is performed for an NMI. 

While executing the NMI servicing procedure, the 
486 Microprocessor will not service further NMI re
quests until an interrupt return (IRET) instruction is 
executed or the processor is reset. If NMI occurs 
while currently servicing an NMI, its presence will be 
saved for servicing after executing the first IRET in
struction. The IF bit is cleared at the beginning of an 
NMI interrupt to inhibit further INTR interrupts. 

2.7.5 SOFTWARE INTERRUPTS 

A third type of interrupt/exception for the 486 Micro
processor is the software interrupt. An INT n instruc
tion causes the processor to execute the interrupt 
service routine pointed to by the nth vector in the 
interrupt table. 

A special case of the two byte software interrupt INT 
n is the one byte INT 3, or breakpoint interrupt. By 
inserting this one byte instruction in a program, the 
user can set breakpoints in his program as a debug
ging tool. 

A final type of software interrupt is the single step 
interrupt. It is discussed in Section 9.0. 
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2.7.6 INTERRUPT AND EXCEPTION PRIORITIES 

Interrupts are externally-generated events. Maska
ble Interrupts (on the INTR input) and Non-Maskable 
Interrupts (on the NMI input) are recognized at in
struction boundaries. When NMI and maskable 
INTR are both recognized at the same instruction 
boundary, the 486 Microprocessor invokes the NMI 
service routine first. If, after the NMI service routine 
has been invoked, maskable interrupts are still en
abled, then the 486 Microprocessor will invoke the 
appropriate interrupt service routine. 

Table 2.17a. i486TM Microprocessor Priority for 
Invoking Service Routines in Case of 

Simultaneous External Interrupts 

1. NMI 

2.INTR 

Exceptions are internally-generated events. Excep
tions are detected by the 486 Microprocessor if, in 
the course of executing an instruction, the 486 Mi
croprocessor detects a problematic condition. The 
486 Microprocessor then immediately invokes the 
appropriate exception service routine. The state of 
the 486 Microprocessor is such that the instruction 
causing the exception can be restarted. If the excep
tion service routine has taken care of the problemat
ic condition, the instruction will execute without 
causing the same exception. 

It is possible for a single instruction to generate sev
eral exceptions (for example, transferring a single 
operand could generate two page faults if the oper
and location spans two "not present" pages). How
ever, only one exception is generated upon each at
tempt to execute the instruction. Each exception 
service routine should correct its corresponding ex
ception, and restart the instruction. In this manner, 
exceptions are serviced until the instruction exe
cutes successfully. 

As the 486 Microprocessor executes instructions, it 
follows a consistent cycle in checking for excep
tions, as shown in Table 2.17b. This cycle is repeat
ed as each instruction is executed, and occurs in 
parallel with instruction decoding and execution. 
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Table 2.17b. Sequence of Exception Checking 

Consider the case of the 486 Microprocessor 
having just completed an instruction. It then per
forms the following checks before reaching the 
point where the next instruction is completed: 

1. Check for Exception 1 Traps from the instruc
tion just completed (single-step via Trap Flag, 
or Data Breakpoints set in the Debug Regis
ters). 

2. Check for Exception 1 Faults in the next in
struction (Instruction Execution Breakpoint set 
in the Debug Registers for the next instruc
tion). 

3. Check for external NMI and INTR. 

4. Check for Segmentation Faults that prevented 
fetching the entire next instruction (exceptions 
11 or 13). 

5. Check for Page Faults that prevented fetching 
the entire next instruction (exception 14). 

6. Check for Faults decoding the next instruction 
(exception 6 if illegal opcode; exception 6 if in 
Real Mode or in Virtual 8086 Mode and at
tempting to execute an instruction for Protect
ed Mode only (see Section 4.6.4); or exception 
13 if instruction is longer than 15 bytes, or priv
ilege violation in Protected Mode (i.e., not at 
IOPL or at CPL=O). 

7. If WAIT opcode, check if TS= 1 and MP= 1 
(exception 7 if both are 1). 

8. If opcode for Floating Point Unit, check if 
EM = 1 or TS = 1 (exception 7 if either are 1). 

9. If opcode for Floating Point Unit (FPU), check 
FPU error status (exception 16 if error status is 
asserted). 

10. Check in the following order for each memo
ry reference required by the instruction: 

a. Check for Segmentation Faults that pre
vent transferring the entire memory quanti
ty (exceptions 11, 12, 13). 

b. Check for Page Faults that prevent trans
ferring the entire memory quantity (excep
tion 14). 

NOTE: 
The order stated supports the concept of the 
paging mechanism being "underneath" the seg
mentation mechanism. Therefore, for any given 
code or data reference in memory, segmenta
tion exceptions are generated before paging ex
ceptions are generated. 
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2.7.7 INSTRUCTION RESTART 

The 486 Microprocessor fully supports restarting all 
instructions after faults. If an exception is detected in 
the instruction to be executed (exception categories 
4 through 10 in Table 2.17b), the 486 Microproces
sor invokes the appropriate exception service rou
tine. The 486 Microprocessor is in a state that per
mits restart of the instruction, for all cases but those 
in Table 2.17c. Note that all such cases are easily 
avoided by proper design of the operating system. 

Table 2.17c. Conditions Preventing 
Instruction Restart 

An instruction causes a task switch to a task 
whose Task State Segment is partially "not 
present". (An entirely "not present" TSS is re
startable.) Partially present TSS's can be avoid
ed either by keeping the TSS's of such tasks 
present in memory, or by aligning TSS segments 
to reside entirely within a single 4K page (for TSS 
segments of 4 Kbytes or less). 

NOTE: 
These conditions are avoided by using the oper
ating system designs mentioned in this table. 

2.7.8 DOUBLE FAULT 

A Double Fault (exception 8) results when the proc
essor attempts to invoke an exception service rou
tine for the segment exceptions (10, 11, 12 or 13), 
but in the process of doing .so, detects an exception 
other than a Page Fault (exception 14). 

A Double Fault (exception 8) will also be generated 
when the processor attempts to invoke the Page 
Fault (exception 14) service routine, and detects an 
exception other than a second Page Fault. In any 
functional system, the entire Page Fault service rou
tine must remain "present" in memory. 

When a Double Fault occurs, the 486 Microproces
sor invokes the exception service routine for excep
tion 8. 

2.7.9 FLOATING POINT INTERRUPT VECTORS 

Several interrupt vectors of the 486 microprocessor 
are used to report exceptional conditions while exe
cuting numeric programs in either real or protected 
mode. Table 2.18 shows these interrupts and their 
causes. 
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Table 2.18. Interrupt Vectors Used by FPU 

Interrupt 
Cause of Interrupt 

Number 

7 A Floating Point instruction was encountered when EM or TS of the 486TM processor 
control register zero (CRO) was set. EM = 1 indicates that software emulation of the 
instruction is required. When TS is set, either a Floating Point or WAIT instruction causes 
interrupt 7. This indicates that the current FPU context may not belong to the current task. 

13 The first word or doubleword of a numeric operand is not entirely within the limit of its 
segment. The return address pushed onto the stack of the exception handler points at the 
Floating Point instruction that caused the exception, including any prefixes. The FPU has 
not executed this instruction; the instruction pointer and data pointer register refer to a 
previous, correctly executed instruction. 

16 The previous numerics instruction caused an unmasked exception. The address of the 
faulty instruction and the address of its operand are stored in the instruction pointer and 
data pointer registers. Only Floating Point and WAIT instructions can cause this interrupt. 
The 486TM processor return address pushed onto the stack of the exception handler 
points to a WAIT or Floating Point instruction (including prefixes). This instruction can be 
restarted after clearing the exception condition in the FPU, FNINIT, FNCLEX, FNSTSW, 
FNSTENV, and FNSAVE cannot cause this interrupt. 

3.0 REAL MODE ARCHITECTURE All of the 486 Microprocessor instructions are avail
able in Real Mode (except those instructions listed 
in Section 4.6.4). The default operand size in Real 
Mode is 16 bits, just like the 8086. In order to use the 
32-bit registers and addressing modes, override pre
fixes must be used. In addition, the segment 
size on the 486 Microprocessor in Real Mode is 
64 Kbytes so 32-bit effective addresses must have a 
value less the OOOOFFFFH. The primary purpose of 
Real Mode is to set up the processor for Protected 
Mode Operation. 

3.1 Real Mode Introduction 

When the processor is reset or powered up it is ini· 
tialized in Real Mode. Real Mode has the same base 
architecture as the 8086, but allows access to the 
32·bit register set of the 486 Microprocessor. The 
addressing mechanism, memory size, interrupt han
dling, are all identical to the Real Mode on the 
80286. 

15 0 

MAX LIMIT 
FIXED AT 64K IN 
REAL MODE 

r 
64K 

'--_--1. _ ___ .. 1-___ --+_1....-

SELECTED 
SEGMENT 

SEGMENT BASE 

Figure 3.1. Real Address Mode Addressing 
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The LOCK prefix on the 486 Microprocessor, even in 
Real Mode, is more restrictive than on the 80286. 
This is due to the addition of paging on the 486 Mi
croprocessor in Protected Mode and Virtual 8086 
Mode. Paging makes it impossible to guarantee that 
repeated string instructions can be LOCKed. The 
486 Microprocessor can't require that all pages 
holding the string be physically present in memory. 
Hence, a Page Fault (exception 14) might have to be 
taken during the repeated string instruction. There
fore the LOCK prefix can't be supported during re
peated string instructions. 

These are the only instruction forms where the 
LOCK prefix is legal on the 486 Microprocessor: 

Opcode 
Operands 

(Desl, Source) 

BIT Test and Mem, Reg/immed 
SET/RESET/COMPLEMENT 

XCHG Reg, Mem 
XCHG Mem, Reg 
ADD, OR, ADC, SBB, Mem, Reg/immed 

AND, SUB, XOR 
NOT, NEG, INC, DEC Mem 

An exception 6 will be generated if a LOCK prefix is 
placed before any instruction form or opcode not 
listed above. The LOCK prefix allows indivisible 
read/modify/write operations on memory operands 
using the instructions above. For example, even the 
ADD Reg, Mem is not LOCKable, because the Mem 
operand is not the destination (and therefore no 
memory read/modify/operation is being performed). 

Since, on the 486 Microprocessor, repeated string 
instructions are not LOCKable, it is not possible to 
LOCK the bus for a long period of time. Therefore, 
the LOCK prefix is not IOPL-sensitive on the 486 
Microprocessor. The LOCK prefix can be used at 
any privilege level, but only on the instruction forms 
listed above. 

3.2 Memory Addressing 

In Real Mode the maximum memory size is limited to 
1 megabyte. Thus, only address lines A2-A19 are 
active. (Exception, the high address lines A20-A31 
are high during CS-relative memory cycles until an 
intersegment jump or call is executed (see Section 
2.10». 

Since paging is not allowed in Real Mode the linear 
addresses are the same as physical addresses. 
Physical addresses are formed in Real Mode by 
adding the contents of the appropriate segment reg
ister which is shifted left by four bits to an effective 
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address. This addition results in a physical address 
from OOOOOOOOH to 0010FFEFH. This is compatible 
'with 80286 Real Mode. Since segment registers are 
shifted left by 4 bits this implies that Real Mode seg
ments always start on 16 byte boundaries. 

All segments in Real Mode are exactly 64 Kbytes 
long, and may be read, written, or executed. The 486 
Microprocessor will generate an exception 13 if a 
data operand or instruction fetch occurs past the 
end of a segment (i.e., if an operand has an offset 
greater than FFFFH, for example a word with a low 
byte at FFFFH and the high byte at OOOOH). 

Segments may be overlapped in Real Mode. Thus, if 
a particular segment does not use all 64 Kbytes an
other segment can be overlayed on top of the un
used portion of the previous segment. This allows 
the programmer to minimize the amount of physical 
memory needed for a program. 

3.3 Reserved Locations 

There are two fixed areas in memory which are re
served in Real address mode: system initialization 
area and the interrupt table area. Locations OOOOOH 
through 003FFH are reserved for interrupt vectors. 
Each one of the 256 possible interrupts has a 4-byte 
jump vector reserved for it. Locations FFFFFFFOH 
through FFFFFFFFH are reserved for system initiali
zation. 

3.4 Interrupts 

Many of the exceptions shown in Table 2.16 and 
discussed in Section 2.7 are not applicable to Real 
Mode operation, in particular exceptions 10, 11, 14, 
will not happen in Real Mode. Other exceptions 
have slightly different meanings in Real Mode; Table 
3.1 identifies these exceptions. 

3.5 Shutdown and Halt 

The HL T instruction stops program execution and 
prevents the processor from using the local bus until 
restarted. Either NMI, INTR with interrupts enabled 
(IF= 1), or RESET will force the 486 Microprocessor 
out of halt. If interrupted, the saved CS:IP will point 
to the next instruction after the HL T. 

Shutdown will occur when a severe error is detected 
that prevents further processing. In Real Mode, 
shutdown can occur under two conditions: 

An interrupt or an exception occur (exceptions 8 or 
13) and the interrupt vector is larger than the Inter
rupt Descriptor Table (i.e., there is not an interrupt 
handler for the interrupt). 
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Table 3.1 

Function 
Interrupt 
Number 

Interrupt table limit too small 8 

CS, OS, ES, FS, GS 13 
Segment overrun exception 

SS Segment overrun exception 12 

A CALL, INT or PUSH instruction attempts to wrap 
around the stack segment when SP is not even (Le., 
pushing a value on the stack when SP = 0001 re
sulting in a stack segment greater than FFFFH). 

An NMI input can bring the processor out of shut
down if the Interrupt Descriptor Table limit is large 
enough to contain the NMI interrupt vector (at least 
0017H) and the stack has enough room to contain 
the vector and flag information (i.e., SP is greater 
than 0005H). Otherwise shutdown can only be exit
ed via the RESET input. 

4.0 PROTECTED MODE 
ARCHITECTURE 

4.1 Introduction 

The complete capabilities of the 486 Microprocessor 
are unlocked when the processor operates in Pro
tected Virtual Address Mode (Protected Mode). Pro
tected Mode vastly increases the linear address 
space to four gigabytes (232 bytes) and allows the 
running of virtual memory programs of almost unlim
ited size (64 terabytes or 246 bytes). In addition Pro
tected Mode allows the 486 Microprocessor to run 
all of the existing 8086, 80286 and 386 microproces
sor software, while providing a sophisticated memo
ry management and a hardware-assisted protection 
mechanism. Protected Mode allows the use of addi
tional instructions especially optimized for support
ing multitasking operating systems. The base archi
tecture of the 486 Microprocessor remains the 
same, the registers, instructions, and addressing 

Related Return 
Instructions Address Location 

INT Vector is not Before 
within table limit Instruction 

Word memory reference Before 
beyond offset = FFFFH. Instruction 
An attempt to execute 
past the end of CS segment. 

Stack Reference Before 
beyond offset = FFFFH Instruction 
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modes described in the previous sections are re
tained. The main difference between Protected 
Mode, and Real Mode from a programmer's view is 
the increased address space, and a different ad
dressing mechanism. 

4.2 Addressing Mechanism 

Like Real Mode, Protected Mode uses two compo
nents to form the logical address, a 16-bit selector is 
used to determine the linear base address of a seg
ment, the base address is added to a 32-bit effective 
address to form a 32-bit linear address. The linear 
address is then either used as the 32-bit physical 
address, or if paging is enabled the paging mecha
nism maps the 32-bit linear address into a 32-bit 
physical address. 

The difference between the two modes lies in calcu
lating the base address. In Protected Mode the se
lector is used to specify an index into an operating 
system defined table (see Figure 4.1). The table 
contains the 32-bit base address of a given seg
ment. The physical address is formed by adding the 
base address obtained from the table to the offset. 

Paging provides an additional memory management 
mechanism which operates only in Protected Mode. 
Paging provides a means of managing the very large 
segments of the 486 Microprocessor. As such, pag
ing operates beneath segmentation. The paging 
mechanism translates the protected linear address 
which comes from the segmentation unit into a 
physical address. Figure 4.2 shows the complete 
486 Microprocessor addressing mechanism with 
paging enabled. 
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Figure 4.1. Protected Mode Addressing 
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Figure 4.2. Paging and Segmentation 

4.3 Segmentation 

4.3.1 SEGMENTATION INTRODUCTION 

Segmentation is one method of memory manage
ment. Segmentation provides the basis for protec
tion. Segments are used to encapsulate regions of 
memory which have common attributes. For exam
ple, all of the code of a given program could be con
tained in a segment, or an operating system table 
may reside in a segment. All information about a 
segment is stored in an B byte data structure called 
a descriptor. All of the descriptors in a system are 
contained in tables recognized by hardware. 
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4.3.2 TERMINOLOGY 

The following terms are used throughout the di~cus
sion of descriptors, privilege levels and protection: 

PL: Privilege Level-One of the four hierarchical 
privilege levels. Level 0 is ~h.e most privileg~~ level 
and level 3 is the least priVileged. More priVileged 
levels are numerically smaller than less privileged 
levels. 

RPL: Requestor Privilege Level-The privilege level 
of the original supplier of the selector. RPL is deter
mined by the least two significant bits of a selector. 
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DPL: Descriptor Privilege Level-This is the least 
privileged level at which a task may access that de
scriptor (and the segment associated with that de
scriptor). Descriptor Privilege Level is determined by 
bits 6:5 in the Access Right Byte of a descriptor. 

CPL: Current Privilege Level-The privilege level at 
which a task is currently executing, which equals the 
privilege level of the code segment being executed. 
CPL can also be determined by examining the low
est 2 bits of the CS register, except for conforming 
code segments. 

EPL: Effective Privilege Level-The effective privi
lege level is the least privileged of the RPL and DPL. 
Since smaller privilege level values indicate greater 
privilege, EPL is the numerical maximum of RPL and 
DPL. 

Task: One instance of the execution of a program. 
Tasks are also referred to as processes. 

4.3.3 DESCRIPTOR TABLES 

4.3.3.1 Descriptor Tables Introduction 

The descriptor tables define all of the segments 
which are used in an 486 Microprocessor system. 
There are three types of tables on the 486 Micro
processor which hold descriptors: the Global De
scriptor Table, Local Descriptor Table, and the Inter
rupt Descriptor Table. All of the tables are variable 
length memory arrays. They can range in size be
tween 8 bytes and 64 Kbytes. Each table can hold 
up to 8192 8-byte descriptors. The upper 13 bits of a 
selector are used as an index into the descriptor ta
ble. The tables have registers associated with them 
which hold the 32-bit linear base address, and the 
16-bit limit of each table. 

Each of the tables has a register associated with it, 
the GDTR, LDTR, and the IDTR (see Figure 4.3). 
The LGDT, LLDT, and L1DT instructions, load the 
base and limit of the Global, Local, and Interrupt De
scriptor Tables, respectively, into the appropriate 
register. The SGDT, SLDT, and SlOT store the base 
and limit values. These tables are manipulated by 
the operating system. Therefore, the load descriptor 
table instructions are privileged instructions. 
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Figure 4.3. Descriptor Table Registers 

4.3.3.2 Global Descriptor Table 

The Global Descriptor Table (GDT) contains de
scriptors which are possibly available to all of the 
tasks in a system. The GOT can contain any type of 
segment descriptor except for descriptors which are 
used for servicing interrupts (i.e., interrupt and trap 
descriptors). Every 486 Microprocessor system con
tains a GDT. Generally the GOT contains code and 
data segments used by the operating systems and 
task state segments, and descriptors for the LOTs in 
a system. 

The first slot of the Global Descriptor Table corre
sponds to the null selector and is not used. The null 
selector define~ a null pointer value. 

4.3.3.3 Local Descriptor Table 

LOTs contain descriptors which are associated with 
a given task. Generally, operating systems are de
signed so that each task has a separate LDT. The 
LDT may contain only code, data, stack, task gate, 
and call gate descriptors. LOTs provide a mecha
nism for isolating a given task's code and data seg
ments from the rest of the operating system, while 
the GDT contains descriptors for segments which 
are common to all tasks. A segment cannot be ac
cessed by a task if its segment descriptor does not 
exist in either the current LOT or the GOT. This pro-
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vides both isolation and protection for a task's seg
ments, while still allowing global data to be shared 
among tasks. 

Unlike the 6 byte GOT or lOT registers which contain 
a base address and limit, the visible portion of the 
LOT register contains only a 16-bit selector. This se
lector refers to a Local Descriptor Table descriptor in 
the GOT. 

4.3.3.4 Interrupt Descriptor Table 

The third table needed for 486 Microprocessor sys
tems is the Interrupt Descriptor Table. (See Figure 
4.4.) The lOT contains the descriptors which point to 
the location of up to 256 interrupt service routines. 
The lOT may contain only task gates, interrupt 
gates, and trap gates. The lOT should be at least 
256 bytes in size in order to hold the descriptors for 
the 32 Intel Reserved Interrupts. Every interrupt 
used by a system must have an entry in the lOT. The 
lOT entries are referenced via INT instructions, ex
ternal interrupt vectors, and exceptions. (See Sec
tion 2.7 Interrupts). 

CPU 

I"\,., MEMORY ""'-" 

GATE FOR 
INTERRUPT #n-1 

INTERRUPT 
DESCRIPTOR 
TABLE 
(lOT) 

240440-13 

Figure 4.4. Interrupt Descriptor 
Table Register Use 
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4.3.4 DESCRIPTORS 

4.3.4.1 Descriptor Attribute Bits 

The object to which the segment selector points to 
is called a descriptor. Descriptors are eight byte 
quantities which contain attributes about a given re
gion of linear address space (i.e., a segment). These 
attributes include the 32-bit base linear address of 
the segment, the 20-bit length and granularity of the 
segment, the protection level, read, write or execute 
privileges, the default size of the operands (16-bit or 
32-bit), and the type of segment. All of the attribute 
information about a segment is contained in 12 bits 
in the segment descriptor. Figure 4.5 shows the gen
eral format of a descriptor. All segments on the 486 
Microprocessor have three attribute fields in com
mon: the P bit, the DPL bit, and the S bit. The Pres
ent P bit is 1 if the segment is loaded in physical 
memory, if P = 0 then any attempt to access this 
segment causes a not present exception (exception 
11). The Descriptor Privilege Level DPL is a two-bit 
field which specifies the protection level 0-3 associ
ated with a segment. 

The 486 Microprocessor has two main categories of 
segments: system segments and non-system seg
ments (for code and data). The segment S bit in the 
segment descriptor determines if a given segment is 
a system segment or a code or data segment. If the 
S bit is 1 then the segment is either a code or data 
segment, if it is 0 then the segment is a system seg
ment. 

4.3.4.2 i486TM CPU Code, Data Descriptors 
(S= 1) 

Figure 4.6 shows the general format of a code and 
data descriptor and Table 4.1 illustrates how the bits 
in the Access Rights Byte are interpreted. 
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31 a BYTE 
ADDRESS 

SEGMENT BASE 15 ... a SEGMENT LIMIT 15 ... a a 

BASE31". 24 1 G I D 1 0 I AVL 11~~~~~6 P I DPL I S I TYPE I A I BASE +4 

I I I 
23" .16 

BASE Base Address of the segment 
LIMIT The length of the segment 
P Present Bit 1 = Present a = Not Present 
DPL Descriptor Privilege Level 0-3 
S Segment Descriptor a = System Descriptor 1 = Code or Data Segment Descriptor 
TYPE Type of Segment 
A Accessed Bit 
G Granularity Bit 1 = Segment length is page granular a = Segment length is by1e granular 
D Default Operation Size (recognized in code segment descriptors only) 

1 = 32-bit segment 0= 16-bit segment 
a Bit must be zero (0) for compatibility with future processors 
AVL Available field for user or as 
NOTE: 
In a maximum-size segment (i.e., a segment with G = 1 and segment limit 19 ... 0 = FFFFFH), the lowest 12 bits of the 
segment base should be zero (i.e., segment base 11...000 = OOOH). 

Figure 4.5. Segment Descriptors 

31 0 

SEGMENT BASE 15 ... 0 SEGMENT LIMIT 15 ... 0 0 

LIMIT 
ACCESS BASE 

BASE 31 ... 24 G D 0 AVL 
19 ... 16 

RIGHTS 
23 ... 16 

+4 
BYTE 

DIB 1 = Default Instruction Attributes are 32-Bits 
a = Default Instruction Attributes are 16-Bits 

AVL Available field for user or as 
G Granularity Bit 1 = Segment length is page granular 

a = Segment length is by1e granular 
a Bit must be zero (0) for compatibility with future processors 

Figure 4.6. Segment Descriptors 

54 



inter i486TM MICROPROCESSOR 

Table 4.1. Access Rights Byte Definition for Code and Data Descriptions 

Bit 
Name Function 

Position 

7 Present (P) P = 1 Segment is mapped into physical memory. 
p=o No mapping to physical memory exits, base and limit are 

not used. 
6-5 Descriptor Privilege Segment privilege attribute used in privilege tests. 

Level (DPL) 
4 Segment Descrip· S = 1 Code or Data (includes stacks) segment descriptor. 

tor (S) S=O System Segment Descriptor or Gate Descriptor. 

Type 
Field 
Definition 

3 
2 

1 

Executable (E) 
Expansion Direc· 
tion (ED) 
Writeable (W) 

E ~ 0 D .. ,riptony,e ;, data oegm'"t } If 
ED = 0 Expand up segment, offsets must be :0: limit. Data 
ED = 1 Expand down segment, offsets must be > limit. Segment 
W = 0 Data segment may not be written into. (S = 1, 
W = 1 Data segment may be written into. E = 0) 

3 Executable (E) E = 1 Descriptor type is code segment: 

r 2 Conforming (C) C=1 Code segment may only be executed Code 
when CPL :2: DPL and CPL Segment 
remains unchanged. (S = 1, 

1 Readable (R) R=O Code segment may not be read. E = 1) 
R=1 Code segment may be read. 

0 Accessed (A) A=O Segment has not been accessed. 
A=1 Segment selector has been loaded into segment register 

or used by selector test instructions. 

Code and data segments have several descriptor 
fields in common. The accessed A bit is set whenev
er the processor accesses a descriptor. The A bit is 
used by operating systems to keep usage statistics 
on a given segment. The G bit, or granularity bit, 
specifies if a segment length is byte-granular or 
page-granular. 486 Microprocessor segments can 
be one megabyte long with byte granularity (G = 0) 
or four gigabytes with page granularity (G = 1), (Le., 
220 pages each page is 4 Kbytes in length). The 
granularity is totally unrelated to paging. A 486 Mi
croprocessor system can consist of segments with 
byte granularity, and page granularity, whether or not 
paging is enabled. 

The executable E bit tells if a segment is a code or 
data segment. A code segment (E = 1 , S = 1) may be 
execute-only or execute/read as determined by the 
Read R bit. Code segments are execute only if 
R = 0, and execute/read if R = 1. Code segments 
may never be written into. 

NOTE: 
Code segments may be modified via aliases. Alias
es are write able data segments which occupy the 
same range of linear address space as the code 
segment. 
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The 0 bit indicates the default length for operands 
and effective addresses. If 0 = 1 then 32-bit oper
ands and 32-bit addressing modes are assumed. If 
0=0 then 16-bit operands and 16-bit addressing 
modes are assumed. Therefore all existing 80286 
code segments will execute on the 486 Microproc
essor assuming the 0 bit is set O. 

Another attribute of code segments is determined by 
the conforming C bit. Conforming segments, C = 1, 
can be executed and shared by programs at differ
ent privilege levels. (See Section 4.4 Protection.) 

Segments identified as data segments (E = 0, S = 1) 
are used for two types of 486 Microprocessor seg
ments: stack and data segments. The expansion di
rection (ED) bit specifies if a segment expands 
downward (stack) or upward (data). If a segment is a 
stack segment all offsets must be greater than the 
segment limit. On a data segment all offsets must be 
less than or equal to the limit. In other words, stack 
segments start at the base linear address plus the 
maximum segment limit and grow down to the base 
linear address plus the limit. On the other hand, data 
segments start at the base linear address and ex
pand to the base linear address plus limit. 
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The write W bit controls the ability to write into a 
segment. Data segments are read-only if W = o. The 
stack segment must have W = 1. 

The 8 bit controls the size of the stack pointer regis
ter. If B = 1 , then PUSHes, POPs, and CALLs all use 
the 32-bit ESP register for stack references and as
sume an upper iimit of FFFFFFFFH. If B = 0, stack 
instructions all use the 16-bit SP register and as
sume an upper limit of FFFFH. 

4.3.4.3 System Descriptor Formats 

System segments describe information about oper
ating system tables, tasks, and gates. Figure 4.7 
shows the general format of system segment de
scriptors, and the various types of system segments. 
486 Microprocessor system descriptors contain a 
32-bit base linear address and a 20-bit segment lim
it. 80286 system descriptors have a 24-bit base ad
dress and a 16-bit segment limit. 80286 system de
scriptors are identified by the upper 16 bits being all 
zero. 

4.3.4.4 LDT Descriptors (S = 0, TYPE = 2) 

LDT descriptors (S = 0, TYPE = 2) contain informa
tion about Local Descriptor Tables. LDTs contain a 
table of segment descriptors, unique to a particular 
task. Since the instruction to load the LDTR is only 
available at privilege level 0, the DPL field is ignored. 
LDT descriptors are only allowed in the Global De
scriptor Table (GDT). 

31 16 

SEGMENT BASE 15 ... 0 

BASE31 ... 241 G 1 0 1 0 1 0 11il.~~~6 
Type 

o 
1 
2 
3 
4 
5 
6 
7 

Defines 

Invalid 
Available 80286 TSS 
LDT 
Busy 80286 TSS 
80286 Call Gate 
Task Gate (for 80286 or 486TM CPU Task) 
80286 Interrupt Gate 
80286 Trap Gate 

4.3.4.5 TSS Descriptors (5 = 0, 
TYPE= 1,3,9,8) 

A Task State Segment (TSS) descriptor contains in
formation about the location, size, and privilege level 
of a Task State Segment (TSS). A TSS in turn is a 
special fixed format segment which contains all the 
state information for a task and a linkage field to 
permit nesting tasks. The TYPE field is used to indi
cate whether the task is currently BUSY (Le., on a 
chain of active tasks) or the TSS is available. The 
TYPE field also indicates if the segment contains a 
80286 or a 486 Microprocessor TSS. The Task Reg
ister (TR) contains the selector which points to the 
current Task State Segment. 

4.3.4.6 Gate Descriptors (5 = 0, 
TYPE=4-7, C, F) 

Gates are used to control access to entry points 
within the target code segment. The various types of 
gate descriptors are call gates, task gates, 
interrupt gates, and trap gates. Gates provide a 
level of indirection between the source and destina
tion of the control transfer. This indirection allows 
the processor to automatically perform protection 
checks. It also allows system designers to control 
entry points to the operating system. Call gates are 
used to change privilege levels (see Section 4.4 
Protection), task gates are used to perform a task 
switch, and interrupt and trap gates are used to 
specify interrupt service routines. 

o 
SEGMENT LIMIT 15 ... 0 

P 1 DPL 1 0 1 TYPE 1 BASE 
23 ... 16 

Type 

8 
9 
A 
B 
C 
D 
E 
F 

Defines 

Invalid 
Available 486™ CPU TSS 
Undefined (Intel Reserved) 
Busy 486™ CPU TSS 
486™ CPU Call Gate 
Undefined (Intel Reserved) 
486TM CPU Interrupt Gate 
486™ CPU Trap Gate 

o 

+4 

Figure 4.7. System Segments Descriptors 
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Figure 4.8 shows the format of the four types of gate 
descriptors. Call gates are primarily used to transfer 
program control to a more privileged level. The call 
gate descriptor consists of three fields: the access 
byte, a long pointer (selector and offset) which 
points to the start of a routine and a word count 
which specifies how many parameters are to be cop
ied from the caller's stack to the stack of the called 
routine. The word count field is only used by call 
gates when there is a change in the privilege level, 
other types of gates'ignore the word count field. 

Interrupt and trap gates use the destination selector 
and destination offset fields of the gate descriptor as 
a pointer to the start of the interrupt or trap handler 
routines. The difference between interrupt gates and 
trap gates is that the interrupt gate disables inter
rupts (resets the IF bit) while the trap gate does not. 

Task gates are used to switch tasks. Task gates 
may only refer to a task state segment (see Section 
4.4.6 Task Switching) therefore only the destination 
selector portion of a task gate descriptor is used, 
and the destination offset is ignored. 

Exception 13 is generated when a destination selec
tor does not refer to a correct descriptor type, i.e., a 
code segment for an interrupt, trap or call gate, a 
TSS for a task gate. 

31 24 16 

The access byte format is the same for all gate de
scriptors. P = 1 indicates that the gate contents are 
valid. P = 0 indicates the contents are not valid and 
causes exception 11 if referenced. DPL is the de
scriptor privilege level and specifies when this de
scriptor may be used by a task (see Section 4.4 
Protection). The S field, bit 4 of the access rights 
byte, must be 0 to indicate a system control descrip
tor. The type field specifies the descriptor type as 
indicated in Figure 4.8. 

4.3.4.7 Differences Between i486™ 
Microprocessor and 80286 Descriptors 

In order to provide operating system compatibility 
between the 80286 and 486 Microprocessor, the 
486 Microprocessor supports all of the 80286 seg
ment descriptors. Figure 4.9 shows the general for
mat of an 80286 system segment descriptor. The 
only differences between 80286 and 486 Microproc
essor descriptor formats are that the values of the 
type fields, and the limit and base address fields 
have been expanded for the 486 Microprocessor. 
The 80286 system segment descriptors contained a 
24-bit base address and 16-bit limit, while the 486 
Microprocessor system segment descriptors have a 
32-bit base address, a 20-bit limit field, and a granu
larity bit. 

8 5 0 

SELECTOR OFFSET 15 ... 0 0 

WORD 
OFFSET 31 ... 16 P DPL 0 TYPE 0 0 0 COUNT +4 

4 ... 0 

Gate Descriptor Fields 
Name Value Description 
Type 4 80286 call gate 

5 Task gate (for 80286 or 486TM CPU task) 
6 80286 interrupt gate 
7 80286 trap gate 
C 486TM CPU call gate 
E 486™ CPU interrupt gate 
F 486™ CPU trap gate 

P 0 Descriptor contents are not valid 
1 Descriptor contents are valid 

DPL-Ieast privileged level at which a task may access the gate. WORD COUNT 0-31-the number of parameters to copy from caller's stack 
to the called procedure's stack. The parameters are 32·bit quantities for 486TM CPU gates, and 16·bit quantities for 80286 gates. 

DESTiNATION 16·bit Selector to the target code segment 
SELECTOR selector or 

Selector to the target task state segment for task gate 

DESTINATION offset Entry point within the target code segment 
OFFSET 16·bit 80286 

32·bit 486™ CPU 

Figure 4.8. Gate Descriptor Formats 
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By supporting 80286 system segments the 486 Mi
croprocessor is able to execute 80286 application 
programs on a 486 Microprocessor operating sys
tem. This is possible because the processor auto
matically understands which descriptors are 80286-
style descriptors and which descriptors are 486 Mi
croprocessor-style descriptors. In particular, if the 
upper word of a descriptor is zero, then that descrip
tor is a 80286-style descriptor. 

The only other differences between 80286-style de
scriptors and 486 Microprocessor descriptors is the 
interpretation of the word count field of call gates 
and the B bit. The word count field specifies the 
number of 16-bit quantities to copy for 80286 call 
gates and 32-bit quantities for 486 Microprocessor 
call gates. The B bit controls the size of PUSHes 
when using a call gate; if B = 0 PUSHes are 16 bits, 
if B = 1 PUSHes are 32 bits. 

4.3.4.8 Selector Fields 

A selector in Protected Mode has three fields: Local 
or Global Descriptor Table Indicator (TI), Descriptor 

31 

SEGMENT BASE 15 ... 0 

Intel Reserved 
Set to 0 

BASE 
LIMIT 
P 

Base Address of the segment 
The length of the segment 
Present Bit 1 = Present 0 = Not Present 

Entry Index (Index), and Requestor (the selector's) 
Privilege Level (RPL) as shown in Figure 4.10. The 
TI bits select one of two memory-based tables of 
descriptors (the Global Descriptor Table or the Local 
Descriptor Table). The Index selects one of 8K de
scriptors in the appropriate descriptor table. The 
RPL bits allow high speed testing of the selector's 
privilege attributes. 

4.3.4.9 Segment Descriptor Cache 

In addition to the selector value, every segment reg
ister has a segment descriptor cache register asso
ciated with it. Whenever a segment register's con
tents are changed, the 8-byte descriptor associated 
with that selector is automatically loaded (cached) 
on the chip. Once loaded, all references to that seg
ment use the cached descriptor information instead 
of reaccessing the descriptor. The contents of the 
descriptor cache are not visible to the programmer. 
Since descriptor caches only change when a seg
ment register is changed, programs which modify 
the descriptor tables must reload the appropriate 
segment registers after changing a descriptor's val
ue. 

SEGMENT LIMIT 15 ... 0 

P I DPL lsi TYPE I BASE 
23 ... 16 

Descriptor Privilege Level 0-3 DPL 
S 
TYPE 

System Descriptor 0 = System 1 = User 
Type of Segment 

o 
o 

+4 

Figure 4.9. 80286 Code and Data Segment Descriptors 
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SELECTOR 

15 4 3 2 1 0 

SEGMENT 
REGISTER 1 0 1 ° ---- ° 1 0 111 gIR~L 1 . . 

TABLE INDEX 
INDICATOR 

N 

6 

5 

4 

~ ..• 

2 

1 

0 

TI-1 

t>$¢RiBro~ 

LOCAL 
DESCRIPTOR 

TABLE 

DESCRIPTOR 
NUMBER 

N 

6 

5 

4 

3 

2 

1 

0 

TI-O! 

• 
~ A~ . 

NULL 

GLOBAL 
DESCRIPTOR 

TABLE 
240440-14 

Figure 4.10. Example Descriptor Selection 

4.3.4.10 Segment Descriptor Register Settings 

The contents of the segment descriptor cache vary 
depending on the mode the 486 Microprocessor is 
operating in. When operating in Real Address Mode, 
the segment base, limit, and other attributes within 
the segment cache registers are defined as shown 
in Figure 4.11. For compatibility with the 8086 archi-
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tecture, the base is set to sixteen times the current 
selector value, the limit is fixed at OOOOFFFFH, and 
the attributes are fixed so as to indicate the segment 
is present and fully usable. In Real Address Mode, 
the internal "privilege level" is always fixed to the 
highest level, level 0, so I/O and other privileged 
opcodes may be executed. 
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SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS 

32- BIT BASE 

(UPDATED DURING SELECTOR 
LOAD INTO SEGMENT REGISTER) 

32 - BIT LIMIT 

(FIXED) 

OTHER AITRIBUTES 

(FIXED) 

CONFORMING PRIVILEGE---------------------, 
STACKS!ZE-----------------=-=-=====------------, 
EXECUTABLE---------------------..... 
WRITEABLE----------------------, 
R~DABLE-------------------_, 
EXPANSION DIRECTION 

GRANULARITY 1 
ACCESSED 1 
PRIVILEGE LEVEL 1 
~R~~E~~ _______ ~A~~ ___________ ~1!:41! ___ } _ ~ _ _ _ __ 
CS 1 6X CURRENT CS SELECTOR· OOOOFFFFH Y 0 Y B U Y Y Y - N 
SS 16X CURRENT SS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N W -
OS 16X CURRENT OS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N - -
ES 16X CURRENT ES SELECTOR OOOOFFFFH Y 0 y B U y y N - -
FS 1 6X CURRENT FS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N - -
GS 1 6X CURRENT GS SELECTOR OOOOFFFFH Y 0 Y B U Y Y N - -

240440-15 

'Except the 32·bit CS base is initialized to FFFFFOOOH after reset until first intersegment control transfer (i.e., intersegment CALL, or 
intersegment JMP, or INT). (See Figure 4.13 Example.) 

Key: Y = yes 
N = no 
o = privilege level 0 
1 = privilege level 1 
2 = privilege level 2 
3 = privilege level 3 
U = expand up 

o = expand down 
B = byte granularity 
P = page granularity 
W = push/pop 16·bit words 
F = push/pop 32·bit dwords 
- = does not apply to that segment cache register 

Figure 4.11. Segment Descriptor Caches for Real Address Mode 
(Segment Limit and Attributes are Fixed) 

When operating in Protected Mode, the segment 
base, limit, and other attributes within the segment 
cache registers are defined as shown in Figure 4.12. 
In Protected Mode, each of these fields are defined 
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according to the contents of the segment descriptor 
indexed by the selector value loaded into the seg
ment register. 
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SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS 

32- BIT BASE 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

32 - BIT LIMIT 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

OTHER ATTRIBUTES 

(UPDATED DURING 
SELECTOR LOAD INTO 

SEGMENT REGISTER) 

CONFORMING PRIVILEGE ----------------------, 
STACK SIZE-----------------------, 
EXECUTABLE----------------------, 
WRITEABLE ---------------------, 
READABLE--------------------..., 
EXPANSION DIRECTION 

GRANULARITY 1 
ACCESSED 1 
~:!~~~~E_L~~E~ ~~S! ___________ :I~I! ______ lJ 1 _ __ 
CS 

SS 

OS 

ES 

FS 
GS 

Key: Y ~ fixed yes 
N ~ fixed no 

BASE PER SEG DESCR 

BASE PER SEG DESCR 

BASE PER SEG DESCR 

BASE PER SEG DESCR 

BASE PER SEG DESCR 

BASE PER SEG DESCR 

d ~ per segment descriptor 

LIMIT PER SEG DESCR 

LIMIT PER SEG DESCR 

LIM IT PER SEG DESCR 

LIMIT PER SEG DESCR 

LIMIT PER SEG DESCR 

LIMIT PER SEG DESCR 

P d d 

P d d 

p d d 

p d d 

P d d 

p d d 

p ~ per segment descriptor; descriptor must indicate "present" to avoid exception 11 
(exception 12 in case of SS) 

d 

d 

d 
d 

d 

d 

r ~ per segment descriptor. but descriptor must indicate "readable" to avoid exception 13 
(special case for SS) 

w ~ per segment descriptor. but descriptor must indicate "writable" to avoid exception 13 
(special case for SS) 

- ~ does not apply to that segment cache register 

d d N 

d r w 

d d d 
d d d 
d d d 

d d d 

y - d 

N d -
N - -
N - -
N - -
N - -

240440-16 

Figure 4.12. Segment Descriptor Caches for Protected Mode (Loaded per Descriptor) 

When operating in a Virtual 8086 Mode within the 
Protected Mode, the segment base, limit, and other 
attributes within the segment cache registers are de
fined as shown in Figure 4.13. For compatibility with 
the 8086 architecture, the base is set to sixteen 
times the current selector value, the limit is fixed at 
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OOOOFFFFH, and the attributes are fixed so as to 
indicate the segment is present and fully usable. The 
virtual program executes at lowest privilege level, 
level 3, to allow trapping of all IOPL-sensitive in
structions and level-O-only instructions. 
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Key: Y = yes 
N = no 

i486™ MICROPROCESSOR 

SEGMENT DESCRIPTOR CACHE REGISTER CONTENTS 

32- BIT BASE 

(UPDATED DURING SELECTOR 
LOAD INTO SEGMENT REGISTER) 

32 - BIT LIMIT 

(FIXED) 

OTHER ATIRIBUTES 

(FIXED) 

CONFORMING PRIVILEGE---------------------. 
SiACKSiZE------------------------------------------, 
EXECUTABLE-----------------------, 
WRITEABLE----------------------, 
READABLE-----------------------~ 

EXPANSION DIRECTION 

GRANULARITY 1 
ACCESSED 1 
PRIVILEGE LEVEL 1 
~R~~E~~ _______ B~~E ____________ ~I~I~ ___ t i _ _ _ __ 
CS 16X CURRENT CS SELECTOR OOOOFFFFH Y 3 Y B U Y Y 

SS 16X CURRENT SS SELECTOR OOOOFFFFH Y 3 Y B U Y Y 
DS 16X CURRENT DS SELECTOR OOOOFFFFH Y 3 Y B U Y Y 

ES 16X CURRENT ES SELECTOR OOOOFFFFH Y 3 Y B U Y Y 
FS 16X CURRENT FS SELECTOR OOOOFFFFH Y 3 y B U Y y 

GS 16X CURRENT GS SELECTOR OOOOFFFFH Y 3 y B U Y Y 

D = expand down 

Y - N 

N W -
N - -
I~ - -
N - -
N - -

240440-17 

o = privilege level 0 
1 = privilege level 1 
2 = privilege level 2 
3 = privilege level 3 
U = expand up 

B = byte granularity 
P = page granularity 
W = push/pop 16-bit words 
F = push/pop 32-bit dwords 
- = does not apply to that segment cache register 

Figure 4.13. Segment Descriptor Caches for Virtual 8086 Mode within Protected Mode 
(Segment Limit and Attributes are Fixed) 

4.4 Protection 

4.4.1 PROTECTION CONCEPTS 

CPU 
ENFORCED 
SOFTWARE 
INTERFACES 

HIGH SPEED 
OPERATING 
SYSTEM 
INTERfACE 

240440-18 

Figure 4.14. Four-Level Hierarchical Protection 
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The 486 Microprocessor has four levels of protec
tion which are optimized to support the needs of a 
multi·tasking operating system to isolate and protect 
user programs from each other and the operating 
system. The privilege levels control the use of privi
leged instructions, I/O instructions, and access to 
segments and segment descriptors. Unlike tradition
al microprocessor-based systems where this protec
tion is achieved only through the use of complex 
external hardware and software the 486 Microproc
essor provides the protection as part of its integrat
ed Memory Management Unit. The 486 Microproc
essor offers an additional type of protection on a 
page basis, when paging is enabled (See Section 
4.5.3 Page Level Protection). 

The four-level hierarchical privilege system is illus
trated in Figure 4-14. It is an extension of the user / 
supervisor privilege mode commonly used by mini
computers and, in fact, the user/supervisor mode is 
fully supported by the 486 Microprocessor paging 
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mechanism. The privilege levels (PL) are numbered 
o through 3. Level 0 is the most privileged or trusted 
level. 

4.4.2 RULES OF PRIVILEGE 

The 486 Microprocessor controls access to both 
data and procedures between levels of a task, ac
cording to the following rules. 

• Data stored in a segment with privilege level p can 
be accessed only by code executing at a privilege 
level at least as privileged as p. 

• A code segment/procedure with privilege level p 
can only be called by a task executing at the same 
or a lesser privilege level than p. 

4.4.3 PRIVILEGE LEVELS 

4.4.3.1 Task Privilege 

At any point in time, a task on the 486 Microproces
sor always executes at one of the four privilege lev
els. The Current Privilege Level (CPL) specifies the 
task's privilege level. A task's CPL may only be 
changed by control transfers through gate descrip
tors to a code segment with a different privilege lev
el. (See Section 4.4.4 Privilege Level Transfers) 
Thus, an application program running at PL = 3 may 
call an operating system routine at PL = 1 (via a 
gate) which would cause the task's CPL to be set to 
1 until the operating system routine was finished. 

4.4.3.2 Selector Privilege (RPL) 

The privilege level of a selector is specified by the 
RPL field. The RPL is the two least significant bits of 
the selector. The selector's RPL is only used to es
tablish a less trusted privilege level than the current 
privilege level for the use of a segment. This level is 
called the task's effective privilege level (EPL). The 
EPL is defined as being the least privileged (i.e. nu
merically larger) level of a task's CPL and a selec
tor's RPL. Thus, if selector's RPL = 0 then the CPL 
always specifies the privilege level for making an ac
cess using the selector. On the other hand if RPL = 
3 then a selector can only access segments at level 
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3 regardless of the task's CPL. The RPL is most 
commonly used to verify that pointers passed to an 
operating system procedure do not access data that 
is of higher privilege than the procedure that origi
nated the pointer. Since the originator of a selector 
can specify any RPL value, the Adjust RPL (ARPL) 
instruction is provided to force the RPL bits to the 
originator's CPL. 

4.4.3.3 UO Privilege and 1/0 Permission Bitmap 

The I/O privilege level (IOPL, a 2-bit field in the 
EFLAG register) defines the least privileged level at 
which I/O instructions can be unconditionally per
formed. I/O instructions can be unconditionally per
formed when CPL :0; 10PL. (The I/O instructions are 
IN, OUT, INS, OUTS, REP INS, and REP OUTS.) 
When CPL > 10PL, and the current task is associat
ed with a 286 TSS, attempted I/O instructions cause 
an exception 13 fault. When CPL > 10PL, and the 
current task is associated with a 486 Microprocessor 
TSS, the I/O Permission Bitmap (part of a 486 Mi
croprocessor TSS) is consulted on whether I/O to 
the port is allowed, or an exception 13 fault is to be 
generated instead. For diagrams of the I/O Permis
sion Bitmap, refer to Figures 4.15a and 4.15b. For 
further information on how the I/O Permission Bit
map is used in Protected Mode or in Virtual 8086 
Mode, refer to Section 4.6.4 Protection and I/O Per
mission Bitmap. 

The I/O privilege level (IOPL) also affects whether 
several other instructions can be executed or cause 
an exception 13 fault instead. These instructions are 
called "IOPL-sensitive" instructions and they are 
CLI and STI. (Note that the LOCK prefix is not 10PL
sensitive on the 486 Microprocessor.) 

The 10PL also affects whether the IF (interrupts en
able flag) bit can be changed by loading a value into 
the EFLAGS register. When CPL :0; 10PL, then the 
IF bit can be changed by loading a new value into 
the EFLAGS register. When CPL > 10PL, the IF bit 
cannot be changed by a new value POP'ed into (or 
otherwise loaded into) the EFLAGS register; the IF 
bit merely remains unchanged and no exception is 
generated. 
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Table 4.2. Pointer Test Instructions 

Instruction Operands Function 

ARPL Selector, Adjust Requested Privi-
Register lege Level: adjusts the 

RPL of the selector to the 
numeric maximum of 
current selector RPL value 
and the RPL value in the 
register. Set zero flag if 
selector RPL was 
changed. 

VERR Selector VERify for Read: sets the 
zero flag if the segment 
referred to by the selector 
can be read. 

VERW Selector VERify for Write: sets the 
zero flag if the segment 
referred to by the selector 
can be written. 

LSL Register, Load Segment Limit: reads 
Selector the segment limit into the 

register if privilege rules 
and descriptor type allow. 
Set zero flag if successful. 

LAR Register, Load Access Rights: reads 
Selector the descriptor access 

rights byte into the register 
if privilege rules allow. Set 
zero flag if successful. 

4.4.3.4 Privilege Validation 

The 486 Microprocessor provides several instruc
tions to speed pointer testing and help maintain sys
tem integrity by verifying that the selector value 
refers to an appropriate segment. Table 4.2 summa
rizes the selector validation procedures available for 
the 486 Microprocessor. 

This pointer verification prevents the common prob
lem of an application at PL = 3 calling a operating 
systems routine at PL = 0 and passing the operat
ing system routine a "bad" pointer which corrupts a 
data structure belonging to the operating system. If 
the operating system routine uses the ARPL instruc-
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tion to ensure that the RPL of the selector has no 
greater privilege than that of the caller, then this 
problem can be avoided. 

4.4.3.5 Descriptor Access 

There are basically hrw'o ripes of segment accesses: 
those involving cope segments such as control 
transfers, and those involving data accesses. Deter
mining the ability of a task to access a segment in
volves the type of segment to be accessed, the in
struction used, the type of descriptor used and CPL, 
RPL, and DPL as described above. 

Any time an instruction loads data segment registers 
(OS, ES, FS, GS) the 486 Microprocessor makes 
protection validation checks. Selectors loaded in the 
OS, ES, FS, GS registers must refer only to data 
segments or readable code segments. The data ac
cess rules are specified in Section 4.4.2 Rules of 
Privilege. The only exception to those rules is read
able conforming code segments which can be ac
cessed at any privilege level. 

Finally the privilege validation checks are performed. 
The CPL is compared to the EPL and if the EPL is 
more privileged than the CPL an exception 13 (gen
eral protection fault) is generated. 

The rules regarding the stack segment are slightly 
different than those involving data segments. In
structions that load selectors into SS must refer to 
data segment descriptors for writeable data seg
ments. The DPL and RPL must equal the CPL. All 
other descriptor types or a privilege level violation 
will cause exception 13. A stack not present fault 
causes exception 12. Note that an exception 11 is 
used for a not-present code or data segment. 

4.4.4 PRIVILEGE LEVEL TRANSFERS 

Inter-segment control transfers occur when a selec
tor is loaded in the CS register. For a typical system 
most of these transfers are simply the result of a call 
or a jump to another routine. There are five types of 
control transfers which are summarized in Table 4.3. 
Many of these transfers result in a privilege level 
transfer. Changing privilege levels is done only via 
control transfers, by using gates, task switches, and 
interrupt or trap gates. 
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Table 4.3. Descriptor Types Used for Control Transfer 

Control Transfer Types 

Intersegment within the same privilege level 

Intersegment to the same or higher privilege level 
Interrupt within task may change CPL 

Intersegment to a lower privilege level 
(changes task CPL) 

Task Switch 

'NT (Nested Task bit of flag register) = 0 
"NT (Nested Task bit of flag register) = 1 

Control transfers can only occur if the operation 
which loaded the selector references the correct de· 
scriptor type. Any violation of these descriptor usage 
rules will cause an exception 13 (e.g. JMP through a 
call gate, or IRET from a normal subroutine call). 

In order to provide further system security, all control 
transfers are also subject to the privilege rules. 

The privilege rules require that: 

- Privilege level transitions can only occur via 
gates. 

- JMPs can be made to a non-conforming code 
segment with the same privilege or to a conform
ing code segment with greater or equal privilege. 

- CALLs can be made to a non-conforming code 
segment with the same privilege or via a gate to a 
more privileged level. 

- Interrupts handled within the task obey the same 
privilege rules as CALLs. 

- Conforming Code segments are accessible by 
privilege levels which are the same or less privi
leged than the conforming-code segment's OPL. 

- Both the requested privilege level (RPL) in the 
selector pointing to the gate and the task's CPL 
must be of equal or greater privilege than the 
gate's OPL. 

- The code segment selected in the gate must be 
the same Or more privileged than the task's CPL. 

Operation Types 
Descriptor Descriptor 
Referenced Table 

JMP, CALL, RET, IREP Code Segment GOT/LOT 

CALL Call Gate GOT/LOT 

Interrupt Instruction, Trap or lOT 
Exception, External Interrupt 
Interrupt Gate 

RET,IRET' Code Segment GOT/LOT 

CALL, JMP Task State GOT 
Segment 

CALL, JMP Task Gate GOT/LOT 

IRET" Task Gate lOT 
Interrupt Instruction, 
Exception, External 
Interrupt 
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- Return instructions that do not switch tasks can 
only return control to a code segment with same 
or less privilege. 

- Task switches can be performed by a CALL, 
JMP, or INT which references either a task gate 
or task state segment who's DPL is less privi
leged or the same privilege as the old task's CPL. 

Any control transfer that changes CPL within a task 
causes a ctiange of stacks as a result of the privi
lege level change. The initial values of SS:ESP for 
privilege levels 0, 1, and 2 are retained in the task 
state segment (see Section 4.4.6 Task Switching). 
Ouring a JMP or CALL control transfer, the new 
stack pointer is loaded into the SS and ESP regis
ters and the previous stack pOinter is pushed onto 
the new stack. 

When RETurning to the original privilege level, use 
of the lower-privileged stack is restored as part of 
the RET or IRET instruction operation. For subrou
tine calls that pass parameters on the stack and 
cross privilege levels, a fixed number of words (as 
specified in the gate's word count field) are copied 
from the previous stack to the current stack. The 
inter-segment RET instruction with a stack adjust
ment value will correctly restore the previous stack 
pointer upon return. 
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4.4.5 CALL GATES 

Gates provide protected, indirect CALLs. One of the 
major uses of gates is to provide a secure method of 
privilege transfers within a task. Since the operating 
system defines all of the gates in a system, it can 
ensure that all gates only allow entry into a few trust
ed procedures (such as those which allocate memo
ry, or perform I/O). 

Gate descriptors follow the data access rules of priv
ilege; that is, gates can be accessed by a task if the 
EPL, is equal to or more privileged than the gate 
descriptor's OPL. Gates follow the control transfer 
rules of privilege and therefore may only transfer 
control to a more privileged level. 

Call Gates are accessed via a CALL instruction and 
are syntactically identical to calling a normal subrou
tine. When an inter-level 486. Microprocessor call 
gate is activated, the following actions occur. 

1. Load CS:EIP from gate check for validity 

2. SS is pushed zero-extended to 32 bits 

3. ESP is pushed 

4. Copy Word Count 32-bit parameters from the 
old stack to the new stack 

5. Push Return address on stack 

The procedure is identical for 80286 Call gates, ex
cept that 16-bit parameters are copied and 16-bit 
registers are pushed. 

Interrupt Gates and Trap gates work in a similar 
fashion as the call gates, except there is no copying 
of parameters. The only difference between Trap 
and Interrupt gates is that control transfers through 
an Interrupt gate disable further interrupts (i.e. the IF 
bit is set to 0), and Trap gates leave the interrupt 
status unchanged. 

4.4.6 TASK SWITCHING 

A very important attribute of any multi-tasking/multi
user operating systems is its ability to rapidly switch 
between tasks or processes. The 486 Microproces
sor directly supports this operation by providing a 
task switch instruction in hardware. The 486 Micro
processor task switch operation saves the entire 
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state of the machine (all of the registers, address 
space, and a link to the previous task), loads a new 
execution state, performs protection checks, and 
commences execution in the new task, in about 17 
microseconds. Like transfer of control via gates, the 
task switch operation is invoked by executing an in
ter-segment JMP or CALL instruction which refers to 
a Task State Segment (TSS), or a task gate descrip
tor in the GOT or LOT. An INT n instruction, excep
tion, trap, or external interrupt may also invoke the 
task switch operation if there is a task gate descrip
tor in the associated lOT descriptor slot. 

The TSS descriptor points to a segment (see Figure 
4.15) containing the entire 486 Microprocessor exe
cution state while a task gate descriptor contains a 
TSS selector. The 486 Microprocessor supports 
both 80286 and 486 Microprocessor style TSSs. Fig
ure 4.16 shows a 80286 TSS. The limit of a 486 
Microprocessor TSS must be greater than 0064H 
(002BH for a 80286 TSS), and can be as large as 4 
Gigabytes. In the additional TSS space, the operat
ing system is free to store additional information 
such as the reason the task is inactive, time the task 
has spent running, and open files belong to the task. 

Each task must have a TSS associated with it. The 
current TSS is identified by a special register in the 
486 Microprocessor called the Task State Segment 
Register (TR). This register contains a selector refer
ring to the task state segment descriptor that de
fines the current TSS. A hidden base and limit regis
ter associated with TR are loaded whenever TR is 
loaded with a new selector. Returning from a task is 
accomplished by the IRET instruction. When IRET is 
executed, control is returned to the task which was 
interrupted. The current executing task's state is 
saved in the TSS and the old task state is restored 
from its TSS. 

Several bits in the flag register and machine status 
word (CRO) give information about the state of a 
task which are useful to the operating system. The 
Nested Task (NT) (bit 14 in EFLAGS) controls the 
function of the IRET instruction. If NT = 0, the IRET 
instruction performs the regular return; when NT = 

1, IRET performs a task switch operation back to the 
previous task. The NT bit is set or reset in the follow
ing fashion: 
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Figure 4.16. 80286 TSS 

When a CALL or INT instruction initiates a task 
switch, the new TSS will be marked busy and the 
back link field of the new TSS set to the old TSS 
selector. The NT bit of the new task is set by CALL 
or INT initiated task switches. An interrupt that does 
not cause a task switch will clear NT. (The NT bit will 
be restored after execution of the interrupt handler) 
NT may also be set or cleared by POPF or IRET 
instructions. 

The 486 Microprocessor task state segment is 
marked busy by changing the descriptor type field 
from TYPE 9H to TYPE BH. An 80286 TSS is 
marked busy by changing the descriptor type field 
from TYPE 1 to TYPE 3. Use of a selector that refer
ences a busy task state segment causes an excep
tion 13. 

The Virtual Mode (VM) bit 17 is used to indicate if a 
task, is a virtual 8086 task. If VM = 1, then the tasks 
will use the Real Mode addressing mechanism. The 
virtual 8086 environment is only entered and exited 
via a task switch (see Section 4.6 Virtual Mode). 

The FPU's state is not automatically saved when a 
task switch occurs, because the incoming task may 
not use the FPU. The Task Switched (TS) Bit (bit 3 in 
the GRO) helps deal with the FPU's state in a multi
tasking environment. Whenever the 486 Micro-
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processor switches tasks, it sets the TS bit. The 486 
Microprocessor detects the first use of a processor 
extension instruction after a task switch and causes 
the processor extension not available exception 7. 
The exception handler for exception 7 may then de
cide whether to save the state of the FPU. A proces
sor extension not present exception (7) will occur 
when attempting to execute a Floating Point or 
WAIT instruction if the Task Switched and Monitor 
coprocessor extension bits are both set (i.e. TS = 1 
and MP = 1). 

The T bit in the 486 Microprocessor TSS indicates 
that the processor should generate a debug excep
tion when switching to a task. If T = 1 then upon 
entry to a new task a debug exception 1 will be gen
erated. 

4.4.7 INITIALIZATION AND TRANSITION TO 
PROTECTED MODE 

Since the 486 Microprocessor begins executing in 
Real Mode immediately after RESET it is necessary 
to initialize the system tables and registers with the 
appropriate values. 

The GOT and lOT registers must refer to a valid GOT 
and lOT. The lOT should be at least 256 bytes long, 
and GOT must contain descriptors for the initial 
code, and data segments. Figure 4.17 shows the ta
bles and Figure 4.18 the descriptors needed for a 
simple Protected Mode 486 Microprocessor system. 
It has a single code and single data/stack segment 
each four gigabytes long and a single privilege level 
PL = O. 

The actual method of enabling Protected Mode is to 
load CRO with the PE bit set, via the MOV CRO, R/M 
instruction. This puts the 486 Microprocessor in Pro
tected Mode. 

After enabling Protected Mode, the next instruction 
should execute an intersegment JMP to load the CS 
register and flush the instruction decode queue. The 
final step is to load all of the data segment registers 
with the initial selector values. 

An alternate approach to entering Protected Mode 
which is especially appropriate for multi-tasking op
erating systems, is to use the built in task-switch to 
load all of the registers. In this case the GOT would 
contain two TSS descriptors in addition to the code 
and data descriptors needed for the first task. The 
first JMP instruction in Protected Mode would jump 
to the TSS causing a task switch and loading all of 
the registers with the values stored in the TSS. The 
Task State Segment Register should be initialized to 
point to a valid TSS descriptor since a task switch 
saves the state of the current task in a task state 
segment. 
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4.4.8 TOOLS FOR BUILDING PROTECTED 
SYSTEMS 

In order to simplify the design of a protected multi
tasking system, Intel provides a tool which allows 
the system designer an easy method of constructing 
the data structures needed for a Protected Mode 
486 Microprocessor system. This tool is the builder 
BLD-386™. BLD-386 lets the operating system writ
er specify all of the segment descriptors discussed 
in the previous sections (LDTs, IDTs, GDTs, Gates, 
and TSSs) in a high-level language. 
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4.5 Paging 

4.5.1 PAGING CONCEPTS 

Paging is another type of memory management 
useful for virtual memory multitasking operating sys
tems. Unlike segmentation which modularizes pro
grams and data into variable length segments, pag
ing divides programs into multiple uniform size 
pages. Pages bear no direct relation to the logical 
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structure of a program. While segment selectors can 
be considered the logical "name" of a program 
module or data structure, a page most likely corre
sponds to only a portion of a module or data struc
ture. 

By taking advantage of the locality of reference dis
played by most piOgrarns, oniy a smaii number of 
pages from each active task need be in memory at 
anyone moment. 

4.5.2 PAGING ORGANIZATION 

4.5.2.1 Page Mechanism 

The 486 Microprocessor uses two levels of tables to 
translate the linear address (from the segmentation 
unit) into a physical address. There are three com
ponents to the paging mechanism of the 486 Micro
processor: the page directory, the page tables, and 
the page itself (page frame). All memory-resident el
ements of the 486 Microprocessor paging mecha
nism are the same size, namely, 4 Kbytes. A uniform 
size for all of the elements simplifies memory alloca
tion and reallocation schemes, since there is no 
problem with memory fragmentation. Figure 4.19 
shows how the paging mechanism works. 

4.5.2.2 Page Descriptor Base Register 

CR2 is the Page Fault Linear Address register. It 
holds the 32-bit linear address which caused the last 
page fault detected. 

CR3 is the Page Directory Physical Base Address 
Register. It contains the physical starting address of 
the Page Directory. The lower 12 bits of CR3 are 
always zero to ensure that the Page Directory is al
ways page aligned. Loading it via a MOV CR3, reg 
instruction causes the Page Table Entry cache to be 
flushed, as will a task switch through a TSS which 
changes the value of CRO. (See 4.5.5 Translation 
Lookaside Buffer). 

4.5.2.3 Page Directory 

The Page Directory is 4 Kbytes long and allows up to 
1024 Page Directory Entries. Each Page Directory 
Entry contains the address of the next level of ta
bles, the Page Tables and information about the 
page table. The contents of a Page Directory Entry 
are shown in Figure 4.20. The upper 10 bits of the 
linear address (A22-A31) are used as an index to 
select the correct Page Directory Entry. 

TWO LEVEL PAGING SCHEME 

31 22 12 0 

~ I DIRECTORY I TABLE I OFFSET I USER 
LINEAR 
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MEMORY 
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10 or 31 
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Figure 4.19. Paging Mechanism 
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Figure 4.20. Page Directory Entry (Points to Page Table) 
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Figure 4.21. Page Table Entry (Points to Page) 

4.5.2.4 Page Tables 

Each Page Table is 4 Kbytes and holds up to 1024 
Page Table Entries. Page Table Entries contain the 
starting address of the page frame and statistical 
information about the page (see Figure 4.21). Ad
dress bits A12-A21 are used as an index to select 
one of the 1024 Page Table Entries. The 20 upper
bit page frame address is concatenated with the 
lower 12 bits of the linear address to form the physi
cal address. Page tables can be shared between 
tasks and swapped to disks. 

4.5.2.5 Page Directory/Table Entries 

The lower 12 bits of the Page Table Entries and 
Page Directory Entries contain statistical information 
about pages and page tables respectively. The P 
(Present) bit 0 indicates if a Page Directory or Page 
Table entry can be used in address translation. If 
P = 1 the entry can be used for address translation 
if P = 0 the entry can not be used for translation, 
and all of the other bits are available for use by the 
software. For example the remaining 31 bits could 
be used to indicate where on the disk the page is 
stored. 

The A (Accessed) bit 5, is set by the 486 Microproc
essor for both types of entries before a read or write 
access occurs to an address covered by the entry. 
The D (Dirty) bit 6 is set to 1 before a write to an 
address covered by that page table entry occurs. 
The D bit is undefined for Page Directory Entries. 
When the P, A and D bits are updated by the 486 
Microprocessor, the processor generates a Read
Modify-Write cycle which locks the bus and prevents 
conflicts with other processors or perpherials. Soft
ware which modifies these bits should use the LOCK 
prefix to ensure the integrity of the page tables in 
multi-master systems. 

The 3 bits marked OS Reserved in Figure 4.20 and 
Figure 4.21 (bits 9-11) are software definable. OSs 
are free to use these bits for whatever purpose they 
wish. An example use of the OS Reserved bits 
would be to store information about page aging. By 
keeping track of how long a page has been in mem
ory since being accessed, an operating system can 
implement a page replacement algorithm like Least 
Recently Used. 
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The (User/Supervisor) U/S bit 2 and the (Read/ 
Write) R/W bit 1 are used to provide protection attri
butes for individual pages. 

4.5.3 PAGE LEVEL PROTECTION 
(R/W, U/S BITS) 

The 486 microprocessor provides a set of protection 
attributes for paging systems. The paging mecha
nism distinguishes between two levels of protection: 
User which corresponds to level 3 of the segmenta
tion based protection, and supervisor which encom
passes all of the other protection levels (0, 1, 2). 

The R/W and U/S bits are used in conjunction with 
the WP bit in the flags register (EFLAGS). The 386 
microprocessor does not contain the WP bit. The 
WP bit has been added to the 486 microprocessor 
to protect read-only pages from supervisor write ac
cesses. The 386 microprocessor allows a read-only 
page to be written from protection levels 0, 1 or 2. 
WP = 0 is the 386 microprocessor compatible mode. 
When WP = 0 the supervisor can write to a read-only 
page as defined by the U/S and R/W bits. When 
WP = 1 supervisor access to a read-only page 
(R/W=O) will cause a page fault (exception 14). 

Table 4.4 shows the affect of the WP, U/S and R/W 
bits on accessing memory. When WP = 0, the super
visor can write to pages regardless of the state of 
the R/W bit. When WP = 1 and R/W = 0 the supervi
sor cannot write to a read-only page. A user attempt 
to access a supervisor only page (U/S= 0), or write 
to a read only page will cause a page fault (excep
tion 14). 

The R/W and U/S bits provide protection from user 
access on a page by page basis since the bits are 
contained in the Page Table Entry and the Page Di
rectory Table. The U/S and R/W bits in the first level 
Page Directory Table apply to all entries in the page 
table pointed to by that directory entry. The U/S and 
R/W bits in the second level Page Table Entry apply 
only to the page described by that entry. The most 
restrictive of the U/S and R/W bits from the Page 
Directory Table and the Page Table EntrY are used 
to address a page. 

Example: If the U/S and R/W bits for the Page Di
rectory entry were 10 (user read/execute) and the 
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U/S and R/W bits for the Page Table Entry were 01 
(no user access at all), the access rights for the 
page would be 01, the numerically smaller of the 
two. 

Note that a given segment can be easily made read
only for level 0, 1 or 2 via use of segmented protec
tion mechanisms. (Section 4.4 Protection). 

4.5.4 PAGE CACHEABILITY 
(PWT AND PCD BITS) 

PWT (page write through) and PCD (page cache dis
able) are two new bits defined in entries in both lev
els of the page table structure, the Page Directory 
Table and the Page Table Entry. PCD and PWT con
trol page cacheability and write policy. 

PWT controls write policy. PWT = 1 defines a write
through policy for the current page. PWT = 0 allows 
the possibility of write-back. PWT is ignored internal
ly because the 486 microprocessor has a write
through cache. PWT can be used to control the write 
policy of a second level cache. 

PCD controls cacheability. PCD = 0 enables caching 
in the on-chip cache. PCD alone does not enable 
caching, it must be conditioned by the KEN # (cache 
enable) input signal and the state of the CE (cache 
enable bit) and WT (writes transparent) bits in con
trol register 0 (CRO). When PCD = 1, caching is dis
abled regardless of the state of KEN #, CE and WT. 
(See Section 5.0, On-Chip Cache). 

The state of the PCD and PWT bits are driven out on 
the PCD and PWT pins during a memory access. 

The PWT and PCD bits for a bus cycle are obtained 
either from control register 3 (CR3), the Page Direc
tory Entry or the Page Table Entry, depending on the 
type of cycle run. If paging is not enabled (PG = 0 in 
CRO), or for cycles which bypass paging {Le., I/O 
(input/output) references, INTR (interrupt request) 
and Halt cycles), the PWT and PCD bits are taken 

from bits 3 and 4 of CR3. These bits in CR3 are 
initialized to zero at reset, but can be set to any val
ue by level 0 software. 

When paging is enabled (PG = 1 in CRO), the bits 
from the page table entry are cached in the transla
tion lookaside buffer (TLB), and are driven any time 
the page mapped by the TLB entry is referenced. 
For normal memory cycles run with paging enabled, 
the PWT and PCD bits are taken from the Page Ta
ble Entry. During TLB refresh cycles when the Page 
Directory and Page Table entries are read, the PWT 
and PCD bits must be obtained elsewhere. The bits 
are taken from CR3 when a Page Directory Entry is 
being read. The bits are taken from the Page Direc
tory Entry when the Page Table Entry is being updat
ed. 

4.5.5 TRANSLATION LOOKASIDE BUFFER 

The 486 Microprocessor paging hardware is de
signed to support demand paged virtual memory 
systems. However, performance would degrade 
substantially if the processor was required to access 
two levels of tables for every memory reference. To 
solve this problem, the 486 Microprocessor keeps a 
cache of the most recently accessed pages, this 
cache is called the Translation Lookaside Buffer 
(TLB). The TLB is a four-way set associative 32-en
try page table cache. It automatically keeps the most 
commonly used Page Table Entries in the proces
sor. The 32-entry TLB coupled with a 4K page size, 
results in coverage of 128 Kbytes of memory ad
dresses. For many common multi-tasking systems, 
the TLB will have a hit rate of about 98%. This 
means that the processor will only have to access 
the two-level page structure on 2% of all memory 
references. Figure 4.22 illustrates how the TLB com
plements the 486 Microprocessor's paging mecha
nism. 

Reading a new entry into the TLB (TLB refresh) is a 
two step process handled by the 486 microproces
sor hardware. The sequence of data cycles to per
form a TLB refresh are: 

Table 4.4. Page Level Protection Attributes 

U/S R/W WP User Access Supervisor Access 

0 0 0 None Read/Write/Execute 
0 1 0 None Read/Write/Execute 
1 0 0 Read/Execute Read/Write/Execute 
1 1 0 Read/Write/Execute Read/Write/Execute 
0 0 1 None Read/Execute 
0 1 None Read/Write/Execute 

0 Read/Execute Read/Execute 
Read/Write/Execute Read/Write/Execute 
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1. Read the correct Page Directory Entry, as point
ed to by the page base register and the upper 10 
bits of the linear address. The page base register 
is in control register 3. 

1 a. Optionally perform a locked read/write to set the 
accessed bit in the directory entry. The directory 
entry will actually get read twice if the 486 micro
processor needs to set any of the bits in the en
try. If the page directory entry changes between 
the first and second reads, the data returned for 
the second read will be used. 

2. Read the correct entry in the Page Table and 
place the entry in the TLB. 

2a. Optionally perform a locked read/write to set the 
accessed and/or dirty bit in the page table entry. 
Again, note that the page table entry will actually 
get read twice if the 486 microprocessor needs 
to set any of the bits in the entry. Like the direc
tory entry, if the data changes between the first 
and second read the data returned for the sec
ond read will be used. 

Note that the directory entry must always be read 
into the processor, since directory entries are never 
placed in the paging TLB. Page faults can be sig
naled from either the page directory read or the 
page table read. Page directory and page table en
tries may be placed in the 486 on-chip cache just 
like normal data. 

4.5.6 PAGING OPERATION 

32 ENTRIES 
PHYSICAL 
MEMORY 

A~~~~S --+-
TRANSLATION 

LOOKASIDE 
BUFFER HIT 

MISS 

3. 0 

T -

... 
PAGE PAGE 

DIRECTORY TABLE 

.98" HIT RATE 

240440-24 

Figure 4.22. Translation Lookaslde Buffer 

The paging hardware operates in the following fash
ion. The paging unit hardware receives a 32-bit lin
ear address from the segmentation unit. The upper 
20 linear address bits are compared with all 32 en
tries in the TLB to determine if there is a match. If 
there is a match (Le., a TLB hit), then the 32-bit 
physical address is calculated and will be placed on 
the address bus. 
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However, if the page table entry is not in the TLB, 
the· 486 Microprocessor will read the appropriate 
Page Directory Entry. If P = 1 on the Page Directory 
Entry indicating that the page table is in memory, 
then the 486 Microprocessor will read the appropri
ate Page Table Entry and set the Access bit. If P = 

1 on the Page Table Entry indicating that the page is 
in memory, the 486 Microprocessor will update the 
Access and Dirty bits as needed and fetch the oper
and. The upper 20 bits of the linear address, read 
from the page table, will be stored in the TLB for 
future accesses. However, if P = 0 for either the 
Page Directory Entry or the Page Table Entry, then 
the processor will generate a page fault, an Excep
tion 14. 

The processor will also generate an exception 14 
page fault, if the memory reference violated the 
page protection attributes (i.e., U/S or R/W) (e.g., 
trying to write to a read-only page). CR2 will hold the 
linear address which caused the page fault. If a sec
ond page fault occurs, while the processor is at
tempting to enter the service routine for the first, 
then the processor will invoke the page fault (excep
tion 14) handler a second time, rather than the dou
ble fault (exception 8) handler. Since Exception 14 is 
classified as a fault, CS: EIP will point to the instruc
tion causing the page fault. The 16-bit error code 
pushed as part of the page fault handler will contain 
status bits which indicate the cause of the page 
fault. 

The 16-bit error code is used by the operating sys
tem to determine how to handle the page fault. Fig
ure 4.23a shows the format of the page-fault error 
code and the interpretation of the bits. 

NOTE: 
Even though the bits in the error code (U/S, W/R, 
and P) have similar names as the bits in the Page 
Directory/Table Entries, the interpretation of the er
ror code bits is different. Figure 4.23b indicates 
what type of access caused the page fault. 

15 3 2 1 0 

lulululululululululululululul~I~lpl 
Figure 4.23a. Page Fault Error Code Format 

U/S: The U/S bit indicates whether the access 
causing the fault occurred when the processor was 
executing in User Mode (U/S = 1) or in Supervisor 
mode (U/S = 0). 

W/R: The W/R bit indicates whether the access 
causing the fault was a Read (W/R = 0) or a Write 
(W/R = 1). 
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P: The P bit indicates whether a page fault was 
caused by a not-present page (P = 0), or by a page 
level protection violation (P = 1). 

U: UNDEFINED 

II/~ UIID 
A _____ T ... __ 

..".., "., .. I"'I ........ OG • 11' ..... 

0 0 Supervisor' Read 
0 1 Supervisor Write 
1 0 User Read 
1 1 User Write 

'Descriptor table access will fault With u/s = 0, even If the program 
is executing at level 3. 

Figure 4.23b. Type of Access 
Causing Page Fault 

4.5.7 OPERATING SYSTEM RESPONSIBILITIES 

The 486 Microprocessor takes care of the page ad
dress translation process, relieving the burden from 
an operating system in a demand-paged system. 
The operating system is responsible for setting up 
the initial page tables, and handling any page faults. 
The operating system also is required to invalidate 
(Le., flush) the TLB when any changes are made to 
any of the page table entries. The operating system 
must reload CR3 to cause the TLB to be flushed. 

Setting up the tables is simply a matter of loading 
CR3 with the address of the Page Directory, and 
allocating space for the Page Directory and the 
Page Tables. The primary responsibility of the oper
ating system is to implement a swapping policy and 
handle all of the page faults. 

A final concern of the operating system is to ensure 
that the TLB cache matches the information in the 
paging tables. In particular, any time the operating 
system sets the P present bit of page table entry to 
zero, the TLB must be flushed. Operating systems 
may want to take advantage of the fact that CR3 is 
stored as part of a TSS, to give every task or group 
of tasks its own set of page tables. 

4.6 Virtual 8086 Environment 

4.6.1 EXECUTING 8086 PROGRAMS 

The 486 Microprocessor allows the execution of 
8086 application programs in both Real Mode and in 
the Virtual 8086 Mode (Virtual Mode). Of the two 
methods, Virtual 8086 Mode offers the system de
signer the most flexibility. The Virtual 8086 Mode al
lows the execution of 8086 applications, while still 
allowing the system designer to take full advantage 
of the 486 Microprocessor protection mechanism. In 
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particular, the 486 Microprocessor allows the simul
taneous execution of 8086 operating systems and 
its applications, and a 486 Microprocessor operating 
system and both 80286 and 486 Microprocessor ap
plications. Thus, in a multi-user 486 Microprocessor 
computer, one person could be running an MS-DOS 
spreadsheet, another person using MS-DOS, and a 
third person could be running multiple Unix utilities 
and applications. Each person in this scenario would 
believe that he had the computer completely to him
self. Figure 4.24 illustrates this concept. 

4.6.2 VIRTUAL 8086 MODE ADDRESSING 
MECHANISM 

One of the major differences between 486 Micro
processor Real and Protected modes is how the 
segment selectors are interpreted. When the proc
essor is executing in Virtual 8086 Mode the segment 
registers are used in an identical fashion to Real 
Mode. The contents of the segment register is shift
ed left 4 bits and added to the offset to form the 
segment base linear address. 

The 486 Microprocessor allows the operating sys
tem to specify which programs use the 8086 style 
address mechanism, and which programs use Pro
tected Mode addressing, on a per task basis. 
Through the use of paging, the one megabyte ad
dress space of the Virtual Mode task can be mapped 
to anywhere in the 4 gigabyte linear address space 
of the 486 Microprocessor. Like Real Mode, Virtual 
Mode effective addresses (Le., segment offsets) that 
exceed 64 Kbyte will cause an exception 13. Howev
er, these restrictions should not prove to be impor
tant, because most tasks running in Virtual 8086 
Mode will simply be existing 8086 application pro
grams. 

4.6.3 PAGING IN VIRTUAL MODE 

The paging hardware allows the concurrent running 
of multiple Virtual Mode tasks, and provides protec
tion and operating system isolation. Although it is 
not strictly necessary to have the paging hardware 
enabled to run Virtual Mode tasks, it is needed in 
order to run multiple Virtual Mode tasks or to relo
cate the address space of a Virtual Mode task to 
physical address space greater than one megabyte. 

The paging hardware allows the 20-bit linear ad
dress produced by a Virtual Mode program to be 
divided into up to 256 pages. Each one of the pages 
can be located anywhere within the maximum 4 gig
abyte physical address space of the 486 Microproc
essor. In addition, since CR3 (the Page Directory 
Base Register) is loaded by a task switch, each Vir
tual Mode task can use a different mapping scheme 
to map pages to different physical locations. 
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Finally, the paging hardware allows the sharing of 
the 8086 operating system code between multiple 
8086 applications. Figure 4.24 shows how the 486 
Microprocessor paging hardware enables multiple 
8086 programs to run under a virtual memory de
mand paged system. 

4.6.4 PROTECTION AND 1/0 PERMISSION 
BITMAP 

All Virtual 8086 Mode programs execute at privilege 
level 3, the level of least privilege. As such, Virtual 
8086 Mode programs are subject to all of the protec
tion checks defined in Protected Mode. (This is dif
ferent from Real Mode which implicitly is executing 
at privilege level 0, the level of greatest privilege.) 
Thus, an attempt to execute a privileged instruction 
when in Virtual 8086 Mode will cause an exception 
13 fault. 

The following are privileged instructions, which may 
be executed only at Privilege Level O. Therefore, at
tempting to execute these instructions in Virtual 
8086 Mode (or anytime CPL > 0) causes an excep
tion 13 fault: 

VIRTUAL MODE 
8086 TASK 

PAGE 

VIRTUAL MODE 
8086 TASK 

PAGE DIRECTORY 
TASK 1 

LIDT; 
LGDT; 
LMSW; 
CLTS; 
HLT; 

MOV DRn,reg; 
MOV TRn,reg; 
MOV CRn,reg; 

MOV reg,DRn; 
MOV reg, TRn; 
MOV reg,CRn. 

Several instructions, particularly those applying to 
the multitasking model and protection model, are 
available only in Protected Mode. Therefore, at
tempting to execute the following instructions in 
Real Mode or in Virtual 8086 Mode generates an 
exception 6 fault: 

LTR; 
LLDT; 
LAR; 
LSL; 
ARPL. 

STR; 
SLDT; 
VERR; 
VERW; 

The instructions which are IOPL-sensitive in Protect
ed Mode are: 

IN; 
OUT; 
INS; 
OUTS; 
REP INS; 
REP OUTS; 

STI; 
CLI 

PHYSICAL 
MEMORY 

.................. ~ 02000000(H) 

OOOOOOOO(H) 

III TASK 1 • 8086 OS 
MEMORY MEMORY 

I77Jl TASK 2 ~ 386TII CPU OS 
rtlI.I MEMORY ~ MEMORY 

240440-25 

Figure 4.24. Virtual 8086 Environment Memory Management 
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In Virtual 8086 Mode, a slightly different set of in
struct~ons are made 10PL-sensitive. The following in
structions are 10PL-sensitive in Virtual 8086 Mode: 

INT n; STI; 
PUSHF; eLI; 
POPF; IRET 

The PUSHF, POPF, and IRET instructions are 10PL
sensitive in Virtual 8086 Mode only. This provision 
allows the IF flag (interrupt enable flag) to be virtual
ized to the Virtual 8086 Mode program. The INT n 
software interrupt instruction is also 10PL-sensitive 
in Virtual 8086 Mode. Note, however, that the INT 3 
(opcode OCCH), INTO, and BOUND instructions are 
not 10PL-sensitive in Virtual 8086 mode (they aren't 

, 10PL sensitive in Protected Mode either). 

Note that the 110 instructions (IN, OUT, INS, OUTS, 
REP INS, and REP OUTS) are not 10PL-sensitive in 
Virtual 8086 mode. Rather, the I/O instructions be
come automatically sensitive to the I/O Permission 
Bitmap contained in the 486 Microprocessor Task 
Sta~e Segment. The I/O Permission Bitmap, auto
matically used by the 486 Microprocessor in Virtual 
8086 Mode, is illustrated by Figures 4.15a and 
4.15b. 

The I/O Permission Bitmap can be viewed as a 0-
64 Kbit bit string, which begins in memory at offset 
BiLMap_Offset in the current TSS. BiLMap_ 
Offset must be ::;; DFFFH so the entire bit map and 
the byte FFH which follows the bit map are all at 
offsets ::;; FFFFH from the TSS base. The 16-bit 
pointer BiLMap_Offset (15:0) is found in the word 
beginning at offset 66H (102 decimal) from the TSS 
base, as shown in Figure 4.15a. 

Each bit in the I/O Permission Bitmap corresponds 
to a single byte-wide I/O port, as illustrated in Figure 
4 .. 15a. If a bit is 0, I/O to the corresponding byte
wide port can occur without generating an excep
t~on. Otherwis~ the I/O instruction causes an excep
tion 13 fault. Since every byte-wide I/O port must be 
protectable, all bits corresponding to a word-wide or 
dword-wide port must be 0 for the word-wide or 
dword-wide I/O to be permitted. If all the referenced 
b~ts are 0, the I/O will be allowed. If any referenced 
bits are 1, the attempted I/O will cause an exception 
13 fault. 

Due to the use of a pointer to the base of the I/O 
Permission Bitmap, the bitmap may be located any
where within the TSS, or may be ignored completely 
by pointing the BiLMap_Offset (15:0) beyond the 
limit of the TSS segment. In the same manner, only 
a small portion of the 64K I/O space need have an 
associated map bit, by adjusting the TSS limit to 
truncate the bitmap. This eliminates the commitment 
of 8K of memory when a complete bitmap is not 
required, while allowing the fully general case if de
sired. 
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EXAMPLE OF BITMAP FOR I/O PORTS 0-255: 
Setting the TSS limit to {biLMap_Offset + 31 
+ 1"1 [ •• see note below] will allow a 32-byte bit
map for the I/O ports #0-255, plus a terminator 
byte of all 1's [ •• see note below]. This allows the 
110 bitmap to control I/O Permission to I/O port 0-
255 while causing an exception 13 fault on attempt
ed I/O to any I/O port 80256 through 65,565. 

"IMPORTANT IMPLEMENTATION NOTE: Beyond 
the last byte of I/O mapping information in the I/O 
Permission Bitmap must be a byte containing all 1's. 
The byte of all 1's must be within the limit of the 486 
Microprocessor TSS segment (see Figure 4.15a). 

4.6.5 INTERRUPT HANDLING 

In order to fully support the emulation of an 8086 
machine, interrupts in Virtual 8086 Mode are han
dled in a unique fashion. When running in Virtual 
Mode all interrupts and exceptions involve a privi
lege change back to the host 486 Microprocessor 
operating system. The 486 Microprocessor operat
ing system determines if the interrupt comes from a 
Protected Mode application or from a Virtual Mode 
program by examining the VM bit in the EFLAGS 
image stored on the stack. 

When a Virtual Mode program is interrupted and ex
ecution passes to the interrupt routine at level 0, the 
VM bit is cleared. However, the VM bit is still set in 
the EFLAG image on the stack. 

The 486 Microprocessor operating system in turn 
handles the exception or interrupt and then returns 
control to the 8086 program. The 486 Microproces
sor operating system may choose to let the 8086 
operating system handle the interrupt or it may emu
late the function of the interrupt handler. For exam
ple, many 8086 operating system calls are accessed 
by PUSHing parameters on the stack, and then exe
cuting an INT n instruction. If the 10PL is set to 0 
then all INT n instructions will be intercepted by the 
486 Microprocessor operating system. The 486 Mi
croprocessor operating system could emUlate the 
8086 operating system's call. Figure 4.25 shows 
how the 486 Microprocessor operating system could 
intercept an 8086 operating system's call to "Open 
a File". 

A 486 Microprocessor operating system can provide 
a Virtual 8086 Environment which is totally transpar
ent to the application software via intercepting and 
~hen emulating 8086 operating system's calls, and 
Intercepting IN and OUT instructions. 
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4.6.6 ENTERING AND LEAVING VIRTUAL 
8086 MODE 

Virtual 8086 mode is entered by executing an IRET 
instruction (at CPL= 0), or Task Switch (at any CPL) 
to a 486 Microprocessor task whose 486 Microproc
essor TSS has a FLAGS image containing a 1 in the 
VM bit position while the processor is executing in 
Protected Mode. That is, one way to enter Virtual 
8086 mode is to switch to a task with a 486 Micro
processor TSS that has a 1 in the VM bit in the 
EFLAGS image. The other way is to execute a 32-bit 
IRET instruction at privilege level 0, where the stack 
has a 1 in the VM bit in the EFLAGS image. POPF 
does not affect the VM bit, even if the processor is in 
Protected Mode or level 0, and so cannot be used to 
enter Virtual 8086 Mode. PUSHF always pushes a 0 
in the VM bit, even if the processor is in Virtual 8086 
Mode, so that a program cannot tell if it is executing 
in REAL mode, or in Virtual 8086 mode. 

The VM bit can be set by executing an IRET instruc
tion only at privilege level 0, or by any instruction or 
Interrupt which causes a task switch in Protected 
Mode (with VM = 1 in the new FLAGS image), and 
can be cleared only by an interrupt or exception in 
Virtual 8086 Mode. IRET and POPF instructions exe
cuted in REAL mode or Virtual 8086 mode will not 
change the value in the VM bit. 

The transition out of virtual 8086 mode to 486 Micro
processor protected mode occurs only on receipt of 
an interrupt or exception (such as due to a sensitive 
instruction). In Virtual 8086 mode, all interrupts and 
exceptions vector through the protected mode lOT, 
and enter an interrupt handler in protected 486 Mi
croprocessor mode. That is, as part of interrupt pro
cessing, the VM bit is cleared. 

Because the matching IRET must occur from level 0, 
if an Interrupt or Trap Gate is used to field an inter
rupt or exception out of Virtual 8086 mode, the Gate 
must perform an inter-level interrupt only to level O. 
Interrupt or Trap Gates through conforming seg
ments, or through segments with OPL> 0, will raise a 
GP fault with the CS selector as the error code. 

4.6.6.1 Task Switches To/From Virtual 
8086 Mode 

Tasks which can execute in virtual 8086 mode must 
be described by a TSS with the new 486 Microproc
essor format (TYPE 9 or 11 descriptor). 

A task switch out of virtual 8086 mode will operate 
exactly the same as any other task switch out of a 
task with a 486 Microprocessor TSS. All of the pro
grammer visible state, including the FLAGS register 
with the VM bit set to 1, is stored in the TSS. 
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The segment registers in the TSS will contain 8086 
segment base values rather than selectors. 

A task switch into a task described by a 486 Micro
processor TSS will have an additional check to de
termine if the incoming task should be resumed in 
virtual 8086 mode. Tasks described by 80286 format 
TSSs cannot be resumed in virtual 8086 mode, so 
no check is -required there (the FLAGS image in 
80286 format TSS has only the low order 16 FLAGS 
bits). Before loading the segment register images 
from a 486 Microprocessor TSS, the FLAGS image 
is loaded, so that the segment registers are loaded 
from the TSS image as 8086 segment base values. 
The task is now ready to resume in virtual 8086 exe
cution mode. 

4.6.6.2 Transitions Through Trap and Interrupt 
Gates, and IRET 

A task switch is one way to enter or exit virtual 8086 
mode. The other method is to exit through a Trap or 
Interrupt gate, as part of handling an interrupt, and 
to enter as part of executing an IRET instruction. 
The transition out must use a 486 Microprocessor 
Trap Gate (Type 14), or 486 Microprocessor Inter
rupt Gate (Type 15), which must point to a non-con
forming level 0 segment (OPL = 0) in order to permit 
the trap handler to IRET back to the Virtual 8086 
program. The Gate must point to a non-conforming 
level 0 segment to perform a level switch to level 0 
so that the matching IRET can change the VM bit. 
486 Microprocessor gates must be used, since 
80286 gates save only the low 16 bits of the FLAGS 
register, so that the VM bit will not be saved on tran
sitions through the 80286 gates. Also, the 16-bit 
IRET (presumably) used to terminate the 80286 in
terrupt handler will pop only the lower 16 bits from 
FLAGS, and will not affect the VM bit. The action 
taken for a 486 Microprocessor Trap or Interrupt 
gate if an interrupt occurs while the task is executing 
in virtual 8086 mode is given by the following se
quence. 

(1) Save the FLAGS register in a temp to push later. 
Turn off the VM and TF bits, and if the interrupt is 
serviced by an Interrupt Gate, turn off IF also. 

(2) Interrupt and Trap gates must perform a level 
switch from 3 (where the VM86 program exe
cutes) to level 0 (so IRET can return). This pro
cess involves a stack switch to the stack given in 
the TSS for privilege level O. Save the Virtual 
8086 Mode SS and ESP registers to push in a 
later step. The segment register load of SS will 
be done as a Protected Mode segment load, 
since the VM bit was turned off above. 
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8086 Application makes "Open File Call" -> causes 
General Protection Fault (Arrow # 1) 
Virtual 8086 Monitor intercepts call. Calls 486TM CPU as (Arrow # 2) 
486TM CPU as opens file returns control to 8086 as (Arrow # 3) 
8086 as returns control to application. (Arrow #4) 
Transparent to Application 

240440-26 

Figure 4.25. Virtual 8086 Environment Interrupt and Call Handling 

(3) Push the 8086 segment register values onto the 
new stack, in the order: GS, FS, DS, ES. These 
are pushed as 32-bit quantities, with undefined 
values in the upper 16 bits. Then load these 4 
registers with null selectors (0). 

(4) Push the old 8086 stack pointer onto the new 
stack by pushing the SS register (as 32-bits, high 
bits undefined), then pushing the 32-bit ESP reg
ister saved above. 

(5) Push the 32-bit FLAGS register saved in step 1. 

(6) Push the old 8086 instruction pointer onto the 
new stack by pushing the CS register (as 32-bits, 
high bits undefined), then pushing the 32-bit EIP 
register. 

(7) Load up the new CS:EIP value from the interrupt 
gate, and begin execution of the interrupt routine 
in protected 486 Microprocessor mode. 

The transition out of virtual 8086 mode performs a 
level change and stack switch, in addition to chang
ing back to protected mode. In addition, all of the 
8086 segment register images are stored on the 
stack (behind the SS:ESP image), and then loaded 
with null (0) selectors before entering the interrupt 
handler. This will permit the handler to safely save 
and restore the DS, ES, FS, and GS registers as 
80286 selectors. This is needed so that interrupt 
handlers which don't care about the mode of the 
interrupted program can use the same prolog and 
epilog code for state saving (i.e., push all registers in 
prolog, pop all in epilog) regardless of whether or not 
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a "native" mode or Virtual 8086 mode program was 
interrupted. Restoring null selectors to these regis
ters before executing the IRET will not cause a trap 
in the interrupt handler. Interrupt routines which ex
pect values in the segment registers, or return val
ues in segment registers will have to obtain/return 
values from the 8086 register images pushed onto 
the new stack. They will need to know the mode of 
the interrupted program in order to know where to 
find/return segment registers, and also to know how 
to interpret segment register values. 

The IRET instruction will perform the inverse of the 
above sequence. Only the extended 486 Microproc
essors IRET instruction (operand size=32) can be 
used, and must be executed at level 0 to change the 
VM bit to 1. 

(1) If the NT bit in the FLAGs register is on, an inter
task return is performed. The current state is 
stored in the current TSS, and the link field in the 
current TSS is used to locate the TSS for the 
interrupted task which is to be resumed. 

Otherwise, continue with the following sequence. 

(2) Read the FLAGS image from SS:8[ESPj into the 
FLAGS register. This will set VM to the value ac
tive in the interrupted routine. 

(3) Pop off the instruction pointer CS:EIP. EIP is 
popped first, then a 32-bit word is popped which 
contains the CS value in the lower 16 bits. If 
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VM = 0, this CS load is done as a protected 
mode segment load. If VM = 1, this will be done 
as an 8086 segment load. 

(4) Increment the ESP register by 4 to bypass the 
FLAGS image which was "popped" in step 1. 

(5) If VM = 1, load segment registers ES, OS, FS, 
and GS from memory locations SS:[ESP+8], 
SS: [ESP + 12], SS: [ESP + 16], and 
SS:[ESP+20], respectively, where the new val
ue of ESP stored in step 4 is used. Since VM = 1, 
these are done as 8086 segment register loads. 

Else if VM = 0, check that the selectors in ES, 
OS, FS, and GS are valid in the interrupted rou
tine. Null out invalid selectors to trap if an at
tempt is made to access through them. 

(6) If (RPL(CS) > CPL), pop the stack pointer 
SS:ESP from the stack. The ESP register is 
popped first, followed by 32-bits containing SS in 
the lower 16 bits. If VM = 0, SS is loaded as a 
protected mode segment register load. If VM = 1, 
an 8086 segment register load is used. 

(7) Resume execution of the interrupted routine. The 
VM bit in the FLAGS register (restored from the 
interrupt routine's stack image in step 1) deter
mines whether the processor resumes the inter
rupted routine in Protected mode of Virtual 8086 
mode. 

5.0 ON-CHIP CACHE 

To meet its performance goals the 486 microproces
sor contains an eight Kbyte cache. The cache is 

software transparent to maintain binary compatibility 
.with previous generations of the x86 architecture. 

The on-chip cache has been designed for maximum 
flexibility and performance. The cache has several 
operating modes offering flexibility during program 
execution and debugging. Memory areas can be de
fined as non-cacheable by software and external 
hardware. Protocols for cache line invalidations and 
replacement are implemented in hardware, easing 
system design. 

5.1 Cache Organization 

The on-chip cache is a unified code and data cache. 
The cache is used for both instruction and data ac
cesses and acts on physical addresses. 

The cache organization is 4-way set associative and 
each line is 16 bytes wide. The eight Kbytes of 
cache memory are logically organized as 128 sets, 
each containing four lines. 

The cache memory is physically split into four 
2-Kbyte blocks each containing 128 lines (see Fig
ure 5.1). Associated with each 2-Kbyte block are 
128 21-bit tags. There is a valid bit for each line in 
the cache. Each line in the cache is either valid or 
not valid. There are no provisions for partially valid 
lines. 

r-16-Sr\e LIne SIZB-j 

c=J'8"" J. Sets 

~ 

r 3 LRU -r- -4 Valld-1 
BIts I BIts I 

I Ii 
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Figure 5.1. On-Chip Cache Physical Organization 
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The write strategy of on-chip cache is write-through. 
All writes will drive an external write bus cycle in 
addition to writing the information to the internal 
cache if the write was a cache hit. A write to an 
address not contained in the internal cache will only 
be written to external memory. Cache allocations 
are not made on write misses. 

5.2 Cache Control 

Control of the cache is provided by the CE and WT 
bits in CRO. CE enables and disables the cache. WT 
controls memory write-through and invalidates. 

The CE and WT bits define four operating modes of 
the on-chip cache as given in Table 5.1. These 
modes provide flexibility in how the on-chip cache is 
used. 

The CE and WT bits define four operating modes of 
the on-chip code and data cache, as given in the 
following table: 

Table 5.1. Cache Operating Modes 

CE WT Operating Mode 

0 0 Cache fills disabled, write-through and 
invalidates disabled 

0 1 Cache fills disabled, write-through and 
invalidates enabled 

1 a INVALID. IF CRO is loaded with this 
configuration of bits, a GP fault with 
error code of 0 is raised. 

1 1 Cache fills enabled, write-through and 
invalidates enabled 

CE=O, WT=O 

The cache is completely disabled by setting 
CE=O and WT=O and then flushing the 
cache. This mode may be useful for debug
ging programs where it is important to see 
all memory cycles at the pins. Writes which 
hit in the cache will not appear on the exter
nal bus. 

It is possible to use the on-chip cache as 
fast static RAM by "pre-loading" certain 
memory areas into the cache and then set
ting CE = 0 and WT = O. Pre-loading can be 
done by careful choice of memory refer
ences with the cache turned on or by use of 
the testability functions (see Section 8.2). 
When the cache is turned off the memory 
mapped by the cache is "frozen" into the 
cache since fills and invalidates are dis
abled. 
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CE=O, WT=1 

Cache fills are disabled but write-throughs 
and invalidates are enabled. This mode is 
the same as if the KEN # pin was strapped 
HIGH disabling cache fills. Write-throughs 
and invalidates may still occur to keep the 
cache valid. This mode is useful if the soft
ware must disable the cache for a short pe
riod of time, and then re-enable it without 
flushing the original contents. 

CE=1, WT=O 

INVALID. If CRO is loaded with this bit con
figuration, a General Protection fault with er
ror code of 0 is raised. Note that this mode 
would imply a non-transparent write-back 
cache. A future processor may define this 
combination of bits to implement a write
back cache. 

CE=1, WT=1 

This is the normal operating mode. 

Completely disabling the cache is a two step pro
cess. First CE and WT must be set to 0 and then the 
cache must be flushed. If the cache is not flushed, 
cache hits on reads will still occur and data will be 
read from the cache. 

5.3 Cache Line Fills 

Any area of memory can be cached in the 486 mi
croprocessor. Non-cacheable portions of memory 
can be defined by the external system or by soft
ware. The external system can inform the 486 micro
processor that a memory address is non-cacheable 
by returning the KEN # pin inactive during a memory 
access (refer to Section 7.2.3). Software can pre
vent certain pages from being cached by setting the 
PCD bit in the page table entry. 

A read request can be generated from program op
eration or by an instruction pre-fetch. The data will 
be supplied from the on-chip cache if a cache hit 
occurs on the read address. If the address is not in 
the cache, a read request for the data is generated 
on the external bus. 

If the read request is to a cacheable portion of mem
ory, the 486 microprocessor initiates a cache line fill. 
During a line fill a 16-byte line is read into the 486 
microprocessor. 

Cache fills will only be generated for read misses. 
Write misses will never cause a line in the internal 
cache to be allocated. If a cache hit occurs on a 
write, the line will be updated. 
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Cache line fills can be performed over 8- and 16-bit 
busses using the dynamic bus sizing feature. Refer 
to Section 7.1.3 for a description of dynamic bus 
sizing. 

Refer to Section 7.2.3 for further information on 
cacheable cycles. 

5.4 Cache Line Invalidations 

The 486 microprocessor contains a mechanism for 
invalidating lines in its internal cache. Cache line in
validations are needed to keep the 486 microproc
essor's cache contents consistent with external 
memory. 

Refer to Section 7.2.8 for further information on 
cache line invalidations. 

5.5 Cache Replacement 

When a line needs to be placed in its internal cache 
the 486 microprocessor first checks to see if there is 
a non-valid line in the set that can be replaced. If all 
four lines in the set are valid, a pseudo least-recent
Iy-used mechanism is used to determine which line 
should be replaced. 

A valid bit is associated with each line in the cache. 
When a line needs to be placed in a set, the four 

valid bits are checked to see if there is a non-valid 
line that can be replaced. If a non-valid line is found, 
that line is marked for replacement. 

The four lines in the set are labeled 10, 11, 12, and 13. 
The order in which the valid bits are checked during 
an invalidation is 10, 11, 12 and 13. All valid bits are 
cleared when the processor is reset or when the 
cache is flushed. 

Replacement in the cache is handled by a pseudo 
least recently used (LRU) mechanism when all four 
lines in a set are valid. Three bits, BO, B1 and B2, 
are defined for each of the 128 sets in the cache. 
These bits are called the LRU bits. The LRU bits are 
updated for every hit or replace in the cache. 

If the most recent access to the set was to 10 or 11, 
BO is set to 1. BO is set to ° if the most recent ac
cess was to 12 or 13. If the most recent access to 
10:11 was to 10, B1 is set to 1, else B1 is set to 0. If 
the most recent access to 12:13 was to 12, B2 is set to 
1, else B2 is set to o. 

The pseudo LRU mechanism works in the following 
manner. When a line must be replaced, the cache 
will first select which of 10:11 and 12:13 was least re
cently used. Then the cache will determine which of 
the two lines was least recently used and mark it for 
replacement. This decision tree is shown in Figure 
5.2. When the processor is reset or when the cache 
is flushed all 128 sets of three LRU bits are set to o. 

All four lines in the set valid? ~ Replace non-valid line 

80 =O? 
Yes: 10 or 11 least recently used No: 12 or 13 least recently used 

81 =O? 82=0? 

~ ~ 
Replace 

10 
Replace Replace 

11 12 
Replace 

13 

Figure 5.2. On-Chip Cache Replacement Strategy 
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5.6 Page Cacheability 

Two bits for cache control, PWT and PCD, are de
fined in the page table and page directory entries. 
The state of these bits are driven out on the PWT 
and PCD pins during memory access cycles. 

The PWT bit controls write policy for second level 
caches used with the 486 microprocessor. Setting 
PWT= 1 defines a write-through policy for the cur
rent page while PWT=O allows the possibility of 

CR3 

CRO 

CACHE CONTROL LOGIC 

CACHE MEMORY 

PAGE UNIT 

I DIR I PAGE I OFFSET I 
I 

--+ 4 PCD 
PWT 

write-back. The state of PWT is ignored internally by 
the 486 microprocessor since the on-chip cache is 
write through. 

The PCD bit controls cacheability on a page by page 
basis. The PCD bit is internally ANDed with the 
KEN # signal to control cacheabiJity on a cycle by 
cycle basis (see Figure 5.3). PCD = 0 enables cach
ing while PCD= 1 forbids it. Note that cache fills are 
enabled when PCD = 0 AND KEN # = O. This logical 
AND is implemented physically with a NOR gate. 

PCD 
PWT 

CE 
(From CRO) 

FLUSH# 

KEN# 

PCD 

PWT 

PAGE TABLE 
DIRECTORY PAGE TABLE 
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Figure 5.3. Page Cacheability 
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The state of the PCD bit in the page table entry is 
driven on the PCD pin when a page in external mem
ory is accessed. The state of the PCD pin informs 
the external system of the cacheability of the re
quested information. The external system then re
turns KEN # telling the 486 microprocessor if the 
area is cacheable. The 486 microprocessor initiates 
a cache line fill if PCD and KEN # indicate that the 
requested information is cacheable. 

The PCD bit is masked with the CE (cache enable) 
bit in control register 0 to determine the state of the 
PCD pin. If CE = 0 the 486 microprocessor forces 
the PCD pin HIGH. If CE= 1 the PCD pin is driven 
with the value for the page table entry/directory. See 
Figure 5.3. 

The PWT and PCD bits for a bus cycle are obtained 
from either CR3, the page directory or page table 
entry. If paging is not enabled, or for cycles that by
pass paging, (I/O references, interrupt acknowledge 
and Halt cycles), the PWT and PCD bits are taken 
from CR3. These bits are initialized to 0 on reset, but 
can be set to any value by level 0 software. 

When paging is enabled, the bits from the page table 
entry are cached in the TLB, and are driven any time 
the page mapped by the TLB entry is referenced. 
For normal memory cycles, PWT and PCD are taken 
from the page table entry. During TLB refresh cycles 
where the page table and directory entries are read, 
the PWT and PCD bits must be obtained elsewhere. 
During page table updates the bits are obtained from 
the page directory. When the page directory is up
dated the bits are obtained from CR3. 

5.7 Cache Flushing 

The on-chip cache can be flushed by external hard
ware or by software instructions. Flushing the cache 
clears all valid bits for all lines in the cache. The 
cache is flushed when external hardware asserts the 
FLUSH# pin. 

The instructions INVD and WBINVD cause the on
cache to be flushed. External caches connected to 
the 486 microprocessor are signalled to flush their 
contents when these instructions are executed. 

WBINVD will cause an external write-back cache to 
write back dirty lines before flushing its contents. 
The external cache is signalled using the bus cycle 
definition pins and the byte enables (refer to Section 
6.2.5 for the bus cycle definition pins and Section 
7.2.11 for special bus cycles). Refer to the 486 mi
croprocessor programmers reference manual for de
tailed instruction definitions. 
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The results of the INVD and WBINVD instructions 
are identical for the operation of the 486 microproc
essor's on-chip cache since the cache is write
through. Note that the INVD and WBINVD instruc
tions are machine dependent. Future members of 
the 486 microprocessor family may change the defi
nition of this instruction. 

5.8 Caching Translation Lookaside 
Buffer Entries 

The 486 microprocessor contains an integrated pag
ing unit with a translation lookaside buffer (TLB). The 
TLB contains 32 entries. The TLB has been en
hanced over the 386 microprocessor's TLB by up
grading the replacement strategy to a pseudo-LRU 
(least recently used) algorithm. The pseudo-LRU re
placement algorithm is the same as that used in the 
on-chip cache. 

The paging TLB operation is automatic whenever 
paging is enabled. The TLB contains the most re
cently used page table entries. A page table entry 
translates the linear address pointing to a particular 
page to the physical address where the page is 
stored in memory (refer to Section 4.5, Paging). 

The paging unit will look up the linear address in the 
TLB in response to an internal bus request. The cor
responding physical address is passed on to the on
chip cache or the external bus (in the event of a 
cache miss) when the linear address is present in 
the TLB. 

The paging unit will access the page tables in exter
nal memory if the linear address is not in the TLB. 
The required page table entry will be read into the 
TLB and then the cache or bus cycle for the actual 
data will take place. The process of reading a new 
page table entry into the TLB is called a TLB refresh. 

A TLB refresh is a two step process. The paging unit 
must first read the page directory entry which points 
to the appropriate page table. The page table entry 
to be stored in the TLB is then read from the page 
table. Control register 3 (CR3) points to the base of 
the page directory table. 

The 486 microprocessor will allow page directory 
and page table entries (returned during TLB refresh
es) to be stored in the on-chip cache. Setting the 
PCD bits in CR3 and the page directory entry to 1 
will prevent the page directory and page table en
tries from being stored in the on-chip cache (see 
Section 5.6, Page Cacheability). 
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6.0 HARDWARE INTERFACE 

6.1 Introduction 

The 486 microprocessor bus has been designed to 
be similar to the 386 microprocessor bus whenever 
possible. Sev6ial new features have been added to 
the 486 microprocessor bus resulting in increased 
performance and functionality. New features include 
a 1X clock, a burst bus mechanism for high-speed 
internal cache fills, a cache line invalidation mecha
nism, enhanced bus arbitration capabilities, a B88# 
bus sizing mechanism and parity support. 

The 486 microprocessor is driven by a 1 X clock as 
opposed to a 2X clock in the 386 microprocessor. A 
25 MHz 486 microprocessor uses a 25 MHz clock in 
contrast to a 25 MHz 386 microprocessor which re
quires a 50 MHz clock. A 1 X clock allows simpler 
system design by cutting in half the clock speed re
quired in the external system. 

Like the 386 microprocessor, the 486 microproces
sor has separate parallel busses for data and ad
dresses. The bidirectonal data bus is 32 bits in width. 
The address bus consists of two components: 30 
address lines (A2-A31) and 4 byte enable lines 
(BEO# -BE3#). The address bus addresses exter-

ClK 

486T~ 

nal memory in the same manner as the 386 micro
processor: The address lines form the upper 30 bits 
of the address and the byte enables select individual 
bytes within a 4 byte location. The address lines are 
bidirectional for use in cache line invalidations. 

The 486 microprocessor's burst bus mechanism en
abies high-speed cache fills from external memory. 
Burst cycles can strobe data into the processor at a 
rate of one item every clock. Non-burst cycles have 
a maximum rate of one item every two clocks. Burst 
cycles are not limited to cache fills: all bus cycles 
requiring more than a single data cycle can be burst
ed. 

The 486 microprocessor has a bus hold feature simi
lar to that of the 386 microprocessor. During bus 
hold, the 486 microprocessor relinquishes control of 
the local bus by floating its address, data and control 
busses. 

The 486 microprocessor has an address hold fea
ture in addition to bus hold. During address hold only 
the address bus is floated, the data and control bus
ses can remain active. Address hold is used for 
cache line invalidations. 

Ahead is a brief description of the 486 microproces
sor input and output signals arranged by functional 
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Figure 6.1. Functional Signal Groupings 
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groups. Before beginning the signal descriptions a 
few terms need to be defined. The # symbol at the 
end of a signal name indicates the active, or assert
ed, state occurs when the signal is at a low voltage. 
When a # is not present after the signal name, the 
signal is active at the high voltage level. The term 
"ready" is used to indicate that the cycle is terminat
ed with ROY # or BROY #. 

Section 6 and 7 will discuss bus cycles and data 
cycles. A bus cycle is at least two clocks long and 
begins with AOS# active in the first clock and ready 
active in the last clock. Oata is transferred to or from 
the 486 microprocessor during a data cycle. A bus 
cycle contains one or more data cycles. 

6.2 Signal Descriptions 

6.2_1 CLOCK (ClK) 

elK provides the fundamental timing and the inter
nal operating frequency for the 486 microprocessor. 
All external timing parameters are specified with re
spect to the rising edge of elK. 

The 486 microprocessor can operate over a wide 
frequency range but elK's frequency cannot 
change rapidly while RESET is inactive. elK's fre
quency must be stable for proper chip operation 
since a single edge of elK is used internally to gen
erate two phases. elK only needs TTL levels for 
proper operation. Figure 6.2 illustrates the elK 
waveform. 

6.2.2 Address Bus (A31-A2, BEO#-BE3#) 

A31-A2 and BEO#-BE3# form the address bus 
and provide physical memory and 1/0 port address-

tx = input setup times 
ty = input hold times, output float, valid and hold times 

es. The 486 microprocessor is capable of address
ing' 4 gigabytes of physical memory space 
(OOOOOOOOH through FFFFFFFFH), and 64 Kbytes 
of 1/0 address space (OOOOOOOOH through 
OOOOFFFFH). A31-A2 identify addresses to a 4-byte 
location. BEO#-BE3# identify which bytes within 
the 4-byte location are involved in the current trans
fer. 

Addresses are driven back into the 486 microproc
essor over A31-A4 during cache line invalidations. 
The address lines are active HIGH. When used as 
inputs into the processor, A31-A4 must meet the 
setup and hold times, t22 and t23' A31-A2 are not 
driven during bus or address hold. 

The byte enable outputs, BEO # -BE3 #, determine 
which bytes must be driven valid for read and write 
cycles to external memory. 

BE3# applies to 024-031 

BE2# applies to 016-023 

BE1 # applies to 08-015 

BEO# applies to 00-07 

BEO#-BE3# can be decoded to generate AO, A1 
and BHE# signals used in 8- and 16-bit systems 
(see Table 7.5). BEO#-BE3# are active lOW and 
are not driven during bus hold. 

6.2.3 DATA LINES (031-00) 

The bidirectional lines, 031-00, form the data bus 
for the 486 microprocessor. 00-07 define the least 
significant byte and 024-031 the most significant 
byte. Oata transfers to 8- or 16-bit devices is possi
ble using the data bus sizing feature controlled by 
the BS8# or BS16# input pins. 

240440-31 

Figure 6.2. ClK waveform 
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031-00 are active HIGH. For reads, 031-00 must 
meet the setup and hold times, t22 and t23' 031-00 
are not driven during read cycles and bus hold. 

6.2.4 PARITY 

Data Parity Input/Outputs (DPO-DP3) 

OPO-OP3 are the data parity pins for the processor. 
There is one pin for each byte of the data bus. Even 
parity is generated or checked by the parity genera
tors/checkers. Even parity means that there are an 
even number of HIGH inputs on the eight corre
sponding data bus pins and parity pin. 

Oata parity is generated on all write data cycles with 
the same timing as the data driven by the 486 micro
processor. Even parity information must be driven 
back to the 486 microprocessor on these pins with 
the same timing as read information to insure that 
the correct parity check status is indicated by the 
486 microprocessor. 

The values read on these pins do not affect program 
execution. It is the responsibility of the system to 
take appropriate actions if a parity error occurs. 

Input signals on OPO-OP3 must meet setup and 
hold times t22 and t23 for proper operation. 

Parity Status Output (PCHK #) 

Parity status is driven on the PCHK# pin, and a pari
ty error is indicated by this pin being LOW. PCHK# 
is driven the clock after ready for read operations to 
indicate the parity status for the data sampled at the 
end of the previous clock. Parity is checked during 
code reads, memory reads and I/O reads. Parity is 
not checked during interrupt acknowledge cycles. 
PCHK # only checks the parity status for enabled 
bytes as indicated by the byte enable and bus size 
Signals. It is valid only in the clock immediately after 
read data is returned to the 486 microprocessor. At 
all other times it is inactive (HIGH). PCHK# is never 
floated. 

Oriving PCHK# is the only effect that bad input pari
ty has on the 486 microprocessor. The 486 micro
processor will not vector to a bus error interrupt 
when bad data parity is returned. In systems that will 
not employ parity, PCHK# can be ignored. In sys
tems not using parity, OPO-OP3 should be connect
ed to Vee through a pullup resistor. 
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6.2.5 BUS CYCLE DEFINITION 

MIIO#, D/C#, W/R# Outputs 

M/IO#, O/C# and W/R# are the primary bus cycle 
definition signals. They are driven valid as the AOS# 
signal is asserted. M/IO# distinguishes between 
memory and I/O cycles, O/C# distinguishes be
tween data and control cycles and W/R# distin
guishes between write and read cycles. 

Bus cycle definitions as a function of M/IO#, O/C# 
and W /R # are given in Table 6.1. Note there is a 
difference between the 486 microprocessor and 386 
microprocessor bus cycle definitions. The halt bus 
cycle type has been moved to location 001 in the 
486 microprocessor from location 101 in the 386 mi
croprocessor. Location 101 is now reserved and will 
never be generated by the 486 microprocessor. 

Table 6.1. AD5# Initiated Bus Cycle Definitions 

MIIO# D/C# W/R# Bus Cycle Initiated 

0 0 0 Interrupt Acknowledge 
0 0 1 Halt/Special Cycle 
0 0 I/O Read 
0 1 I/O Write 

0 0 Code Read 
0 Reserved 

0 Memory Read 
Memory Write 

Special bus cycles are discussed in Section 7.2.11. 

Bus Lock Output (LOCK #) 

LOCK # indicates that the 486 microprocessor is 
running a read-modify-write cycle where the external 
bus must not be relinquished between the read and 
write cycles. Read-modify-write cycles are used to 
implement memory-based semaphores. Multiple 
reads or writes can be locked. 

When LOCK # is asserted, the current bus cycle is 
locked and the 486 microprocessor should be al
lowed exclusive access to the system bus. LOCK # 
goes active in the first clock of the first locked bus 
cycle and goes inactive after ready is returned indi
catiOg the last locked bus cycle. 

The 486 microprocessor will not acknowledge bus 
hold when LOCK # is asserted (though it will allow 
an address hold). LOCK# is active LOW and is float
ed during bus hold. Locked read cycles will not be 
transformed into cache fill cycles if KEN # is re
turned active. Refer to Section 7.2.6 for a detailed 
discussion of Locked bus cycles. 
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Pseudo-Lock Output (PLOCK#) 

The pseudo-lock feature allows atomic reads and 
writes of memory operands greater than 32 bits. 
These operands require more than one cycle to 
transfer. The 486 microprocessor asserts PLOCK # 
during floating point long reads and writes (64 bits), 
segment table descriptor reads (64 bits) and cache 
line fills (128 bits). 

When PLOCK # is asserted no other master will be 
given control of the bus between cycles. A bus hold 
request (HOLD) is not acknowledged during pseudo
locked reads and writes. The 486 microprocessor 
will drive PLOCK # active until the addresses for the 
last bus cycle of the transaction have been driven 
regardless of whether BRDY # or RDY # are re
turned. 

A pseudo-locked transfer is meaningful only if the 
memory operand is aligned and if its completely con
tained within a single cache line. A 64-bit floating 
point number must be aligned to an 8-byte boundary 
to guarantee an atomic access. 

Normally PLOCK # and BLAST # are inverse of 
each other. However during the first cycle of a 64-bit 
floating point write, both PLOCK# and BLAST# will 
be asserted. 

Since PLOCK # is a function of the bus size and 
KEN # inputs, PLOCK # should be sampled only in 
the clock ready is returned. This pin is active LOW 
and is not driven during bus hold. Refer to Section 
7.2.7 for a detailed discussion of pseudo-locked bus 
cycles. 

6.2.6 BUS CONTROL 

The bus control signals allow the processor to indi
cate when a bus cycle has begun, and allow other 
system hardware to control burst cycles, data bus 
width and bus cycle termination. 

Address Status Output (ADS#) 

The ADS# output indicates that the address and 
bus cycle definition signals are valid. This signal will 
go active in the first clock of a bus cycle and go 
inactive in the second and subsequent clocks of the 
cycle. ADS# is also inactive when the bus is idle. 

ADS# is used by external bus circuitry as the indica
tion that the processor has started a bus cycle. The 
external circuit must sample the bus cycle definition 
pins on the next rising edge of the clock after ADS# 
is driven active. 

ADS# is active LOW and is not driven during bus 
hold. 
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Non-burst Ready Input (RDY#) 

RDY # indicates that the current bus cycle is com
plete. In response to a read, RDY # indicates that 
the external system has presented valid data on the 
data pins. In response to a write request, RDY# indi
cates that the external system has accepted the 486 
microprocessor data. RDY# is ignored when the 
bus is idle and at the end of the first clock of the bus 
cycle. Since RDY # is sampled during address hold, 
data can be returned to the processor when AHOLD 
is active. 

RDY # is active LOW, and is not provided with an 
internal pullup resistor. This input must satisfy setup 
and hold times t16 and t17 for proper chip operation. 

6.2.7 BURST CONTROL 

Burst Ready Input (BRDY#) 

BRDY# performs the same function during a burst 
cycle that RDY # performs during a non-burst cycle. 
BRDY # indicates that the external system has pre
sented valid data on the data pins in response to a 
read or that the external system has accepted the 
486 microprocessor data in response to a write. 
BRDY # is ignored when the bus is idle and at the 
end of the first clock in a bus cycle. 

During a burst cycle, BRDY # will be sampled each 
clock, and if active, the data presented on the data 
bus pins will be strobed into the 486 microprocessor. 
ADS# is negated during the second through last 
data cycles in the burst, but address lines A2-A3 
and byte enables will change to reflect the next data 
item expected by the 486 microprocessor. 

If RDY # is returned simultaneously with BRDY #, 
BRDY # is ignored and the burst cycle is premature
ly aborted. An additional complete bus cycle will be 
initiated after an aborted burst cycle if the cache line 
fill was not complete. BRDY# is treated as a normal 
ready for the last data cycle in a burst transfer or for 
non-burstable cycles. Refer to Section 7.2.2 for 
burst cycle timing. 

BRDY # is active LOW and is provided with a small 
internal pullup resistor. BRDY # must satisfy the set
up and hold times t16 and t17' 

Burst Last Output (BLAST#) 

BLAST# indicates that the next time BRDY# is re
turned it will be treated as a normal RDY #, terminat
ing the line fill or other multiple-data-cycle transfer. 
BLAST # is active for all bus cycles regardless of 
whether they are cacheable or not. This pin is active 
LOW and is not driven during bus hold. 
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6.2.8 INTERRUPT SIGNALS (RESET, INTR, NMI) 

The interrupt signals can interrupt or suspend exe
cution of the processor's current instruction stream. 

Reset Input (RESET) 

RESET forces the 486 microprocessor to begin exe· 
cution at a known state. Vee and CLK must reach 
their proper DC and AC specifications for at least 
1 ms before the 486 microprocessor begins instruc· 
tion execution. The RESET pin should remain active 
during this time to ensure proper 486 microproces· 
sor operation. The testability operating modes are 
programmed by the falling (inactive going) edge of 
RESET. (Refer to Section 8.0 for a description of the 
test modes during reset.) 

ClK 

RESET 

240440-32 

Figure 6.3 Reset Waveform 

Maskable Interrupt Request Input (INTR) 

INTR indicates that an external interrupt has been 
generated. Interrupt processing is initiated if the IF 
flag is active in the EFLAGS register. 

The 486 microprocessor will generate two locked in
terrupt acknowledge bus cycles in response to as
serting the INTR pin. An 8-bit interrupt number will 
be latched from an external interrupt controller at 
the end of the second interrupt acknowledge cycle. 
INTR must remain active until the interrupt acknowl
edges have been performed to assure program in· 
terruption. Refer to Section 7.2.10 for a detailed dis
cussion of interrupt acknowledge cycles. 

The INTR pin is active HIGH and is not provided with 
an internal pulldown resistor. INTR is asynchronous, 
but the INTR setup and hold times, t20 and t21, must 
be met to assure recognition on any specific clock. 
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Non-maskable Interrupt Request Input (NMI) 

NMI is the non-maskable interrupt request signal. 
Asserting NMI causes an interrupt with an internally 
supplied vector value of 2. External interrupt ac· 
knowledge cycles are not generated since the NMI 
interrupt vector is internallv aenerated. When NMI 
processing begins, the NMI signal will be masked 
internally until the IRET instruction is executed. 

NMI is rising edge sensitive after internal synchroni· 
zation. NMI must be held LOW for at least four CLK 
periods before this rising edge for proper operation. 
NMI is not provided with an internal pulldown resis· 
tor. NMI is asynchronous but setup and hold times, 
t20 and t21 must be met to assure recognition on any 
specific clock. 

6.2.9 BUS ARBITRATION SIGNALS 

This section describes the mechanism by which the 
processor relinquishes control of its local bus when 
requested by another bus master. 

Bus Request Output (BREQ) 

The 486 microprocessor drives the BREQ pin active 
whenever a bus request has been generated inter
nally. External logic can use the BREQ signal to arbi· 
trate among multiple processors. This pin is driven 
regardless of the state of bus hold or address hold. 
BREQ is active HIGH and is never floated. 

Bus Hold Request Input (HOLD) 

HOLD allows another bus master complete control 
of the 486 microprocessor bus. The 486 microproc
essor will respond to an active HOLD signal by as
serting HLDA and placing most of its output and in
put/output pins in a high impedance state (floated) 
after completing its current bus cycle, burst cycle, or 
sequence of locked cycles. The BREQ, HLDA, 
PCHK# and FERR# pins are not floated during bus 
hold. The 486 microprocessor will maintain its bus in 
this state until the HOLD is deasserted. Refer to 
Section 7.2.9 for timing diagrams for a bus hold cy
cle. 

Unlike the 386 microprocessor, the 486 microproc
essor will recognize HOLD during reset. Pullup resis
tors are not provided for the outputs that are floated 
in response to HOLD. HOLD is active HIGH and is 
not provided with an internal pulldown resistor. 
HOLD must satisfy setup and hold times t18 and t19 
for proper chip operation. 
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Bus Hold Acknowledge Output (HLDA) 

HLDA indicates that the 486 microprocessor has 
given the bus to another local bus master. HLDA 
goes active in response to a hold request presented 
on the HOLD pin. HLDA is driven active in the same 
clock that the 486 microprocessor floats its bus. 

HLDA will be driven inactive when leaving bus hold 
and the 486 microprocessor will resume driving the 
bus. The 486 microprocessor will not cease internal 
activity during bus hold since the internal cache will 
satisfy the majority of bus requests. HLDA is active 
HIGH and remains driven during bus hold. 

Backoff Input (BOFF #) 

Asserting the BOFF # input forces the 486 micro
processor to release control of its bus in the next 
clock. The pins floated are exactly the same as in 
response to HOLD. The response to BOFF # differs 
from the response to HOLD in two ways: First, the 
bus is floated immediately in response to BOFF # 
while the 486 completes the current bus cycle be
fore floating its bus in response to HOLD. Second 
the 486 does not assert HLDA in response to 
BOFF#. 

The processor remains in bus hold until BOFF # is 
negated. Upon negation, the 486 microprocessor re
starts the bus cycle aborted when BOFF # was as
serted. To the internal execution engine the effect of 
BOFF# is the same as inserting a few wait states to 
the original cycle. Refer to Section 7.2.12 for a de
scription of bus cycle restart. 

Any data returned to the processor while BOFF # is 
asserted is ignored. BOFF# has higher priority than 
RDY# or BRDY#. If both BOFF# and ready are 
returned in the same clock, BOFF # takes effect. If 
BOFF # is asserted while the bus is idle, the 486 
microprocessor will float its bus in the next clock. 
BOFF # is active LOW and must meet setup and 
hold times t18 and t19 for proper chip operation. 

6.2.10 CACHE INVALIDATION 

The AHOLD and EADS # inputs are used during 
cache invalidation cycles. AHOLD conditions the 
486 microprocessors address lines, A4-A31, to ac
cept an address input. EADS# indicates that an ex
ternal address is actually valid on the address 
inputs. Activating EADS# will cause the 486 mi
croprocessor to read the external address bus 
and perform an internal cache invalidation cycle to 
the address indicated. Refer to Section 7.2.8 for 
cache invalidation cycle timing. 
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Address Hold Request Input (AHOLD) 

AHOLD is the address hold request. It allows anoth
er bus master access to the 486 microprocessor 
address bus for performing an internal cache invali
dation cycle. Asserting AHOLD will force the 486 mi
croprocessor to stop driving its address bus in the 
next clock. While AHOLD is active only the address 
bus will be floated, the remainder of the bus can 
remain active. For example, data can be returned for 
a previously specified bus cycle when AHOLD is ac
tive. The 486 microprocessor will not initiate another 
bus cycle during address hold. Since the 486 micro
processor floats its bus immediately in response to 
AHOLD, an address hold acknowledge is not re
quired. 

AHOLD is recognized during reset. Since the entire 
cache is invalidated by reset, any invalidation cycles 
run during reset will be unnecessary. AHOLD is ac
tive HIGH and is provided with a small internal pull
down resistor. It must satisfy the setup and hold 
times t18 and t19 for proper chip operation. This pin 
determines whether or not the built in self test fea
tures of the 486 microprocessor will be exercised on 
assertion of RESET. 

External Address Valid Input (EAD5#) 

EADS # indicates that a valid external address has 
been driven onto the 486 address pins. This address 
will be used to perform an internal cache invalidation 
cycle. The external address will be checked with the 
current cache contents. If the address specified 
matches any areas in the cache, that area will imme
diately be invalidated. 

An invalidation cycle may be run by asserting 
EADS# regardless of the state of AHOLD, HOLD 
and BOFF #. EADS # is active LOW and is provided 
with an internal pullup resistor. EADS# must satisfy 
the setup and hold times t12 and t13 for proper chip 
operation. 

6.2.11 CACHE CONTROL 

Cache Enable Input (KEN #) 

KEN # is the cache enable pin. KEN # is used to 
determine whether the data being returned by the 
current cycle is cacheable. When KEN # is active 
and the 486 microprocessor generates a cycle that 
can be cached (most any memory read cycle), the 
cycle will be transformed into a cache line fill cycle. 

A cache line is 16 bytes long. During the first cycle of 
a cache line fill the byte-enable pins should be ig
nored and data should be returned as if all four byte 
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enables were asserted. The 486 microprocessor will 
run between 4 and 16 contiguous bus cycles to fill 
the line depending on the bus data width selected by 
858# and 8516#. Refer to Section 7.2.3 for a de
scription of cache line fill cycles. 

The KEN # input is active LOW and is provided with 
a smaii internai pull up resistor. It must satisfy the 
setup and hold times t14 and t15 for proper chip op
eration. 

Cache Flush Input (FLUSH #) 

The FLUSH # input forces the 486 microprocessor 
to flush its entire internal cache. FLUSH # is active 
LOW and need only be asserted for one clock. 
FLUSH # is asynchronous but setup and hold times 
t20 and t21 must be met for recognition on any spe
cific clock. 

FLUSH# also determines whether or not the tristate 
test mode of the 486 microprocessor will be invoked 
on assertion of RESET. 

6.2.12 PAGE CACHEABILITY (PWT, PCD) 

The PWT and PCD output signals correspond to two 
user attribute bits in the page table entry. When pag
ing is enabled, PWT and PCD corresponds to bits 3 
and 4 of the page table entry respectively. When 
paging is disabled, or for cycles that are not paged 
when paging is enabled (for example I/O cycles) 
PWT and PCD correspond to bits 3 and 4 in control 
register 3. 

PCD is masked by the CE (cache enable) bit in con
trol register 0 (CRO). When CE = 0 (cache line fills 
disabled) the 486 microprocessor forces PCD HIGH. 
When CE = 1, PCD is driven with the value of the 
page table entry/directory. 

The purpose of PCD is to provide a cacheable/non
cacheable indication on a page by page basis. The 
486 will not perform a cache fill to any page in which 
bit 4 of the page table entry is set. PWT corresponds 
to the write-back bit and can be used by an external 
cache to provide this functionality. Refer to Sections 
4.5.4 and 5.6 for a discussion of non-cacheable 
pages. 

PCD and PWT have the same timing as the cycle 
definition pins (M/IO#, D/C#, W/R#). PCD and 
PWT are active HIGH and are not driven during bus 
hold. 
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6.2.13 NUMERIC ERROR REPORTING 
(FERR#,IGNNE#) 

To allow PC-type floating point error reporting, the 
486 microprocessor provides two pins, FERR # and 
IGNNE#. 

Floating Point Error Output (FERR #) 

The 486 microprocessor asserts FERR # whenever 
an unmasked floating point error is encountered. 
FERR# is similar to the ERROR# pin on the 387 
math coprocessor. FERR # can be used by external 
logic for PC-type floating point error reporting in 486 
microprocessor systems. FERR # is active LOW, 
and is not floated during bus hold. 

Ignore Numeric Error Input (IGNNE#) 

The 486 microprocessor will ignore a numeric error 
and continue executing non-control floating point 
instructions when IGNNE# is asserted. When deas
serted, the 486 microprocessor will freeze on a 
non-control floating point instruction if a previous in
struction caused an error. IGNNE # has no' effect 
when the NE bit in control register 0 is set. 

The IGNNE# input is active LOW and is provided 
with a small internal pullup resistor. This input is 
asynchronous, but must meet setup and hold times 
t20 and t21 to insure recognition on any specific 
clock. 

6.2.14 BUS SIZE CONTROL (BS16#, BS8#) 

The 8S16# and 8S8# inputs allow external 16- and 
8-bit busses to be supported with a small number of 
external components. The 486 CPU samples these 
pins every clock. The value sampled in the clock 
before ready determines the bus size. When assert
ing 8S 16 # or 858 # only 16 or 8 bits of the data bus 
need be valid. If both 8S16# and 858# are assert
ed, an 8-bit bus width is selected. 

When 8516# or 8S8# are asserted the 486 micro
processor will convert a larger data request to the 
appropriate number of smaller transfers. The byte 
enables will also be modified appropriately for the 
bus size selected. 

8S16# and 858# are active LOW and are provided 
with small internal pullup resistors. 8516# and 
8S8# must satisfy the setup and hold times t14 and 
t15 for proper chip operation. 
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6.2.15 ADDRESS BIT 20 MASK (A20M #) 

Asserting the A20M # input causes the 486 micro
processor to mask physical address bit 20 before 
performing a lookup in the internal cache and before 
driving a memory cycle to the outside world. When 
A20M # is asserted, the 486 microprocessor emu
lates the 1 Mbyte address wraparound that occurs 
on the 8086. A20M # is active LOW and must be 
asserted only when the processor is in real mode. 
A20M # is asynchronous but should meet setup and 
hold times t20 and t21 for recognition in any specific 
clock. For testability, this pin also determines wheth
er or not the external cache test features of the 486 
microprocessor will be exercised upon assertion of 
RESET. 

6.3 Write Buffers 

The 486 microprocessor contains four write buffers 
to enhance the performance of consecutive writes 
to memory. The buffers can be filled at a rate of one 
write per clock until all four buffers are filled. 

When all four buffers are empty and the bus is idle, a 
write request will propagate directly to the external 
bus bypassing the write buffers. If the bus is not 
available at the time the write is generated internally, 
the write will be placed in the write buffers and prop
agate to the bus as soon as the bus becomes avail
able. The write is stored in the on-chip cache imme
diately if the write is a cache hit. 

Writes will be driven onto the external bus in the 
same order in which they are received by the write 
buffers. Under certain conditions a memory read will 
go onto the external bus before the memory writes 
pending in the buffer even though the writes oc
curred earlier in the program execution. 

A memory read will only be reordered in front of all 
writes in the buffers under the following conditions: If 
all writes pending in the buffers are cache hits and 
the read is a cache miss. Under these conditions the 
486 microprocessor will not read from an external 
memory location that needs to be updated by one of 
the pending writes. 

Reordering of a read with the writes pending in the 
buffers can only occur once before all the buffers 
are emptied. The problem with reordering more than 
one write is illustrated with the following example. A 
write to external memory location M is pending in the 
write buffers. This write was a cache hit to location C 
in the on-chip cache. A read is reordered ahead of 
the write to location M. The data from this read re
places the data in location C in the on-chip cache. 
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Before the pending write can update location M the 
processor generates a read to location M. This read 
is a cache miss since the previous read replaced the 
information in on-chip location C. If the 486 micro
processor reordered this second read ahead of the 
pending write to location M, the processor would 
read stale data. 

6.3.1 WRITE BUFFERS AND 1/0 CYCLES 

Input/Output (I/O) cycles must be handled in a dif
ferent manner by the write buffers. 

I/O reads are never reordered in front of buffered 
memory writes. This insures that the 486 microproc
essor will update all memory locations before read
ing status from an I/O device. 

The 486 microprocessor never buffers single I/O 
writes. When processing an OUT instruction, internal 
execution stops until the I/O write actually com
pletes on the external bus. This allows time for the 
external system to drive an invalidate into the 486 
microprocessor or to mask interrupts before the 
processor progresses to the instruction following 
OUT. Repeated OUT instructions will be buffered. 

I/O device recovery time must be handled slightly 
differently by the 486 microprocessor than with the 
386 microprocessor. I/O device back-to-back write 
recovery times could be guaranteed by the 386 mi
croprocessor by inserting a jump to the next instruc
tion in the code that writes to the device. The jump 
forces the 386 microprocessor to generate a pre
fetch bus cycle which can't begin until the I/O write 
completes. 

Inserting a jump to the next write will not work with 
the 486 microprocessor because the prefetch could 
be satisfied by the on-chip cache. A read cycle must 
be explicitly generated to a non-cacheable location 
in memory to guarantee that a read bus cycle is per
formed. This read will not be allowed to proceed to 
the bus until after the I/O write has completed be
cause I/O writes are not buffered. The I/O device 
will have time to recover to accept another write dur
ing the read cycle. 

6.3.2 WRITE BUFFERS IMPLICATIONS ON 
LOCKED BUS CYCLES 

Locked bus cycles are used for read-modify-write 
accesses to memory. During a read-modify-write ac
cess, a memory base variable is read, modified and 
then written back to the same memory location. It is 
important that no other bus cycles, generated by 
other bus masters or by the 486 microprocessor it
self, be allowed on the external bus between the 
read and write portion of the locked sequence. 
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During a locked read cycle the 486 microprocessor 
will always access external memory, it will never 
look for the location in the on-chip cache. All data 
pending in the 486 microprocessor's write buffers 
will be written to memory before a locked cycle is 
allowed to proceed to the external bus. 

The 486 microprocessor will assert the LOCK # pin 
after the write buffers are emptied during a locked 
bus cycle. With the LOCK # pin asserted, the micro
processor will read the data, operate on the data 
and place the results in a write buffer. The contents 
of the write buffer will then be written to external 
memory. LOCK# will become inactive after the write 
part of the locked cycle. 

6.4 Interrupt and Non-Maskable 
Interrupt Interface 

The 486 microprocessor provides two asynchronous 
interrupt inputs, INTR (interrupt request) and NMI 
(non-maskable interrupt input). This section de
scribes the hardware interface between the instruc
tion execution unit and the pins. For a description of 
the algorithmic response to interrupts refer to Sec
tion 2.7. For interrupt timings refer to Section 7.2.10. 

6.4.1 INTERRUPT LOGIC 

The 486 microprocessor contains a two-clock syn
chronizer on the interrupt line. An interrupt request 
will reach the internal instruction execution unit two 
clocks after the INTR pin is asserted, if proper setup 
is provided to the first stage of the synchronizer. 
There is no special logic in the interrupt path other 
than the synchronizer. The INTR signal is level sen
sitive and must remain active for the instruction exe
cution unit to recognize it. The interrupt will not be 
serviced by the 486 microprocessor if the INTR sig
nal does not remain active. 

The instruction execution unit will look at the state of 
the synchronized interrupt signal at specific clocks 
during the execution of instructions (if interrupts are 
enabled). These specific clocks are at instruction 
boundaries, or iteration boundaries in the case of 
string move instructions. Interrupts will only be ac
cepted at these boundaries. 

An interrupt must be presented to the 486 micro
processor INTR pin three clocks before the end of 
an instruction for the interrupt to be acknowledged. 
Presenting the interrupt 3 clocks before the end of 
an instruction allows the interrupt to pass through 
the two clock synchronizer leaving one clock to pre
vent the initiation of the next sequential instruction 
and to begin interrupt service. If the interrupt is not 
received in time to prevent the next instruction, it will 
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be accepted at the end of next instruction, assuming 
INTR is still held active. The interrupt service micro
code will start after two dead clocks. 

The longest latency between when an interrupt re
quest is presented on the INTR pin and when the 
interrupt service begins is: longest instruction used 
+ the two ciocks lor synchronization + one ciock 
required to vector into the interrupt service micro
code. 

6.4.2 NMI LOGIC 

The NMI pin has a two-clock synchronizer like that 
used on the INTR line. Other than the two-clock syn
chronizer, the NMI logic is different from that of the 
maskable interrupt. 

NMI is edge triggered as opposed to the level trig
gered INTR signal. The rising edge of the NMI signal 
is used to generate the interrupt request. The NMI 
input need not remain active until the interrupt is ac
tually serviced. The NMI pin only needs to remain 
active for a single clock if the required setup and 
hold times are met. NMI will operate properly if it is 
held active for an arbitrary number of clocks. 

The NMI input must be held inactive for at least two 
clocks after it is asserted to reset the edge triggered 
logic. A subsequent NMI may not be generated if the 
NMI is not held inactive for at least two clocks after 
being asserted. 

The NMI input is internally masked whenever the 
NMI routine is entered. The NMI input will remain 
masked until an IRET (return from interrupt) instruc
tion is executed. Masking the NMI signal prevents 
recursive NMI calls. If another NMI occurs while the 
NMI is masked off, the pending NMI will be executed 
after the current NMI is done. Only one NMI can be 
pending while NMI is masked. 

6.5 Reset and Initialization 

The 486 microprocessor has a built in self test 
(BIST) that can be run during reset. The BIST is in
voked if the AHOLD pin is asserted on the falling 
edge of RESET. Refer to Section 8.0 for information 
on 486 microprocessor testability. 

The 486 registers have the values shown in Table 
6.2 after RESET is performed. The EAX register 
contains information on the success or failure of the 
BIST if the self test is executed. The EDX register 
always reflects the chip and revision ID after RE
SET. The floating point registers are initialized as if 
the FINIT IFNINIT (initialize processor) instruction 
was executed if the BIST was performed. If the BIST 
is not executed, the floating point registers are un
changed. 
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Table 6.2. Register Values after Reset 

Register Initial Value (BIST) Initial Value (No Bist) 

EAX Zero (Pass) Undefined 
ECX Undefined Undefined 
EDX 0004 + Revision ID 0004 + Revision ID 
EBX Undefined Undefined 
ESP Undefined Undefined 
EBP Undefined Undefined 
ESI Undefined Undefined 
EDI Undefined Undefined 
EFLAGS 00000002h 00000002h 
EIP OFFFOh OFFFOh 
ES OOOOh OOOOh 
CS FOOOh* FOOOh* 
SS OOOOh OOOOh 
DS OOOOh OOOOh 
FS OOOOh OOOOh 
GS OOOOh OOOOh 
IDTR Base = 0, Limit = 3FFh Base = 0, Limit = 3FFh 
CRO OOOOOOOOh 
DR? OOOOOOOOh 

CW 03?Fh 
SW OOOOh 
TW FFFFh 
FIP OOOOOOOOh 
FEA OOOOOOOOh 
FCS OOOOh 
FDS OOOOh 
FOP OOOh 
FSTACK Undefined 

The 486 microprocessor will start executing instruc
tions at location FFFFFFFOH after RESET. When 
the first InterSegment Jump or Call is executed, ad
dress lines A20-A31 will drop LOW for CS-relative 
memory cycles, and the 486 microprocessor will 
only execute instructions in the lower one Mbyte of 
physical memory. This allows the system designer to 
use a ROM at the top of physical memory to initialize 
the system and take care of RESETs. 

RESET forces the 486 microprocessor to terminate 
all execution and local bus activity. No instruction or 
bus activity will occur as long as RESET is active. 

6.5.1 PIN STATE DURING RESET 

The 486 microprocessor recognizes and can re
spond to HOLD, AHOLD, and BOFF # requests re-
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OOOOOOOOh 
OOOOOOOOh 

Unchanged 
Unchanged 
Unchanged 
Unchanged 
Unchanged 
Unchanged 
Unchanged 
Unchanged 
Unchanged 

gardless of the state of RESET. Thus, even though 
the processor is in reset, it can still float its bus in 
response to any of these requests. 

While in reset, the 486 microprocessor bus is in the 
state shown in Table 6.3 if the HOLD, AHOLD and 
BOFF # requests are inactive. Note that the address 
(A31-A2, BE3#-BEO#) and cycle definition 
(M/IO#, D/C#, W/R#) pins are undefined from the 
time reset is asserted up to the start of the first bus 
cycle. All undefined pins (except FERR#) assume 
known values at the beginning of the first bus cycle. 
The first bus cycle is always a code fetch to address 
FFFFFFFOH. FERR# reflects the state of the ES 
(error summary status) bit in the floating point unit 
status word. The ES bit is initialized whenever the 
floating point unit state is initialized. 
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Table 6.3. Pin State during Reset 

Pin Name 

A31-A2 
8E3#-BEO# 
PWT, PCO 
M/IO#, O/C#, W/R# 
031-00 
OPO-OP3 
PCHK# 
LOCK# 
PLOCK # 
AOS# 
BREQ 
HLOA 
BLAST# 
FERR# 

Pin State during Reset, 
Provided HOLD, AHOLD, 
and BOFF # are Inactive 

Undefined 
Undefined 
Undefined 
Undefined 
High Impedance 
High Impedance 
High 
High 
Undefined 
High 
Low 
Low 
Undefined 
Undefined 

7.0 BUS OPERATION 

7.1 Data Transfer Mechanism 

All data transfers occur as a result of one or more 
bus cycles. Logical data operands of byte, word and 
dword lengths may be transferred without restric· 
tions on physical address alignment. Oata may be 
accessed at any byte boundary but two or three cy· 
cles may be required for unaligned data transfers. 
See Section 7.1.3 Oynamic Bus Sizing and 7.1.6 Op· 
erand Alignment. 

The 486 microprocessor address signals are split 
into two components. High·order address bits are 
provided by the address lines, A2-A31. The byte 
enables, BEO#-BE3#, form the low·order address 
and provide linear selects for the four bytes of the 
32·bit address bus. 

The byte enable outputs are asserted when their as· 
sociated data bus bytes are involved with the pres
ent bus cycle, as listed in Table 7.1. Byte enable 
patterns which have a negated byte enable separat· 
ing two or three asserted byte enables will never 
occur (see Table 7.5). All other byte enable patterns 
are possible. 
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Table 7.1. Byte Enables and Associated 
Data and Operand Bytes 

Byte 
Enable Associated Data Bus Signals 
Signal 

BEO# DO-07 (byte O-Ieast significant) 

BE1# 08-015 (byte 1) 

BE2# 016-023 (byte 2) 

BE3# 024-031 (byte 3-most significant) 

Address bits AO and A 1 of the physical operand's 
base address can be created when necessary. Use 
of the byte enables to create AO and A 1 is shown in 
Table 7.2. The byte enables can also be decoded to 
generate BLE# (byte low enable) and BHE# (byte 
high enable). These signals are needed to address 
16·bit memory systems (see Section 7.1.4 Inter· 
facing with 8· and 16·bit memories). 

A31 

A31 

A31 

A31 

A31 

A31 

Table 7.2. Generating AO-A31 from 
BEO#-BE3# and A2-A31 

486TM CPU Address Signals 

......... A2 BE3# BE2# BE1# 

Physical Base 

Address 

......... A2 A1 AO 

. ........ A2 0 0 X X X 

......... A2 0 1 X X Low 

......... A2 1 0 X Low High 

......... A2 1 1 Low High High 

7.1.1 MEMORY AND 1/0 SPACES 

BEO# 

Low 

High 

High 

High 

Bus cycles may access physical memory space or 
1/0 space. Peripheral devices in the system may ei· 
ther be memory·mapped, or 1/0·mapped, or both. 
Physical memory addresses range from OOOOOOOOH 
to FFFFFFFFH (4 gigabytes). 1/0 addresses range 
from OOOOOOOOH to OOOOFFFFH (64 Kbytes) for pro· 
grammed 1/0. See Figure 7.1. 
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Figure 7.1. Physical Memory and 1/0 Spaces 

7.1.2 MEMORY AND 1/0 SPACE 
ORGANIZATION 

The 486 microprocessor datapath to memory and 
input/output (I/O) spaces can be 32-, 16- or 8-bits 
wide. The byte enable signals, BEO#-BE3#, allow 
byte granularity when addressing any memory or I/O 
structure whether 8, 16 or 32 bits wide. 

The 486 microprocessor includes bus control pins, 
B816 # and B88 #, which allow direct connection to 
16- and 8-bit memories and I/O devices. Cycles to 
32-, 16- and 8-bit may occur in any sequence, since 
the B88# and B816# signals are sampled during 
each bus cycle. 

32-bit wide memory and I/O spaces are organized 
as arrays of physical 4-byte words. Each memory or 
I/O 4-byte word has four individually addressable 
bytes at consecutive byte addresses (see Figure 
7.2). The lowest addressed byte is associated with 
data signals 00-07; the highest-addressed byte 
with 024-031. Physical 4-byte words begin at ad
dresses divisible by four. 
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32-Bit Wide Organization 

"'~,,~ I I I I 1'''''''0" 
00000003H '-' '.' .--' oOOOOOOOH 

BE3# BE2# BE1# BEO# 
240440-34 

16·Bit Wide Organization 

"'''''~ CD ,~"'''" 
00000001 H '-. • .--' OOOOOOOOH 

BHE# BLE# 
240440-35 

Figure 7.2. Physical Memory 
and 1/0 Space Organization 
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16-bit memories are organized as arrays of physical 
2-byte words. Physical 2-byte words begin at ad
dresses divisible by two. The byte enables 8EO#-
8E3#, must be decoded to A1, 8LE# and 8HE# to 
address 16-bit memories (see 5ection 7.1.4). 

To address 8-bit memories, the two low order ad
diess bits AO and AI, must be decoded irom BEO # -
8E3#. The same logic can be used for 8- and 16-bit 
memories since the decoding logic for 8LE# and AO 
are the same (see 5ection 7.1.4). 

7.1.3 DYNAMIC DATA BUS SIZING 

Oynamic data bus sizing is a feature allowing direct 
processor connection to 32-, 16- or 8-bit buses for 
memory or 1/0. A processor may connect to all 
three bus sizes. Transfers to or from 32-, 16- or 8-bit 
devices are supported by dynamically determining 
the bus width during each bus cycle. Address decod
ing circuitry may assert 8516# for 16-bit devices, or 
8S8# for 8-bit devices during each bus cycle. 8S8# 
and 8516# must be negated when addressing 32-
bit devices. An 8-bit bus width is selected if both 
8S16# and 858# are asserted. 

8S16# and 8S8# force the 486 microprocessor to 
run additional bus cycles to complete requests larg
er than 16- or 8 bits. A 32-bit transfer will be convert
ed into two 16-bit transfers (or 3 transfers if the data 
is misaligned) when 8516# is asserted. Asserting 
8S8 # will convert a 32-bit transfer into four 8-bit 
transfers. 

Extra cycles forced by 8516# or 858# should be 
viewed as independent bus cycles. 8516# or 858# 
must be driven active during each of the extra cycles 
unless the addressed device has the ability to 
change the number of bytes it can return between 
cycles. 

The 486 microprocessor will drive the byte enables 
appropriately during extra cycles forced by 858# 
and 8516#. A2-A31 will not change if accesses are 
to a 32-bit aligned area. Table 7.3 shows the set of 
byte enables that will be generated on the next cycle 
for each of the valid possibilities of the byte enables 
on the current cycle. 

The dynamic bus sizing feature of the 486 micro
processor is significantly different than that of the 
386 microprocessor. Unlike the 386 microprocessor, 
the 486 microprocessor requires that data bytes be 
driven on the addressed data pins. The simplest ex
ample of this function is a 32-bit aligned, 8516# 
read. When the 486 microprocessor reads the two 
high order bytes, they must be driven on the data 
bus pins 016-031. The 486 microprocessor ex
pects the two low order bytes on 00-015. The 386 
microprocessor expects both the high and low order 
bytes on 00-015. The 386 microprocessor always 
reads or writes data on the lower 16 bits of the data 
bus when 8516# is asserted. 

The external system must contain buffers to enable 
the 486 microprocessor to read and write data on 
the appropriate data bus pins. Table 7.4 shows the 
data bus lines wherl'l the 486 microprocessor ex
pects data to be returned for each valid combination 
of byte enables and bus sizing options. 

Valid data will only be driven onto data bus pins cor
responding to active byte enables during write cy
cles. Other pins in the data bus may be driven but 
they will not contain valid data. Unlike the 386 micro
processor, the 486 microprocessor will not duplicate 
write data onto parts of the data bus for which the 
corresponding byte enable is negated. 

Table 7.3. Next Byte Enable Values for BSn# Cycles 

Current Next with BS8# Next with BS 16 # 
BE3# BE2# BE1# BEO# BE3# BE2# BE1# BEO# BE3# BE2# BE1# BEO# 

1 1 1 0 n n n n n n n n 
1 1 0 0 1 1 0 1 n n n n 
1 0 0 0 1 0 0 1 1 0 1 1 
0 0 0 0 0 0 0 1 0 0 1 1 
1 1 0 1 n n n n n n n n 
1 0 0 1 1 0 1 1 1 0 1 1 
0 0 0 1 0 0 1 1 0 0 1 1 
1 0 1 1 n n n n n n n n 
0 0 1 1 0 1 1 1 n n n n 
0 1 1 1 n n n n n n n n 

"n" means that another bus cycle will not be reqUIred to satisfy the request. 
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Table 7.4. Data Pins Read with Different Bus Sizes 

BE3# BE2# BE1# BEO# 

1 1 1 0 
1 1 0 0 
1 0 0 0 
0 0 0 0 
1 1 0 1 
1 0 0 1 
0 0 0 1 
1 0 1 1 
0 0 1 1 
0 1 1 1 

7.1.4 INTERFACING WITH 8-,16- AND 32-BIT 
MEMORIES 

In 32-bit physical memories such as Figure 7.3, each 
4-byte word begins at a byte address that is a multi
ple of four. A2-A31 are used as a 4-byte word se
lect. BEO#-BE3# select individual bytes within the 
4-byte word. B88# and B816# are negated for all 
bus cycles involving the 32-bit array. 

32 DATA BUS (DO-D31) 
486Tt.I 32-BIT 

CPU ADDRESS BUS (BEO#-BE3#,A2-A31) MEMORY 

TBss# TBSI6# 

"HIGH" "HIGH" 
240440-36 

Figure 7.3. i486TM Microprocessor 
with 32-Bit Memory 

w/o BS8#/BS16# wBS8# WBS16# 

07-00 07-00 07-00 
015-00 07-00 015-00 
023-00 07-00 015-00 
031-00 07-00 015-00 
015-08 015-08 015-08 
023-08 015-08 015-08 
031-08 015-08 015-08 

023-016 023-016 023-016 
031-016 023-016 031-016 
031-024 031-024 031-024 

16- and 8-bit memories require external byte swap
ping logic for routing data to the appropriate data 
lines and logic for generating BHE#, BLE# and A1. 
In systems where mixed memory widths are used, 
extra address decoding logic is necessary to assert 
B816# or B88#. 

Figure 7.4 shows the 486 microprocessor address 
bus interface to 32-,16- and 8-bit memories. To ad
dress 16-bit memories the byte enables must be 
decoded to produce A1, BHE# and BLE# (AO). For 
8-bit wide memories the byte enables must be de
coded to produce AO and A 1. The same byte select 
logic can be used in 16- and 8-bit systems since 
BLE# is exactly the same as AO (see Table 7.5). 

BEO#-BE3# can be decoded as shown in Table 
7.5 to generate A1, BHE# and BLE#. The byte se
lect logic necessary to generate BHE# and BLE# is 
shown in Figure 7.5. 

486 ™ Microprocessor 
Address Bus (A31-A2 BEO#-B33#) 32-Blt 

Memory 

S8# 1 1 BSI6# 

A31-A2 

B 

Address .-- 16-Blt 
Decode BHE#. BLE#, Al 

Memory 

BEO#-BE3# Byte 
Select Logic 

AO{BLE#), Al 
8-Blt 

A31-A2 Memory 

240440-37 

Figure 7.4. Addressing 16- and 8-Bit Memories 
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Table 7.5. Generating A 1, BHE # and BlE # for Addressing 16-Bit Devices 

1486TM CPU Signals 8, 16-Bit Bus Signals 
Comments 

BE3# BE2# BE1# BEO# A1 BHE# BlE# (AO) 

H* H* H* H* x x x x-no active bytes 
H H H L L H L 
u H L H L L H II 

H H L L L L L 
H L H H H H L 
H* L* H* L* x x x x-not contiguous bytes 
H L L H L L H 
H L L L L L L 
L H H H H L H 
L* H* H* L* x x x x-not contiguous bytes 
L* H* L* HO x x x x-not contiguous bytes 
L* H* L* L* x x x x-not contiguous bytes 
L L H H H L L 
L* L* HO L* x x x x-not contiguous bytes 
L L L H L L H 
L L L L L L L 

BLE# asserted when 00-07 of 16-bit bus is active. 
BHE# asserted when 08-015 of 16-bit bus is active. 
A 1 low for all even words; A 1 high for all odd words. 

Key: 
x = don't care 
H = high voltage level 
L = low voltage level 
• = a non-occurring pattern of Byte Enables; either none are asserted, 

or the pattern has Byte Enables asserted for non-contiguous bytes 

BEO# 
_BE_'_#_[_)o---[>o-& 

BEt# 
_BE_3_#_[_~ 

240440-38 240440-39 

240440-40 

Figure 7.5. logic to Generate A 1, BHE # and BlE # for 16-Bit Busses 

Combinations of BEO#-BE3# which never occur 
are those in which two or three asserted byte en
ables are separated by one or more negated byte 
enables. These combinations are "don't care" con
ditions in the decoder. A decoder can use the non
occurring BEO#-BE3# combinations to its best ad
vantage. 
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Figure 7.6 shows a 486 microprocessor data bus in
terface to 16- and 8-bit wide memories. External 
byte swapping logic is needed on the data lines so 
that data is supplied to, and received from the 486 
microprocessor on the correct data pins (see Table 
7.4). 
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00-07 4 
08-015 4 32-Blt 

486 ™ MIcroprocessor 016-023 4 Memory 
024-031 4 

BS8 # 
BS16# (A2-A31, BEOH-BE3H) 

Byte 
( 16 ~I 16-Blt I Swap ~ , Memory Logic 

Address Byte 8 8-Blt 
Decode Swap Memory 

Logic 

240440-74 

Figure 7.6, Data Bus Interface to 16- and 8-bit Memories 

7.1.5 DYNAMIC BUS SIZING DURING CACHE 
LINE FILLS 

B88# and B816# can be driven during cache line 
fills. The 486 microprocessor will generate enough 
8- or 16-bit cycles to fill the cache line. This can be 
up to 16 8-bit cycles. 

The external system should assume that all byte en
ables are active for the first cycle of a cache line fill. 
The 486 microprocessor will generate proper byte 
enables for subsequent cycles in the line fill. Table 
7.6 shows the appropriate AO (BLE#), A1 and 
BHE# for the various combinations of the 486 mi
croprocessor byte enables on both the first and sub
sequent cycles of the cache line fill. The "." marks 
all combinations of byte enables that will be generat
ed by the 486 microprocessor during a cache line fill. 

7.1.6 OPERAND ALIGNMENT 

Physical 4-byte words begin at addresses that are 
multiples of four. It is possible to transfer a logical 
operand that spans more than one physical 4-byte 
word of memory or I/O at the expense of extra cy
cles. Examples are 4-byte operands beginning at ad
dresses that are not evenly divisible by 4, or 2-byte 
words split between two physical 4-byte words. 
These are referred to as unaligned transfers. 

Operand alignment and data bus size dictate when 
multiple bus cycles are required. Table 7.7 describes 
the transfer cycles generated for all combinations of 
logical operand lengths, alignment, and data bus siz
ing. When multiple cycles are required to transfer a 
multi-byte logical operand, the highest-order bytes 
are transferred first. For example, when the proces
sor does a 4-byte unaligned read beginning at loca
tion x11 in the 4-byte aligned space, the three high 
order bytes are read in the first bus cycle. The low 
byte is read in a subsequent bus cycle. 

Table 7.6. Generating AD, A1 and BHE# from the i486TM Microprocessor Byte Enables 

BE3# BE2# BE1# BED# 
First Cache Fill Cycle Any Other Cycle 

AD A1 BHE# AD A1 BHE# 

1 1 1 0 0 0 0 0 0 1 
1 1 0 0 0 0 0 0 0 0 
1 0 0 0 0 0 0 0 0 0 

'0 0 0 0 0 0 0 0 0 0 
1 1 0 1 0 0 0 1 0 0 
1 0 0 1 0 0 0 1 0 0 

*0 0 0 1 0 0 0 1 0 0 
1 0 1 1 0 0 0 0 1 1 

'0 0 1 1 0 0 0 0 1 0 
'0 1 1 1 0 0 0 1 1 0 
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Table 7.7. Transfer Bus Cycles for Bytes, Words and Dwords 

Byte-Length of Logical Operand 

Physical Byte Address in 
Memory (Low Order Bits) 

Transfer Cycles 
over 32-Bit Bus 

Transfer Cycles over 
16-Bit Data Bus 

= BS 16 # Asserted 

Transfer Cycles over 
8-Bit Data Bus 

= BS8 # Asserted 

KEY: 
b = byte transfer 
w = 2-byte transfer 
3 = 3-byte transfer 
d = 4-byte transfer 

xx 00 

b 

b 

b 

h = high-order portion 
I = low-order portion 
m = mid-order portion 

01 

The function of unaligned transfers with dynamic 
bus sizing is not obvious. When the external systems 
asserts BS16# or BS8# forcing extra cycles, low
order bytes or words are transferred first (opposite 
to the example above). When the 486 microproces
sor requests a 4-byte read and the external system 
asserts BS16#, the lower 2 bytes are read first fol
lowed by the upper 2 bytes. 

In the unaligned transfer described above, the proc
essor requested three bytes on the first cycle. If the 
external system asserted BS 16 # during this 3-byte 
transfer, the lower word is transferred first followed 
by the upper byte. In the final cycle the lower byte of 
the 4-byte operand is transferred as in the 32-bit ex
ample above. 

7.2 Bus Functional Description 

The 486 microprocessor supports a wide variety of 
bus transfers to meet the needs of high performance 
systems. Bus transfers can be single cycle or multi
ple cycle, burst or non-burst, cacheable or non
cacheable, 8-, 16- or 32-bit, and pseudo-locked. To 
support multiprocessing systems there are cache in
validation cycles and locked cycles. 

2 4 
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10 11 00 01 10 11 

4-8yte Operand Ib mlb I mhb I hb I 
t t 

byte with byte with 
lowest highest 
address address 

This section begins with basic non-cacheable non
burst single cycle transfers. It moves on to multiple 
cycle transfers and introduces the burst mode. 
Cacheability is introduced in Section 7.2.3. The re
maining sections describe locked, pseudo-locked, 
invalidate, bus hold and interrupt cycles. 

Bus cycles and data cycles are discussed in this 
section. A bus cycle is at least two clocks long and 
begins with ADS # active in the first clock and ready 
active in the last clock. Data is transferred to or from 
the 486 microprocessor during a data cycle. A bus 
cycle contains one or more data cycles. 

Refer to Section 7.2.13 for a description of the bus 
states shown in the timing diagrams. 

7.2_1 NON-CACHEABLE NON-BURST SINGLE 
CYCLE 

7.2.1.1 No Wait States 

The fastest non-burst bus cycle that the 486 micro
processor supports is two clocks long. These cycles 
are called 2-2 cycles because reads and writes take 
two cycles each. The first 2 refers to reads and the 
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second to writes. For example, if a wait state needs 
to be added to a write, the cycle would be called 2-3. 

Basic two clock read and write cycles are shown in 
Figure 7.7. The 486 microprocessor initiates a cycle 
by asserting the address status signal (ADS#) at the 
rising edge of the first clock. The ADS# output indi
cates that a valid bus cycle definition and address is 
available on the cycle definition lines and address 
bus. 

The non-burst ready input (RDY#) is returned by the 
external system in the second clock. RDY # indi
cates that the external system has presented valid 
data on the data pins in response to a read or the 
external system has accepted data in response to a 
write. 

The 486 microprocessor samples RDY # at the ris
ing edge of the third clock. The cycle is complete if 
RDY # is active (LOW) when sampled. Note that 
RDY # is ignored at the end of the first clock of the 
bus cycle. 

The bUfst last signal (BLAST #) is asserted (LOW) 
by the 486 microprocessor during the second clock 
of the first cycle in all bus transfers illustrated in Fig
ure 7.7. This indicates that each transfer is complete 
after a single cycle. The 486 microprocessor asserts 
BLAST # in the last cycle of a bus transfer. 

The timing of the parity check output (PCHK#) is 
shown in Figure 7.7. The 486 microprocessor drives 
the PCHK# output one clock after ready terminates 
a read cycle. PCHK# indicates the parity status for 
the data sampled at the end of the previous clock. 
The PCHK# signal can be used by the external sys
tem. The 486 microprocessor does nothing in re
sponse to the PCHK# output. 

7.2.1.2 Inserting Wait States 

The external system can insert wait states into the 
basic 2-2 cycle by driving RDY # inactive at the erid 
of the second clock. RDY # must be driven inactive 
to insert a wait state. Figure 7.8,illustrates a simple 
non-burst, non-cacheable signal with one wait state 
added. Any number of wait states can be added to a 
486 microprocessor bus cycle by maintaining RDY # 
inactive. 

The burst ready input (BRDY #) must be driven inac
tive on all clock edges where RDY # is driven inac
tive for proper operation of these simple non-burst 
cycles. 
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7.2.2 MULTIPLE AND BURST CYCLE BUS 
TRANSFERS 

Multiple cycle bus transfers can be caused by inter
nal requests from the 486 microprocessor or by the 
external memory system. An internal request for a 
64-bit floating point load or a 128-bit pre-fetch must 
take more than one cycle. Internal requests for un
aligned data may also require multiple bus cycles. A 
cache line fill requires multiple cycles to complete. 
The external system can cause a multiple cycle 
transfer when it can only supply 8 or 16 bits per 
cycle. 

Only multiple cycle transfers caused by internal re
quests are considered in this section. Cacheable cy
cles and 8- and 16-bit transfers are covered in Sec
tions 7.2.3 and 7.2.5. 

7.2.2.1 Burst Cycles 

The 486 microprocessor can accept burst cycles for 
any bus requests that require more than a single 
data cycle. During burst cycles, a new data item is 
strobed into the 486 microprocessor every clock 
rather than every other clock as in non-burst cycles. 
The fastest burst cycle requires 2 clocks for the first 
data item with subsequent data items returned every 
clock. 

The 486 microprocessor is capable of bursting a 
maximum of 32 bits during a write. Burst writes can 
only occur if BS8# or BS16# is asserted. For exam
ple, the 486 microprocessor can burst write four 8-
bit operands or two 16-bit operands in a single burst 
cycle. But the 486 microprocessor cannot burst mUl
tiple 32-bit writes in a single burst cycle. 

Burst cycles begin with the 486 microprocessor driv
ing out an address and asserting ADS# in the same 
manner as non-burst cycles. The 486 microproces
sor indicates that it is willing to perform a burst cycle 
by holding the burst last signal (BLAST#) inactive in 
the second clock of the cycle. The external system 
indicates its willingness to do a burst cycle by return
ing the burst ready signal (BRDY#) active. 

The addresses of the data items in a burst cycle will 
all fall within the same 16-byte aligned area (corre
sponding to an internal 486 microprocessor cache 
line). A 16-byte aligned area begins at location 
XXXXXXXO and ends at location XXXXXXXF. Given 
the first address in a burst, external hardware can 
easily calculate the address of subsequent transfers 
in advance. An external memory system can be de
signed to quickly fill the 486 microprocessor internal 
cache lines. 
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Figure 7.7. Basic 2-2 Bus Cycle 
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Figure 7.8. Basic 3-3 Bus Cycle 
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Burst cycles are not limited to cache line fills. Any 
multiple cycle read request by the 486 microproces
sor can be converted into a burst cycle. The 486 
microprocessor will only burst the number of bytes 
needed to complete a transfer. For example, eight 
bytes will be bursted in for a 64-bit floating point 
non-cacheable read. 

The external system converts a multiple cycle re
quest into a burst cycle by returning BROY # active 
rather than ROY # (non-burst ready) in the first cycle 
of a transfer. For cycles that cannot be bursted such 
as interrupt acknowledge and halt, BROY # has the 
same effect as ROY #. BROY # is ignored if both 
BROY # and ROY # are returned in the same clock. 
Memory areas and peripheral devices that cannot 
perform bursting must terminate cycles with ROY #. 

7.2.2.2 Terminating Multiple and 
Burst Cycle Transfers 

The 486 microprocessor drives BLAST # inactive for 
all but the last cycle in a multiple cycle transfer. 
BLAST# is driven inactive in the first cycle to inform 
the external system that the transfer could take ad
ditional cycles. BLAST# is driven active in the last 
cycle of the transfer indicating that the next time 
BROY # or ROY # is returned the transfer is com
plete. 

BLAST# is not valid in the first clock of a bus cycle. 
It should be sampled only in the second and subse
quent clocks when ROY # or BROY # is returned. 

The number of cycles in a transfer is a function of 
several factors including the number of bytes the mi
croprocessor needs to complete an internal request 
(1, 2, 4, 8, or 16), the state of the bus size inputs 
(BS8# and BS16#), the state of the cache enable 
input (KEN#) and alignment of the data to be trans
ferred. 

When the 486 microprocessor initiates a request it 
knows how many bytes will be transferred and if the 
data is aligned. The external system must tell the 
microprocessor whether the data is cacheable (if the 
transfer is a read) and the width of the bus by return
ing the state of the KEN #, BS8 # and BS 16 # inputs 
one clock before ROY # or BROY # is returned. The 
486 microprocessor determines how many cycles a 
transfer will take based on its internal information 
and inputs from the external system. 
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BLAST # is not valid in the first clock of a bus cycle 
because the 486 microprocessor cannot determine 
the number of cycles a transfer will take until the 
external system returns KEN#, 8S8# and BS16#. 
BLAST # should only be sampled in the second and 
subsequent clocks of a cycle when the external sys
tem returns ROY # or BROY #. 

7.2.2.3 Non-Cacheable, Non-Burst, Multiple 
Cycle Transfers 

Figure 7.9 illustrates a 2 cycle non-burst, non-cache
able multiple cycle read. This transfer is simply a 
sequence of two single cycle transfers. The 486 mi
croprocessor indicates to the external system that 
this is a multiple cycle transfer by driving BLAST # 
inactive during the second clock of the first cycle. 
The external system returns ROY # active indicating 
that it will not burst the data. The external system 
also indicates that the data is not cacheable by re
turning KEN # inactive one clock before it returns 
ROY # active. When the 486 microprocessor sam
ples ROY # active it ignores BROY #. 

Each cycle in the transfer begins when ADS # is 
driven active and the cycle is complete when the 
external system returns ROY # active. 

The 486 microprocessor indicates the last cycle of 
the transfer by driving BLAST # active. The next 
ROY # returned by the external system terminates 
the transfer. 

7.2.2.4 Non-Cacheable Burst Cycles 

The external system converts a multiple cycle re
quest into a burst cycle by returning BROY # active 
rather than ROY # in the first cycle of the transfer. 
This is illustrated in Figure 7.10. 

There are several features to note in the burst read. 
AOS# is only driven active during the first cycle of 
the transfer. ROY # must be driven inactive when 
BROY # is returned active. 

BLAST # behaves exactly as it does in the non-burst 
read. BLAST # is driven inactive in the second clock 
of the first cycle of the transfer indicating more cy
cles to follow. In the last cycle, BLAST # is driven 
active telling the external memory system to end the 
burst after returning the next BROY #. 
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Figure 7.9. Non-Cacheable, Non-Burst, Multiple Cycle Transfers 
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Figure 7.10. Non-Cacheable Burst Cycle 
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7.2.3 CACHEABLE CYCLES 

Any memory read can become a cache fill operation. 
The external memory system can allow a read reo 
quest to fill a cache line by returning KEN # active 
one clock before ROY # or BROY # during the first 
cycle of the transfer on the external bus. Once 
KEN # is asserted and the remaining three require
ments described below are met, the 486 microproc
essor will fetch an entire cache line regardless of the 
state of KEN #. KEN # must be returned active in 
the last cycle of the transfer for the data to be writ
ten into the internal cache. The 486 microprocessor 
will only convert memory reads or prefetches into a 
cache fill. 

KEN# is ignored during write or I/O cycles. Memory 
writes will only be stored in the on-chip cache if 
there is a cache hit. I/O space is never cached in 
the internal cache. 

To transform a read or a prefetch into a cache line 
fill the following conditions must be met: 

1. The KEN # pin must be asserted one clock pri
or to ROY # or BROY # being returned for the 
first data cycle. 

2. The cycle must be of the type that can be inter
nally cached. (Locked reads, I/O reads, and in
terrupt acknowledge cycles are never cached). 

3. The page table entry must have the page cache 
disable bit (PCO) set to O. To cache a page 
table entry, the page directory must have 
PCO = O. To cache reads or prefetches when 
paging is disabled, or to cache the page direc
tory entry, control register 3 (CR3) must have 
PCO=O. 

4. The cache enable (CE) bit in control register 0 
(CRO) must be set. 

Cacheable cycles can be burst or non-burst. 

7.2.3.1 Byte Enables during a Cache Line Fill 

For the first cycle in the line fill, the state of the byte 
enables should be ignored. In a non-cacheable 
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memory read, the byte enables indicate the bytes 
actually required by the memory or code fetch. 

The 486 microprocessor expects to receive valid 
data on its entire bus (32 bits) in the first cycle of a 
cache line fill. Data should be returned with the as
sumption that all the byte enable pins are driven ac
tive. However if BS8 # is asserted only one byte 
need be returned on data lines 00-07. Similarly if 
BS16# is asserted two bytes should be returned on 
00-015. 

The 486 microprocessor will generate the addresses 
and byte enables for all subsequent cycles in the 
line fill. The order in which data is read during a line 
fill depends on the address of the first item read. 
Byte ordering is discussed in Section 7.2.4. 

7.2.3.2 Non-Burst Cacheable Cycles 

Figure 7.11 shows a non-burst cacheable cycle. The 
cycle becomes a cache fill when the 486 microproc
essor samples KEN # active at the end of the first 
clock. The 486 microprocessor drives BLAST# in
active in the second clock in response to KEN #. 
BLAST # is driven inactive because a cache fill re
quires 3 additional cycles to complete. BLAST# re
mains inactive until the last transfer in the cache line 
fill. 

Note that this cycle would be a single bus cycle if 
KEN# was not sampled active at the end of the first 
clock. The subsequent three reads would not have 
happened since a cache fill was not requested. 

The BLAST # output is invalid in the first clock of a 
cycle. BLAST # may be active during the first clock 
due to earlier inputs. Ignore BLAST # until the sec
ond clock. 

During the first cycle of the cache line fill the ex1er
nal system should treat the byte enables as if they 
are all active. In subsequent cycles in the burst, the 
486 microprocessor drives the address lines and 
byte enables (see Section 7.2.4.2 for Burst and 
Cache Line Fill Order). 



infef i486™ MICROPROCESSOR 

ClK 

ADS# 

A2-A31 
MjIO# 
Djc# 
WjR# 

BEO-3# 

RDY# 

BRDY# 

KEN# 

BlAST# 

Ti T1 T2 

\~I 

I 

W 

T1 T2 T1 T2 TI T2 n 

\ / ;....-'_ ... \ I .... _ ...... --'. \ I .... _ ...... --" 

w 
\ ~ \ \ r I ~ I \._-'-___ l...._+I_..I __ _ 

I I I I 

DATA ----r----~-~~~--~--~~~--~--~~~--~---~ 
240440-54 

Figure 7.11. Non-Burst, Cacheable Cycles 

7.2.3.3 Burst Cacheable Cycles 

Figure 7.12 illustrates a burst mode cache fill. As in 
Figure 7.11, the transfer becomes a cache line fill 
when the external system returns KEN # active at 
the end of the first clock in the cycle. 
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The external system informs the 486 microproces
sor that it will burst the line in by driving BRDY # 
active at the end of the first cycle in the transfer. 

Note that during a burst cycle ADS# is only driven 
with the first address. 
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Figure 7.12. Burst Cacheable Cycle 

7.2.3.4 Effect of Changing KEN# during a 
Cache Line Fill 

KEN# can change multiple times as long as it ar
rives at its final value in the clock before RDY # or 
BRDY # is returned. This is illustrated in Figure 7.13. 
Note that the timing of BLAST # follows that of 
KEN # by one clock. In the first clock KEN # is driv
en active converting the cycle into a cache fill and in 
the second clock BLAST # is driven inactive in re
sponse. In the second clock, KEN# is driven inac-
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tive converting the cache fill back to a normal cycle 
and BLAST# responds by going active in the next 
clock. Finally in the third clock KEN # goes active 
again converting the cycle to a cache fill and 
BLAST# go inactive in the next clock. RDY# is re
turned active in the fourth clock starting the cache 
fill. 

KEN # can also change multiple times before a burst 
cycle as long as it arrives at its final value one clock 
before ready is returned active. 
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Figure 7.13. Effect of Changing KEN # 

7.2.4 BURST MODE DETAILS Driving BRDY # and RDY # inactive adds a wait 
state to the transfer. A burst cycle where two clocks 

7.2.4.1 Adding Wait States to Burst Cycles 
are required for every burst item is shown in Figure 
7.14. 

Burst cycles need not return data on every clock. 
The 486 microprocessor will only strobe data into 
the chip when either RDY# or BRDY# are active. 
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Figure 7.14. Slow Burst Cycle 

7.2.4.2 Burst and Cache Line Fill Order 

The burst order used by the 486 microprocessor is 
shown in Table 7.7. Non-burst cache line fills also 
follow the order in Table 7.7. 

The microprocessor presents each request for data 
in an order determined by the first address in the 
transfer. For example, if the first address was 104 
the next three addresses in the burst will be 100, 
10C and 108. 
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Table 7.7. Burst Order 

First Second Third Fourth 
Addr. Addr. Addr. Addr. 

0 4 8 C 
4 0 C 8 
8 C 0 4 
C 8 4 0 

An example of burst address sequencing is shown in 
Figure 7.15. 
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Figure 7.15. Burst Cycle Showing Order of Addresses 

The sequences shown in Table 7.7 accommodate 
systems with 64-bit busses as well as systems with 
32-bit data busses. The sequence applies to all 
bursts, regardless of whether the purpose of the 
burst is to fill a cache line, do a 64-bit read, or do a 
pre-fetch. If either BS8# or BS16# is returned ac
tive, the 486 microprocessor completes the transfer 
of the current 32-bit word before progressing to the 
next 32-bit word. For example, a BS16# burst to 
address 4 has the following order: 4-6-0-2-C-E-8-A. 

7.2.4.3 Interrupted Burst Cycles 

Some memory systems may not be able to respond 
with burst cycles in the order defined in Table 7.7. 
To support these systems the 486 microprocessor 
allows a burst cycle to be interrupted at any time. 
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The 486 microprocessor will automatically generate 
another normal bus cycle after being interrupted to 
complete the data transfer. This is called an inter
rupted burst cycle. The external system can respond 
to an interrupted burst cycle with another burst cy
cle. 

The external system can interrupt a burst cycle by 
returning RDY# instead of BRDY#. RDY# can be 
returned after any number of data cycles terminated 
with BRDY#. 

An example of an interrupted burst cycle is shown in 
Figure 7.16. The 486 microprocessor immediately 
drives ADS# active to initiate a new bus cycle after 
RDY# is returned active. BLAST# is driven inactive 
one clock after ADS# begins the second bus cycle 
indicating that the transfer is not complete. 
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Figure 7.16. Interrupted Burst Cycle 

KEN # need not be returned active in the first data 
cycle of the second part of the transfer in Figure 
7.16. The cycle had been converted to a cache fill in 
the first part of the transfer and the 486 microproc
essor expects the cache fill to be completed. Note 
that the first half and second half of the transfer in 
Figure 7.16 are each two cycle burst transfers. 

The order in which the 486 microprocessor requests 
operands during an interrupted burst transfer is de
termined by Table 7.7. Mixing ROY# and BROY# 
does not change the order in which operand ad
dresses are requested by the 486 microprocessor. 
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An example of the order in which the 486 microproc
essor requests operands during a cycle in which the 
external system mixes ROY # and BROY # is shown 
in Figure 7.17. The 486 microprocessor initially re
quests a transfer beginning at location 104. The 
transfer becomes a cache line fill when the external 
system returns KEN # active. The first cycle of the 
cache fill transfers the contents of location 104 and 
is terminated with ROY #. The 486 microprocessor 
drives out a new request (by asserting AOS#) to 
address 100. If the external system terminates the 
second cycle with BROY #, the 486 microprocessor 
will next request/expect address 10C. The correct 
order is determined by the first cycle in the transfer, 
which may not be the first cycle in the burst if the 
system mixes ROY # with BROY #. 
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Figure 7.17. Interrupted Burst Cycle with Unobvious Order of Addresses 

7.2.5 8- AND 16-BIT CYCLES 

The 486 microprocessor supports both 16- and 8-bit 
external busses through the 8816# and 888# in
puts. 8816 # and 888 # allow the external system to 
specify, on a cycle by cycle basis, whether the ad
dressed component can supply 8, 16 or 32 bits. 
8816# and 888# can be used in burst cycles as 
well as non-burst cycles. If both 8816# and 888# 
are returned active for any bus cycle, the 486 micro
processor will respond as if only 888 # were active. 

The timing of 8816# and 888# is the same as that 
of KEN#. 8816# and 888# must be driven active 
before the first RDY # or 8RDY # is driven active. 
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Driving the 8816# and 888# active can force the 
486 microprocessor to run additional cycles to com
plete what would have been only a single 32-bit cy
cle. 888# and 8816# may change the state of 
8LA8T # when they force subsequent cycles from 
the transfer. 

Figure 7.18 shows an example in which 888# 
forces the 486 microprocessor to run two extra cy
cles to complete a transfer. The 486 microprocessor 
issues a request for 24 bits of information. The ex
ternal system drives 888 # active indicating that 
only eight bits of data can be supplied per cycle. The 
486 microprocessor issues two extra cycles to com
plete the transfer. 
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Figure 7.18. 8-Bit Bus Size Cycle 

Extra cycles forced by the BS16# and BS8# should 
be viewed as independent bus cycles. BS16 # and 
BS8# should be driven active for each additional 
cycle unless the addressed device has the ability to 
change the number of bytes it can return between 
cycles. The 486 microprocessor will drive BLAST # 
inactive until the last cycle before the transfer is 
complete. 

Refer to Section 7.1.3 for the sequencing of ad
dresses while BS8# or BS16# are active. 
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BS8# and BS16# operate during burst cycles in ex
actly the same manner as non-burst cycles. For ex
ample, a single non-cacheable read could be trans
ferred by the 486 microprocessor as four 8-bit burst 
data cycles. Similarly, a single 32-bit write could be 
written as four 8-bit burst data cycles. An example of 
a burst write is shown in Figure 7.19. Burst writes 
can only occur if BS8# or BS16# is asserted. 
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Figure 7.19. Burst Write as a Result of BS8# or BS16# 

7.2.6 LOCKED CYCLES 

Locked cycles are generated in software for any in
struction that performs a read-modify-write opera
tion. During a read-modify-write operation the proc
essor can read and modify a variable in external 
memory and be assured that the variable is not ac
cessed between the read and write. 

Locked cycles are automatically generated during 
certain bus transfers. The xchg (exchange) instruc
tion generates a locked cycle when one of its oper
ands is memory based. Locked cycles are generat
ed when a segment or page table entry is updated 
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and during interrupt acknowledge cycles. Locked cy
cles are also generated when the LOCK instruction 
prefix is used with selected instructions. 

Locked cycles are implemented in hardware with the 
LOCK# pin. When LOCK# is active, the processor 
is performing a read-modify-write operation and the 
external bus should not be relinquished until the cy
cle is complete. Multiple reads or writes can be 
locked. A locked cycle is shown in Figure 7.20. 
LOCK # goes active with the address and bus defini
tion pins at the beginning of the first read cycle and 
remains active until ROY # is returned for the last 
write cycle. 
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Figure 7.20. Locked Bus Cycle 

When LOCK# is active, the 486 microprocessor will 
recognize address hold and backoff but will not rec
ognize bus hold. It is left to the external system to 
properly arbitrate a central bus when the 486 micro
processor generates LOCK #. 

7.2.7 PSEUDO-LOCKED CYCLES 

Pseudo-locked cycles assure that no other master 
will be given control of the bus during operand trans
fers which take more than one bus cycle. Examples 
include 64-bit floating point read and writes, 64-bit 
descriptor loads and cache line fills. 

Pseudo-locked transfers are indicated by the 
PLOCK # pin. The memory operands must be 
aligned for correct operation of a pseudo-locked cy
cle. 
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PLOCK # need not be examined during burst reads. 
A 64-bit aligned operand can be retrieved in one 
burst (note: this is only valid in systems that do not 
interrupt bursts). 

The system must examine PLOCK # during 64-bit 
writes since the 486 microprocessor cannot burst 
write more than 32 bits. A 64-bit write will be driven 
out as two non-burst bus cycles. BLAST # is assert
ed during both writes since a burst is not possible. 
PLOCK # is asserted during the first write to indicate 
that another write follows. This behavior is shown in 
Figure 7.21. 

The first cycle of a 64-bit floating point write is the 
only case in which both PLOCK # and BLAST # are 
asserted. Normally PLOCK # and BLAST # are the 
inverse of each other. 
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Figure 7.21. Pseudo Lock Timing 

PLOCK # can change several times during a cycle 
settling to its final value in the clock ready is re
turned. 

7.2.8 INVALIDATE CYCLES 

Invalidate cycles are needed to keep the 486 micro
processor's internal cache contents consistent with 
external memory. The 486 microprocessor contains 
a mechanism for listening to writes by other devices 
to external memory. When the processor finds a 
write to a Section of external memory contained in 
its internal cache, the processor's internal copy is 
invalidated. 

Invalidations use two pins, address hold request 
(AHOLD) and valid external address (EADS#). 
There are two steps in an invalidation cycle. First, 
the extern~1 system asserts the AHOLD input forcing 
the 486 microprocessor to immediately relinquish its 
address bus. Next, the external system asserts 
EADS# indicating that a valid address is on the 486 
microprocessor's address bus. The microprocessor 
reads the address over its address lines. If the mi
croprocessor finds this address in its internal cache, 
the cache entry is invalidated. Note that the 486 mi
croprocessor's address bus is input/output unlike 
the 386 microprocessor's bus, which is output only. 
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The 486 microprocessor immediately relinquishes its 
address bus in the next clock upon assertion of 
AHOLD. For example, the bus could be 3 wait states 
into a read cycle. If AHOLD is activated the 486 
microprocessor will immediately float its address bus 
before ready is returned terminating the bus cycle. 

When AHOLD is asserted only the 'address bus is 
floated, the data bus can remain active. Data can be 
returned for a previously specified bus cycle during 
address hold (see Figures 7.22, 7.23). 

EADS# is normally asserted when an external mas
ter drives an address onto the bus. AHOLD need not 
be driven for EADS# to generate an internal invali
date. If EADS# alone is asserted while the 486 mi
croprocessor is driving the address bus, it is possible 
that the invalidation address will come from the 486 
microprocessor itself. 

Running an invalidate cycle prevents the 486 micro
processor cache from satisfying other internal re
quests, so invalidations should be run only when 
necessary. The fastest possible invalidate cycle is 
shown in Figure 7.22, while a more realistic invalida
tion cycle is shown in 7.23. Both of the examples 
take one clock of cache access from the rest of the 
486 microprocessor. 
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Figure 7.22. Fast Internal Cache Invalidation Cycle 
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Figure 7.23. Typical Internal Cache Invalidation Cycle 
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7.2.8.1 Rate of Invalidate Cycles 

The 486 microprocessor can accept one invalidate 
per clock except in the last clock of a line fill. On.e 
invalidate per clock is possible as long as EADS# IS 

negated in ONE or BOTH of the following cases: 

1. In the clock RDY# or BRDY# is returned for 
the last time. 

2. In the clock following RDY# or BRDY# being 
returned for the last time. 

This definition allows two system designs. Simple 
designs can restrict invalidates to one every other 
clock. The simple design need not track bus activity. 
Alternatively, systems can request one invalidate 
per clock provided that the bus is monitored. 

7.2.8.2 Running Invalidate Cycles Concurrently 
with Line Fills 

Precautions are necessary to avoid caching stale 
data in the 486 microprocessor's cache in a system 
with a second level cache. An example of a system 
with a second level cache is shown in Figure 7.24. 
An external device can be writing to main memory 
over the system bus while the 486 microprocessor is 
retrieving data from the second level cache. The 486 
microprocessor will need to invalidate a line in its 
internal cache if the external device is writing to a 
main memory address also contained in the 486 mi
croprocessor's cache. 
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Figure 7.24. System with Second Level Cache 

A potential problem exists if the external device is 
writing to an address in external memory, and at the 
same time the 486 microprocessor is reading data 
from the same address in the second level cache. 
The system must force an invalidation cycle to invali
date the data that the 486 microprocessor has re
quested during the line fill. 

If the system asserts EADS# before the first data in 
the line fill is returned to the 486 microprocessor, the 
system must return data consistent with the new 
data in the external memory upon resumption of the 
line fill after the invalidation cycle. This is illustrated 
by the asserted EADS# signal labeled 1 in Figure 
7.25. 
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Figure 7.25. Cache Invalidation Cycle Concurrent with Line Fill 

If the system asserts EADS# at the same time or 
after the first data in the line fill is returned (in the 
same clock that the first RDY # or BRDY # is re
turned or any subsequent clock in the line fill) the 
data will be read into the 486 microprocessors input 
buffers but it will not be stored in the on-chip cache. 
This is illustrated by asserted EADS# signal labeled 
2 in Figure 7.25. The stale data will be used to satis
fy the request that initiated the cache fill cycle. 
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7.2.9 BUS HOLD 

The 486 microprocessor provides a bus hold, hold 
acknowledge protocol using the bus hold request 
(HOLD) and bus hold acknowledge (HLDA) pins. As
serting the HOLD input indicates that another bus 
master desires control of the 486 microprocessor's 
bus. The processor will respond by floating its bus 
and driving HLDA active when the current bus cycle, 
or sequence of locked cycles is complete. An exam
ple of a HOLD/HLDA transaction is shown in Figure 
7.26. Unlike the 386 microprocessor, the 486 micro
processor can respond to HOLD by floating its bus 
and asserting HLDA while RESET is asserted. 
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Figure 7.26. HOLD/HLDA Cycles 

The pins floated during bus hold are: BEO # - BE3 # , 
PCO, PWT, W/R#, O/C#, M/IO#, LOCK#, 
PLOCK#, AOS#, BLAST#, 00-031, A2-A31, 
OPO-DP3. 

7.2.10 INTERRUPT ACKNOWLEDGE 

The 486 microprocessor generates interrupt ac
knowledge cycles in response to maskable interrupt 
requests generated on the interrupt request input 
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(INTR) ·pin. Interrupt acknowledge cycles have a 
unique cycle type generated on the cycle type pins. 

An example interrupt acknowledge transaction is 
shown in Figure 7.27. Interrupt acknowledge cycles 
are generated in locked pairs. Oata returned during 
the first cycle is ignored. The interrupt vector is re
turned during the second cycle on the lower 8 bits of 
the data bus. The 486 microprocessor has 256 pos-
sible interrupt vectors. . 
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Figure 7.27. Interrupt Acknowledge Cycles 
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Each of the interrupt acknowledge cycles are termi
nated when the external system returns ROY # or 
BROY #. Wait states can be added by withholding 
ROY # or BROY #. The 486 microprocessor auto
matically generates four idle clocks between the first 
and second cycles to allow for 8259A recovery time. 

7.2.11 SPECIAL BUS CYCLES 

The 486 microprocessor provides four special bus 
cycles to indicate that certain instructions have been 
executed, or certain conditions have occurred inter
nally. The special bus cycles in Table 7.8 are defined 
when the bus cycle definition pins are in the follow
ing state: M/IO# =0, O/C# =0 and W/R# = 1. 

Two of the special cycles indicate halt or shutdown. 
Another special cycle is generated when the 486 mi
croprocessor executes an INVO (invalidate data 
cache) instruction and could be used to flush an ex
ternal cache. The Write Back cycle is generated 
when the 486 microprocessor executes the 
WBINVO (write-back invalidate data cache) instruc
tion and could be used to synchronize an external 
write-back cache. 

The external hardware must acknowledge these 
special bus cycles by returning ROY # or BROY #. 

n Tl T2 Tb 

CLK 

Tb 

Table 7.8. Special Bus Cycle Encoding 

BE3# BE2# BE1# BEO# 
Special 

Bus Cycle 

1 1 1 0 Shutdown 
1 1 0 1 Flush 
1 0 1 1 Halt 
0 1 1 1 Write Back 

7.2.12 BUS CYCLE RESTART 

In a multi-master system another bus master may 
require the use of the bus to enable the 486 micro
processor to complete its current bus request. I n this 
situation the 486 microprocessor will need to restart 
its bus cycle after the other bus master has complet
ed its bus transaction. 

A bus cycle may be restarted if the external system 
asserts the backoff (BOFF #) input. The 486 micro
processor samples the BOFF # pin every clock. The 
486 microprocessor will immediately (in the next 
clock) float its address, data and status pins when 
BOFF# is asserted (see Figure 7.28). Any bus cycle 
in progress when BOFF # is asserted is aborted and 
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A2-A31 ----~-~r-~---~~ M/IO# }---JL-___ -< 
D/C# '----;---.;---1\--;---' '-_-j--"_-; 

BEO-3# 

RDY# 

BRDY# 

KEN# w 
BOFF# 

BLAST# 

DATA 

w 
\~'----,!, 

'1-_---«'----'--'1 

Figure 7.28. Restarted Read Cycle 
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Figure 7.29. Restarted Write Cycle 

any data returned to the processor is ignored. The 
same pins are floated in response to BOFF # as are 
floated in response to HOLD. HLDA is not generated 
in response to BOFF #. BOFF # has higher priority 
than RDY# or BRDY#. If either RDY# or BRDY# 
are returned in the same clock as BOFF #, BOFF # 
takes effect. 

The device asserting BOFF # is free to run any cy· 
cles it wants while the 486 microprocessor bus is in 
its high impedance state. If back off is requested af· 
ter the 486 microprocessor has started a cycle, the 
new master should wait for memory to return ROY # 
or BRDY # before assuming control of the bus. Wait
ing for ready provides a handshake to insure that the 
memory system is ready to accept a new cycle. If 
the bus is idle when BOFF # is asserted, the new 
master can start its cycle two clocks after issuing 
BOFF#. 

The external memory can view BOFF # in the same 
manner as BLAST #. Asserting BOFF # tells the ex
ternal memory system that the current cycle is the 
last cycle in a transfer. 

The bus remains in the high impedance state until 
BOFF # is negated. Upon negation, the 486 micro
processor restarts its bus cycle by driving out the 
address and status and asserting ADS#. The bus 
cycle then continues as usual. 
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Asserting BOFF# during a burst, BS8# or BS16# 
cycle will force the 486 microprocessor to ignore 
data returned for that cycle only. Data from previous 
cycles will still be valid. For example, if BOFF # is 
asserted on the third BRDY # of a burst, the 486 
microprocessor assumes the data returned with the 
first and second BRDY #'s is correct and restarts 
the burst beginning with the third item. The same 
rule applies to transfers broken into multiple cycle by 
BS8# or BS16#. 

Asserting BOFF# in the same clock as ADS# will 
cause the 486 microprocessor to float its bus in the 
next clock and leave ADS# floating low. Since 
ADS# is floating low, a peripheral may think that a 
new bus cycle has begun even-though the cycle was 
aborted. There are two possible solutions to this 
problem. The first is to have all devices recognize 
this condition and ignore ADS# until ready comes 
back. The second approach is to use a "two clock" 
backoff: in the first clock AHOLD is asserted, and in 
the second clock BOFF # is asserted. This guaran
tees that ADS# will not be floating low. This is only 
necessary in systems where BOFF # may be assert
ed in the same clock as ADS#. 
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7.2.13 BUS STATES 

A bus state diagram is shown in Figure 7.30. The 
486 microprocessor has five bus states described in 
Table 7.9. A description of the signals used in the 

diagram is given in Table 7.10. Table 7.11 shows 
when the 486 microprocessor will float its address, 
data and status pins. The description of the bus 
states in this Section applies only to user bus cycles 
not ICE cycles. 

'" otherwise I Ti 
Idle 

.~ 
ncpen . mhold#. ahold#. boff # 

T1b 
T1 active boff active first r---

lirst clock 
(restart) clock 

boll I boff # boll # 

1 + 
otherwise I '" otherwise I 

Tb T2 

in active 

backoll subsequent (rdy+brdy. (Iastc+bable#» 
boll clock . ncpen . mhold#. ahold#. boff # 

I mhold#. ahold#. boll # (rdy+brdy. (Iastc+bable#» 
. (ncpen#+mhold+ahold). bolt # 

240440-73 

Figure 7.30. Bus State Diagram 
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Table 7.9. Bus State Description Table 7.10. Signals used in Bus State Diagram 

State Means Signal Means 

Ti Bus is idle. Address and status may be ncpen The 486 CPU has generated a new 
driven to undefined values, or the bus bus cycle internally. 
may be in high impedance state. 

mhold The external HOLD pin is asserted 
TI First ciock of a bus cycie. Valid (HIGH), and the hold qualifications are 

address and status are driven out and true. These qualifications include lock, 
ADS# is asserted. unfinished cycle, last transfer in cycle, 

T2 Second and subsequent clocks of a 
and ICE cycle. 

bus cycle. Data is driven out (if the ahold The external AHOLD pin is asserted 
cycle is a write), or data is expected (if (HIGH). 
the cycle is a read), and RDY # and 
BRDY # pins are sampled. boff The external BOFF # pin is asserted 

(LOW). 
T1b First clock of a restarted bus cycle. 

Valid address and status are driven 
out and ADS # is asserted. This state 

rdy The external RDY # pin is asserted 
(LOW). 

cannot be distinguished from T1 brdy The external BRDY # pin is asserted 
externally. (LOW). 

Tb Second and subsequent clocks of lastc The current cycle is the last in a 
aborted bus cycle. transfer. 

bable The current cycle is burstable. 

Table 7.11. Bus Float Description 

486 Action When Condition is True 

Float Address Bus in Next Clock mhold.rdy.T2.boff# + 
mhold.brdy.(lastc+bable#).T2.boff# + mhold.Ti+ 
mhold.Tb + boff + ahold 

Float Bus in Next Clock mhold.rdy. T2.boff # + 
mhold.brdy.(lastc+bable#).T2.boff# + mhold.Ti+ 
mhold.Tb + boff 

Assert HLDA in Next Clock mhold.rdy. T2.boff # + 
mhold.brdy.(lastc + bable #). T2.boff # + mhold. Ti + 
mhold.Tb 

7.2.14 FLOATING POINT ERROR HANDLING 

The 486 microprocessor provides two options for re
porting floating point errors. The simplest method is 
to raise interrupt 16 whenever an unmasked floating 
point error occurs. This option may be enabled by 
setting the NE bit in control register 0 (CRO). 

The 486 microprocessor also provides the option of 
allowing external hardware to determine how float
ing point errors are reported. This option is neces
sary for compatibility with the error reporting scheme 
used in DOS based systems. The NE bit must be 
cleared in CRO to enable user-defined error report
ing. User-defined error reporting is the default condi
tion because the NE bit is cleared on reset. 

124 

Two pins, floating point error (FERR#) and ignore 
numeric error (IGNNE#), are provided to direct the 
actions of hardware if user-defined error reporting is 
used. The 486 microprocessor asserts the FERR# 
output to indicate that a floating point error has oc
cumid. FERR # corresponds to the ERROR # pin on 
the 387 math coprocessor. 

IGNNE# is an input to the 486 microprocessor. 
When the NE bit in CRO is cleared, and IGNNE# is 
asserted, the 486 microprocessor will ignore a user 
floating point error and continue executing floating 
pOint instructions. When IGNNE # is negated, the 
486 microprocessor will freeze on floating point in
structions which get errors (except for the control 
instructions FNCLEX, FNINIT, FNSAVE, FNSTENV, 
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FNSTCW, FNSTSW, FNSTSW AX, FNENI, FNOISI 
and FNSETPM). IGNNE# may be asynchronous to 
the 4B6 clock. 

In systems with user-defined error reporting, the 
FERR # pin is connected to the interrupt controller. 
When an unmasked floating point error occurs, an 
interrupt is raised. If IGNNE# is high at the time of 
this interrupt, the 4B6 microprocessor will freeze 
(disallowing execution of a subsequent floating point 
instruction) until the interrupt handler is invoked. By 
driving the IGNNE# pin low (when clearing the inter
rupt request), the interrupt handler can allow execu
tion of a floating point instruction, within the interrupt 
handler, before the error condition is cleared (by 
FNCLEX, FNINIT, FNSAVE or FNSTENV). If execu
tion of a non-control floating point instruction, within 
the floating point interrupt handler, is not needed, 
the IGNNE# pin can be tied HIGH. 

8.0 TESTABILITY 

Testing in the 4B6 microprocessor can be divided 
into two categories: Built-in Self Test (BIST) and ex
ternal testing. The BIST tests the non-random logic, 
control ROM (CROM), translation lookaside buffer 

elK 

RESET 

(TLB) and on-chip cache memory. External tests can 
be run on the TLB and the on-chip cache. The 4B6 
microprocessor also has a test mode in which all 
outputs are tristated. 

8.1 Built-In Self Test (BIST) 

The BIST is initiated by holding the AHOLD (address 
hold) pin HIGH in the clock prior to RESET going 
from HIGH to LOW as shown in Figure B.1. The BIST 
takes approximately 2**20 clocks, or approximately 
42 milliseconds with a 25 MHz 4B6 microprocessor. 
No bus cycles will be run by the 4B6 microprocessor 
until the BIST is concluded. 

The results of BIST is stored in the EAX register. 
The 4B6 microprocessor has successfully passed 
the 81ST if the contents of the EAX register are zero. 
If the results in EAX are not zero then the BIST has 
detected a flaw in the microprocessor. 

The microprocessor performs reset and begins nor
mal operation at the completion of the BIST. The OX 
register will contain a component identifier at the 
conclusion of reset, with or without the BIST. The 
upper byte of OX will contain 04 and the lower byte 
will contain a stepping identifier (see Figure B.2). Re
fer to Section 6.5 for the register states upon reset. 

240440-41 

Figure 8_1_ BIST Initiation 
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Figure 8.2. BIST Results 
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The non-random logic, control ADM, on-chip cache 
and translation lookaside buffer (TLB) are tested 
during the BIST. 

The cache portion of the BIST verifies that the 
cache is functional and that it is possible to read and 
write to the cache. The BIST manipulates test regis
ters TR3, TR4 and TR5 whiie testing the cache. 
These test registers are described in Section 8.2. 

The cache testing algorithm writes a value to each 
cache entry, reads the value back, and checks that 
the correct value was read back. The algorithm may 
be repeated more than once for each of the 512 
cache entries using different constants. 

The TLB portion of the BIST verifies that the TLB is 
functional and that it is possible to read and write to 

-/21 Bit 1-
I Tag I 

"'EO 
o 
o 
o 

the TLB. The BIST manipulates test registers TA6 
and TA7 while testing the TLB. TA6 and TA7 are 
described in Section 8.3. 

8.2 On-Chip Cache Testing 

The on-chip cache testability hooks are designed to 
be accessible during the BIST and for assembly lan
guage testing of the cache. The following sub-Sec
tions describe the 486 microprocessor cache organi
zation, its relation to the testability hardware and the 
algorithms used for accessing the cache. 

8.2.1 CACHE ORGANIZATION 

The cache is logically organized into three blocks 
shown in Figure 8.3. The cache holds 8 Kbytes of 
data and is 4-way set associative. Each line in the 
cache is 16 bytes wide. The cache contains 128 
sets. 

r- 16-Byte Line Size-1 

BkBYtes J: 
Sets 

-.l 

j- 3 LRU 4-- 4 Valid ~ 
I Bits I Bits I 

IJ: 
'-________ ....J J: 

240440-42 

Figure 8.3. On-Chip Cache Physical Organization 
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The largest block is the data block. The data block is 
logically organized as 128 sets, each containing four 
16-byte lines or entries. Addressing into the data 
block consists of two components, the set select 
and the entry select. The set select is seven bits 
wide since there are 128 sets. The entry select is 
two bits wide to select one of the four entries. 

The second block is the tag array. The tag array is 
physically organized as 128 sets, each containing 
four 21-bit wide data words. 

The third block consists of 128 seven-bit quantities 
which contain the valid bits and the bits used in the • 
pseudo least recently used (LRU) replacement algo
rithm called the LRU bits. There are four valid bits, 
one for each line in the set. There are three LRU bits 
for each of the 128 sets. Refer to Section 5 for a 
description of the replacement algorithm. 

31 

DATA 

The 486 microprocessor contains a cache fill buffer 
and a cache read buffer. For testability writes, data 
must be written to the cache fill buffer before it can 
be written to a location in the cache. Data must be 
read from a cache location into the cache read buff
er before the microprocessor can access the data. 
The cache fill and cache read buffer are both 128 
bits wide. 

8.2.2 CACHE TESTING REGISTERS TR3, TR4 
AND TR5 

Figure 8.4 shows the three cache testing registers: 
the Cache Data Test Register (TR3), the Cache 
Status Test Register (TR4) and the Cache Control 
Test Register (TR5). External access to these regis
ters is provided through MOV reg,TREG and MOV 
TREG, reg instructions. 

o 

Cache Data ITR3 

'--_________________________________ --'TestReglster 

31 11 10 9 8 7 6 S 4 

4 

Set Select 

2 1 0 

TR4 
Cache Status 
Test Register 

TRS 

""-'''''-'''''-''''-' ________ ..L....:..:.=:c-L_---'Test Register 

Figure 8.4. Cache Test Registers 
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Cache Data Test Register: TR3 

The cache fill buffer and the cache read buffer can 
only be accessed through TR3. Data to be written to 
the cache fill buffer must first be written to TR3. Data 
read from the cache read buffer must be loaded into 
TR3. 

TR3 is 32 bits wide while the cache fill and read 
buffers are 128 bits wide. 32 bits of data must be 
written to TR3 four times to fill the cache fill buffer. 
32 bits of data must be read from TR3 four times to 
empty the cache read buffer. The entry select bits in 
TRS determine which 32 bits of data TR3 will access 
in the buffers. 

Cache Status Test Register: TR4 

TR4 handles tag, LRU and valid bit information dur
ing cache tests. TR4 must be loaded with a tag and 
a valid bit before a write to the cache. After a read 
from a cache entry, TR4 contains the tag and valid 
bit from that entry, and the LRU bits and four valid 
bits from the accessed set. 

Cache Control Test Register: TR5 

TRS specifies which testability operation will be per
formed and the set and entry within the set which 
will be accessed. 

The seven bit set select field determines which of 
the 128 sets will be accessed. 

The functionality of the two entry select bits depend 
on the state of the control bits. When the fill or read 

buffers are being accessed, the entry select bits 
point to the 32-bit location in the buffer being ac
cessed. When a cache location is specified, the en
try select bits point to one of the four entries in a set. 
Refer to Table 8.1. 

Five testability functions can be performed on the 
cache. The two control bits in TRS specify the oper
ation to be executed. The five operations are: 

1. Write cache fill buffer 

2. Perform a cache testability write 

3. Perform a cache testability read 

4. Read the cache read buffer 

S. Perform a cache flush 

Table 8.1 shows the encoding of the two control bits 
in TRS for the cache testability functions. Table 8.1 
also shows the functionality of the entry and set se
lect bits for each control operation. 

The cache tests attempt to use as much of the nor
mal operating circuitry as possible. Therefore when 
cache tests are being performed, the cache must be 
disabled (the CE and WT bits in control register must 
be reset to 0 to disable the cache. See Section S). 

8.2.3 CACHE TESTABILITY WRITE 

A testability write to the cache is a two step process. 
First the cache fill buffer must be loaded with 128 
bits of data and TR4 loaded with the tag and valid 
bit. Next the contents of the fill buffer are written to a 
cache location. Sample assembly code to do a write 
is given in Figure 8.S. 

Table 8.1. Cache Control Bit Encoding and Effect of 
Control Bits on Entry Select and Set Select Functionality 

Control Bits 
Operation 

Entry Select Bits 
Set Select Bits 

Bit 1 Bit 0 Function 

0 0 
Enable 

{ Fill Buffer Write Select 32-bit location in fill/read 
Read Buffer Read buffer 

-

0 1 Perform Cache Write Select an entry in set. Select a set to write to 

1 0 Perform Cache Read Select an entry in set. Select a set to read from 

1 1 Perform Flush Cache - -
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Sample Assembly Code 

An example assembly language sequence to perform a cache write is: 

eax. ebx. ecx. edx contain the cache line to write 
edi contains the tag information to load 
CRO already says to enable reads/write to TR5 

fill the cache buffer 
mov esi,O set up command 
mov tr5,esi load to TR5 
mov tr3,eax load data into cache fill buffer 
mov esi,4 
mov tr5,esi 
mov tr3,ebx 
mov esi,8 
mov tr5,esi 
mov tr3,ecx 
mov esi,Och 
mov tr5,esi 
mov tr3,edx 

load the Cache Status Register 

mov tr4,edi ; load 2l-bit tag and valid bit 

perform the cache write 

mov esi,1 
mov tr5,esi ; write the cache (set 0, entry 0) 

An example assembly language sequence to perform a cache read is: 

data into eax, ebx, ecx, edx; status into edi 

read the cache line back 

read 

read 

mov esi,2 
mov tr5,esi 

the data from 

mov esi,O 
mov tr5,esi 
mov eax,tr3 
mov esi,4 
mov tr5,esi 
mov ebx,tr3 
mov esi,8 
mov tr5,esi 
mov ecx,tr3 
mov esi,Och 
mov tr5,esi 
mov edx,tr3 

; do cache testability read (set 0, entry 0) 

the read buffer 

the status from TR4 

mov edi,tr4 

Figure 8.5 Sample Assembly Cod, for Cache Testing 
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Loading the fill buffer is accomplished by first writing 
to the entry select bits in TR5 and setting the control 
bits in TR5 to 00. The entry select bits identify one of 
four 32-bit locations in the cache fill buffer to put 32 
bits of data. Following the write to TR5, TR3 is writ
ten with 32 bits of data which are immediately 
placed in the cache fill buffer. Writing to TR3 initiates 
the ,,· .. rite to the cache fill buffei. The cache fill buifer 
is loaded with 128 bits of data by writing to TR5 and 
TR3 four times using a different entry select location 
each time. 

TR4 must be loaded with the 21-bit tag and valid bit 
(bit 10 in TR4) before the contents of the fill buffer 
are written to a cache location. 

The contents of the cache fill buffer are written to a 
cache location by writing TR5 with a control field of 
01 along with the set select and entry select fields. 
The set select and entry select field indicate the lo
cation in the cache to be written. The normal cache 
LRU update circuitry updates the internal LRU bits 
for the selected set. 

Note that a cache testability write can only be done 
when the cache is disabled for replaces (the CE bit 
is control register 0 is reset to 0). Also note that care 
must be taken when directly writing to entries in the 
cache. If the entry is set to overlap an area of mem
ory that is being used in external memory, that 
cache entry could inadvertently be used instead of 
the external memory. Of course, this is exactly the 
type of operation that one would desire if the cache 
were to be used as a high speed RAM. 

8.2.4 CACHE TESTABILITY READ 

A cache testability read is a two step process. First 
the contents of the cache location are read into the 
cache read buffer. Next the data is examined by 
reading it out of the read buffer. Sample assembly 
code to do a testability read is given in Figure 8.5. 

Reading the contents of a cache location into the 
cache read buffer is initiated by writing TR5 with the 
control bits set to 10 and the desired seven-bit set 
select and two-bit entry select. In response to the 
write to TR5, TR4 is loaded with the 21-bit tag field 
and the single valid bit from the cache entry read. 
TR4 is also loaded with the three LRU bits and four 
valid bits corresponding to the cache set that was 
accessed. The cache read buffer is filled with the 
128-bit value which was found in the data array at 
the specified location. 

The contents of the read buffer are examined by 
performing four reads of TR3. Before reading TR3 
the entry select bits in TR5 must loaded to indicate 
which of the four 32-bit words in the read buffer to 

130 

transfer into TR3 and the control bits in TR5 must be 
loaded with 00. The register read of TR3 will initiate 
the transfer of the 32-bit value from the read buffer 
to the specified general purpose register. 

Note that it is very important that the entire 128-bit 
quantity from the read buffer and also the informa
tion from TR4 be read before any memory refer
ences are allowed to occur. If memory operations 
are allowed to happen, the contents of the read buff
er will be corrupted. This is because the testability 
operations use hardware that is used in normal 
memory accesses for the 486 microprocessor 
whether the cache is enabled or not. 

8.2.7 FLUSH CACHE 

The control bits in TR5 must be written with 11 to 
flush the cache. None of the other bits in TR5 have 
any meaning when 11 is written to the control bits. 
Flushing the cache will reset the LRU bits and the 
valid bits to 0, but will not change the cache tag or 
data arrays. 

When the cache is flushed by writing to TR5 the 
special bus cycle indicating a cache flush to the ex
ternal system is not run (see Section 7.2.11, Special 
Bus Cycles). The cache should be flushed with the 
instruction INVD (Invalidate Data Cache) instruction 
or the WBINVD (Write-back and Invalidate Data 
Cache) instruction. 

8.3 Translation Lookaside Buffer 
(TLB) Testing 

The 486 microprocessor TLB testability hooks are 
similar to those in the 386 microprocessor. The test
ability hooks have been enhanced to provide added 
test features and to include new features in the 486 
microprocessor. The TLB testability hooks are de
signed to be accessible during the BIST and for as
sembly language testing of the TLB. 

8.3.1 TRANSLATION LOOKASIDE BUFFER 
ORGANIZATION 

The 486 microprocessors TLB is 4-way set associa
tive and has space for 32 entries. The TLB is logical
ly split into three blocks shown in Figure 8.6. 

The data block is physically split into four arrays, 
each with space for eight entries. An entry in the 
data block is 22 bits wide containing a 20-bit physi
cal address and two bits for the page attributes. The 
page attributes are the PCD (page cache disable) bit 
and the PWT (page write-through) bit. Refer to Sec
tion 4.5.4 for a discussion of the PCD and PWT bits. 
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Figure 8.6. TLB Organization 

The tag block is also split into four arrays, one for 
each of the data arrays. A tag entry is 21 bits wide 
containing a 17 -bit linear address and four protec
tion bits. The protection bits are valid (V), user/su
pervisor (U/S), read/write (R/W) and dirty (D). 

The third block contains eight three bit quantities 
used in the pseudo least recently used (LRU) re
placement algorithm. These bits are called the LRU 
bits. The LRU replacement algorithm used in the 

Unear Address 

TLB is the same as used by the on-chip cache. For a 
description of this algorithm refer to Section 5.5. 

8.3.2 TLB TEST REGISTERS TR6 AND TR7 

The two TLB test registers are shown in Figure 8.7. 
TR6 is the command test register and TR7 is the 
data test register. External access to these registers 
is provided through MOV reg,TREG and MOV 
TREG,reg instructions. 

12 11 10 9 8 7 6 5 4 

12 11 10 9 8 7 6 5 4 3 2 1 0 
r--------------------------------------.--~-._,,,r_ 

Physical Address 

i i 
Replacement Pointer Select (Writes) Replacement Pointer (Writes) 

= unused Hit Indication (Lookup) Hit Location (Lookup) 

Figure 8.7. TLB Test Registers 
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Command Test Register: TR6 

TR6 contains the tag information and control infor
mation used in a TLB test. Loading TR6 with tag and 
control information initiates a TLB write or lookup 
test. 

TR6 contains thrse bit fields, a 20-bit linear address 
(bits 12-31), seven bits for the TLB tag protection 
bits (bits 5-11) and one bit (bit 0) to define the type 
of operation to be performed on the TLB. 

The 20-bit linear address forms the tag information 
used in the TLB access. The lower three bits of the 
linear address select which of the eight sets are ac
cessed. The upper 17 bits of the linear address form 
the tag stored in the tag array. 

The seven TLB tag protection bits are described be
low. 

V: The valid bit for this TLB entry 

O,D#: The dirty bit for/from the TLB entry 

U,U#: The user/supervisor bit for/from the TLB 
entry 

W,w#: The read/write bit for/from the TLB entry 

Two bits are used to represent the D, U/S and R/W 
bits in the TLB tag to permit the option of a forced 
miss or hit during a TLB lookup operation. The 
forced miss or hit will occur regardless of the state 
of the actual bit in the TLB. The meaning of these 
pairs of bits is given in Table 8.2. 

The operation bit in TR6 determines if the TLB test 
operation will be a write or a lookup. The function of 
the operation bit is given in Table 8.3. 

Table 8.3. TR6 Operation Bit Encoding 

TR6 TLB Operation 
BitO to Be Performed 

0 TLB Write 
1 TLB Lookup 

Data Test Register: TR7 

TR7 contains the information stored or read from the 
data block during a TLB test operation. Before a TLB 

test write, TR7 contains the physical address and 
the page attribute bits to be stored in the entry. After 
a TLB test lookup hit, TR7 contains the physical ad
dress, page attributes, LRU bits and entry location 
from the access. 

TR7 contains a 20-bit physical address (bits 12-31), 
two bits for PCD (bit 11) and PWT (bit 10) and three 
bits for the LRU bits (bits 7-9). The LRU bits in TR7 
are only used during a TLB lookup test. The func
tionality of TR7 bit 4 differs for TLB writes and look
ups. The encoding of bit 4 is defined in Tables 8.4 
and 8.5. Finally TR7 contains two bits (bits 2-3) to 
specify a TLB replacement pointer or the location of 
a TLB hit. 

Table 8.4. Encoding of Bit 4 of TR7 on Writes 

TR7 Replacement Pointer 
Bit 4 Used on TLB Write 

0 Pseudo-LRU Replacement Pointer 
1 Data Test Register Bits 3:2 

Table 8.5. Encoding of Bit 4 of TR7 on Lookups 

TR7 Meaning after TLB 
Bit4 Lookup Operation 

0 TLB Lookup Resulted in a Miss 
1 TLB Lookup Resulted in a Hit 

A replacement pointer is used during a TLB write. 
The pointer indicates which of the four entries in an 
accessed set is to be written. The replacement 
pointer can be specified to be the internal LRU bits 
or bits 2-3 in TR7. The source of the replacement 
pointer is specified by TR7 bit 4. The encoding of bit 
4 during a write is given by Table 8.4. 

Note that both testability writes and lookups affect 
the state of the internal LRU bits regardless of the 
replacement pointer used. All TLB write operations 
(testability or normal operation) cause the written 
entry to become the most recently used. For exam
ple, during a testability write with the replacement 
pointer specified by TR7 bits 2-3, the indicated en
try is written and that entry becomes the most re
cently used as specified by the internal LRU bits. 

Table 8.2. Meaning of a Pair of TR6 Protection Bits 

TR6 Protection Bit TR6 Protection Bit # Meaning on Meaning on 
(B) (B#) TLB Write Operation TLB Lookup Operation 

0 0 Undefined Miss any TLB TAG Bit B 
0 1 Write 0 to TLB TAG Bit B Match TLB TAG Bit B if 0 
1 0 Write 1 to TLB TAG Bit B Match TLB TAG Bit B if 1 
1 1 Undefined Match any TLB TAG Bit B 
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There are two TLB testing operations: write entries 
into the TLB, and perform TLB lookups. One major 
enhancement over TLB testing in the 386 micro
processor is that paging need not be disabled while 
executing testability writes or lookups. 

Note that any time one TLB set contains the same 
linear address in more than one of its entries, look
ing up that linear address will not result in a hit. 
Therefore a single linear address should not be writ
ten to one TLB set more than once. 

8.3.3 TLB WRITE TEST 

To perform a TLB write TR7 must be loaded fol
lowed by a TR6 load. The register operations must 
be performed in this order since the TLB operation is 
triggered by the write to TR6. 

TR7 is loaded with a 20-bit physical address and 
values for PCD and PWT to be written to the data 
portion of the TLB. In addition, bit 4 of TR7 must be 
loaded to indicate whether to use TR7 bits 3-2 or the 
internal LRU bits as the replacement pointer on the 
TLB write operation. Note that the LRU bits in TR7 
are not used in a write test. 

TR6 must be written to initiate the TLB write opera
tion. Bit 0 in TR6 must be reset to zero to indicate a 
TLB write. The 20-bit linear address and the seven 
page protection bits must also be written in TR6 to 
specify the tag portion of the TLB entry. Note that 
the three least significant bits of the linear address 
specify which of the eight sets in the data block will 
be loaded with the physical address data. Thus only 
17 of the linear address bits are stored in the tag 
array. 

8.3.4 TLB LOOKUP TEST 

To perform a TLB lookup it is only necessary to write 

A TLB lookup operation is initiated by the write to 
TR6. TR7 will indicate the result of the lookup opera
tion following the write to TR6. The hit/miss indica
tion can be found in TR7 bit 4 (see Table 8.5). 

TR7 will contain the following information if bit 4 indi
cated that the lookup test resulted in a hit. Bits 2-3 
will indicate in which set the match occurred. The 22 
most significant bits in TR7 will contain the physical 
address and page attributes contained in the entry. 
Bits 9-7 will contain the LRU bits associated with 
the accessed set. The state of the LRU bits is previ
ous to their being updated for the current lookup. 

If bit 4 in TR7 indicated that the lookup test resulted 
in a miss the remaining bits in TR7 are undefined. 

Again it should be noted that a TLB testability lookup 
operation affects the state of the LRU bits. The LRU 
bits will be updated if a hit occurred. The entry which 
was hit will become the most recently used. 

8.4 Tristate Output Test Mode 

The 486 microprocessor provides the ability to float 
all its outputs and bidirectional pins. This includes all 
pins floated during bus hold as well as pins which 
are never floated in normal operation of the chip 
(HLDA, BREQ, FERR# and PCHK#). When the 486 
microprocessor is in the tristate output test mode 
external testing can be used to test board connec
tions. 

The tristate test mode is invoked by driving FLUSH # 
low in the clock prior to RESET going low (see Fig
ure B.8). The 486 microprocessor remains in the tri
state test mode until the next RESET. 

the proper tags and control information into TR6. Bit eLK 

o in TR6 must be set to 1 to indicate a TLB lookup. 
TR6 must be loaded with a 20-bit linear address and RESET 

the seven protection bits. To force misses and 
matches of the individual protection bits on TLB 
lookups, set the seven protection bits as specified in FLUSH MWfWlNIiIlMWI\ 
Table B.2. 

240440-44 

Figure 8.8. Tristate Test 
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9.0 DEBUGGING SUPPORT 9.3 Debug Registers 

The 486 Microprocessor provides several features 
which simplify the debugging process. The three cat
egories of on-chip debugging aids are: 

1) the code execution breakpoint opcode (OCCH), 

2) the single-step capability provided by the TF bit 
in the flag register, and 

3) the code and data breakpoint capability provided 
by the Debug Registers DRO-3, DR6, and DR? 

9.1 Breakpoint Instruction 

A single-byte-opcode breakpoint instruction is avail
able for use by software debuggers. The breakpoint 
opcode is OCCH, and generates an exception 3 trap 
when executed. In typical use, a debugger program 
can "plant" the breakpoint instruction at all desired 
code execution breakpoints. The single-byte break
point opcode is an alias for the two-byte general 
software interrupt instruction, INT n, where n = 3. 
The only difference between INT 3 (OCCh) and INT n 
is that INT 3 is never IOPL-sensitive but INT n is 
IOPL-sensitive in Protected Mode and Virtual 8086 
Mode. 

9.2 Single-Step Trap 

If the single-step flag (TF, bit 8) in the EFLAG regis
ter is found to be set at the end of an instruction, a 
single-step exception occurs. The single-step ex
ception is auto vectored to exception number 1. Pre
cisely, exception 1 occurs as a trap after the instruc
tion following the instruction which set TF. In typical 
practice, a debugger sets the TF bit of a flag register 
image on the debugger's stack. It then typically 
transfers control to the user program and loads the 
flag image with a signal instruction, the IRET instruc
tion. The single-step trap occurs after executing one 
instruction of the user program. 

Since the exception 1 occurs as a trap (that is, it 
occurs after the instruction has already executed), 
the CS:EIP pushed onto the debugger's stack points 
to the next unexecuted instruction of the program 
being debugged. An exception 1 handler, merely by 
ending with an IRET instruction, can therefore effi
ciently support single-stepping through a user pro
gram. 
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The Debug Registers are an advanced debugging 
feature of the 486 Microprocessor. They allow data 
access breakpoints as well as code execution 
breakpoints. Since the breakpoints are indicated by 
on-chip registers, an instruction execution break
point can be placed in ROM code or in code shared 
by several tasks, neither of which can be supported 
by the INT3 breakpoint opcode. 

The 486 Microprocessor contains six Debug Regis
ters, providing the ability to specify up to four distinct 
breakpoints addresses, breakpoint control options, 
and read breakpoint status. Initially after reset, 
breakpoints are in the disabled state. Therefore, no 
breakpoints will occur unless the debug registers are 
programmed. Breakpoints set up in the Debug Reg
isters are autovectored to exception number 1. 

9.3.1 LINEAR ADDRESS BREAKPOINT 
REGISTERS (DRO-DR3) 

Up to four breakpoint addresses can be specified by 
writing into Debug Registers DRO-DR3, shown in 
Figure 9.1. The breakpoint addresses specified are 
32-bit linear addresses. 486 Microprocessor hard
ware continuously compares the linear breakpoint 
addresses in DRO-DR3 with the linear addresses 
generated by executing software (a linear address is 
the result of computing the effective address and 
adding the 32-bit segment base address). Note that 
if paging is not enabled the linear address equals the 
physical address. If paging is enabled, the linear ad
dress is translated to a physical 32-bit address by 
the on-chip paging unit. Regardless of whether pag
ing is enabled or not, however, the breakpoint regis
ters hold linear addresses. 

9.3.2 DEBUG CONTROL REGISTER (DR?) 

A Debug Control Register, DR? shown in Figure 9.1, 
allows several debug control functions such as en
abling the breakpoints and setting up other control 
options for the breakpoints. The fields within the De
bug Control Register, DR?, are as follows: 

LENi (breakpoint length specification bits) 

A 2-bit LEN field exists for each of the four break
points. LEN specifies the length of the associated 
breakpoint field. The choices for data breakpoints 
are: 1 byte, 2 bytes, and 4 bytes. Instruction execu
tion breakpoints must have a length of 1 (LENi 
00). Encoding of the LENi field is as follows: 
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31 16 15 0 

BREAKPOINT 0 LINEAR ADDRESS ORO 

BREAKPOINT 1 LINEAR ADDRESS DR1 

BREAKPOINT 2 LINEAR ADDRESS DR2 

BREAKPOINT 3 LINEAR ADDRESS DR3 

Intel reserved. Do not define. DR4 

Intel reserved. Do not define. DR5 
.... 

0 B B B 00 00 o 0 o 0 o B B B B 
DR6 "., .,' .. . . ...... ' . T S 0 3 2 1 0 

LEN 1~lwl LEN 1~lwl LEN IRlwl LEN 1~lw o G 
I G L G L G L G L G L 0 0 o 0 DR7 

333222111000 0 I E E 3 3 2 2 1 1 o 0 

31 16 15 0 

NOTE: 
()indicates Intel reserved: Do not define; SEE SECTION 2.3.10 

Figure 9.1. Debug Registers 

Usage of Least 
LENi Breakpoint Significant Bits in 

Encoding Field Width Breakpoint Address 
Register i, (i = 0 - 3) 

00 1 byte All 32-bits used to 
specify a single-byte 
breakpoint field. 

01 2 bytes A 1-A31 used to 
specify a two-byte, 
word-aligned 
breakpoint field. AO in 
Breakpoint Address 
Register is not used. 

10 Undefined-
do not use 

this encoding 

11 4 bytes A2-A31 used to 
specify a four-byte, 
dword-aligned 
breakpoint field. AO 
and A 1 in Breakpoint 
Address Register are 
not used. 

The LENi field controls the size of breakpoint field i 
by controlling whether all low-order linear address 
bits in the breakpoint address register are used to 
detect the breakpoint event. Therefore, all break
point fields are aligned; 2-byte breakpoint fields be
gin on Word boundaries, and 4-byte breakpoint 
fields begin on Dword boundaries. 
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The following is an example of various size break
point fields. Assume the breakpoint linear address in 
DR2 is 00000005H. In that situation, the following 
illustration indicates the region of the breakpoint 
field for lengths of 1, 2, or 4 bytes. 

DR2 = 00000005H; LEN2 = OOB 

1

31 

1 1 "'pI IId21 0 1 :::::: 

DR2=00000005H; LEN2 = 01B 

31 I 0 

I 00000008H 
~--~-----+----~----~ 

~ bkpt fld2 ~ 00000004H 

I OOOOOOOOH 
~----~----~----~----~ 

DR2 = 00000005H; LEN2 = 11B 
31 

I I I 
0 

I 00000008H 

~ bkptfld2 ~ 00000004H 

I OOOOOOOOH 
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RWi (memory access qualifier bits) 

A 2-bit RW field exists for each of the four break
points. The 2-bit RW field specifies the type of usage 
which must occur in order to activate the associated 
breakpoint. 

RW 
Encoding 

00 
01 
10 
11 

Usage 
Causing Breakpoint 

Instruction execution only 
Data writes only 
Undefined-do not use this encoding 
Data reads and writes only 

RW encoding 00 is used to set up an instruction 
execution breakpoint. RW encodings 01 or 11 are 
used to set up write-only or read/write data break
points. 

Note that instruction execution breakpoints are 
taken as faults (Le., before the instruction exe
cutes), but data breakpoints are taken as traps 
(Le., after the data transfer takes place). 

Using LENi and RWi to Set Data Breakpoint i 

A data breakpoint can be set up by writing the linear 
address into DRi (i = 0-3). For data breakpoints, 
RWi can = 01 (write-only) or 11 (write/read). LEN 
can = 00,01, or 11. 

If a data access entirely or partly falls within the data 
breakpoint field, the data breakpoint condition has 
occurred, and if the breakpoint is enabled, an excep
tion 1 trap will occur. 

Using LENi and RWi to Set Instruction Execution 
Breakpoint i 

An instruction execution breakpoint can be set up by 
writing address of the beginning of the instruction 
(including prefixes if any) into DRi (i = 0-3). RWi 
must = 00 and LEN must = 00 for instruction exe
cution breakpoints. 

If the instruction beginning at the breakpoint address 
is about to be executed, the instruction execution 
breakpoint condition has occurred, and if the break
point is enabled, an exception 1 fault will occur be
fore the instruction is executed. 

Note that an instruction execution breakpoint ad
dress must be equal to the beginning byte address 
of an instruction (including prefixes) in order for the 
instruction execution breakpoint to occur. 

GO bit, when set, provides extra protection against 
any Debug Register access even in Real Mode or at 
privilege level 0 in Protected Mode. This additional 
protection feature is provided to guarantee that a 
software debugger can have full control over the De
bug Register resources when required. The GO bit, 
when set, causes an exception 1 fault if an instruc
tion attempts to read or write any Debug Register. 
The GO bit is then automatically cleared when the 
exception 1 handler is invoked, allowing the excep
tion 1 handler free access to the debug registers. 

GE and LE (Exact data breakpoint match, global and 
local) 

If either GE or LE is set, any data breakpoint trap will 
be reported exactly after completion of the instruc
tion that caused the operand transfer. Exact report
ing is provided by forcing the 486 Microprocessor 
execution unit to wait for completion of data operand 
transfers before beginning execution of the next in
struction. 

If exact data breakpoint match is not selected, data 
breakpoints may not be reported until several in
structions later or may not be reported at all. When 
enabling a data breakpoint, it is therefore recom
mended to enable the exact data breakpoint match. 

When the 486 Microprocessor performs a task 
switch, the LE bit is cleared. Thus, the LE bit sup
ports fast task switching out of tasks, that have 
enabled the exact data breakpoint match for their 
task-local breakpoints. The LE bit is cleared by the 
processor during a task. switch, to avoid having ex
act data breakpoint match enabled in the new task. 
Note that exact data breakpoint match must be re
enabled under software control. 

The 486 Microprocessor GE bit is unaffected during 
a task switch. The GE bit supports exact data break
point match that is to remain enabled during a" tasks 
executing in the system. 

Note that instruction execution breakpoints are al
ways reported exactly, whether or not exact data 
breakpoint match is selected. 

Gi and Li (breakpoint enable, global and local) 

If either Gi or Li is set then the associated breakpoint 
(as defined by the linear address in DRi, the length 
in LENi and the usage criteria in RWi) is enabled. If 
either Gi or Li is set, and the 486 Microprocessor 
detects the ith breakpoint condition, then the excep
tion 1 handler is invoked. 

When the 486 Microprocessor performs a task 
GO (Global Debug Register access detect) switch to a new Task State Segment (TSS) , a" Li 

bits are cleared. Thus, the Li bits support fast task 
The Debug Registers can only be accessed in Real switching out of tasks that use some task-local 
Mode or at privilege level 0 in Protected Mode. The 136 
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breakpoint registers. The Li bits are cleared by the 
processor during a task switch, to avoid spurious ex
ceptions in the new task. Note that the breakpoints 
must be re-enabled under software control. 

All 486 Microprocessor Gi bits are unaffected during 
a task switch. The Gi bits support breakpoints that 
are active in all tasks executing in the system. 

9.3.3 DEBUG STATUS REGISTER (DRS) 

A Debug Status Register, DR6 shown in Figure 9.1, 
allows the exception 1 handler to easily determine 
why it was invoked. Note the exception 1 handler 
can be invoked as a result of one of several events: 

1) ORO Breakpoint fault/trap. 

2) DR1 Breakpoint fault/trap. 

3) DR2 Breakpoint fault/trap. 

4) DR3 Breakpoint fault/trap. 

5) Single-step (TF) trap. 

6) Task switch trap. 

7) Fault due to attempted debug register access 
when GD=1. 

The Debug Status Register contains single-bit flags 
for each of the possible events invoking exception 1. 
Note below that some of these events are faults (ex
ception taken before the instruction is executed), 
while other events are traps (exception taken after 
the debug events occurred). 

The flags in DR6 are set by the hardware but never 
cleared by hardware. Exception 1 handler software 
should clear DR6 before returning to the user pro
gram to avoid future confusion in identifying the 
source of exception 1. 

The fields within the Debug Status Register, DR6, 
are as follows: 

Bi (debug fault/trap due to breakpoint 0-3) 

Four breakpoint indicator flags, BO-B3, correspond 
one-to-one with the breakpoint registers in DRO
DR3. A flag Bi is set when the condition described 
by DRi, LENi, and RWi occurs. 

If Gi or Li is set, and if the ith breakpoint is detected, 
the processor will invoke the exception 1 handler. 
The exception is handled as a fault if an instruction 
execution breakpoint occurred, or as a trap if a data 
breakpoint occurred. 

IMPORTANT NOTE: A flag Bi is set whenever the 
hardware detects a match condition on enabled 
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breakpoint i. Whenever a match is detected on at 
least one enabled breakpoint i, the hardware imme
diately sets all Bi bits corresponding to breakpoint 
conditions matching at that instant, whether enabled 
or not. Therefore, the exception 1 handler may see 
that multiple Bi bits are set, but only set Bi bits corre
sponding to enabled breakpoints (Li or Gi set) are 
true indications of why the exception 1 handler was 
invoked. 

BD (debug fault due to attempted register access 
when GO bit set) 

This bit is set if the exception 1 handler was invoked 
due to an instruction attempting to read or write to 
the debug registers when GO bit was set. If such an 
event occurs, then the GO bit is automatically 
cleared when the exception 1 handler is invoked, 
allowing handler access to the debug registers. 

BS (debug trap due to single-step) 

This bit is set if the exception 1 handler was invoked 
due to the TF bit in the flag register being set (for 
single-stepping). 

BT (debug trap due to task switch) 

This bit is set if the exception 1 handler was invoked 
due to a task switch occurring to a task having a 486 
Microprocessor TSS with the T bit set. Note the task 
switch into the new task occurs normally, but before 
the first instruction of the task is executed, the ex
ception 1 handler is invoked. With respect to the 
task switch operation, the operation is considered to 
be a trap. 

9.3.4 USE OF RESUME FLAG (RF) IN FLAG 
REGISTER 

The Resume Flag (RF) in the flag word can sup
press an instruction execution breakpoint when the 
exception 1 handler returns to a user program at a 
user address which is also an instruction execution 
breakpoint. 

10.0 INSTRUCTION SET SUMMARY 

This section describes the 486 microprocessor in
struction set. Tables 10.1 through 10.3 list all in
structions along with instruction encoding diagrams 
and clock counts. Further details of the instruction 
encoding are then provided in Section 10.2, which 
completely describes the encoding structure and the 
definition of all fields occurring within the 486 micro
processor instructions. 
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10.1 i486™ Microprocessor 
Instruction Encoding and Clock 
Count Summary 

To calculate elapsed time for an instruction, multiply 
the instruction clock count, as listed in Tables 1 0.1 
through 10.3 by the processor clock period (e,g., 
40 ns for a 25 MHz 486 microprocessor). 

For more detailed information on the encodings of 
instructions, refer to Section 10.2 Instruction Encod
ings. Section 10.2 explains the general structure of 
instruction encodings, and defines exactly the en
codings of all fields contained within the instruction. 

INSTRUCTION CLOCK COUNT ASSUMPTIONS 

The 486 microprocessor instruction clock count ta
bles give clock counts assuming data and instruction 
accesses hit in the cache. A separate penalty col
umn defines clocks to add if a data access misses in 
the cache. The combined instruction and data cache 
hit rate is over 90%. 

A cache miss will force the 486 microprocessor to 
run an external bus cycle. The 486 microprocessor 
32-bit burst bus is defined as r-b-w. 

Where: 

r = The number of clocks in the first cycle of a 
burst read or the number of clocks per data 
cycle in a non-burst read. 

b = The number of clocks for the second and sub
sequent cycles in a burst read. 

w = The number of clocks for a write. 

The fastest bus the 486 microprocessor can support 
is 2 -1 - 2 assuming 0 wait states. The clock counts 
in the cache miss penalty column assume a 2 -1 - 2 
bus. For slower busses add r-2 clocks to the cache 
miss penalty for the first dword accessed. Other fac
tors also affect instruction clock counts. 

Instruction Clock Count Assumptions 

1. The external bus is available for reads or writes at 
all times. Else add clocks to reads until the bus is 
available. 

2. Accesses are aligned. Add three clocks to each 
misaligned access. 

3. Cache fills complete before subsequent accesses 
to the same line. If a read misses the cache dur
ing a cache fill due to a previous read or pre-fetch, 
the read must wait for the cache fill to complete. If 
a read or write accesses a cache line still being 
filled, it must wait for the fill to complete. 
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4. If an effective address is calculated, the base 
register is not the destination register of the pre
ceding instruction. If the base register is the des
tination register of the preceding instruction add 
1 to the clock counts shown. 

5. An effective address calculation uses one base 
register and does not use an index ieglst6i. 
However, if the effective address calculation 
uses an index register, add 1 clock to the clock 
count shown. 

6. The target of a jump is in the cache. If not, add r 
clocks for accessing the destination instruction 
of a jump. If the destination instruction is not 
completely contained in the first dword read, add 
a maximum of 3b clocks. If the destination in
struction is not completely contained in the first 
16 byte burst, add a maximum of another r + 3b 
clocks. 

7. No write buffer delay. Add w clocks (on average) 
to wait for 1 write buffer to empty. 

8. Displacement and immediate not used together. 
If displacement and immediate used together 
add 1 clock to the clock count shown. 

9. No invalidate cycles. Add a delay of 1 clock for 
each invalidate cycle if the invalidate cycle con
tends for the internal cache/external bus when 
the 486 CPU needs to use it. 

10. Page translation hits in TLB. A TLB miss will add 
13, 21 or 28 clocks to the instruction depending 
on whether the Accessed and/or Dirty bit in nei
ther, one or both of the page entries needs to be 
set in memory. This assumes that neither page 
entry is in the data cache and a page fault does 
not occur on the address translation. 

11. No exceptions are detected during instruction 
execution. Refer to Interrupt Clock Counts Table 
for extra clocks if an interrupt is detected. 

12. Instructions that read multiple consecutive data 
items (i.e. task switch, paPA, etc.) and miss the 
cache are assumed to start the first access on a 
16-byte boundary. If not, an extra cache line fill 
may be necessary which may add up to (r + 3b) 
clocks to the cache miss penalty. 
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Table 10.1. i4BSTM Microprocessor Integer Clock Count Summary 

INSTRUCTION FORMAT Cache Hit 
Penalty II Notes 

eacheMlss 

INTEGER OPERATIONS 

MOV = Move: 

regl to reg2 I 1000100W 111 regl reg2! 1 

reg2 to regl I 1000101w 111 reg2 regl! 1 

memory to reg I 1000101w I mod reg rim! 1 2 

reg to memory I 1000100w I mod reg rim! 1 

Immediate to r9g2 I 1100011 w 111000 re92/ immediate data 1 

or I 1011wreg2 I immediate data 1 

Immediate to Memory I 11000 11 w I mod 000 
/ I displacement 

r m immediate 
1 

Memory to Accumulator I 1010000w I full displacement 1 2 

Accumulator to Memory I 1010001w I full displacement 1 

MOVSX/MOVZX = Move with SlgnlZero Extension 

reg210 regl I 0000 1111 I 10 11 zll w 111 regl reg2! 3 

memory to reg1 I 0000 1111 I 1011 zll w I mod reg r/ml 3 2 

z Instruction 

a MOVZX 
1 MOVSX 

PUSH = Push 

reg2 11111111 111 110 reg2! 4 

or 01010 reg21 1 

memory 11111111 I mod 110 rim! 4 1 1 

immediate 011010s0 I immediate data 1 

PUSHA = Push All 01100000 1 11 

POP = Pop 

reg2 I 1000 1111 111 000 rim 1 4 1 

or 101011 reg2! 1 2 

memory I 1000 1111 I mod 000 rim! 6 2 1 

POPA = Pop All I 01100001 ! 9 7/15 16/32 

XCHG = Exchange 

reg 1 with re92 I 1000011w 111 reg1 reg2! 3 2 

Accumulator with re92 1100 10 reg2! 3 2 

Memory with reg I 1000011w I mod reg rim 1 5 2 

LEA = Load EA to Register I 100 a 110 1 I mod reg rim! 
no index register 1 
with index register 2 

Instruction TIT 

ADD = Add 000 

ADC = Add with Carry 010 
AND = Logical AND 100 
OR = Logical OR 001 

SUB = Subtract 101 

ssa = Subtract with Borrow all 

XOR = Logical Exclusive OR 110 
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Table 10.1. i486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty II Notes 
Cache Miss 

INTEGER OPERATIONS (Continued) 

reg1 to r9g2 I OOTTTOOw 111 regl reg21 1 

rog2 to regl I OOTTTOlw 111 regl reg21 1 

memory to register I OOTTTOlw I mod reg rIm 1 2 2 

register to memory I OOTTTOOw I mod reg rIm 1 3 6/2 U/L 

immediate to register I 1 OOOOOsw 111 TTT reg I immediate register 1 

immediate to accumulator I 00 TTT lOw I immediate data 1 

immediate to memory I 100000sw I mod TTT rim I immediate data 3 6/2 U/L 

Instruction TTT 

INC = Increment 000 
DEC = Decrement 001 

reg2 I lllllllw 111 TTT reg21 1 

or 101TTT reg21 1 

memory I lllllllw I mod TTT reg21 3 6/2 U/L 

Instruction TTT 

NOT ~ Logical Complement 010 
NEG ~ Negate 011 

reg2 I 1111011 w 111 TTT reg21 1 

memory I 1111011 w ImodTTT rIm I 3 6/2 UlL 

CMP ~ Compare 

reg 1 with re92 I 0011100w 11 re91 reg21 1 

re92 with re91 I 0011101 w 11 regl reg21 1 

memory with register I 0011100w mod reg ;;] 2 2 

register with memory I 0011101 w mod reg rIm 1 2 2 

immediate with register I 100000sw 11 111 reg I immediate data 1 

immediate with acc. I 0011110w immediate data 1 

immediate with memory I 100000sw mod 111 rim I immediate data 2 2 

TEST ~ Logical Compare 

re91 and re92 I 1000010w 111 re91 reg21 1 

memory and register I 1000010w I mod reg r/ml 2 2 

immediate and register I 1111011 w 111 000 reg I immediate data 1 

immediate and acc. I 1010100w I immediate data 1 

immediate and memory I 1111011 w I mod 000 rim I immediate data 2 2 

MUL ~ Multiply (unsigned) 

acc. with register I 1111011 w 111 100 reg 1 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dword 13/42 MN/MX,3 

ace. with memory I 1111011 w I mod 100 rim I 
Multiplier-Byte 13/18 1 MN/MX,3 

Word 13/26 1 MN/MX,3 
Dword 13/42 1 MN/MX,3 
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Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty If Notes 
Cache Miss 

INTEGER OPERATIONS (Continued) 

IMUL ~ Integer Multiply (signed) 

ace. with register I 11110 11 w 111 101 reg I 
Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dword 13/42 MN/MX,3 

acc. with memory I 11110 11 w I mod 101 rlml 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Oward 13/42 MN/MX,3 

regl with reg2 I 00001111 I 10101111 111 regl reg21 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dword 13/42 MN/MX,3 

register with memory I 0000 1111 I 10101111 I mod reg rim I 
Multiplier-Byte 13/18 1 MN/MX,3 

Word 13/26 1 MN/MX,3 

Dword 13/42 1 MN/MX,3 

re91 with imm. to re92 I 01101 as 1 111 regl re92 1 immediate data 

Multiplier-Byte 13/18 MN/MX,3 

Word 13/26 MN/MX,3 

Dward 13/42 MN/MX,3 

memo with imm. to reg. I 01101 Os 1 I mod reg rim I immediate data 

Multiplier-Byte 13/18 2 MN/MX,3 

Word 13/26 2 MN/MX,3 

Dword 13/42 2 MN/MX,3 

DIV ~ Divide (unsigned) 

acc. by register I 1111011 w 111 110 reg I 
Divisor-Byte 16 

Word 24 

Dword 40 

acc. by memory I 11110 11 w I mod 110 rlml 

Divisor-Byte 16 

Word 24 

Dword 40 

IDIV ~ Integer Divide (signed) 

acc. by register I 1111011 w 111 111 reg I 
Divisor-Byte 19 

Word 27 

Dword 43 

acc. by memory I 11110 11 w I mod 111 rim I 
Divisor-Byte 20 

Word 28 

Dword 44 
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Table 1 0.1. i486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT CacheHII 
Penally If 

Notes 
Cache Mis. 

INTEGER OPERATIONS (Continued) 

CBW ~ Convert Byte 10 Word I 10011000 I 3 

CWO = Convert Word 10 Oword I 10011001 I 3 

Inslrucllon ITT 

ROL = Rotate Left 000 
ROR = Rotate Right 001 
RCL = Rotate through Carry Left 010 
RCR = Rotate through Carry Right 011 
SHL/SAL = Shift LogicallArithmetic Left 100 
SHR = Shift Logical Right 101 
SAR = Shift Arithmetic Right 111 

Nol Through Carry (ROL, ROR, SAL, SAR, SHL, and SHR) 

reg by1 1101000w 11 TTT reg I 3 

memory by 1 1101000w mod TTT rim I 4 6 

reg byCL 1101001 w mod TTT reg I 3 

memory by CL 1101001 w mod TTT rim I 4 6 

reg by immediate count 1100000w 11 TTT reg I immediate a-bit data 2 

mam by immediate count I 1100000w mod TTT rim I immediate a-bit data 4 6 

Through Carry (RCL and RCR) 

reg by 1 1101000w 11 TTT reg I 3 

memory by 1 1101000w mod TTT rim I 4 6 

reg byCL 1101001 w 11 TTT reg I 8/30 MN/MX,4 

memorybyCL 1101001w mod TTT rim I 9/31 MN/MX,5 

reg by immediate count 1100000w 11 TTT reg I immediate 8-bit data 8/30 MN/MX,4 

mam by immediate count 1100000w mod TTT rim I immediate 8-bit data 9/31 MN/MX,5 

Instruction ITT 

SHLD = Shift Left Double 100 
SHRD = Shift Right Double 101 

register with immediate 00001111 10TTT100 11 reg rIm I imm a-bit data 2 

memory by immediate 00001111 10TTT100 mod reg rIm I imm a-bit data 3 6 

register by CL 00001111 10TTT101 11 reg rim I 3 

memory by CL 00001111 10TTT101 mod reg rim \ 4 5 

BSWAP = Byle Swap 00001111 11001 reg 1 

XADO ~ Exchange and Add 

reg1, reg2 I 00001111 11100000w 111 reg2 reg1\ 3 

memory. re92 I 00001111 11100000w 1 mod re92 mam I 4 6/2 U/L 

CMPXCHG ~ Compare and Exchange 

re91, re92 I 00001111 11010011 w 111 reg2 reg1\ 6 

memory, re92 I 00001111 11010011 w 1 mod re92 mam I 7/10 2 6 

NOP = No Operallon I 10010000 I 3 
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Table 10.1. i486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penalty If 

Notes Cache Miss 

CONTROL TRANSFER (within segment) 

NOTE: Times are jump taken/not taken 

Jece = Jump on eec 

a·bit displacement I 0111 til n I 8-bit disp. I 3/1 TINT. 23 

full displacement I 00001111 I 1000tttn I full displacement 3/1 T/NT,23 

NOTE: Times are jump taken/not taken 

SETcccc = Set Byte on ecce (Times are ecce true/false) 

reg2 I 00001111 I 1001 tttn 111 000 reg21 4/3 

memory I 00001111 I 1001 tttn I mod 000 r/ml 3/4 

Mnemonic 
Condition IItn 

ecce 

0 Overflow 0000 

NO NoOverftow 0001 

B/NAE Below/Not Above or Equal 0010 

NB/AE Not Belowl Above or Equal 0011 
E/Z Equal/Zero 0100 
NE/NZ Not EquallNot Zero 0101 

BE/NA Below or Equal/Not Above 0110 
NBE/A Not Below or Equall Above 0111 

S Sign 1000 

NS Not Sign 1001 

PIPE Parity I Parity Even 1010 
NPIPO Not ParitylParity Odd 1011 
L/NGE Less Than/Not Greater or Equal 1100 

NL/GE Not Less Than/Greater or Equal 1101 
LE/NG Less Than or Equal/Greater Than 1110 
NLE/G Not Less Than or Equal/Greater Than 1111 

LOOP ~ LOOP CX Times I 11100010 I 8-bit disp. I 7/6 L/NL,23 

LOOPZ/LOOPE ~ Loop with I 11100001 I 8-bit disp. I 9/6 LINL,23 

Zero/Equal 

LOOPNZlLOOPNE ~ Loop while I 11100000 I 8-bit disp. I 9/6 LlNL,23 

Not Zero 

JCXZ ~ Jump on CX Zero I 11100011 I 8-bit disp. I 8/5 TINT,23 

JECXZ ~ Jump on ECX Zero I 11100011 I 8-bit disp. I 8/5 TINT,23 

(Address Size Prefix Differentiates JCXZ for JECXZ) 

JMP ~ Unconditional Jump (within segment) 

Short I 11101011 I 8-bit disp. I 3 7,23 

Direct I 11101001 I full displacement 3 7,23 

Register Indirect I 11111111 111 100 reg I 5 7,23 

Memory Indirect I 11111111 I mod 100 r/ml 5 5 7 

CALL ~ Call (within segment) 

Direct I 11101000 I full displacement 3 7,23 

Register Indirect I 11111111 111 010 reg I 5 7,23 

Memory Indirect I 11111111 Imodolo r/ml 5 5 7 

RET ~ Return from CALL (within segment) 

I 11000011 I 5 5 

Adding Immediate to SP I 11000010 I 16-bil disp. I 5 5 
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Table 10.1. i486™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penalty I! 

Notes 
Cache Miss 

CONTROL TRANSFER (within segment) (Continued) 

ENTER ~ Enter Procedure I 11001000 116-bit disp .. B-bit level 

Level = 0 14 
Leve~ - 1 17 
Level (L) > 1 17+3L B 

LEAVE ~ Leave Procedure I 11001001 1 5 1 

MULTIPLE-SEGMENT INSTRUCTIONS 

MOV ~ Move 

reg. to segment reg. I 10001110 111 srag3 reg 1 3/9 0/3 RVIP, 9 

memory to segment reg. I 10001110 I mod sreg3 rIm 1 3/9 2/5 RVIP, 9 

segment reg. to reg. I 10001100 111 sreg3 reg 1 3 

segment reg. to memory I 10001100 I mod sreg3 r/ml 3 

PUSH ~ Push 

segment reg. 1000sreg21101 3 
(ES, CS, SS, or OS) 

segment reg. (FS or GS) 1 00001111 110 .r8g30 0 0 1 3 

POP ~ Pop 

s9gment reg. 000sr8g21111 3/9 2/5 RVIP, 9 
(ES, SS, or OS) 

segment reg. (FS or GS) 00001111 110 Sreg30011 3/9 2/5 RVIP, 9 

LOS ~ Load Pointer to OS 11000101 mod reg r/ml 6/12 7/10 RVIP, 9 

LES ~ Load Pointer to ES 11000100 mod reg rIm 1 6/12 7/10 RVIP, 9 

LFS ~ Load Pointer to FS 00001111 10110100 I mod reg rIm 1 6/12 7/10 RVIP, 9 

LGS ~ Load Pointer to GS 00001111 10110101 I mod reg rIm 1 6/12 7/10 RVIP, 9 

LSS ~ Load Pointer to SS 1 00001111 10110010 I mod reg rIm 1 6/12 7/10 RVIP, 9 

CALL ~ Can 

Direct intersegment 1 10011010 I unsigned full offset, selector 18 2 R,7,22 

to same level 20 3 P,9 
thru Gate to same level 35 6 P,9 
to inner level, no parameters 69 17 P,9 
to inner level, x parameter (d) words 77+4X 17+n P, 11, 9 
toTSS 37+TS 3 P, 10, 9 
thru Task Gate 38+TS 3 P, 10, 9 

Indirect intersegment 1 11111111 I mod 011 rIm 1 17 8 R,7 

to same level 20 10 p,g 
thru Gate to same level 35 13 P,9 
to inner level, no parameters 69 24 P,9 
to inner level. x parameter (d) words 77+4X 24+n P, 11, 9 
toTSS 37+TS 10 P, 10, 9 
thru Task Gate 38+TS 10 P,10,9 

RET ~ Return from CALL 

intersegment I 11001011 1 13 8 R,7 

to same level 18 9 P,9 
to outer level 33 12 P,9 

intersegment adding I 11001010 I 16-bit disp. 1 
imm.toSP 14 8 R,7 

to same level 17 9 P,9 
to outer level 33 12 P,9 
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Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penalty II 

Notes 
Cache Miss 

MULTIPLE·SEGMENT INSTRUCTIONS (Continued) 

JMP = Unconditional. Jump 

Direct intersegment I 11101010 I unsigned fun offset, selector 17 2 R,7,22 

to samB level 19 3 P,9 
thru Can Gate to same level 32 6 P,9 
thruTSS 42+TS 3 P,10,9 
thru Task Gate 43+TS 3 P,10,9 

Indirect intersegment I 11111111 I mod 101 rIm I 13 9 R,7,9 

to same level 18 10 P,9 
thru Can Gate to same level 31 13 P,9 
thruTSS 41+TS 10 P,10,9 
thru Task Gate 42+TS 10 P,10,9 

BIT MANIPULATION 

BT = Test bit 

register, immediate I 00001111 I 10 1110 10 111 100 reg I imm. 8-bit data 3 

memory, immediate I 00001111 I 10 111 a 1 a I mod 100 rIm I imm. 8-bit data 3 1 

regl, reg2 I 00001111 110100011 111 reg2 regll 3 

memory, reg I 00001111 I 10100011 I mod reg rIm I 8 2 

Instruction TIT 

BTS = Test Bil and Set 101 
BTR = Test Bit and Reset 110 
BTC = Test Bit and Compliment 111 

register, immediate I 00001111 I 10 1110 10 111 TTT reg I imm. 8-bit data 6 

memory, immediate I 00001111 I 10111010 I mod TTT rIm I imm. 8-bit data 8 2/0 U/L 

regl, reg2 100001111 I 10TTTOIl 111 reg2 regll 6 

memory, reg I 00001111 I 10TTTOIl I mod reg rIm I 13 3/1 U/L 

BSF = Scan Bit Forward 

regl, reg2 I 00001111 I 10111100 I mod reg2 regll 6/42 MN/MX,12 

memory, reg I 00001111 I 10 111100 I mod reg rIm I 7/43 2 MN/MX,13 

BSR = Scan Bit Reverse 

regl, reg2 I 00001111 I 10111101 I mod reg2 regl I 6/103 MN/MX,14 

memory, reg I 00001111 I 10111101 I mod reg rIm I 7/104 1 MN/MX,15 

STRING INSTRUCTIONS 

CMPS = Compare Byte Word I 1010011 w I 8 6 16 

LODS = Load BytelWord I 1010110w I 5 2 
to ALI AX/EAX 

MOVS = Move BytelWord I 1010010w I 7 2 16 

SCAS = Scan BytelWord I 10 1 a 111 w I 6 2 

STOS = Store BytelWord I 10 1 a 101 w I 5 
from ALI AXIEX 

XLAT = Translate String I 11010111 I 4 2 
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Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty If Notes 
Cache Miss 

REPEATED STRING INSTRUCTIONS 

Repeated by Count in CX or ECX (C ~ Count in CX or ECX) 

REPE CMPS ~ Compare String I 11110011 I 1010011 w I 
(Fine Ncr:-M~tch) 
C~O 5 
C>O 7+7c 16,17 

REPNE CMPS ~ Compare String I 11110010 I 1010011w I 
(Find Match) 
C~O 5 
C>O 7+7c 16,17 

REP lODS ~ Load String I 11110010 I 1010110w I 
C~O 5 
G>O 7+4c 16,18 

REP MOYS ~ Move String I 11110010 I 1010010w I 
C~O 5 
G~1 13 1 16 
C>1 12+3c 16,19 

REPE SCAS ~ Scan String I 11110011 I 1010111 w I 
(Find Non-ALI AX/EAX) 
G~O 5 
C>O 7+5c 20 

REPNE SCAS ~ Scan String I 11110010 I 1010111 w I 
(Find All AX/EAX) 
C~O 5 
G>O 7+5c 20 

REP STOS ~ Siore Siring I 11110010 I 1010101 w I 
C~O 5 
C>O 7+4c 

FLAG CONTROL 

ClC ~ Clear Carry Flag I 11111000 2 

STC ~ Sel Carry Flag I 11111001 2 

CMC ~ Complement Carry Flag I 11110101 2 

ClD ~ Clear Direction Flag I 11111100 2 

STD ~ Set Direction Flag I 11111101 2 

Cli ~ Clear Interrupt I 11111010 5 
Enable Flag 

STI ~ Sellnterrupt I 11111011 I 5 
Enable Flag 

LAHF ~ load AH Into Flag I 10011111 I 3 

SAHF ~ Store AH Into Flags I 10011110 I 2 

PUSHF ~ Push Flags I 10011100 I 4/3 RV/P 

POPF ~ Pop Flags I 10011101 I 9/6 RV/P 

DECIMAL ARITHMETIC 

AAA ~ ASCII Adjust for Add I 00110111 I 3 

AAS ~ ASCII Adjuslfor I 00111111 I 3 
Subtract 

AAM ~ ASCII Adjuslfor I 11010100 I 00001010 I 15 
Multiply 
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Table 1 0.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penalty II 

Notes 
Cache Miss 

DECIMAL ARITHMETIC (Continued) 

AAD ~ ASCII Adjust for I 11010101 I 00001010 I 14 

Divide 

DAA ~ Decimal Adjust for Add I 00100111 I 2 

DAS ~ Decimal Adjust for Subtract I 00101111 I 2 

PROCESSOR CONTROL INSTRUCTIONS 

HLT ~ Halt I 11110100 I 4 

MOV ~ Move To and From Control/Debug/Test Registers 

CRO from register I 00001111 00100010 111 000 reg I 16 2 

CR2/CR3 from register I 00001111 00100010 111 eee reg I 4 

Reg from CRO-3 00001111 00100000 111 eee reg I 4 

DRO-3 from register 00001111 00100011 111 eee reg I 11 

DRS-7 from register 00001111 00100011 111 eee reg I 11 

Register from DRS-7 00001111 00100001 111 eee reg I 10 

Register from DRO-3 00001111 00100001 111 eee reg I 10 

TR3 from register I 00001111 00100110 111 011 reg I 6 

TR4-7 from register 00001111 00100110 111 eee reg I 4 

Register from TR3 00001111 00100100 111 011 reg I 3 

Register from TR4-7 00001111 00100100 111 eee reg I 4 

CLTS ~ Clear Task Switched Flag 00001111 I 00000110 I 7 2 

INVD ~ Invalidate Data Cache 00001111 I 00001000 I 4 

WBINVO = Write-Back and Invalidate 00001111 I 00001001 I 5 

Data Cache 

INVLPG ~ Invalidate TLB Entry 

INVLPG memory I 00001111 I 00000001 I mod 11 meml 12/11 H/NH 

PREFIX BYTES 

Address Size Prefix I 01100111 I 1 

LOCK ~ Bus Lock Prefix I 11110000 I 1 

Operand Size Prefix I 01100110 I 1 

Segment Override Prefix 

CS: [ 00101110 1 

DS: 00111110 1 

ES: 00100110 1 

FS: 01100100 1 

GS: 01100101 1 

ss: 00110110 1 
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Table 10.1. i486TM Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit 
Penalty If 

Notes Cache Miss 

PROTECTION CONTROL 

ARPL ~ Adjust Requested Privilege Level 

From register I 01100011 111 reg rIm 1 9 

I i i 
From memory I 01100011 I mod reg r/ml 9 

LAR ~ Load Access Right. 

From register I 00001111 I 00000010 111 reg r/ml 11 3 

From memory I 00001111 I 00000010 I mod reg r/ml 11 5 

LGDT ~ Load Global Descriptor 

Table register I 00001111 I 00000001 I mod 010 rIm 1 11 5 

LlDT ~ Load Interrupt Descriptor 

Table register I 00001111 I 00000001 I mod 011 r/ml 11 5 

LLDT ~ Load Local Descriptor 

Table register from reg. I 00001111 I 00000000 111 010 reg 1 11 3 

Table register from memo I 00001111 I 00000000 1 mod 010 r/ml 11 6 

LMSW = Load Machine Status Word 

From register I 00001111 I 00000001 111 110 reg 1 13 

From memory I 00001111 I 00000001 I mod 110 rIm 1 13 1 

LSL ~ Load Segment Limit 

From register I 00001111 1 00000011 111 reg rIm 1 10 3 

From memory I 00001111 I 00000011 I mod reg r/ml 10 6 

LTR ~ Load Task Register 

From Register I 00001111 I 00000000 111 001 reg 1 20 

From Memory I 00001111 I 00000000 I mod 001 r/ml 20 

SGDT ~ Store Global Descriptor Table 

I 00001111 I 00000001 I mod 000 r/ml 10 

SIDT ~ Store Interrupt Descriptor Table 

I 00001111 I 00000001 I mod 001 rIm 1 10 

SLDT ~ Store Local Descriptor Table 

To register I 00001111 I 00000000 111 000 reg 1 2 

To memory I 00001111 I 00000000 I mod 000 rIm 1 3 

SMSW ~ Store Machine Status Word 

To register I 00001111 I 00000000 I mod 100 reg 1 2 

To memory I 00001111 I 00000000 I mod 100 rIm 1 3 

STR ~ Store Task Register 

To register I 00001111 I 00000000 111 001 reg 1 2 

To memory I 00001111 I 00000000 I mod 001 rIm 1 3 

VERR ~ Verify Read Access 

Register I 00001111 I 00000000 111 100 rIm 1 11 3 

Memory I 00001111 1 00000000 I mod 100 rIm 1 11 7 

VERW ~ Verify Write Access 

To register I 00001111 I 00000000 I mod 101 reg 1 11 3 

To memory I 00001111 I 00000000 I mod 101 rIm 1 11 7 
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Table 10.1. i4B6™ Microprocessor Integer Clock Count Summary (Continued) 

INSTRUCTION FORMAT Cache Hit Penalty II Notes 
Cache Miss 

INTERRUPT INSTRUCTIONS 

INT n ~ Interrupt Type n I 11001101 I type I INT+4/0 RV/P,21 

INT 3 ~ Interrupt Type 3 I 11001100 I INT+O 21 

INTO ~ Interrupt411 I 11001110 I 
Overflow Flag Set 
Taken INT+2 21 
Not Taken 3 21 

BOUND ~ InterruptS II Detect I 01100010 I mod reg r/ml 
Value Out Range 

If in range 7 7 21 
If out of range INT+24 7 21 

IRET ~ Interrupt Return I 11001111 I 
Real ModelVirtual Mode 15 8 
Protected Mode 

To same level 20 11 9 
To outer level 36 19 9 
To nested task (EFLAGS.NT ~ 1) TS+32 4 9,10 

External Interrupt INT+11 21 

NMI ~ Non-Maskable Interrupt INT+3 21 

Page Fault INT+24 21 

VM86 Exceptions 

ell INT+8 21 
STI INT+8 21 
INTn INT+9 
PUSHF INT+9 21 
POPF INT+8 21 
IRET INT+9 
IN 

Fixed Port INT+50 21 
Variable Port INT+51 21 

OUT 
Fixed Port INT+50 21 
Variable Port INT+51 21 

INS INT+50 21 
OUTS INT+50 21 
REP INS INT+51 21 
REP OUTS INT+51 21 

Task Switch Clock Counts Table 

Method 
Value for TS 

Cache Hit Miss Penalty 

VM/486 CPU/286 TSS To 486 CPU TSS 162 55 
VM/486 CPU/286 TSS To 286 TSS 143 31 
VM/486 CPU/286 TSS To VM TSS 140 37 
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Interrupt Clock Counts Table 

Method 

Real Mode 

Protected Mode 
Interrupt/Trap gate, same level 
Interrupt/Trap gate, different level 
Task Gate 

Virtual Mode 
Interrupt/Trap gate, different leve! 
Task gate 

Abbreviations 
16/32 
UlL 
MN/MX 
LlNL 
RV/P 
R 
P 
T/NT 
H/NH 

NOTES: 

Definition 
16/32 bit modes 
unlockedllocked 
minimum/maximum 
loop/no loop 
real and virtual mode/protected mode 
real mode 
protected mode 
taken/not taken 
hitlno hit 

Cache Hit 

26 

44 
71 

37 + TS 

82 
37 + TS 

Value for INT 

Miss Penalty 

2 

6 
17 
3 

<"7 
I' 
3 

1. Assuming that the operand address and stack address fall in different cache sets. 
2. Always locked, no cache hit case. 
3. Clocks = 10 + max(log2(lml),n) 

m = multiplier value (min clocks for m = 0) 
n = 3/5 for ±m 

4. Clocks = (quotient(countloperand length»)*7+9 
= 8 if count :s;; operand length (8/16/32) 

5. Clocks = (quotient(countloperand length) )*7 + 9 
= 9 if count :s;; operand length (8/16/32) 

6. Equal/not equal cases (penalty is the same regardless of lock). 

Notes 

9 
9 

9,10 

10 

7. Assuming that addresses for memory read (for indirection), stack push/pop, and branch fall in different cache sets. 
8. Penalty for cache miss: add 6 clocks for every 16 bytes copied to new stack frame. 
9. Add 11 clocks for each unaccessed descriptor load. 
10. Refer to task switch clock counts table for value of TS. 
11. Add 4 extra clocks to the cache miss penalty for each 16 bytes. 
For notes 12-13: (b = 0-3, non-zero byte number); 

(i = 0-1, non-zero nibble number); 
(n = 0-3, non bit number in nibble); 

12. Clocks = 8+4 (b+ 1) + 3(i+ 1) + 3(n+ 1) 
= 6 if second operand = 0 

13. Clocks = 9+4(b+ 1) + 3(i+ 1) + 3(n+ 1) 
= 7 if second operand = 0 

For notes 14-15: (n = bit position 0-31) 
14. Clocks = 7 + 3(32-n) 

6 if second operand = 0 
15. Clocks = 8 + 3(32-n) 

7 if second operand = 0 
16. Assuming that the two string addresses fall in different cache sets. 
17. Cache miss penalty: add 6 clocks for every 16 bytes compared. Entire penalty on first compare. 
18. Cache miss penalty: add 2 clocks for every 16 bytes of data. Entire penalty on first load. 
19. Cache miss penalty: add 4 clocks for every 16 bytes moved. 

(1 clock for the first operation and 3 for the second) 
20. Cache miss penalty: add 4 clocks for every 16 bytes scanned. 

(2 clocks each for first and second operations) 
21. Refer to interrupt clock counts table for value of INT 
22. Clock count includes one clock for using both displacement and immediate. 
23. Refer to assumption 6 in the case of a cache miss. 
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Table 10.2. i486TM Microprocessor 1/0 Instructions Clock Count Summary 

Real 
Protected Protected Virtual 86 

INSTRUCTION FORMAT Mode 
Mode Mode Mode Notes 

(CPL:S:IOPL) (CPL>IOPL) 

1/0 INSTRUCTIONS 

IN ~ Input from: 

Fixed Port I 111001 Ow I port number I 14 9 29 27 

Variable Port I 1110 11 Ow I 14 8 28 27 

OUT ~ Output to: 

Fixed Port I 1110011 wi port number I 16 11 31 29 

Variable Port I 1110 111 wi 16 10 30 29 

INS ~ Input By tel Word 10 11 allOw I 17 10 32 30 

from OX Port 

OUTS ~ Output BytelWord 10110111 wi 17 10 32 30 1 

to OX Port 

REP INS ~ Input String I 11110010 I 0110110wl 16+8c 10+8c 30+8c 29+8c 2 

REP OUTS ~ Output String I 111100 10 10110111 wi 17+5c 11+5c 31 +5c 30+5c 3 

NOTES: 
1. Two clock cache miss penalty in all cases. 
2. c = count in CX or ECX. 
3. Cache miss penalty in all modes: Add 2 clocks for every 16 bytes. Entire penalty on second operation. 
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Table 10.3. i486™ Microprocessor Floating Point Clock Count Summary 

Cache Hit Penalty If Concurrent 
Cache Miss Execution 

INSTRUCTION FORMAT Avg(Lower Avg (Lower Avg(Lower Notes 
Range •.• Range ... Range ... 

Upper Range) Upper Range) Upper Range) 

DATA TRANSFER 

FLO = R~~! L~ad t~ ST(O} 

32·bit memory 111011 0011 mod 000 r/ml s·i·b/disp. I 3 2 

64·bit memory 111011 1011 mod 000 rim 1 s-i-b/disp. I 3 J 

BO·bit memory 111011 0111 mod 101 rim 1 s-i-bl disp. I 6 4 

ST(i) 111011 001!11000 snol 4 

FILD ~ Integer Load to ST(O) 

16-bit memory 111011 1111 mod 000 rim 1 s-i-bl disp. 1 14.5(13-16) 2 4 

32-bit memory 111011 0111 mod 000 rim 1 s-i-bl disp. 1 11.5(9-12) 2 4(2-4) 

64-bit memory 111011 1111 mod 101 rim 1 s-i-bl disp. 1 16.8(10-18) 3 7.8(2-8) 

FBLD ~ BCD Load to ST(O) 111011 1111 mod 100 r/ml s-i-b/disp. 1 75(70-103) 4 7.7(2-8) 

FST ~ Store Real from ST(O) 

32-bit memory 111011 o011mod 010 rim 1 s-i-bl disp. I 7 1 

64-bit memory 111011 1011 mod 010 rim 1 s-i-bl disp. 1 8 2 

ST(i) 111011 101111010 ST(i) 1 3 

FSTP ~ Store Real from ST(O) and Pop 

32-bit memory 111011 o 111mod 011 r/ml s-i-bl disp. 1 7 1 

64-bitmemory 111011 10 11 mod 011 r/ml s-i-bl disp. 1 8 2 

80-bil memory 111011 0111 mod 111 rim 1 s-i-bl disp. 1 6 

ST(i) 111011 101111001 ST(i) 1 3 

FIST ~ Store Integer from ST(O) 

l6-bit memory 111011 1111 mod 010 rim 1 s-i-b/disp. 1 33.4(29-34) 

32-bit memory 111011 0111 mod 010 rim 1 s-i-b/disp. 1 32.4(28-34) 

FISTP ~ Store Integer from ST(O) and Pop 

l6-bit memory 111011 1111 mod 011 rim 1 s-i-bl disp. 1 33.4(29-34) 

32-bit memory 111011 0111 mod 011 rim 1 s-i-b/disp. I 33.4(29-34) 

64-bit memory 111011 1111 mod 111 r/ml s-i-bl disp. 1 33.4(29-34) 

FBSTP ~ Store BCD from 111011 1111 mod 110 rim! s-i-bl disp. 1 175(172-176) 
ST(O) and Pop 

FXCH ~ Exchange ST(O) and ST(i) 111011 001111001 ST(i) 1 4 

COMPARISON INSTRUCTIONS 

FCOM ~ Compare ST(O) with Real 

32-bit memory 111011 0001 mod 010 rim 1 s-i-b/disp. 1 4 2 1 

64·bit memory 111011 100lmod 010 rim 1 s-i-b/disp. 1 4 3 1 

ST(i) 111011 000111010 ST(i) 1 4 1 

FCOMP ~ Compare ST(O) with Real and Pop 

32-bit memory 111011 ooolmod 011 rim! s-i-b/disp. 1 4 2 1 

64-bit memory 111011 100lmod 011 r/ml s-i-b/disp. 1 4 3 1 

ST(i) 111011 000 !11 011 ST(i) 1 4 1 
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Table 10.3. i486™ Microprocessor Floating Point Clock Count Summary (Continued) 

Cache Hit Penalty II Concurrent 
Cache Miss Execution 

INSTRUCTION FORMAT Avg(Lower Avg(Lower Avg (Lower Notes 
Range ••• Range .•• Range ••• 

Upper Range) Upper Range) Upper Range) 

COMPARISON INSTRUCTIONS (Continued) 

FCOMPP ~ Compare ST(O) with It 1011 11011101 10011 5 1 

ST(I) and Pop Twice 

FICOM ~ Compare ST(O) with Integer 

16·bit memory 111011 1101 mod a 1 a rlml s·i·bl disp. I 18(16-20) 2 1 

32·bit memory 111011 ololmod a 10 rim I s·i·b/disp. I 16.5(15-17) 2 1 

FICOMP ~ Compare ST(O) with Integer 

16·bit memory 111011 110 I mod all rim I s·i·bl disp. I 18(16-20) 2 1 

32·bit memory 111011 0101 mod all rlml s·i·b/disp. I 16.5(15-17) 2 1 

FTST ~ Compare ST(O) with 0.0 111011 00111110 0100 I 
FUCOM ~ Unordered compare 111011 10 11111 00 Sl(i) I 4 1 

ST(O) with ST(i) 

FUCOMP = Unordered compare 111011 10 111110 1 Sl(i) I 4 1 
ST(O) with ST(I) and Pop 

FUCOMPP ~ Unordered compare 111011 10 111110 1 100 11 5 1 

ST(O) with ST(I) and Pop Twice 

FXAM ~ Examine ST(O) 111011 00111110 a 1 a 11 8 

CONSTANTS 

FLDZ ~ Load + 0.0 Into ST(O) 11011 00 111110 11101 4 

FLDI ~ Load + 1.0 Into ST(O) 11011 00 111110 1000 I 4 

FLDPI ~ Load 71' Into ST(O) 11011 00 111110 10111 8 2 

FLDL2T ~ Load 1092(10) Into ST(O) 11011 00111110 10011 8 2 

FLDL2E ~ Load log2(e) Into ST(O) 11011 00 11111 a 10101 8 2 

FLDLG2 ~ Load logI0(2) Into ST(O) 111011 00 111110 1100 I 8 2 

FLDLN2 ~ Load log.(2) Into ST(O) 111011 00 11111 0 11011 8 2 

ARITHMETIC 

F ADD ~ Add Real with ST(O) 

Sl(O) +- Sl(O) + 32·bit memory 111011 oooimod 000 rim I s·i·b/disp. I 10(8-20) 2 7(5-17) 

Sl(O) +- Sl(O) + 64·bit memory 111011 100lmod 000 rim I s·i·bl disp. I 10(8-20) 3 7(5-17) 

Sl(O) +- Sl(O) + Sl(i) 111011 dooll1000 Sl(i) I 10(8-20) 7(5-17) 

FADDP ~ Add real with ST(O) and 111011 110 111000 ST(i) I 10(8-20) 7(5-17) 

Pop (ST(I) +- Sl(O) + ST(I» 

FSUB ~ Subtract real from ST(O) 

Sl(O) +- Sl(O) - 32·bit memory 111011 oooimod 100 rlml s·i·bl disp. I 10(8-20) 2 7(5-17) 

Sl(O) +- Sl(O) - 64·bit memory 111011 100lmod 100 rlml s·i·bl disp. I 10(8·20) 3 7(5-17) 

SlId) <- Sl(O) - Sl(i) 111011 dOO 11110 1 Sl(i) I 10(8-20) 7(5-17) 

FSUBP ~ Subtract real from ST(O) 111011 110 11110 1 Sl(i) I 10(8-20) 7(5-17) 

and Pop (ST(i) <- ST(O) - ST(I» 

153 



intJ i486™ MICROPROCESSOR 

Table 10.3. i486™ Microprocessor Floating Point Clock Count Summary (Continued) 

Cache Hit Penalty If Concurrent 
Cache Miss Execution 

INSTRUCTION FORMAT Avg(Lower Avg(Lower Avg(Lower Notes 
Range .•• Range •.• Range ••• 

Upper Range) Upper Range) Upper Range) 

ARITHMETIC (Continued) 

FSUSR - Suhtic;;ct n~a: i~Vei5cd (Suulrilci ST(u) jrom reai) 

ST(O) <- 32·bit memory - ST(O) 1110 tt oooimod 101 rIm I s·j·bl disp. I 10(8-20) 2 7(5-17) 

ST(O) <- 64·bit memory - ST(O) Ittott 100lmod 101 rlml s-i-b/disp. I 10(8-20) 3 7(5-17) 

ST(d) <- ST(i) - ST(O) Ittott doolttl00 ST(i) I 10(8-20) 7(5-17) 

!=SU8R:P = Subt:'::.::~ rCAl i~."iS .. Q 
1 .. 0 •• 110! 1 i j 00 

__ I 
10(8-20) 7(5-17) I I I V I I ~lllll 

and Pop (ST(i) <- ST(i) - ST(O» 

FMUL ~ Multiply real with ST(O) 

ST(O) <- ST(O) x 32-bit memory 111011 oooimod 001 rIm I s-i-b/disp. I 11 2 8 

ST(O) .... ST(O) x 64-bit memory 111011 1001 mod 001 rlml s-i-b/disp. I 14 3 11 

ST(d) .... ST(O) x ST(i) 111011 doolttOOI ST(i) I 16 13 

FMULP ~ Multiply ST(O) with ST(I) 111011 110lttOOI ST(i) I 16 13 
and Pop (ST(I) .... ST(O) x ST(i» 

FDIV ~ Divide ST(O) by Real 

ST(O) .... ST(0)/32-bit memory 111011 000 I mod 110 rlml s-i·bl disp. I 73 2 70 3 

ST(O) .... ST(0)/64-bit memory 111011 1001 mod 100 rlml s-i-bl disp. I 73 3 70 3 

ST(d) .... ST(O)/ST(i) 111011 dooltttti ST(i) I 73 70 3 

FDIVP ~ Divide ST(O) by ST(I) and 111011 110111111 ST(i) I 73 70 3 
Pop (ST(I) .... ST(O)/ST(i» 

FDIVR ~ Divide real reversed (ReaIlST(O» 

ST(O) .... 32-bit memoryIST(O) 111011 0001 mod 111 rlml s-i-bl disp. I 73 2 70 3 

ST(O) <- 64-bit memoryIST(O) 111011 100lmod 111 rIm I s-I-b/disp. I 73 3 70 3 

ST(d) .... ST(i)/ST(O) 111 0 11 dOO 11111 0 ST(i) I 73 70 3 

FDIVRP ~ Divide real reversed and Ittott 110ltttto ST(i) I 73 70 3 
Pop (ST(I) .... ST(I)/ST(O» 

FIADD ~ Add Integer to ST(O) 

ST(O) .... ST(O) + 16-bit memory 1110tt ttolmod 000 rIm I s-i-bl disp. I 24(20-35) 2 7(5-17) 

ST(O) .... ST(O) + 32-bit memory 111011 ololmod 000 rlml s-i-bl disp. I 22.5(19-32) 2 7(5-17) 

FISUB ~ Subtract Integer from ST(O) 

ST(O) <- ST(O) - 16-bit memory 1110tt ttolmod 100 rlml s-i-bl disp. I 24(20-35) 2 7(5-17) 

ST(O) <- ST(O) - 32-bit memory Itt 0 11 ololmod 100 rIm I .-i-bl disp. I 22.5(19-32) 2 7(5-17) 

FISUBR ~ Integer Subtract Reversed 

ST(O) .... 16-bit memory - ST(O) 111011 ttolmod 101 rIm I .-I-bl dl.p. I 24(20-35) 2 7(5-17) 

ST(O) .... 32-bit memory - ST(O) Ittott ololmod 101 rlml .-I-bl dl.p. I 22.5(19-32) 2 7(5-17) 

FIMUL ~ Multiply Integer with ST(O) 

ST(O) <- ST(O) x 16-bit memory Ittott ttolmod 001 rlml .-i-b/disp. I 25(23-27) 2 8 

ST(O) <- ST(O) x 32-bit memory Ittott ololmod 001 rlml .-i-bl dlsp. I 23.5(22-24) 2 8 

FIDIV ~ Integer Divide 

ST(O) <- ST(0)116-bit memory Ittott ttolmod 110 rIm I .-I-bl dl.p. I 87(85-89) 2 70 3 

ST(O) <- ST(0)/32-bit memory Ittott ololmod 110 rlml .-I-bl disp. I 85.5(84-86) 2 70 3 
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Table 10.3. i486™ Microprocessor Floating Point Clock Count Summary (Continued) 

Cache Hit Penalty II Concurrent 
CacheMlss Execution 

INSTRUCTION FORMAT Avg(Lower Avg (Lower Avg(Lower Notes 
Range ••• Range •.• Range ••• 

Upper Range) Upper Range) Upper Range) 

ARITHMETIC (Continued) 

FIOIVR ~ Integer Divide Reversed 

ST(O) +- 16·bit memoryIST(O) 11011 1101 mod 111 r/ml s-j·b/disp. 1 87(85-89) 2 70 3 

ST(O) +- 32·bit memoryIST(O) 11011 010 mod 111 rim 1 s·i·b/disp. 1 85.5(84-86) 2 70 3 

FSQRT ~ Square Root 11011 001 1111 10101 85.5(83-87) 70 

FSCALE ~ Scale ST(O) by ST(1) 11011 001 1111 11011 31(30-32) 2 

FXTRACT ~ Extract components 11011 001 1111 01001 19(16-20) 4(2-4) 
oIST(O) 

FPREM ~ Partial Reminder 11011 001 1111 10001 84(70-138) 2(2-8) 

FPREM1 ~ Partial Reminder (IEEE) 11011 001 1111 01011 94.5(72-167) 5.5(2-18) 

FRNDINT ~ Round ST(O) to Integer 11011 001 1111 11001 29.1 (21-30) 7.4(2-8) 

00111110 00011 
I 

FABS ~ Absolute value 01 ST(O) 11011 3 

FCHS ~ Change sign 01 ST(O) 11011 00111110 00001 6 

TRANSCENDENTAL 

FCOS ~ Cosine 01 ST(O) 11011 001 1111 11111 313(257-354) 2 6,7 

FPTAN ~ Partial tangent 01 ST(O) 11011 001 1111 00101 244(200-273) 70 6,7 

FPATAN ~ Partial arctangent 11011 001 1111 00111 289(218-303) 5(2-17) 6 

FSIN ~ Sine 01 ST(O) 11011 001 1111 11101 313(257-354) 2 6,7 

FSINCOS ~ Sine and cosine 01 ST(O) 11011 001 1111 10111 336(292-365) 2 6,7 

F2XM 1 ~ 2ST(O) - 1 11011 00111111 00001 242(140-279) 2 6 

FYL2X ~ ST(1) x IOg2(ST(0» 11011 00111111 00011 311(196-329) 13 6 

FYL2XP1 ~ ST(1) x log2(ST(0) + 1.0) 11011 00111111 10011 313(171-326) 13 6 

PROCESSOR CONTROL 

FINIT ~ Initialize FPU 111011 01111110 00111 17 4 

FSTSW AX ~ Store status word 111011 11111110 00001 3 5 
into AX 

FSTSW ~ Store status word 111011 1011 mod 111 r/ml s-j-b/disp. 1 3 5 
into memory 

FLDCW = Load control word 111011 0011mod 101 rim 1 s-i-b/disp. 1 4 2 

FSTCW = Store control word 111011 0011 mod 111 r/ml s·i·b/disp. 1 3 5 

FCLEX = Clear exceptions 111011 01111110 00101 7 4 

FSTENV = Store environment 111011 0011mod 110 rim 1 s-i-b/disp. 1 
Real and Virtual modes 16-bit Address 67 4 
Real and Virtual modes 32-bit Address 67 4 
Protected mode 16-bit Address 56 4 
Protected mode 32-bit Address 56 4 

FLDENV = Load environment 111011 0011mod 100 rim 1 s-i-b/disp, 1 
Real and Virtual modes 16-bit Address 44 2 
Real and Virtual modes 32-bit Address 44 2 
Protected mode 16-bit Address 34 2 
Protected mode 32-bit Address 34 2 
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Table 103 i486™ Microprocessor Floating Point Clock Count Summary (Continued) 

Cache HII 
Penalty If Concurrent 

Cache Miss Execution 

INSTRUCTION FORMAT Avg(Lower Avg(Lower Avg(Lower Notes 
Range ••. Range ... Range ••• 

Upper Range) Upper Range) Upper Range) 

PROCESSOR CONTROL (Continued) 

FSAVE ~ Save slale 11 10 1 1 1011mOd 110 rlml s·i·bl disp. I 
Real and Virtual modes 16·bit Address 154 4 
Real and Virtual modes 32·bit Address 154 4 
Protected mode 16·bit Address 143 4 
Protected mode 32·bit Address 143 4 

FRSTOR ~ Reslore slale 111011 1011mod 100 rlml s·i·bl I 
Real and Virtual modes 16-bit Address 131 23 
Real and Virtual modes 32-bit Address 131 27 
Protected mode 16-bit Address 120 23 
Protected mode 32-bit Address 120 27 

FINCSTP ~ Incremenl Slack Polnler 111011 00111111 01111 3 

FDECSTP ~ Decremenl Slack Polnler 11 1 0 1 1 00111111 01101 3 

FFREE ~ Free ST(I) 111011 101111000 ST(i) I 3 

FNOP = No operations 111011 00111101 0000 I 3 

WAIT ~ Wail unlil FPU ready I 10011011 I 
(Minimum/Maximum) 1/3 

NOTES: 
1. If operand is a clock counts = 27. 
2. If operand is a clock counts = 28. 
3. If CW.PC indicates 24 bit precision then subtract 38 clocks. 

If CW.PC indicates 53 bit precision then subtract 11 clocks. 
4. If there is a numeric error pending from a previous instruction add 17 clocks. 
5. If there is a numeric error pending from a previous instruction add 18 clocks. . 
6. The INT pin is polled several times while this instruction is executing to assure short Interrupt latency. 
7. If ABS(operand) is greater than 7T/4 then add n clocks. Where n = (operand/(7T/4)). 

encodings of the mod rim byte indicate a second 
10.2 Instruction Encoding addressing byte, the scale-index-base byte, follows 

the mod rim byte to fully specify the addressing 
10.2.1 OVERVIEW mode. 

All instruction encodings are subsets of the general 
instruction format shown in Figure 10.1. Instructions 
consist of one or two primary opcode bytes, possibly 
an address specifier consisting of the "mod rim" 
byte and "scaled index" byte, a displacement if re
quired, and an immediate data field if required. 

Within the primary opcode or opcodes, smaller en
coding fields may be defined. These fields vary ac
cording to the class of operation. The fields define 
such information as direction of the operation, size 
of the displacements, register encoding, or sign ex
tension. 

Almost all instructions referring to an operand in 
memory have an addressing mode byte following 
the primary opcode byte{s). This byte, the mod rim 
byte, specifies the address mode to be used. Certain 
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Addressing modes can include a displacement im
mediately following the mod rim byte, or scaled in
dex byte. If a displacement is present, the possible 
sizes are 8, 16 or 32 bits. 

If the instruction specifies an immediate operand, 
the immediate operand follows any displacement 
bytes. The immediate operand, if specified, is always 
the last field of the instruction. 

Figure 10.1 illustrates several of the fields ~hat can 
appear in an instruction, such as the mod flel~ and 
the rim field, but the Figure does not show all fields. 
Several smaller fields also appear in certain instruc
tions, sometimes within the opcode bytes them
selves. Table 10.4 is a complete list of all fields ap
pearing in the 486 Microprocessor instruction set. 
Further ahead, following Table 10.4, are detailed ta
bles for each field. 
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ITTTTTTTT I TTTTTTTT I mod TTT rim I ss index base Id32i1.6iSi none data32i16isi none 

{ 07 0),765320),765320/\ J, J 
~ ________ ~ ________ -J T T ----~------- ~----~T----~ 

opcode , "mod rim" 
byte 

"s-i-b" 
byte 

) 

immediate 
data (one or two bytes) 

(T represents an 
opcode bit.) register and address 

mode specifier 

address 
displacement 
(4, 2, 1 bytes 

or none) 
(4, 2, 1 bytes 

or none) 

Figure 10.1. General Instruction Format 

Table 10.4. Fields within i486™ Microprocessor Instructions 

Field Name Description Number of Bits 

w Specifies if Data is Byte or Full Size (Full Size is either 16 or 32 Bits 1 
d Specifies Direction of Data Operation 1 
s Specifies if an Immediate Data Field Must be Sign·Extended 1 
reg General Register Specifier 3 
mod rim Address Mode Specifier (Effective Address can be a General Register) 2 for mod; 

3 for rim 
ss Scale Factor for Scaled Index Address Mode 2 
index General Register to be used as Index Register 3 
base General Register to be used as Base Register 3 
sreg2 Segment Register Specifier for CS, SS, OS, ES 2 
sreg3 Segment Register Specifier for CS, SS, OS, ES, FS, GS 3 
tttn For Conditional Instructions, Specifies a Condition Asserted 

or a Condition Negated 

NOTE: 
Tables 10.1-10.3 show encoding of individual instructions. 

10.2.2 32-BIT EXTENSIONS OF THE 
INSTRUCTION SET 

With the 4S6 Microprocessor, the S086/801861 
80286 instruction set is extended in two orthogonal 
directions: 32-bit forms of all 16-bit instructions are 
added to support the 32-bit data types, and 32-bit 
addressing modes are made available for all instruc
tions referencing memory. This orthogonal instruc
tion set extension is accomplished having a Default 
(D) bit in the code segment descriptor, and by hav
ing 2 prefixes to the instruction set. 

Whether the instruction defaults to operations of 16 
bits or 32 bits depends on the setting of the 0 bit in 
the code segment descriptor, which gives the de
fault length (either 32 bits or 16 bits) for both oper
ands and effective addresses when executing that 
code segment. In the Real Address Mode or Virtual 
8086 Mode, no code segment descriptors are used, 
but a 0 value of 0 is assumed internally by the 486 
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4 

Microprocessor when operating in those modes (for 
16-bit default sizes compatible with the 80861 
80186/80286). 

Two prefixes, the Operand Size Prefix and the Effec
tive Address Size Prefix, allow overriding individually 
the Default selection of operand size and effective 
address size. These prefixes may precede any op
code bytes and affect only the instruction they pre
cede. If necessary, one or both of the prefixes may 
be placed before the opcode bytes. The presence of 
the Operand Size Prefix and the Effective Address 
Prefix will toggle the operand size or the effective 
address size, respectively, to the value "opposite" 
from the Default setting. For example, if the default 
operand size is for 32-bit data operations, then pres
ence of the Operand Size Prefix toggles the instruc
tion to 16-bit data operation. As another example, if 
the default effective address size is 16 bits, pres
ence of the Effective Address Size prefix toggles the 
instruction to use 32-bit effective address computa
tions. 
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These 32-bit extensions are available in all 486 Mi
croprocessor modes, including the Real Address 
Mode or the Virtual 8086 Mode. In these modes the 
default is always 16 bits, so prefixes are needed to 
specify 32-bit operands or addresses. For instruc
tions with more than one prefix, the order of prefixes 
is unimportant. 

Unless specified otherwise, instructions with 8-bit 
and 16-bit operands do not affect the contents of 
the high-order bits of the extended registers. 

10.2.3 ENCODING O!= !NTEGER 
INSTRUCTION FIELDS 

Within the instruction are several fields indicating 
register selection, addressing mode and so on. The 
exact encodings of these fields are defined immedi
ately ahead. 

10.2.3.1 Encoding of Operand Length (w) Field 

For any given instruction performing a data opera
tion, the instruction is executing as a 32-bit operation 
or a 16-bit operation. Within the constraints of the 
operation size, the w field encodes the operand size 
as either one byte or the full operation size, as 
shown in the table below. 

Operand Size Operand Size 
wField During 16·Bit During 32·Bit 

Data Operations Data Operations 

0 8 Bits 8 Bits 
1 16 Bits 32 Bits 

10.2.3.2 Encoding of the General 
Register (reg) Field 

The general register is specified by the reg field, 
which may appear in the primary opcode bytes, or as 
the reg field of the "mod rim" byte, or as the rim 
field of the "mod rim" byte. 
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Encoding of reg Field When w Field 
is not Present in Instruction 

Register Selected Register Selected 
reg Field During 16·Bit During 32·Bit 

000 
001 
010 
011 
100 
101 
101 
101 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

reg 

000 
001 
010 
011 
100 
101 
110 
111 

Data Operations 
AV ,.v, 
CX 
OX 
BX 
SP 
BP 
SI 
01 

Data Operations 

EAX 
ECX 
EOX 
EBX 
ESP 
EBP 
ESI 
EOI 

Encoding of reg Field When w Field 
is Present in Instruction 

Register Specified by reg Field 
During 16·Bit Data Operations: 

Function of w Field 

(when w = 0) (when w = 1) 

AL AX 
CL CX 
OL OX 
BL BX 
AH SP 
CH BP 
OH SI 
BH 01 

Register Specified by reg Field 
During 32·Bit Data Operations 

Function of w Field 

(when w = 0) (when w = 1) 

AL EAX 
CL ECX 
OL EOX 
BL EBX 
AH ESP 
CH EBP 
OH ESI 
BH EOI 
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10.2.3.3 Encoding of the Segment 
Register (sreg) Field 

The sreg field in certain instructions is a 2-bit field 
allowing one of the four 80286 segment registers to 
be specified. The sreg field in other instructions is a 
3-bit field, allowing the 486 Microprocessor FS and 
GS segment registers to be specified. 

2-Bit sreg2 Field 

2-Bit 
Segment 

sreg2 Field 
Register 
Selected 

00 ES 
01 CS 
10 SS 
11 DS 

3-Bit sreg3 Field 

3-Bit 
Segment 

sreg3 Field 
Register 
Selected 

000 ES 
001 CS 
010 SS 
011 DS 
100 FS 
101 GS 
110 do not use 
111 do not use 
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10.2.3.4 Encoding of Address Mode 

Except for special instructions, such as PUSH or 
POP, where the addressing mode is pre-determined, 
the addressing mode for the current instruction is 
specified by addressing bytes following the primary 
opcode. The primary addressing byte is the "mod 
rim" byte, and a second byte of addressing informa
tion, the "s-i-b" (scale-index-base) byte, can be 
specified. 

The s-i-b byte (scale-index-base byte) is specified 
when using 32-bit addressing mode and the "mod 
rim" byte has rim = 100 and mod = 00,01 or 10. 
When the sib byte is present, the 32-bit addressing 
mode is a function of the mod, ss, index, and base 
fields. 

The primary addressing byte, the "mod rim" byte, 
also contains three bits (shown as TTT in Figure 
10.1) sometimes used as an extension of the pri
mary opcode. The three bits, however, may also be 
used as a register field (reg). 

When calculating an effective address, either 16-bit 
addressing or 32-bit addressing is used. 16-bit ad
dressing uses 16-bit address components to calcu
late the effective address while 32-bit addressing 
uses 32-bit address components to calculate the ef
fective address. When 16-bit addressing is used, the 
"mod rim" byte is interpreted as a 16-bit addressing 
mode specifier. When 32-bit addressing is used, the 
"mod rim" byte is interpreted as a 32-bit addressing 
mode specifier. 

Tables on the following three pages define all en
codings of all 16-bit addressing modes and 32-bit 
addressing modes. 
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Encoding of 16·bit Address Mode with "mod rIm" Byte 

mod rIm Effective Address mod rIm Effective Address 

00000 OS:[BX+SI] 10000 OS:[BX+SI+d16] 
00001 OS:[BX+OI] 10001 OS: [BX + 01 + d16] 
nn n-tn SS:[8P+SI] vv VIV 

.. nn .. " C"'C"o.rnn t ("\1 I ...J .. ~1 
IVV IV ..:l..:J.Ll:1rTvl'U IUJ 

00011 SS:[BP+OI] 10011 SS:[BP+01+d16] 
00100 OS:[SI] 10100 OS: [SI + d16] 
00101 OS:[OI] 10101 OS: [01 + d16] 
00110 OS:d16 10110 SS:[BP+d16] 
00111 OS:[BX] 10 111 OS:[BX+d16] 

01000 OS: [BX + SI + d8] 11 000 register-see below 
01001 OS: [BX + 01 + d8] 11 001 register-see below 
01010 SS:[BP+SI+d8] 11 010 register-see below 
01011 SS: [BP + 01 + d8] 11 011 register-see below 
01 100 OS:[SI+d8] 11100 register-see below 
01101 OS:[01+d8] 11 101 register-see below 
01110 SS:[BP+d8] 11 110 register-see below 
01 111 OS:[BX+d8] 11 111 register-see below 

Register Specified by rIm Register Specified by rIm 
During 16·Bit Data Operations During 32·Bit Data Operations 

mod rIm Function of w Field 
mod rIm Function of w Field 

(when w=O) (when w = 1) (whenw=O) (when w = 1) 

11 000 AL AX 11 000 AL EAX 
11 001 CL CX 11 001 CL ECX 
11 010 OL OX 11 010 OL EOX 
11 011 BL BX 11 011 BL EBX 
11 100 AH SP 11 100 AH ESP 
11 101 CH BP 11 101 CH EBP 
11 110 OH SI 11 110 OH ESI 
11 111 BH 01 11 111 BH EOI 
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Encoding of 32-bit Address Mode with "mod rIm" byte (no "s-i-b" byte present): 

mod rIm Effective Address mod rIm Effective Address 

00000 DS:[EAX] 10000 DS: [EAX + d32] 
00001 DS:[ECX] 10001 DS: [ECX + d32] 
00010 DS:[EDX] 10010 DS: [EDX + d32] 
00011 DS:[EBX] 10011 DS: [EBX + d32] 
00100 s-i-b is present 10100 s-i-b is present 
00101 DS:d32 10101 SS: [EBP + d32] 
00110 DS:[ESI] 10110 DS: [ESI + d32] 
00111 DS:[EDIl 10 111 DS: [ED I + d32] 

01000 DS: [EAX + dB] 11000 register-see below 
01001 DS: [ECX + dB] 11001 register-see below 
01 010 DS: [EDX + dB] 11010 register-see below 
01011 DS: [EBX + dB] 11 011 register-see below 
01 100 s-i-b is present 11100 register-see below 
01101 SS:[EBP+dB] 11 101 register-see below 
01 110 DS: [ESI + dB] 11 110 register-see below 
01 111 DS: [EDI + dB] 11 111 register-see below 

Register Specified by reg or rIm Register Specified by reg or rIm 
during 16-Bit Data Operations: during 32-Bit Data Operations: 

mod rIm 
Function of w field 

mod rIm 
Function of w field 

(whenw=O) (when w= 1) (whenw=O) (when w= 1) 

11 000 AL AX 11 000 AL EAX 
11001 CL CX 11 001 CL ECX 
11010 DL DX 11 010 DL EDX 
11 011 BL BX 11 011 BL EBX 
11 100 AH SP 11 100 AH ESP 
11 101 CH BP 11 101 CH EBP 
11 110 DH SI 11 110 DH ESI 
11 111 BH DI 11 111 BH EDI 

161 



i486™ MICROPROCESSOR 

Encoding of 32-bit Address Mode ("mod rIm" byte and "s-i-b" byte present): 

mod base Effective Address 

00000 OS: [EAX + (scaled index)) 
00001 OS: [ECX + (scaled index)] 
00010 OS: [EOX + (scaled index)] 
00011 OS: [ESX + (scaled index)) 
00100 SS: [ESP + (scaled index)] 
00101 OS: [d32 + (scaled index)] 
00110 OS: [ESI + (scaled index)] 
00111 OS: [EOI + (scaled index)] 

01000 OS: [EAX + (scaled index) + dB] 
01001 OS: [ECX + (scaled index) + dB] 
01010 OS: [EOX + (scaled index) + dB] 
01011 OS: [ESX + (scaled index) + dB] 
01100 SS: [ESP + (scaled index) + dB] 
01101 SS: [ESP + (scaled index) + dB] 
01110 OS: [ESI + (scaled index) + dB] 
01 111 OS: [EOI + (scaled index) + dB] 

10000 OS: [EAX + (scaled index) + d32] 
10001 OS: [ECX + (scaled index) + d32] 
10010 OS: [EOX + (scaled index) + d32] 
10011 OS: [ESX + (scaled index) + d32] 
10100 SS: [ESP + (scaled index) + d32] 
10101 SS: [ESP + (scaled index) + d32] 
10110 OS: [ESI + (scaled index) + d32] 
10111 OS: [EOI + (scaled index) + d32] 

NOTE: 
Mod field in "mod rim" byte; ss, index, base fields in 
"s-i-b" byte. 
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ss 

00 
01 
10 
11 

index 

000 
001 
010 
011 
100 
101 
110 
111 

"IMPORTANT NOTE: 

Scale Factor 

x1 
x2 
x4 
xB 

Index Register 

EAX 
ECX 
EOX 
ESX 

no index reg" 
ESP 
ESI 
EOI 

When index field is 100, indicating "no index register," then 
ss field MUST equal 00. If index is 100 and ss does not 
equal 00, the effective address is undefined. 



inter i486™ MICROPROCESSOR 

10.2.3.5 Encoding of Operation 
Direction (d) Field 

In many two-operand instructions the d field is pres
ent to indicate which operand is considered the 
source and which is the destination. 

d Direction of Operation 

0 Register/Memory <- - Register 
"reg"Field Indicates Source Operand; 
"mod r/m" or "mod ss index base" Indicates 
Destination Operand 

1 Register <- - Register/Memory 
"reg" Field Indicates Destination Operand; 
"mod r/m" or "mod ss index base" Indicates 
Source Operand 

10.2.3.6 Encoding of Sign-Extend (s) Field 

The s field occurs primarily to instructions with im
mediate data fields. The s field has an effect only if 
the size of the immediate data is 8 bits and is being 
placed in a 16-bit or 32-bit destination. 

Effect on Effect on 
s Immediate Immediate 

DataS Data 16132 

0 None None 

1 Sign-Extend Data8 to Fill None 
16-8it or 32-8it Destination 

10.2.3.7 Encoding of Conditional 
Test (tttn) Field 

For the conditional instructions (conditional jumps 
and set on condition). tttn is encoded with n indicat
ing to use the condition (n = 0) or its negation (n = 1). 
and ttt giving the condition to test. 
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Mnemonic Condition 

0 Overflow 
NO No Overflow 
B/NAE Below/Not Above or Equal 
NB/AE Not Below/Above or Equal 
E/Z Equal/Zero 
NE/NZ Not Equal/Not Zero 
BE/NA Below or Equal/Not Above 
NBE/A Not Below or Equal/Above 
S Sign 
NS Not Sign 
PIPE Parity/Parity Even 
NP/PO Not Parity/Parity Odd 
LlNGE Less Than/Not Greater or Equal 
NLIGE Not Less Than/Greater or Equal 
LEING Less Than or Equal/Greater Than 
NLE/G Not Less or Equal/Greater Than 

10.2.3.S Encoding of Control or Debug 
or Test Register (eee) Field 

tun 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 
1000 
1001 
1010 
1011 
1100 
1101 
1110 
1111 

For the loading and storing of the Control. Debug 
and Test registers. 

When Interpreted as Control Register Field 

eee Code Reg Name 

000 CRO 
010 CR2 
011 CR3 

Do not use any other encoding 

When Interpreted as Debug Register Field 

eeeCode Reg Name 

000 DRO 
001 DR1 
010 DR2 
011 DR3 
110 DR6 
111 DR? 

Do not use any other encoding 

When Interpreted as Test Register Field 

eeeCode Reg Name 

011 TR3 
100 TR4 
101 TR5 
110 TR6 
111 TR? 

Do not use any other encoding 
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Instruction 

1 

2 

3 

4 

5 

11011 

11011 

1101i 

11011 

11011 

15-11 

First Byte 

OPA 1 

MF OPA 

d P OPA 

0 0 1 

0 1 1 

10 9 8 

10.2.4 ENCODING OF FLOATING POINT 
INSTRUCTION FIELDS 

mod 

mod 

i 

1 

1 

7 

Instructions for the FPU assume one of the five 
forms shown in the following table. In all cases, in
structions are at least two bytes long and begin with 
the bit pattern 11011 B. 

OP = Instruction opcode, possible split into two 
fields OPA and OPB 

MF = Memory Format 
00-32-bit real 
01-32-bit integer 
10-64-bit real 
11-16-bit integer 

P = Pop 
0-00 not pop stack 
1-Pop stack after operation 

d = Destination 
O-Destination is ST(O) 
1-Destination is ST(i) 

R XOR d = O-Destination (op) Source 
R XOR d = 1-Source (op) Destination 

ST(i) = Register stack element i 
000 = Stack top 
001 = Second stack element 

• 
• 
• 

111 = Eighth stack element 

mod (Mode field) and rim (Register/Memory specifi
er) have the same interpretation as the correspond
ing fields of the integer instructions. 

s-i-b (Scale Index Base) byte and disp (displace
ment) are optionally present in instructions that have 
mod and rim fields. Their presence depends on the 
values of mod and rim, as for integer instructions. 

Optional 

Second Byte Fields 

1 I OPS rim s-i-b 1 disp 

OPS rim s-i-b I disp 

i OP8 ST{i) 

1 1 1 OP 

1 1 I OP 

6 5 43210 

11.0 DIFFERENCES BETWEEN THE 
i486™ MICROPROCESSOR AND 
THE 386™ MICROPROCESSOR 
PLUS THE 387TM NUMERICS 
COPROCESSOR 

The differences between the 486 microprocessor 
and the 386 microprocessor are due to performance 
enhancements. The differences between the micro
processors are listed below. 

1. Instruction clock counts have been reduced to 
achieve higher performance. See Section 10. 

2. The 486 microprocessor bus is significantly fast
er than the 386 microprocessor bus. Differences 
include a 1 X clock, parity support, burst cycles, 
cacheable cycles, cache invalidate cycles and 
8-bit bus support. The Hardware Interface and 
Bus Operation Sections (Sections 6 and 7) of 
the data sheet should be carefully read to un
derstand the 486 microprocessor bus function
ality. 

3. To support the on-chip cache new bits have 
been added to control register 0 (CE and WT) 
(Section 2.1.2.1), new pins have been added to 
the bus (Section 6) and new bus cycle types 
have been added (Section 7). The on-chip 
cache needs to be enabled after reset by setting 
the CE and WT bit in CRO. 

4. The complete 387 math coprocessor instruction 
set and register set have been added. No 1/0 
cycles are performed during Floating Point in
structions. The instruction and data pointers are 
set to 0 after FINIT/FSAVE. Interrupt 9 can no 
longer occur, interrupt 13 occurs instead. 

5. The 486 microprocessor supports new floating 
point error reporting modes to guarantee DOS 
compatibility. These new modes required a new 
bit in control register 0 (NE) (Section 2.1.2.1) 
and new pins (FERR# and IGNNE#) (Section 
6.2.13 and 7.2.14). 
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6. Six new instructions have been added: 

Byte Swap (BSWAP) 

Exchange-and-Add (XADD) 

Compare and Exchange (CMPXCHG) 

Invalidate Data Cache (INVD) 

Write-back and Invalidate Data Cache 
(WBINVD) 

Invalidate TLB Entry (INVLPG) 

7. There are two new bits defined in control regis
ter 3, the page table entries and page directory 
entries (PCD and PWT) (Section 4.5.2.5). 

8. A new page protection feature has been added. 
This feature required a new bit in control register 
o (WP) (Section 2.1.2.1 and 4.5.3). 

9. A new Alignment Check feature has been add
ed. This feature required a new bit in the flags 
register (AC) (Section 2.1.1.3) and a new bit in 
control register 0 (AM) (Section 2.1.2.1). 

10. The replacement algorithm for the translation 
lookaside buffer has been changed to a pseudo 
least recently used algorithm like that used by 
the on-chip cache. See Section 5.5 for a de
scription of the algorithm. 

11. Three new testability registers, TR5, TR6 and 
TR7, have been added for testing the on-chip 
cache. TLB testability has been enhanced. See 
Section 8. 

12. The prefetch queue has been increased from 16 
bytes to 32 bytes. A jump always needs to exe
cute after modifying code to guarantee correct 
execution of the new instruction. 

13. After reset, the ID in the upper byte of the DX 
register is 04. The contents of the base regis
ters including the floating point registers may be 
different after reset. 

12.0 ELECTRICAL DATA 

The following sections describe recommended elec
trical connections for the 486 microprocessor, and 
its electrical specifications. 

12.1 Power and Grounding 

12.1.1 POWER CONNECTIONS 

The 486 microprocessor is implemented in CHMOS 
IV technology and has modest power requirements. 
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However, its high clock frequency output buffers can 
cause power surges as multiple output buffers drive 
new signal levels simultaneously. For clean on-chip 
power distribution at high frequency, 24 Vee and 28 
Vss pins feed the 486 microprocessor. 

Power and ground connections must be made to all 
external Vee and GND pins of the 486 microproces
sor. On the circuit board, all Vee pins must be con
nected on a Vee plane. All Vss pins must be like
wise connected on a GND plane. 

12.1.2 POWER DECOUPLING 
RECOMMENDATIONS 

Liberal decoupling capacitance should be placed 
near the 486 microprocessor. The 486 microproces
sor driving its 32-bit parallel address and data bus
ses at high frequencies can cause transient power 
surges, particularly when driving large capacitive 
loads. 

Low inductance capacitors and interconnects are 
recommended for best high frequency electrical per
formance. Inductance can be reduced by shortening 
circuit board traces between the 486 microproces
sor and decoupling capacitors as much as possible. 
Capacitors specifically for PGA packages are also 
commercially available. 

12.1.3 OTHER CONNECTION 
RECOMMENDATIONS 

N.C. pins should always remain unconnected. 

For reliable operation, always connect unused in
puts to an appropriate signal level. Active LOW in
puts should be connected to Vee through a pullup 
resistor. Pull ups in the range of 20 K!1 are recom
mended. Active HIGH inputs should be connected to 
GND. 

12.2 Maximum Ratings 

Table 12.1 is a stress rating only, and functional op
eration at the maximums is not guaranteed. Function 
operating conditions are given in 12.3 D.C. Specifi
cations and 12.4 A.C. Specifications. 

Extended exposure to the Maximum Ratings may af
fect device reliability. Furthermore, although the 486 
microprocessor contains protective circuitry to resist 
damage from static electric discharge, always take 
precautions to avoid high static voltages or electric 
fields. 
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Table 12.1. Absolute Maximum Ratings 

Case Temperature under Bias ....... O°C to + 85°C 

Storage Temperature .......... - 65°C to + 150°C 

Voltage on Any Pin with 
Respect to Ground ......... - 0.5 to V CC + 0.5V 

Power Dissipation at 25 MHz .................. 5W 

Power Dissipation at 33 MHz .................. 6W 

12.3 D.C. Specifications 
Functional Operating Range: Vcc = 5V ± 5%; T CASE = O°C to + 85°C 

Table 12.2. DC Parametric Values 

Symbol Parameter ax Unit Notes 

VIL Input low Voltage V 
VIH Input High Voltage V 

VOL Output low Voltage V (Note 1) 
VOH Output High Voltage V (Note 2) 

Icc Power Supply Current (25 MHz) 900 mA (Note 3) 
Power Supply Current (33 M 1200 

III Input leakage Current ±15 /LA (Note 4) 

IIH Input leakage Curren 200 /LA (Note 5) 

IlL Input leakage Cu~ -400 /LA (Note 6) 
ILO Output leakage ±15 /LA 
CIN Input Capacita'nc 16 pF 
Co 1/0 or Output Cap 16 pF 

CCLK ClK Capacitance 16 pF 

NOTES: 
1. This parameter is measured at: 

Address, Data, BEn 4.0 mA 
Definition, Control 5.0 mA 

2. This parameter is measured at: 
Address, Data, BEn 1.0 mA 
Definition, Control 0.9 mA 

3. Typical supply current 650 mA. 
4. This parameter is for inputs without pullups or pulldowns and 0 ,;; VIN ,;; Vce. 
5. This parameter is for inputs with pulldowns and VIH = 2.4V. 
6. This parameter is for inputs with pull ups and VIL = 0.45V. 

12.4 A.C. Specifications 

The AC. specifications, given in Table 12.3, consist 
of output delays, input setup requirements and input 
hold requirements. All A.C. specifications are rela
tive to the rising edge of the ClK signal. 

AC. specifications measurement is defined by Fig
ures 12.1-12.3. Inputs must be driven to the voltage 
levels indicated by Figure 12.3 when AC. specifica-
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tions are measured. 486 microprocessor output de
lays are specified with minimum and maximum limits, 
measured as shown. The minimum 486 microproc
essor delay times are hold times provided to exter
nal circuitry. 486 microprocessor input setup and 
hold times are specified as minimums, defining the 
smallest acceptable sampling window. Within the 
sampling window, a synchronous input Signal must 
be stable for correct 486 microprocessor operation. 



inter i486™ MICROPROCESSOR 

Table 12.3.25 MHz i486 Microprocessor A.C. Characteristics 

Vee = 5V ±5%; Tease = O°C to + 85°C; CI = 50 pF unless otherwise specified 

Symbol Parameter Min Max Unit Figure Notes 

Frequency 8 25 MHz 1 X Clock Driven to 486 

t1 ClK Period 40 125 ns 12.1 

t1a ClK Period Stability 0.1% t;. Adjacent Clocks 

t2 ClK High Time 14 ns 12.1 at2V 

t3 ClKlowTime 14 ns 12.1 at 0.8V 

t4 ClK Fall Time 4 ns 

t5 ClK Rise Time 4 ns 

ts A2-A31, PWT, PCD, BEO-3 #, 3 22 ns 
M/IO#, D/C#, W/R#, ADS#, 
lOCK#,FERR#,BREQ,HlDA 
Valid Delay 

t7 A2-A31, PWT, PCD, BEO-3#, 0 
M/IO#, D/C#, W/R#, ADS#, 
lOCK# Float Delay 

te PCHK# Valid Delay 

tea BlAST#, PlOCK# Valid Delay 

t9 BlAST#, PlOCK# Float Delay Before Clock Edge 

t10 DO-D31, DPO-3 Write Data Valid 
Delay 

t11 DO-D31, DPO-3 Write 12.2 Before Clock Edge 
Delay 

t12 12.3 

t13 ns 12.3 

t14 ns 12.3 

t15 KEN#, ns 12.3 

t16 RO,¥0¥ , 8 ns 12.3 

t17 3 ns 12.3 

t1e , BOFF # Setup Time 10 ns 12.3 

t19 HOLD, AHOlD, BOFF # Hold Time 3 ns 12.3 

t20 RESET, FlUSH#, A20M#, NMI, 10 ns 12.3 
INTR, IGNNE# Setup Time 

t21 RESET, FlUSH#, A20M#, NMI, 3 ns 12.3 
INTR, IGNNE# Hold Time 

t22 DO-D31, DPO-3, A4-A31 Read 5 ns 12.3 
Setup Time 

t23 DO-D31, DPO-3, A4-A31 Read 3 ns 12.3 
Hold Time 

167 



intJ i486™ MICROPROCESSOR 

Table 12.3.33 MHz i486 Microprocessor D.C. Characteristics 

Vee = 5V ±5%; Tease = O°C to + 85°C; C, = 50 pF unless otherwise specified 

Symbol Parameter Min Max Unit Figure Notes 

Frequency 8 33 MHz 1 X Clock Driven to 486 

tl ClK Period 30 125 ns 12.1 

tla ClK Period Stability 0.1% t:.. Adjacent Clocks 

t2 ClK High Time 11 ns 12.1 at2V 

t3 ClK low Time 11 ns 12.1 at 0.8V 

t4 ClK Fall Time 3 ns 12.1 

t5 ClK Rise Time 3 ns 12.1 

t6 A2-A31, PWT, PCD, BEO-3#, 3 19 ns 
M/IO#, D/C#, W/R#, ADS#, 
lOCK#,FERR#,BREQ,HlDA 
Valid Delay 

t7 A2-A31, PWT, PCD, BEO-3#, 0 
M/IO#, D/C#, W/R#, ADS#, 
lOCK # Float Oelay 

te PCHK# Valid Oelay 3 

tea BlAST#, PlOCK# Valid Oelay 

t9 BLAST #, PLOCK # Float Oelay Before Clock Edge 

tlO 00-031, OPO-3 Write Oata Valid 
Oelay 

tll Before Clock Edge 

t12 12.3 

t13 12.3 

t14 ns 12.3 

t15 ns 12.3 

t16 ns 12.3 

t17 ns 12.3 

tle 8 ns 12.3 

t19 3 ns 12.3 

t20 RESET, FlUSH#, A20M#, NMI, 8 ns 12.3 
INTR, IGNNE# Setup Time 

t21 RESET, FlUSH#, A20M#, NMI, 3 ns 12.3 
INTR, IGNNE# Hold Time 

t22 00-031, DPO-3, A4-A31 Read 5 ns 12.3 
Setup Time 

t23 00-031, OPO-3, A4-A31 Read 3 ns 12.3 
Hold Time 
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240440-45 
tx = input setup times 
ty = input hold times. output float. valid and hold times 

Figure 12.1. elK Waveforms 

ClK L (PH1) \ (PH2) -I JlL1.5V '---_1.:.;1 

ClK 

ty = t12. 114. t16. 118. 120. t22 
tz = t13. 115. 117. t19. t21. 123 

'~;~'j-l-'5-V------.t ,m..., --1 

Figure 12.2. Output Waveforms 

Figure 12.3. Input Waveforms 
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12.4.1 Typical Output Valid Delay versus Load 
Capacitance Under Worst Case 
Conditions 

NOTE: 

'iii' 
;.5. 
~ notTl+4 ;------1---+--+----;;: 

'" '" l-
i[ nom+2 1--1--
I
:> 
o 
....I 

tl 
~ 

240440-75 

This graph will not be linear outside of the CL range shown. 
non = nominal value given in A.C. Characteristics table. 

12.4.2 Typical Output Rise Time versus Load 
Capacitance Under Worst-Case 
Conditions 

7r--r-----,r-----,-----,-~ 

NOTE: 

> a 
N 

~ 
ci 

6r--r--r--r--7Fc 
5r--r--r-~~ 

4 r--r---7'F--

150 

240440-76 

This graph will not be linear outside of the CL range shown. 

12.5 Designing for ICD-486 
(Advance Information) 

The ICD·486 (In·Circuit Debugger) is a hardware as· 
sisted debugger for the 486 CPU. To use the ICD-
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486, the 486 CPU component must be removed 
from its socket replaced with the ICD-486 module. 
Because of the high operating frequency of 486 CPU 
systems, there is no buffering of signals between the 
486 CPU in the ICD-486 and the target system. A 
direct result of the non-buffered interconnect is that 
the ICD-486 shares the address and data bus of the 
target system. In order for the ICD-486 to function 
properly (without the Optional Isolation Board in
stalled), the design of the target system must meet 
the following restrictions: 

1. The bus controller must only enable data trans
ceivers onto the data bus during valid read cycles 
of the 486 CPU, other local devices, or other bus 
masters. 

2. Before another bus master drives the localproc
essor address bus, the other bus master must 
gain access to the address bus through the use 
of HOlD-HlDA, AHOlD, or BOFF#. 

In addition to the above restrictions, the ICD-486 has 
several electrical and mechanical characteristics 
that should be taken into consideration when de
signing the 486 CPU system. 

Capacitive loading: ICD-486 adds up to 30 pF to the 
ClK signal, and up to 20 pF to each of the other 486 
CPU signals. 

DC loading: ICD-486 adds ± 15 p.A loading to the 
ClK and data bus signals and ± 5 p.A loading to the 
address and control signals. 

Power Requirements: For noise immunity and 
CMOS latch-up protection the ICD-486 is powered 
by the target system through the power and ground 
pins of the 486 CPU socket. The circuitry on the 
ICD-486 draws up to 1.3A excluding the 486 CPU 
ICC· 

No Connects: Pins specified as N.C. in the 486 CPU 
pin description must be left unconnected. Connec
tion of any of these pins to power, ground, or any 
other signal may cause the processor or the ICD-
486 to malfunction. 

486 CPU location and Orientation: The ICD-486 
may require lateral clearance. Figure 12.4 shows the 
clearance requirements of the ICD-486. 
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Optional Isolation Board (OIB) 

Due to its unbuffered design, the ICD-486 is suscep
tible to errors on the target system's bus. The alB 
installs between the ICD-486 and 486 CPU socket in 
the target system and allows the ICD-486 to function 
in systems with faults (Le., shorted signals). After 
electrical verification the alB may be removed. The 
alB has the following electrical and mechanical 
characteristics: 

Buffer Characteristics: The alB buffers the address 
and data busses as well as the byte enables, ADS # , 
W/R#, M/IO#, BLAST#, and HLDA. The buffers 
are advanced CMOS devices and have the following 
DC drive specifications: IOH = -15 mA. IOL = 
64 mA. The propagation delay of each buffer is 5 ns 
max driving a 50 pF load. To guarantee proper oper-
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ation with the alB, the clock period should be in
creased by the round trip buffer delay (10 ns) unless 
the target system design already has enough timing 
margin. 

Unbuffered Signals: Signals not listed above as buff
ered are passed through the alB and will have addi
tional capacitive loading due to the connectors and 
circuit board of up to 10 pF. 

Power Requirements: The OIB is also powered by 
the target system through the 486 CPU socket and 
requires 0.5A in addition to the ICD-486 and 486 
CPU requirements. 

alB Clearance Requirements: The alB requires an 
extra 0.55" of vertical clearance in the target system 
above the 486 CPU socket. 
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I-----------in----------+I ,.; 
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z 
ii: 
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Figure 12.4.ICD-486TM CPU Dimensions 
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13.0 MECHANICAL DATA 

1
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PIN 
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PLANE-

240440-49 

Family: Ceramic Pin Grid Array Package 

Symbol 
Millimeters Inches 

Min Max Notes Min Max Notes 

A 3.56 4.57 0.140 0,180 

AI 0,64 1.14 SOLID LID 0,025 0,045 SOLID LID 

A2 23 0.30 SOLID LID 0,110 0.140 SOLID LID 

A3 1,14 1.40 0,045 0.055 

B 0.43 0.51 0,017 0,020 

D 44,07 44.83 1,735 1.765 

Dl 40.51 40.77 1,595 1.605 

el 2.29 2.79 0,090 0.110 

L 2.54 3.30 0,100 0.130 

N 168 168 

SI 1.52 2.54 0.060 0.100 

ISSUE IWS REV X 7/15/88 

Figure 13.1. 168 Lead Ceramic PGA Package Dimensions 
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Table 13.1 Ceramic PGA Package Dimension Symbols 

Letter or 
Description of Dimensions 

Symbol 

A Distance from seating plane to highest point of body 

A1 Distance between seating plane and base plane (lid) 

A2 Distance from base plane to highest point of body 

As Distance from seating plane to bottom of body 

B Diameter of terminal lead pin 

0 Largest overall package dimension of length 

01 A body length dimension, outer lead center to outer lead center 

e1 Linear spacing between true lead position centerlines 

L Distance from seating plane to end of lead 

Sl Other body dimension, outer lead center to edge of body 

NOTES: 
1. Controlling dimension: millimeter. 
2. Dimension "e1" ("e") is non-cumulative. 
S. Seating plane (standoff) is defined by P.C. board hole size: 0.0415-0.04S0 inch. 
4. Dimensions "S", "S1" and "c" are nominal. 
5. Details of Pin 1 identifier are optional. 

13.1 Package Thermal Specifications 

The 486 microprocessor is specified for operation 
when T C (the case temperature) is within the range 
of 0°C-85°C. T C may be measured in any environ
ment to determine whether the 486 microprocessor 
is within specified operating range. The case tem
perature should be measured at the center of the 
top surface opposite the pins. 

Note that T A is greatly improved by attaching "fins" 
or a "heat sink" to the package. P (the maximum 
power consumption) is calculated by using the maxi
mum Icc at 5V as tabulated in the DC Characteris
tics of Section 12. 

T A (the ambient temperature) can be calculated 
from (}CA (thermal resistance from case to ambient) 
with the following equation: 

Typical values for (}CA at various airflows are given 
in Table 13.2 for the 1.75 sq. in., 168 pin, ceramic 
PGA. 

Table 13.3 shows the maximum T A allowable (with
out exceeding T c) at various airflows and operating 
frequencies (fCLK)' 
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Table 13.2. Thermal Resistance (eeA) at Various 
Airflows 

In °C/Watt 

Airflow-ft/min (m/sec) 

0 200 400 600 800 1000 
(0) (1.01) (2.03) (3.04) (4.06) (5.07) 

(}CA with 
13 9 5.5 5.0 3.9 3.4 

Heat Sink' 

eCA without 
17 14 11 9 7.1 6.6 

Heat Sink 

'0.285" high unidirectional heat sink (AI alloy 6061, 50 mIl 
fin width, 150 mil center-to-center fin spacing). 
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Table 13.3. Maximum T A at Various Airflows 

InoC 

Airflow-ft/min (m/sec) 

fCLK 0 200 400 600 800 1000 
(MHz) (0) (1.01) (2.03) (3.04) (4.06) (5.07) 

TA with 25.0 46 58 69 70 73 75 
HeatSink* 33.3 43 56 67 69 72 74 

TA without 25.0 34 43 52 58 64 65 
Heat Sink 33.3 30 40 49 56 62 64 

'0.285" high unidirectional heat sink (AI alloy 6061, 50 mil fin width, 150 mil 
center-to-center fin spacing). 
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