
DEC’s Alpha Arch
64-Bit RISC Architectur

By Brian Case

It has been just about ten years since the ideas of
RISC first started getting widespread attention. Since
then, many RISC and RISC-like architectures have
been proposed and almost as many have been intro-
duced. A few of the architectures are now being offered
in second-generation implementations using advanced
hardware organizations. Most of the architectures have
found niches, and their vendors are busy solidifying
positions in the markets where they have found suc-
cess. Competition has even claimed its first casualties.
In short, the market is exhibiting the first signs of a
phase of consolidation.

It is into this climate that DEC has chosen to intro-
duce its new RISC architecture, called Alpha. With so
many existing and “standardized” RISCs already
crowding the market, it seems strange that DEC de-
cided to introduce yet another architecture. Accompa-
nying each new RISC are claims of architectural supe-
riority and claims that the superior features will lead to
superior implementations. For a while, the claims seem
to be substantiated, but without exception, a new imple-
mentation of an existing architecture has always sup-
planted the front runner. In fact, the 486 and forthcom-
ing 586 give some observers reason to doubt the
significance of the difference between RISC and CISC.

Carrying on the tradition, Alpha incorporates sub-
tle architectural features that DEC claims have a sub-
stantial effect on the effectiveness of implementations.

M I C R O P R O C E S S O R R E P O R T

	

opcode

0481216202428

src/dest base

Memory Format

opcode

0481216202428

src displacement

PC-Relative Branch Format

opcode

0481216202428

PAL argument

PAL-call Format

opcode

0481216202428

src1 function

Three-Register Integer Format

src2 dest0000

opcode

0481216202428

src1 function

EIght-bit Immediate Integer Format

const dest1

opcode

0481216202428

src1 function

FP Operate Format

src2 dest

displacement

Figure 1. Alpha instruction formats.

1 0 	
itecture Premiers
e Streamlined for Speed

Alpha is designed to facilitate multiple-issue (supersca-
lar) implementations and multiprocessor system or-
ganizations so that the architecture will be competitive
for at least 25 years. (The VAX architecture began to
run out of gas after less than 10 years.) While the Alpha
architecture may or may not have significant advan-
tages for high-performance designs, it is an extremely
clean architecture.

Architecture Overview
Although “alpha” is usually an adjective that means

“first version,” DEC’s architecture is complete and fully
specified with a sheer volume of documentation that
only a large computer vendor can produce.

The most significant new aspect of Alpha is that it is
strictly a 64-bit architecture. Unlike the MIPS-III ar-
chitecture as implemented in the R4000, Alpha has no
32-bit “compatibility mode” and no mode bits; addresses
are always 64 bits long. Like the R4000, however, Alpha
implementations will not permit a full-64-bit user-
mode virtual address space at first. Planned Alpha im-
plementations will have 43-, 47-, 51-, and 55-bit virtual
address lengths. The desire for a modeless 64-bit ad-
dress space reflects the large-system requirements at
DEC.

In nearly every respect, Alpha is a traditional RISC
architecture. It has 32 general-purpose integer regis-
ters and 32 floating-point registers. R31 in each register
file is the “zero” register that reads as zero and discards
results written there. All registers are 64 bits long, and
all instructions are encoded in 32 bits.

Alpha has floating-point operations not only for
IEEE single and double precision but also for a subset of
VAX FP formats. VAX F (single) and G (double) formats
have full support while VAX D (longer double) is mini-
mally supported and suffers a loss of 3 bits of precision.

Like the IBM POWER architecture, which is also a
relatively new RISC architecture, Alpha does not have
delayed branches. Since delayed branches add some
complexity to superscalar implementations, it makes
sense to leave them out of a new architecture.

Conventional RISC and CISC architectures compli-
cate processor designs, especially superscalar imple-
mentations, with the requirement that exceptions be
precise. An exception is precise when it is reported for
the causing instruction and when no following instruc-
tions are allowed to even partially execute. Alpha al-
lows exceptions to be reported in an imprecise way. This
allows instruction-issue logic to dispatch instructions

	

	 M A R C H 4 , 1 9 9 2

LDA
LDAH
LDL
LDQ
LDQ_U
LDL_L
LDQ_L
STL_C
STQ_C
STL
STQ
STQ_U
EXTBL
EXTWL
EXTLL
EXTQL
EXTWH
EXTLH
EXTQH
INSBL
INSWL
INSLL
INSQL
INSWH
INSLH
INSQH
MSKBL
MSKWL
MSKLL
MSKQL
MSKWH
MSKLH
MSKQH

Load address
Load address high
Load sign-extended longword
Load quadword
Load unaligned quadword
Load sign-extended longword, locked
Load quadword, locked
Store longword, conditional
Store quadword, conditional
Store longword
Store quadword
Store unaligned quadword
Extract byte low
Extract word low
Extract longword low
Extract quadword low
Extract word high
Extract longword high
Extract quadword high
Insert byte low
Insert word low
Insert longword low
Insert quadword low
Insert word high
Insert longword high
Insert quadword high
Mask byte low
Mask word low
Mask longword low
Mask quadword low
Mask word high
Mask longword high
Mask quadword high

Load/S to re , By te Man ipu la t ion

LDA
LDAH

Load address
Load address high

Address /Cons tan t

BEQ
BNE
BLT
BLE
BGT
BGE
BLBC
BLBS
BR
BSR
JMP
JSR
RET
JSR_COROUTINE

Call privileged architecture library
Trap barrier (precise exception)
Prefetch (cache) data hint
Prefetch (cache) data, modify hint
Memory barrier (serialize)
Read process cycle counter
Read and clear
Read and set

PAL reserved opcode 0
PAL reserved opcode 1
PAL reserved opcode 2
PAL reserved opcode 3
PAL reserved opcode 4

In teger Branch

ADDL
S4ADDL
S8ADDL
ADDQ
S4ADDQ
S8ADDQ
CMPEQ
CMPLT
CMPLE
CMPULT
CMPULE
MULL
MULQ
UMULH
SUBL
S4SUBL
S8SUBL
SUBQ
S4SUBQ
S8SUBQ
AND
BIS
XOR
BIC
ORNOT
EQV
SLL
SRL
SRA
CMOVEQ
CMOVNE
CMOVLT
CMOVLE
CMOVGT
CMOVGE
CMOVLBC
CMOVLBS
CMPBGE
ZAP
ZAPNOT

Add longword
Add longword, scale by 4
Add longword, scale by 8
Add quadword
Add quadword, scale by 4
Add quadword, scale by 8
Compare signed quadword ==
Compare signed quadword <
Compare signed quadword <=
Compare unsigned quadword <
Compare unsigned quadword <=
Multiply longword
Multiply quadword
Multiply quadword high, unsigned
Subtract longword
Subtract longword, scale by 4
Subtract longword, scale by 8
Subtract quadword
Subtract quadword, scale by 4
Subtract quadword, scale by 8
AND logical
OR logical
XOR logical
AND-NOT logical
OR-NOT logical
XOR-NOT logical
Shift left, logical
Shift right, logical
Shift right, arithmetic
Conditional move if register == 0
Conditional move if register != 0
Conditional move if register < 0
Conditional move if register <= 0
Conditional move if register > 0
Conditional move if register >= 0
Conditional move if register low bit clear
Conditional move if register low bit set
Compare bytes, unsigned
Clear selected bytes
Clear unselected bytes

In teger Computa t ion & Cond. Move

FP Load /S to re

FBEQ
FBNE
FBLT
FBLE
FBGT
FBGE

FP branch if == 0
FP branch if != 0
FP branch if < 0
FP branch if <= 0
FP branch if > 0
FP branch if >= 0

FP Branch

CPYS
CPYSN
CPYSE
CVTQL
CVTLQ
FCMOVEQ
FCMOVNE
FCMOVLT
FCMOVLE
FCMOVGT
FCMOVGE
MF_FPCR
MT_FPCR
ADDF
ADDG
ADDS
ADDT
CMPGEQ
CMPGLT
CMPGLE
CMPTEQ
CMPTLT
CMPTLE
CMPTUN
CVTGQ
CVTQF
CVTQG
CVTDG
CVTGD
CVTGF
CVTTQ
CVTQS
CVTQT
CVTTS
DIVF
DIVG
DIVS
DIVT
MULF
MULG
MULS
MULT
SUBF
SUBG
SUBS
SUBT

Copy sign
Copy sign, negate
Copy sign and exponent
Convert quadword to longword
Convert longword to quadword
FP conditional move if register == 0
FP conditional move if register != 0
FP conditional move if register < 0
FP conditional move if register <= 0
FP conditional move if register > 0
FP conditional move if register >= 0
Move from FP control register
Move to FP control register
Add F format (VAX single)
Add G format (VAX double)
Add S format (IEEE single)
Add T format (IEEE double)
Compare G format == (VAXdouble)
Compare G format < (VAX double)
Compare G format <= (VAX double)
Compare T format == (IEEE double)
Compare T format < (IEEE double)
Compare T format <= (IEEE double)
Compare T format unordered (IEEE double
Convert G format to quadwored (VAX doub
Convert quadword to F format (VAX single)
Convert quadword to G format (VAX double
Convert D format to G format (VAX double/
Convert G format to D format (VAX double/
Convert G format to F format (VAX double/s
Convert T format to quadword (IEEE double
Convert quadword to S format (IEEE single
Convert quadword to T format (IEEE double
Convert T format to S format (IEEE double/
Divide F format (VAX single)
Divide G format (VAX double)
Divide S format (IEEE single)
Divide T format (IEEE double)
Multiply F format (VAX single)
Multiply G format (VAX double)
Multiply S format (IEEE single)
Multiply T format (IEEE double)
Subtract F format (VAX single)
Subtract G format (VAX double)
Subtract S format (IEEE single)
Subtract T format (IEEE double)

FP Computa t ion & Cond i t iona l Move

CALL_PAL
TRAPB
FETCH
FETCH_M
MB
RPCC
RC
RS

PALRES0
PALRES1
PALRES2
PALRES3
PALRES4

Branch if register == 0
Branch if register != 0
Branch if register < 0
Branch if register <= 0
Branch if register > 0
Branch if register >= 0
Branch if low bit clear
Branch if low bit set
Branch
Branch to subroutine
Jump
Jump to subroutine
Return from subroutine
Jump to subroutine return

Sys tem

LDF
LDG
LDS
LDT
STF
STG
STS
STT

Load F format (VAX single)
Load G format (VAX double)
Load S format (IEEE single)
Load T format (IEEE double)
Store F format (VAX single)
Store G format (VAX double)
Store S format (IEEE single)
Store T format (IEEE double)

Figure 2. Alpha instruction set summary.

	

	

M A R C H 4 , 1 9 9 2 	 	
as soon as the necessary oper-
ands are available. In the major-
ity of cases, an imprecise excep-
tion is as useful as a precise one
since the program will be
aborted anyway. When precise
exception reporting is desired
for an instruction in Alpha pro-
grams, such as during software
debugging, the instruction can
be surrounded with TRAPB (trap
barrier) instructions.

To aid compatibility with the
VAX software base, Alpha is a
little-endian machine. The endi-
anness only affects the extract,
insert, and mask instructions
that are used to operate on data
smaller than 64 bits.

Instruction Set
Alpha has only four basic in-

struction formats with three
variations for computation in-
structions, as shown in Figure 1.
PC-relative branches have an
offset of 21 bits, yielding an ef-
fective displacement range of 23
bits (since the two LSBs of in-
struction addresses are always
zero). Integer computation in-
structions can specify either
three registers or two registers
and a zero-extended, eight-bit
constant. The PAL-call format is
used to invoke Privileged Archi-
tecture Library routines, which
implement system functions
and complex, atomic operations
required for backward compati-
bility with VAX/VMS. Privileged
architecture libraries will also
be written to facilitate the im-
plementation of various other
operating systems such as Win-
dows NT and OSF/1 UNIX.

The instruction set, shown
in Figure 2, consists of 160 in-
structions, a number that is
comparable to other RISCs
aimed at general-purpose com-
puting. The instruction set is
fairly conventional, with the ex-
ception of the extensive set of
byte, word (16-bit data), and

)
le)

)
double)
double)
ingle)
)

)
)

single)

M I C R O P R O C E S S O R R E P O R T
1 1

LDL
INSBL
MSKBL
BIS
STL

R1,0(R9)
R5,#1,R3
R1,#1,R1
R3,R1,R1
R1,3(R9)

Figure 3. A byte store in Alpha code. The address in R9 is
known by the compiler to be a longword address, and so the
offset of the desired byte is encoded in the INSBL and MSKBL
instructions (#1). The sequence loads the longword (LDL),
shifts the byte into the right spot (INSBL), makes a hole in the
longword for the byte (MSKBL), ORs the two together (BIS),
longword (32-bit data) manipulation instructions
shown under the Load/Store heading. (Note that DEC
uses “word” to mean a 16-bit quantity, “longword” for 32
bits, and “quadword” for 64 bits, and we’ll follow their
usage in this article.)

Alpha has a longword-oriented load/store architec-
ture, so unlike every other significant RISC architec-
ture, it has no loads or store for bytes or 16-bit words. As
shown in Figure 2, loads and stores are available only
for longwords and quadwords. This means that to load a
byte or word, the longword or quadword containing the
data must first be loaded; the desired byte or word is
then extracted from the loaded data. To store a byte or
word, the longword or quadword containing the data is
first loaded, the byte or word inserted into the loaded
data, and then the modified longword or quadword is
stored to memory.

Alpha doesn’t have load-word left or right like
MIPS, because these instructions require byte-write ca-
pability into the register file. This is another case of
DEC eliminating strangeness that would have helped
only one or two instructions.

This longword orientation imposes quite a penalty
in instruction count for Alpha programs that manipu-
late 8- or 16-bit data. The only other well-known RISC
architecture to implement word-orientation—which
was proposed as advantageous in a RISC-oriented
paper from Stanford in 1982—is the 29000, but shortly
after its introduction, AMD augmented the architecture
with regular byte and 16-bit loads and stores to correct
the oversight. The Stanford MIPS architecture also
lacked 8- and 16-bit memory operations, but these func-
tions were added for the commercial MIPS architec-
ture. It is interesting to note that even the original
29000 had slightly better support for storing byte and
16-bit data than does Alpha: the respective insert in-
structions placed the data to be stored directly into the
proper place in the 32-bit memory word. Alpha requires
a three-instruction sequence to perform the same job:
the data to be stored must be shifted up with an “insert”
instruction, the memory word must be masked to create
a “hole” for the data to be stored, and finally an OR (BIS)
instruction is required to combine the two. Figure 3
shows a byte store in Alpha code.

The one strength of this approach is in handling
data that is not naturally aligned (e.g., a 32-bit word not
on a 32-bit boundary). The LDQ_U and STQ_U instruc-
tions cause the low three address bits to be ignored on a
load or store. By using one or two LDQ_U instructions
and an appropriate sequence of extract-low (EXTxL) and
extract-high (EXTxH) instructions, a word, longword, or
quadword can be loaded regardless of its alignment. A
similar algorithm works for stores. While the instruc-
tion sequences involved are somewhat long, they are
still very much shorter than what would be required

M I C R O P R O C E S S O R R E P O R T

	

	

1 2 	 	
with other RISC instruction sets.
Handling misaligned data is important for Alpha

since it will have to run programs that operate on old
VAX data structures. DEC is implementing a binary
compiler and interpreter suite to help VAX customers
make the transition from VAX-family to Alpha-family
computers, but even old code that is recompiled may
have to access misaligned structures. Given that han-
dling misaligned data is necessary in Alpha, a software
implementation eliminates some major complexity
from the critical path between the processor and the
cache/main-memory system.

A more important issue for DEC is the impact on
write-back caches. It is a DEC policy that ECC be used
wherever non-transient copies of data are held. To im-
plement a byte-writable write-back cache with ECC re-
quires check/correct bits with every byte or a read-mod-
ify-write state machine. Both are costly and can be
avoided by leaving out byte and 16-bit loads and stores.

Alpha has the same set of memory addressing
modes as MIPS: register, register-plus-signed-16-bit-
offset, and signed-16-bit-absolute. Load-address (LDA)
and load-address-high (LDAH) can be used to form a 32-
bit constant in two instructions.

Alpha’s integer computation instructions are fairly
traditional except for a few unusual operations. Add,
subtract, and multiply are provided in both 64-bit (Q
suffix) and 32-bit (L suffix) versions. The 32-bit versions
treat overflow and carry differently, and they also use
only the low 32 bits of their source operands and sign-
extend the 32-bit result to 64 bits. The shift-and-add
(SxADDy) and shift-and-subtract (SxSUBy) instructions
are used in subscript addressing mode calculations for
arrays of longwords and quadwords. They are also use-
ful for computing integer multiplies when one operand
is a small constant.

The UMULH instruction, which produces the upper
64-bits of a full 64 × 64-bit multiplication, is used to
implement integer division quickly. Integer division by
a constant is performed by multiplying by the recipro-
cal, which is easily provided by a compiler. Integer divi-
sion by a variable is performed by a routine that does a
lookup in a reciprocal table for numbers less than 1000

and then stores the longword to memory.
M A R C H 4 , 1 9 9 2

and performs an iterative algorithm for larger num-
bers. The algorithm needs a maximum of nine multi-
plies with an average of five. This performance com-
pares favorably with dedicated hardware.

The conditional-move instructions are unique to
Alpha. They copy a source register to a destination reg-
ister if a second source register satisfies a condition.
The conditions are either signed comparisons with zero
or the state of the least-significant bit. These instruc-
tions implement a fairly frequent case without requir-
ing a pipeline-disrupting branch. Where the IBM
POWER architecture includes a couple of instructions
specifically targeted at maximum and minimum func-
tions (the difference-or-zero instructions), the Alpha
conditional-moves implement these functions with
equal efficiency and much more generality. (The
POWER instructions that perform these functions have
been deleted in the PowerPC architecture.)

The compare-bytes (CMPBGE) and “byte-zero” (ZAP,

ZAPNOT) instructions work together. CMPBGE does eight
pair-wise byte comparisons for greater-or-equal and
stores an eight-bit vector reflecting the outcomes in the
low byte of its destination operand. The ZAP instructions
then clear selected bytes based on this eight-bit vector.
Another use of CMPBGE is in speeding up C-language
string-handling library routines, which has an espe-
cially beneficial effect on Dhrystone performance.

Alpha has a very clean conditional-execution archi-
tecture. The same set of comparisons against zero is
used throughout the integer and FP conditional moves
and the integer and FP conditional branches. One of the
most common compare-and-branch uses in programs is
comparing an integer value or data structure address
pointer to zero. For example, in linked-list code, it is
necessary to check a pointer against “NULL” before
dereferencing it. Like MIPS, Alpha can perform this
compare-and-branch function in one instruction.

Another very common operation is comparing two
registers for equal or not-equal and then branching, and
the MIPS architecture has instructions for these com-
mon cases. Despite the fact that these compare-and-
branch instructions are extremely useful, Alpha left
them out because they create a very critical speed path.

Alpha has a straightforward FP instruction set that
provides the basic arithmetic operations and format
conversions. Unlike other architectures, there is no
square-root instruction. It is surprising to see that there
are no composite multiply-add and multiply-subtract
instructions, given that they have demonstrated their
value in graphics and benchmark code for the IBM
POWER, HP PA-RISC, and Intel 860 machines. DEC
claims that these instructions would not be fully util-
ized in Alpha implementations because the functional
units are already able to absorb all the operand band-
width available.

	

	

M A R C H 4 , 1 9 9 2 	 	
As with the integer computation instruction subset,
FP conditional-move instructions are available. A
unique feature of the instruction set is that the FP com-
pares generate data values in the FP registers. This
allows compound conditional expressions, such as “IF (x

< y AND y < z),” to be executed completely within the FP
unit. In this example, the two less-than comparisons
are performed with FP compare instructions, the logical
AND is performed with a floating-point multiply, and the
branch of the “IF” is performed with an FP branch. Simi-
larly, a logical OR construct can be implemented with an
FP add instruction.

Alpha system instructions are few since sensitive
operations are performed by short routines that are in-
voked with a CALL_PAL instruction. Privileged Architec-
ture Library routines have the advantage that they are
entered and exited with little overhead, they execute
with interrupts disabled, and they operate with user-
mode instead of supervisor-mode address translation.
Other RISC architectures have similar facilities, but
CALL_PAL instructions have a large, 26-bit argument
field encoded directly in the instruction.

DEC’s system software uses PAL routines to imple-
ment functions such as TLB miss handling and inter-
rupt acknowledge. By defining a standard software in-
terface for these functions at the PAL call level, future
implementations can use different hardware structures
but provide an identical interface, since the PAL code
handles the low-level details.

The TRAPB instruction aids a program in imple-
menting precise exceptions when needed in, say, a de-
bugging environment. To make multiprocessor shared
memory systems easier to build, Alpha specifies a
weakly ordered model of memory operations. Weak or-
dering allows loads and stores to complete in the order
most convenient for the hardware. The memory-barrier
(MB) instruction allows a program to force loads and
stores to be performed in a deterministic order when
necessary. This instruction guarantees that all preced-
ing loads and stores will be completed before any sub-
sequent loads or stores are allowed to access memory.

FETCH and FETCH_M supply cache pre-fetch hints to
implementations that can make use of them. These in-
structions specify an aligned 512-byte block of data; an
implementation can choose to ignore the instruction, to
move all or part of the block to a faster part of the stor-
age hierarchy, or to move an even larger surrounding
area. FETCH_M performs the same function, except it in-
dicates the intent to modify some or all of the data.

RPCC accesses the hardware cycle counter so that
low-level performance analysis can be very accurate. RC

and RS help implement some VAX-compatible instruc-
tion semantics, but they are not guaranteed to be pre-
sent in all future implementations. The PALRESx in-
structions provide the PAL routines with access to

M I C R O P R O C E S S O R R E P O R T
1 3

Alpha Implementation
Continued from page 9

plans to stop MIPS-based development—R4000 system
development is said to be well underway—but they also
point out that Alpha products will have to be competi-
tive. This seems to imply that customers will have a
choice of MIPS- and Alpha-based workstations in simi-
lar price ranges. DEC’s aggressive promotion of Alpha
could considerably weaken the marketability of DEC’s
MIPS-based workstations, despite assurances of a
smooth migration path.

Despite Alpha’s impressive performance and archi-
tectural edge, each of the leading RISC architectures
has important advantages. SPARC and MIPS both have
the advantage of a wide range of implementations now
available or expected soon, and a similar range of imple-
mentations is promised for PowerPC. It remains to be
seen how quickly DEC will be able to develop a range of
implementations and how aggressively it will pursue
the low end of the market, which is where the volume is.

For the MIPS architecture, in comparison, there
are low-end chips such as IDT’s R3081 and Performance
Semiconductor’s PIPER that will compete effectively
with the 486; today’s R4000, which is a good mid-range
device; future R4000s with higher clock rates and larger
caches; and future R4000s aimed at lower-cost systems.

PowerPC remains the only RISC architecture with
a clear path to the personal productivity computer mar-
ket, thanks to Apple’s commitment to migrate its Mac-
intosh line. MIPS may have the second-best chance be-
cause of Windows NT, but its ability to compete with the
x86 remains in question. SPARC continues to do well in
the technical workstation market because of its soft-
ware edge, and Sun has begun penetrating some com-
mercial applications where a wide variety of personal
productivity software is not required. Alpha seems un-
likely to blunt any of these advantages.

In the workstation arena, HP is likely to be the most
threatened by Alpha. HP has taken a very slow, cau-
tious approach to licensing its architecture, and it has
been unwilling to take on the support burden of selling
its chips on the merchant market. DEC’s more aggres-
sive approach could create considerable trouble for HP,
which remains outside the mainstream. HP expects its
latest implementation, the 7100, to run at 100 MHz
with a performance level of 120 SPECmarks—about
the same as the 21064 at 150 MHz.

From a business perspective, it seems a shame that
DEC did not apply its chip design and fabrication capa-
bilities to the MIPS architecture, perhaps with exten-
sions to better support VAX software. That they did not
do so is perhaps evidence of the difficulty a company
such as DEC has with basing its business on an archi-
tecture from an outside supplier. ♦
low-level hardware resources such as the processor
status register and address-translation hardware.

Architecture Evaluation
One of the main goals of Alpha is to make sure that

its implementations are as fast as technology will allow.
This is nothing new, since RISC was invented to exploit
hardware, but Alpha does indeed go a couple of steps
beyond other RISCs in catering to fast implementa-
tions. The lack of byte and 16-bit loads and stores helps
to minimize the logic between the processor and first-
level cache and simplifies ECC and sequencing in write-
back caches. Superscalar implementations should be
easier to design because there are no delayed branches,
no shared resources, and no precise exceptions. Condi-
tion codes (as in IBM POWER) and multiply-quotient
registers (as in MIPS) are examples of shared resources
that can complicate superscalar implementations.

Still, Alpha has its drawbacks. The tremendous
overhead paid for loads and stores of small data is the
most glaring. One of the golden rules of architecture
and implementation is that anything that makes the
basic instruction cycle faster is probably worthwhile.
Nonetheless, the improvement in basic instruction tim-
ing allowed by eliminating byte and 16-bit loads and
stores must be quite significant to overcome the cost of
the long instruction sequences required. DEC says that
fewer than 8% of VAX/VMS memory references deal
with quantities smaller than 32 bits, and that many of
these are string searches or copies that can be per-
formed with longword or quadword accesses. For byte
and word I/O operations, DEC’s plan is to shift I/O ad-
dresses left four bits and use the four lower address bits
as byte enables.

Alpha does indeed facilitate fast, superscalar im-
plementations better than other RISCs, but it is still
possible to design and build superscalar implementa-
tions of other RISCs in a reasonable amount of time and
chip area. The original RISC characteristics (load/store
architecture, three-address operations, single-sized in-
structions, simple formats, instructions that fit in a uni-
form pipeline, etc.) have a first-order effect on imple-
mentation and software quality. While the advantages
of the Alpha architecture are real, they are of only sec-
ond-order significance.

What is more important for DEC is the architec-
tural support for misaligned data and VAX FP oper-
ands—features that are not found in other RISCs.
DEC’s motivations for creating a new architecture are
best understood in light of its need to provide an effi-
cient VAX replacement. For applications where VAX
compatibility is not a concern, it does not appear that
Alpha’s advantages are great enough to overcome the
advantages of the software base and momentum of ex-
isting architectures. ♦

M I C R O P R O C E S S O R R E P O R T

	

	

1 4 	 	 M A R C H 4 , 1 9 9 2

	DEC’s Alpha Architecture Premiers
	Figure 1. Alpha instruction formats.
	Architecture Overview
	Figure 2. Alpha instruction set summary.
	Instruction Set
	Figure 3. A byte store in Alpha code.
	Architecture Evaluation

