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CISCs are Not RISCs, an
Fallacies + F.U.D. = Foolish R

By John R. Mashey, MIPS Computer Systems

Over the past few years, we’ve addressed the issues
of RISC and CISC differences many times, and we hoped
that the issue had been settled. If you can’t stand to hear
another word about it, now is the time to skip to page
26. We believe, however, that this article presents a
particularly clear view of the differences between RISC
and CISC architectures. While the author, as a Vice
President of MIPS, is hardly impartial, his views are
backed up by data—something not found in most such
discussions.

Consider the following statements, all of which
have recently been made by prominent industry execu-
tives. Which are truths, and which are fallacies?

“To distinguish RISCs from CISCs, count instruc-
tions: RISCs have less, CISCs have more, but
newer RISCs now have as many as CISCs, so there
is no difference.”

“Some RISCs support character strings or floating
point, so they cannot be RISCs.”

“RISCs and CISCs are converging. The more com-
plex RISCs and more streamlined CISCs have all
converged onto something new called CRISP
(Complex Reduced Instruction Set Processor)”
(Whoever invented this use for “CRISP” was ap-
parently unaware of the well-documented AT&T
CRISP RISC CPU.)

“If a CISC has pipelining and caches, it is the same
as a RISC.”

“CISCs can use any technique RISCs do, so there
is no difference.”

All of these are fallacies, either accidental or delib-
erate. Computer design holds enough arguable issues
without having to deal with purposeful obfuscation, so
I’ll try to dispel some of these fallacies by analyzing data
from numerous computer architectures and implemen-
tations.

Compared to the previous fallacies, the following is
a much better approximation of engineering reality:

Current and proposed microprocessors employ
performance-improving implementation tech-
niques such as caching, pre-fetching, pipelining,
superpipelining, superscalar pipelining, multiple
functional units, dynamic scheduling, etc.

	 	
M A R C H  2 5 ,  1 9 9 2 	 	
O I N T

d Not Converging Either
ewrite of Computer History

No one familiar with computing history could be-
lieve that microprocessors invented these techniques,
many of which appeared in mainframes years ago, as
far back as the 1960s [BEL71, PRA89]. Many lessons
can be learned from studying the CDC 6600, which
many consider the first RISC, and IBM’s 360/91, an ex-
ceptionally aggressive CISC implementation.

RISC and CISC microprocessor design teams are
all racing to build more aggressive implementations,
often following in the tracks of mainframe/supercom-
puter designs, as modified by the rather different trade-
offs and requirements of low-chip-count designs. The
fact that both RISCs and CISCs might use caches is no
indication of convergence, but of progress along the
track of high-performance designs.

However, architecture strongly affects the results
of these implementation techniques: 

• Cost and time of design, verification, test 
• Silicon requirements 
• Feasibility with a given technology or on a given

date 
• Performance improvement actually obtained 
• Synergy with compiler technology 
• Cycle-time effects (see below)

Some people believe that with enough transistors,
architectural differences become irrelevant. Although
there is one element of truth here, it is mostly nonsense.

The element of truth is that sometimes a simpler
architecture can just barely be implemented within a
useful implementation size (a board, a module, a single
chip), and a more complex one cannot. This difference
indeed disappears as the number of transistors in-
creases. However, for single-chip CMOS or BiCMOS
microprocessors, we are still several generations away
from having all the transistors anyone would like on a
chip. In other words, complexity still eats silicon that
may be used for other performance-enhancing or sys-
tem-cost-reducing functions. In particular, floating-
point hardware can consume huge amounts of silicon.

But suppose we have near-infinite transistors, and
everybody can implement incredibly aggressive micro-
architectural approaches? Transistors might become
almost free, but unfortunately transistors must be con-
nected, and connections are not free. For example, con-
sider “fan-out delay,” where one gate’s output must be
input to several others, whose number increases with
architectural and implementation complexity. As the
number increases, sooner or later the first gate is un-
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Architecture Characteristics

Processor A B C D E F G H I J K # Odd

P1 4 1 4 1 0 0 1 0 1 8 3 1

P2 5 1 4 1 0 0 1 0 1 5 4 0

P3 2 1 4 2 0 0 1 0 1 5 4 0

P4 2 1 4 3 0 0 1 0 1 5 0 1

P5 5 1 4 10 0 0 1 0 1 5 4 1

P6 5 2 4 1 0 0 1 0 1 4 3 3

P7 1 1 4 4 0 0 1 1 1 5 5 0

P8 2 1 4 4 0 0 1 0 1 5 4 0

P9 26 4 8 2 0 1 2 2 4 4 2 2

P10 12 12 12 15 0 1 2 2 4 3 3 1

P11 10 21 21 23 1 1 2 2 4 3 3 0

P12 11 11 22 44 1 1 2 2 8 4 3 0

P13 13 56 56 22 1 1 6 2 24 4 0 0

Rule <6 =1 =4 <5 =0 =0 =1 <2 =1 >4 >3

# Odd 0 1 0 2 2 0 0 0 0 1 3
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able to drive the others at speed, requiring the first gate
to drive two more, each of which drives half of the final
gates. This adds another level of gate delay, which may
lengthen the cycle time if it happens to be in a critical
path, of which there are many in well-tuned high-per-
formance CPUs. As the number of final gates increases,
the tree of gates expands, and this fact can hardly be
unknown to anyone who designs microprocessors, since
“optimal fan-out design” is commonly taught in EE
courses.

Another problem may be worse: wires don’t shrink
as fast as transistors. The delay of on-chip wires (of
which 32, 64, or more are needed for current buses) is
roughly proportional to R (resistance) × C (capacitance).
R × C increases as the wire’s cross-section decreases or
the wire’s length increases. If the space between wires
decreases too much, they interfere with each other. As
cycle times decrease, and transistors shrink, the wires
may consume more of the space and cycle time, and
complexity only makes this worse. For the big, fast
chips that we’ll see over the next few years, complexity
can still create cycle-time problems that do not go away.
Just because implementations of two architectures use
the same technique does not mean that the cost and
performance effects are the same.

Unlike implementation techniques, RISC and
CISC architectures possess definite, objective charac-
teristics that distinguish one from the other. RISC was
supposed to mean “Reduced Complexity..,” not “Re-
duced Number...,” so forget about instruction-counting,
which in fact, is quite difficult to do in any truly consis-
tent way. I think my article [MAS86] was reasonably
consistent with the views of RISC architects of the time,
and if you read that, you’ll find it never once says any-

Table 1. Key characteristics for 13 different processor architectures
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thing about counting instructions.
As RISC and CISC architectures have evolved,

they’ve shown little sign of convergence. For upward
compatibility, few architectures evolve by subtracting
features, so RISCs have added features, just as CISCs
have. However, they’ve seldom added features that
would cause them to be confused for CISCs. For exam-
ple, they’ve kept single instruction sizes, simple ad-
dressing modes, load/store architectures, and more reg-
isters. They’ve never added indirect addressing, general
memory-to-memory operations, multiple instruction
prefixes, or truly CISCy operations like Edit-and-Mark.
The whole point of RISC architecture was to enable ag-
gressive implementations, most of whose techniques
predate any microprocessors.

Before doing the detailed analysis, let’s try a quick
reality check: if there is no difference between RISC and
CISC, why have DEC, IBM, Intel, and Motorola (all
companies with huge investments in CISC architec-
tures) all chosen to build RISCs as well, despite the
potential market confusion? Are these people all crazy
or foolish? I doubt it.

Analysis By the Numbers
I claim that there exist simple rules that clearly

distinguish RISC and CISC architectures, for most
popular CPUs. Table 1 shows the key architectural
characteristics for a variety of architectures. Each of
the rows labeled P1–P13 shows data for an implemen-
tation of a CPU architecture. Each of the columns la-
beled A–K illustrates an architectural characteristic,
most of which can strongly influence the complexity,
cost, or performance of implementations of that archi-
tecture. For now, I’ll treat the table as raw data to be

, showing RISC and CISC groupings.
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Architecture Characteristics

These are the meanings of the columns in Table 1.
“A” gives the approximate age of the architecture in

years. Of course, if it was not already obvious, this makes
it clear that the top group are RISCs, and the bottom,
CISCs.  Thus, the more of the rules obeyed by a CPU, the
more likely it would be called a RISC.

“B” gives the number of different instruction sizes.
RISCs usually have one size.

“C” gives the size of the largest instruction, in bytes,
uniformly 4 for RISCs.

“D” gives the number of distinct memory addressing
modes, which is sometimes a little tricky to count consis-
tently.

“E” shows the absence (0) or presence (1) of indirect
addressing. No RISC I’ve ever seen has this;  a few CISCs
were lucky to escape having it.

“F” shows the absence (0) or presence (1) of opera-
tions that combine loads/stores with arithmetic, i.e., (0)
means “load/store architecture”

“G” shows the number of distinct memory addresses
that can be generated by a single instruction. For RISCs
this number is generally 1.

“H” shows the handling of unaligned data, where 0
means that any memory reference is required to be
aligned on the “natural” boundary, 2 means that un-
aligned references are allowed almost anywhere, and 1
means that unaligned references are permitted only in
certain (easy) cases in hardware, and that other cases are
trapped and fixed by software.

“I” gives the maximum number of memory manage-
ment translations that might be required for data for a
single instruction, including effects of unaligned oper-
ands, indirect addressing, and number of operands al-
lowed.

“J” gives the number of bits available to address inte-
ger registers, i.e., 5 implies up to 32 integer registers.

“K” gives the number of bits available to address
floating point registers distinct from integer registers.
Here, 0 means that the integer and floating registers are
combined.

Processor Code Processor Name

P1 AMD 29000

P2 MIPS R3000

P3 Sun SPARC

P4 Motorola 88100

P5 HP PA-RISC

P6 IBM RT

P7 IBM POWER

P8 Intel i860

P9 IBM 3090

P10 Intel 486

P11 National 32016

P12 Motorola 68040

P13 DEC CVAX
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analyzed for differences, but will later decode the la-
bels. Given this table of data, I think there is a clear line
between P8 and P9 dividing the table into two groups.
The top group is very consistent within itself, and dif-
fers strongly from the bottom group, which also shows
more intra-group variation.

The row labeled “Rule” gives, for each column, a
numeric rule used tentatively to separate the entries in
that column into two groups, by drawing a line under
the lowest entry in each column that obeys the rule. In
every case except columns D and E, the rule splits rows
P8 and P9. Then, any entry is boxed where the numeric
rule is inconsistent with the P8/P9 line. For example,
P6-B’s value of 2 is on the “wrong” side of the line, as is
P10-E’s value of 0. Under “# Odd” at the right is shown
the count of exceptions per CPU. Of the 13 CPUs, 7
show no exceptions; 4 show 1 exception. Only one has
three exceptions, and that CPU is no longer being sold!
At the bottom is shown the number of odd cases per
column, and there are likewise relatively few inconsis-
tencies.

Put another way: if you know the rule, and a CPU’s
value for a given characteristic, you have a good chance
of choosing the group to which it belongs. I claim that
there is a clear dividing line, but readers should study
this table and see if the reasoning makes sense. 

I’ve omitted various architectural characteristics
that might also be important, sometimes because I
couldn’t figure out any objective way to produce num-
bers that made sense. For example, I think architecture
P10 has more irregularities and complexities not found
in P9, P11, P12, or even P13, but I couldn’t find any
simple metric to describe this. Also, although not
strictly a property of an architecture, an interesting
property might have been “allows dynamic self-modifi-
cation of the next following instruction.” I’ve avoided
adding up some set of numbers to get an “index of RISC-

Table 2. Processor codes for Table 1.
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iness” or some such thing. Finally, I’ve omitted two ar-
chitectures (Intel’s i960 and Intergraph’s Clipper) that
are truly on the RISC/CISC border, and, in fact, are
often described that way.

The CPUs
Table 2 shows the names of the processors listed in

Table 1. People who disagree with my interpretations
should get a copy of [MAS91], which has considerably
more detail and backup data. It also has more data on
the evolution patterns within CPU families, as multiple
cases are given for 6 of the families. There is insufficient
2 3



space here, but the data shows that quite often CISCs
have evolved in the direction of increased CISCiness;
that is, they had attributes that would have fallen in the
RISC group, and then changed them in such a way as to
fall within the CISC group. A perfect example is the
addition of numerous new addressing modes (including
indirect addressing) in Motorola’s 68020. On the other
hand, RISCs may have added instructions, but seldom,
if ever, those features that would have moved them into
the CISC category.

Finally, let me point out a few anomalies (or poten-
tial ones) in Table 1.

P5-D (10 addressing modes for HP-PA) seems odd.
This is an artifact of the way I counted, where every
distinct addressing mode or encoding was counted sepa-
rately. This makes PA look much more complex here
than it really is, in that there are really only a small
number of distinct mechanisms, still encoded straight-
forwardly within a 32-bit instruction. See the analysis
of addressing modes on the final page of [MAS91]. Many
popular CISC addressing modes just don’t occur in
RISCs.

People might argue that the i860 has a maximum
instruction size of 8 bytes (P8-C). I believe that this case
is rather different from the typical CISC case, in which
one must fetch the instruction and decode it right then,
to determine how long it is. Rather, if a specific mode bit
is set, the i860 fetches pairs of instructions with strong
issue restrictions, but without needing dynamic decod-
ing.

Regarding the IBM 3090, people familiar with the
S/360 architecture know quite well that one large sub-
set of instructions (RR, most RX, most RS, most SI) are
actually rather RISC-like. Also, instruction decoding is
somewhat different from the rest of the CISCs, in that
the instruction length is easily determined without se-
quential decoding often required by others. It is inter-
esting to note that years ago, the fastest S/360 (/91) and
best cost/performance S/360 (/44) essentially imple-
mented the RISC-like subset of the instructions in
hardware, and trapped the others for software emula-
tion [BEL71]. For people trying to disentangle the
RISC-CISC claims and counter-claims, I strongly re-
commend a good study of the history of the S/360, using
for example [PRA89], as it illustrates the problems and
solutions of building fast implementations of complex
architectures.

Why the Characteristics Might Matter
Architectural characteristics are important for a

variety of reasons, and a complete exposition on this
topic would require an article in itself. A few examples
serve to illustrate the key issues, however.

Consider the effect of dynamic instruction modifica-
tion, something I’m sure most computer designers wish
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they’d never allowed. In some CISCs (such as S/360 and
x86, but not VAX, for example), one instruction can
modify the next, and software that uses this capability
does exist. (I know, in a former life I did this kind of
thing!) In a simple sequential design, this is easy. Con-
sider the effects on an aggressively parallel design, in-
cluding separate I- and D-caches. The CPU can never
commit the results of any instruction until it is sure that
the result of any proceeding store or move does not af-
fect that instruction, despite the fact that this happens
only occasionally. This is certainly possible (Amdahl
CPUs have done it for years), but it gets more and more
expensive as the implementation becomes more aggres-
sive.

As another example, consider memory addressing,
which I think is much more relevant to RISC-vs.-CISC
than any instruction-counting. (It is unfortunate that it
is also more difficult to explain!) In a cached, virtual-
memory design (which includes all current general-
purpose CPUs) a memory reference requires a host of
actions. The CPU must access the cache, and, in many
designs, translate the virtual address to a physical ad-
dress. Any MMU access may cause a trap. Any cache
miss may cause a complex ripple of effects, especially
when dealing with two-level write-back caches in a mul-
tiprocessor, cache-coherent environment. All of this is
bad enough for RISCs, whose load instructions each
make exactly one aligned memory reference, or at least
do not cross cache-line boundaries. Each uses the MMU
exactly once, and thus causes at most one trap.

At the other extreme, consider the VAX, which sup-
ports instructions with up to 6 memory operands, each
of which might use indirect addressing, and each of
which (both indirect pointer and final operand) might
be unaligned across page boundaries, giving 6 × 2 × 2 =
24 potential MMU traps. Although you’d sometimes
like to simply start doing memory-operations, sanity
sometimes requires checking that all parts of all oper-
ands are accessible before starting. Alternatively, you
might include elaborate hardware for undoing the
changes made during the instruction, or else provide a
complex state-dumping upon exception (as in the
68020) that is very implementation-dependent. For ex-
ample, each VAX memory operand may include an auto-
increment, which must be undone if the last byte of the
last memory operand causes a page fault that requires
the instruction to be restarted from the beginning.

Personally, I find it amazing and impressive that
S/360 and especially VAX implementors make their ma-
chines as fast as they do.

To characterize the difficulties, I’d observe that
some of the popular CISC architectures were created
before people understood the interactions of caches, vir-
tual memory, microarchitectural parallelism, and soft-
ware interactions as well as they are now known. As a
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Superscalar PA-RISC
Continued from page 17

Special I/O drivers enable the external caches to
operate at 100 MHz using 9-ns SRAMs. In addition,
attention to SRAM characteristics and board layout are
required. One benefit of integrating the FP unit and the
integer unit was a reduction of the load on the SRAM
data bus, which eases the timing problems slightly. HP
expects to use multi-chip module packaging to reach
even higher clock rates.

Where the Snakes FP unit could issue an instruc-
tion every two cycles and had a uniform latency of three
cycles, the FP unit on the 7100 can issue every cycle and
operation latency is reduced to two cycles.

The 7100 also incorporates a few small improve-
ments that will increase general performance.  While a
miss is being processed, the data cache does not block
further loads and stores that hit in the cache. Only
when the data for a load miss is actually needed does
the processor stall. On Snakes, a store followed by an-
other cache access incurs a two-cycle penalty, but the
penalty is only one cycle on the 7100. To speed some
important operating system functions, the block-copy
hint (don’t allocate and zero the block being written) for
the store instruction is implemented in the 7100.

Superscalar Capabilities
Like DEC’s Alpha chip but unlike the SuperSPARC

and 88110, the 7100 cannot issue two integer ALU in-
structions at the same time. The superscalar capabili-
ties only allow an integer and an FP instruction to be
issued together. Unlike Alpha, however, the 7100 does
not have a separate branch or load/store unit, which is
probably a consequence of using an existing integer unit
design. For this processor, FP loads and stores are con-
sidered integer instructions. To reduce the time needed
to decode multiple-issue opportunities, the I-cache
stores a “pre-decode” bit with each instruction that indi-
cates whether the instruction is destined for the integer
or FP data paths.

Since PA-RISC has a composite multiply-add in-
struction, the peak execution rate at 100 MHz is 200
MFLOPS. The combination of the short, 2-cycle latency
of add, subtract, and multiply (only one stall cycle is
inserted between dependent operations) with the abil-
ity to issue an FP operation and an FP load or store
together should make this implementation a floating-
point screamer. Many FP applications are limited by
operand bandwidth, and small, on-chip first-level
caches just make the problem worse. A 100-MHz system
using this chip with a 2-MB external data cache is likely
to out-perform a 150-MHz Alpha implementation for FP
applications even if the Alpha system has a large secon-
dary cache. ♦
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result, sometimes an architectural feature that was in-
nocuous in a simple sequential implementation re-
quires gates and gate delays out of all proportion when
present in a compatible, but more aggressive, imple-
mentation. What seems to irritate some CISC designers
the most is needing significant implementation com-
plexity just to watch out for some truly rare event. (In
bar conversations with such designers, this irritation
often surfaces in comments of the form “You RISC
wimps! You don’t know how lucky you are not to have to
worry about this, or that, or those nonobvious implica-
tions of architecture XYZ.”)

Conclusions
Fast computers often use similar implementation

techniques, and few of those techniques are truly new.
However, architecture strongly influences the ability to
use various implementation techniques, the cost of
doing so, and the resulting performance gained.

Electrical engineering fundamentals say that com-
plexity still costs. Transistors may get to be almost free,
but wires and gate delays will not.

Contrary to the belief of some, there are some clear
architectural distinctions between the CPUs commonly
labeled RISC and CISC, and there is very little sign of
architectural convergence.

Of course, none of this proves that RISC is automat-
ically better than CISC, and in fact, a good CISC imple-
mentation should beat a poor RISC implementation.
Perhaps we should seek more specific A-vs.-B compari-
sons, but it would certainly be better if people would
stop trying to obfuscate well-known computer history.♦
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