
O B L I Q U E P E

Recycling Programs: Sof
Will Business Strategies Stan

By John Wharton, Applications Research

Last October this column reviewed two techniques
for executing software on non-native CPUs (see µPR
10/2/91, p.17). In Part 2 we examine some other possible
benefits of binary recompilation technology, and discuss
non-technical factors that may delay its success.

With its founding members dropping like flies, it’s
just a matter of time before ACE bites the dust. But for
all the smoke and fury it caused, and all the product
plans left dead in its wake, the ACE initiative had one
positive effect on the industry. It raised public aware-
ness of the problems of microprocessor proliferation,
and spurred interest in techniques for recycling exist-
ing programs.

The concept of binary software rehosting isn’t new.
For years Insignia Solutions has offered a program
called SoftPC that lets RISC-based UNIX workstations
run standard x86 applications, and Hunter Systems
has had tools to help application vendors port existing
programs to new platforms. Lately, though, it seems
interest in this technology has reached critical mass.

Apple’s PowerBook ads are actively promoting a
Mac version of SoftPC with the promise of full DOS
compatibility. At this month’s World-Wide Developers’
Conference, Apple repeatedly assured attendees that
the PowerPC operating system would have software
emulation of the 68K built-in, for compatibility with
current Mac applications. Apple also announced an alli-
ance with Echo Logic, an AT&T spin-off that’s aggres-
sively developing binary rehosting tools. (Details on
this project will appear in the next issue.)

Sun recently created a whole new subsidiary called
SunSelect to pursue hardware and software tools for
running non-SPARC applications on their worksta-
tions. At the SPARCstation 10 roll-out (see p. 11), Sun
demonstrated its own x86 emulation program called
SunPC, as well as Liken, a new Macintosh emulator
developed by Accelerated Systems.

DEC’s strategy for Alpha counts heavily on recom-
pilation techniques to convert existing VAX applica-
tions to the new architecture. One of HaL Computer’s
primary markets is thought to be current users of vari-
ous IBM business systems. Software to convert their
existing applications to run on HaL hardware would
help these efforts considerably.

	

	

M A Y 2 7 , 1 9 9 2 	 	
R S P E C T I V E

tware Rehosting Part 2
d in the Way of Technology?

Conventional Wisdom

Any vendor’s phonograph can play any vendor’s LP,
any cassette deck can play any cassette, and any CD
player plays any audio CD. So why, novice users ask,
can’t any vendor’s software run on any desktop system?
A very good question indeed.

Currently, different host platforms can “play” the
same word processor or spreadsheet only if its devel-
oper offers a different version for each. But relatively
few programs are currently available for more than one
host, and many may never be. Not all compilers are
available immediately for the newest CPU architec-
tures, and assembly language programs and custom
utilities are seldom rewritten. Obsolete hardware and
boutique system designs may be deemed not worth pur-
suing. Shareware suppliers fall by the wayside, and
even legitimate vendors go bust.

But even when programs are ported to multiple
hosts, the problems encountered are many. Different
software versions generally have different capabilities,
with different user interfaces and different command
semantics. Data files may use different formats, with
different fonts, characters, and formatting rules. And
even when each version starts with the very same
source code, compiler differences can introduce new
bugs and change the subtle ways in which commands
interact with each other.

So in order to run the widest assortment of soft-
ware, serious small-system users are forced to amass
multiple systems: Macs to run Mac software, PCs for
DOS, and maybe a workstation or two for UNIX—one
each at work, maybe one each at home, and perhaps a
notebook version of each for the road. With ARC sys-
tems planned, and PowerPCs on the way, the problem is
becoming unmanageable. Who can afford to replace so
many boxes, as each gets out of date? When I travel, how
many notebooks can I fit in my briefcase?

And can anyone afford to scrap any old system? I’ve
got several old ISIS-II (remember ISIS?), CP/M, and
CP/M-86 boxes squirreled away in my office, on call for
the times I need to exhume old source files or retrieve
tax records for an audit. I would much rather invest my
limited funds in one top-of-the-line desk-top, notebook,
or whatever, use it to run the software I need for the
bulk of my work, and yet reserve the option to run other
systems’ software as occasional needs arise.

M I C R O P R O C E S S O R R E P O R T
2 3

	

Architecturally-neutral distribution formats are
one way to let program files run on each of many hosts,
but the early efforts traded generality for some amount
of run-time efficiency. If there’s a software package I
need daily, I’d like to think the version I use is finely
tuned for my machine. Moreover, the ANDF option
works only among vendors who publish in that format,
and does nothing to salvage existing code. It would be
far better, I think, if there were some way to execute
existing software on new platforms, so the venerable
WordStars of old would run on the fastest CPUs of to-
morrow. Software emulation is flexible but slow. More
promising, I think, would be binary code recompilation.

Binary Recompilation Concepts
Here’s how it works. Binary recompilers are a spe-

cial class of translation program, like conventional com-
pilers, except that they read executable binary files as
their input instead of ASCII source code. The recom-
piler interprets this code as a specialized, very baroque
language, and emits an executable program file tar-
geted for a different CPU and OS.

On the surface, the process seems inefficient.
Blindly expanding each source instruction to one or
more target instructions would produce longer and
slower programs. But by searching for “basic blocks” in
the input—instruction sequences guaranteed always to
execute together—the translation can be made more ef-
ficient.

A series of i860, 88K, or R4000 instructions used to
compute an address, load data, compute a sum, and
store the results could, in theory, be replaced by a single
486 instruction—shorter, denser, and faster than the
original, and on a CPU with a somewhat less clouded
future. And conventional peephole and global optimiza-
tion techniques can further refine the process.

There’s still a problem, though. While many pro-
grams yield readily to the up-front control-flow analysis
needed to parse a raw binary file, certain others do not.
Self-modifying code, stack-resident routines, dynamic
linking, and convoluted computed branch paths can all
confound an input parser. When such constructs are
encountered at run-time, recompiled programs must
either reinvoke the translation phase or fall back on
interpretive execution.

Thus the most general recompilation systems are a
hybrid of two technologies. One approach is simply to
emulate the original program at first, interpreting old
instructions while simultaneously profiling their ex-
ecution. As program segments and subroutines that ex-
ecute repeatedly are identified, equivalent blocks of na-
tive code can be patched in—analogous to caching
program loops for faster execution.

A different approach, followed by DEC’s Alpha re-
compiler, generates an all new program based on static

M I C R O P R O C E S S O R R E P O R T 	
2 4 	 	
control-flow analysis. If run-time execution departs
from the anticipated control paths, the system reverts
to conventional emulation until control reenters a re-
compiled execution thread, and logs information about
the unforeseen execution state to disk. Later attempts
to recompile the same program “learn” from the log file
in order to produce a more complete version.

Silver Linings
Recompiled programs can be huge, thanks to code

expansion, pointer-mapping tables, and run-time sup-
port routines and interpreters. But disk space keeps
growing, memory keeps getting closer to free, and pag-
ing makes sure everything fits. Self-modifying code
schemes continue to fall out of vogue, and developers
use compiled languages almost universally now, which
recompile more efficiently than assembly code.

Still other factors help ameliorate recompilation in-
efficiencies. As sophisticated OSs and GUIs prevail,
CPUs spend less time within the application itself, and
more time within the system software. OS code is al-
ready optimized to run flat-out on the host, so the over-
all impact of any slow-down in the recompiled applica-
tion is reduced.

And now even CPU architects are jumping into the
fray. IBM’s RS/6000 included a number of features that
accelerated the execution of non-native code—a fact
that probably wasn’t lost on Apple when the PowerPC
was developed. DEC admits that several provisions of
Alpha were intended primarily to help VAX emulation.

As a result, DEC says converted VAX applications
can run up to one-third as fast as those compiled di-
rectly to Alpha. Echo Logic claims an overall execution
efficiency for 68K code within a factor of two, and is
aiming for 80%. Assuming one’s primary machine is in-
herently much faster than whatever other odd systems
one may have laying around, the difference in effective
performance may be a wash.

And it’s worth noting that future compilers might
eliminate entirely the need for run-time emulation, by
foregoing self-modifying code algorithms, for example,
and by including “hint” records that identify non-obvi-
ous branch destinations in their object files. Such hints
would be optional, and existing programs would still
run, so I’m not advocating an architecturally-neutral
format here—just one that’s somewhat less architectur-
ally hostile.

Blue-Sky Possibilities
Recompilation technology may have other uses that

have yet to be discovered. In essence, the first stage of
the recompilation process extracts the underlying logic
from an otherwise inscrutable program, and it may
reveal structural errors in the original. In early work
with the Alpha recompiler, DEC found new bugs in pro-
M A Y 2 7 , 1 9 9 2

	

grams that had gone undetected for years.
Sometimes it may even make sense to analyze a

program and “recompile” it back to the same CPU. Ex-
isting programs could then be enhanced by reorganiz-
ing code for superscalar machines, or by rescheduling
instructions for a new execution pipeline. As increas-
ingly arcane bugs surface in increasingly complex mi-
croprocessors, the technology might be used to deter-
mine whether old programs contained a potential
hazard, and if so, to rework them to be safe. This might
have given Intel a more graceful way to recover when
bugs were found in the first production 486s.

Ditto for new system hardware and OSs. Apple’s
Mac IIci, IIfx, and Quadra each caused certain existing
programs to break, as did the move from System 6 to
System 7. In the future, automatic installation utilities
might scan existing applications and use recompilation
technology to fix newly-failing code.

Recompilation technology may also provide a way
to soak up the surplus execution cycles that will some-
day come free with multiprocessing systems like the
SPARCstation 10. An incremental recompilation proc-
ess goes through many stages—interpretive emulation,
execution profiling, code generation, and final native
execution, for example—that are largely independent.
Phoenix Technologies once proposed a quite elegant
scheme for partitioning such tasks among loosely-cou-
pled CPUs in multiprocessor systems.

...and Darkening Clouds
So recompilation technology shows plenty of

promise. It would be good for individual computer users
since it simplifies both hardware and software purchas-
ing decisions. It would be good for large corporate buy-
ers, since it preserves investments in old equipment
and facilitates large heterogeneous networks in which
any node could run any application.

It would be good for system vendors since it ensures
immediate availability of key applications on new CPU
architectures. It would be good for OS vendors, since it
expands the market for their products. It would be good
for application vendors since it increases the installed
base of potential buyers for any given program release.
And it would be good for microprocessor vendors since it
relaxes the need for absolute interchip compatibility.

So if everyone comes out ahead, shouldn’t everyone
be happy? Not quite. Every silver lining has its cloud.
For recompilation technology to succeed it needs the
support of the largest, best-established software ven-
dors. These are the people with the best knowledge of
how the programming interfaces of the original OSs re-
ally work. These are the people who could integrate re-
compilation capabilities most seamlessly into OS pro-
ducts of the future.

	

M A Y 2 7 , 1 9 9 2 	 	
But the largest, best-established software vendors
also have vested interests in maintaining the status
quo. The benefits of recompilation technology basically
lower the barrier to entry of smaller, third-party ven-
dors. Once you’ve cleared the hurdles, though, it’s in
your best business interest to keep the entry barriers to
others high. If you can afford to maintain different ver-
sions of a program for each target platform, you may
prefer that they not be interchangeable, in order to
stimulate repeat sales and to sustain a different pricing
structure for every market segment.

If so, then software vendors could simply refuse to
provide the support hooks that would make recompila-
tion most straightforward. Application vendors might
threaten to sue the vendors of third-party recompilers;
since the files they produce would clearly be derived
from original copyrighted works, it could be argued that
the use of a recompiler violates the original software
licensing terms. Some licenses specifically preclude dis-
assembly or reverse-engineering. The prosecution in
such cases would benefit greatly should the recent
Sega-Accolade decision (see p. 16) stand up in court.

And application vendors could design barriers to
code recompilation into the products they ship. Since
recompiled programs mimic exactly the logical struc-
ture of the original, existing copy-protection schemes
should work equally well to prevent unauthorized re-
compilations. Copy-protected software whose execution
is keyed to a unique Ethernet node ID number, for ex-
ample, would fail to work on a new host. Software that
reads encrypted data values from a separate add-in
hardware adapter, or that required the periodic reinser-
tion of the original distribution diskette, would be simi-
larly recompilation-protected.

And if all else failed, application vendors could sim-
ply sabotage third-party recompilation efforts. Pro-
grams could be peppered with exactly the sorts of struc-
tures that make recompilation inefficient: spurious
instances of self-modification, Byzantine computed
branches, and gratuitous references to hard-to-mimic
status flags. While these tricks would not prevent a suf-
ficiently adept recompiler from producing properly ex-
ecuting code, they could make the rehosted version so
painfully slow as to not appeal to end users.

Wrap-Up
So it appears the technology problems that cur-

rently prevent software recycling are tractable, and can
likely be brought under control. Less tangible business
issues, though, may cause trouble. A conspiracy of large
OS and application vendors may yet keep this technol-
ogy out of the hands of end users.

Oliver Stone, are you listening? ♦

M I C R O P R O C E S S O R R E P O R T
2 5

	Recycling Programs: Software Rehosting Part 2
	Conventional Wisdom
	Binary Recompilation Concepts
	Silver Linings
	Blue-Sky Possibilities
	...and Darkening Clouds
	Wrap-Up

