
1

2

3 4

5

6 7

8

9

11

10 12

tion

onization

ion

nization

Synchronization

ple of the fully-compelled, step-by-step handshake process. Multiple
 slave information signals and the slave synchronization signal. The
step 9 is called a wire-OR glitch which is an artifact of turning off one
n-collector driver while one is still turned on. The filtered signal has

ths less than the round-trip bus propagation delay removed.

Futurebus+ Profiles Supp
Profiles Build on Menu of P

By John Theus
TheUs Group, Sherwood, OR

Last issue, we began our Futurebus+ series with an
overview of the goals and the structure of the standards.
This article presents the major tools that make up the
Futurebus+ logical layer—starting at the bottom of the
protocol stack with synchronization. This is followed by
an introduction to command and control protocols, and
then on to the higher layer topics such as split transac-
tions and cache coherency. An application profile
chooses from among these tools and those of its own
invention to specify a solution for a specific application
area. In the final part next issue, we will explore the
cache coherency functions and other advanced features
in more detail.

Synchronization
Futurebus+ uses asynchronous protocols for all in-

formation transfer except during packet mode, which
uses a source-synchronous protocol. The asynchronous
protocols use a handshake system that is fully com-
pelled—each and every action requires a reaction be-
fore the protocol can proceed (see Figure 1). The proto-
cols are also designed so that no timing specifications
are necessary. (A sender guarantees 0 or positive set-up
time between the information and strobe
signals.) Therefore, a module accounts for
its own delays, and it has no need to know
about delays in the other modules.

This approach to synchronization was
picked because it is independent of the
state of technology. As technology im-
proves, devices become smaller and faster,
and speed-of-light delays at both the micro
(chip) and macro (system) levels become
shorter, and the protocols run faster. This
technology independence is very impor-
tant in backplane-based systems due to
their design longevity. Implementations
built with last year’s technology continue
to work properly in systems built with next
year’s technology, and systems can be up-
graded gracefully.

The protocols use both edges of the
handshake signals to mark events. For ex-
ample, the rising edge of the data strobe
marks valid data and the next falling edge
marks the next valid data. Since the hand-

Master Informa

Master Synchr

Slave Informat

Slave Synchro

Filtered Slave

Figure 1. An exam
modules drive the
disturbance after
voltage-mode ope
had all pulse wid

	 	
J U N E 1 7 , 1 9 9 2 	 	
ort Diverse Applications
rotocols and Capabilities

shake signals require the same signaling bandwidth as
the information signals, the protocols make optimum
use of the available electrical environment.

Allocation and Arbitration
Bus allocation is the process of assigning an order to

the active bus requests. Bus arbitration is the process of
unambiguously issuing a single bus grant. Examples of
bus allocation are first-come-first-served, fairness
(each module is given equal access), and priority. Fu-
turebus+ specifies two methods for doing bus arbitra-
tion and allows several algorithms for bus allocation.

Arbitration uses either a central system or a dis-
tributed system. The central arbiter requires a back-
plane with non-bused request and grant signals from
each module’s position to the arbiter’s position. This ar-
biter is logically simple and has low propagation delays.
This arbiter has been built using asynchronous logic,
and it produces metastable-free outputs in under 10 ns.
Each module is limited to two request signals, so real-
time priority changes are difficult. The bus allocation
policy is not specified since it is implemented in the
central arbiter (module hardware doesn’t care). An ap-
plication profile would specify an appropriate allocation
policy.

The distributed arbiter uses bused signals to imple-

M I C R O P R O C E S S O R R E P O R T
1 7

Swap
Operand

Original
Data

Original
Data

Mask
Operand

Original
Data

Processor Buffer

1

2

3

Memory
Location

REQUESTER RESPONDER

Mask
Operand

4

&

Masked
Swap

Operand

Masked
Swap

Operand

&

~

|

Figure 2. A master requests a mask-and-swap-lock command and

M I C R O P R O C E S S O R R E P O R T

	

ment a distributed, asynchronous state machine and
has no central facilities. This arbiter is logically com-
plex and significantly slower (at least 10×) than the cen-
tral arbiter. Its allocation mechanism provides fairness
and up to 256 levels of priority, which can be changed in
real-time. A byte-wide data path is used during the arbi-
tration phase to choose a winner. This data path can
also be used as a message facility that is completely
independent of the main parallel data bus, so it is useful
for fault recovery and for signaling events.

Parallel Bus
The parallel data bus is controlled by an 8-bit (plus

parity) command, an 8-bit status, and a 3-bit capability
field—each of which occupies its own set of signals. The
command field specifies address (32 or 64) and data
(32,64,128, or 256) widths, data length (up to 64 words),
and a transaction type command. The transaction type
includes simple commands, such as read and write, plus
more complex commands, such as cache line invalidate,
read shared, modified response, and fetch-and-add
locked.

Each independent status signal contains a wire-OR
result of each individual module’s status. These bits are
used for signaling exceptions (errors and deadlock
avoidance) and cache line shared and modified status.

The capability field is used to negotiate protocol op-
tions on a transaction-by-transaction basis. The partici-
pating modules decide whether to use a split or con-
nected transaction (defined below), whether to use a
compelled or packet data phase, and if packet is used,
which one of two packet frequencies.

transfers the operands in steps 1 and 2. The response occurs in
step 3. The result of the operation is written to memory in step 4.
1 8 	
The data bus is a time-multiplexed path with byte
parity that carries destination address, source address,
data, and byte masks. A master transmits all of these
information types, while slaves can only transmit data
during a connected read transaction. The 32- or 64-bit
destination address selects the first word to be ac-
cessed. The size of a word is defined dynamically in the
command field. One or more bytes within a word can be
accessed by using a partial-word access. When this
transaction type is selected, a byte mask is transmitted
following the destination address.

For split transactions, the source address is used for
routing a response back to the requester. This address
contains a 16-bit field that describes the requester’s
physical location, an 8-bit transaction priority field, and
a 6-bit field that may be used for a user-defined tag.

Data are transmitted using either the compelled or
packet transfer modes in blocks of length 2n up to 64
words long. The compelled mode has an additional fea-
ture for transferring blocks of arbitrary length.

Split Transactions
Futurebus+ supports both connected and split

transactions. The selection is made on a transaction-by-
transaction basis—usually based upon the address. A
connected transaction is the traditional bus action of
supplying an address and waiting on the bus for the
result. When processors, buses, and memory systems
were all well matched in performance, sitting on the bus
waiting for a read request to be fulfilled made sense.
With today’s faster processors and buses, a great deal of
system performance can be lost using this approach.

To better utilize the bus resources, a read or write
operation can be divided into two separate bus transac-
tions—a request and a response. A read request consists
of a starting address (destination address), the length of
the block to read, and an address to return the data
(source address). When the module that accepted the
request has compiled a response, it becomes a bus mas-
ter and transmits a read response with the data and the
source and destination addresses. Although write op-
erations can be split—the response says the final desti-
nation received the request and the accompanying
data—most applications only split read operations.

Locks
A set of locking protocols is available for applica-

tions that need synchronization or semaphore instruc-
tions. These facilities are separate from the cache-
based locks that require the lock variable to live in
coherent address space, since many system architec-
tures need semaphores in non-coherent space.

The lock protocols allow one or more bus transac-
tions to be grouped together to form an atomic opera-
tion. A simple case is an exchange instruction that re-

	

	 J U N E 1 7 , 1 9 9 2

0

1

2

3

4

5

6

7

8

9

10

11

12

13

63

(1) Message Protocol (7)

Message Priority (8)

Frame Type (8)

Message Identification (8)

Global Identification Lower (8)

Frame Size Lower (8)

Extended Header Byte 0 (8)

Frame Data

Write Command Type

Byte
Offset

Frame
Header

Frame Size Upper (8)

Extended Header Byte 1 (8)

Extended Header Byte 2 (8)

Extended Header Byte 3 (8)

Global Identification Upper (8)

Figure 3. The structure of the Futurebus+ defined message level for-

	

M I C R O P R O C E S S O R R E P O R T
sults in an atomic read and write set of bus transac-
tions. The bus protocols guarantee that the read and
write transactions are indivisible, and the protocols
also signal the destination module enforce this as well.
The Futurebus+ protocols for doing these connected
locks allow any number of read or write transactions—
to one or more slaves—to be locked together. All con-
nected locks are released when the master retires from
the bus.

In a system using split transactions, these con-
nected locks do not work since the bus is not held by the
master between requests and responses. A protocol
called a lock command is used to move the lock opera-
tion from the bus onto the destination module. The ex-
change instruction used above would be translated into
a mask-and-swap lock command. As shown in Figure 2,
the requester would issue a write transaction that con-
tains both mask and swap operands, along with an op-
code for the command. The responder would atomically
read and save the contents of the operand’s address,
and then execute the mask-and-swap operation and
store the results at the operand’s address. The respon-
der would then become a bus master and transmit the
saved original contents back to the requester. Opcodes
are provided for mask-and-swap, compare-and-swap,
fetch-and-add little-endian, and fetch-and-add big-en-
dian.

Cache Coherency
A hierarchical cache coherency protocol is provided

that allows a system of interconnected modules—on one
or more physical buses—to work within a single coher-
ency domain. The logical model of this system has mem-
ory at the root, processors as leaves and bus bridges as
branches. Physical implementations allow memory and
processors to exist anywhere in the system. The coher-
ency protocol implements a MESI subset of the MOESI
model. (The work that led to these acronyms and the
Futurebus+ coherency protocol will be discussed in part
3 of this series.)

Message Passing
Many applications—heterogeneous, secure, and

fault-tolerant systems to name a few—use message
passing as their principal form of communication. Fu-
turebus+ message passing is built on top of the com-
pelled and packet transfer protocols. Messages can be
addressed to specific modules, broadcast to all modules
on a bus, or broadcast to all modules on all buses in a
system.

Message passing is specified at two levels—a frame
level that transports a single frame of data, and a mes-
sage level that transports one or more frames that make
up an entire message. The 64-byte frame contains a
header and a body with data.

	

J U N E 1 7 , 1 9 9 2 	 	
Of the 128 possible message-level formats, one is
completely specified, and 64 formats are available for
user definition. The specified message format further
defines the header with eight additional bytes as shown
in Figure 3. The information stored here and the proto-
cols that use it specify a complete messaging system.
Protocols are provided for single and multiple frame
messages. In the latter case, a protocol exists that al-
lows frames to arrive at the destination out-of-order.

Live Insertion
Three levels of live insertion (inserting boards with

system power on) are defined, which vary on their de-
gree of transparency to bus operations and their diffi-
culty of implementation. The first level is the simplest
to implement, but it requires that operations on the bus
be quiesced during insertion and withdrawal. The dura-
tion of suspended operation can be relatively short if
physical position sensing hardware is used. The stand-
ard Futurebus+ protocols have all the hooks necessary
to suspend and continue bus operations.

The second level allows insertion and withdrawal
while bus operations continue, but some restrictions
apply. Glitches may cause errors, but they must be de-
tectable and correctable. Some types of protocols may
be restricted—packet mode for example—in their op-
erational characteristics. Transceivers, power control,

mat is shown here as a string of bytes. The first four bytes are the
frame level format that is common for all message level formats.
1 9

	

and connectors must all be designed to permit reliable
bus operation during the transitory conditions.

The third level requires that the above-named com-
ponents guarantee error-free bus operation during in-
sertion and withdrawal. No restrictions are placed on
the protocols while the module is being moved. The
most interesting aspect of these procedures is in the
technologies used by the transceivers to prevent
glitches. This topic will be discussed in part 3.

Fault Tolerance
The basic protocol set provides for fault detection by

using byte parity in the areas with the highest prob-
ability of error. These are the data bus, the command
bus and the distributed arbitration bus. No attempt
was made with the basic protocols to detect all single-bit
and single-point errors.

A separate set of protocols is being developed that
will detect all single-bit and single-point errors across
the entire protocol set. Several new signals are required
to make this possible. For example, parity generation is
not possible with the wire-OR status signals. When the
master receives the status information, it will echo
what it’s received so that the status senders can check
it.

Control and Status Registers
One of the main goals for Futurebus+ was to elimi-

nate the need for jumpers to configure a module. A
standard set of registers is defined that performs three
main tasks. The first are the capability registers—im-
plemented in ROM—that describe the feature set of the
module. All the various protocol options have corre-
sponding register definitions. The control registers are
used to turn features on and off and set operational
parameters. The status registers report current or pre-
vious state in areas such as self-test results and error
logs.

These registers are in the top one-sixteenth of the
32 bit address space. Each module has two 4K-byte
areas for these control functions. A module’s address
compare logic uses five uniquely hardwired bits from
the backplane—called its geographical address—to dif-
ferentiate itself from the other modules in the back-
plane.

Profiles
As described in part 1 (see µPR 5/27/92 p. 17), pro-

files are the mechanism for selecting tools for a specific
application. Profiles are named using a single letter,
initially assigned starting with A and incrementing
from there. After the first couple of assignments, letters
have been picked to match the name of the application.

The three profiles that are specified in 896.2 are A,
general-purpose bus; B, I/O bus; and F (Fast), system

M I C R O P R O C E S S O R R E P O R T 	
2 0 	 	
bus. The A, B, and F profiles are almost the same except
in their logical areas. All are meant for the commercial
world, use a 12 SU (~265 mm height) by 300 mm board
size; use a 2 mm connector with up to 504 pins, and use
BTL transceivers. In hindsight, these three profiles
probably should have been a single profile with proper
subsets and supersets. (Profile F has a superset called
F+.) Module designers can easily make subsets and su-
persets with these profiles, but the specifications don’t
make it obvious.

The A, B, and F profiles were completed first be-
cause they address the most mature applications. Pro-
file A was driven by the VMEbus board-vendor commu-
nity and is therefore similar to VMEbus in its lack of
specificity. The board vendors wanted a profile that al-
lowed them to build products under a single profile ban-
ner that can be used for several different applications.
Profile A modules will physically intermate and com-
municate at some level, but it’s up to the system inte-
grator educated about the Futurebus+ protocols to
know if any given set of modules can do useful work
together.

Profile A modules must support 32-bit address and
data paths and perform full-word read and write trans-
actions using the connected and compelled protocols.
All other facilities are optional, including the style of
arbiter. This flexibility allows a very broad range of fea-
tures to be implemented. Two likely configuration prob-
lems are incompatible arbiters and incompatible split-
response handling.

Profiles B and F were driven by system designers
with specific application requirements in mind. Mod-
ules built to either of these profiles are guaranteed to
work within their respective applications. Both profiles
require central arbitration, full- and partial-word ac-
cess, and the handling of split transactions.

Profile B, in its role as an I/O bus, is designed to
move blocks of data exclusively. No higher-level proto-
cols (locks, cache coherency, or message passing) are
allowed. Designs built to this specification are likely to
be simpler than those for any other profile. Modules
with 32-bit address and data are allowed, but most
designs will be 64 bits wide. The only other permitted
option is packet mode. All modules will work together
running the baseline configuration. The options de-
scribed here allow supersets to be implemented, all of
which are controlled on a transaction-by-transaction
basis.

Profile F—the fast system bus—builds on Profile B
by adding the higher-level protocols. F has a specified
superset called F+ that requires the implementation of
packet mode. F also differs from B by specifying protocol
parameters that insure good citizenship and allow the
calculation of minimum performance levels. For exam-
ple, 32-bit modules are allowed but are not encouraged
J U N E 1 7 , 1 9 9 2

All of these pins were no-connects, except for the IIBEN
pin on the Am386DXLV, which is a Vcc pin on Intel’s
386DX. Note that although AMD offers their Am386DX
in a PGA package, this packaging option is not available
for the Am386DXLV.

C&T’s Super386 is offered in four forms, the
38600DX and 38600SX which are pin-compatible with
Intel’s parts, and the 38605DX and 38605SX which
have additional signals for cache control and SMM. The
DX version uses a larger package than the original
386DX, so only the SX version (which uses the same
package as an Intel 386SX) is shown in the table.

Unlike the other vendors, AMD has a separate
ready line for cycles to the SMM space, and an input to
enable a mode which allows I/O instruction trapping.
The IIBEN pin is checked on every I/O cycle, and if it is
asserted the processor will not pipeline the execution of
instructions immediately following an I/O instruction.
This guarantees that no instructions will be executed
before the SMM interrupt is called, although it is possi-
ble that instruction prefetches will occur.

Conclusion
Each vendor has implemented its SMM in a slightly

different way, but all provide the basic functions needed
to implement advanced power-management strategies.
Intel’s solution has the least flexibility (fixed addresses,
fixed SMM width, and few SMM memory configuration
options), but that is not surprising in a design which
integrates the processor with the chip set logic. The
82360 could be replaced with proprietary logic, in which
case the SMM space could be any size and width.

AMD’s solution is notable for its inflexible SMM
memory width and large processor save/restore con-
text. Cyrix offers a simple, flexible, and efficient solu-
tion, which is supplemented by a separate suspend/re-
sume mechanism that can be used with external clock
stop logic to reduce power consumption. C&T’s solution
is the most sophisticated, with its on-chip interrupt and
I/O trapping logic, wealth of conditions which can in-
voke SMM, and instruction backup facility.

The SMM in the processor chip will require some
amount of support in the system logic chip set. Sophisti-
cated system and peripheral power management will
require external activity monitors to assert SMI# when
a peripheral or the system has been idle for a certain
length of time. External I/O trapping logic will be re-
quired to decode I/O cycles and selectively activate
SMI# on cycles to devices which have been powered-
down in a restartable state. Intel already has these fea-
tures in their 82360; C&T has I/O trapping.♦

SMM Explained
Continued from page 16

	

M I C R O P R O C E S S O R R E P O R T
by limiting their bus usage. If a proposed 32-bit design
needs more bandwidth than the specified amount, it
must implement a 64-bit data path. Similarly, if a mod-
ule requires more than the specified amount of time to
satisfy a read request, then it is required to split the
transaction. The majority of these specifications are
simple maximum-allowed timing requirements that
place a performance floor on the implementation.

The two profiles that are nearing completion are
P896.5, Profile M (Military), and P896.6, Profile T (Tele-
com). Profile M will become both an IEEE and military
standard, and it has been driven by the U.S. Navy’s
Space and Naval Warfare Systems Command. Profile M
is intended to address the needs of most Navy mission-
critical computing applications in ships, submarines,
aircraft, large missile, torpedo, and shore facilities.

To address the large range of physical environ-
ments, Profile M has three classes which use a common
logical layer. The convection-cooled commercial class
uses the same mechanical packaging as Profiles A, B
and F. The intermediate class uses a smaller conduc-
tion-cooled board in severe environments where the ul-
timate in packaging density is not required. The final
class is the most demanding and is based on the Stand-
ard Electronic Module–Format E (SEM-E). Due to its
expense, this class is usually limited to tactical aircraft.

The Profile M logical layer has all the tools of a sys-
tem bus with support for locks, cache coherency, and
message passing. In addition, this profile has provi-
sions for the detection of all single-bit and single-point
errors and for dual redundant buses. The IEEE P1394
SerialBus is also used as an additional communication
path. Additional backplane signals are defined that are
unique to this application, such as nuclear event detect
(!).

Profile T has been driven by several of the U.S.,
European, and Japanese telecommunications giants.
Their application requires the protocols of a system bus
in an environment that features continuous operation
and existing equipment packaging standards. Single-
bit and single-point error detection, redundant modules
and buses, and live insertion and withdrawal are all
provided for in the specification.

Finally, two new profiles have recently become offi-
cial IEEE projects. P896.7, Profile C (Cable) will specify
mechanisms for interconnecting Futurebus+ back-
planes. P896.8, Profile D (Desktop) will specify a high
performance parallel bus for the desktop and mezza-
nine environments. New applications continue to come
forward. Space-based systems look promising as the
next profile project. Clearly, the application profile ap-
proach has allowed and will continue to allow Future-
bus+ to grow with the times and technologies. ♦

	

J U N E 1 7 , 1 9 9 2 	 	 2 1

	Futurebus+ Profiles Support Diverse Applications
	Synchronization
	Allocation and Arbitration
	Figure 1. An example of the fully-compelled, step-by-step...
	Figure 2. A master requests a mask-and-swap-lock...
	Parallel Bus
	Split Transactions
	Locks
	Cache Coherency
	Message Passing
	Figure 3. The structure of the Futurebus+ defined...
	Live Insertion
	Fault Tolerance
	Control and Status Registers
	Profiles

