
a

M I C R O P R O C E S S O R R E P O R T

	

	

V I E W P

The Trouble with Be
Failure to acknowledge f

By Milton Barber
Apogee Software, Inc., Campbell, CA

The author is the president of Apogee Software, an
independent software vendor specializing in optimizing
compilers for RISC microprocessors.

The RISC workstation marketplace is strongly per-
formance-oriented, so benchmark results are very im-
portant. Unfortunately, published benchmark results
are frequently misinterpreted. This article is a response
to some comments that have appeared in Microproces-
sor Report and other places in the computer trade press
concerning benchmarks (for example, the editorials in
µPR 12/18/91, p.3, and µPR 5/27/92 p.3).

An analogy from chemistry illustrates the main
problem. Suppose you are a chemist interested in meas-
uring a certain effect, let’s say the resulting concentra-
tion of a certain desirable chemical X after a certain
reaction occurs. In addition, suppose that it is obvious
that this particular effect is strongly influenced by at
least three independent variables, let’s say the starting
concentration of reagent A, the starting concentration
of reagent B, and the concentration of catalyst C. Now
let’s suppose that you do some experiments measuring
the concentration of X as a function of the concentra-
tions of A and C (making no attempt to control the con-
centration of B), and you submit a paper describing
these results to a reputable chemical journal.

In chemistry, you would rightly expect not only re-
jection of this paper, but also derision from any col-
league who heard about it. In computer benchmarking
however, it seems to be the norm to let the same kind of
analysis slide by without much comment. In fact, the
situation is worse than that. Let me try a second exam-
ple. Suppose you deliberately manipulate the concen-
tration of reagent B to enhance the apparent effect of
the concentration of reagent A on the resulting concen-
tration of chemical X. Then you start up a company to
manufacture and sell reagent A, citing your experi-
ments in your marketing literature!

Again, in chemistry, this situation would result in
rejection and derision and probably commercial failure.
However, if the rules of the computer industry were ap-
plied, the results would be different. Most people would
accept the stated results without asking too many ques-
tions, so you would sell a lot of reagent A; a few writers
1 4 	 	
O I N T

nchmarks, Revisited
ctors causing variability

would ask pertinent questions, but not very many peo-
ple would pay attention; and a few writers would smell
something fishy but would misunderstand the situation
and would call for banning the sale of reagent B.

CPU-bound benchmark numbers are relative to at
least four important things: (1) the hardware, (2) the
operating system, (3) the compiler used to compile the
benchmark program, and (4) the benchmark program
itself. For workstations, the hardware and the operat-
ing system are not independent variables, so we can
conveniently lump these two together under the term
“system,” leaving three independent variables: system,
compiler, and benchmark program.

The fact that benchmark numbers depend on all
three of these factors seems to be easy to forget. As a
result, many people ascribe a meaning to benchmark
numbers which they don’t possess. There is also some
criticism of the way benchmark numbers are being
used, but this criticism doesn’t seem to have much ef-
fect, and some of the criticism is misplaced.

The Meaning of MIPS
Let me give an example. A system vendor recently

compiled the Dhrystone 1.1 benchmark using Apogee’s
C compiler, and the result was divided by 1757 to yield a
“MIPS,” or “millions of instructions per second” num-
ber. (About 1985, a group at Intergraph applied a pcc-
based compiler to Dhrystone 1.1 on a VAX 11/780 and
got 1757 Dhrystones. Since the 780 is regarded as a 1
MIPS machine, division of a measured Dhrystone re-
sult by 1757 to get “MIPS” is now a widespread industry
practice.) This MIPS number was then announced to
the world, just as if it had some meaning attached to it.
Well, let’s not be too harsh. Every measured number
presumably has some meaning attached; let’s see if we
can discover the meaning of this number.

Dhrystone 1.1 is a well known synthetic benchmark
program about 300 lines long. It contains a small main
program and 11 short subroutines. It was constructed to
contain “typical” frequencies of various common opera-
tions, including a certain frequency of arithmetic opera-
tions, loop control operations, subroutine call opera-
tions, parameter references, etc. The program does not
read any input data, working instead from data con-
stants in the program.

When the system vendor ran the tests, they
naturally turned the compiler optimization up. Thus,
J U L Y 2 9 , 1 9 9 2

the first thing the compiler did was inline all of the sub-
routines, thereby eliminating all subroutine calls and
all parameter references. Then it noticed that there
were many references to constants, which were propa-
gated to their uses. Then it noticed that the loop bounds
were constants, so it unrolled the loops, eliminating the
loop control code. This process continued through a
number of further steps, including placing many of the
program variables in registers.

When Dhrystone 1.1 is compiled with this compiler
on this system using only local optimization, 680 in-
structions/iteration are executed. When variables are
placed in registers, 461 instructions/iteration are exe-
cuted. When “classical” global optimizations are turned
on, 407 instructions/iteration are executed. When inlin-
ing is used and full optimization is turned on, 297 in-
structions/iteration are executed. (And, if a compiler
that went to the theoretical limit on compile-time evalu-
ation could be found, 0 instructions/iteration would be
executed).

I believe the power of the circa-1985 VAX pcc-based
compiler was roughly that of the compiler mode used to
produce either the 680 or 461 values, depending on
whether the “non-register” or “register” version of
Dhrystone was used.

Thus we might more fairly label this number ob-
tained by the system vendor as “The ratio of the time it
took the VAX 780 to execute the large number of in-
structions that results from applying a circa-1985 pcc-
based compiler to Dhrystone 1.1, to the time it took my
system to execute the small number of instructions that
results from applying a modern optimizing compiler to
the same program.”

It should be fairly clear from this discussion that
the computation and publication of a “Dhrystone MIPS”
in this fashion is absurd. By turning the optimization
knob on the compiler, a system vendor can dial up es-
sentially any desired MIPS number, possibly all the
way up to a MIPS number many times greater than the
peak maximum issue rate of the processor! This is
clearly a misuse of a benchmark, but just exactly what
is the misuse involved here? I suspect most readers
would respond with one or more of the following points:

• The fault lies with Dhrystone. It is unrepresenta-
tive of real applications, and should not be used as
a benchmark. We should stick with SPEC.

• The fault lies with permitting those kinds of opti-
mization to Dhrystone. We should define just what
optimizations are permitted, as is done, for exam-
ple, in the paper defining Dhrystone 2.

• The fault lies with system vendors for mislabeling
and hyping this particular number.

• The fault lies with the compilers. These sorts of

	

J U L Y 2 9 , 1 9 9 2 	 	
optimization are cheating, and don’t have anything
to do with real applications.

Understanding Optimizing Compilers
In order to sort out these various issues, I would like

to develop some ideas about optimizing compilers. An
optimizing compiler is a large, complicated object, and
like most such objects, there are several useful ways to
view it. One good viewpoint is to think in terms of indi-
vidual optimizations; i.e., different individual transfor-
mations that a compiler could apply to a program that
might make it run faster. Depending on how finely you
wish to construct a classification scheme for optimiza-
tions, there are at least hundreds, and maybe thou-
sands, of different optimizations that can be applied by
modern optimizing compilers. These optimizations
have varying properties, including:

• Applicability—Optimizations vary widely in the
frequency with which they may be applied. The
program situations permitting some optimizations
occur very frequently, while others occur only
rarely. For most optimizations, this frequency de-
pends strongly on the type of application and on
the programming language used.

• Utility—Optimizations vary widely in their utility,
i.e., the degree to which they speed things up.
Utility usually depends strongly on the target ar-
chitecture and on the program context.

• Cost—Optimizations vary widely in the cost of
performing them. Some optimizations are simple
and easy to perform, others require time-consum-
ing analyses and complex program changes.
Based on this viewpoint of optimizations as individ-

ual classifiable objects, we can make four observations
about optimizing compilers and their use. First, if we
think of optimizer design, we can say the job of design-
ing an optimizing compiler is one of evaluating the cost-
effectiveness of each optimization (depending on its ap-
plicability, utility, and cost), and designing good
algorithms to perform as many cost-effective optimiza-
tions as possible.

Second, if we think of programs to be compiled, we
can say that different programs will display differing
degrees of sensitivity to various optimizations. Some
optimizations will speed a program up dramatically,
some will speed it up a little, and some will either have
no impact or will possibly even slow it down. For exam-
ple, Dhrystone is very sensitive to certain optimiza-
tions, since these optimizations can speed it up
dramatically.

Real-life programs display a tremendous diversity
and a very wide range of sensitivities to various optimi-
zations. This creates much of the challenge in designing

	 M I C R O P R O C E S S O R R E P O R T
1 5

	

an optimizing compiler. It also creates a challenge in
using an optimizing compiler to get good program per-
formance. Some people think they can feed their pro-
gram to an optimizing compiler using a few simple flags
to turn on all the optimizations, and thereby expect the
best program performance. This idea is an illusion.
Using existing technology, this approach works only
with trivial programs (like Dhrystone!). With non-triv-
ial programs, the only way to achieve the best perform-
ance is to work with the program, applying a combina-
tion of analysis and experimentation to discover which
optimizations are effective on which parts of the pro-
gram, and which compiler flag settings enable the ap-
propriate optimizations.

Third, optimization technology is not static—new
optimizations are constantly being discovered and old
optimizations are constantly being improved. It is often
said that microprocessor performance is going up at
about 5% per month. But this performance is being
measured with compilers that are advancing rapidly,
right along with the hardware technology. Some part of
that 5% per month, maybe as much as 1% per month, is
due to advances in compilers.

Fourth, optimization technology is not uniform;
currently available optimizing compilers display widely
varying architectures. For microprocessor design, the
readers of this newsletter are familiar with such impor-
tant differences as RISC vs. CISC, pipelined vs. non-
pipelined, and superscalar vs. superpipelined. For com-
piler design, there are architectural differences as deep,
as complex, and as important as any of these microproc-
essor differences. These compiler differences mean that
strongly differing sets of optimizations are likely to be
applied to any given program when it is run through
different optimizing compilers. Such architectural dif-
ferences among compilers can readily cause perform-
ance differences of 50% or more. (If you would like some
visual verification of this diversity, flip through a set of
SPEC data sheets and notice how the “profile” of SPEC
ratios varies from compiler to compiler.)

Putting Benchmarks in Perspective
Now, what might be concluded about the interpre-

tation of benchmark numbers from these various obser-
vations? Most importantly, remember that benchmark
numbers are relative to the compiler and that there are
important architectural differences among current op-
timizing compilers. There are many people who would
look at some kind of a performance study which com-
pared a CISC processor to a RISC processor and would
label the study as “fundamentally flawed” because of
the CISC/RISC differences, and yet would look at a
SPEC comparison between two RISC systems made

M I C R O P R O C E S S O R R E P O R T

	

1 6 	 	
using compilers with different architectures and
blithely assume that the comparison was a good meas-
ure of relative system performance. It is no such thing.
The only reasonable statement you can make in this
case is that the SPEC numbers provide a comparison
between one system/compiler pair and another sys-
tem/compiler pair. (In fact, without evidence to the con-
trary, it is equally valid to regard such SPEC number
comparisons as indicating relative compiler perform-
ance instead of relative system performance.)

Since benchmark numbers depend on the compiler,
it is important to keep in mind that compiler technology
is advancing. This means you can expect the bench-
mark rating of any computer system to “inflate” over
time, unless you enforce a rule against recompilation
(which is not very realistic, since user programs can
also be recompiled).

The most striking recent example of this inflation
was the application of a cache blocking optimization to
the matrix300 component of SPEC89. Because of its
pattern of data references, this benchmark is a “cache-
buster” on workstation-level processors. Its perform-
ance is dominated by cache and TLB misses, so it is
insensitive to many ordinary optimizations. Kuck &
Associates developed an optimization that is able to re-
arrange cache-busting loops which satisfy certain con-
ditions so that the data are referenced in “blocks” which
are far more likely to be present in the cache. This is an
important optimization, because it enables a wide class
of numeric problems to be solved efficiently on worksta-
tions for the first time.

Unfortunately, when this optimization became
available on some workstations and not on others, the
resulting quantum jump in SPECmark unsettled many
people whose mindset was that SPECmark measures
system performance, not system/compiler perform-
ance. Thus, instead of welcoming this new optimization
like they would welcome a new microprocessor with a
bigger cache, many people concluded that this was
“cheating” on the part of the compiler.

Consider the charge that optimizing compilers are
“cheating” or “cracking” the benchmarks (see, for exam-
ple, µPR 5/27/92, p.3). These accusations might result
from the mistaken mindset that benchmarks measure
system performance, as above, or they might result
from the feeling that the optimizations used on bench-
marks are not equally applicable to real programs. Cer-
tainly it is possible to invent optimizations that are very
effective for Dhrystone but have little utility elsewhere.
This is not the real trouble with Dhrystone however,
because Dhrystone is very sensitive to optimizations
such as inlining, constant propagation, loop unrolling,
compile-time evaluation, etc., which all have a high util-
J U L Y 2 9 , 1 9 9 2

ity and which are all widely used.
Next, look at SPEC. The accusation that optimiza-

tions which work for SPEC don’t work for real programs
is hard to understand, because SPEC is largely com-
posed of real programs. I think the trouble lies with the
fact that many people are just not aware of the degree of
sensitivity to powerful modern optimizations that real
programs display.

To illustrate this sensitivity, consider the 20 pro-
grams of SPEC92. What we call “local optimization”
today is approximately what microprocessor “optimiz-
ing” compilers delivered a few years ago. So, if I use
Apogee’s compilers supplemented with the KAP pre-
processors from Kuck & Associates, and I compare
“local optimization” performance to “best” performance
for each of these 20 programs, I get improvements that
range from 15% to 327%. These break down as follows: 2
are above 300%, 3 are above 200%, 11 are above 100%,
and 18 are above 50%. My experience is that sensitivi-
ties of this magnitude and with this degree of variation
are typical of real CPU-bound programs.

Limiting the set of optimizations that may be used
when benchmark programs are compiled is possible,
but this may not achieve the desired goal. One approach
is to state some limitations explicitly, as was done for
Dhrystone 2. Another approach is to insist that some
uniform optimization mode be used for all of a set of
benchmarks, such as the SPEC set.

The important question is “What is it that you are
trying to measure?” During program development, a
user will generally limit the set of optimizations applied
by the compiler. However, once development of a per-
formance-critical program is done, the programmer will
employ analysis and experimentation to arrive at the
set of optimizations that gives the best performance. If
the purpose of the benchmark is to discover “develop-
ment” performance levels, then some sort of optimiza-
tion limits make sense. However, if the purpose of the
benchmark is to discover “best” performance levels, the
same tools and techniques should be available for
benchmarking as are available for performance-critical
programs.

Consider the four responses to the misuse of Dhry-
stone that were proposed above. By now, answers to
these points should be much clearer. When Dhrystone is
treated as a performance-critical program, it is so sensi-
tive to optimizations that its result mostly indicates the
power of the optimizer, not the power of the system. The
fault lies with treating Dhrystone this way and then
labeling the result as MIPS, thereby suggesting that
the result is strictly a system property.

	

J U L Y 2 9 , 1 9 9 2 	 	
Conclusions
What should be done? Here are some recommenda-

tions.
There is less chance that some sort of a “standard”

compiler will emerge than there is that a “standard”
RISC system will appear. Free-market forces will con-
tinue to operate for both compilers and for systems, so
we are stuck with the existing relativity of CPU-bound
benchmarks to both of these things. Some people will
need to change their mindset. We should not ignore the
concentration of “reagent B.” We should not fall into the
trap of thinking that CPU-bound benchmark results
are exclusively measurements of system performance.

Compiler technology is not going to stand still, just
as microprocessor technology is not going to stand still.
So we are stuck with the fact that benchmark results for
a given system will inflate with time. We should not try
to ban the sale of “reagent B.” We should greet the ap-
pearance of a new or improved optimization with the
same attitude we would apply to the appearance of a
new or improved microprocessor.

In response to the concern expressed by the Editor
(see µPR 12/18/91, p.3) that many application programs
are not recompiled when new compilers appear, I have a
simple proposal that should accurately expose the bene-
fits of recompilation. Suppose that a system vendor has
published SPEC numbers for machine A, and at some
later time publishes SPEC numbers for machine B plus
a claim that machine B is upwards binary compatible
with machine A. The vendor then should also publish
the SPEC numbers that result from running, on ma-
chine B, the exact same binaries that were used to get
the machine A measurements. Some rules to avoid a
proliferation of published SPEC numbers might be
necessary, but otherwise this proposal should be easy to
implement.

When a performance measurement of some sort is
stated, we should always relentlessly pursue the ques-
tion “Just what was measured and what is the meaning
of this number?” We should not lend credence to meas-
urements where these answers are not forthcoming.
This is a deeper point than just discovering things like
system configuration and compiler version. Analysis
and thought are required.

The widespread laissez faire acceptance of misla-
beled numbers such as Dhrystone MIPS or Linpack
MFLOPS should make computer industry profession-
als ashamed. People actually spend large amounts of
money based on these things! We should pursue a vigor-
ous policy of rejection and derision.♦

	 M I C R O P R O C E S S O R R E P O R T
1 7

	The Trouble with Benchmarks, Revisited
	The Meaning of MIPS
	Understanding Optimizing Compilers
	Putting Benchmarks in Perspective
	Conclusions

