
M I C R O P R O C E S S O R R E P O R T
By Brian Case

Last issue, (see 070402.PDF) we looked at Pentium’s
microarchitechure. This article examines Pentium’s sys-
tem interface.

Intel’s new Pentium processor implements a so-
phisticated, high-speed bus that builds on the protocols
of the 486. With pipelined, back-to-back cache line fills,
the 66 MHz Pentium can achieve a 528 Mbytes/s burst
transfer rate—more than twice the 200 Mbytes/s of the
50-MHz 486 and four times the 66-MHz 486DX2.

While the Pentium bus is deliberately similar to the
486 bus, there are many subtle changes and a few major
ones. As with some of the major changes to the x86 ar-
chitecture, some of the differences between the Pentium
and 486 bus structures are documented in yet another
unavailable appendix (Appendix A to the Pentium
Processor User’s Manual: Volume 1).

The standard Pentium package has a total of 273
pins, with 173 signal pins and 100 power and ground
pins. Table 1 lists each signal pin, its direction, and a
brief pin description.

Data and Address Buses
The most obvious change from the 486 is that Pen-

tium’s data bus is 64 bits wide. This allows the larger
cache lines (32 bytes vs. 16 bytes) to be filled using the
same number of transfers—four—used on the 486. There
are also eight parity bits that are active for both input
and output of data. Pentium uses even parity. Each byte
has a separate byte-enable pin, and parity is checked or
driven only for the bytes that are enabled.

Data parity checking is always enabled on input,

Pentium Extends
Higher Frequencies, New Fe
Pentium Extends 486 Bus to 64 Bits Vol. 7, No. 5, April 19, 1993

Pentium
64-bit

Memory
Block

byte0

byte1

byte2

byte3

byte4

byte5

byte6

byte7

Byte-swapping,
data assembly, and

sequencing logic

32-bit
Memory

Block

Raw Address, Byte
Enables & Control

Sequenced Address,
Byte Enables& Control

8-bit
Memory

Block

Sequenced Address &
Control

Figure 1. Memories narrower than 64 bits require external logic.
and Pentium always generates parity for enabled bytes
on output. The PCHK# output is asserted if a parity error
is detected on input, which allows hardware to log pari-
ty errors or signal an interrupt.

Pentium can also be configured to automatically
cause an internal exception on parity errors. This excep-
tion can be blocked either by disabling the machine-
check exception (via the MCE bit in CR4) or by deassert-
ing PEN on a cycle-by-cycle basis. Thus, it is possible to
have Pentium automatically take action on parity errors
or have external hardware decide when to interrupt Pen-
tium (or both).

The address bus consists of 29 address lines and the
eight byte enables just mentioned. Parity is checked on
the address lines, but only A31 through A5 participate; A4
and A3 are not checked. This is apparently due to the fact
that only A31–A5 are used for cache snooping operations
(described later). Address-bus parity errors are signaled
by the APCHK# signal. Since it is not possible to cause an
internal exception as a result of an address parity error,
external hardware must be used to either deal with the
problem or cause an interrupt.

Narrow Bus Issues
Pentium has a 64-bit bus, but some system imple-

mentations will probably prefer a 32-bit memory system.
Unfortunately, Pentium requires that all of the enabled
bytes for a given cycle be returned from memory to the
processor simultaneously. Thus, for narrower memories,
such as 32-bit RAM and byte-wide bootstrap PROMs, ex-
ternal logic is required to sequence addresses, swap
bytes, and buffer data as shown in Figure 1.

Pentium does not provide the BS8# and BS16# in-
puts (8-bit and 16-bit bus-size indicators) that allow the
486 to work easily with narrow devices. To continue the
tradition, Pentium would have had to add a third pin,
BS32#. Presumably, simplifying Pentium’s bus con-
troller led the designers to eliminate bus sizing.

For most systems, this is probably not much of an
issue since the required logic can, and therefore will, be
incorporated into 32-bit Pentium chip sets. Also, Intel
will eventually—though not in 1993—provide narrow-
bus versions of Pentium for specific markets.

Bus Cycles and Timing
A Pentium bus cycle begins with the assertion of

ADS#. At the same time ADS# is asserted, the address
and status are driven. A bus cycle ends when the last
BRDY# is returned. Each bus cycle may consist of one or

486 Bus to 64 Bits
atures Improve Performance
© 1993 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

Address

A31..A3
BE7#..BE0#
A20M#
AP
APCHK#

Address bus
Byte enables
Address bit 20 Mask
Address bus parity (even)
Address parity error

Data

D63..D0
DP7..DP0
PCHK#
PEN#

Data bus
Byte parity bits (even)
Data bus parity error
Data bus parity check enable

Bus Control

M/IO#
D/C#
W/R#
CACHE#
SCYC
LOCK#
ADS#
BRDY#
NA#
BUSCHK#
BOFF#
BREQ
HOLD
HLDA

Memory or I/O bus cycle
Data or Code bus cycle
Write or Read bus cycle
Read: will cache; Write: burst write-back
Split cycles for LOCKed transfer
Locked (indivisible) bus cycle
Start of new bus cycle
Burst ready
Next Address (for external bus pipelining)
Bus check, bus cycle complete unsuccessfully
Backoff, abort all outstanding bus cycles
Bus request, internal Pentium bus request
Bus hold request
Bus hold acknowledge

I/O
O
I

I/O
O

I/O
I/O
O
I

O
O
O
O
O
O
O
I
I
I
I
O
I
O

Cache Control
KEN#
WB/WT#
AHOLD
EADS#
HIT#
HITM#
INV
FLUSH#
EWBE#
PCD
PWT

Cache enable, current cycle cacheable
Write-back/write-through, line-by-line control
Address hold, address bus floating next cycle
Valid external address for Inquire cycle
Hit, result of Inquire cycle
Hit in modified line, result of Inquire cycle
Invalidate if Inquire cycle hits in cache
Flush and write-back cache contents
External write buffer empty
Page cache disable, for external cache
Page write through, for external cache

I
I
I
I
O
O
I
I
I
O
O

System Management Mode
SMI#
SMIACT#

System management interrupt request
System management mode active

I
O

Execution Tracing
BT3..BT0
IU, IV
IBT
BP3..BP2
PM1/BP1
PM0/BP0

Branch trace, 3 LSBs of target & special cycle
U-pipe, V-pipe instruction completion
Instruction branch taken
Breakpoint pins for debug registers 3, 2
Breakpoint/performance monitoring pin 1
Breakpoint/performance monitoring pin 0

O
O, O

O
O
O
O

Miscellaneous
INTR, NMI
IERR#
FERR#, IGNNE#
FRCMC#
TCK, TMS, TDI,
TDO,TRST#
R/S#, PRDY
CLK, RESET
INIT

Maskable interrupt, non-maskable interrupt
Internal error (parity or functional redundancy)
FP error (like ERROR# in '387), ignore FP error
Functional redund. check master/checker mode
JTAG clock, mode select, data input
JTAG data output, reset
Intel debug port support (run/stop, stop ack.)
Processor clock, processor reset
Processor initialization (warm reset)

I, I
O

O, I
I

I, I, I
O, I
I, O
I, I
I

CLK

ADDR

ADS#

NA#

CACHE#

W/R#

BRDY#

DATA/DP A

VALID A VALID B

A B

A A A B B

KEN#

pipeline

B

Table 1. Descriptions of Pentium’s signal pins.
four data transfers. Bursts are always four transfers.
On the 486, the difference between a simple bus

cycle and a burst cycle is determined by the acknow-
ledgement: RDY# for simple or BRDY# for burst, with
RDY# taking precedence. On Pentium, the difference be-
tween simple and burst cycles is determined by
cacheability. A cacheable transaction is a burst of four
64-bit data transfers; all others are single, simple data
transfers of 64 bits or less. Consequently, burst support
is required in Pentium systems, while 486 systems can
choose to implement burst transactions to improve per-
formance or leave it out to simplify the system design.
This requirement will affect Pentium system designers
little since chip sets will provide the burst support.

Bus pipelining, missing on the 486, allows Pentium
to begin a new external access while a previous access is
still uncompleted. Pentium supports up to two pending
bus cycles with the NA# signal.

Figure 2 shows a bus timing diagram for two back-
to-back cache line fills that are pipelined. Each four-
transfer cache-fill cycle is begun by simultaneously dri-
ving an address and asserting ADS#. Since CACHE# is
asserted and KEN# is returned with the first BRDY#, the
data is cacheable and the cycle will be a four-transfer line
fill. NA# is asserted to pipeline the next line fill. Two cy-
cles after NA#, the next address and ADS# are asserted.
KEN# is asserted along with the first BRDY# of the second
line fill. The result is two cache line fills that can proceed
at the full bus speed of eight bytes every cycle.

In burst cycles—either cache-line fills or write-
backs—Pentium supplies only the first address. For a
cache line fill, Pentium supplies the address of the data
requested by the program; for a write-back, the first ad-
dress is the address of the first 64-bit word in the line.
The other three addresses for the burst line fill or write-
back are expected to be computed by external hardware
according to Table 2, which shows the hex value of the
low five address bits. For example, if a program requests
a data word with the low five address bits equal to 0x08

PCHK# A A A A B

Figure 2. Pentium timing diagram for two pipelined cache line fills.
2 Pentium Extends 486 Bus to 64 Bits Vol. 7, No. 5, April 19, 1993 © 1993 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

1st
Address

2nd
Address

3rd
Address

4th
Address

0x00 0x08 0x10 0x18

0x08 0x00 0x18 0x10

0x10 0x18 0x00 0x08
and the data cache misses, Pentium supplies the first ad-
dress, but external hardware must return the next three
64-bit words from addresses 0x00, 0x18, and 0x10 re-
spectively. The patterns shown in Table 2 are the same
as for the 486.

Table 3 lists the bus cycles that can be initiated by
Pentium and how the bus signals encode them. Note that
cycles consist of four transfers if and only if data is
cacheable (CACHE# and KEN# asserted). Another type of
bus cycle, the inquire cycle (described below), can be gen-
erated by the external system by asserting EADS#.

The special bus cycles, listed in Table 4, are provid-
ed to indicate that certain instructions have been exe-
cuted or that certain conditions have occurred internal-
ly. As shown in Table 3, a special bus cycle is encoded as
the impossible case of a write to code in I/O space (M/IO#
and D/C# = 0, W/R# = 1). During special cycles, the data
bus is undefined and address lines A31–A3 are driven to
zero. Special bus cycles are acknowledged with BRDY#.

The shutdown special cycle can be generated if Pen-
tium gets an exception while it is invoking the double-
fault handler or if an internal parity error is detected.
The halt special cycle is driven after a HLT instruction is
executed. The halt state is like shutdown except that halt
can be exited by maskable interrupts.

The flush special cycle is driven after the INVD (in-
validate cache) or WBINVD (write-back and invalidate

0x18 0x10 0x08 0x00

Table 2. Pentium burst address order (addresses are in hex).
3 Pentium Extends 486 Bus to 64 Bits Vol. 7, No. 5, April 19, 199

Table 3. Pentium-initiated bus cycles. Note that CACHE# will not be as
in which M/IO# is driven low or when PCD is asserted high.

M
/IO

#

D
/C

#

W
/R

#

C
A

C
H

E
#

K
E

N
#

Cycle Description

0 0 0 1 X Interrupt acknowledge (2 locked cycles)

0 0 1 1 X Special cycle (see Table 4)

0 1 0 1 X I/O read, 32 bits or less, non-cacheable

0 1 1 1 X I/O write, 32 bits or less, non-cacheable

1 0 0 1 X Code read, 64 bits, non-cacheable

1 0 0 0 1 Code read, 64 bits, non-cacheable

1 0 0 0 0 Code read, 256-bit burst line fill

1 0 1 X X Intel reserved (will not be driven by Pentium

1 1 0 1 X Memory read, 64 bits or less, non-cacheab

1 1 0 0 1 Memory read, 64 bits or less, non-cacheab

1 1 0 0 0 Memory read, 256-bit burst line fill

1 1 1 1 X Memory write, 64 bits or less, non-cacheab

1 1 1 0 X 256-bit burst writeback
cache) instructions are executed. The flush-acknowledge
special cycle indicates the completion of the cache flush
operation in response to the assertion of the FLUSH# pin.
This operation is implemented as an interrupt to a
microcode routine.

The write-back special cycle is driven after the
WBINVD instruction is executed to indicate that lines
marked “modified” in the Pentium data cache were writ-
ten back to memory or a second-level cache and that lines
marked “modified” in any external caches should then be
written back as well.

The branch trace message special cycle is driven
every time a branch is taken if the execution-tracing
enable bit in TR12 (test register 12) is set to one (IBT is
asserted on taken branches regardless). This special
cycle is the only one that does not drive zeros on the ad-
dress bus; instead, the address bus and BT2–BT0 contain
the branch target linear address.

Internal Cache Snooping
To maintain cache coherency in both single- and

multiple-processor systems, Pentium implements a
MESI cache consistency protocol (see µPR 6/20/90, p.12)
with both internal and external cache snooping. Internal
snooping occurs under three conditions.

First, an internal snoop is conducted if a miss is de-
tected in the instruction cache. If the snoop hits in the
data cache and the accessed line is in either the S
(shared) or E (exclusive) state, the line is simply invali-
dated. If the accessed data cache line is in the M (modi-
fied) state, the line is first written back and then invali-
dated in the data cache. In all cases, the original
instruction-cache miss is satisfied by a cache line fill
from external memory (RAM or second-level cache).

Second, an internal snoop to the instruction cache
occurs for internal data cache misses. If
the snoop hits in the instruction cache,
the line in the instruction cache is invali-
dated. These first two cases handle self-
modifying code.

Third, an internal snoop to both
caches occurs if there is a write to the “ac-
cessed” and/or “dirty” bits in the TLB en-
tries. If the snoop hits in either or both
caches, the accessed lines are invalidat-
ed. If the accessed line in the data cache
is in the M state, it is written back first.
This is done because the in-cache copies
are stale after the change is made by the
MMU to both the TLB entries and the
page-table entries in memory.

External Cache Snooping
External cache snooping occurs

when the system asserts EADS# to re-
serted for a cycle

of Transfers

1 each cycle

1

1

1

1

1

4

) n/a

le 1

le 1

4

le 1

4

3 © 1993 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

CLK

ADDR

ADS#

AHOLD

CACHE#

W/R#

BRDY#

DATA/DP

EADS#

IN

IN

OUT

INV

HIT#

1 2 3 4 5 6 7 8 9 10

OUT OUT OUT

B
E

7#

B
E

6#

B
E

5#

B
E

4#

B
E

3#

B
E

2#

B
E

1#

B
E

0#

Special Bus Cycle

1 1 1 1 1 1 1 0 Shutdown

1 1 1 1 1 1 0 1 Flush (INVD, WBINVD instr.)

1 1 1 1 1 0 1 1 Halt

1 1 1 1 0 1 1 1 Writeback (WBINVD instruction)

1 1 1 0 1 1 1 1 Flush acknowledge (FLUSH#)
quest a cache consistency check called an “inquire” cycle.
Inquire cycles could be used to keep caches and memory
consistent during DMA transfers or during cache miss
processing in multiprocessor systems. Since the external
system must supply Pentium with a snoop address via
the address bus, Pentium must first be told via AHOLD to
float its address bus. AHOLD must be asserted a mini-
mum of two cycles before EADS# is driven active.

The inquire cycle can have two goals: to simply dis-
cover if Pentium has an on-chip copy of data, or to cause
Pentium to invalidate any on-chip copy. Asserting the
INV pin will cause Pentium to invalidate on-chip copies if
the snoop hits.

Driving the snoop address and asserting EADS# and
INV are done simultaneously (two cycles after AHOLD) to
start an inquire cycle. Since an entire cache line is af-
fected by an inquire cycle, only address lines A31 through
A5 are significant, but the others must be driven to a
valid logic level for electrical reasons. The AHOLD/EADS#
sequence can be performed even while Pentium is pro-
cessing a data transfer (the data transfer in progress is
not interrupted).

The external system is informed of a snoop hit in the
on-chip caches through the HIT# and HITM# signals.
These signals are valid two cycles after the assertion of
EADS#. HIT# is always asserted if a hit occurred, while
HITM# is asserted only if the snoop hits a data-cache line
in the M state.

If an inquire cycle hits an M-state line in the data
cache, the modified data in the accessed line will be writ-
ten back immediately so that the line can be invalidated.
Figure 3 shows a timing diagram for this case in which
INV is asserted at the start of the snoop.

At the end of cycle 1, EADS# and INV are asserted to
request an inquire cycle with invalidation. At the end of
cycle 2, a previous data transaction is completed. At the
end of cycle 3, HIT# and HITM# are asserted to indicate a
hit, indicating that Pentium will start a write-back cycle
with the next assertion of ADS#. (The only reason ADS#
can be asserted during AHOLD is for an inquire-induced
write- back.) At the end of cycle 5, ADS#, CACHE# and
W/R# are all driven to signal the start of the write-back.
The four write transfers follow. HITM# stays asserted
until two cycles after the last BRDY# of the write-back.

Table 4. Encoding of special bus cycles.

1 1 0 1 1 1 1 1 Branch trace message
4 Pentium Extends 486 Bus to 64 Bits Vol. 7, No. 5, April 19, 19
Since AHOLD is asserted during the entirety of this
write-back transaction, Pentium is unable to drive ad-
dresses to the external system. Thus, in this case, the ex-
ternal system is required to drive and sequence all ad-
dress bits for the write-back data transfers.

If desired, however, the external system can de-
assert AHOLD before Pentium begins the write-back cycle
(before cycle 5 in Figure 3) to cause Pentium to drive the
write-back address on the address bus. This can be done
to simplify external hardware a little or to account for the
possibility of an address parity error on an inquire cycle
(see below). Even in this case, the external system is still
responsible for sequencing addresses (as in all burst
transactions).

Inquire cycles always snoop the internal instruction
and data caches, but if the snoop is requested during a
cache line fill, Pentium also snoops the line currently
being filled (in a read buffer). If more than one cacheable
cycle is outstanding because of address pipelining, Pen-
tium snoops both transactions.

Similarly, if an M-state line is in a write buffer in
the process of being written back, Pentium will snoop the
write buffer on behalf of an inquire cycle. In this case,
Pentium asserts HIT# and HITM# as usual, but there will
not be a separate write-back of the M-state line since it
was already in progress.

Address parity is checked for inquire cycles, but
Pentium can do nothing about parity errors; if an ad-
dress parity error occurs, the snoop cycle is not inhibited.
If an inquire hits an M-state line and AHOLD remains as-
serted, it is not possible for Pentium to drive the address
bus to tell the system what address was actually used for
the snoop. Thus, it is possible that Pentium will start a
write-back of incorrect data, and if the external system
uses the address it supplied to Pentium for the inquire
cycle, memory could be corrupted. In light of how much

HITM#

Figure 3. Pentium inquire cycle that invalidates and writes back an
M-state cache line. (“IN” and “OUT” are with respect to Pentium.)
93 © 1993 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

5 Pentium Extends 486 Bus to 64 Bits Vol. 7, No. 5, April 19, 1993

Pentium and 486 Bus Differences
• Pentium has a 64-bit data bus; the 486 has a 32-bit data bus.

Pentium has eight byte enables and eight parity pins. Pentium
supports address parity.

• Pentium supports address pipelining via NA#.
• Pentium samples KEN# on the earlier of NA# or the first BRDY#.

KEN# is sampled only once. The 486 samples KEN# both the
clock before the first RDY#/BRDY# and the clock before the last
RDY#/BRDY# of a cache-line fill cycle.

• Pentium implements system management mode via SMI# and
SMIACT#.

• On Pentium, a bus cycle aborted via BOFF# is restarted from
the beginning, and data returned previous to BOFF# is not
saved. The 486 saves data returned before BOFF# is asserted
and restarts the cycle from where it left off.

• Pentium signals burst length via the CACHE# pin together with
the address (only bursts of four are supported). The 486 con-
trols burst length via the BLAST# pin.

• Pentium does not have the 486’s PLOCK# pin since eight-byte
writes are performed as a single bus cycle.

• Pentium does not support any dynamic bus sizing; specifically,
Pentium does not have the 486’s BS8# and BS16# pins.

• Pentium does not change low-order address bits and byte en-
ables during a burst.

• Pentium requires write-backs and cache line fills to be burst cy-
cles, and since Pentium has no RDY# and BLAST# pins, the
burst cannot be prematurely terminated.

• On Pentium, cacheable implies burstable. Pentium does not
support non-cacheable burst cycles or cacheable non-burst cy-
cles.

• Pentium supports a write-back cache protocol via the following
new pins: CACHE#, HIT#, HIM#, INV, and WB/WT#.

• Pentium does not allow invalidations every clock or invalida-
tions while Pentium is driving the address bus.

• Pentium guarantees an idle bus cycle between consecutive
LOCKed cycles.

• Pentium supplies SCYC to indicate that a locked operation in-
volves a split cycle.

• A non-cacheable code prefetch is eight bytes for Pentium vs.
sixteen bytes for the 486.

• Pentium has INIT to perform a reset while maintaining internal
cache and FP register state.

• Pentium supports strong store ordering via EWBE#.
• Pentium supports internal parity checking, selective data-bus

parity checking on a cycle-by-cycle basis, and address-bus par-
ity checking via the new pins APCHK#, BUSCHK#, PEN#, IERR#,
and AP.

• Pentium implements boundary scan via TDI, TDO, TMS, TRST#,
and TCK.

• Pentium supports external execution tracing via IU, IV, IBT, and
a branch-trace message special cycle.

• Pentium supports functional redundancy checking via FRCMC#
and IERR#.

• Pentium supports performance monitoring and external break-
point indications via BP3, BP2, PM1/BP1, and PM0/BP0.

• On Pentium, FLUSH# is implemented as an interrupt, is edge-
triggered, and is recognized once for every falling edge. Since it
is an interrupt, it is recognized only at instruction boundaries.
M I C R O P R O C E S S O R R E P O R T

Intel is making of Pentium’s error-checking capabil-
ities, it seems odd that address-parity errors are not
handled more gracefully.

External Program Monitoring
As on all highly integrated processors, it is dif-

ficult to monitor program behavior on Pentium in
detail because so much activity is occurring only be-
tween on-chip components. To address this problem,
Pentium has many pins that expose internal opera-
tions and allow external program monitoring. These
pins include: BP[3:0] (breakpoint) and PM[1:0] (perfor-
mance monitoring), BT[3:0] (branch trace), IBT (in-
struction branch taken), and IU and IV (instruction
completed in pipelines).

The four breakpoint pins correspond to internal
debug registers, and the pins are asserted when a
match is detected in the corresponding debug regis-
ter. While BP3 and BP2 are dedicated, BP1 and BP0
are multiplexed with PM1 and PM0. Unfortunately,
the PM pin functions are covered in the secret Ap-
pendix A.

IBT is asserted each time Pentium takes a
branch. If enabled, each assertion of IBT is accompa-
nied by a special bus cycle, the branch trace message
special cycle (see Tables 3 and 4). On each of these
cycles, the four BTx bits are also valid. They provide
the low three bits of the branch target address (un-
available on the address bus) and tell whether the
branch was a 16-bit or 32-bit instruction.

IU and IV simply indicate each instruction com-
pletion in the respective instruction pipeline. Note
that IBT will be accompanied by either IU or IV and
that IU and IV can be (and, it is hoped, often are) as-
serted simultaneously.

The INIT pin is a new “warm restart” pin that
causes a reset-like action but does not cause the val-
ues in caches and FP registers to be lost. INIT can be
used to switch via hardware from protected mode to
real mode. Also, holding INIT high during reset in-
vokes an automatic built-in self-test mode.

Conclusions
In some ways—elimination of RDY#, simpler

burst determination, and no bus sizing—Pentium
has a simpler bus than the 486. The addition of new
features, however, such as pipelining, cache snoop-
ing, and forced burst support, mean that system
hardware will need considerably more sophisticated
bus controllers, especially if second-level caches are
used in multiprocessor systems. As with earlier x86
generations, chip-set vendors will come to the rescue
by sparing system makers the headache of designing
bus-control state machines and interface logic.♦
© 1993 MicroDesign Resources

	Pentium Extends 486 Bus to 64 Bits
	Data and Address Buses
	Figure 1. Memories narrower than 64 bits require external logic.
	Narrow Bus Issues
	Bus Cycles and Timing
	Figure 2. Pentium timing diagram for two pipelined cache line fills.
	Table 1. Descriptions of Pentium’s signal pins.
	Table 2. Pentium burst address order …
	Table 3. Pentium-initiated bus cycles...
	Internal Cache Snooping
	External Cache Snooping
	Table 4. Encoding of special bus cycles.
	Figure 3. Pentium inquire cycle that invalidates …
	External Program Monitoring
	Conclusions

	Pentium and 486 Bus Differences

