
M I C R O P R O C E S S O R R E P O R T
By Dean McCarron

Dean McCarron is a senior analyst in our new
MicroSystems Group. He recently joined us after six years
at In-Stat, a semiconductor analysis firm. This is his first
article for Microprocessor Report.

The emerging Plug-and-Play ISA specification
spearheaded by Microsoft, Intel, and 11 others is shaping
up to deliver on the promise of its name—at least for new
systems. For the installed base of some 80 million AT-
and PC-class machines, however, Plug and Play appears
much like a dog trained to play chess: it doesn’t play a
very good game, but that it can play at all is impressive.

The goal of the Plug and Play (PNP) initiative, un-
veiled at Microsoft’s Windows Hardware Engineering
Conference in March, is to make PCs easier to use. The
PNP ISA specification supports this goal. It would make
adding a peripheral card to a PC more like an Apple Mac-
intosh by eliminating tinkering with DIP switches,
jumpers, IRQ settings, and I/O ports. PNP promises

Plug-and-Play Speci
Microsoft, Intel, Others Anno
Plug-and-Play Specification Introduced Vol. 7, No. 6, May 10, 199

Sleep

Active Commands

Power up
RESET_DRV or
Reset command

State

Wait for Key no active commands

Active Commands

Initiation Key

Set CSN=0

State

Reset
Wait for Key
Wake (CSN)

State

Isolation

1. CSN - Card Select Number

State

Config

Reset
Wait for Key
Wake (CSN)
Resource Data
Status
Logical Device
I/O Range Check
Activate
Configuration

Active Commands

Reset
Wait for Key
Set RD_DATA Port
Serial Isolation
Wake (CSN)

Active Commands

Lose serial isolation or
(Wake<>CSN) (Wake<>CSN)

(Wake<>CSN) and (Wake = CSN)(Wake = 0) and (CSN = 0)

Set
CSN

2. RESET_DRV or the Reset Command causes a state transition from the current
state to Wait for Key and sets all CNSs to zero.
3. The Wait for Key command causes a state transition from the current state to
Wait for Key.

Figure 1. The state transitions of a Plug-and-Play ISA card.
auto-configurable PCs by identifying and configuring
add-in cards, and then loading the appropriate drivers,
without user intervention.

Due to PNP’s retrofit approach to the ISA bus, the
operation needs a detailed explanation—remember that
PNP’s intent is to work in ISA-based PCs, old and new,
and hence is required to handle existing, non-PNP cards
and function in a sometimes hostile environment.

The details of PNP operation below are based on the
recently-released version 0.9 of the specification. Mi-
crosoft plans to release version 1.0 later this month. Most
of the procedures described here are expected to remain
stable.

PNP Operation
The sequence of events for PNP operation is

straightforward; the execution of the events is somewhat
more complicated. It operates in four distinct states,
which are selected by the configuration software running
on the PC. The four states of a PNP card are:
1. Wait For Key—All PNP cards wait for the initiation

key before accepting any other commands. Once a
valid key is received, a card shifts to the Sleep state.

2. Sleep—In this state, a card watches for PNP com-
mands on the ISA bus but otherwise remains inactive,
keeping its data bus drivers in high-impedance mode.
A card not yet assigned a unique Card Select Number
(CSN), has a CSN of zero. The card transitions into
the Isolation or Config state when given a WAKE com-
mand, depending on the value of the CSN, as shown
in Figure 1.

3. Isolation—A card in this state processes the isolation
protocol, a complicated process that arbitrates among
PNP cards in the system to create simulated geo-
graphic addressing. Cards that lose a given round of
the protocol go back to the Sleep state. A single card
wins the arbitration and has its CSN register pro-
grammed with a unique number. Once the CSN is set,
the card moves into the Config state.

4. Config—In the Config state, a card’s resource re-
quirement data can be read and the base address,
IRQs and DMA channels can be configured. The card
can then be activated. During isolation or configura-
tion activities involving other PNP cards, a card in
this state will go back to Sleep.

The PNP configuration software—which can be in
the BIOS, the device driver, or the operating system—
drives the PNP cards through each state. The software
first broadcasts an initiation key to all PNP cards, dri-
ving them to the Sleep state. The software then causes a

fication Introduced
unce User-Friendly ISA Bus
3 © 1993 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

transition to the Isolation state and performs the isola-
tion protocol, which ultimately allows each card to be
uniquely identified with a card select number. Once all
cards have been identified, each card is configured ac-
cording to its hardware requirements.

Card Initialization
When an ISA PC is first turned on or after a hard

reset, all PNP peripherals—both those on the mother-
board and those on add-in cards—enter the Wait For Key
state. The peripherals (except boot devices) are not al-
lowed to drive the ISA bus and await an initiation key.

Boot devices are treated differently from non-boot
PNP cards. Boot devices—peripherals that are integral to
system startup—must remain active while other PNP de-
vices are isolated from the ISA bus during a cold boot. In
a basic PNP system, the hard and floppy disk controllers,
keyboard controller, and graphics adapter are defined as
boot devices. For diskless PCs, a network adapter is con-
figured as a boot device in place of the disks.

PNP boot devices present a thorny problem. Since
boot devices are active at startup, the potential exists for
hardware conflicts between two or more active devices,
PNP or not. As a result, boot devices may require what
PNP is supposed to eliminate: tinkering with DIP
switches and jumpers. That hurdle could be cleared later
this year, when systems are expected to begin shipping
with a PNP-aware BIOS. Boot devices in older PCs may
still require intervention unless the BIOS is upgraded to
a PNP-aware version.

Any configuration set by jumpers or other hardware
for a PNP boot device can be overridden once the system
has booted and the operating system’s PNP drivers take
over. This allows PNP to configure the system for op-
timum performance, or to avoid resource conflicts be-
tween a boot device and another PNP card that had been
isolated during the system boot.

The system then boots the operating system from
the designated boot device, which could be a disk con-
troller or network card. At this point, PNP configuration
software is loaded, either as independent drivers such as
those in the current DOS environment, or as part of the
operating environment itself, as promised in the “Chica-
go” version of Microsoft Windows currently under devel-
opment. In either case, the steps that the software takes
next are identical.

The purpose of the following process is to force all
PNP cards into a known state in a way that is conflict-
free for the ISA environment.

The PNP configuration software first performs a se-
quence of writes to the write-only PNP address port,
which is I/O port address 0x0279 in a PC system. This
address is the printer (LPT2) status port, which was cho-
sen because in current systems it is a read-only port that
is unaffected by writes.
2 Plug-and-Play Specification Introduced Vol. 7, No. 6, May 10
The data written to the port is an initiation “key”
that enables the PNP interface logic on all PNP devices
in the system. The purpose of having an enabling key for
PNP cards is to prevent ordinary I/O activity to ISA
cards from inadvertently activating a PNP card. This key
consists of a 32-byte sequence that is generated from a
tapped linear feedback shift register (LFSR). A LFSR
can be implemented in a card’s control IC with fewer re-
sources than a ROM would require. The interface logic
on each PNP card compares the key sequence written to
the PNP address port against an internally generated
key based on an identical LFSR. Once there is a match
between the two keys, all PNP cards go into the Sleep
state, where they remain isolated from the data bus but
will accept commands.

Commands are broadcast to all PNP cards by writ-
ing the address of the command register to the same ad-
dress port as the initiation key. Data for the command is
then written to the WRITE_DATA port, at the address of
0x0A79, which is an alias of the LPT2 status port. Once
data is written to a command register, the command is
executed. Only those cards which match the CSN argu-
ment of the last WAKE command with their own card CSN
will execute a command, however.

Once the PNP cards are unlocked by the initiation
key, the configuration software issues a WAKE(CSN) com-
mand, with a CSN of zero. Since all PNP cards default at
reset to a zero CSN, all PNP cards respond to this WAKE

command. When a card with a CSN of zero gets a WAKE

command, it responds by entering the Isolation state;
therefore, all PNP cards now enter the Isolation state.

The first time the Isolation state is entered, the con-
figuration software will broadcast the SET READ_DATA

command to all PNP cards to assign a data read port in
the range of 0x0200 to 0x03FF in ISA I/O space. The read
port address is variable to prevent any possible conflicts
with existing non-PNP ISA cards. The second and sub-
sequent times the Isolation state is entered, the read
data port is not set, unless there has been a conflict. If
any conflict—which can be detected by invalid data
reads—occurs during the PNP configuration process, the
software returns to the Isolation state and uses the SET

READ_DATA command to set a new and hopefully conflict-
free read address.

Serial Isolation Protocol
Once all the cards have been initialized, the PNP

isolation process, which is a way of simulating geograph-
ic addressing, begins. The isolation process is highly
repetitive. It consists of placing all PNP cards through
the isolation protocol until only one card remains, as-
signing that card a new, non-zero card select number,
and telling it to “sleep.” Another WAKE command is then
issued to cards with a zero CSN; previously isolated
cards have a non-zero CSN and will not respond. This
, 1993 © 1993 MicroDesign Resources

process is repeated so eventually each card is isolated
and given a non-zero CSN.

This isolation protocol is based on a 72-bit card ID,
which is composed of a 32-bit manufacturer ID (identical
to the manufacturer’s EISA ID), a 32-bit serial number,
and an 8-bit checksum. The serial number allows two or
more identical cards to coexist in a system. Should a
manufacture desire, the serial number can be set to all
1’s, but this precludes more than one of this specific card
per system.

To isolate a card, the software issues 72 repetitions
of two reads from the read port address. For the first of
the two reads, cards examine the current bit of their ID.
Cards with a “1” bit in the current position drive a 0x55
on the data bus in response to the read, while cards with
a “0” bit place their data bus drivers in high-impedance
mode and watch for a 0x01 to appear on the bottom two
bits of the data bus. Note that 0x01 is the bit pattern of
the lower two bits when a 0x55 is driven onto the data
bus; therefore, a PNP card with a “0” bit in its ID can de-
tect if another card has a “1” bit.

The 0x01 bit pattern is not unique enough to reli-
ably detect other cards in a PNP system; an ISA card or
even a floating bus could cause this pattern to appear. To
overcome this potential fault, the ID bit is read again by
the second of the two reads. In response to the second
read, however, a device that has a current bit of “1” dri-
ves 0xAA on the data bus, and cards with a “0” bit go into
high-impedance mode and watch for 0x10 on the bottom
two bits. A 0x10 bit pattern is the lower two bits when a
0xAA is driven onto the bus; because of the toggled bit
patterns, a PNP card can detect other cards with high re-
liability. At this point, any card with a zero bit in the cur-
rent ID position that saw a sequence of 0x01, 0x10 on the
lower two data bits “drops out” of the isolation process for
the current round and goes into the Sleep state.

The software then waits 250 microseconds before
performing the next two-read sequence to allow the re-
maining PNP cards time to read the next bit of their ser-
ial ID, which is typically kept in an inexpensive but slow
serial PROM. After the delay, another two-read sequence
plus delay is repeated until all 72 bits have been used.

After going through the entire 72-bit ID, only one
card—the card with the last “1” bit in its serial ID—is
left. The configuration software then calculates an 8-bit
checksum for the first 64 bits of the serial ID it read, and
compares it to the received checksum. If the checksums
don’t match, the software restarts the isolation cycle.

With a single card with a valid serial ID now isolat-
ed, the configuration software issues the SET CSN com-
mand, giving the card its identity for future reference.
Once given a non-zero Card Select Number, the card en-
ters the Config state and will enter the Sleep state when
the rest of the isolation protocol is performed on other
PNP cards. The isolation protocol is repeated until there

M I C R O P R O C E S S O R R E P O R T
3 Plug-and-Play Specification Introduced Vol. 7, No. 6, May 10
M I C R O P R O C E S S O R R E P O R T

are no valid responses; at that point, all PNP devices are
assumed to have been identified.

If there are no responses to the first iteration of the
isolation protocol, the configuration software changes
the READ_DATA port, assuming an I/O address conflict oc-
curred. After attempting the first iteration of the proto-
col on all valid READ_DATA addresses with no response, it
assumes no PNP devices are present.

Resource Allocation
Once every card has a unique Card Select Number

set, card resource data can be read. A WAKE(CSN) com-
mand is issued to each card. Resource data is then read
by polling the resource data status register and waiting
for a resource data ready bit to be set. The resource data
is read one byte at a time.

The resource data is stored in a series of “tagged”
data structures. These structures are strings of bytes
that contain the string length, a “tag” that identifies
what type of data the string is, and the data itself. Re-
source data stored includes ANSI vendor/card ID strings,
PNP version numbers, IRQ, DMA, I/O port, and memory
requirements, and I/O dependencies as well as other sig-
nificant configuration information.

The configuration software then uses all the collect-
ed configuration information to select the best configura-
tion for the cards in the system. The software may inter-
act with other parts of the operating system; for example,
there may be resource configuration files that cause the
software to force a card into a given address space. In any
case, the configuration software then issues con-
figuration commands to set the I/O ports, IRQs, DMA,
and memory resources of each configurable PNP card.

There is an option within the PNP specification to
have a non-configurable card. The benefit of this type of
device is that the configuration software would at least
have enough information from a non-configurable card’s
resource data to steer the configurable cards in a way to
avoid conflicts.

Proliferating the PNP Specification
As can be seen from the description of PNP opera-

tion, software is critical to the success of PNP. While
PNP can be supported entirely with I/O card drivers, this
is not a desirable situation—for each card to have an in-
dependent PNP driver offers little in the way of resource
management. A far better solution is to support PNP at
the operating-system level. To this end, Microsoft in-
tends to support PNP with the “Chicago” release of Win-
dows that is planned for 1994. In the meantime, an in-
cremental release of Windows may integrate PNP device
drivers for network cards. At its PNP implementation
seminar in June, Microsoft will also be offering some
generic device driver code.

On the hardware side, PNP prototype cards exist
, 1993 © 1993 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

now, and commercially available cards are expected in
just a few months. One of the design goals of PNP was to
minimize incremental hardware costs to no more than
five dollars per card.

Whether this goal is met depends on the sophistica-
tion of the card. PNP ISA cards require hardware that
can disable the bus interface of the card. A PNP card
must also recognize PNP interface addresses, so some
additional address decoding is necessary. A configurable
PNP card will need programmable base addresses for the
ports and memory, and programmable IRQ line selec-
tion. Some added logic and memory is required to sup-
port the card ID process.

For manufacturers that currently have configurable
ASIC-based cards, conversion to PNP support should in-
volve little more than some extra gates—perhaps a small
ROM—and another manufacturing turn to revise the
ASIC. This entails additional design costs and, for most
manufacturers, another ASIC NRE charge. Only those
manufacturers with high volumes will be able to hold the
incremental hardware costs to the target level.

For cards and manufacturers that aren’t sophisti-
cated, it may not be nearly as simple—a PNP interface
controller will have to be added. While this could be im-
plemented with ASICs or a handful of PLDs, at least two
semiconductor manufacturers—Microsoft won’t say
which two—have expressed an intent to build PNP in-
terface controllers. Such components would serve less so-
phisticated designers well, but it is unlikely that they
would be offered at a price low enough to meet the five-
dollar goal.

Conclusion
The benefits of PNP for new systems are obvious. It

allows quick, efficient user upgrades of hardware with a
minimum of hassles, making it an important
differentiating point for system OEMs. PNP could also
significantly reduce a company’s technical support ex-
penses, as there would be many fewer calls to the sup-
port line with configuration problems.

There are a few—albeit obscure—problems that
need to be resolved, even for PNP-aware systems. There
is nothing in the 0.9 specification, for example, to handle
more than one hard disk controller or graphics adapter
configured as a boot device.

PNP is also relying on the good will of hardware
vendors, at least with the current specification. There is
nothing in PNP’s structure to prevent a manufacturer
from taking an existing ISA board, adding a PNP re-
source definition that demands a given IRQ and memo-
ry space, and marketing it as PNP-ready. If there are
enough boards available that demand specific settings,
there will be a high probability of unresolvable resource
conflicts between cards. The system won’t crash, but the
user probably will be prompted to pick which card gets to
4 Plug-and-Play Specification Introduced Vol. 7, No. 6, May 10
operate.
One unresolved issue is support for EISA, which al-

ready handles automatic configuration for EISA cards
but not ISA cards. Given 12-bit I/O decoding and EISA
configuration ports, a PNP card can be built to support
configuration in both PNP-ISA systems and EISA sys-
tems. There is not widespread support for this proposal,
so it’s quite likely that the 1.0 PNP specification will
make this an optional feature that board vendors can
choose to support.

Compaq, the leading vendor of EISA systems, is
clearly behind the push for EISA support. Compaq,
joined by Microsoft, recently announced that it will lead
the development of new PNP extensions to include EISA
support. The ISA PNP specification, however, does not
appear to be affected by the politics of EISA support. The
EISA extensions may have been a move to enhance PNP
and protect the current specification from a damaging
controversy.

While older ISA systems without a PNP-aware
BIOS can use PNP add-in cards, the benefits of PNP in
this system are much lower than for new systems. Rela-
tively simple PNP devices, such as internal modems, will
probably configure automatically without problems.
More complex, I/O-intensive hardware, such as high-end
network adapters, will most likely require user interac-
tion. In a typical scenario with a mixture of ISA and PNP
cards, the installation software would identify locations
of any obvious ISA cards (serial ports and graphics
adapters, for example) and give the user an option to
“lock out” certain addresses and interrupts. The installa-
tion software would then proceed with automatic config-
uration of the remaining PNP cards. Even this limited
semi-automatic configurability is better than what cur-
rently exists in the ISA environment today.

On the surface, PNP may appear excessively com-
plex when compared to other auto-configuring buses.
This comparison is unfair. PNP successfully retrofits a
feature-barren 12-year-old ISA bus with significant new
features it was never intended to support. Hopefully, IC
manufacturers will mask the complexity in standard
cells for ASICs or standard interface chips.

For new ISA systems or old ISA systems that are
completely retrofitted with PNP cards, the new protocol
offers a significant improvement in ease of use, and could
make user-installed hardware as hassle-free as it is on
the Macintosh today. For ISA systems with old ISA
cards, PNP offers some limited benefit in potentially re-
ducing conflicts between newly added hardware and
older non-PNP hardware. For many manufacturers, the
addition of PNP will involve little increased cost. PNP
looks like a promising method of upgrading an aging ISA
standard to provide new benefits to PC users and manu-
facturers alike, but it is of little value without wide sup-
port from card vendors.♦
, 1993 © 1993 MicroDesign Resources

	Plug-and-Play Specification Introduced
	Figure 1. The state transitions of a Plug-and-Play ISA card.
	PNP Operation
	Card Initialization
	Serial Isolation Protocol
	Resource Allocation
	Proliferating the PNP Specification
	Conclusion

