MICROPROCESSOR REPORT

NEC Joins Embedded Processor Plethora

High-End V800 Architecture Takes Yet Another RISC-Like Approach

by Brian Case

Earlier this year, NEC began shipping
its V810 microprocessor, the first imple-
mentation of the new V800 architecture
(see 070802.PDF). The V800 architecture
is aimed at consumer electronics applica-
tions, especially battery-operated devices ranging from
video games to PDAs, as well as at the broader embedded
control market. In this article, we review the architecture
itself. See the sidebar “NEC’s Highly Integrated V820,”
for details on the latest implementation.

The 32-bit V800 shares many characteristics with
conventional RISC architectures. It has a register-
oriented instruction set and a load-store architecture,
and most instructions facilitate a fast, simple pipeline.

The V800 also, however, deviates significantly from
standard RISC design tenets. As with Hitachi’s SH7000
architecture (see 071103.PDF), some of the non-RISC at-
tributes stem from the desire to achieve high code den-
sity due to the needs of PDAs and other physically-com-
pact, high-end embedded applications.

The V800 does not have a supervisor processor
mode or instruction-set support for an MMU. NEC says
the MMU was excluded to reduce power consumption.

Register-Register (Format 1)
15 10 9 5 4

’ opcode ‘ reg2 ‘ regl

Register-immediate (Format II)
15 10 9 5 4

S)

’ opcode ‘ reg2 ‘ imm

Conditional-branch (Format Il1)
15 1312 9 8

S}

’opcode‘ cond ‘ displacement

Medium-distance jump (Format IV)
09

15 1 0 31 16

’ opcode ‘ displacement ‘

Three-operand (Format V)
15 10 9 5 4 0 31 16

’ opcode ‘ reg2 ‘ regl ‘ immediate ‘

Load/store (Format VI)
15 10 9 5 4 0 31 16

’ opcode ‘ reg2 ‘ regl ‘ displacement ‘
Extended (floating-point) (Format VII)

15 10 9 5 4 031 2625 16

’ opcode ‘ reg2 ‘ regl ‘ sub-opcode reserved ‘

Figure 1. V800 instruction formats include both 16- and 32-bit
versions, but most instructions use the 16-bit format.

These omissions may also be reflections of most of the
target market, where the need for them is not seen as
compelling, but an MMU is needed for PDA operating
systems such as PenPoint and Newton. Note that many
of the more established V800 competitors provide pro-
tection and address mapping of some sort.

Variable Instruction Length

One of the V800’s non-RISC attributes is that it has
two instruction lengths. Most of the V800 instruction
set—59 out of 89 opcodes—is encoded in a 16-bit instruc-
tion format. A 32-bit format encodes the remaining one-
third of the instruction set. Figure 1 shows the instruc-
tion formats, which are consistent and easy to decode.
Most of the 32-bit formats are used for instructions re-
quiring large constants, but the floating-point instruc-
tions use the opcode field in the extended format (format
VII), which wastes 10 bits. This format may have been
chosen to allow future expansion of the floating-point in-
struction set to support additional operand precisions.

Like most RISCs, the V800 architecture defines a
register file with 32, 32-bit general-purpose registers
with register number zero always reading as zero. Un-
like most other RISCs that have floating-point instruc-
tions, there is no separate floating-point register file.

Some of the general registers have special purposes.
As with many other architectures, a few are reserved by
software convention. Unlike other RISCs, a few are im-
plicit operands for the bit-string, multiply, and divide in-
structions. Even though these registers have special
uses, they can be used for other purposes between exe-
cution of these instructions.

One curious aspect of the V800 architecture is the
lack of three-operand register-to-register operations.
Clearly, there is insufficient room to encode them in the
16-bit format, but given that the 32-bit format is avail-
able and that it has 10 unused bits, it would have been
easy to add three-operand instructions. As with the
MMU, NEC says power consumption motivated the ex-
clusion of three-address instructions. Of course, a se-
quence of two, two-address instructions performs the
same function and consumes the same number (four) of
instruction bytes, but a single, 32-bit three-address in-
struction would be twice as fast (one cycle vs. two).

Loads and stores are available for bytes, halfwords,
and words, and the memory addressing model is little en-
dian. The single addressing mode adds a signed 16-bit
offset to a register.

The conditional-branch architecture uses condition

NEC Joins Embedded Processor Plethora

Vol. 7, No. 14, October 25, 1993

© 1993 MicroDesign Resources

MICROPROCESSOR REPORT

codes, which are slightly advantageous in that they can
save programs a few explicit compare instructions be-
cause the condition codes are set as a side-effect of many
data manipulation instructions. The downside is they re-
quire more complex compiler algorithms and prevent
early computation of branch conditions.

Register Usage Conventions

The V800 register set has some
hardware and software usage conven-
tions. Software conventions reserve R1
through R5. R1 is used as a temporary
for address generation during the eval-
uation of complex addressing expres-
sions. R2 is reserved for the interrupt
stack pointer, while the program stack
pointer is kept in R3. R4 points to
global variables in memory. R5 is a
pointer to static data. In most applica-
tions, the uses of R4 and R5 could be
combined since neither is likely to be
larger than 64K (the largest area di-
rectly addressable with a single 16-bit

The V800 supplies basic logical instructions: AND,
OR, XOR, and NOT. The first three can be either register-
to-register (format I) or register-with-16-bit-immediate
(format V). For these instructions, the 16-bit constant is
zero-extended. The V800 also includes variable shift in-
structions to take advantage of a barrel shifter.

Unlike some other architectures aimed at embed-
ded control, and even some workstation
architectures, the V800 provides inte-
ger multiply and divide support with
atomic instructions. These instructions
can treat their operands as either
signed or unsigned, and they both pro-
vide double-precision (64-bit) results.

One of the unusual aspects of the
V800 architecture is the inclusion of
floating-point instructions. Only single-
precision operands are supported, but
since the instruction mnemonics spec-
ify single-precision explicitly (“.s” in
Table 1), it seems that an upgrade path
to higher precisions was contemplated.
This is consistent with the use of format

displacement load or store instruction).
At the other end of the register file,
R26 through R31 are reserved by hard-

Hitoshi Yamahata of NEC discusses
the V800 architecture at the recent
Microprocessor Forum.

VII for floating-point instructions.

Floating-Point Supported

ware conventions. R26 through R30 are
used by the bit-string instructions, and their use is de-
scribed below. The JAL instruction stores its return ad-
dress in R31, the link pointer.

V800 Has RISC-Like Instruction Set

For the most part, the V800 instruction set is sim-
ple and meets the requirements of a pipelined, one-
instruction-per-cycle implementation. The major excep-
tion is the group of bit-string instructions, which specify
their register operands implicitly and do not fit the RISC
model of single-cycle execution.

Integer arithmetic and logical operations use both
the 16-bit and 32-bit instruction formats. Addition is
available in register-to-register and register-immediate
forms; register-immediate subtraction is performed by
adding a negative constant. The two-operand nature of
these instructions is a major limitation.

There are four add mnemonics but five add instruc-
tions: ADD can stand for either register-to-register (for-
mat I) or register-plus-5-bit-immediate (format II). The
other instruction with add in its name, ADDI, adds a sign-
extended sixteen-bit immediate to a register. These
three instructions set the condition codes.

Two other instructions, MOVEA and MOVEHI, also
perform addition but do not set the condition codes.
MOVEA adds a sign-extended 16-bit immediate value to a
register, while MOVEHI adds a 16-bit immediate value
shifted left by sixteen bits to a register.

The floating-point instruction set
is basic. A compact set of eight instructions is provided:
add, subtract, multiply, divide, compare, truncate, and
convert to/from integer. The compare instruction sets the
carry, sign, and zero condition code bits, so normal inte-
ger conditional-branch instructions can be used.

Load and store instructions are straightforward.
Byte, halfword, and word-length data can be loaded or
stored, and loads always sign-extend bytes and half-
words. Loading unsigned data requires an extra instruc-
tion to mask off the sign extension. The only addressing
mode is register-plus-displacement, using format VI, and
the 16-bit displacement is sign extended. As with other
RISC architectures, the most common addressing modes
can be synthesized by using a zero displacement or by
specifying RO as the base.

A unique feature of the V800, compared with other
32-bit embedded architectures, is the group of input/out-
put instructions for accessing I/O devices. These operate
exactly like load and store instructions—same format,
semantics, and addressing modes—but they activate a
slightly different bus cycle. These instructions simply ac-
cess a separate address space, and their function could as
easily be implemented in system hardware by decoding
a chunk of memory space as I/O addresses and using nor-
mal loads and stores. There might have been some ad-
vantage to these instructions if the V800 had a privileged
supervisor processor mode and IN and OUT were legal
only in supervisor mode, but this is not the case.

2 NEC Joins Embedded Processor Plethora

Vol. 7, No. 14, October 25, 1993

© 1993 MicroDesign Resources

MICROPROCESSOR REPORT

Program Control Has Strange Quirk

The V800 has non-delayed jumps and branches. An
unconditional register-indirect jump is available using
format I. Unconditional PC-relative jump (JR) and call
(JAL) are provided with 26-bit, sign-extended displace-
ments using format IV.

The conditional branches all use format III. There is
no subroutine call with the short, 9-bit displacement.
Since the V800 uses condition codes, the enumeration of
possible branch conditions is in the branch instruction
opcode, so there are sixteen different conditional branch
instructions including NOP.

An explicit compare instruction performs subtrac-
tion and sets the condition codes without writing a result
to the register file. Other RISCs with condition codes and
three-address operations use a standard subtract in-
struction that specifies RO as the result.

One problem with condition-code architectures is
that creating a boolean (true or false value) in a register
from the result of a comparison usually requires a te-
dious and pipeline-unfriendly sequence of conditional
branches. The V800 solves the problem with the SETF in-
struction. This instruction uses format II to encode a des-
tination register and a four-bit condition field, just like
the one in the conditional branches. If the condition spec-
ified matches the condition codes, the destination regis-
ter is set to one; otherwise, the register is cleared.

A small blunder in the architecture is the fact that
the displacement fields in all the PC-relative branches
are not shifted left one bit before being added to the PC.
Since the instruction quantum of the V800 is 16 bits, the
least-significant bit of the PC is always zero to force half-
word alignment of instructions. When the V800 adds the
PC and the displacement, it simply masks the low bit of
the displacement to zero to avoid the possibility of jump-
ing to an odd instruction address. The effect of this is to
reduce the size of the offset by one bit. Other RISC ar-
chitectures take care to squeeze as much range from dis-
placements as possible by shifting the displacement left
appropriately (one bit would be correct for the V800, two
bits for most other RISCs).

Uncommon Bit-String Operations

The bit-string instructions form the most unusual
group in the V800 instruction set. These instructions use
several general registers as implicit operands:

¢ Bit-string source word address (R30)

¢ Bit-string destination word address (R29)

¢ Bit-string length (R28)

¢ Bit-string offset in source word (R27)

* Bit-string offset in destination word (R26)
Thus, these instructions can specify two bit strings start-
ing anywhere in memory and of any length up to 4G bits.

The instruction set includes transferring bit strings

without and with logical operations and searching for ei-
ther the first zero or the first one moving either upwards
or downwards. The bit-string transfer instructions all
operate in the upward direction. Interestingly, a more
complete set of logical operations is available for bit
strings than for simple register operands.

It is difficult to imagine an application that would
be possible with the bit-string instructions but impossi-

Bit String
schObsu, schObsd 1l
schlbsu,schlbsd M

Find first O (up/down)
Find first 1 (up/down)

movbsu Il Bit string transfer

notbsu Il Bit string trans. w/ NOT
andbsu Il Bit string trans. w/ AND
andnbsu Il Bit string trans. w/ ANDNOT
orbsu Il Bit string trans. w/ OR

ornbsu 1l Bit string trans. w/ ORNOT
xorbsu 1] Bit string trans. w/ XOR
xornbsu Il Bit string trans. w/ XORNOT
Logical, Shift

or, and, xor, not [OR, AND, XOR, NOT

ori, andi, xori v OR, AND, XOR immediate

shl, shr I, Logical left/right shift

sar 1,1 Arithmetic right shfit

Program Control

mp | Register indirect jump

jr, jal v PC-relative jump/call

bc, bl 1] Branch if carry/lower

be, bz I Branch if equal/zero

bge m Branch if greater or equal

bgt, bh I Branch if greater/higher

ble 1l Branch if less or equal

bit, bn m Branch if less/negative

bnc, bnl m Branch if no carry/not lower
bne, bnz I Branch if not equal/not zero
bnh, bnv 1] Branch if not higher/no overflow
bp, bv 1] Branch if positive/overflow

br, nop 11 Branch always/never
Load/Store

Id.b, Id.h, ld.w \ Load byte/halfword/word

st.b, st.h, st.w VI Store byte/halfword/word
Input/Output

in.b, in.h, in.w VI Port input byte/halfword/word
out.b, out.h, outw VI Port output byte/halfword/word
Arithmetic

mov I, Data transfer

movhi Vv Add left-shifted-immediate
add, cmp 1 Add/Compare

addi Y, Add 16-bit immediate

movea Y, Add 16-bit imm., no cond. codes
sub | Subtract

mul, mulu | Signed/Unsigned multiply

div, divu | Signed/Unsigned divide

setf 1l Set register based on condition
Floating Point

cmpf.s VIl Compare

cvt.ws VIl Convert from integer (toward 0)
cvt.sw, trunc.sw Vil Convert/Truncate to integer
addf.s, subf.s VIl Add/Subtract

mulf.s, divf.s VIl Multiply/Divide

Special

Idsr 1l Load into system register

stsr 1l Store system register

trap 1l Software trap

reti 1l Return from trap, interrupt
caxi VI Multiprocessor synchronization
halt 1l Halt

Table 1. V800 instruction set. The instruction formats,
corresponding to the designations in Figure 1, are listed to the right
of the mnemonic.

3 NEC Joins Embedded Processor Plethora

Vol. 7, No. 14, October 25, 1993

© 1993 MicroDesign Resources

MICROPROCESSOR REPORT

NEC’s Highly Integrated V820

NEC has expanded its V800 family to three products with
the announcement of the V820, the most highly integrated
family member. The first two V800 chips are the 810—
which has a CPU, FPU, and 1K of cache—and the 805, a de-
rivative of the 810 with the system-bus width reduced from
32 to 16 bits (see 070802.PDF). The new chip uses the same
core CPU as the other family members but adds a number
of on-chip peripherals.

The V820 includes all of the features of the V810 and adds
a DMA controller, memory controller, timer, PLL, and two
serial ports. The DMA unit has four programmable chan-
nels and can handle the full 32-bit address range. The mem-
ory controller can be programmed to handle various types
and speeds of DRAM. The 16-bit timer has three compare
registers that can generate interrupts. The PLL generates a
6x clock signal, allowing the use of a 3—4 MHz clock input
for typical operating frequencies. The two serial ports can
handle synchronous or asynchronous protocols.

NEC rates the chip at 18 MIPS at its peak speed of 25
MHz, the same as the V810. Unlike the 810, however, the
820 is offered only at 5 V, although the company says it is
“working to develop” a low-voltage version. While this per-
formance is impressive compared with similar processors
(see 071403.PDF), power consumption at 5 V is 750 mW; other
processors achieve a far lower power rating by operating at
3.3 V. The V820 uses a 208-pin PQFP.

The V820 is manufactured in a 0.8-micron CMOS process
similar to that used for the other family members, but the
820 requires a third metal layer not used by the other chips.
The new peripherals increase the transistor count to
380,000, about 140,000 more than used by the V810. This,
in turn, more than doubles the die area to 114 mm?2. The
MPR Cost Model (see 071004.PDF) estimates the manufac-
turing cost of the V820 to be about $35, three times that of
the V810 and 60% more than the estimated cost of
Hitachi’s SH7032, which includes a similar set of on-chip
peripherals.

While NEC is aggressively pricing the V805 at $28 in
high volumes (100K or more), the V820 is priced at $80 in
similar volumes. The price reflects the higher manufactur-
ing cost, but it is more than twice the price of the SH7032.
It is more expensive than even complete system solutions
such as the Hobbit and Polar chip sets. The V820, while of-
fering some peripheral integration, does not include inter-
faces, such as graphics and PCMCIA, that are important in
portable system applications.

NEC says that it is aiming its V800 family at PDAs as
well as embedded applications. The company has yet to de-
liver a complete PDA chip set such as Polar or Hobbit, nor
has it identified any existing PDA operating system that
can run on the V800 chips, none of which includes an MMU.
The V800 has been more successful in the embedded mar-
ket, with a key design win in Nintendo’s CD-ROM player.
While the V805 and V810 offer excellent price/performance
for a variety of embedded applications, the V820 may strug-
gle to find its market niche.

—LG

ble without them. The V800 architecture would be far
better if the bit-string instructions were replaced with
useful primitives that adhere to the RISC style of ar-
chitecture design. The RISC primitives would fit into
the natural pipeline flow, not require implicit register
operands, and eliminate the need for microcode or
hardware sequencing that the bit-string instructions
need. A short routine using the correct primitives
would probably operate just as fast as the bit-string in-
structions and would provide opportunities for cus-
tomization and performance tuning as appropriate.
The ARM architecture, with its powerful composite
shift/arithmetic operations, comes close to supplying
the suggested flexible primitives.

One possible benefit to the string instructions is
lower power dissipation. If a program needs to perform
many bit-string manipulations, it may save power to
fetch only a single bit-string instruction instead of a
loop full of RISC-adherent primitives. Given that the
V800 has an instruction cache, the power savings is
probably not large. The special group of instructions in-
cludes the usual operations for accessing system regis-
ters, causing a software trap, returning from a trap or
interrupt, and halting the processor.

One instruction provided by the V800, CAXI, is un-
usual in an embedded control architecture. CAXI is an
uninterruptible multiprocessor synchronization primi-
tive. The range of current and future embedded control
applications that require multiple processors seems
limited at best; it is unlikely that multiple processors,
which take more space and design time, would be bet-
ter than a faster single processor. Perhaps the V800 de-
signers had a captive, known application within NEC
in mind, but without knowledge of this application, the
inclusion of multiprocessor support without a supervi-
sor mode and MMU does not make sense.

Special Registers Provide Unique Functions

The V800 special registers provide some typical
and some not-so-typical functions. Typical functions in-
clude saving critical state on traps and interrupts,
which is handled by the EIPC/EIPSW and FEPC/FEPSW
register pairs. The two sets of registers allow the V800
to handle one level of nested interrupts. For certain
classes of exceptions, the ECR contains information to
help software determine what exception occurred.

The PSW contains routine information such as the
condition codes, exception indicators, interrupt mask,
interrupt disable bit, and address trap enable bit. The
PIR (processor ID register) stores a fixed code for each
implementation of the V800 family. The V810, for ex-
ample, has the pattern 8-1-0 hexadecimal.

The TKCW (task control word) register should
probably be renamed something like floating-point-
exception control word. The bits in this register enable

4 NEC Joins Embedded Processor Plethora

Vol. 7, No. 14, October 25, 1993

© 1993 MicroDesign Resources

MICROPROCESSOR REPORT

the various floating-point exceptions. In the V810 imple-
mentation, these bits have fixed values.

The ADTRE special register holds a 32-bit address
that is continuously compared to the PC. If the AE bit in
the PSW is set and the PC matches the ADTRE, an excep-
tion is generated. This provides a hardware breakpoint
that can greatly aid software debugging when the on-
chip instruction cache is activated.

The most unusual special feature allows some or all
of the cache to be cleared, loaded, or stored to memory
simply by writing to the CHCW (cache control word).
When clearing the cache, the number of entries is speci-
fied by CEC (clear-entry count), while the 12-bit CEN
(clear-entry number) specifies the first entry to be
cleared. The V810 cache uses eight-byte entries; thus, if
the same cache structure is carried throughout the fam-
ily, the CHCW appears to accommodate up to a 32K in-
struction cache.

When dumping or restoring the cache from mem-
ory, the SA field specifies the upper 24 bits of the full 32-
bit memory address; the lower 8 bits are zero. Dump and
restore were included to improve cache testability. In the
V810 implementation, interrupts are held pending until
the completion of an ongoing instruction cache clear,
dump, or restore operation.

V800 Is A Worthy Competitor

Despite its various shortcomings, the V800 archi-
tecture is clean and simple enough to allow a small, fast,
pipelined implementation. It makes some major depar-
tures from the RISC tenets, namely complex bit-string
instructions, lack of three-address operations, and mix-
ing 16- and 32-bit instructions, but the instruction set se-
mantics are generally very RISC-like.

Architectural advantages include the simple ad-
dressing modes, large register file, floating-point instruc-
tions, good shift support, excellent multiply/divide sup-
port, and good code density due to 16-bit instructions.
The bit-string instructions should probably be consid-
ered an advantage in the architectural sense, because
they provide powerful functions, but the architectural
benefit is small compared to the implementation compli-
cations both now and for future family members.

The V800 achieves high code density without sacri-
ficing register file size by using 16- and 32-bit instruction
lengths. This is in contrast to the SH7000, which limits
itself to only 16 registers so that all operations can be en-
coded in its single 16-bit instruction format. The ARM
achieves high code density by encoding an extremely rich
set of operations in 32-bit instructions, but the richness
restricts it to only 16 registers, as well. The V800’s extra
registers generally will result in fewer memory refer-
ences. Specifically, they can be used to eliminate memory
references entirely when calling typical leaf procedures.

Thus, the V800’s two instruction lengths lead to an

architectural advantage, but as with the bit-string in-
structions, a disadvantage is also created. The two
lengths are probably of little consequence in current sin-
gle-scalar implementations, but if the family is success-
ful, superscalar implementations of the V800 could be
more complex and costly to design than superscalar im-
plementations of simpler architectures.

Shift support is on par with most other high-end
embedded microprocessors and much better than the
SH7000, which has only a few shift instructions and
none that shift by a variable amount.

The floating-point instruction set could prove to be
a competitive advantage for some applications. Some
other embedded control architectures, such as the
SH7000 and the ARM, do not have floating point in-
structions at all. On the other hand, the cost/perfor-
mance of the floating point will be important. If perfor-
mance is compromised to save die area, the presence of
floating-point instructions may not prove compelling.

Since hardware support for single-precision floating-
point is less expensive than that for double-precision,
however, V800 implementations may not have to sacrifice
too much performance. The simple fact that the first V800
microprocessor, the V810, has on-chip floating-point gives
it an advantage over other microprocessors that require a
separate chip or simply don’t offer FP support.

PDAs using leading operating systems, as well as
some applications in the high-end embedded control
market, require memory management and a separate,
protected supervisor mode. Even those applications that
do not presently require these features may someday be-
come sophisticated enough to benefit from them. Thus,
the V800 suffers along with the SH7000 in comparison to
nearly every other high-end embedded control architec-
ture. As with the SH7000, the V800 could be easily mod-
ified to include these capabilities in the future.

The V800 is a worthy competitor in the embedded
control market. As with all microprocessors, success will
depend more on the volumes generated by design wins
than on processor architecture. While it is true that a
good architecture can help in securing customers, the de-
sign win in the HP LaserJet IV, which catapulted the
960 into the embedded RISC lead, was almost certainly
not based on architectural superiority.

Still, it is worth noting that NEC, which already
makes a wide range of MIPS-architecture chips, includ-
ing the impressive R4200, was able to justify investing in
the V800 family. While the MIPS architecture satisfies
all functional needs—it has excellent memory manage-
ment, protection, floating-point, etc.—it does not have
great code density, a small processor core, or emphasize
low power for battery-operated applications. Even with
the clever combined integer/floating-point data path of
the R4200, the V800 will have a smaller, more power-
miserly implementation. ¢

5 NEC Joins Embedded Processor Plethora

Vol. 7, No. 14, October 25, 1993

© 1993 MicroDesign Resources

	NEC Joins Embedded Processor Plethora
	Figure 1. V800 instruction formats include …
	Variable Instruction Length
	Register Usage Conventions
	V800 Has RISC-Like Instruction Set
	Floating-Point Supported
	Program Control Has Strange Quirk
	Uncommon Bit-String Operations
	Table 1. V800 instruction set...
	Special Registers Provide Unique Functions
	V800 Is A Worthy Competitor

	NEC’s Highly Integrated V820

