
M I C R O P R O C E S S O R R E P O R T

MOVi
MOVXi
MOVZi

Rsrc/imm, Rdest
Rsrc, Rdest
Rsrc, Rdest

Move
Move, sign extend
Move, zero extend

Mnemonic Operands Description
Moves

ADD[U]i
ADDCi
MULi
SUBi
SUBCi

Rsrc/imm, Rdest
Rsrc/imm, Rdest
Rsrc/imm, Rdest
Rsrc/imm, Rdest
Rsrc/imm, Rdest

Add, signed or unsigned
Add, with carry
Multiply
Subtract (dest – src)
Subtract, with carry

Integer Arithmetic

CMPi Rsrc/imm, Rdest Compare (dest – src)
Integer Compare

ANDi
ORi
Scond
XORi

Rsrc/imm, Rdest
Rsrc/imm, Rdest
Rdest
Rsrc,imm, Rdest

Logical AND
Logical OR
Save condition as boolean
Logical Exclusive OR

Logical and Boolean

ASHUi
LSHi

Rsrc/imm, Rdest
Rsrc/imm, Rdest

Arithmetic left/right shift
Logical left/right shift

Shifts

TBIT Rsrc1/imm, Rsrc2 Test bit
Bit Test

LPR
SPR

Rsrc, Rproc
Rproc, Rdest

Load processor register
Store processor register

Processor Register Manipulation

Bcond
BAL
BR
EXCP
Jcond
JAL
JUMP
RETX

disp
Rdest, disp
disp
vector
Rdest
Rlink, Rdest
Rdest

Conditional branch
Branch and link
Branch
Vectored trap
Conditional jump
Jump and link
Jump
Return from exception

Branches

LOADi disp(Rbase), Rdest
disp(Rbase, Rbase+1), Rdest

Load, register relative
Load, far relative

Load and Store
by Brian Case

Just when it seemed safe to assume
that the tide of new microprocessor ar-
chitectures had ebbed, Gideon Intrater
of National Semiconductor revealed an-
other simple embedded architecture at
last month’s Microprocessor Forum.

Dubbed Piranha, the architecture is intended to be used
in application-specific embedded processors.

Now that National has discontinued its failed 32000
processor family, the company has essentially dropped
out of the stand-alone embedded CPU market. National
has no current plans to package a stand-alone Piranha
CPU chip, but it will do so if sufficient customer demand
materializes.

National is following a recent trend exemplified by
Hitachi and NEC with their SH7000 (see 080203.PDF)
and V800 (see 081303.PDF): instead of using or licensing
an existing architecture, these companies have defined
their own captive architectures. The motivation is to
minimize code size, die area, and power dissipation
while maximizing performance. Other benefits of a pro-
prietary architecture, such as saving a royalty fee on
tens of millions of units, may also play a part.

Existing architectures are seen as either too power-
and memory-hungry—often the case with RISCs—or
lacking in performance—often the case with CISCs. Na-
tional, like Hitachi and NEC, believes it has defined an
architecture that optimizes all four of the metrics men-
tioned above. In contrast to other architectures, how-
ever, National has defined Piranha for implementations
with data sizes from 8 to 64 bits. So far, the company
has designed 16- and 32-bit Piranha cores and is already
integrating them into custom chips.

Piranha Is Simple and Minimal
Based solely on a strict interpretation of the RISC

tenets, the Piranha architecture is not completely a
RISC. As shown in Figure 1, it has variable-length in-

National Enters Emb
Piranha Family Will Scale fr

1 9 9 4

FORUMMI
CROPROCESSOR
National Enters Embedded RISC Market Vol. 8, No. 15, November

Figure 1. Piranha 32-bit instruction formats. The 16-bit Piranha uses
only 2- and 4-byte formats

Opcode Rsrc Rdst

Opcode Rsrc Rdst

Opcode Rsrc Rdst

16-bit Immediate

32-bit Immediate

0 8 12 15

0 8 12 16

0 8 12 16

31

47
structions and, with only two register fields, lacks three-
address register-to-register operations.

Still, it seems fair to label Piranha RISC-like, espe-
cially in light of the instruction set shown in Table 1. Not
only is the instruction set simple and modest in size, it
also adheres to the RISC tenet of referencing memory
only with load and store instructions. The first Piranha
cores handle unaligned data accesses in hardware (in-
structions must be 16-bit aligned), but future cores can
choose to trap on unaligned data accesses.

As in the SH7000 and V800 architectures, the basic
Piranha instruction format is 16 bits long to minimize
code size. The 16-bit format can encode either two regis-
ter numbers or a register and a small four-bit constant.

edded RISC Market
om Eight to Sixty-four Bits
14, 1994 © 1994 MicroDesign Resources

Table 1. The Piranha instruction set. Only the 16-bit machines im-
plement the far-relative addressing mode. Byte, word, or long (B,
W, D) can be substituted for the “i” placeholder in the mnemonics.

STORi
disp, Rdest
Rsrc, disp(Rbase)
Rsrc, disp(Rbase, Rbase+1)
Rsrc, disp

Load, absolute
Store, register relative
Store, far relative
Store, absolute

DI
EI
WAIT

Disable maskable interrupts
Enable maskable interrupts
Wait for interrupt

Miscellaneous

R0
R1
R2
R3
R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
RA
SP

General Registers

PC

Dedicated Address Registers

ISP
INTBASE

C

Processor Status Register (PSR)

CFG

Configuration Register

DCR

Debug Registers

DSR
CAR

(Ret. Addr.)

32-bit only

TL00FZN0EPI
012345678910111215/31

reserved
Global Interrupt Mask

Trace Pending
Local Interrupt Mask

Negative
Zero

General Flag
Low

paces for the 32-bit and 16-bit machines. The 32-bit machine has a
dress space, but the 16-bit machine has an address space that is

ral word size.

ta, Code,
nd I/O

eserved

upt Control 1 KB
8 MB

4 GB

0 000016

0 D00016

Data, Code,
and I/O

0 FC0016

Reserved

1 000016

Interrupt Control

2 000016

Data, Code,
and I/O

3 FFFF16

Data and I/O

1 KB
8KB

64 KB

128 KB

256 KB

56 KB

ne Address Space 16-Bit Machine Address Space
A 32-bit format is used to encode a 16-bit constant, and,
as shown in Figure 1, the 32-bit machine uses a 48-bit
format to directly encode a full 32-bit constant. Presum-
ably, a 64-bit machine would have an 80-bit format to
encode a 64-bit constant, but National says the prospect
of a 64-bit machine is largely an insurance policy against
possible future needs; there are no immediate plans for a
64-bit Piranha core. Eight-bit cores are more likely.

The precise details of the instruction formats and
the instruction encodings highlight a unique aspect of
the Piranha cores: the 16- and 32-bit versions are not bi-
nary compatible. Instead, compatibility is defined to be
at the assembler mnemonic level. That is, the binary in-
struction encodings for the two existing cores are differ-
ent, and National leaves open the possibility for two
Piranha cores to have the same word length but differ-
ent encodings. This would be useful if, say, some DSP in-
structions were added to form a new 32-bit core.

For each unique core, National will choose instruc-
tion encodings to minimize code size for the intended ap-
plications. Applications are compiled with different en-
coding schemes and code sizes are measured. Different
encoding schemes are tried until minimal code size is ob-
tained. National claims its engineers spent months
choosing the instruction encodings for the first two cores.
Both in-house and customer code were used to tune the
encodings.

Figure 2 shows the simple Piranha register pro-
gramming model. The four-bit register fields in the in-
structions permit 16 general-purpose registers. Al-
though the subroutine-call instructions (branch-and-link
and jump-and-link) can store their return address in any
register, RA is used by the software calling convention.
Register SP is fully general-purpose but is reserved by
software as the program stack pointer. There is no “al-
ways-reads-as-zero” register as in most RISCs.

The PSR (processor status register) contains vari-
ous status and control bits. Piranha uses condition
codes, which are stored here. The interrupt-enable and
instruction-tracing control bits are also
in the PSR.

The ISP (interrupt stack pointer)
register points to the stack used to save
state when an interrupt or exception is
taken. Only the PC and PSR are saved
automatically. The INTBASE register
defines the start of the 128-entry inter-
rupt vector table.

The CFG (configuration) register
serves no purpose in the first two cores
and is currently undefined.

So far, only the 32-bit core imple-
ments the debug registers. The DCR
(debug control register) has bits to con-
trol data- or instruction-address check-

M I C R O P R O C E S S O R R E P O R T

Figure 3. Address s
fairly predictable ad
larger than the natu

0000 000016

FF80 000016

FFFF FC0016

FFFF FFFF16

Da
a

R

Interr

32-bit Machi
2 National Enters Embedded RISC Market Vol. 8, No. 15, Novem
ing against the address in the CAR (compare address
register). The DCR allows data-address checking to be
selected for data reads, writes, or both. The DSR (debug
status register) allows the debug exception handler to
determine the kind of address match that occurred.

In the 32-bit Piranha core, all registers are 32 bits
long. In the 16-bit core, all registers are 16 bits long ex-
cept the PC, ISP, and INTBASE, which are 18 bits long.

The Piranha machines are little endian, and Figure 3
shows the memory maps for the first two cores. The en-
tire 32-bit address space is available for any purpose ex-
cept for the last 8M, which is reserved. The last 1K is re-
served for interrupt control.

The 16-bit machine actually has an 18-bit linear ad-
dress space. The first 128K—except for a hole reserved
for interrupt control—can be used for any purpose. The

Figure 2. The Piranha programming model. In the 16-bit machine,
the PC, ISP, and INTBASE are 18 bits long. In the 32-bit machine,
all registers are 32 bits long.

Trace Enabled
Carry
ber 14, 1994 © 1994 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

ALU &
Shifter

Register
File

PC

mux mux Decode &
Control

m
ux

m
ux

Displacement

Data/Instr

Address

Queue

Control

mux

Instr.
Cache

5

10

15

20

25

30

C
or

e
A

re
a

in
 m

m
2

In
te

l 3
86

M
ot

or
ol

a
C

P
U

32
+

LS
I R

30
00

N
E

C
 V

81
0

H
ita

ch
i S

H
-2

A
R

M
6

A
R

M
7

P
ira

nh
a

32

P
ira

nh
a-

16

P
ira

nh
a-

32
last 128K can only be used for data and I/O. The 16-bit
machine uses the far-relative addressing mode or a full
18-bit displacement to gain access to the entire 18-bit ad-
dress space. The far-relative mode concatenates the val-
ues in a pair of adjacent registers to form a 32-bit ad-
dress, of which only the low 18 bits are used to reference
memory. Far-relative addressing is not used in the 32-
bit machine.

Simple Implementation Saves Die Area
Figure 4 shows a block diagram of the first two

Piranha implementations. In keeping with the spirit of
the intended applications, the implementations use a
simple three-stage fetch-decode-execute pipeline. A more
complex pipeline might have allowed a faster clock rate,
but even this simple pipeline can run at 30 MHz in a 0.8-
micron CMOS process. National says faster operation is
not required for the intended applications and would only
create EMI and other system-design problems.

The three-stage pipeline crams register-read, ALU/
shift, and register-write operations into the single exe-
cute stage. This has the advantage of eliminating regis-

Figure 4. Block diagram of the simple hardware in the first Piranha
implementations. Only the 32-bit implementation has the instruction
queue and buses for the optional instruction cache.
3 National Enters Embedded RISC Market Vol. 8, No. 15, Novem

Figure 6. Relative code sizes. The Piranha-32 beats other RISCs on
code density and can equal that of the 68000. (Source: National)

0

20

40

60

80

100

120

P
er

ce
nt

 o
f P

ira
nh

a
C

od
e

S
iz

e

140

160

Dhrystone
Benchmark A
Benchmark B

Piranha-32 68K ARM6 i960 SPARC R3000
ter forwarding and a few pipeline registers and saves the
associated power. National says the idea of eliminating
all transistors that were not absolutely necessary was a
recurring theme of the Piranha project.

The resulting Piranha cores are two of the smallest
high-performance cores available in the industry. Fig-
ure 5 compares core sizes for some embedded processor
implementations. These cores are all in 0.8-micron
CMOS, although specific process parameters vary. As
shown, the two Piranha cores are the smallest, and the
16-bit core is about 50% of the size of the tiny ARM7.
Other vendors have achieved smaller cores using 0.5-
micron processes, including a 4-mm2 ARM6 and Moto-
rola’s Coldfire, at 4.4 mm2.

For practical purposes, the absolute area differ-
ences between the Piranha and ARM cores are not com-
pelling in the context of a complete ASIC or custom IC
that implements the CPU, RAM, ROM, peripherals, and
system logic. The Piranha cores might save 3 mm2, but
the entire die would likely be 40 mm2 to 80 mm2. A sav-
ings of 5% is worthwhile but not compelling enough to
switch architectures. Even 10% probably would not tilt
the scale in Piranha’s favor.

Stealing design wins, however, is not National’s
strategy. Piranha’s target is applications that are chang-
ing from CISC to RISC—or are embedding a processor
for the first time—and thus are open to all options.

To help attract these designs, one of Piranha’s chief
design goals is to save cost by reducing RAM and ROM
requirements through high code density and hardware
support for unaligned data, which facilitates the use of
packed data structures. Figure 6 shows a code-size com-
parison between the Piranha-32 and some other archi-
tectures. Piranha achieves code density on par with the
68K and about 25% better than other RISCs. Though
conveniently missing, the SH7000 and V800 should
have code sizes close to Piranha’s.

The core size advantage plus a 25% savings in code
space could give Piranha a significant die area advan-
tage over standard RISCs in some applications. In the

Figure 5. The simple Piranha cores achieve remarkably small im-
plementations, beating even the tiny ARM cores. (Source: National)

0 27 16.9 15.0 12.4 9.1 7.1 6.0 4.5 3.0
ber 14, 1994 © 1994 MicroDesign Resources

For More Information
For more information on Piranha, contact Mark

Throndson at 408.721.4957, 408.736.6017 (fax), or
tmetsc@esd.nsc.com (e-mail).

6.0
high-volume designs for which Piranha is intended, this
difference could reduce die cost enough to be compelling.
This explains why Hitachi and NEC designed their own
architectures and why Motorola recently introduced a
stripped-down 68K core (see 081405.PDF).

Performance Is Competitive
Figure 7 shows the performance of Piranha and

other cores on the Dhrystone benchmark. The Piranha
cores achieve middle-of-the-road performance, but they
do so without caches. National expects future Piranha
cores to incorporate at least an instruction cache to de-
liver higher performance for certain applications.

Figure 8 shows yet another met-
ric where Piranha comes out on top.
Because of their small silicon area, the
Piranha cores have the best MIPS per
mm2 rating of the cores shown. Until
now, the ARM7 had an impressive lead
in this category. Piranha’s improve-
ment is an indication of what can be
achieved with a careful and harmo-
nious design of both architecture and
implementation.

Huge Volume Required
Given the glut of embedded ar-

chitectures, it seems strange that Na-
tional would go to the considerable
trouble of defining and supporting a
new one. National claims, though, that
in the volumes envisioned for Piranha, it makes good
sense. The work expended will be amortized over tens of
millions of units per year when major designs—which
National says it has already identified—reach maturity.
In such high volumes, a possible 20% savings in die area
from core and instruction ROM reductions, combined
with royalty savings, provides enough return on the in-
vestment. National says that if projected volumes were
only on the order of those shipped by the current high-
end RISCs, such as the 960 and 29K (currently shipping

M I C R O P R O C E S S O R R E P O R T

Gideon Intrater de
tional’s new embed
architecture.
4 National Enters Embedded RISC Market Vol. 8, No. 15, Novem

Figure 7. Performance at 25 MHz. The Piranha cores achieve mid-
dle-of-the-road—but competitive—performance. (Source: National)

0

5.0

10.0

15.0

20.0

25.0

M
IP

S

A
R

M
7

L
S

I
R

3
0
0
0

M
o
to

ro
la

 C
P

U
3
2
+

In
te

l 3
8
6

4.3 9.0 14.0 15.7 18.0 20.5 21.9 22.5 25.0

P
ira

n
h
a
-1

6

P
ira

n
h
a
-3

2

N
E

C
 V

8
1
0

H
ita

ch
i S

H
-2

A
R

M
6

a few million per year), it would not have made sense to
design Piranha, and National would simply have li-
censed an existing RISC.

National is targeting the data-moving and data-
shaping applications that will be important in coming

high-volume products. These applications
are characterized by mobility, communica-
tions orientation, data compression, and
mixed-signal (analog and digital) environ-
ments. National already has some experi-
ence with these applications through its
processors, ASICs, and software for de-
vices that combine printer, fax, modem,
and answering-machine capabilities (such
as HP’s OfficeJet) and the iPOWER per-
sonal encryption application. National
says many applications that do not al-
ready use a CPU are fertile ground for
medium-performance, low-power embed-
ded processor designs.

Compared with some other embedded
processor vendors, National seems to view
the high-performance embedded market in

a different light. In addition to 32-bit applications, Na-
tional wants to be able to target applications for 8- and
16-bit processors. With the easy scalability of Piranha
and captive designs and expertise, National seems well
positioned to do so. Piranha will not likely steal existing
design wins from the 960, 29K, or any other camps, so
National must prove that the design wins it has identi-
fied will justify its extensive investment in Piranha. ♦

scribing Na-
ded-control

C
LA

R
E

N
C

E
T

O
W

E
R

S

ber 14, 1994 © 1994 MicroDesign Resources

Figure 8. Because of their small implementations, the Piranha cores
beat other processors in performance/mm2 at 25 MHz.

0

1.0

2.0

3.0

4.0

5.0

M
IP

S
/m

m
2

N
E

C
 V

8
1
0

H
ita

ch
i S

H
-2

A
R

M
6

P
ira

n
h
a
-3

2

P
ira

n
h
a
-1

6

L
S

I
R

3
0
0
0

M
o
to

ro
la

 C
P

U
3
2
+

In
te

l 3
8
6

0.16 0.53 1.41 1.67 2.0 2.4 3.75 4.6 5.23

A
R

M
7

	National Enters Embedded RISC Market
	Piranha Is Simple and Minimal
	Figure 1. Piranha 32-bit instruction formats.
	Table 1. The Piranha instruction set. Only the 16-bit machines …
	Figure 2. The Piranha programming model...
	Figure 3. Address spaces for the 32-bit and 16-bit machines...
	Figure 4. Block diagram of the simple hardware in the first Piranha …
	Simple Implementation Saves Die Area
	Figure 5. The simple Piranha cores achieve remarkably small …
	Figure 6. Relative code sizes....
	Performance Is Competitive
	Huge Volume Required
	Figure 7. Performance at 25 MHz...
	Figure 8. Because of their small implementations, the Piranha cores …

	For More Information

