MICROPROCESSOR REPORT

VIEWPOINT

Going Native!
x86-Optimized Designs Have a Strong Growth Path

by Mark Bluhm and Ty Garibay, Cyrix

Several recently announced x86 processors utilize
a design style that translates x86 instructions into
primitive operations before executing them, a style we
refer to as “RISC-like.” These processors include Intel’s
P6, AMD’s K5, and NexGen’s Nx586. Intel and HP are
rumored to be collaborating on the design of a processor
using a second style based on VLIW principles. In con-
trast, Cyrix has chosen a third style of execution for its
highest-performing processor, the M1. We refer to this
style as “native.”

Although the RISC-like design style can be used to
build high performance x86 implementations, the native
style delivers performance equivalent to or better than
the RISC-like approach and, unlike the VLIW approach,
retains compatibility with the existing code base. Fur-
thermore, the native approach yields a simpler design
that reduces cost and design time.

Native vs. RISC-like

A native design and a RISC-like design execute x86
instructions in very different ways. We can contrive a
simple example to illustrate their differences:

1. ADD ax, 4[di] ; Add memory to register ax

2.SUB 8[di], ax ; Subtract ax from memory
In this example, the SUB instruction is dependent on the
result of the ADD instruction, so in either design approach
these two instructions must execute sequentially.

In a RISC-like design, the two instructions are
translated into a sequence of RISC-like operations:

1. LOAD templ, 4[di] ; Load memory into templ

2. ADD ax’, ax, templ ; Register ax’ gets ax + templ
3. LOAD temp2, 8[di] ; Load memory into temp2

4. SUB temp3, temp2, ax’ ; temp3 gets temp2 - ax’

5. STORE temp3, 8[di] ; Store result to memory

This decomposition allows operations to be grouped by
type (i.e., load/store, integer ALU, etc.) across instruction
boundaries. As a result, the RISC-like design can more
closely match the number and types of function units to
the expected distribution of RISC-like operations.

This decomposition is not without cost, however. A
direct consequence of allowing any operation, decom-
posed from x86 instructions, to execute within specific
function units is that any function unit completing an
operation may potentially modify an x86 register. To
communicate new register values to dependent opera-
tions in other function units, all function units must be

fully interconnected. In the worst case, each RISC-like
operation must be assumed to be updating a program-
mer-visible register. Therefore, both temporary and pro-
grammer-visible results are passed between all function
units to guarantee correct results.

In a native implementation using two integer units,
these two instructions execute as shown in Figure 1.
Each function unit in the native design is a full integer
unit with all capabilities required to execute each of
these simple x86 instructions in their entirety. The
results that are passed between the two function units
and eventually to memory are only those values that are
programmer visible.

In contrast to the RISC-like approach, the native
design treats each x86 instruction separately, exe-
cuting each instruction in its own pipeline. Only the
results of actual x86 instructions are distributed be-
tween the integer units. Therefore, for this example,
the RISC-like design requires 150% more communica-
tion between function units to achieve the same perfor-
mance. This added communication is endemic to the
RISC-like design.

RISC-like Design Increases Complexity

Figure 2 shows the block diagrams of two compara-
ble two-way superscalar x86 microprocessor implemen-
tations, one native and one RISC-like. Each can decode
and issue up to two x86 instructions per cycle. Aside from
this similarity, the two implementations differ greatly.

In the figure, a box labeled Xbar (crossbar) has been
placed at each point in the designs where significant
communication is required between blocks. Each con-
nection between an input and an output of each crossbar

add ax, 4[di]
sub 8[di], ax

Figure 1. In a native x86 design, all operations required to com-
plete each instruction are performed in tightly coupled “macro”

function units.

Viewpoint: Going Native! Vol. 9, No. 12, September 11, 1995

© 1995 MicroDesign Resources

MICROPROCESSOR REPORT

Instruction
Instruction Fetch Fetch
:i:xnm | Xcert
Inst Inst
Decode 1| | Decode 2
Instruction Decode Xbar2
Reservation
‘ \XbarZ > Station
v ¥ [T 11
‘ L ‘XbarB
U ! A A A
égldcr "Exec /éd?r "Exec Ex |[Ex |/ Ld |[st
: el : Unit || Unit|| Unit || Unit
l “ l Y A A h
i - - i Xbar4 } A . }Xbam
Native RISC-like

Figure 2. A native x86 processor design requires much less inter-
connect than a RISC-like version.

represents an average of 40 wires (sometimes control,
sometimes data), so the number of unique wires explodes
quickly. (Forty wires per crossbar is a conservative esti-
mate derived from the actual number of wires used in
existing 32-bit processor implementations.) Wires are
the enemy when one is attempting to reduce design time,
increase frequency, and lower cost.

Early RISC proponents singled out transistor count
as the main culprit of the high cost and complexity of
CISC microprocessors; this is no longer the issue today.
The inexorable march of semiconductor technology has
made it possible to place a greater number of transistors
on a die, leaving only the problem of connecting them as
the stumbling block.

In both designs, the size of Xbarl is dependent only
on the number of x86 instructions to be decoded in a sin-
gle cycle, so Xbarl is of degree 2 in both the native and
RISC-like implementations. (A crossbar of degree 2 has
two inputs and two outputs, with a total of four connec-
tions). The boxes labeled Xbar2 in each design represent
the communication required to issue two x86 instruc-
tions worth of work in each clock cycle. Since the native
design issues each x86 instruction as a unit, Xbar2 in the
native case is the same size as Xbarl: degree 2. The
RISC-like design allows for a 2:1 expansion of ROPs
from x86 instructions, so Xbar2 in the RISC-like case is
of degree 4.

Even with this dramatic increase in communication
(a degree 4 crossbar is four times as complex as a degree 2
crossbar), this particular RISC-like design could not
issue the two instructions from the preceding example,
the ADD and the SuB, in parallel. These two instructions
require an Xbar2 of degree 5 for the RISC-like design to
equal the performance of the native design.

Because of the inherent symmetry in a native design
(i.e., the number of fully functional integer units is equal
to the maximum number of x86 instructions issued per

clock), Xbar2 is not required in the native implementa-
tion; Xbar2 provides only load balancing between the
integer units. In the RISC-like design, however, Xbar2 is
required due to its single centralized reservation station.
In contrast, distributed reservation stations can be added
transparently to the native design by placing them inside
each integer unit. Therefore, in the native implementa-
tion, no extra communication is required to allow full out-
of-order, dataflow instruction execution.

The native design requires one type of communica-
tion that does not arise in the RISC-like case: each inte-
ger unit has at least one link between the address calcu-
lation (AC) unit and the execution (EX) unit inside it.
Therefore, the native design has two connections absent
in the RISC-like design; however, each of these connec-
tions is local to the integer unit and is less costly than
global communication between function units.

Xbar3 exists only in the RISC-like design. This
crossbar is the mirror image of Xbar2 in the RISC-like
design and is required to distribute ROPs from the cen-
tral reservation station to each of the function units.
Since this example RISC-like design is attempting to
maintain a throughput of four ROPs per cycle, Xbar3 is
of the same size as Xbar2: degree 4.

Finally, Xbar4 passes results between function
units. As stated above, the native design requires com-
munication only for results of x86 instructions, and so it
distributes a maximum of two results per cycle. There-
fore, Xbar4 is of degree 2 in the native implementation.
Because the RISC-like design must distribute the results
from each function unit to all others, Xbar4 is of degree 4
in this case. This difference in size for Xbar4 is consis-
tent with the conclusion drawn earlier from the simple
two-instruction example.

Table 1 sums up the differences in communication
requirements for these example two-way superscalar
designs. As each connection in Table 1 represents an
average of 40 wires, the RISC-like design of a two-way
superscalar x86-compatible microprocessor requires
roughly 1,520 more wires than a native design of compa-
rable performance. Each of these wires is a potential
logic error, speed limiter, manufacturing defect, and
area penalty.

Future Directions for x86 Implementations

Current RISC-like designs suffer from significant
additional communication overhead. But what about
future products? To explore this question, we will extend
the preceding example of a two-way superscalar x86
microprocessor to an eight-way superscalar processor.

The design of a native eight-way superscalar x86
processor is fairly straightforward. With eight instruc-
tions decoded and issued per cycle, eight autonomous
integer units are used. Each integer unit has its own AC
and EX blocks. The only unexpected difference from the

2 Viewpoint: Going Native!

Vol. 9, No. 12, September 11, 1995

© 1995 MicroDesign Resources

MICROPROCESSOR REPORT

two-way superscalar design is that Xbar2 is omitted,
since its load-balancing characteristics are less impor-
tant with so many more execution resources available.
In the RISC-like implementation, however, it is possible
to take advantage of the lack of symmetry in the design
by reducing the number of function units. It would prob-
ably be possible for a RISC-like design to achieve perfor-
mance comparable to that of the eight-integer-unit
native design if it had only six ACs (four for loads, two for
stores) and six EXs, for a total of twelve function units.

As Table 2 shows, even in a very aggressive super-
scalar design, the RISC-like implementation of an x86-
compatible microprocessor requires almost four times as
much communication as the comparable native design.
This time, the difference between the two designs is
almost 15,000 wires! The trade-off in the native design is
between these thousands of wires or four extra function
units, each of which is an instantiation of a block which
has already been designed. The choice to avoid the wires
is the right one. Thus, the advantage of the native design
method over the RISC-like method becomes even more
pronounced as new x86 processors strive for ever-
increasing levels of parallelism.

The native design style not only requires less com-
munication than comparable RISC-like implementa-
tions, but it also offers other advantages that reduce
design time and/or allow for a smaller design team.
Because native designs inherently balance resource allo-
cation, there are fewer opportunities for unforeseen bot-
tlenecks. In general, native designs have a one-to-one
correspondence between fetch, decode, issue, memory
access, and execution resources. In this type of design, if
an instruction can be fetched, it can be executed without
regard to resource conflicts, subject only to the resolution
of any true dependencies that the instruction may have.

In contrast, RISC-like implementations typically
have a mismatch between peak instruction issue rate
and corresponding execution resources. As a result,
there are instances when instruction issue is stalled due
to a lack of function units.

The native design style demonstrates yet another
advantage when it is applied to superscalar microproces-
sors. As noted, native designs tend to be inherently bal-
anced in performance. A side effect of this balance is that
native designs also tend to be highly symmetric within
each stage of the execution pipeline, resulting in re-
usability of function units. This property of native imple-
mentations shows its greatest benefit in the design of
future, aggressively parallel x86 microprocessors. In
fact, it is conceivable that the number of unique (non-
replicated) transistors in future native designs will be
reduced, while the total number of raw transistors
increases dramatically. This improvement can reduce
design times even though the resulting products increase
dramatically in complexity.

Native RISC-like
Xbarl 2x2 =4 2x2=4
Xbar2 2x2 =4 4%x4 =16
Xbar3 0 4x4 =16
Xbar4 2x2=4 4x4 =16
Internal 2 0
Total Connections 14 52

Table 1. A two-way superscalar RISC-like processor has more
than three times the number of interconnections as in a similar
native design.

VLIW Is Not the Answer

Another approach to increasing x86 performance is
to utilize VLIW techniques (see 080205.PDF). The basic
advantage of VLIW-based design is that it exposes more
of its core to compiler optimization with the intent of
increasing parallelism and hence performance. There
are three approaches that can be used to incorporate
varying degrees of VLIW in an x86 processor:

1. Run-time recompilation of x86 into VLIW
2. Translation of binaries from x86 to VLIW
3. Source-code recompilation

The first approach maintains compatibility with
existing x86 code, but at the expense of performance.
With this approach, the code window that can be used to
extract parallel instructions is limited, and therefore the
performance that can be achieved is also limited. The
second and third approaches achieve better performance
but do not maintain compatibility with existing code.
Additionally, these approaches do not address the issue
of memory bandwidth. Providing a steady stream of
VLIW instructions to support a highly parallel execution
core results in high demands on the memory subsystem.

To illustrate how instruction memory bandwidth
affects performance, we define a simple model for pro-
cessor performance:

1

L 4 BP+IC

IR
where IPC is the number of instructions executed per
core clock cycle, IR is the sustained instruction issue
rate, BP is the average cycle penalty per instruction for
branch mispredictions, and IC is the average cycle

IPC =

Native RISC-like
Xbarl 8x8 = 64 8x8 = 64
Xbar2 0 12x12 =144
Xbar3 0 12x12 =144
Xbar4 8x8 = 64 12x12 =144
Internal 8 0
Total Connections 136 496

Table 2. For future eight-way superscalar processors, the RISC-
like method still requires more than three times the interconnect of
the native design.

3 Viewpoint: Going Native! Vol. 9, No. 12, September 11, 1995

© 1995 MicroDesign Resources

MICROPROCESSOR REPORT

IPC IPC IPC

1.8+ 25 6.0

161 20 \ 5.0 ™N

147 : \\

1.2 ; 0.01 s \ 4.0 \

L0 oo?| 001] 30 \\\\ 0.002

0.8 1.0 — \\\ 0.005
] 003 * —

0.6 \\% 2.0 0.01
] 05 0.03 — T

0.4 05 10 — 0.02
] 0.05 -

0.2 0.03

0.0 ; —— — — 0.0 0.0
8 16 24 32 40 8 16 24 32 40 8 16 24 32 40

Cache Miss Penalty (cycles)

(a) Four-issue machine

Cache Miss Penalty (cycles)

(b) Eight-issue machine

Cache Miss Penalty (cycles)

(c) Really good eight-issue machine

Figure 3. Estimated performance, in instructions per cycle, for hypothetical processors as a function of the the instruction cache miss
penalty and various instruction cache miss rates (shown as labels on lines). (a) A four-way superscalar processor with a BTB hit rate of 95%
and branch prediction accuracy of 93%. (b) An eight-way superscalar processor with similar parameters. (c) An eight-way superscalar pro-
cessor with a BTB hit rate of 99% and branch prediction accuracy of 97%. (Source: Cyrix)

penalty per instruction for instruction cache misses.
This equation assumes a perfect instruction execution
engine. In other words, if an instruction can be fetched
and issued, it will be executed without incurring any
additional penalty.

BP, which represents the performance lost due to
branch-prediction errors, is a function of the branch tar-
get buffer (BTB) hit rate and conditional branch predic-
tion accuracy (BPA). IC, which represents performance
lost due to instruction cache misses, is a function of the
instruction cache miss rate and the latency of main
memory. Figure 3 shows the performance of three differ-
ent designs as a function of various instruction cache
miss rates and instruction cache miss penalties.

Figure 3(a) shows the performance of a four-way
superscalar processor with a BTB hit rate of 95% and a
branch prediction accuracy of 93%. The penalty for a
BTB miss is eight cycles, and the penalty for an incor-
rectly predicted conditional branch is 12 cycles. The sus-
tained issue rate is set to 3.5, assuming that it is impos-
sible to ever achieve a perfect instruction decoder. This
design is aggressive but probably buildable in the near
future. In the best case, with a very low instruction cache
miss rate and a fast memory system, this design achieves
an IPC of only 1.8. Therefore, the delivered performance
is only about 45% of the sustained issue rate. Perfor-
mance drops rapidly if either the instruction cache miss
rate or the miss penalty increases significantly.

Figure 3(b) shows an eight-way superscalar design
with similar parameters. The sustained issue rate is set
to 7.0, optimistically assuming that an eight-instruction
decoder could be as efficient as a four-instruction decoder.
Even though the resources in the design have doubled,
peak performance has improved by only 1.5x. This design
is only about 30% efficient.

Figure 3(c) shows what would happen if it were pos-
sible to build an almost perfect microprocessor. In this
case, the BTB hit rate is increased to 99%, with a miss

penalty of only three cycles. The branch prediction accu-
racy is increased to 97%, with a penalty of only six cycles
for being incorrect. The highest performance line on this
graph represents an instruction cache with a miss rate of
only 0.2%. At last, we have an architecture that can
make efficient use of its resources: this hypothetical
design achieves an IPC of more than 5.0 if its memory
system is very fast. But the efficiency of the machine
drops from about 65% to just 40% if the instruction cache
miss penalty changes from 8 clocks to 16.

With x86 processors expected to operate at 200-300
MHz in the near future, an access to DRAM could take
more than 30 processor core cycles to complete. At this
point, any practical machine would be idling for long
periods, regardless of the performance of its CPU core.
This analysis points to the most significant problem
with VLIW microprocessor design: to achieve perfor-
mance improvements, the instruction fetch rate must be
increased, resulting in higher demands on memory sub-
system bandwidth.

Native Approach Has Good Future

Native implementations offer the best hope for
turning any increases in memory bandwidth directly
into increases in processor performance that are visible
to a user. Native designs take advantage of x86 code den-
sity, allowing them to make efficient use of limited mem-
ory bandwidth. The symmetrical execution resources in
the native approach create a well-balanced design that
can consume x86 instructions as fast as they are sup-
plied. Additionally, native designs reduce on-chip com-
munication compared with RISC-like designs of similar
performance. The reduced communication complexity
and inherent symmetry can reduce the design time of
next-generation products while continuing to enhance
delivered performance. ¢

Mark Bluhm and Ty Garibay are chief architects of
Cyrix’s x86 processors, including the M 1.

4 Viewpoint: Going Native!

Vol. 9, No. 12, September 11, 1995

© 1995 MicroDesign Resources

	Going Native!
	Native vs. RISC-like
	RISC-like Design Increases Complexity
	Figure 1. In a native x86 design, all operations …
	Figure 2. A native x86 processor design requires …
	Future Directions for x86 Implementations
	Table 1. A two-way superscalar RISC-like processor …
	VLIW Is Not the Answer
	Table 2. For future eight-way superscalar processors …
	Figure 3. Estimated performance …
	Native Approach Has Good Future

