
e
p

M I C R O P R O C E S S O R R E P O R T

by Jim Turley

Digital is giving its Alpha NT systems the ability to exe-
cute standard Win32 application programs written for x86
systems. The new technology, dubbed Digital FX!32, is still in
development but is expected to begin shipping with all Alpha
Windows NT systems in 2Q96, and it will be available free of
charge to all existing Alpha customers.

FX!32 uses a combination of run-time emulation and
background binary translation to decipher x86 binaries and
convert them to native Alpha code. Digital claims translated
applications can run as fast on a midrange Alpha chip as they
would on a high-end Pentium system. The company has not
yet achieved its performance targets, however, nor has it
demonstrated that FX!32 delivers software compatibility.

The strategy can be viewed either as proof of Alpha’s
performance superiority over x86 processors or as proof of
the hopelessness of bucking the x86 software tidal wave.
Either way, FX!32 is an interesting technical feat and a bold
strategic move on Digital’s part. The ability to run “shrink-
wrapped” software should help boost Digital’s NT system
sales by allowing its customers to run common PC produc-
tivity applications. With acceptable x86 performance, the
company could make its Alpha/NT platform more attractive
than alternative RISC-based NT systems to buyers concerned
about the availability of commercial software.

Emulation, Translation Intertwined
Digital discovered early on that it was impossible to perform
a straightforward single-pass translation of x86 object code.
Offering translated binaries for popular applications would
have been the easiest solution for its customers, but this tech-
nique presented serious legal and technical hurdles.

For example, it is impossible to examine an x86 appli-
cation and locate all the branch targets or even determine
which portions are code and which are data. The problem
lies with the x86’s variable-length instruction encoding and
its irregular use of extension words, prefixes, suffixes, and
segment-override bytes. The tendency of compilers to in-
tersperse static data among code strings also complicates
attempts at automated disassembly.

Without actually executing the program, automated
methods of extracting the code stream are prone to error.
Products such as FlashPort from Echo Logic or Hunter Sys-
tems’ Xdos sidestep this problem by relying on hand-tuned
translator “hint” files developed for individual applications.

Digital hoped to avoid any kind of user intervention or
manual tweaking and make FX!32 totally automatic. In the
end, the company relies on the applications themselves to
assist FX!32 in separating code from data.

Alpha Runs x86 Cod
Digital’s Emulation Strategy Could Hel
Alpha Runs x86 Code with FX!32 Vol. 10, No. 3, March 5, 1996
Applications Get Off to Slow Start
The FX!32 translator requires at least two passes through
each application to complete a partial translation. Rather
than try to pick out the executable portions of a program,
FX!32 begins by emulating x86 instructions at run time.

As Figure 1 shows, the FX!32 software consists of three
component parts: the runtime emulator, the background
translator, and the transparency server. The first time an x86
application is executed, the transparency server determines
that the file is an untranslated x86 program and hands it off
to the emulator.

The program runs the first time in emulation. No per-
manent x86-to-Alpha translation is performed during this
phase. Instead, x86 instructions are emulated one by one. All
operating system calls are handled natively. Because FX!32
works only with x86 applications written for the 32-bit
Win32 API, trapping NT system calls is a simple matter. This
approach is somewhat different from the method used by
Insignia Solutions’ SoftWindows or Apple’s 68K-to-PowerPC
emulator (see 080704.PDF), which look at certain sequences
of instructions.

The FX!32 emulator keeps track of which portions of
the application it has emulated. The results are kept in a log
file, which Digital calls the execution profile. This profile
enables the later translation stage.

The first time an x86 application is run on an Alpha
system, its performance will likely be disappointing because
it is completely emulated; no optimization is performed and

 with FX!32
 Boost Alpha/NT System Sales
Background
Translator

Transparency
Server

Runtime
Emulator

User
Output

Execution
Profile

x86
Binary Files

Alpha
Binary Files

Figure 1. Digital’s FX!32 emulation technology consists of a
runtime-emulation stage and a later background-translation stage.
The transparency server manages the executable images.
© 1996 MicroDesign Resources

performance may be only a small fraction of full native
speed. Compute-intensive applications are particularly vul-
nerable; conversely, software that relies heavily on NT system
calls may run reasonably well. Unfortunately, Digital is not
prepared to release any performance indicators until FX!32
testing is further along.

In effect, the first pass through an application is merely
a training run, intended only to help FX!32 determine which
portions of the application are executable and where the
branch targets are. It is not until the user exits the application
for the first time that the real translation begins.

Later Passes Speed Translated Performance
Using the execution profile generated during the first run,
FX!32 begins translating the application in earnest. This
translation is always performed as a background process
after the application has quit. Commercial x86 applications
frequently include several executable (EXE) and library (DLL

or LIB) files; each of these files is translated into a corre-
sponding Alpha object file. From the point of view of the
operating system, each translated file is stored as a dynamic
link library (DLL) file on disk.

Only code that was actually executed during the first
run will be translated. The exception to this rule is simple
branches. In its current version, when the background trans-
lator encounters a two-way branch, it translates both forks of
the branch even if one fork was never explored in the emula-
tion run. However, multiway switch constructs often remain
partially untranslated. Digital expects this artifact to be elim-
inated in the final release of FX!32.

After all previously executed portions of the software
are translated and stored as DLLs, the application is ready to
run again. This time, FX!32 examines the application’s exe-
cution log and, seeing that certain files that make up the
application have already been translated, it loads and runs
the translated DLLs in place of the original x86 object files
whenever possible. Assuming the second run of the applica-
tion exercises exactly the same features as the first run, the
application is now sufficiently translated into Alpha code to
run noticeably faster. In this instance, no run-time emula-
tion would be required; the application would run entirely
from translated Alpha DLLs.

If the application veers into previously unexplored
sections of code, the FX!32 server will again invoke the
2 Alpha Runs x86 Code with FX!32 Vol. 10, No. 3, March 5, 1996
emulator to work through untranslated portions at run time
while updating the application’s execution profile. After the
user exits the application, the background translation pro-
cess starts afresh.

Portions of the application that are never exercised—
such as little-used features the user never exploits—may
never be translated. Different users might generate different
binary translations of the same application because of their
different usage habits.

Generally, once an x86 file has been translated the first
time, it is never retranslated or updated. However, if the
application’s usage changes substantially—such as when a
new program feature is exercised for the first time—the
FX!32 server may determine that the application needs to be
optimized and retranslated. A frequent consequence of
retranslation is that multiway switch constructs are opti-
mized and translated more completely.

The decision to retranslate is based on the growth of
the application’s execution profile. If the profile grows
beyond a certain threshold after the file’s initial translation,
the server initiates a retranslation. Although this threshold is
set to a nominal value when FX!32 is delivered, users can
adjust the threshold to suit their tastes. Adjusting the thresh-
old up or down will decrease or increase, respectively, the
amount of optimization and retranslation FX!32 performs.

Only 32-Bit Windows Applications Work
All calls to the operating system are trapped and executed
natively, which provides the best possible performance. Like
emulated Macintosh code, the more time the application
spends in system calls, the faster it runs.

FX!32 works only with Win32 applications, that is, with
code written for the 32-bit programming model used by
Windows NT and Windows 95. FX!32 does not translate
legacy 16-bit programs written for Windows 3.x or DOS.

However, Windows NT itself includes emulation capa-
bility for many 16-bit applications. The current release of NT
3.51 for RISC processors ships with an equivalent to Soft-
Windows, allowing those systems to run 16-bit, standard-
mode x86 applications through emulation. Future releases of
NT will add support for enhanced-mode 16-bit code as well.

Between NT and FX!32, Alpha users will have access—
one way or another—to most Windows applications. Be-
cause SoftWindows is an emulator, however, the perfor-
mance of 16-bit software will not be up to Digital’s hopes for
FX!32’s native translation of 32-bit applications.

Digital does not consider this to be a major drawback,
and will continue to rely on Microsoft and Insignia to pro-
vide compatibility with 16-bit code. This is probably a sound
strategy for Digital’s market; we believe a number of factors
are pushing software developers to adopt the Win32 API,
steadily reducing the need to support 16-bit applications as
time goes on. Intel’s Pentium Pro, for instance, delivers noto-
riously poor performance on 16-bit code, and Microsoft
itself no longer releases Win16 applications.
M I C R O P R O C E S S O R R E P O R T

P r i c e a n d Av a i l a b i l i t y

The Digital FX!32 emulation/translation software will be
available free of charge when it is released around mid-
1996. Distribution media have not been determined. For
more information, contact Digital Semiconductor (Hud-
son, Mass.) at 800.322.2712 x32 or 508.628.4750 x32;
fax 508.626.0547.
© 1996 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

Modest Memory, Disk Overhead
Because translation is carried out on a file-by-file basis,
FX!32 is able to take advantage of shared code libraries. That
is, when multiple applications share a single library file, as is
often the case with Microsoft products, FX!32 will translate
the shared library once, and the translated version will then
be shared among all the appropriate applications.

Obviously, the translated DLLs require additional disk
space. The x86 instruction set yields very good code den-
sity—for all the same reasons that make it difficult to disas-
semble—while Alpha’s fixed-length 32-bit instruction words
result in fairly bulky binaries. Digital estimates the translated
binaries may be about twice the size of their x86 originals.
The exact ratio depends on a number of factors, including
the ratio of code to data (data does not get translated) and
the percentage of code actually exercised and converted.
Note that this is in addition to the original x86 files, which
are not deleted.

The memory requirements of FX!32 are relatively
modest. The transparency server, which determines which
applications have been translated and which haven’t, uses
only 140K of RAM. The run-time emulator requires about
2M of RAM, which is fairly small, considering the task at
hand. SoftWindows running on a Power Macintosh, for
example, requires several megabytes of RAM, although it
must emulate the entire PC/Windows environment as well.
When the background translator is running, it requires
approximately 1.5M of memory plus enough for both the
original and translated versions of the file being translated.
Considering the amount of RAM Digital ships with its Alpha
NT systems, FX!32 makes modest demands on the system.

Performance Still a Big Question Mark
Unfortunately, Digital has not released performance num-
bers for any translated applications. The company hired
National Software Testing Labs (NSTL) to conduct applica-
tion benchmark testing, but results are not available, casting
some suspicion on the current condition of the product.

Digital believes FX!32 might someday achieve 70% of
native Alpha performance on translated applications—a
laudable goal, but a difficult one to gauge, since native Alpha
versions do not exist for virtually any Windows applications
(the whole reason for FX!32’s existence). Digital cautions the
70% goal has not been achieved in the current implementa-
tion of FX!32 and offers no timeline for reaching that partic-
ular milestone.

Correlating Alpha performance to Pentium perfor-
mance involves a number of variables, but a specific example
can be helpful. Judging from SPEC95 results, a 21164-300
delivers 7.75 SPECint95 (base) versus 4.76 for a Pentium-
166, or 63% of the 21164’s performance. Thus, 70% of native
Alpha performance would be slightly faster than native
Pentium-166 performance. If FX!32 were to meet its perfor-
mance goal, then in this instance Alpha would execute Pen-
tium applications faster than today’s fastest Pentium.
3 Alpha Runs x86 Code with FX!32 Vol. 10, No. 3, March 5, 1996
Granted, the Alpha chip is running at nearly double the
clock rate of the Pentium and has a huge L2 cache. And these
numbers ignore the fact that the Alpha processor, much less
the entire system, costs twice as much as the Pentium. The
role of FX!32 is not to displace PCs but to make Digital’s
Alpha machines more attractive than competing RISC-based
NT systems.

It’s clear that Digital won’t lure away customers who are
interested primarily in PC applications—that is not the
company’s intent. Instead, FX!32 offers a booster to the com-
pany’s NT line by removing the emotional obstacle of PC
compatibility. It may now be feasible to satisfy, for example,
the engineer who requires access to native Alpha applications
as well as to a few productivity applications that are available
only for x86 processors.

So far, only Apple has pulled off a transparent binary
conversion from one architecture to another. In Apple’s case,
the wide disparity in performance between PowerPC and the
68K made it easier to mask the inefficiencies of a run-time
emulator. Pentium is a closer match for Alpha, at least in
integer performance, making it tougher to run in emulation
mode and still get acceptable speed. By allowing FX!32 to
take its time and work its binary translation in the back-
ground, Digital has given its product a potential perfor-
mance advantage over the Apple or Insignia approaches. The
cost is more disk space and a certain amount of delayed grat-
ification when running an application for the first time.

Adding FX!32 to its NT systems will not help Digital
penetrate the mainstream PC market, nor will it boost the
company’s Unix system sales. FX!32 will appeal only to the
portion of the market that is considering Windows NT.
In that segment, Digital competes with systems based on
PowerPC, Pentium, and Pentium Pro processors, with MIPS
support fading fast. By offering better floating-point perfor-
mance than the x86 systems and better x86 compatibility
than the other RISC systems, Digital noses ahead on the fea-
tures checklist. FX!32 won’t make buyers choose NT over
Unix, but it may help them choose Alpha over PowerPC.

Digital’s biggest competition is coming from Pentium
Pro systems. Their integer performance is as good as Alpha’s,
the selection of vendors is greater, prices are much lower, and
x86 compatibility is a given. Finally, Pentium Pro’s much-
maligned 16-bit performance is not an issue here because
FX!32 doesn’t translate 16-bit applications.

FX!32 is an interesting technical exercise, but so far, a
completely unquantified one. In its current state, FX!32 does
not meet its goal of running at 70% of native Alpha speed.
For some applications, such as e-mail and word processing,
reaching top speed may not be a big issue. It is important
that Digital demonstrate that FX!32 can work transparently
with any Win32 application without side effects, bugs, or
special hand waving. If the company can clear that hurdle,
FX!32 will have reached its most important goal: allowing
users to simply install and run shrink-wrapped PC applica-
tions on their Alpha systems. M
© 1996 MicroDesign Resources

	Alpha Runs x86 Code with FX!32
	Emulation, Translation Intertwined
	Applications Get Off to Slow Start
	Figure 1. Digital’s FX!32 emulation technology
	Later Passes Speed Translated Performance
	Only 32-Bit Windows Applications Work
	Modest Memory, Disk Overhead
	Performance Still a Big Question Mark

	P r i c e a n d Av a i l a b i l i t y

