
an
M I C R O P R O C E S S O R R E P O R T

by Mark Lentczner, Glyphic Technology

After several years of research and shifting directions, a
small group at Sun Microsystems brings us the Java lan-
guage and Java virtual machine. While virtual-machine
implementations of languages are nothing new, this is the
first time one has been at the core of a system receiving so
much attention —even before version 1.0 was released.

The Java story gets confusing because there are really
several different parts that make up the Java scene, as Figure 1
shows. At the core, there is the Java language, which is in the
C family of languages. It has object semantics similar to those
of C++ but adds an object memory that is heap allocated and
garbage collected. It is most notable for its support of dynamic
linking, run-time code loading, and safe code execution.

The Java language could be compiled to any machine
architecture. However, the other core piece of the Java uni-
verse is the virtual machine (VM). The Java VM implements
an abstract processor architecture. This virtual machine can
then be implemented in software on a variety of operating
systems and hardware. A Java program compiled to the Java
VM instruction set can be loaded and run on any conform-
ing implementation of the Java VM. This technique allows
compiled Java programs to run on different platforms with-
out recompiling, so long as each platform has a virtual-
machine implementation.

On top of this core—the language and virtual machine—
are the more famous pieces: HotJava, JavaScript, Java pro-
grams (sometimes called applets), and the libraries that sup-

Java’s Virtual World
Java Components Include High-Level L
Java’s Virtual World Vol. 10, No. 4, March 25, 1996
port them. The Java class libraries provide Java programs
with standard objects and messages for manipulating com-
mon data structures, operating-system entities (such as files
and network streams), and user-interface components.

HotJava is a World Wide Web browser written in the
Java language, making use of the Java libraries. By relying on
the architectural neutrality of both the Java VM and the Java
libraries, it can download and execute Java applets graphi-
cally embedded in a Web page. The Netscape browser, which
is not written in Java but includes a Java VM implementa-
tion, will do the same thing.

JavaScript is entirely another beast. A language that
Netscape was working on, it was later renamed as part of the
Java family. It bears only superficial similarities to Java and is
different in many significant ways: object model, libraries,
and implementation. In fact, it makes no use of the Java VM
or Java language at all!

Java Language Links Modules at Run Time
The Java language is yet another object-oriented extension to
C. Java shares most of C’s heavy emphasis on scalar data
manipulation (integers, floats and characters), structured
programming constructs, and type checking. Beyond C and
C++, Java requires object-oriented techniques for all pro-
gramming (see sidebar), has stricter type rules, and does
away with many extraneous language features.

The biggest difference is that Java programs go through
a different life cycle than programs written in more tradi-
tional languages. Individual program units, consisting of one
or more classes, are compiled independently to the Java VM
instruction set in a format called bytecode in Java jargon. At
this stage, these modules (called .class files) can be exchanged
around the network.

When users want to run a Java program, they load the
module into an implementation of the Java VM (for exam-
ple, running as part of Netscape Navigator). The Java VM
may then load additional .class files as needed (assuming the
user has them, or they can be obtained across the Internet)
and runs the program. Only at this point are references be-
tween different modules resolved, a step performed in other
programming environments by a linker long before the user
gets the program. Because this link step happens at run time,
and the particular versions of modules are not determined
until run time, systems like Java’s are said to have dynamic
linking. In Java, this step is known as resolution.

Virtual Machine Memory Is Object Oriented
To understand how the Java VM operates, one has to under-
stand how it views memory. Because the Java VM specifica-

guage and Virtual Machine
Java
Language

Virtual
Machine

Applications

Applets

Libraries

User
Interface

OS
Services

Network

HotJava Netscape Navigator
Java Plug-in

Data
Structures

File
System

Figure 1. Java applets can be executed using HotJava or other
Web browsers. These browsers and other Java software execute
using the virtual machine (VM), with some library calls executed
using the operating system.
© 1996 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

tion is of an abstract machine, it gives few details on the lay-
outs of memory data structures or the particulars of allocating
and using physical memory. These details, and trade-offs of
various techniques, are left to the implementer of a Java VM.
The specification describes at a high level how instructions
operate on three distinct regions of memory: objects, stacks,
and class-constant pools.

While little is said about memory for objects in the Java
specification, the operational description implies certain
implementations. All program-defined and -allocated mem-
ory structures are stored in objects. These objects can con-
tain scalar data and references to other objects.

Programs specify what data fields each of their objects
must have. The actual memory layout of an object, however,
is determined at run time according to the policies of the VM
implementation that is running it. The layout of an object
must be determined at this time because it can depend on
information from other modules that are not loaded until
run time. This is a consequence of dynamic loading.

There are several operations that various VM instruc-
tions must be able to perform on objects: get and set fields,
perform message lookup (finding the particular method for
a given message), and test for object class membership. As
long as these operations are defined, an implementation of
the VM is free to use any technique for storing objects.

While objects are explicitly created by the NEW instruc-
tions, there are no explicit freeing operations: object mem-
ory is garbage collected, freeing unused objects automati-
cally. Garbage collection trades increased system overhead
for ease of programming and the elimination of some pro-
gramming errors (no dangling pointers).

This trade-off, and techniques for its implementation,
are thoroughly discussed in computer-science literature and
can be argued in many different ways. But one thing is clear:
good garbage collection is a complex task. It will consume
significant processing resources in any VM and will require a
large coding effort. In hardware versions of the Java VM,
garbage collection will probably be implemented in software
with some assistance from the silicon.

Stack Contains a Frame for Each Method
The Java VM’s stack holds a last-in-first-out (LIFO) sequence
of frames. Just as in a conventional processor, each stack
frame holds information needed for the execution of a mes-
sage (or function). The Java VM specification says even less
about the stack and frames than about objects; it doesn’t
even specify what is stored in them. A careful reading of the
specification, however, shows what information is needed for
each frame.

Stored directly in the frame are:
• Message arguments
• The receiver of the message

(the this variable, stored as argument 0)
• Local variables
• The value stack
2 Java’s Virtual World Vol. 10, No. 4, March 25, 1996
The frame also contains pointers to:
• The frame of the caller (with a saved PC)
• The class-constant pool
• Method information: bytecode instructions, exception

handling, and debugging information
The layout shown in Figure 2 is but one way to store

this information in memory. When a program sends a mes-
sage to invoke a method, a new frame is created on the top of
the stack. The arguments of the message are placed in the
frame, and the local variables of this new frame are set to
zero. A reference back to the calling frame is stored, so when
the called method completes, the calling method can be
resumed. Additional information that the virtual machine
will need is also stored in the frame, including references to
the method’s code and its class-constant pool.

The Java VM is a stack-based machine: arguments
are popped from the top of the value stack, and results are
pushed back onto it. This value stack while specified as a sep-
arate stack, can be at the end of the frame stack. Java assumes
that all stacks can grow without bound as needed.

The frame stack supports a single thread of execution.
A multithreaded implementation could contain multiple
stacks. Little is said about threads in the Java VM specifica-
tion. Threads are mostly supported by the run-time libraries
and routines. Support from the virtual machine is limited to
instructions for manipulating synchronization monitors
that mark uninterruptible portions of code.

Class-Constant Pool Contains Code, Static Data
The class-constant pool is the equivalent of the code segment
in other architectures. This area stores all information about
a compiled class needed by the virtual machine: bytecodes,
constant data, class descriptions, method descriptions, and
O b j e c t - O r i e n t e d P r o g r a m m i n g

In an object-oriented program, each data type and
the functions that operate on it are grouped together into
units called classes. When the program allocates a section
of memory to use for one of these data types, the data is
called an object. An object always remembers its class
(data type). When the program needs to call one of the
functions associated with a class, it does so by sending a
message to an object. This message invokes the actual
code for the function, known as a method, to execute.

An advantage of programming with objects is that
two or more classes can define their own versions of the
same function. For example, a binary-tree class and a
linked-list class could both define their own insert func-
tions. Then, when the program sends the insert message
to an object, the appropriate insert function will be exe-
cuted by checking the class of the object receiving the
message at run time.
© 1996 MicroDesign Resources

static-value descriptions. The specification defines the pre-
cise layout and byte ordering of this information for file stor-
age. This definition ensures that compiled Java code can be
moved from one system to another without recompilation.
Once loaded into memory, however, this information can be
stored in any format needed by a particular VM.

The class-constant pool is organized as a densely packed
array of variable-length items. Because many instructions ref-
erence this array, however, any efficient implementation of
the VM will need to use another format when storing it in
memory. This need for an efficient memory format increases
the memory requirements of a Java program, and the format
translation adds to the load time.

Whether stored in the stack or in objects, Java data is
strongly typed. Data is either one of the scalar types (integer,
float or character) or it is a reference to an object. Although
an object reference is like a pointer, it is not the same. Object
references can be implemented in a number of ways—direct
pointers, indirect table indices, etc.—and they do not allow
arithmetic, unlike pointers in C.

Many virtual machines use tags to type data, but the
Java VM does not, instead relying on the compiler to ensure
type consistency. If the compiler emits an instruction to push
an integer onto the operand stack, the compiler must not
generate any instruction treating that stack location as a ref-
erence to an object. Given the design of the Java language,
this restriction is easy to enforce.

Virtual Machine Provides Portability, Safety
There is nothing new to the virtual-machine, or interpreted,
approach to language implementation. Among the more well
known systems that use a virtual machine are the UCSD
Pascal P-Code system, the Smalltalk-80 system, various
Scheme implementations, PostScript, and Microsoft’s P-Code
3 Java’s Virtual World Vol. 10, No. 4, March 25, 1996
engine for C and C++. With Java, Sun has followed in these
footsteps for a number of reasons:

Dynamic Linking—This feature enables different parts
of a program to be combined at run time without an explicit
link step. Dynamic linking offers the portability needed for
compiled Java code to be downloaded from the World Wide
Web and executed by a Web browser running on a variety of
platforms.

The size of the entities that can be dynamically linked
determines the flexibility of the system: larger link units
mean less flexibility. Java’s unit of linking is the .class file,
which contains one class and its methods. This choice puts
Java at the flexible end of the scale. Other software systems
are often too restrictive, requiring larger units for dynamic
linking. (Most Unix systems, for example, require whole
programs to be linked with certain libraries at run time.)
Although an even more flexible design would have been bet-
ter for interactive software development, Java’s design works
well for end users running applets.

Portability—The Java literature touts portability. To
get Java applications to run on a new platform, says Sun, only
the Java VM must be ported. Porting the VM, using Sun’s ref-
erence implementation, involves writing only about 5,000
lines of code. One must also port the native portions of the
standard Java libraries to a given platform, however, and that
adds another 15,000 lines of code. Still, once this porting
effort is done, any compiled Java program or method can be
loaded and run.

This porting effort pales in comparison to the task
of individually recompiling each program and library, as
required by traditional programming languages. Other vir-
tual machines that have portability as a goal, however,
require a fourth or less porting effort than Java, based on the
amount of newly written code required.
M I C R O P R O C E S S O R R E P O R T

Object Memory Stack Class Constant Pools

Calling Frame

Class Pool

Method

Arguments

Local Variables

Value Stack

Class A

Class B Method X

Method Y

Figure 2. The Java VM uses three areas of memory. The stack holds a set of frames, which contain arguments and pointers. Program vari-
ables are stored in object memory, while constants and other static information are in the class-constant pool.
© 1996 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

Another aspect of portability is the ease with which
programs written in Java can run on different machines. This
is an area where Java shines: due to dynamic linking, the
well-defined VM specification, and the consistent libraries,
programs written in Java can be executed on other platforms
without even so much as a recompile.

Safe Execution—To ensure the safe execution of pro-
grams, the Java VM, like many virtual machines, does exten-
sive error checking. For example, it is impossible to access the
fifth element of a four-element array—if this is attempted,
rather than fetch bad data, the virtual machine will detect the
error and force an exception to system software. In an envi-
ronment where bits of code are being downloaded from the
Internet for execution, programs must be kept from crashing
as much as possible.

The Java VM design has many built-in safeguards. For
example, integers cannot be treated as pointers into mem-
ory; 16-bit values cannot be stored accidentally in the middle
of 64-bit floating point variables, and functions cannot jump
to random memory locations and execute data as code.
Many of these safeguards reduce run-time performance. To
reduce the run-time burden, the Java VM relies heavily on
the Java compiler to generate code guaranteeing that many of
these constraints are followed.

Realizing that Java bytecode could be generated in
other ways, Sun added a module called the verifier. It checks
the instructions in .class files when they are loaded into the
Java VM to ensure they don’t violate any constraints. This
task is not simple: it is akin to proving a program correct
without running it. The Java literature indicates that the ver-
ifier is very picky and errs in favor of code sequences it knows
are correct. Although this method will work if the verifier
knows all the tricks of the current compiler, how it will han-
dle future compilers is unclear.

Another aspect of safe execution comes from the inher-
ent safety of a system without pointer operations and with
garbage collection. These two features eliminate many bugs
before they even happen. It is impossible to reference an area
of memory that isn’t a valid, allocated object. It is equally
impossible to reference objects that were prematurely freed
from memory.

Code Size—Some virtual machines reduce code size,
an important metric for some applications. Indeed, the pri-
mary purpose of Microsoft’s P-Code system is to reduce pro-
gram code size by an average of 40%.

In contrast, Java .class files can be up to 25% larger than
the equivalent C++ code compiled for the x86 architecture.
The figure gets worse when you realize that, due to the highly
compact nature of the .class file, any fast implementation of
the Java VM must use more main memory to represent its
contents (perhaps as much as 50% more), while the x86
compiled code will only get smaller after linking.

In general, most of the extra size can be accounted for
by the structures and information needed for dynamic link-
ing (although other software systems achieve this feature
4 Java’s Virtual World Vol. 10, No. 4, March 25, 1996
with a somewhat lower memory cost). Many users would
consider this trade-off reasonable. Sun representatives, how-
ever, have claimed a Java processor would be good for small
embedded devices because of the greater density of Java
code. If one were to look at just the instructions, this claim
could be true, but adding the class-constant pool overhead
(which is required) yields memory footprint figures that
don’t support the claim.

Not a General-Purpose Machine
Most of the design decisions in the Java VM are clearly moti-
vated by the Java language design. This is common to many
virtual machines, which gain power by being operationally
similar to the languages they are implementing.

A notable feature of the Java VM is its hybrid approach
to data: it has instructions for scalar operations and instruc-
tions for object-oriented programming. Most other virtual
machines are either all scalar or all object oriented. Java’s
design leads to relatively good math performance at the
expense of leaving math out of the object model: although
many object-oriented languages can define new functions
for integers, Java cannot. This dualism in the Java VM is
clearly reflected in the Java language, and this is one instance
where implementation considerations have restricted the
language design.

This close coupling with the Java language prevents the
Java VM from being a general-purpose machine. There are
many constructs of other languages that cannot be imple-
mented on the Java VM, such as C’s function pointers,
Smalltalk’s blocks, Scheme’s closures, Pascal’s local func-
tions, and PostScript’s variable arguments. Other languages
have different kinds of classes and objects and also have dif-
ferent variable-scoping rules. Thus, it would be difficult to
support other languages on the Java VM. Implementing the
Java VM in silicon would have a better chance of market suc-
cess if the VM were more general purpose.

Execution Performance Is Sacrificed
The other big influence on the design of the Java VM is
achieving acceptable performance. The standard VM is a
very straightforward implementation of the virtual machine.
The interpreter sits in a loop, fetching instructions, decoding
them, and executing them. The Java instruction set is large
(see 100403.PDF) and does not rely on tagged data to make
a software implementation more efficient, requiring perfor-
mance-sapping extract and compare operations on a stan-
dard microprocessor.

As a result, Java programs executing on the standard
VM achieve only a small fraction of native performance, typ-
ically 3–10% of the speed of optimized C code compiled for
the target processor. Well-known techniques, such as in-line
caches and dynamic compilation, have been demonstrated
to improve performance to 10–20% of optimized C code
for languages with more features than Java offers. Sun is
developing a “just in time” (JIT) compiler that recompiles
© 1996 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

Java bytecode to the target processor at run time, significantly
improving performance but adding memory overhead. Other
companies are working on similar techniques, but like Sun’s
JIT compiler, none has yet been demonstrated.

Newer techniques, such as adaptive optimization and
recompilation, have been developed by one of Sun’s own
research groups. This team has implemented the object-
oriented language Self using a virtual machine with only seven
instructions. This implementation runs programs at 60% of
the speed of optimized C code, yet the Self language is fully
object oriented and highly dynamic, and it contains many
advanced features. Although these techniques might eventu-
ally help improve Java VM implementations, they imply that
Java may not have needed to give up language features for
speed, and that the large instruction set of the Java VM may be
a premature optimization that makes it hard for a smarter
implementer to achieve strong performance.

Java Great for Web Applications
The Java language and VM are an excellent application of
dynamic, object-oriented ideas and techniques to a C-based
language. The Java design sacrifices execution performance,
code size, some high-level language features, and support
for multiple languages. In return, it gains portability, safe
execution, and dynamic linking. These trade-offs are appro-
priate for environments, such as the Web, that are highly
5 Java’s Virtual World Vol. 10, No. 4, March 25, 1996
dynamic. In these environments, code fragments must be
combined at run time, and most execution is involved with
the user interface, which can afford the drop in performance
on today’s fast desktop processors. Applets that run in Web
pages downloaded from the network are a perfect applica-
tion for Java.

Sun, however, is attempting to position Java to be all
things to all people. Unfortunately, Java has missed being
really good at some of its own goals: Java code isn’t particu-
larly small, and even when implemented in hardware, the Java
VM will not be very useful for tasks outside the realm of the
Java language. One would be hard pressed to create a feasible
implementation of a cellular phone in Java, for example. Given
all the uses now claimed for Java and the marketing power
behind it, we wish Sun had included support for richer lan-
guages and environments and more powerful implementa-
tions from the start.

Virtual machines have been used by language designers
and implementers for years with relatively little fanfare.
Although the Java VM doesn’t offer any new techniques, the
sudden emergence of the World Wide Web gives Java a grow-
ing target market for which it is well suited. Sun must improve
its Java technology before it is ready for other markets.

Mark Lentczner is president of Glyphic Technology, a soft-
ware consulting firm specializing in programming language
design and implementation.

M

© 1996 MicroDesign Resources

	Java’s Virtual World
	Java Language Links Modules at Run Time
	Figure 1. Java applets can be executed using HotJava...
	Virtual Machine Memory Is Object Oriented
	Stack Contains a Frame for Each Method
	Class-Constant Pool Contains Code, Static Data
	Figure 2. The Java VM uses three areas of memory...
	Virtual Machine Provides Portability, Safety
	Dynamic Linking
	Portability
	Safe Execution
	Code Size

	Not a General-Purpose Machine
	Execution Performance Is Sacrificed
	Java Great for Web Applications

	O b j e c t -O r i e n t e d P rogramming

