
v
Bu
M I C R O P R O C E S S O R R E P O R T

by Brian Case

One of the unusual features of Java is that programs are
compiled into binary code not for a particular microproces-
sor but for a “virtual” processor called the Java virtual
machine (VM). The Java VM instruction set is currently
implemented only by software emulators, but Sun Micro-
electronics has announced plans to implement a family of
microprocessors that will execute VM instructions in hard-
ware (see 1002MSB.PDF). The complex instructions and
stack architecture of the Java VM will make it challenging to
implement efficiently in hardware, but there may be a vast
market for such devices.

Java VM Based on Stack Architecture
The Java VM is a 32-bit stack (or zero-address) architecture.
In a stack architecture, operands are fetched from memory
and pushed onto the last-in-first-out (LIFO) expression-eval-
uation stack, which Java calls the value stack (VS). Instruc-
tions pop their operands from the stack and push their results
onto the stack. Final results are popped from the stack and
stored to memory.

The value stack is analogous to the register file of a
RISC architecture: operations can reference only operands
on the stack. In fact, Java microprocessors will probably use a
register file to implement the value stack (although VM
instructions cannot access the stack like a register file).

According to its specification, the Java VM has four
processor registers: PC (program counter), VARS (points to
the base of the current set of local variables), OPTOP (current
top of the evaluation stack), and FRAME (points to the base of
the current execution environment in memory).

Java is an object-oriented language, which, in the ex-
treme, requires that the type of all objects (operands) be
determined at run time. To improve performance for the
common case of scalar operands, the Java VM directly sup-
ports the basic scalar types shown in Table 1. The VM has
instructions to directly load, store, and operate on these
built-in types. There are no unsigned integer types and no
pointers. An object reference is the Java equivalent of a
C-language pointer, but arithmetic on references is prohib-
ited by the language.

The 64-bit long and double data types require two 32-
bit words in memory and on the value stack. The order of the
storage—least-significant or most-significant word first—is
a choice made by the VM implementer. It is important only
that each VM be internally consistent. Instruction operands,
on the other hand, are always stored most-significant-byte
first. (Note that the file format for Java VM programs is

Implementing the Ja
Java’s Complex Instruction Set Can Be
Implementing the Java Virtual Machine Vol. 10, No. 4, March 25, 1996
strictly defined to guarantee transportability to all machines,
regardless of a particular machine’s byte ordering.)

Variable-Length Instructions
The Java VM architecture currently defines 203 instructions,
as Table 2 shows. Many are similar to those of a traditional
microprocessor, while others are specifically for Java sup-
port. Java VM instructions, or bytecodes, consist of a one-
byte opcode followed by zero or more operand bytes. Most
instructions are either one, two, or three bytes long.

The most common instruction operand is a one- or
two-byte index into the class-constant pool. The constant
pool is the data structure of a Java VM binary program and
is essentially a symbol table. Even the bytecodes for a pro-
gram are stored in the constant pool.

To transfer a variable to or from the stack, an index into
the constant pool is formed from an instruction’s operand
byte(s). The corresponding entry in the constant pool con-
tains enough information to identify the name, type, and
location of the variable. The Java VM uses the information
from the constant pool to “resolve” the reference. Once
resolved to an address, the actual value can be accessed.
Method invocations (procedure calls) and field references
(object-oriented variable references) also require resolution.

Run-time resolution is the key to part of Java’s appeal:
it provides dynamic linking to support independent, incre-
mental compilation of Java classes (see 100402.PDF).

Simple Instructions Operate on Stack
The Java stack architecture shares a trait with RISC architec-
tures: memory is referenced only by loads and stores. The
IINC instruction, which adds an 8-bit signed immediate
directly to a local variable without using the stack, is the
VM’s only memory-to-memory instruction. Presumably, the
VM designers included this instruction because increment-
ing a local variable occurs frequently in real programs.

a Virtual Machine
ilt in Software or Hardware
byte
short
int
long
float
double
char
object
returnAddress

Signed 2s-complement integer
Signed 2s-complement integer
Signed 2s-complement integer
Signed 2s-complement integer
IEEE 754 single-precision floating-point
IEEE 754 double-precision floating-point
Unsigned Unicode character
Reference to Java object or array
Used with jsr, ret, jsr_w, ret_w

Length
(bytes) DescriptionData Type

1
2
4
8
4
8
2
4
4

Table 1. Java data types. All arrays are managed as objects. Aside
from object references and return addresses, there are no pointers.
© 1996 MicroDesign Resources

The constant instructions push a constant value onto
the value stack. The constant-pool pushes (LDC1, LDC2, and
LDC2W) resolve a constant-pool item and push the resolved
value onto the stack. Strictly speaking, the other constant
instructions are redundant with the constant-pool pushes,
but since no resolution is required, they are much faster. Two
instructions (BIPUSH and SIPUSH) push immediate integer
constants, and several one-byte instructions implement the
common cases with both space and time savings.

Local variables are allocated as part of the activation
record (run-time stack frame) for a called function. Because
the number and types of these variables are known to the
Java compiler, they can be allocated directly on the stack and
2 Implementing the Java Virtual Machine Vol. 10, No. 4, March 25, 19
require no complicated resolution process to determine their
location in memory. (Variables that are not fully disclosed at
compile time are called fields and do require full resolution
before they can be accessed.)

The instructions for loading and storing local variables
form the largest single group of VM instructions. For each
static scalar type (int, long, float, double, and object), there are
10 instructions:

• A two-byte load with eight-bit local-variable index
• A two-byte store with eight-bit local-variable index
• Four one-byte loads for local-variable indexes 0–3
• Four one-byte stores for local-variable indexes 0–3

The WIDE instruction is a prefix—in the grand tradition of
Allocate array
Allocate array of objects
Allocate multidim. array
Get length of array
Load/store value of
 type x to/from array

Return integer
Return long integer
Return FP
Return DP
Return object reference
Return (void)
Invoke breakpoint handler

Indexed jump table
Key-match jump table

Type s to long type d

Integer to signed byte
Integer to character
Integer to short

Enter locked code
Exit locked code

Set field in object
Fetch field from object
Set static field in class
Fetch static field

Invoke method (run-time)
Invoke method (compile)
Invoke class method
Invoke interface method

Create object
Check object type
Compare object type

Push Constant
BIPUSH

SIPUSH

LDC1

LDC2

LDC2W

ACONST_NULL

ICONST_M1

ICONST_n

LCONST_0

LCONST_1

FCONST_n

DCONST_0

DCONST_1

Load/Store Local Variables
xLOAD

xLOAD_n

xSTORE

xSTORE_n

x ∈ (I,L,F,D,A) n ∈ (0,1,2,3)

IINC

WIDE

Stack Management
NOP

POP

POP2

DUP

DUP2

DUP_X1

DUP2_X1

DUP_X2

DUP2_X2

SWAP

Arithmetic
xADD

xSUB

xMUL

xDIV

xREM

xNEG

x ∈ (I,L,F,D)

1-byte signed integer
2-byte signed integer
Const.-pool (8-bit index)
Const.-pool (16-bit)
Const.-pool long or DP
NULL object reference
Integer constant –1
Integer const. (n ∈ 0..5)
Long int. constant 0
Long int. constant 1
FP constant (n ∈ 0..2)
DP constant 0
DP constant 1

Load local var. of type x
Load local var. n
Store local var. of type x
Store local var. n

Add signed 8-bit immed.
 to local variable
Expand local variable
 index to 16 bits

No operation
Discard top word
Discard 2 top words
Copy top word
Copy 2 top words
Copy top, insert 2 down
Copy 2 top, insert 2 dn.
Copy top, insert 3 down
Copy 2 top, insert 3 dn.
Swap 2 top words

Add of type x
Subtract of type x
Multiply of type x
Divide of type x
Remainder of type x
Negate of type x

2
3
2
3
3
1
1
1
1
1
1
1
1

2
1
2
1

3

2

1
1
1
1
1
1
1
1
1
1

1
1
1
1
1
1

Array Management
NEW_ARRAY

ANEW_ARRAY

MULTI_ANEW_ARRAY

ARRAY_LENGTH

xALOAD

xASTORE

x ∈ (I,L,F,D,A,B,C,S)

Function Return
IRETURN

LRETURN

FRETURN

DRETURN

ARETURN

RETURN

BREAKPOINT

Switch-Table Branches
TABLE_SWITCH

LOOKUP_SWITCH

Conversion Operations
s2d

s, d ∈ (I,L,F,D) but s ≠ d
INT2BYTE

INT2CHAR

INT2SHORT

Monitors (Critical Sections)
MONITOR _ENTER

MONITOR_EXIT

Object Field Manipulation
PUTFIELD

GETFIELD

PUTSTATIC

GETSTATIC

Method Invocation
INVOKE_VIRTUAL

INVOKE_NONVIRTUAL

INVOKE_STATIC

INVOKE_INTERFACE

Miscellaneous Object Handling
NEW

CHECK_CAST

INSTANCE_OF

2
3
4
1
1
1

1
1
1
1
1
1
1

>16
>16

1

1
1
1

1
1

3
3
3
3

3
3
3
5

3
3
3

Shift and Logical
ISHL

ISHR

IUSHR

LSHL

LSHR

LUSHR

IAND

LAND

IOR

LOR

IXOR

LXOR

Branch and Compare
IFEQ

IFNULL

IFLT

IFLE

IFNE

IF_NONNULL

IFGT

IFGE

IF_ICMPEQ

IF_ICMPNE

IF_ICMPLT

IF_ICMPGT

IF_ICMPLE

IF_ICMPGE

LCMP

FCMPL

FCMPG

DCMPL

DCMPG

IF_ACMPEQ

IF_ACMPNE

GOTO

GOTO_W

JSR

JSR_W

RET

RET_W

Exception Handling
ATHROW

1
1
1
1
1
1
1
1
1
1
1
1

3
3
3
3
3
3
3
3
3
3
3
3
3
3
1
1
1
1
1
3
3
3
5
3
5
2
3

1

Integer left shift
Integer arith. right shift
Integer logical right shift
Long left shift
Long arith. right shift
Long logical right shift
Integer AND
Long integer AND
Integer OR
Long integer OR
Integer XOR
Long integer XOR

Branch if VS[0] == 0
Branch if VS[0] == NULL
Branch if VS[0] < 0
Branch if VS[0] <= 0
Branch if VS[0] != 0
Branch if VS[0] != NULL
Branch if VS[0] > 0
Branch if VS[0] >= 0
Branch if VS[1] == VS[0]
Branch if VS[1] != VS[0]
Branch if VS[1] < VS[0]
Branch if VS[1] > VS[0]
Branch if VS[1] <= VS[0]
Branch if VS[1] >= VS[0]
Long integer compare
FP compare (–1 on NAN)
FP compare (1 on NAN)
DP compare (–1 on NAN)
DP compare (1 on NAN)
Branch object refs. ==
Branch object refs. !=
Branch (16-bit offset)
Branch (32-bit offset)
Branch subroutine (16-bit)
Branch subroutine (32-bit)
Indirect branch (8-bit)
Indirect branch (16-bit)

Force exception or error

Table 2. The Java virtual machine has a large instruction set. The table lists the mnemonic, the instruction length (in bytes), and a brief
description of each instruction. Groups of mnemonics that differ only in the type character(s) are listed as a single mnemonic, with the set
of valid type characters given below the grouped mnemonics (e.g., xLOAD stands for ILOAD, LLOAD, FLOAD, DLOAD, and ALOAD). VS[0] is the
top entry in the value stack; VS[1] is the first entry below the top of the value stack.

M I C R O P R O C E S S O R R E P O R T
96 © 1996 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

the x86—that expands the local-variable index to 16 bits for
the general loads and stores.

The array-management instructions are used for allo-
cating arrays and for loading and storing array elements.
Note that Java has instructions to allocate new arrays but
none to deallocate them. In Java, dynamically allocated space
is reclaimed by automatic garbage collection in the VM. The
garbage collector determines when allocated space is no
longer needed without explicit prompting from the program.

The arithmetic, shift, logical, and convert instructions
are classic stack-architecture operations: one-byte opcodes
that fetch operands from the top of the stack and push
results back onto the stack. The long and double operations
store the two 32-bit halves of the result in consecutive stack
locations; the order is implementation dependent. For non-
commutative operations (subtract, divide, remainder, shifts),
the left operand is the deeper of the two on the stack.

Efficient Conditional-Branch Architecture
The Java VM has a fairly conventional conditional-branch
architecture that implements compare-and-branch con-
structs efficiently in time and space. Most of the compare-
and-branch instructions assume the value at the top of the
value stack is an integer; IF_NULL and IF_NONNULL assume
the top value is an object reference. The value is popped from
the stack, tested against zero (or NULL) for the appropriate
relationship, and a branch is taken if the relationship is satis-
fied. Each instruction provides a signed 16-bit offset.

The IF_ICMP instructions assume the two top stack ele-
ments are integers. These elements are popped and com-
pared, and a branch is taken if the specified relationship is
satisfied. The branch offset is a signed 16-bit value. The
IF_ACMP instructions are the same except they assume the
two top stack elements are references to objects.

Explicit compare instructions are provided for the other
basic scalar types (long, float, and double). These instructions
pop the two top values (four stack words for LCMP and DCMP),
compare them, and push an integer result. The result of each
comparison is either 1, 0, or –1. For LCMP, 1 is pushed if the
deeper value is greater than the top value, 0 is pushed if they
are equal, and –1 is pushed if the deeper value is less than the
top value. The same result determination holds for the two
FCMP and two DCMP instructions, but these also test for NaN
(not a number) operands. The FCMPL and DCMPL instructions
produce –1 when an operand is a NaN; FCMPG and DCMPG

produce 1 when an operand is a NaN.
The GOTO and GOTO_W instructions are unconditional

branches. The JSR and JSR_W instructions branch to a local
subroutine without doing a method lookup; they push their
return address on the value stack. The _W forms of these
instructions specify a 32-bit instead of a 16-bit offset. The
RET and RET_W instructions are simple indirect branches
that get their branch value from a local variable.

Note that JSR stores its return address on the stack, but
RET gets its return address from a local variable; according to
3 Implementing the Java Virtual Machine Vol. 10, No. 4, March 25, 19
the Java VM documentation, this asymmetry is intentional
to ease support for Java’s exception handling. The GOTO, JSR,
and RET instructions are not used to implement method or
procedure calls.

Switch-Table Branches Add Complexity
The switch instructions, TABLE_SWITCH and LOOKUP_SWITCH,
can be very long, both in execution time and code size. The
TABLE_SWITCH instruction specifies a jump table of 32-bit
code addresses that can be directly indexed. The top value on
the stack (which must be an integer) is popped, compared
against the bounds of the table and, if in range, used to select
one entry (just like an array reference). The VM then jumps
to the address in that entry.

The LOOKUP_SWITCH instruction specifies a sequence
of key-value pairs. The top of stack is compared against the
key in successive key-value pairs until a match is found or all
pairs have been searched. If a match is found, the VM jumps
to the address in the value associated with the matching key.
If no match is found, the VM jumps to the default address
(specified at the beginning of the key-value list).

The compiler makes sure jump tables and key-value
lists are aligned on 32-bit boundaries by inserting up to three
pad bytes immediately after the opcode.

Stack Management Reduces Loads and Stores
The stack-management instructions can rearrange and
duplicate operands on the value stack to, for example, reduce
unnecessary loads when a value on the stack is used twice.
With a standard register file, storing a value from a register to
memory does not delete that value from the register file; it
can be used again if needed. With a stack, storing a value to
memory pops the value from the stack. If the value is needed
again, it can be duplicated with the DUP instruction before
storing it to memory.

Figure 1 shows an example. In this code fragment, the
value in k is stored to memory by the first statement but then
used immediately by the second statement. Without the DUP

instruction, the stack code would contain a store followed by
a load to reclaim the value for use in the second statement.
 .
 .
 .
k = i + j;
x = k + x;
 .
 .
 .

Code
Fragment

 .
 .
 .
iload_0
iload_1
add
istore_2
iload_2
iload_3
add
istore_3
 .
 .
 .

 .
 .
 .
iload_0
iload_1
add
dup
istore_2
iload_3
add
istore_3
 .
 .
 .

Without
'dup'

With
'dup'

Figure 1. Use of the DUP instruction to eliminate a load.
96 © 1996 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

With the DUP instruction, as shown in the figure, the load is
eliminated, which saves time and code space if k cannot be
referenced with one of the one-byte ILOAD instructions.

Note, however, that even with the DUP instruction, the
stack code is less efficient than the code for a traditional,
register-based instruction set. Traditional code would simply
reuse the value of k from the register file; there would be no
need to reload or duplicate it.

The overhead of these instructions in high-end imple-
mentations can be reduced by superscalar Java VM imple-
mentations that execute stack-management operations in
parallel with surrounding instructions.

Method Invocation Is a Complex Procedure
The Java VM has four method invocation instructions (i.e.,
object-oriented procedure calls). These instructions specify a
constant-pool entry with a two-byte index following the
opcode and expect the arguments for the method call to be
on the value stack.

The INVOKE_VIRTUAL instruction is the normal method
call in Java programs. Before INVOKE_VIRTUAL is executed, an
object reference and the arguments for the method call are
pushed onto the value stack. The object reference specifies
the object in which the method (procedure) will be found.
The constant-pool item (specified by the index following
the opcode) is resolved to a so-called method signature
(which specifies how the method call is set up). The signa-
ture matches exactly one of the signatures in the object
pointed to by the object reference on the value stack. Search-
ing the object’s method signature list to find the match
results in an index; this index is then combined with the
object’s dynamic type (determined at run time) to find a
pointer to the method block for the matched method signa-
ture. The method block specifies the type of the method, the
number of arguments expected, and where to find the code
for the method. Finally, after all the lookups, searching, and
matching, the called method can begin executing.

The above explanation may be difficult to follow, but it
illustrates the complexity of an object-oriented procedure
call in the Java VM. Calling a method is a sophisticated oper-
ation, and Java microprocessors will need to either have
extensive microcode support or trap to a software emulator.
Perhaps some Java VM instructions will be too complex even
for a Java microprocessor!

The remaining method invocation instructions are
similar to INVOKE_VIRTUAL but handle other Java program-
ming situations.

VM Supports Java Fields, Objects, and Threads
The field-manipulation instructions are used to reference
static data (class variables) in an object. The data type and
location within the object is determined at run time. Each
field instruction specifies a two-byte constant-pool index
following the opcode. The constant-pool entry is a reference
to a class name and a field name, which are resolved to a field
4 Implementing the Java Virtual Machine Vol. 10, No. 4, March 25, 19
block pointer. The block pointer contains a field offset (from
the beginning of the object) and a length (in bytes). The off-
set and length are used to access the field. The GET_FIELD and
PUT_FIELD instructions are essentially load and store opera-
tions for global variables in an object, which is specified by
an object reference on the value stack.

The Java VM has the concept of monitors, which allow
an execution thread to gain exclusive access to an object.
Other threads cannot access an object that has an active mon-
itor. The MONITOR_ENTER and MONITOR_EXIT instructions
expect an object reference on the top of the value stack. If
MONITOR_ENTER is attempted on an object that is locked by
another thread, the thread attempting to lock the object must
wait until the other lock(s) are released. When MONITOR_EXIT

releases the last lock on the object, a thread waiting to com-
plete its MONITOR_ENTER is allowed to proceed.

“Quick” Instructions Optimize Performance
Sun’s Java VM implementation currently uses an optimiza-
tion strategy that involves self-modifying code. For a software
interpreter, this is no big concern, since VM code is actually
data from the viewpoint of the underlying microprocessor;
self-modifying VM code is the same as any other volatile data,
which processors and data caches already handle.

In software emulators, the VM uses hidden opcodes not
exposed as part of the defined architecture. These opcodes
are suffixed _QUICK in the Sun documentation. Table 3 lists
the quick opcodes defined in the 8/22/95 VM specification.

The quick opcodes have the same semantics as the
defined, documented opcodes they replace, but the quick
versions assume that the constant-pool resolution process
has already been completed successfully. Thus, where a quick
opcode exists, the full semantics of the instruction are car-
ried out on only the first execution. The second and subse-
quent executions of the instruction are faster.

The VM uses the quick opcodes by overwriting the nor-
mal version with the quick version. Thereafter, the quick ver-
sion is automatically executed.

One problem with this strategy is that it consumes
many opcodes, limiting the ability to expand the Java VM
instruction set in the future. The problem will probably not
LDC1_QUICK

LDC2_QUICK

LDC2W_QUICK

PUT_FIELD_QUICK

PUT_FIELD2_QUICK

GET_FIELD_QUICK

GET_FIELD2_QUICK

PUT_STATIC_QUICK

PUT_STATIC2_QUICK

GET_STATIC_QUICK

GET_STATIC2_QUICK

ANEW_ARRAY_QUICK

MULTI_ANEW_ARRAY_QUICK

INVOKE_VIRTUAL_QUICK

INVOKE_VIRTUAL_OBJECT_QUICK

INVOKE_NONVIRTUAL_QUICK

INVOKE_STATIC_QUICK

INVOKE_INTERFACE_QUICK

NEW_QUICK

CHECK_CAST_QUICK

INSTANCE_OF_QUICK

Table 3. The Java VM “quick” instructions. The VM overwrites the
normal versions of these opcodes with the quick versions, which
run faster by eliminating the resolution of symbolic references.
96 © 1996 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

manifest itself soon, however, since only 203 of 256 possible
opcodes are already defined, and the quick opcodes consume
only 21 of the remaining 53.

Another problem is that self-modifying code in a hard-
ware Java processor can be costly, because it may require
flushing the structures that improve performance, including
pipelines, prefetch buffers, decoded instruction caches, and
reservation stations. On the other hand, flushing will occur
only once for each quick opcode used in a program. For
quick opcodes in loops, the flush cost is negligible if the loop
iterates many times. For quick opcodes not in loops, the cost
is probably also negligible, since programs spend most of
their time in loops. It remains to be seen if Java microproces-
sors will use self-modifying code.

Implementing the Java VM in Hardware
The software implementation of the Java VM has proved
itself to be powerful and portable, but its performance limits
the application space. One estimate holds that interpreted
Java applications run 10% as fast as native applications (see
1002MSB.PDF). Our preliminary measurements show a
range of from 3% to 10% the speed of x86 native code (pro-
duced by a Borland 32-bit compiler). It is reasonable to
expect a Java microprocessor to improve this performance by
a factor of five or more.

One of the most distinguishing characteristics of a Java
microprocessor is its microcode. The simplest and most fre-
quent instructions need no microcode, but the complex
instructions will likely use microcode to sequence the actions
of constant-table resolution, method searching, and looping
through switch tables.

Most VM instructions, including the local load/store,
constant push, compare/branch, and scalar computation
instructions, can be implemented in much the same way
they are implemented in current high-end processors. The
powerful technique of register renaming can be applied to
value-stack locations to break the bottlenecks caused by
operand storage conflicts.

Superscalar techniques can be applied to Java VM stack
code. It is possible to recognize a group of several instruc-
tions—e.g., load, load, add, store—and translate them into a
single three-address internal operation. Furthermore, a
high-performance implementation will cache the current
stack frame (or a few frames) in processor registers; thus, if
local variables are used, the above sequence could be imple-
mented as a single register-to-register internal operation.

Other performance-enhancing techniques—instruc-
tion/data caches, branch prediction, reservation stations,
and reorder buffers for speculative execution—should be
applicable in a Java microprocessor. In short, while the Java
VM’s stack architecture and dynamically linked, object-
oriented design present microprocessor designers with some
unusual details, no fundamentally new problems are created.

One difficult problem for Java microprocessor design-
ers will be finding inexpensive ways to achieve good perfor-
5 Implementing the Java Virtual Machine Vol. 10, No. 4, March 25, 19
mance for constant-pool resolution and method invocation.
Resolution and invocation are inherently serial and require
many clock cycles and memory references. In the current
implementation, many of the quick opcodes still involve at
least one level of indirection.

For a traditional microprocessor, the compiler and
linker resolve all symbolic references and generate a simple
addressing mode that requires only one memory reference to
load a value from memory. The Java system uses dynamic
linking, which requires the VM to resolve symbolic refer-
ences at run time.

Keeping a hardware cache of the results of the most
recent resolution and method invocation can improve per-
formance, but this cache will not have a 100% hit rate and
will make Java microprocessors more expensive than compa-
rable traditional chips. In general, the major problem with
the basic idea of high-performance Java microprocessors is
that to achieve a given level of performance, Java chips will
need more hardware. It may even be impossible for the
fastest Java chip to compete with the fastest traditional
microprocessors.

Remember that the Java VM performs automatic gar-
bage collection. The garbage collector decides when to per-
form collection, and during collection a Java chip will not be
executing application code. Sun expects its Java chips will use
a software garbage collector. Application performance will
be reduced—possibly even halted—while garbage collection
is performed. It is difficult, but not impossible, to perform
incremental garbage collection in small-memory, real-time
embedded environments, limiting the suitability of Java
chips to these environments.

Along with these problems, the Java VM gains some-
thing from its stack orientation and dynamic linking of sym-
bolic references. Stack code is dense and improves portability
by making a VM implementation simple. A stack-code inter-
preter maps well onto traditional architectures with few gen-
eral registers, such as the x86.

Dynamic linking has a significant advantage for the dis-
tribution of program executables. A small change in one of
the classes (code files) of a large program does not force
recompilation of all the other classes. Only the compiled
code for the modified class needs to be distributed. If the dis-
tribution medium is a network, in particular the Internet,
this modularity can make program updates feasible where
they would otherwise be infeasible.

The Java VM lacks the system-management instruc-
tions and resources (supervisor-mode bits, virtual-address
translation, etc.) that are taken for granted in traditional 32-
bit microprocessors. Before a Java microprocessor can hon-
estly function as a standalone device, the lack of system-
management capabilities must be addressed. In any modern
general-purpose system, an operating-system kernel is
required to support resource allocation, processes, and
threads. A legitimate Java microprocessor must include fea-
tures that are not part of the current VM specification, such
96 © 1996 MicroDesign Resources

M I C R O P R O C E S S O R R E P O R T

as an interrupt structure, a processor status word, and per-
haps some memory protection and address translation.

Java Chips Limited to Java Applications
Compared with traditional microprocessor architectures,
the Java VM is novel. Although other microprocessors have
pioneered some of the Java VM’s features, the combination
of a stack architecture and full support for dynamic linking
and object-oriented concepts has never been seen in a main-
stream, high-volume microprocessor.

There are no fundamental barriers preventing the
development of Java microprocessors with good perfor-
mance or with very low cost. The problem is that inexpensive
implementations will also likely have uncompetitive perfor-
mance, while high-performance implementations will cost
more than traditional processors with similar performance.
Java chips will likely never compete with traditional micro-
processors at the highest levels of performance due to the
overhead of object manipulation. To match the performance
of traditional microprocessors for traditional languages, the
Java VM would have to be embellished with some conven-
tional instructions.

Yet it may miss the point to compare Java micro-
processors to traditional microprocessors in traditional
applications. If Java deployment proceeds at a rate even
close to current predictions, then Java microprocessors
need to compete with traditional microprocessors only on
Java’s own turf: emulating the Java VM. Perhaps the only
6 Implementing the Java Virtual Machine Vol. 10, No. 4, March 25, 19
real question, then, is whether Java microprocessors offer
compelling advantages over the best software emulators on
traditional microprocessors. Since Java is so new, it is too
early to tell, but if significant demand for standalone Java
implementations develops rapidly, there will be tremen-
dous economic incentive to develop high-performance
software emulators. Perhaps traditional microprocessors
will be embellished with a few Java-support instructions to
greatly speed software emulation.

Thus, even on their home turf of Java execution, Java-
based microprocessors may not succeed. These chips must
overcome the lower costs associated with the economies of
scale of current market leaders such as the x86. Techniques
such as the JIT compiler may allow traditional microproces-
sors to approach the performance of a Java chip. These tradi-
tional CPUs would have the advantage of executing pro-
gramming languages other than Java, while Java chips would
be restricted to a single application.

As long as Java is successful, however, there will be sev-
eral VM implementations, both hardware and software, on
the market. As Java volumes grow, programmers will focus
on improving the execution speed of the VM on traditional
processors. In turn, CPU designers must consider how to
improve their chips to efficiently execute Java code. Although
Java originated as a virtual machine, it will have a future
impact on real processor designs.

Brian Case is a consultant for microprocessor design
issues and can be reached at bcase@best.com.

M

96 © 1996 MicroDesign Resources

	Implementing the Java Virtual Machine
	Java VM Based on Stack Architecture
	Variable-Length Instructions
	Simple Instructions Operate on Stack
	Table 1. Java data types
	Table 2. The Java virtual machine has a large instruction set
	Efficient Conditional-Branch Architecture
	Switch-Table Branches Add Complexity
	Stack Management Reduces Loads and Stores
	Figure 1. Use of the DUP instruction to eliminate a load
	Method Invocation Is a Complex Procedure
	VM Supports Java Fields, Objects, and Threads
	Table 3. The Java VM “quick” instructions
	“Quick” Instructions Optimize Performance
	Implementing the Java VM in Hardware
	Java Chips Limited to Java Applications

