
V O L . 1 0 , N O . 1 0

o

by Brian Case

In 25 years, the microprocessor has risen
meteorically from its humble beginnings
as the heart of a simple desk calculator.
Fueled by the exponential improvement
in fabrication technology, instruction

throughput and system capabilities have increased astound-
ingly. Though some mainstream operating systems and
applications do not take full advantage of them, modern
high-end microprocessors provide supercomputer capabili-
ties, including hundreds of MIPS, gigabytes of address space,
and support for concurrent processes in protected virtual-
memory address spaces.

Although instruction sets are evolving to support
multimedia data types (video and audio data streams and 3D
graphics), the basic nature of an instruction has not changed
since the microprocessor’s birth two and a half decades ago.
Microarchitectures have changed radically, but individual
instructions are still geared to implementations that fetch,
decode, and execute each instruction in three separate, serial
steps. Parallel microarchitectures are now capable of over-
lapping the fetch, decode, and execution phases of many
instructions. As a result, the decoupled, autonomous units of
today’s high-end microprocessors can be operating on one
or two dozen or more instructions simultaneously, and,
because of multiple branch prediction, the instructions can
be taken from widely disparate sections of a program.

From the point of view of hardware, microprocessor
instructions seem to deliberately hide information about par-
allel execution opportunities; substantial hardware is needed
to discover when instructions can be executed simultane-
ously. Much of the information about potential parallelism
is available at compile time, when sequences of machine
instructions are created.

With the implementation overhead of powerful super-
scalar processors growing rapidly, some designers—appar-
ently including those at HP and Intel—think it is finally time
for new architectures. The alternative—asking microproces-
sor designers and hardware to continue to shoulder the bur-
den of extracting parallelism—has historical precedent on its
side: wait long enough, and circuit technology provides
enough resources to solve any problem.

The History of High Performance
The history—and near future—of commercial high-perfor-
mance microprocessors can be organized roughly into four
epochs. The epochs are defined by the interplay between
integrated circuit density and processor implementation

New Instruction Sets
But Current Architectures May Be Able t
© M I C R O D E S I G N R E S O U R C E S A U G U S T
techniques. A transition from one epoch to the next occurs
when circuit technology is just good enough to permit the
use of one or more major new implementation techniques.

In the first epoch of microprocessor design, circuit
technology was barely sufficient to permit the fabrication of
a basic single-chip microprocessor. The second epoch of
microprocessor design was ushered in on the coattails of
RISC architectures. The transition to the third epoch began
several years ago with the introduction of the first super-
scalar implementations.

The microprocessor industry is just beginning the tran-
sition to the fourth epoch, which is characterized by imple-
mentations that decouple instruction fetching, decoding,
and execution and can execute internal operations specula-
tively and out of order. Very soon, every high-performance
microprocessor will need a decoupled speculative out-of-
order internal organization to be commercially viable.

In the fourth epoch, microprocessor designers can have
it all: decoding for a complex instruction set, a rich set of exe-
cution resources, good dynamic branch prediction, register
renaming, a large window (reservation station and reorder
buffer) of pending internal operations, large on-chip caches,
high-frequency operation, and high-pin-count packages. As
the epoch progresses, chip vendors can exploit new levels of
circuit density to achieve new performance levels by simply
increasing the sizes of all the on-chip elements.

The Fourth Epoch: Time for a Change?
The problem with decoupled speculative out-of-order im-
plementations is that a small increase in the capacity of the
parallel-execution hardware requires a large increase in cir-
cuitry for the implementation. Because of this nonlinear
relationship, some architects and designers are appealing for
new instruction sets that can simplify the implementation of
superscalar hardware. Based on the first three epochs, during
which advancing technology squelched calls for simplifica-
tion, it is easy to dismiss these appeals as another cry of wolf.
Three trends, however, might contribute to the success of a
new architecture.

First, the dominance of x86 may allow Intel to simply
decree the success of a new instruction set. If Intel can pro-
vide a new chip that simultaneously boosts the performance
of existing x86 code and offers dramatic performance re-
wards for shifting to a new instruction set, the new architec-
ture might become pervasive very quickly.

Second, if the shift to virtual-machine-based lan-
guages—Java, that is—succeeds, the underlying instruction
set would be hidden. With a virtual-machine-based environ-
ment, instruction-set incompatibilities are invisible, and the

Are Coming
 Keep Pace
 5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

M
2 N E W I N S T R U C T I O N S E T S A R E C O

only apparent difference to the user is the performance and
cost of a complete platform. This is the situation today: x86
processors do not, by themselves, offer the best price/perfor-
mance, but when integrated into a complete platform, noth-
ing else can compete.

Third, traditional increases in circuit densities might
begin to slow down in the next few years, or at least the cost
of maintaining the historical pace of advancement might
become too high. Under these conditions, chip vendors may
be required to make instruction-set changes to maintain the
pace of price/performance improvement that end users have
come to expect. A new instruction set might allow micropro-
cessor vendors to do more with the same.

The Case for New Instruction Sets
Current state-of-the art superscalar implementations are
capable of executing four instructions in a cycle, given per-
fect conditions. As circuit technology improves, these imple-
mentations will get smaller, which will allow operation at
higher clock rates and reduce manufacturing cost.

Eventually, process technology will allow higher-degree
superscalar designs to be built cost-effectively. Consider an
eight-way superscalar design. At eight instructions per cycle,
the optimum execution quantum of the implementation—
eight instructions—is actually bigger than the average size of
a basic block (a branch-free, straight-line sequence of instruc-
tions). Using typical instruction frequencies, this eight-
instruction quantum would contain one or two branches and
two or three memory references.

Branches and memory references are known to be the
main sources of significant pipeline stalls during normal
program execution. In an eight-way machine, the effect of
even one stall cycle is magnified by a factor of eight. Consider
that a 500-MHz processor has a 2-ns cycle time. Given that
main memory has a latency of at least 50 ns, an eight-way
processor that must wait for a main-memory reference can
waste literally hundreds of instruction-execution opportuni-
ties. Similarly, a mispredicted branch can cost several cycles
of recovery time, again wasting an impressive amount of
internal performance.

Thus, two of the keys to making use of the tremendous
performance potential of a high-degree superscalar design are
eliminating (or predicting with 100% accuracy) branches and
reducing the latency of loads and stores. While branches and
memory references will always be sources of grief for design-
ers, techniques to address these and other issues are available.

New Instructions: Architect's Shopping List
A wide range of nontraditional instruction-set features can
be used to reduce the cost of a high-performance micropro-
cessor implementation. Examples of most of these features
can already be found in existing chips, as Table 1 shows, but
no single architecture uses them all.

Predicated execution. Predicated execution, or condi-
tional execution, helps eliminate conditional branches. With
© M I C R O D E S I G N R E S O U R C E S A U G U S T
predicated execution, each instruction specifies the condi-
tion under which it will be executed. For example, instruc-
tions in the ARM RISC architecture (see MPR 12/18/91,
p. 11) use four bits to specify a combination of condition
codes that must be true for the instruction to take effect.

A more general form of predication is called guarding
and is implemented, for example, in the Philips Trimedia
VLIW microprocessor (see 091506.PDF). An operation in a
Trimedia instruction specifies one of 128 general-purpose
registers as the guard; if the LSB of the guard register is 1, the
operation takes effect; if the LSB is 0, the operation is effec-
tively a NOP.

Guarding is more powerful than the ARM technique
because a large number of arbitrarily complex guard condi-
tions can be precomputed and then used to guard a large
block of branch-free code.

While it is true that an instruction with a false guard
condition wastes an issue slot, a guarded instruction cannot
disturb the flow of other instructions, unlike a conditional
branch. Also, a guarded instruction does not consume an
entry in the branch-prediction unit and does not have the
potential of being mispredicted.

On the other hand, a machine with guarding might
need a guard-prediction unit in addition to a branch-predic-
tion unit to prevent guarded instructions from waiting while
guard conditions are computed.

More registers. One of the biggest sources of complex-
ity in modern superscalar implementations is the logic that
supports speculative and out-of-order execution. Micropro-
cessor designers are already starting to complain that this
hardware does not scale well to higher orders of multiple dis-
patch and issue.

The logic for register renaming, which helps eliminate
false dependencies between instructions, is a part of the
hardware that supports speculation and out-of-order execu-
tion. False dependencies arise because too few architectural
registers are available to the compiler to allow assignment of
a different register to each unique result value within a basic
block. With enough architectural registers, an optimizing
compiler can schedule instructions so register renaming is
not needed.

Loop unrolling is an optimization that can benefit from
a large register file. Unrolling can eliminate conditional
branches and create a long basic block that can be efficiently
I N G V O L . 1 0 , N O . 1 0

Predicated execution
More registers
Speculative loads
Data prefetch hints
Instruction prefetch hints
Static branch prediction hints
Multiway branches
Dependency hints

ARM, Trimedia
Titan, 29000, Trimedia
SPARC V9, Trimedia
SPARC V8, PA-RISC 2.0, Alpha
SPARC V9
PowerPC, PA-RISC 2.0, MIPS
none
none

Characteristic Current Architectures

Table 1. Many of the advanced features proposed for a next-
generation instruction set are available in today’s processors.
 5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

3 N E W I N S T R U C T I O N S E T S A R E C O M

scheduled by an optimizing compiler. Static scheduling
(code reorganization), however, requires storage to hold
temporary results. Without enough registers, loads and
stores are needed to save temporary values. These loads and
stores naturally reduce the benefit of the unrolling.

Another use for temporary storage in a superscalar
processor is in support of general speculative, out-of-order
execution. The amount of temporary storage needed is
directly related to the amount of speculation allowed.

Instead of requiring hardware to discover instructions
that can be speculatively executed, an optimizing compiler
can generate the instructions along the two possible paths of
a conditional branch so they use disjoint subsets of a large
register file. To support multiple branch speculations, the
compiler can ensure that all instructions along several paths
use disjoint subsets.

If the compiler has enough registers available to guar-
antee that results generated along the paths will not collide,
an implementation is free to speculatively execute instruc-
tions down all paths, and no special tracking and resolving
hardware (e.g., a reorder buffer for register renaming) is
required to prevent the instructions on the paths from inter-
fering. When the branch conditions are resolved, the code
down the correct paths naturally used only the appropriate
values, and the code that begins after the end of the correct
path will naturally use the correct values.

Eventually, the registers used in one of the disjoint sub-
sets must be reused. Therefore, to fully support this kind of
static speculation, a synchronization instruction might be
needed to stop the processor from proceeding past the end of
a speculative section of code until all speculated branches
needed to reach that point are resolved.

Speculative loads and data-prefetch hints. As the
internal performance of microprocessors increases, the dis-
parity between register-to-register operations and memory
operations becomes more apparent. To prevent a processor
from wasting potential performance, the impact of memory
references must be reduced as much as possible.

Reordering register-to-register instructions ahead of
conditional branches is easy, given enough temporary stor-
age to hold the speculatively computed result. Load opera-
tions, however, as traditionally defined, can have irreversible
side effects such as causing a page fault or protection fault.

A new architecture could define a speculative load oper-
ation that would not generate any side effects if the specula-
tion were eventually identified as incorrect. This well-behaved
load operation could be moved ahead of conditional branches
by either a compiler or speculative-execution hardware.

The Trimedia VLIW architecture includes speculative
loads. Speculative loads allow a processor to continue exe-
cuting past load operations, but if an instruction that uses
the result of the load is encountered and the result is not
available, the processor may be forced to stall while it waits
for the value from cache or main memory. Data-prefetch
operations would allow a compiler to notify a processor’s
© M I C R O D E S I G N R E S O U R C E S A U G U S T
I N G V O L . 1 0 , N O . 1 0

memory system of the address or address range of needed
data well ahead of an actual reference to that data, reducing
or eliminating such stalls.

As superscalar processors increase in degree, the perfor-
mance loss from each cycle of stall increases. A data-prefetch
operation issued early enough can help hide a long-latency
fetch from a distant cache or main memory. If a speculative
load or a data-prefetch hint can save even one or two cycles in
a loop, a potentially large performance gain can be reaped.

Instruction-prefetch hints. Giving the processor an
instruction-prefetch hint is not the same as speculatively exe-
cuting a conditional branch. An instruction-prefetch hint is
used to tell the instruction-fetching hardware the address of
a new flow of control well ahead of a branch; speculatively
executing a branch is valuable only if the instructions at the
speculated target can be fetched immediately. An instruc-
tion-prefetch hint is one way of helping to make sure the
instructions at a branch target are available from the first-
level cache when the branch is executed.

As with data-prefetch hints, notifying hardware well in
advance of the need for a block of instructions can hide a
long-latency fetch from caches or memory. Again, saving
even one or two cycles, let alone dozens, can bring a proces-
sor significantly closer to its performance potential.

Branch-direction hints. Dynamic branch prediction,
as implemented in most modern microprocessors, works
well most of the time. Pathologically bad cases do arise, how-
ever, and a compiler may know the likely outcome of the first
execution of a conditional branch before dynamic prediction
has collected a branch history. An implementation may
benefit by combining dynamic branch prediction with an
instruction set that encodes static branch-direction hints.

Multiway branches. No, architects are not advocating a
direct implementation of the FORTRAN computed-branch
construct. Multiway branches are useful in an architecture
that uses predicated execution to combine the two paths of a
single conditional branch into a single branch-free sequence
of instructions. In the case when the two paths themselves
end with conditional branches, there can be four possible
paths out of the combined stream of predicated instructions.
A multiway branch at the end of the stream is an efficient
way to transfer control to the correct path.

Conceptually, a multiway branch would specify two or
more branch targets and a way of selecting the proper target.
The specific semantics would be determined by balancing
the needs of optimizing compiler analysis algorithms and
implementation simplicity.

One possibility would be to specify two source registers
containing indirect target addresses and a third source regis-
ter with a selection condition. Such a branch could have
three targets: two explicit destinations and the fall-through
path. Another possibility is a 64-bit instruction format that
would allow three 16-bit relative offsets plus a source register
whose value would select one of the three offsets or the fall-
through path.
 5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

4 N E W I N S T R U C T I O N S E T S A R E C O M

Dependency hints. Part of the hardware that supports
speculative out-of-order execution is logic that checks for
dependencies between pending operations in the reservation
station(s). Dependency information in the instruction
stream can be provided by an optimizing compiler and could
simplify implementations by eliminating the need for hard-
ware to recompute interoperation dependencies.

Effect on Instruction Sets
An instruction set combining most of the traditional RISC
tenets with the above ideas would be the basis for a powerful
architecture that would increase the efficiency of a processor
implementation, but some sacrifices would be required.

One sacrifice would be increased dependence on com-
piler technology. To even reasonably exploit a machine
incorporating all the ideas listed above would require a rela-
tively sophisticated compiler. This is not a severe deficiency,
however, because a sophisticated compiler is already required
to even approach the performance potential of existing high-
end microprocessors.

Perhaps the biggest sacrifice would be compromises in
the instruction format. To combine three-address, register-
to-register operations (a basic RISC tenet) with a large num-
ber of registers and guarded execution would require four
bit-hungry register specifiers. With 128 registers, the four
register specifiers alone consume 28 bits. To encode a reason-
able number of operations would require more than 32 bits
for basic arithmetic instructions.

One solution is to step backward to two-address, de-
structive operations. With one less register specifier, a 128-
register machine would still have 11 bits in a 32-bit format
for encoding basic arithmetic operations.

If instructions longer than 32 bits are acceptable, it
might make sense to step backward in another way and cre-
ate complex instructions that—don’t faint—combine arith-
metic operations and memory references. It is also possible
to encode two arbitrary and possibly dependent arithmetic
operations in a single long 64-bit instruction. The precedent
for this can be found in an architecture proposed by com-
piler-researcher Bill Wulf several years ago. (SuperSPARC
could internally cascade two dependent operations in a sin-
gle cycle because its ALUs were disproportionately faster
than its caches.) Another instruction that can benefit from a
long format is the multiway branch.

In a machine with some instructions longer than 32
bits, it probably makes sense to allow two or three different
instruction formats, perhaps 64 bits, 32 bits, and 16 bits.
This concept is a logical extension from RISC-like architec-
tures such as NEC’s V800 (see 071406.PDF), which inter-
mixes 32- and 16-bit instructions. An architecture with
multiple instruction sizes complicates the implementation
of instruction fetching and decoding, but given current
technology—and the Pentium Pro and AMD K5 as proof of
concept—the complexity is not overwhelming. With just
two or three power-of-two instruction sizes, the design
© M I C R O D E S I G N R E S O U R C E S A U G U S T
I N G V O L . 1 0 , N O . 1 0

challenges should be only a fraction of those encountered
in an x86 implementation.

Multithreading Support Can Be a Big Win
Potentially one of the biggest parallelism-discovering wins is
support for multiple threads of execution within a single
program. By definition, separate threads are independent
and therefore inherently parallel. By fetching instructions
from separate threads, a processor can easily find parallelism
and keep its execution resources busy. While one thread is
stalled waiting for a load instruction to return a value from
memory, the independent instructions from another thread
can be executing.

Multithreading support requires, at least conceptually,
multiple program counters, one for each thread. Thus, archi-
tectural support for multiple threads might benefit from
some changes to the instruction set, but the changes are in
the form of additional instructions, not modifications to the
fundamental instruction semantics or formats. Thus, it
should be possible to add multithreading support to existing
architectures, but it may make more sense to add it to a new
architecture where the integration into the instruction set
and implementation can be as clean as possible.

The first implementation of the MicroUnity architec-
ture (see 091402.PDF) has built-in multithreading to accom-
modate its extreme pipelining.

Existing Architectures Will Still Thrive
While the new features listed above are many and impressive,
the current state of the art in superscalar design defines a
clear path to steadily improving the performance of existing
architectures over the next few years. Increasing the width of
the fetcher and decoder, the size of the window (reservation
station) of pending instructions, and the number of execu-
tion units should allow the processor to find more indepen-
dent instructions and execute more instructions per cycle. It
is true that significantly more hardware will be required to
achieve each modest increment in performance, but circuit
technology seems ready to provide the needed additional
resources for at least two or three more generations.

Also, the appeal of binary compatibility with existing
applications cannot be overstated. The entrenchment of the
PC standard and the fact that customers continued to buy
Sun machines over the past few years despite an embarrass-
ing price/performance ratio support the costly development
of compatible chips.

A New ISA: Coming in Your Next PC?
While samples of the Merced chip are not expected until
1H98, all indications are that HP and Intel are serious about
releasing a new architecture. Since most of the non-x86 CPU
vendors already have relatively new architectures and are
fighting for market share, it seems unlikely that a new archi-
tecture will emerge from any of the RISC vendors. Thus,
Merced represents the first real chance to integrate all these
 5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

5 N E W I N S T R U C T I O N S E T S A R E C O M

ideas into a single product.
There are, however, disturbing parallels between the

arguments being made now for the new architectural features
and the arguments that were used to “prove” RISCs would suc-
ceed over competing architectures.

First, the technical arguments in favor of a new architec-
ture are couched in terms of better performance and simpler,
cheaper implementations. Just as with RISC, these arguments
are irrefutable. The problem is that, as with RISC, the differ-
ences in performance and implementation cost may not be
significant enough. RISC promoters used to predict when
competing architectures would run out of gas and used to
draw performance graphs that had the slope of RISCs rising at
a faster rate than for other architectures.

History has shown that gas is plentiful and that the per-
formance curves are essentially architecture-independent.
The question now is, “how much gas is left, and are the
curves still architecture-independent?” If the x86 is really
starting to run out of gas, then the new architecture has a
chance at success.

Second, as evidenced by SPARC workstations and PCs in
the late 1980s, performance alone does not drive buying deci-
© M I C R O D E S I G N R E S O U R C E S A U G U S T
I N G V O L . 1 0 , N O . 1 0

sions. RISC promoters used to advance the theory that the
performance of RISC chips would spawn new applications
that would make RISC-based computers irresistible to users.
Unfortunately, it takes more than a 20% to 50% performance
boost to create new application possibilities. The PowerPC-
based Macintoshes did not deliver compelling new applica-
tions. A new architecture like Merced will probably need a per-
formance advantage of a factor of three or more to enable
compelling new applications.

While such a large performance advantage seems un-
likely, Merced should have two advantages never enjoyed by
RISCs. First, Merced will have the full attention of Intel, a force
more powerful than any in microprocessor history. RISCs
were, in general, promoted by upstarts that were often handi-
capped by lagging process technology. Second, Merced can
offer a value proposition never tried by RISCs: the ability to
deliver competitive performance on x86 binaries plus a boost
on recompiled code.

Brian Case helped design the architecture of the 29000 at
AMD and is currently an independent consultant specializing in
microprocessor design issues. He can be reached via e-mail at
bcase@best.com.

M

 5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

	New Instruction Sets Are Coming
	The History of High Performance
	The Fourth Epoch: Time for a Change?
	The Case for New Instruction Sets
	New Instructions: Architect's Shopping List
	Table 1. Many of the advanced features...
	Effect on Instruction Sets
	Multithreading Support Can Be a Big Win
	Existing Architectures Will Still Thrive
	A New ISA: Coming in Your Next PC?

