
V O L . 1 0 , N O . 1 0

g
u

by Nick Tredennick

I tried to explain the case for reconfig-
urable computing at the Microprocessor
Forum in the fall of 1994. I failed com-
pletely. Perhaps I failed because I had
only 10 minutes to make the case before

an audience to whom the concept was new. Perhaps I failed
because I’m just not articulate. Give me another 10 minutes
at the next conference and I’ll probably fail again. Part of the
fault lies with the commercial introduction of the micropro-
cessor in 1971 and the subsequent explosion of microproces-
sor sales from almost nothing at introduction to a worldwide
market exceeding four billion units just 25 years later. So
how’s that a problem that’s partly responsible for my inabil-
ity to get a concept across? Let me explain.

Computers Introduce a Method
The invention of the computer started us down a particular
path with respect to problem-solving methods. Before the
commercial introduction of the computer, engineers solved
problems by building custom hardware from discrete com-
ponents to implement both the computational resources and
the processing algorithm. After the invention of the inte-
grated circuit, engineers solved problems more efficiently by
designing with TTL macro functions. The state sequencer
and the computational resources were implemented in hard-
ware (TTL macro functions).

The computer changed the basic problem-solving
method, because the computer implemented fixed comput-
ing resources and variable algorithms (in memory). Imple-
menting algorithms in memory allowed the cost of expensive
hardware computing resources to be amortized across a
range of applications. It also allowed the computer to iterate
to solve a problem, which amortized fixed computing re-
sources in time: trading time for hardware. With a computer,
the engineer could solve problems too large to be affordably
tackled with custom hardware—provided there was time to
wait for the answer. Before the computer: fixed computing
resources and fixed algorithms. After the computer: fixed
computing resources and variable algorithms.

Microprocessors Entrench the Method
Twenty-five years of phenomenal growth in the micro-
processor market have produced a design community in
tune with solving digital control problems using micro-
processors. Development systems, programming tools,

The Case for Reconfi
Will Intel Become a Victim of Its Own S

■ S O M E T H I N G C O M P L E T E L Y
© M I C R O D E S I G N R E S O U R C E S A U G U S T
debuggers, peripheral chips, experience, folklore, data books,
legacy systems, microprocessors, microcontrollers. It’s all
there, it works well, and it’s comfortable. The microprocessor
is a tool for solving problems. Since the microprocessor’s
introduction, we’ve had generations of engineers solving
problems with microprocessors.

But the tool set influences the method for solving the
problem. The paving method used by a road crew equipped
with hand tools differs from the method used by a road crew
equipped with graders, rollers, and power paving machines.
The microprocessor is more than a tool with fixed computing
resources and variable algorithms: it drives the way engineers
think about how to solve problems. Problem-solving engineers
map algorithms into the microprocessor’s fixed resources,
adding to their accumulated experience and to the sophistica-
tion of application methods with each new challenge.

As engineers improve application methods, micropro-
cessor “architects” improve the tool. The microprocessor’s
architects are increasing clock rates, considering VLIW (very
long instruction word) processing, experimenting with mul-
tiprocessors, and adding new instructions (Intel’s MMX
instructions for the x86, for example). These ideas are direct
attacks on the tool’s primary limitation: the instruction exe-
cution bottleneck. The microprocessor’s architects work to
improve the microprocessor’s rate of instruction execution,
just as the tool architects for the first road crew would work
to improve the efficiency of hand tools.

A New Tool and a New Method
The microprocessor is a great tool, with its fixed computing
resources and variable algorithms, but what if engineers
were given a tool with variable computing resources and
variable algorithms? They’d ignore it, just as the first paving
crew would ignore a power paver. Engineers have 25 years of
accumulated microprocessor-based problem-solving expe-
rience. There’s an entrenched way of solving digital design
problems. Engineers and pavers are paid to solve problems
and pave roads, respectively; they aren’t paid to experiment
with problem-solving or paving methods. The companies
they work for pay them to get the work done and expect
them to leave design methodology (my first non-pompous
application of this term) to university professors. Engineers
would get on with their work using familiar tools at hand:
microprocessors.

Tools with variable computing resources and variable
algorithms, however, have compelling advantages in some
applications. The SRAM-based programmable logic device

urable Computing
ccess?

D I F F E R E N T
 5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

O
2 T H E C A S E F O R R E C O N F I G U R A B L E C

(PLD) is such a tool. A PLD can be viewed as a two-layer
device. The first layer is logic elements and interconnect
wires. The second layer is memory. Ones and zeroes in the
memory determine how logic elements and wires connect
together to form circuits. Need a different circuit? Reconfig-
ure. Rewrite the memory to reconnect wires and logic gates
as needed.

To see how this might provide an advantage, imagine an
Excel spreadsheet. Values in cells are either direct entries or
computed functions of other cell entries. Using PLDs, it
would be possible to build a “live” spreadsheet. The PLD
memory could be used to construct the necessary computa-
tional hardware connections behind each cell. Input cells
need only storage, while output cells might require sophisti-
cated computational hardware, such as a floating-point mul-
tiplier, 27-input accumulator, or cosine generator. Recalcula-
tion in the spreadsheet would be fast relative to the alternative
of executing Excel object code on the PC’s microprocessor.

You could build a PLD-based accelerator for the PC
that could be configured for audio and video decompression
processing. The PLD-based accelerator could be configured
to decode MPEG-1 or MPEG-2 video streams or Dolby AC 3
audio. A custom ASIC and a DSP would be cheaper and just
as fast. But how good would your ASIC and DSP solution be
for a newly defined MPEG-4? And how good would your
ASIC-based accelerator be for encryption and decryption?
The PLD-based accelerator could be reconfigured to track
the development of new methods, definition of new stan-
dards, or variation in application requirements. Reconfig-
urable computing is a powerful and useful concept. It’s got
only two major drawbacks: it’s expensive, and it requires a
new, and therefore unfamiliar, design method.

Reconfigurable Computing Faces Barriers
Reconfigurable computing is expensive because PLDs are
expensive. PLDs are expensive because demand is rising and
a few major suppliers control the market; in addition, the
flexibility provided by the PLD’s two-layer conceptual struc-
ture carries more overhead than the U.S. government. A
million-transistor device nets about 50,000 transistors worth
of logic. Prices have been coming down, so cost isn’t a per-
manent problem. As the semiconductor process improves,
PLD costs move down the learning curve: parts that cost
$1,000 today will be in the range of $10 to $25 in two years.

Since the leading suppliers are essentially fabless,
PLDs track semiconductor process with some lag, so it’s
easy to see their future by looking at today’s leading-edge
memory processes.

PLDs may need such features as rapid reconfiguration,
partial reconfiguration, and background configuration load-
ing to support reconfigurable computing. PLD configura-
tions have been notoriously slow to load through a one-bit
serial interface, but manufacturers configure and test parts
rapidly, so faster configuration interfaces could be provided
to the user. Similarly, there’s no inherent barrier to partial
© M I C R O D E S I G N R E S O U R C E S A U G U S T
M P U T I N G V O L . 1 0 , N O . 1 0

configuration or background loading other than simple
market demand to justify the features. Manufacturers are
already beginning to support these features.

The key barrier to the rise of reconfigurable computing
is that it requires the introduction of a new way of thinking
about how to solve problems. Reconfigurable computing
offers variable computing resources and variable algorithms.
The engineer employing reconfigurable computing has the
responsibility to determine and configure computing re-
sources in addition to mapping the algorithm onto the
resources. Reconfigurable computing adds another degree of
freedom, dynamic resource creation, to the engineer’s prob-
lem-solving method, which makes solutions more difficult
but potentially more powerful.

Reconfigurable computing enthusiasts have been work-
ing to construct a useful and encouraging development envi-
ronment for building reconfigurable computing applica-
tions. The idea is that if the industry creates a compelling,
functional development environment, applications will fol-
low. It isn’t going to work. The barrier is not the lack of a
development environment for reconfigurable computing, it’s
overcoming the engineer’s entrenched microprocessor-based
design method.

Reconfigurable computing has to offer incontrovertible
proof of its value before engineers will adopt the necessary
new design method. Incontrovertible proof can be provided
by an installed base of applications with compelling perfor-
mance advantages. This looks like a chicken-and-egg prob-
lem. How can we ever get an installed base of applications?
Here’s how I think it might happen.

Low-Margin x86 May Be on the Way
Systems using x86 microprocessors as the CPU dominate the
personal computer market, with more than a 90% share.
Intel provides most of these CPUs—the only high-margin
component in the system. Intel has become one of the most
profitable companies in America by riding the rise of per-
sonal computers from almost nothing in 1981 to worldwide
sales of 60 million units in 1995.

The enormous size of the market and its potential for
fat profits attract competition. Intel’s x86 microprocessors
face competition from AMD, Texas Instruments, Cyrix, SGS-
Thomson, and IBM. Some competitors may be left behind as
Intel moves the market from Pentium to Pentium Pro and
beyond, but Intel already faces price competition from AMD
and Cyrix with Pentium-class microprocessors.

Increasing investments in improving instruction-level
execution in successive microprocessor generations may pro-
vide diminishing returns. Current-generation superscalar
microprocessors effectively exploit available instruction-level
performance from the installed base’s object code. But the
installed base is here to stay, so low-level instruction execu-
tion remains a performance bottleneck. Adding instructions
may aid new applications in some areas, but it also adds to the
compatibility baggage carried forward to the next generation.
 5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

3 T H E C A S E F O R R E C O N F I G U R A B L E C

Design costs double with each new processor genera-
tion. The $250 million to $400 million needed for a next-
generation microprocessor design might return more per-
formance if invested elsewhere in the system.

The system’s point of performance leverage may move
away from the CPU: one possibility is application accelerators.
Windows dominates the installed base. Windows and its APIs
(application programming interfaces) isolate applications
from the underlying hardware. Application developers no
longer write low-level drivers; applications request services
from the operating system to manipulate system resources
(hardware).

The transition from ISA to PCI, a move fostered by
Intel, gives add-in boards much faster access to system re-
sources. Application accelerators, with performance provided
by access to system resources through PCI or even direct con-
nection to the host CPU, can intercept OS service calls and
subvert low-level instruction execution (in the OS service
routine) by speedier delivery of equivalent function.

Rather than let the instruction-level OS routine draw a
line on the display, for example, a graphics accelerator might
just draw the line on the screen (by stealing the parameters
from the OS service request). Dozens of application acceler-
ators, some claiming performance improvements of 40× or
more over base-configuration systems, are available. Today,
these application accelerators are based on DSPs, micro-
processors, and ASICs.

Economics may soon favor reconfigurable application
accelerators based on PLDs. These reconfigurable accelera-
© M I C R O D E S I G N R E S O U R C E S A U G U S T
O M P U T I N G V O L . 1 0 , N O . 1 0

tors will follow the user to accelerate compute-bound appli-
cations. If the user launches Photoshop, the accelerator will
download configuration files from the hard disk and prepare
to accelerate compute-bound filter functions. If the user
launches a spreadsheet, the accelerator might wire the cells
together with the appropriate equations to provide “live”
answers to changes. The default configuration might acceler-
ate Windows or Netscape.

If the point of leverage in system performance moves
from instruction-level execution to application accelerators,
the incentive to pay premium prices for marginally improved
CPU performance decreases. The x86 processor may become
a low-margin component in the system. Reconfigurable
computing could gain the installed application base to
demonstrate the power in the required new way of thinking
about how to solve problems. Then we will have progressed
from the fixed resources and fixed algorithms of TTL macro-
function-based designs to the fixed resources and variable
algorithms of microprocessor-based designs to the variable
resources and variable algorithms of PLD-based designs.

Reconfigurable computing isn’t going to kill the micro-
processor. The microprocessor is entrenched in countless
designs where it is better suited to the application than a PLD
would be. But the PLD should begin to displace the micro-
processor in those designs where the ability to reconfigure
computing resources offers a performance advantage.

Nick Tredennick did the logic design and microcode for
the Motorola 68000 and was later chief scientist at a PLD com-
pany. He can be reached at bozo@tredennick.com.

M

 5 , 1 9 9 6 M I C R O P R O C E S S O R R E P O R T

	The Case for Reconfigurable Computing
	Computers Introduce a Method
	Microprocessors Entrench the Method
	A New Tool and a New Method
	Reconfigurable Computing Faces Barriers
	Low-Margin x86 May Be on the Way

