
me Media Boxes
ulate, On-Chip RAM Aid DSP Tasks
by Jim Turley

In a previous issue (see MPR 6/2/97, p. 22), we covered
NEC’s newest V830 and V831 embedded microprocessors. This
article examines the V830 family’s instruction set more closely.

To meet the needs of emerging consumer-electronics
devices (set-top boxes, Internet terminals, etc.), NEC’s V830
architecture extends the capabilities of the earlier V810 and
V850 chips in significant ways. It does this mostly through
new single-cycle multiplication and multiply-accumulate
instructions. The V830 also adds on-chip data and instruc-
tion RAM and a nonblocking burst-fill instruction, further
enhancing the family’s signal-processing capability.

Although it still bears a strong similarity to other V800
family members—warts and all—the V830 instruction set
gives ARM, MIPS, and ColdFire some strong competition for
the emerging class of media-processing microprocessors.
NEC’s “other” 32-bit embedded architecture may not have
the third-party industry support of its better-known MIPS
line, but in performance and capability, the V830 makes a
strong showing. It’s faster than ColdFire or ARM and has
better signal processing than MIPS or SuperH.

V830 Bears Strong Similarity to V810, V850
Like NEC’s V810 and V850 chips, the V830 uses a combina-
tion of 16-bit and 32-bit instructions, which may be freely
intermixed. Most operations can be encoded in just 16 bits,
which is unusual for an architecture with 32 general-pur-
pose registers. Consequently, the V830 enjoys good code
density, on a par with the 68K or SuperH. Despite the short

instruction word, any instruction can
use any register; there are no register
limitations like those in Atmel’s AVR
family (see MPR 7/14/97, p. 10).

As Figure 1 shows, the V830 fol-
lows the popular RISC convention of
hardwiring r0 to the value zero and
dedicating a few other registers to the
stack pointer and return-address (sub-
routine) pointer. Historically, V800
software relies on a few other regis-
ters, but these conventions are not
binding.

Overall, the V830 is much like its
predecessors but, as with Motorola’s
ColdFire, is not binary compatible
with them. The V830 loses the V810’s
floating-point and bit-string instruc-
tions and the V850’s bit-manipulation
instructions, but it adds pipelined

V830 Gunning for Ho
Saturating Arithmetic, Multiply-Accum

r0

r31

r29
r30

r1
r2

zero

link pointer
mul/div

31 0

work register
stack pointer
frame pointer
global pointer
text pointer

r3
r4
r5
r6

Figure 1. Only three
of the V830’s 32 reg-
isters are dedicated for
particular uses; five
more are reserved by
software convention.
© M I C R O D E S I G N R E S O U R C E S A U G U S T
multiply-accumulate features. Programmers who are already
familiar with earlier V800 generations will have little trouble
getting accustomed to the V830.

Conditional Branches Must Be Short
The short instruction word squeezes the displacement of
conditional branches to just 9 bits (8 significant bits plus a
sign bit). Unconditional jumps (JR and JAL) have a 26-bit dis-
placement when they’re encoded in 32-bit form. The now-
defunct V810 series used a similar format; the V850 takes
only 22-bit offsets, which is sufficient for its 16M code space.

The small offset limits conditional branches to just 128
instructions (or fewer, depending on the number of inter-
vening 32-bit instructions), which is fine for most loops but
restricts function calls and major decision trees. In these
cases, the sense of the conditional branch must be reversed,
to skip over an unconditional jump.

Branch History Has Short Memory
The most unusual enhancement to the instruction set,
shown in Table 1, is the conditional “advanced branch”
(ABcc) instruction. This takes advantage of branch history to
predict the outcome of the branch, a feature commonly
found in high-end processors. Correctly predicted branches
take only a single clock cycle to execute whether they’re taken
or not, versus three cycles for most taken branches.

What makes ABcc peculiar is the depth of its branch
history: one bit. There is only one branch-history bit for the
entire machine. This lone bit reflects the outcome of the
most recent iteration of the most recent ABcc instruction.
The V830 is not smart enough to know if the branch-history
bit was set by the current ABcc instruction; each different
ABcc instruction will use and then overwrite this bit.

Because the normal conditional-branch instructions
(Bcc) cost three cycles if taken, using an ABcc makes the most
sense at the bottom of a loop. It would repeat often enough
for the two-cycle advantage to pay off, without intervening
ABcc instructions to upset the delicate branch history.

That history, such as it is, is extremely fragile. Apart
from being changed by every ABcc instruction, the branch-
history bit is extinguished by any write into the instruction
RAM (via the BILD instruction), the instruction cache, or the
instruction tags.

Nested loops using ABcc are possible but defeat the pur-
pose. Every time code falls through the inner loop, it resets
the history bit and prevents accurate prediction of the outer
loop. In such cases, only the innermost loop benefits from
the ABcc instruction.

NEC’s approach is unique. Other vendors have opti-
mized loops with branch-likely instructions, such as the
4 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

2 V 8 3 0 G U N N I N G F O R H O M E M E D I A B O X E S
MIPS BccL or i960’s Bcc.T. These are compile-time optimiza-
tions that assume the branch will be taken more often than
not. In practice, they would generally perform better than
NEC’s ABcc because ABcc always mispredicts the first and last
iteration of a loop, while branch-likely instructions mispre-
dict only the last iteration.

The one advantage ABcc has is that its prediction is
dynamic. This could be valuable if the outcome of the branch
is dependent on some condition that cannot be foreseen at
compile time, such as an input variable.

Although its branch history is not as well endowed as
that of bigger RISC processors, ABcc never performs worse
than the normal Bcc instruction. Even if its prediction is
incorrect, ABcc takes no longer than Bcc whether the branch
is taken (three clocks) or not taken (one clock). In the worst
case, the program is no worse off; used judiciously, ABcc can
shave two clocks from nearly every loop iteration.

Some Immediate Forms, If They’re Small
The most basic operations (e.g., add, shift, move) accept
either two registers or a register and a 5-bit immediate value
(the 5-bit immediate taking the place of the second register
specifier). The sign-extended 5-bit immediate, of course,
allows values only from –16 to 15. Anything other than that
must be loaded into a register first. This method is carried
over from previous incarnations of the V800 family and is
typical of RISC chips.

A few arithmetic instructions (ADDI, MULI, MACI, and
MOVHI) and logic instructions (ORI, ANDI, and XORI) can take
© M I C R O D E S I G N R E S O U R C E S A U G U S T
bigger immediate values by extending the instruction to
32 bits, with the extra 16 bits devoted to a signed immediate.
Since the base instruction word still has room for two regis-
ters, these instructions also have the nice side effect of being
nondestructive.

Like any RISC design, there are no instructions that
allow 32-bit immediate values or that load 32-bit constants.
For values larger than ±32,767, the programmer must rely on
register-to-register operations. To load a register, the pro-
grammer must use the MOVHI instruction created for the pur-
pose. MOVHI is like ADDI, except that it adds a 16-bit immedi-
ate to the upper half of the source register before depositing
the result in the destination register, and it doesn’t affect the
status flags. If the source register already holds the low-order
half of the desired value (loaded with MOVEA), MOVHI can
fold in the upper half in a single operation.

A Multiplicity of Multiplication Options
Previous generations of NEC’s V800 family had saturating
addition and subtraction, but only the V830 does saturating
multiplication. (Saturating multiplies are among the en-
hancements in MMX, MDMX, and Piccolo, and they have
long been a feature of SuperH processors.) As Table 2 shows,
the instruction set supports saturating multiplication, non-
destructive (using three operands) multiplication, and mul-
tiplication with 64-bit results, but never all of these at once.

The basic 32 × 32-bit multiply instruction is MUL. It
multiplies any two registers and stores a signed 64-bit result,
with the upper half always going into r30. Thus, MUL is a
Description

LD.B Load byte
LD.H Load halfword (16 bits)
LD.W Load word
ST.B Store byte
ST.H Store halfword
ST.W Store word
IN.B Load byte from I/O space
IN.H Load halfword from I/O space
IN.W Load word from I/O space
OUT.B Store byte to I/O space
OUT.H Store halfword to I/O space
OUT.W Store word to I/O space
MOV Move register to register
BILD Load 4 words to instruction RAM
BDLD Load 4 words to data RAM
BIST Store 4 words from instr RAM
BDST Store 4 words from data RAM
LDSR Load to system register
STSR Store from system register

Arithmetic

Mnemonic Description Mnemonic Description
Load/Store

Flow Control

Logical

Miscellaneous

Mnemonic

JMP Jump indirect via register
JR Jump relative
JAL Subroutine call (jump and link)
Bcc Branch on condition
ABcc Advanced branch on condition
BR Branch always
TRAP Software trap
RETI Return from interrupt
BRKRET Return from exception

STBY Enter Stop Mode
HALT Enter Sleep Mode

ADD Add with carry
ADDI Add with immediate 16
MOVEA Add register, immediate 16
MOVHI Add register, immediate 16
SUB Subtract with borrow
SATADD3 Add three operands, saturating
SATSUB3 Subtract three ops, saturating
MUL Multiply, signed
MULU Multiply, unsigned
MULI Multiply with immediate
MUL3 Multiply three operands
MULT3 MUL3 with truncate
MACI Multiply-add with immediate
MAC3 Multiply-add three operands
MACT3 MAC3 with truncate
DIV Divide, signed
DIVU Divide, unsigned
MIN3 Minimum of three operands
MAX3 Maximum of three operands

OR/I Logical OR/with immediate 16
AND/I Logical AND/with immediate 16
XOR/I Logical XOR/with immed 16
NOT One's complement register
SHL Logical shift left 1–32 bits
SHR Logical shift right 1–32 bits
SAR Arithmetic shift right 1–32 bits
SHLD3 Shift left doubleword 1–32 bits
SHRD3 Shift right doubleword 1–32 bits
CMP Compare two registers
CAXI Atomic compare and exchange
SETF Set flag on condition

Miscellaneous

EI/DI Enable/disable interrupts
NOP No operation

Table 1. The V830 instruction set, while not binary-compatible with earlier V800 chips, is similar in many ways. All instructions can oper-
ate on any of the CPU’s 32 general-purpose registers. • indicates new to the V830 family; highlighted instructions are 32 bits long.
4 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

3 V 8 3 0 G U N N I N G F O R H O M E M E D I A B O X E S
destructive, extended-precision operation useful for general-
purpose arithmetic. MULU is essentially the same, but treats
the sources as unsigned operands. MUL3 is the saturating,
three-operand version of MUL (there is no unsigned MUL3).

By extending the instruction to 32 bits and adding an
immediate multiplier, MULI performs a 32 × 16 → 32-bit
operation. Like ADDI, MULI is nondestructive, taking both a
source and a destination register. It also saturates: if the result
overflows 32 bits, the destination register is set to its largest
(or smallest) extent and the saturation flag is set.

Finally, MULT3 offers three-operand addressing for big-
ger numbers. The lower 32 bits of the product are discarded,
and only the upper half is stored in the destination register.
Rather than saturating, MULT3 truncates (hence the mnemonic)
the result. Obviously, MULT3 is useful only when the results of
the multiplication will significantly overflow 32 bits. This is
useful for handling scaled (Q-format) numbers, where digits
to the left of the “binary point” are significant.

Multiply performance is middling for a RISC design
but far ahead of chips from the 68K or x86 families. Both
MULI and MUL3 take three cycles to execute, with a single-
cycle repeat rate. Oddly, MUL and MULU are one clock slower,
with four-cycle latency and two-cycle throughput. Many
RISCs (e.g., MIPS, PowerPC) have either single-cycle hard-
ware multipliers or, like ARM, have iterative multipliers that
take 10–15 cycles for 32 × 32-bit operations.

Saturating MUL, MAC Intended for Video
NEC’s other change for media processing is a set of multiply-
accumulate (MAC) instructions. These are, for the most
part, orthogonal with the multiply instructions: MACI works
like MULI, MAC3 like MUL3, and MACT3 like MULT3. The only
difference among these three pairs is whether the destination
is overwritten or accumulated. The MULI and MACI instruc-
© M I C R O D E S I G N R E S O U R C E S A U G U S T
tions are a convenient way to accumulate results with a con-
stant scaling factor, a common construct when scaling the
brightness or size of a polygon.

Of all the multiplication operations, only MUL3 and
MULT3 (and their accumulating counterparts, MAC3 and
MACT3) are nondestructive, but they also saturate/truncate
the result, so no 64-bit products are available. Conversely,
MUL and MULU support 64-bit precision, but both are de-
structive, and MULI is both destructive and saturating.

For general control-oriented arithmetic, MUL and MULU

will be used most; the saturating MUL3, MULT3, and MULI are
clearly intended for pixel and sound processing, where their
overflow handling is welcome.

On the whole, the V830’s multiplying, accumulating,
and saturating instructions are not much different from
those of most SuperH chips or the media-processing exten-
sions from ARM (Piccolo), MIPS (MDMX), or Intel (MMX).
While the details might differ, every vendor seems to agree
on the basic feature set required.

Unlike most low-cost chips—and even some expensive
RISC processors—the V830 sports DIV and DIVU instructions
for signed and unsigned 32-bit division. At 35–37 cycles
each, and no pipelining, these instructions are not particu-
larly speedy, but they’re still much faster and more conve-
nient than calculating quotients and remainders in software.
SuperH chips use a software-controlled iterative process for
division that delivers exactly the same 37-cycle latency as the
V830. ColdFire, MIPS, and i960 have no divide support at all.

Odd Interlocks Stall Flag Operations
Apart from their tepid performance, MUL and MULU also need
an extra clock cycle to update the CPU’s status flags. If a sub-
sequent instruction (usually a conditional branch) depends
on the flags, the chip will stall while the flags are forwarded
from the ALU. Worse, all of the logical operations (OR, ORI,
AND, XOR, SHL, etc.) suffer from the same problem. This is
particularly onerous because one of these instructions will
often precede a conditional branch. None of the other arith-
metic operations suffers from this interlock problem.

Another peculiar interlock exists for all the multiply-
accumulate instructions: unless the destination register has
been used recently (within the last three clock cycles), the
MAC operation will stall for a cycle. This is because MAC
operations, unlike others that use the multiplier, use the des-
tination register as a source, and the V830 needs an extra
clock to fetch its contents. If that register has been updated
recently, however, its contents are already “in transit” (in the
store queue) and can be routed to the multiplier one clock
sooner.

MAC and On-Chip RAM Make DSP Loops Hum
Since the new MAC instructions are clearly intended for
media processing, it’s important that these pipeline well in
tight pseudo-DSP loops, and the V830 does not disappoint.
All multiply and multiply-accumulate instructions (except
MUL
MULU
MULI
MUL3
MULT3
MACI
MAC3
MACT3
MOVEA
MOVHI
SATADD3
SATSUB3

Sa
tu

ra
te

s

Th
re

e-
op

er
an

d
Non

de
st

ru
ct

iv
e

16
-b

it
im

m
ed

ia
te

Upd
at

es
 fl

ag
s

Tr
un

ca
te

s
64

-b
it

re
su

lt

Table 2. The V830 includes several permutations of multiply and
multiply-accumulate that offer 32- or 64-bit precision, saturation,
truncation, or nondestructive operand addressing. There are also
two forms of saturating addition and subtraction.
4 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

4 V 8 3 0 G U N N I N G F O R H O M E M E D I A B O X E S
MUL and MULU, as noted previously) have a one-cycle repeat
rate. At 100 MHz, this allows the chips to run at 200 MOPS
under ideal circumstances. With their on-chip data RAM, the
V830 and V831 are equipped to keep conditions nearly ideal.
Memory latency would normally kill a data-intensive loop of
repetitive MAC instructions once it got under way. But with
single-cycle access to a 4K block of on-chip RAM, the V830
and V831 should be able to maintain a steady flow of coeffi-
cients and scaling factors under most circumstances.

Here is where the BDLD and BILD instructions come
into play. They initiate burst loads of the data or instruction
RAM, respectively. Although the actual latency of these oper-
ations will depend on memory speed, and will certainly be
several dozen cycles, they do not stall the processor. This
allows the CPU to process data already in on-chip RAM
while new data is loaded from external memory. Given a big
enough instruction loop or quick enough external memory,
a new BDLD can preload the data RAM on each iteration
through the loop without stalling.

Lots of Saturating, Nondestructive Operations
A surprising number of instructions are nondestructive,
given the V830’s cramped opcode map. The MAX3 and MIN3

pair are nondestructive; the result of the comparison is
stored in a third register.

The saturating arithmetic instructions SATADD3 and
SATSUB3 are like MUL3: nondestructive, three-operand, and
saturating at 32 bits. These two operations are vital for pixel
manipulation, where adding colors improperly can result in
“whiter than white” becoming black, and vice versa.

In addition to the usual 32-bit shift and rotate instruc-
tions, the V830 also has a pair of 64-bit shifts, SHLD3 and
SHRD3. These work by concatenating any two registers (they
need not be contiguous) and shifting out of one into the
other. This is useful not for creating 64-bit patterns but for
controlling which bits are shifted into the destination regis-
ter. Normally executing in a single clock cycle, these instruc-
tions are susceptible to the same peculiar destination-regis-
ter interlock as the MAC instructions.

The CAXI (compare and exchange, interlocked) instruc-
tion is the sole read-modify-write operation, used for sema-
phore synchronization in multiprocessor systems or (as is
more likely in the V830’s case) single-processor systems that
run multitasking operating systems. CAXI loads a word from
memory and compares it with a specified data register. If all
32 bits match, the chip stores r30 in its place; otherwise,
memory is unchanged. When it’s all over, CAXI has loaded
and possibly updated a shared memory location, such as a
counter or ownership flag. Such indivisible bus operations
are vital in systems with shared resources (such as a frame
buffer or DMA controller), but they are often not provided
in newer processors, pushing the burden onto the hardware
designer. Motorola’s 68K processors have always had similar
instructions, although this (like division) was cut when cre-
ating ColdFire.
© M I C R O D E S I G N R E S O U R C E S A U G U S T
A Strong Competitor for Home Media
In all, the V830 is a worthwhile addition to NEC’s V800 line,
adding signal-processing capability while keeping the old
values of the V800 family (tight code, regular register set).

Although the V830 core is well equipped for moderately
taxing digital-signal processing tasks, it’s not perfect. With just
one addressing mode (register-indirect with 16-bit offset), the
V830 lacks such niceties as postincremented or predecre-
mented addressing. Nor can the V830 do circular addressing,
a powerful DSP capability that the third-generation ColdFire
(see MPR 9/16/96, p. 1) and most DSPs provide.

The V830 has no stack-management instructions or
addressing modes, although r2 is nominally reserved as its
stack pointer. Nesting subroutines and passing parameters
among them is the programmer’s problem. (In fact, there’s no
explicit return-from-subroutine instruction; code must jump
indirectly through r31.) And the V830 has no memory-
reference instructions; all data must pass through its registers.

The enhancements to the V830 are designed more for
the signal-processing work of a network or modem connec-
tion, or for sound enhancement, than for pixel processing. For
example, there are no SIMD instructions that operate on mul-
tiple pixels simultaneously, like those provided by MMX, VIS,
or MDMX. Nor is there an FPU for high-precision work. In
sum, the V830 is still a microcontroller at heart: a single-chip
processor for low-cost, high-volume consumer applications
with moderate processing demands, such as a set-top box.

For about $25, a 100-MHz V830 delivers a strong com-
bination of integer performance and pseudo-DSP perfor-
mance. ColdFire chips are cheaper, but also slower and tai-
lored for 16-bit multiplication. Embedded MIPS parts are
just as fast, but none so far incorporates the MDMX en-
hancements. Hitachi’s upcoming SH-4 enjoys even better
code density than the V830, but SH-4 is still several months
away. Unlike the V830, SH-4’s strengths are in 3D geometry
setup, not in signal processing. In fact, the V830 and SH-4 are
almost polar opposites in that regard. At the other end lies
Hitachi’s SH-DSP (see MPR 12/4/95, p. 10), which has true
signal-processing capability at the expense of some code
density and binary compatibility with other SuperH parts.

For network-enabled televisions or low-cost NCs, the
V830 is an ideal choice: inexpensive, well equipped, and fast
enough to handle HTML decoding and soft-modem func-
tions with tolerable speed. In an industry marked by con-
stant change, NEC has shown that even its nearly forgotten
V800 family can change, becoming a strong competitor in an
ever more crowded field. M
F o r M o r e I n f o r m a t i o n

More information on NEC’s V830 family can be ob-
tained from NEC (Santa Clara, Calif) at 408.588.6000 or
by visiting www.nec.com/products/products.html.
4 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

http://www.nec.com/products/products.html

	V830 Gunning for Home Media Boxes
	V830 Bears Strong Similarity to V810, V850
	Figure 1. Only three of the V830’s 32 registers are...
	Conditional Branches Must Be Short
	Branch History Has Short Memory
	Some Immediate Forms, If They’re Small
	A Multiplicity of Multiplication Options
	Table 1. The V830 instruction set...
	Table 2. The V830 includes several permutations...
	Saturating MUL, MAC Intended for Video
	Odd Interlocks Stall Flag Operations
	MAC and On-Chip RAM Make DSP Loops Hum
	Lots of Saturating, Nondestructive Operations
	Strong Competitor for Home Media

	For More Information

