
n Shows Promise
 Keeps Circuits Small and Simple
by Peter Song

Tick, tick, tick. The continuous beat of the ubiquitous
clock signal is a comforting sound to digital designers, who
know their signals have to be valid when the clock ticks but
not between ticks. A growing number of designers, however,
are making the scary leap to designs that do not use a clock.
These asynchronous designs consume little power because
transistors switch only when needed, not every cycle, and can
provide performance benefits as well.

Asynchronous circuits are energy efficient—especially
in CMOS technology, which consumes power only when
switching—since only the transistors involved in the current
computation are switched. They are well suited for algo-
rithms that exhibit large differences between worst-case and
average-case computing times. Without a clock to periodi-
cally generate huge voltage swings, asynchronous chips pro-
duce lower levels of electromagnetic interference. They are
naturally immune from clock skew, a growing problem in
clocked circuits as clock periods shrink and die sizes increase.

Asynchronous circuits are, unfortunately, much more
difficult to design than clocked, or synchronous, circuits.
Designing synchronous circuits is made easier by assuming
that all state-holding elements (latches and registers) change
together and in discontinuous steps. Assuming otherwise—
that state-holding elements change independently or contin-
uously—increases the need for highly accurate timing mod-
els, greatly complicates the design process, and requires
highly inefficient test methods. The few designers who have
tried it have found that the lack of simple and well under-
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stood design methods and tools gets in the way of reaping
the full benefits of being clock-free.

Clock-free chips are unlikely to displace clocked chips
to any great extent in the foreseeable future, even in applica-
tions that demand the highest MIPS/W rating. Nevertheless,
the pursuit of reliable and easy-to-use asynchronous design
methods and tools continues, mostly in research environ-
ments. A few designs are starting to make the transition from
research to products. Using an asynchronous ARM core,
Amulet2e delivers 40 MIPS at 150mW and targets portable
embedded applications. Sharp’s DDMP (data-driven multi-
media processor) uses eight CPUs—each clock-free CPU
delivers 600 MOPS using only 40K gates and less than
60 mW—to compete against Chromatic’s Mpact2, Philips’s
Trimedia, and TI’s TMS320C6X. And Cogency (see MPR
10/6/97, p. 10) is now shipping a fully asynchronous DSP.

Eliminating Clock Has Benefits
Unlike many synchronous circuits that consume power
every cycle everywhere, asynchronous circuits consume
power only when and where it is needed. Although asyn-
chronous circuits tend to use more transistors than synchro-
nous circuits, the transistors not involved in computation do
not switch. Philips designed a DCC (digital compact cas-
sette) error-corrector chip that consumes 80% less power
than a clocked design, despite using 70–100% more area for
replacing a clock and registers with handshake components.
Although many synchronous designs use power-saving tech-
niques, such as not clocking idle functional units, these tech-
niques are inherently part of asynchronous circuits.

Asynchronous circuits are well suited for implementing
algorithms such as the ripple-carry addition, in which the
worst-case computing delay—the carry rippling from the
least significant bit of the sum to the most significant bit—
rarely occurs. Although ripple-carry adders are smaller than
other types of adders and produce fast results in most cases,
they are not used in clocked designs in which results must be
produced in the same number of cycles in all cases. Asyn-
chronous designs can be optimized for average-case perfor-
mance rather than for worst-case performance, resulting in
simpler and smaller circuits without unduly compromising
overall performance.

Clocked circuits must handle clock skew (the difference
in arrival times of clock edges at different parts of the circuit)
that bounds the minimum and maximum delay through
combinational paths. Since wire delays do not scale linearly
with decreasing clock periods, clock skew takes an increas-
ingly larger portion of useful clock cycles as process geome-
tries shrink. Furthermore, as more transistors are packed
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Table 1. Sequential circuits can be classified by their assumptions
about whether state changes are continual or discrete and syn-
chronized or not and whether gate and wire delays are bounded
(known) or unbounded (unknown). *AFSM = asynchronous finite-
state machine. ‡isochronic = all wires originating from the same
output have the same amount of delay. †SIC (single input change)
= only one input is to change at a time. (Source: [1]).
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into larger die, requiring larger clock-distribution trees or
grids and stronger clock drivers, managing clock skew and
power consumed by the clock becomes even more difficult.
By replacing a global clock with handshake components that
are local and operate independently, asynchronous circuits
avoid these problems.

Assumptions on Time Classify Sequential Circuits
The fundamental distinction between synchronous and asyn-
chronous circuits is whether states change together (synchro-
nously) or independently. As Table 1 shows, synchronous cir-
cuits are the most restrictive class of sequential circuits,
designed under the assumption that states change together
and in discrete steps, or in clock cycles. While some asynchro-
nous circuits are designed under the same assumption, others
are designed under the assumption that states can change
continuously, thereby requiring signals to be valid at all times.
Different sets of assumptions yield varying tradeoffs in design
difficulties, circuit sizes and complexities, and reliability.

Asynchronous finite-state machines (AFSMs) are struc-
turally different from finite-state machines (FSMs) in that the
clocked state-holding elements are now replaced with the
delay elements, which are needed to avoid race conditions
that can cause the machines to change multiple times on a
single input change. The clocked elements in FSMs contain
snapshots of the combinational logic, allowing the combina-
tional logic to change freely between the clock edges. The
delay elements in AFSMs, in contrast, continually represent
the state of the combinational logic.

AFSMs suffer from two major problems that make
them unsuitable for datapath or deeply pipelined designs.
The first is that they require the inputs to operate in funda-
mental mode—an input change should not occur until the
machine settles into a stable state—severely limiting the
degree of concurrency generally needed in datapath designs.
The other is that they suffer from the additive-skew problem.
That is, changes to the first machine’s inputs are restricted to
meet the fundamental-mode assumption of not only the first
machine but all other machines connected to it as well. The
first machine’s inputs must not change faster than the time
needed for it and the other machines to become stable.

Since each machine has skew—the difference between
the minimum and the maximum propagation delays through
the combinational logic—then for two machines in series, the
first machine’s inputs must not change faster than the sum of
the first machine’s skew and the propagation delay through
the second machine. Meeting the additive-skew requirement
results in extremely poor throughput in designs with many
pipeline stages.

Circuits, including AFSMs, that assume bounded delays
must be designed to function without timing problems in
widely varying physical conditions. Designing such circuits
requires a correct-by-construction design method and accu-
rate timing models in all phases of the design process; the
simple but practical synchronous design method of encap-
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Assuming that states change only on clock bound-
aries allows designers to solve separately the functional
and timing problems of synchronous circuits. Since the
Boolean logic is precise and timeless but propagation
delays are imprecise and variable, being able to meet the
two requirements separately simplifies both the func-
tional and the timing design processes and makes the
required tools more efficient.

Designers can largely ignore the imprecise nature of
propagation delays during the functional design process.
Propagation delays are inherently imprecise and variable
because they are affected by many physical and environ-
mental factors, such as process variations, packaging,
temperature, frequency, and voltage. They are difficult to
model accurately without detailed physical data. The
most accurate physical data is belatedly available from
layout when the design is nearly completed.

Functional simulation is simpler when propagation
delays are not modeled. To select the right set of features
from many design options, designers generally simulate
cycle-accurate or near-cycle-accurate behaviors of the
features. Such simulators are much faster than event-
driven simulators that model delays between events.
Even when using event-driven simulators, most designers
do not model the individual gate and wire delays but only
the signal delays needed to chronologically order the
events, resulting in faster simulation.

Timing analysis is also more efficient when logic func-
tions are not modeled. Static timing-analysis tools calculate
the longest delay from each input to each output of a
module without evaluating the logic between the input
and the output. Since only propagation delays and not
logic functions are used, the modules can be arbitrarily
large and can be built hierarchically using smaller modules.

Static timing analysis is so efficient that it can easily
identify critical paths of multimillion-transistor circuits
within hours. This is several orders of magnitude faster
than dynamic timing-analysis tools, such as Spice, that
use more detailed timing models. Although static timing
tools are less accurate (most claim to be within 5–10% of
the accuracy of Spice), their fast turnaround is indispensi-
ble for performing many iterations of logic changes and
synthesis to meet timing goals of high-speed designs.

The penalty for this efficient design approach is that
state changes can occur no faster than the longest com-
binational delay in the clocked circuit. If the clock is peri-
odic—and it generally is, except during testing and
debugging—its period must be longer than the longest
combinational delay when computing the worst case.
The penalty is an acceptable compromise for being able
to design arbitrarily complex circuits.
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sulating combinational logic with latches is utterly unreli-
able. Bounded-delay circuits also require precision test
equipment to confirm the timing models. Most commercial
CAD tools and test equipment, indispensable for designing
and testing synchronous circuits, are inadequate for han-
dling asynchronous circuits of any meaningful complexity.

Delay-Insensitive Circuits Avoid Hazards, Races
One way to avoid timing problems is to assume that gate and
wire delays are unknown and design the circuits to be insen-
sitive to their delays. These delay-insensitive circuits use a
two-way handshake for passing each bit of information.
Each receiver is required to acknowledge to the sender that it
has received the data, but only after the data is no longer
needed. The receiver does not know how long it will take to
process the data, so each receiver must use a completion-
sensing circuit to generate the acknowledge signal. The
sender must wait for acknowledge signals from all the re-
ceivers before sending the next data item.

Delay-insensitive circuits use transition-based signal-
ing for the handshakes, since there is no way to know when
data is sent on a wire by judging its level. When a transition
in either direction is sent on a wire, however, the receiver
will eventually see the transition. Because a transition indi-
cates when data arrives but not what that data is, dual-rail
encoding is used in datapaths. Each signal is carried by two
wires—one for sending the transitions for zeroes and the
other for ones.

The bundled-data scheme is a more efficient alternative
to dual-rail encoding. It uses a data wire for each data bit in
a bus and one control wire for validating the entire bundle of
data wires. Whereas only transitions are meaningful on the
control wire, the logic level on a data wire represents its
value. If the delay in the control wire is longer than the delay
in the data wires, a transition sent on the control wire after
the data wires are set to the data values will be seen by the
receiver after the data values have arrived. Although the
scheme assumes bounded wire delays, the assumptions are
practical and can easily be implemented; since bundled wires
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are generally routed together, often manually, adding the
control wire to the bundle and connecting it to a delay ele-
ment should be manageable.

When fabricated without defects, delay-insensitive cir-
cuits will work with any amount of delay. While this property
is appealing in theory, the kinds of gates that can be used and
the complexity of the delay-insensitive circuits that can be
designed are severely limited. In fact, the only single-output
gates that can be used are single-input gates, such as buffers
and inverters, and Muller C–elements. Muller C–elements
are multiple-input, single-output gates whose output is 1
when all inputs are 1, 0 when all inputs are 0, and unchanged
otherwise.

Micropipelines Form Clock-Free Pipelines
Introduced by Ivan Sutherland in his Turing Award lecture in
1989 [2], micropipelines offer a conceptually simple way to
transform clocked pipelines into asynchronous pipelines.
Since registers that separate pipeline stages are controlled by
delay-insensitive circuits consisting of inverters and Muller
C–elements, they are viewed as having bounded-delay data-
paths modulated by delay-insensitive control circuits.

Figure 1 shows a simple micropipeline. The flow of data
through the pipeline is controlled by the input handshake
signals, REQin and ACKin, and the output handshake signals,
REQout and ACKout. The pipeline registers are controlled by
two signals; a transition on the C (close) port closes them,
and a transition on the P (propagate) port opens them,
allowing data to propagate. The Cd port simply delays, and
the Pd port delays with an inversion, the transitions on the C
and P ports, respectively.

The major benefit of the micropipeline structure is that
the registers filter out hazards, eliminating the additive-skew
problem. Waiting longer than the worst-case propagation
delay through the combinational logic before closing the reg-
isters allows the registers to contain snapshots of stable data-
path outputs. They also hold the data stable until the regis-
ters in the next stage are closed. In this regard, the registers in
both micropipelines and synchronous circuits provide the
same function with the same benefit. In fact, any combina-
tional logic structure used in clocked circuits can also be
used in micropipelines, which means that micropipelines
can be built from clocked pipelines simply by replacing the
clocked latches with the micropipeline-control structure.
Cogency has done exactly this with its first 16-bit asynchro-
nous DSP chip (see MPR 10/6/97, p. 10).

The major drawback of using delay elements, however,
is that they take away a key motivation for designing clock-
free circuits—that is, using delay elements causes each stage
to operate at the speed of its worst-case computing delay.
Although different stages still operate at different speeds, the
entire pipeline operates at the speed of its slowest stage. If the
delay elements can be replaced with self-timed circuits that
actually sense when computation is done, the stages can oper-
ate at their optimum speeds. Self-timed circuits, however, are
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Figure 1. Micropipelines regulate the flow of data using a two-
way handshake between adjacent pipeline stages. A clocked
pipeline can be converted to a micropipeline by replacing the
clocked latches with the micropipeline-control structure that con-
sists of Muller C–elements, transition-based latches, and delay ele-
ments. Each delay element must have a longer propagation delay
than does the combinational logic in the associated stage.
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not easy to devise and may not be possible with every cir-
cuit structure.

Hal Computer’s SPARC64 chip (see MPR 3/6/95, p. 1)
uses an asynchronous divider that calculates double-preci-
sion results in 5–8 cycles. The divider uses micropipelines
but replaces the registers with precharged gates that store
partial results. Instead of delay elements, the divider uses
completion-sensing circuits for the critical paths, allowing
each divide iteration to execute at its full speed. Once a divide
operation starts, the divider output is checked every cycle
until the result is produced. Implemented in a 0.4-micron
process, the divider occupies 5 mm2. A traditional clocked
implementation would take only 2 mm2 in the same process,
but it would also take 54 cycles (both in radix-2 designs).

Clock-Free Amulet2e Uses Micropipelines
For the past five years, a team of graduate students at the
University of Manchester has been designing a family of
asynchronous ARM microprocessors. Although their initial
design, Amulet1, did not show clear advantages in power
consumption or performance over synchronous ARM pro-
cessors, it demonstrated the feasibility of designing a non-
trivial (58,000-transistor) asynchronous processor. Amulet2e
is an enhanced design that shows more promise.

As Figure 2 shows, the Amulet2e core consists of several
micropipelines operating independently and communicat-
ing through bundled-data interfaces. Because it uses micro-
pipelines, the core organization is not too different from that
of conventional ARM cores. As an example, the memory
interface consists of an output bundle for sending control,
data, and an address for writing to memory and an input
bundle for receiving a word from memory. The memory sys-
tem may have arbitrary pipeline depths and delays but must
return instructions and data in the requested order.

When an instruction is issued from the decoder to the
execution pipeline, its destination register is locked, stalling
subsequent reads until the result is written to the register.
Access to the register file can be controlled by the conven-
tional scoreboarding mechanism, but register forwarding
cannot be done using the conventional mechanism without
synchronizing across multiple pipeline stages. The solution
is to use the LRR (last result register) and LLR (last load reg-
ister) that hold the latest results of ALU and load opera-
tions, respectively, and forward from them to dependent
instructions at the beginning of the execution stage. Ac-
cording to Steve Furber, who is directing the research, this
seemingly obvious solution took his team a long time to
devise—the salient point being that asynchronous design is
conceptually different—and much effort is needed to
devise the asynchronous equivalents of many performance-
enhancing techniques widely used in today’s high-perfor-
mance designs.

Implemented in VLSI’s 0.5-micron triple-metal process,
the Amulet2e consists of 454,000 transistors and occupies
41 mm2. Using a 64-way 4K cache on chip, it delivers 40 MIPS
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while consuming 150 mW. It has a MIPS/W rating of 250,
placing it higher than the ARM710’s 192 and ARM810’s 172
but significantly lower than the Digital SA-110’s 745. The
Amulet team now aims to deliver its third asynchronous pro-
cessor, which they claim will match the Digital SA-110 in both
performance and power efficiency.

Obstacles Abound for Clock-Free Designs
A major obstacle facing clock-free circuits is the lack of sim-
ple methods for designing arbitrarily complex circuits that
can also be built reliably. Due to their fundamental mode of
operation and resulting additive skew, asynchronous finite-
state machines are ill suited for designing datapaths or
pipelined circuits. Delay-insensitive circuits are robust and
easy to fabricate, but they are extremely simple and therefore
not too useful. Speed-insensitive and quasi-delay-insensitive
circuits are under intense academic research, due to the
somewhat insensitive delay models that make them synthe-
sizable. Although many methods have been proposed, only a
few have been tried with nontrivial designs.

Another major obstacle is the lack of design tools that
support clock-free design. Most design tools take advantage
of the fact that functional and timing designs are done
largely in separate steps, making these tools unsuitable for
asynchronous design. To handle millions of transistors effi-
ciently, functional simulators generally ignore timing attrib-
utes, and static timing-analysis tools mostly ignore func-
tional attributes. Synthesis tools first translate combinational
logic into expression trees without regard to timing, then use
heuristics to repeatedly partition the trees and map to avail-
able standard cells until timing goals are met (or time limits
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Figure 2. The Amulet2e core consists of several micropipelines
operating independently and communicating via bundled-data
interfaces. The core (excluding the memory pipeline from the fig-
ure) consists of 93,000 transistors.
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run out). Although some precision timing-analysis tools,
such as Spice or EPIC’s TimeMill, do treat functional and
timing attributes as one indivisible entity, they are utterly
inefficient as functional simulators that must deliver mil-
lions of simulation cycles for overnight regression.

The inability to suspend and advance state machines at
will in asynchronous chips makes debugging and testing
them difficult. Whereas the entire state of synchronous chips
can be frozen, advanced, and even modified via scan opera-
tions, the state of asynchronous chips cannot. Without
clocked registers, single-step operations are not possible:
with asynchronous chips, a change in input pins propagates
until the entire chip reaches a stable state. Asynchronous
chips either run at full speed or remain halted; it is not pos-
sible to stop them until they halt naturally.

Existing manufacturing-test equipment is inadequate
for testing asynchronous circuits. For circuits that assume
bounded gate and wire delays, the widely used stuck-at fault
model is inadequate and therefore requires path-delay tests
for detecting delay faults. Path-delay tests involve the appli-
cation of test vectors and the timely sampling of responses—
each sample is taken after a time that allows a path to pro-
duce a correct output if it is defect-free but an incorrect
output if it contains a delay fault. These tests are significantly
more expensive to perform than stuck-at fault tests. In addi-
tion, adding extra logic to eliminate hazards during design
directly conflicts with the need to eliminate redundant logic
for testing, as it makes detecting faults difficult.

Circuits that use the continuous-time model are also
more susceptible to noise than those that use the discrete-
time model. Whereas state changes are designed to take place
after noise has time to subside in the discrete-time model,
circuits must be stable at all times in the continuous-time
model. Noise and timing hazards can be dealt with by slow-
ing down the clock in synchronous chips, but they generally
cause malfunctions that cannot be fixed in asynchronous
chips. Asynchronous circuits, however, generate lower levels
of noise and EMI than clocked circuits.
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Clock-Free Chips Won’t Displace Clocked Chips
Clock-free circuits can have low power consumption and
low levels of electromagnetic interference. They can be opti-
mized for average-case, instead of the infrequent worst-case,
computing times to simplify designs or yield smaller sizes
without compromising overall performance. Due to difficul-
ties in designing and testing asynchronous circuits, however,
many of these potential benefits have yet to be turned into
competitive advantages over synchronous circuits.

Asynchronous circuits cover a wide range of circuits
and design methods. Although delay-insensitive circuits are
less than practical, they introduce the ideas of using transi-
tion-based signaling for control and using either dual-rail
encoding or the bundled-data scheme for passing data. Clos-
est to synchronous circuits, and therefore not taking full
advantage of being clock-free, micropipelines offer the most
practical way to design asynchronous circuits. Micropipelines
avoid additive skew, as well as hazards, by isolating adjacent
stages with pipeline registers. Although not enough is known
about applying micropipelines to more general circuit struc-
tures, large-scale design efforts, such as those undertaken by
Cogency and the Amulet group, are providing more insight.

All the asynchronous design methods, however, are
likely to be more complicated than the more familiar syn-
chronous design methods. Although most designers learn
about asynchronous design techniques in their introduction
to logic design, there are no products from which to gain
practical experience and further develop skill. This situation
is unlikely to change in the foreseeable future unless a non-
trivial asynchronous design can clearly demonstrate techni-
cal superiority over synchronous designs.

There is a circle of dependence that hinders wider
acceptance of asynchronous circuits and more aggressive
development of their design methods and tools. Given the
enormous mismatch between the states of synchronous and
asynchronous designs, asynchronous designs are unlikely to
deliver higher performance than synchronous designs, even
at comparable power-consumption levels. Without demon-
strably clear market advantages, few may commit to asyn-
chronous designs when easier solutions can be found. Many
portable applications that are highly sensitive to EMI may
find clock-free designs attractive, however.

Asynchronous circuits are more likely to be used within
synchronous chips than by themselves. By themselves, they
are less likely to have the levels of complexity needed to make
them complete solutions in most applications. Due to accel-
erating advances in semiconductor processes, the minimum
level of integration in a single chip is likely to grow faster
than the complexity of the asynchronous chips that can be
designed. By implementing clock-free only the modules that
are well suited for it—datapaths that tend to have simple and
repetitive logic, modules that have few interfaces and spo-
radic inputs, and algorithms that exhibit large computing
delays between the worst case and average case—the difficul-
ties of designing clock-free chips can be largely mitigated. M
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