
E
M

B
E
D

D
E
D

ves CISC Techniques
pability and Microcontroller Functions
by Jim Turley

Fashions run in cycles, and CPU
designs abandoned in the ’70s are
again becoming chic. As evidence

of this trend, Siemens rolled out TriCore, a retro-CISC archi-
tecture that combines microcontroller, DSP, and CPU fea-
tures while simultaneously attempting to shrink code size
and improve speed.

TriCore throws out nearly everything that RISC micro-
processor design has taught in the past ten years. At last
month’s Microprocessor Forum, TriCore’s chief architect,
Rod Fleck, described a mixture of 16- and 32-bit instruc-
tions, separate address and data registers, multicycle instruc-
tions, multiple data types, complex interrupt handling, and a
lopsided instruction set geared toward bit-twiddling.

Paradoxically, TriCore also includes some of today’s
newest thinking in embedded controllers. It handles digital
signal processing (DSP), zero-overhead loops, and SIMD
packed data types, and relies on a 128-bit path to local
embedded DRAM. The first TriCore chips aren’t expected to
sample until 2Q98, but by the end of next year, Siemens
hopes to make a dent in automotive and computer-periph-
eral markets with its unusual new family.

Register Set a Big Step Backward
TriCore includes 32 registers, plus a few control/status regis-
ters. Where TriCore differs from most recent microproces-
sors is its split between address and data registers. As Figure 1
shows, only 16 of the registers are used for handling data; the
other half are address pointers.

TriCore’s register set is further divided into quarters.
Siemens segregates the registers into an “upper context” and
a “lower context.” When switching tasks, calling functions, or
handling interrupts, only one context is saved or restored.

TriCore’s lower context consists of eight data registers
(D0–D7) but only six of the lower eight address registers
(A2–A7). The other two address registers, A0 and A1, are
global resources that are not saved or restored as part of a
context switch. The global program counter, PC, is also con-
sidered part of the lower context. The upper context consists
of the other eight data registers (D8–D15), six address regis-
ters (A10–A15), and PSW. Like A0 and A1, A8 and A9 are
global address pointers.

TriCore’s subdivided (and not very general) register set
is a throwback to the CISC microcontrollers that Siemens
knows so well. While the design might not be architecturally
elegant, Fleck believes that it makes sense in the grubby
world of real-life control code. The logical split allows

Siemens TriCore Revi
New 32-Bit Design Emphasizes DSP Ca
© M I C R O D E S I G N R E S O U R C E S N O V E M B E
Siemens to implement a physical split, placing the addresses
and data registers in different areas of the chip, alleviating
port congestion and simplifying routing.

Linked List Gives Fast Interrupt Response
Interrupts, traps, and function calls automatically save the
upper context to on-chip memory, giving the trap handler,
interrupt-service routine, or called function a clean set of
registers with which to work. Software can save the lower
context as well, if desired, with explicit instructions. TriCore
automatically restores the upper context when resuming the
interrupted task. Saving and restoring the upper or lower
context takes just four clock cycles because of TriCore’s wide
128-bit bus between the register file and dual 2K caches.

Saved contexts are stored in a linked list that TriCore
chips maintain automatically. Each context store needs
64 bytes for the 15 registers plus a 32-bit link pointer to the
next free context area. Internal head and tail pointers (in
PCXI) allow TriCore to quickly locate the next (or previ-
ous) state.

As a safety net, TriCore also maintains a call-recursion
counter for every task. The counter is incremented on every
function call and restored to its previous state (rather than
decremented) on every return. If the counter overflows, an
exception occurs. Programmers can control the width of
the counter (in bits), setting their tolerance factor for run-
away recursion.

Instructions an Eclectic Mix
TriCore executes both 16- and 32-bit instructions, which
may be freely intermixed. Each opcode includes a size bit, so
TriCore’s instruction decoder can identify long or short
instructions immediately. The 16-bit instructions form a
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9

A10
A11
A12
A13
A15
A15

D0
D1
D2
D3
D4
D5
D6
D7
D8
D9

D10
D11
D12
D13
D15
D15

Lo
w

er
 C

on
te

xt
U

pp
er

 C
on

te
xt

PCXI

PSW
PC

Global addr
Global addr

Global addr
Global addr
Stack pointer
Return addr

Base addr

Address
registers

Data
registers

Control/status
registers

Figure 1. TriCore separates its address and data registers; upper
and lower halves, or contexts, are saved and restored separately.
R 1 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

2 S I E M E N S T R I C O R E R E V I V E S C I S C T E C H N I Q U E S

E
M

B
E
D

D
E
D

subset of existing 32-bit instructions that sacrifices some
flexibility, so in many cases a 32-bit instruction can be
replaced with a shorter form to save code space. Unlike
Thumb or MIPS-16, TriCore switches between 16- and 32-
bit instructions without explicitly switching modes, saving a
little in execution time and avoiding the need to segregate
compressed and uncompressed code.

TriCore follows a basic load/store model, but the simi-
larity to RISC chips ends there. The instruction set is quite
rich, with most of the emphasis on numerical processing and
integer DSP work. As Table 1 shows, TriCore has seven dif-
ferent forms of addition, for example, and a dozen different
multiply-accumulate instructions. Far from being general
purpose, TriCore was developed for motion control, signal
processing, and compression/decompression work.

Most arithmetic operations can operate on bytes, half-
words (16-bit quantities in the Siemens argot), words, dou-
blewords, and so-called Q-format numbers. Parallel (SIMD)
byte and halfword operations are richly supported.
© M I C R O D E S I G N R E S O U R C E S N O V E M B E R
The Q15 and Q31 data types are simplified fractional
representations, with one sign bit followed by 15 (or 31)
bits of significance after the implied binary point. The
advantage of Q-format over IEEE-754 floating point is that
it is far easier to implement in silicon. Left-justified Q15 and
Q31 numbers can be added by normal addition instruc-
tions without compromising precision. On the other hand,
Q-format numbers do not have the dynamic range or flexi-
ble precision of true floating-point numbers. For many
control systems, Q-format will do the trick with low hard-
ware cost. For applications that require true floating-point
math, however, Q-format won’t cut it.

Strong Parallels and Bit Wise
In addition to the usual operations, TriCore can perform
integer or Q-format arithmetic on packed data values. In a
manner similar to MMX, two halfword values or four byte
values can be added, subtracted, multiplied, multiply-added,
or multiply-subtracted. The ADD.B instruction, for example,
Description

Arithmetic

Mnemonic Description Mnemonic Description

Load/Store

DEXTR Extract from doubleword
IMASK Create mask word
INS Insert single bit
INSERT Insert bit field
EXTR Extract bit field

Logical

Mnemonic

Multiply/Divide

ENABLE Enable interrupts
DISABLE Disable interrupts
DSYNC Force pending data accesses
ISYNC Flush execution pipeline
RSTV Reset overflow flags
SYSCALL Force trap
TRAPV/SV Trap on overflow
DEBUG Enter debug mode
NOP No operation

ADD(S) Add (with saturation)
ADDC Add with carry
ADDI Add immediate value
ADDIH Add immediate to high half
ADDSC Add scaled value
ADDX Add and generate carry
SUB(S) Subtract (with saturation)
SUBC Subtract with borrow
SUBX Subtract, generate borrow
RSUB(S) Reverse subtract (with saturation)
ABS(S) Absolute value (with saturation)
ABSDIF(S) Absolute value difference (sat.)
DIFSC Difference scaled addresses
CLO/CLZ Count leading ones/zeros
CLS Count leading signs
MIN/MAX Find minimum/maximum
SAT Saturate operand

CADD(N) Conditional add (1's comp.)
CSUB(N) Conditional subtract (1's comp.)
CMOV(N) Conditional move (1's comp.)
SEL Select operand

MUL Multiply 32 × 32 → 32
MULS/R … with saturation/rounding
MULM Multiply 32 × 32 → 64
MADD Multiply-add 32 bits
MADDS/R … with saturation/rounding
MADDRS … with saturation and rounding
MADDM(S) Multiply-add 64 bits (with sat.)
MSUB Multiply-subtract 32 bits
MSUBS/R … with saturation/rounding
MSUBRS … with saturation and rounding
MSUBM Multiply-subtract 64 bits
MSUBMS … with saturation
DVADJ Adjust after division
DVINIT Prepare for division
DVSTEP Division step

AND/OR Logical AND/OR
NAND Logical NAND
NOR Logical NOR
XOR Logical exclusive-OR
XNOR Logical exclusive-NOR
ANDN Logical AND 1's comp.
ORN Logical OR 1's complement
NOT Logical invert
SH/SHA Logica/arithmetic shift
SHAS Arithmetic shift with saturation

J Jump, unconditional
JA/JI Jump, absolute/indirect address
Jcc Jump on condition cc
JL Jump and link
JLA/JLI … absolute/indirect
LOOP Initiate loop
BISR Begin ISR
CALL Call subroutine
CALLA/I Call absolute/indirect
RET Return from subroutine
RFE Return from exception

EQ Compare, equal
NE Compare, not equal
GE Compare, greater equal
LT Compare, less than
EQANY Compare for equality
EQZ Compare address for zero

MOV Copy register
LD Load
ST Store
LEA Load effective address
LDLCX Load lower context
LDUCX Load upper context
STLCX Store lower context
STUCX Store upper context
SVLCX Save lower context
RSLCX Restore lower context
LDMDST Load, modify, store
MFCR Move from special register
MTCR Move to special register
SWAP.A Swap with address register

Conditional

Comparison

System

Bit Manipulation

Flow Control

16-bit instruction word

Table 1. TriCore has an unusually rich instruction set, including several 16-bit instructions (shaded). TriCore’s designers paid particular atten-
tion to multiplication, accumulation, and reverse addition and subtraction—all functions used in digital-signal processing.
1 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

3 S I E M E N S T R I C O R E R E V I V E S C I S C T E C H N I Q U E S E
M

B
E
D

D
E
D

adds the four bytes from two registers and deposits four
results in another register. As with most arithmetic opera-
tions, saturating, nonsaturating, signed, and unsigned varia-
tions are all available.

Parallel logical operations and comparisons are also
supported. The EQANY.B instruction, for example, compares
each byte from two registers and sets the LSB in the destina-
tion register if any of the four comparisons is equal. An alter-
nate form compares all four bytes against a constant.

Moving beyond simple arithmetic, TriCore imple-
ments a bewildering combination of multiply, multiply-
add, and multiply-subtract instructions with options for
saturation, rounding, sign extension, packed data, integer or
Q-format data types, alignment, and addressing modes.
These, plus the zero-overhead LOOP, form the heart of Tri-
Core’s DSP capability. Combined with bit-reverse and circu-
lar memory addressing, TriCore will become a creditable
digital-signal processor, Siemens believes. Simulations show
the chip can sustain an FIR filter at two taps per cycle, twice
the throughput of either Motorola’s 56300 or TI’s popular
’C54x parts.

Well beyond the ken of most microprocessors are Tri-
Core’s bit-manipulation instructions, such as INSERT, INS,
and EXTR. The first two insert a single bit, or a set of con-
tiguous bits, into any location in another register; the last
instruction extracts any number of bits from any location in
any register and copies them into another register, with
either sign- or zero-extension to 32 bits. For I/O control and
network addressing, among other applications, these opera-
tions are valuable.

The CLO, CLZ, and CLS instructions count leading ones,
zeros, or sign bits, respectively. The variants CLx.H and CLx.B

are interesting because they count leading bits in packed
bytes or halfwords, returning two or four totals. All of these
operations are useful for normalization, prioritization,
encryption, error correction, and for managing graphics
primitives, and they are time-consuming to perform any
other way.

Conditional operations abound, even though TriCore
has no condition codes. Conditional adds, subtracts, moves,
and branches all depend on comparing a register (always
D15 in 16-bit instructions) with zero. Conditional moves
CMOV and CMOVN, for example, copy the contents of a regis-
ter only if D15 is zero or nonzero, respectively. SEL is like
CMOV, but it copies one of two values, depending on D15.
Other conditional instructions can test any data register.

Integer division comes in the form of DVINIT, DVSTEP,
and DVADJ, three instructions that perform step-wise divi-
sion under software control. TriCore’s support for division
is better than in many older CPU families that have no
divide instruction at all, but for ease of use it falls short of
the single-instruction divide operations in the 68K and x86.
At one bit per cycle, TriCore is the same speed as SuperH,
which also requires explicit divide-step instructions. Tri-
Core’s DVSTEP always works in eight-cycle chunks, though.
© M I C R O D E S I G N R E S O U R C E S N O V E M B E
Three-Way Logicals Tighten Code
One of the most interesting and unusual features of TriCore’s
instruction set is its ability to “accumulate” the results of log-
ical (Boolean) operations. Using more than a dozen instruc-
tions for accumulating and three-way comparisons, pro-
grammers can implement complex multiway comparisons
in a minimum amount of code.

As Figure 2a shows, the normal bit-wise comparison
instructions, such as AND.T, OR.T, or XNOR.T, compare any
two bits from any two registers and store the logical result in
the least-significant bit of a third register (the rest of the des-
tination register is cleared). All four basic Boolean opera-
tions (AND, OR, XOR, ANDN) and their opposites (NAND,
NOR, XNOR, ORN) are available. Table 2 lists the accumu-
lating logical operations.

TriCore goes a step further by allowing three-operand
logicals. As Figure 2b shows, the result of a previous bit-wise
logical operation can be included in a new logical operation,
like a multiply-accumulate on a single bit. The logical opera-
31 0 31 0

031
AND.T, OR.T, XOR.T, etc…

31 0 31 0

031

(a) Normal two-input Boolean operation

(b) Accumulating, three-input Boolean operation

AND.OR.T, OR.ANDN.T, etc…

Figure 2. TriCore’s normal’s two-input logical operations are com-
plemented with a set of eight accumulating, three-input logicals.
R

AND.AND.T
AND.ANDN.T
AND.OR.T
AND.NOR.T

OR.EQ
OR.NE
OR.GE
OR.GE.U
OR.LT
OR.LT.U

OR.AND.T
OR.ANDN.T
OR.OR.T
OR.NOR.T

SH.AND.T
SH.ANDN.T
SH.OR.T
SH.NOR.T

AND.EQ
AND.NE
AND.GE
AND.GE.U
AND.LT
AND.LT.U

XOR.EQ
XOR.NE
XOR.GE
XOR.GE.U
XOR.LT
XOR.LT.U

SH.NAND.T
SH.ORN.T
SH.XOR.T
SH.XNOR.T

Logical

Comparison

Table 2. TriCore can perform two parallel logical operations or
arithmetic comparisons simultaneously. The Boolean result can be
“accumulated” with other results, allowing programmers to effi-
ciently code sequences of comparisons and/or logical operations.
1 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

4 S I E M E N S T R I C O R E R E V I V E S C I S C T E C H N I Q U E S

E
M

B
E
D

D
E
D

ire
P

t t
tions don’t even have to be the same, so the first and second
bits can be AND-ed while the third bit is OR-ed, for example.
This construct maps well to common multipart comparisons
in high-level languages and allows programmers (or compil-
ers) to efficiently encode complex relational tests.

The comparisons need not be limited to single bits,
either. Using instructions like OR.EQ, AND.LT, or XOR.GE,
programs can cumulatively compare 32-bit numbers using
signed or unsigned arithmetic compar-
isons. By accumulating a running Boolean
result through multiple comparisons, Tri-
Core programmers can avoid peppering
their code with a lot of short conditional
branches that bloat code size and lead to
pipeline bubbles.

Instruction Set Hardly Orthogonal
TriCore is not without its peculiarities. Its
split register set will generate split opin-
ions; separate address and data registers are
shunned these days. The argument follows
that for split versus unified caches: some
algorithms use more data, while others
need more address pointers. Unifying the
register file (or the cache) allows dynamic
allocation of a scarce resource.

The split register file also means separate instructions
for the address registers, crowding TriCore’s opcode map.
Instructions like ADD.A and SUB.A are needed to update
address pointers; special MOV instructions move the contents
of address registers around. A split in the data path also
forces TriCore to keep its loop counter in an address register
to relieve congestion of the data registers in filter operations.

Flow-control instructions with absolute addresses are
limited to 24-bit pointers, at best. TriCore handles this by
separating the four most significant bits and left-justifying
them, then using the lower address bits unchanged. This
technique sections TriCore’s 4G address space into 16
equal-sized regions, with the lower 1M of each directly
accessible to other code.

Ugly Has a Place, Too
With TriCore, Siemens has thrown out the book of accepted
design principles and relied on its years of experience
designing and selling microcontrollers to industrial and

Siemens CPU d
talks about the C
ities of TriCore a
© M I C R O D E S I G N R E S O U R C E S N O V E M B E
commercial OEMs. TriCore is different, unconventional,
and sometimes awkward, but it seems to have the tools to
get the job done quickly.

TriCore is only the second microprocessor architecture
to be designed from the ground up around embedded DRAM
(Mitsubishi’s M32R/D is the other). TriCore’s context-switch
mechanism relies on a fast, wide connection to on-chip
memory, and Siemens’s Fleck says no TriCore chip will be
made without it.

TriCore is also one of the few microprocessors to deal
with control and signal processing in a single instruction
set. ARM’s Piccolo and Hitachi’s SH-DSP were both grafted
onto the original design and force tradeoffs in DSP-versus-
controller performance. But those grafts can also be rejected
if users are interested in just the core ARM or SuperH pro-
cessor, a choice that Siemens doesn’t offer.

Motorola’s ColdFire and M•Core lines have both taken
their first small steps toward signal processing, but no 32-bit

processor out there can match the dizzying
assortment of number- and bit-manipula-
tion options TriCore will have. The impor-
tant details, like bit-reverse and circular
addressing, rounding, saturation, and sticky
overflow bits, all give TriCore a much more
credible claim to being a DSP than most
microprocessors can make. On the down-
side, TriCore doesn’t offer the X/Y data
memories DSP programmers admire, but
that don’t map well to C code.

The inevitable price for this complex-
ity is circuit density. Siemens has not re-
leased any details of die size, transistor
count, or clock speed. The first TriCore
chip, with 128K of on-chip DRAM and a
pair of 2K caches, has not taped out and
samples aren’t expected until 2Q98. That’s a

long time to wait before customers can make informed
choices—time that Motorola, Hitachi, and untold hordes of
ARM vendors can use to strengthen their leads.

There’s a reason CPU designers have scrapped complex
and irregular instruction sets and embraced—more or less—
the principles of RISC design in recent years. Simpler archi-
tectures make simpler CPU cores, which run faster and are
easier to scale to multiple execution units. During his pre-
sentation, Siemens’s Fleck hinted at plans for TriCore chips
with more execution units in the not-too-distant future, but
with all of TriCore’s complexity, that may be tough to do.

With production volumes probably coming in 1999, it’s
still too early to be certain about much to do with TriCore.
Certainly the family will compete with ARM, ColdFire,
M•Core, SuperH, and MIPS chips. But for those applications
that emphasize signal processing over numerical processing,
bit-twiddling over floating-point handling, and code density
over software compatibility, TriCore appears well positioned
to pick up a portion of new embedded designs. M

ctor Rod Fleck
U/DSP capabil-
he Forum.

M
IC

H
A

E
L

M
U

S
TA

C
C

H
I

P r i c e & Av a i l a b i l i t y

The first Siemens TriCore chip (which has not been
named) is expected to sample in 2Q98; production is set
for 2H98. For more information, contact Siemens Micro-
electronics (Cupertino, Calif.) at 408.895.5004 or visit
www.sci.siemens.com/tricore.
R 1 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

http://www.sci.siemens.com/tricore

	Siemens TriCore Revives CISC Techniques
	Register Set a Big Step Backward
	Linked List Gives Fast Interrupt Response
	Instructions an Eclectic Mix
	Figure 1. TriCore separates its address and data registers...
	Strong Parallels and Bit Wise
	Table 1. TriCore has an unusually rich instruction set...
	Figure 2. TriCore’s normal’s two-input logical operations...
	Three-Way Logicals Tighten Code
	Table 2. TriCore can perform two parallel logical...
	Instruction Set Hardly Orthogonal
	Ugly Has a Place, Too

	Price & Availability

