
Branch Prediction
re Cost But Improve Accuracy
Gshare, “Agrees” Aid 
New Algorithms Have Minimal Hardwa

by Linley Gwennap

Several recently announced microprocessors have
adopted one (or both) of two new algorithms for branch
prediction. The first, known as Gshare, is a method of index-
ing into a large branch history table (BHT). The second,
“agrees” mode, is a method of encoding the history bits
themselves. Although both methods offer modest improve-
ments in branch-prediction accuracy, neither has significant
hardware cost compared with current methods. With mod-
ern microprocessors facing lengthier branch penalties, both
techniques are likely to become standard practice as design-
ers revise their processors over the next couple of years.

Gshare Improves Two-Level Algorithm
The Gshare algorithm is a variation of the two-level algo-
rithms first published by Yeh and Patt (see MPR 3/27/95,
p. 17). The complete two-level algorithm uses a table of
branch patterns to index into a table of history values.
Because this algorithm requires a time-consuming pair of
lookups, commercial processors have generally used a sim-
plified version in which a global history value is used to index
into the history table.

To allow some amount of per-branch history, this global
history is typically concatenated with some bits of the branch
address. A paper by Digital’s Scott McFarling (www.research.
digital.com/wrl/techreports/abstracts/TN-36.html) calls this
method Gselect. It improves performance over an index that
ignores global branch history due to the correlations between
nearby branches. For example, in the sequence

IF (x<1)...
IF (x>1)...

the direction of the second branch is clearly influenced by
the outcome of the first branch.

For a BHT with a fixed number of entries e, the size of
the index is log2(e) bits. For example, a 1,024-entry BHT
requires a 10-bit index. Using Gselect, these bits must be
divided between the global history and the branch address,
for example, 5 bits of each.

McFarling notes that the indexes generated by Gselect
have a lot of redundancy, since few combinations are rele-
vant. Thus, hashing the global history and the branch address
using an XOR operation will typically not remove useful
information. Prediction is improved because more bits of the
global history and the branch address can be used. In the
1,024-entry BHT, up to 10 bits of each could be combined to
create the index. McFarling calls this method Gshare.

Extending the global branch history beyond several bits
does not significantly improve accuracy and can instead
© M I C R O D E S I G N R E S O U R C E S O C T O B E R
introduce noise into the hashed index. Thus, for a large BHT,
the index may use only 4–8 bits of global history XORed with
the upper bits of the branch address.

The hardware cost of implementing Gshare instead of
Gselect is negligible: possibly extending the size of the global
branch history register by a few bits and adding a set of XOR
gates to the index logic. According to McFarling, Gshare
improves accuracy by less than 1% over Gselect, but the cost
is so small that there is no reason not to use the better
method.

Agrees Mode Avoids Contention
A typical BHT uses two bits to encode the history of a partic-
ular branch (see MPR 3/27/95, p. 17). These bits indicate if
the branch has been taken or not taken. The PA-8500 (see
MPR 11/17/97, p. 20) uses a different encoding: the bits indi-
cate whether the outcome of the branch has agreed or dis-
agreed with the static prediction. In PA-RISC, branches
include a static prediction bit in the instruction itself.

At first glance, there appears to be no practical differ-
ence between the two methods. Because most BHTs have no
tags, however, multiple branches might map to the same
BHT entry. Sometimes, a new branch simply takes over an
entry from an old branch. In the worst case, two active
branches can both be updating a single BHT entry.

In the taken/not taken scheme, there is a 50% chance
that the two conflicting branches will go in opposite direc-
tions, causing frequent mispredictions. If both branches are
following their static predictor, however, the agrees method
will correctly predict both branches even though they map to
the same BHT entry. The chances of a misprediction are
reduced to 2p(1–p), where p is the success rate of the static
predictor. For p=0.7, the agrees mode mispredicts only 42%
of the time in situations where two branches map to the
same BHT entry. While this improvement is small, the hard-
ware cost of implementing agrees mode is essentially zero:
since only the encoding is changed, no new storage is needed.

Agrees mode is an obvious solution for instruction sets
—like PA-RISC, PowerPC, and MIPS—that include static
branch prediction. Centaur found a way to make it work with
x86, which does not. The C6+ (see MPR 11/17/97, p. 17) gen-
erates a static prediction based on the opcode and direction
(forward or backward) of the branch, then compares this pre-
diction with the actual result to encode the branch history
using agrees mode. This on-the-fly prediction adds hardware
cost, but static prediction can be done very simply (the sim-
plest way is backward taken, forward not taken), allowing
agrees mode to be applied to any instruction set. Thus, like
Gshare, agrees mode is likely to become widely used. M
2 7 , 1 9 9 7 M I C R O P R O C E S S O R R E P O R T

http://www.research.digital.com/wrl/techreports/abstracts/TN-36.html
http://www.research.digital.com/wrl/techreports/abstracts/TN-36.html

