
E
M

B
E
D

D
E
D

ble Millennium
it Embedded Cores
by Peter Song

In a previous issue (see MPR 10/27/97, p. 12), we covered
M•Core, Motorola’s latest 32-bit architecture for embedded
applications. This article examines the M•Core instruction set
more closely.

M•Core joins the breed of 32-bit architectures that rely
on 16-bit instructions to improve code density while com-
promising on features and programming flexibility. Like
most others in this breed, it uses RISC principles—such as
many registers and load/store instructions—to simplify
design and improve performance. Similarly, it could not fit
many of the programming-convenience features—such as
three-operand instructions and large immediate fields—into
16 bits, requiring extra instructions to make up for these
deficiencies. Unlike most others in this breed, however, it is
optimized for microcontroller applications, offering more
instructions and features while delivering better code density
than the others.

Unlike Motorola’s PowerPC and ColdFire, M•Core is
designed from scratch, allowing complete freedom in every
aspect of its architecture definition. It is a result of a customer-
driven initiative and fills a void in Motorola’s product line for
a 32-bit CPU with very low power consumption. Although

M•Core for the Porta
Motorola Fills Void in Low-Power 32-B
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y
much of the power savings in a processor comes from a better
process and a lower supply voltage, M•Core is simpler to
design than Motorola’s other embedded cores. It allows Moto-
rola to deliver better MIPS/W earlier to the market than
Motorola’s other instruction sets could.

Sixteen Registers Force Two-Operand Formats
M•Core has 16 general-purpose registers, any one of which
can be specified as an operand. Once the M•Core architects
decided to use four bits for encoding a register operand, they
had no choice but to adapt two-operand instruction formats,
as Figure 1 shows, since three-operand formats would have
left too few bits for the opcodes. ARM’s Thumb (see MPR
3/27/95, p. 1) and MIPS-16 (see MPR 10/28/96, p. 40) offer
three-operand instructions, but these instructions use only
eight general-purpose registers. The M•Core architects
decided in favor of offering more registers and a consistent,
albeit limited, programming model.

Two-operand formats result in more instructions than
three-operand formats, all other things being equal, be-
cause extra move instructions are needed to prevent source
operands from being overwritten. Fortunately, many arith-
metic and logical operations are commutative—the two
source operands are interchangeable—allowing the to-be-
saved operand to be used in the source-only position and
thereby avoiding a move instruction. For noncommutative
operations, such as subtract or divide, two flavors of instruc-
tions can be offered: one overwrites the first source operand
and the other overwrites the second. M•Core offers reverse
subtract instructions for this purpose, since the subtract
operation is used frequently in a typical program.

M•Core’s two-operand formats cause 2–7% code ex-
pansion in key applications, according to Motorola. This
estimate is based on the assumption that 50% of all move
instructions are to preserve the source operands. The other
50% are presumably used for passing arguments and results
in subroutine call and return codes. For example, move
instructions account for less than 5% of the total in fax-
machine and engine-controller routines, indicating little
need to copy source operands in these applications.

11-Bit Displacement Covers 98% of Branches
The 16-bit instruction format severely restricts the number
of bits available for immediate operands. This restriction
affects branch instructions the most, since as many as one in
four instructions is a branch. M•Core provides 11-bit imme-
diate operands for both conditional and unconditional
branch instructions, covering the displacement needed by
98% of the branches in M•Core’s key applications. The 11-bit
imm11
0

opcode
15

PC-relative branch instructions (PC = PC + 2 + (imm11<<1))
1011

imm8
0

opcode
15

PC-relative load instruction (Rz = MEM[PC + 2 + (imm8<<2)])
78

Rz
1112

imm8
0

opcode
15

PC-relative indirect branches (PC = MEM[PC + 2 + (imm8<<2)])
78

Rx
03

opcode
415

Register move immediate instruction (Rx = imm7)

imm7
1011

Rx
03

opcode
415

Load/store instructions (for load, Rz = MEM[Rx + (imm4<<scale*)])

imm4
78

Rz
1112

Rx
03

opcode
415

Diadic register instructions (Rx = Rx @ Rs)

Rs
78

Rx
03

opcode
415

Diadic register-immediate instructions (Rx = Rx @ Rs/imm5)

Rs/imm5
89

Rx
03

opcode
415

Monadic register instructions (Rx = @ Rx)

0

opcode
15

Opcode-only instructions

Figure 1. M•Core uses two-operand instruction formats for most
instructions. *4-bit immediate value is scaled by 1, 2, or 4 to gen-
erate a byte, halfword, or word offset, respectively.
 1 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

2 M • C O R E F O R T H E P O R T A B L E M I L L E N N I U M

E
M

B
E
D

D
E
D

immediate values are scaled by two to generate halfword off-
sets, allowing the branch instructions to jump as many as
2,047 instructions forward or backward. In comparison,
MIPS-16 and Thumb provide an 8-bit displacement for con-
ditional branches, although they provide 11 bits of displace-
ment for unconditional branches.

For branches requiring more than 11 bits of displace-
ment, M•Core offers PC-relative indirect-branch instruc-
tions, which load the program counter from memory. The
instruction’s 8-bit immediate value is scaled by four (to cre-
ate a word offset) and added to the program counter. The
result is then used as a pointer in memory, which contains
the branch target address. In contrast, a PC-relative branch
would use the result as the branch target address.

These instructions allow the program to branch to any
word-aligned address in a 32-bit address space. They com-
bine a pair of load and branch-indirect instructions, which
would use eight bytes, into one instruction that uses six
bytes. In ARM, which uses R15 as the program counter, a
load to R15 naturally provides PC-relative indirect branch-
ing. But this feature is not available in Thumb mode, which
uses only R0–R7.

Binaries containing these instructions are not relocat-
able, however, since the branch target addresses are encoded
as absolute addresses, not as PC-relative offsets. Most of
M•Core’s target applications, which offer a single function
or a set of dedicated functions, may not need relocatable
binaries. The linker/loader can also adjust the binaries for
changes in the branch target addresses.

Single Condition-Code Bit Saves Opcodes
Unlike most architectures that use multiple CC (condition-
code) bits—typically, N, Z, V, and C—M•Core uses only one
CC bit, denoting a true or false condition. It provides a set of
compare-relationship instructions, which set or clear the CC
bit, and a few branch-true and branch-false instructions. In
contrast, most other architectures generally provide a single
compare instruction, which sets and clears the four CC bits,
and a plethora of branch instructions, which encode one of
as many as 14 branch conditions, not counting the always
and never conditions. A compare operation is rarely followed
by multiple branch instructions, especially in code generated
by C compilers, according to Motorola.

Using fewer branch and more compare instructions,
M•Core uses fewer instruction bits overall than do most
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y
other architectures, since branch instructions require more
bits—due to their displacement field—than do compare
instructions. Using the saved bits, M•Core offers a larger
branch displacement—11 versus 8 bits—for the conditional
branches than do the other 16-bit instruction sets.

M•Core does not provide 14 different versions of com-
pare instructions, nor are all 14 necessary. For unsigned
comparisons, it provides only the CMPHS (compare high-or-
same) and CMPNE (compare not-equal) instructions, as
Table 1 shows. It offers branch-false instructions to handle
the inverse of the CMPHS and CMPNE results. It does not pro-
vide an instruction for a lower-or-same comparison, since
swapping the operands on CMPHS produces the same result:
the R1 ≤ R2 comparison is the same as R2 ≥ R1. The two
operands cannot be swapped, however, when one of them is
an immediate operand. M•Core provides only one more
instruction—CMPLT—for a signed compare, since CMPNE

can be used for both signed and unsigned comparisons.
Most architectures update the CC bits as a side effect of

executing arithmetic instructions, often generating branch
conditions for free. In M•Core, the ADDC and SUBC instruc-
tions copy the carry output from the adder into the sin-
gle CC bit, detecting 32-bit unsigned overflows for free.
M•Core’s other arithmetic instructions do not detect over-
flows, however, relying instead on software to detect them.
For instance, the MULT instruction—which multiplies two
32-bit operands and returns the lower 32 bits of the result—
provides no information on the upper 32 bits of the result.
There are also no signed arithmetic instructions that report
overflows.

The M•Core architects decided not to support signed
overflows in the instruction set, mainly because the C pro-
gramming language does not recognize overflows. In addi-
tion, most existing microcontroller applications use explicit
range-checking instructions, since they use numbers that fit
in far fewer than 32 bits.

The single CC bit allows M•Core to offer many predi-
cated (conditionally executed) instructions, as Table 2 shows.
The single CC code bit allows the opcodes to imply predica-
tion, but it also requires M•Core to offer both execute-if-true
and execute-if-false versions of the instructions.

Bit-Twiddling Instructions Help Create Constants
Arithmetic and logical instructions occupy a large fraction of
available opcodes in a typical instruction set, making it diffi-
cult to allocate enough bits for both the opcodes and the
immediate operands using only 16 bits. Many microcontroller
applications also make heavy use of logical and bit-manipula-
tion operations, requiring bit patterns that are difficult to
encode in a few bits of immediate operands. Fortunately, the
arithmetic instructions tend to use small constants, especially
in microcontroller applications, requiring only a few bits to
encode most of them.

Motorola’s analysis of its target applications shows that
most constants are clustered near the low end of the number
Table 1. Using branch-false instructions, M•Core provides only
three compare instructions. *These instructions are not offered,
since swapping the two operands produces the needed result.

CMPHS (unsigned)
CMPLS* (unsigned)
CMPNE (signed, unsigned)
CMPGT* (signed)
CMPLT (signed)

≥
≤
≠
>
<

<
>
=
≤
≥

True Condition False ConditionCompare Instruction
 1 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

3 M • C O R E F O R T H E P O R T A B L E M I L L E N N I U M

E
M

B
E
D

D
E
D

spectrum and around the numbers that are powers of two.
For small constants, M•Core supports 5-bit immediate
operands in the diadic (two-operand) register-immediate
format. This format is used to encode the unsigned ADDI,
SUBI, and CMPLTI instructions, which map the immediate
operand to a value from 1 to 32. Unlike MIPS-16, which pro-
vides a signed compare instruction using an 8-bit immediate,
M•Core does not provide signed arithmetic instructions that
use immediate operands. Not offering signed counterparts
for these arithmetic instructions is a minor nuisance, espe-
cially in applications interfacing with physical world.

Bit setting, clearing, and testing operations—which are
frequent in microcontroller applications—use constants that
are powers of two. For these, M•Core provides the BSETI,
BCLRI, and BTSTI instructions, which set, clear, or test,
respectively, a bit in a register. It also provides the BGENI

instruction, which sets one bit and clears all other bits in a
register. Constants that are one smaller than a power-of-two
number (e.g., 255) are used in bit-masking operations.
M•Core provides the BMASKI instruction for these frequent
operations. All of these instructions offer a 5-bit immediate
operand, which is enough to identify any bit position within
a 32-bit register.

M•Core also provides the MOVI instruction, which
moves a 7-bit unsigned immediate value into a register.
According to Motorola, the combination of the move and
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y
bit-manipulation instructions generates 90–95% of the con-
stants used in M•Core’s key applications. Increasing the
immediate field to eight bits would raise this coverage by 1%,
according to Motorola, but it would significantly reduce the
number of available opcodes.

In comparison, Siemens’s TriCore provides the IMASK

instruction (see MPR 11/17/97, p. 13), which is a superset of
M•Core’s BMASKI but uses a 32-bit format. The other 16-bit
instruction sets do not provide any bit-manipulation in-
structions, relying instead on existing means to construct
arbitrary 32-bit patterns.

PC-Relative Loads Create Arbitrary Constants
For the remaining 5–10% of the constants, there is no short-
cut way but to construct them as arbitrary 32-bit numbers.
In a typical 32-bit instruction set, two move instructions are
used to generate the upper and lower 16 bits in a register.
This approach would not work well using 16-bit instruc-
tions, since so few bits—7 bits in M•Core—could be allo-
cated for the immediate operand, requiring an unwieldy
sequence of move and shift instructions to form a 32-bit
constant. Instead, M•Core provides a PC-relative load in-
struction, which loads 32-bit data from memory.

This instruction differs from other load instructions in
that it uses the program counter—not a general-purpose
register—to generate the memory address. This avoids using
Absolute value
Arithmetic shift right, update C
Bit mask immediate #32
Bit reverse
Clear if false/true
Decrement if false/true
Decrement, set C if result > 0
Decrement, set C if result < 0
Decrement, set C if result ≠ 0
Divide signed
Divide unsigned
Find first 1
Increment if false/true
Jump
Jump to subroutine
Load multiple/quad registers
Logical shift left, update C
Logical shift right, update C
Move C bit to register
Move inverted C bit to register
Logical NOT
Sign-extend byte/halfword
Store multiple/quad registers
Test for no byte equal to zero
Extract byte 0/1/2/3
Extended shift right
Zero-extend byte/halfword

Jump indirect
Jump to subroutine indirect

Add with C bit
Add unsigned
Logical AND
Logical AND NOT
Arithmetic shift right
Bit generate register
Compare high-or-same
Compare less than
Compare not equal
Index halfword
Index word
Decrement and loop if true
Logical shift left
Logical shift right
Move
Move if false
Move if true
Multiply
Logical OR
Reverse subtract
Subtract with carry
Subtract unsigned
Test
Logical Exclusive OR

Load relative word

Load word, halfword, byte
Store word, halfword, byte

Branch false, branch true
Branch unconditional
Branch to subroutine

Move immediate

Add immediate
Logical AND immediate
Arithmetic shift right immediate
Bit clear/set immediate
Bit generate immediate
Bit mask immediate
Bit test immediate
Compare less than immediate
Compare not equal immediate
Logical shift left immediate
Logical shift right immediate
Move from control register
Move to control register
Rotate left immediate
Reverse subtract immediate
Subtract immediate

Mnemonic Description Mnemonic Description Mnemonic Description

PC-relative load format
LRW
Load/store format
LD.[W,H,B]
ST.[W,H,B]
PC-relative branch format
BF, BT
BR
BSR
Register move immediate format
MOVI
Diadic register-immediate format
ADDI
ANDI
ASRI
BCLRI, BSETI
BGENI
BMASKI
BTSTI
CMPLTI
CMPNEI
LSLI
LSRI
MFCR
MTCR
ROTLI
RSUBI
SUBI

PC-relative indirect format
JMPI
JSRI
Diadic register format
ADDC
ADDU
AND
ANDN
ASR
BGENR
CMPHS
CMPLT
CMPNE
IXH
IXW
LOOPT
LSL
LSR
MOV
MOVF*
MOVT*
MULT
OR
RSUB
SUBC
SUBU
TST
XOR

Monadic register format
ABS
ASRC
BMASKI #32
BREV
CLRF*, CLRT*
DECF*, DECT*
DECGT
DECLT
DECNE
DIVS
DIVU
FF1
INCF*, INCT*
JMP
JSR
LDM, LDQ
LSLC
LSRC
MVC
MVCV
NOT
SEXT[B,H]
STM, STQ
TSTNBZ
XTRB[0,1,2,3]
XSR
ZEXT[B,H]

Table 2. M•Core currently has 91 instructions and 13 spare opcodes. Coprocessor instructions and those in the opcode-only format are not
shown. *predicated instructions
1 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

4 M • C O R E F O R T H E P O R T A B L E M I L L E N N I U M

E
M

B
E
D

D
E
D

E
M

B
E
D

D
E
D

precious registers to address a constant. It requires the con-
stant to be stored within the range of its 8-bit unsigned dis-
placement, which is scaled by four to yield a 10-bit range
(1,024 bytes). It also requires a load access to the instruction
memory, favoring a unified memory organization.

Both Thumb and the MIPS-16 instruction sets offer
PC-relative load instructions, although the MIPS-32 instruc-
tion set does not. A typical RISC instruction set does not
provide such instructions, since the program counter is a
special-purpose register inaccessible to load/store instruc-
tions. A typical CISC instruction set, such as Motorola’s 68K,
offers a similar move instruction but as a 32-bit immediate
operand, avoiding a load access to instruction memory.

M•Core Offers Plenty of Features in 16 Bits
As Table 3 shows, M•Core most resembles Hitachi’s SH7000
(see MPR 8/23/93, p. 14), including the use of 16 bits to
encode every instruction, two-operand formats, 16 general-
purpose registers, and a single CC bit. M•Core offers more
predicated instructions and more instructions for bit and
byte manipulation than the SH7000. It also offers coproces-
sor instructions, which are not available in the SH7000.

Compared with Thumb and MIPS-16, which offer
subsets of existing 32-bit instructions using 16-bit encod-
ings, M•Core offers more instructions and registers and
better code density, at least in many microcontroller appli-
cations. In Thumb and MIPS-16, only the move instruc-
tions can access all 32 registers, and all other instructions
are limited to accessing only eight registers, requiring extra
instructions to save and restore registers when eight is
insufficient. In contrast, M•Core has two banks of 16 regis-
ters, although only one bank is accessible at a time and
move instructions cannot transfer registers between the
banks. MIPS-16 lacks load/store multiple instructions,
which are used frequently in subroutine calls and returns as
well as data-move operations.

A Thumb or MIPS-16 core must support both 16- and
32-bit instruction sets using two operating modes, since
© M I C R O D E S I G N R E S O U R C E S F E B R U A R Y
many operations are not available in the 16-bit instruction
set. These include access to control registers and coprocessor
instructions. In Thumb mode, the ARM’s predicated instruc-
tions are no longer available.

NEC’s V800 (see MPR 10/25/93, p. 25) and Siemens’s
TriCore use both 16- and 32-bit instructions, which can be
freely intermixed in the code, offering a richer set of instruc-
tions than M•Core. Their 32-bit instruction formats provide
more bits for a third operand, larger immediate values, and
more opcodes, allowing them to support media and DSP
operations not available in M•Core. Their rich set of instruc-
tions and features is likely to result in chips with a larger die
and higher power consumption, however, making them less
competitive in many of M•Core’s target applications.

For low-cost, low-power applications, M•Core is defi-
nitely superior to Motorola’s other instruction sets. Over the
past two decades, the 68K architecture has grown to include
too many bells and whistles, making it difficult to compete
with other, simpler architectures—including M•Core—in
embedded markets. The 68K’s main strength is its estab-
lished infrastructure, which is important in delivering low-
cost solutions.

ColdFire is the 68K’s illegitimate child, bearing a strong
resemblance to but not binary compatibility with its parent.
Because ColdFire is designed to be synthesizable, it cannot
match the die size or power efficiency of the hand-tuned
M•Core design. PowerPC is designed for speed but is far
more complex. None of the three can match M•Core in sim-
plicity, low cost, and low power consumption.

As M•Core’s target applications grow, Motorola will
undoubtedly extend M•Core, using more bits for the instruc-
tions. In extending M•Core, Motorola can learn from other
architectures, which are already in the race to deliver more
performance using less power, as it has done with M•Core’s
current instruction set. Motorola is not late in entering this
race, a marathon that has just started. Using M•Core, Moto-
rola is poised to meet the new millennium’s insatiable de-
mands for more performance and less power. M
Instruction width
GP (general-purpose) registers
ALU-accessible GPs
Three-operand instructions
Predicated instructions
Branch architecture
Condition code
Branch displacement (max)
Indirect branch
PC-relative load
Multiply, divide instructions
Bit-, byte-manipulation instructions
Media instructions
Coprocessor instructions

16 bits
2 x 16

16
none

8
branch on CC

C
11 bits

reg, mem
yes

both
many
none
yes

M•Core

16 bits
16
16

none
none

branch on CC
C

12 bits
reg
yes

mac, div step
none

in SH-DSP
no

SH7000

16 (32) bits
32 (32)
8 (32)

7 (all ALU)
none (all)

branch on CC
N, Z, C, V

11 (24) bits
reg (reg, mem)

yes (yes)
mul (mul)

none (none)
in Piccolo
no (yes)

Thumb (ARM)

16 (32) bits
32 (32)
8 (32)

13 (all ALU)
none (none)

cmp-and-branch
none

11, 16 (26) bits
reg (reg)
yes (no)

mul, div (both)
none (none)
in MDMX
no (yes)

MIPS-16 (-32)

16, 32 bits
16 adrs, 16 data

16
all ALU

6
cmp-and-branch

C, V
24 bits

reg
no

mul, div step
few

SIMD insts
no

TriCore

16–48 bits
8 adrs, 8 data

8
all ALU
none

branch on CC
N, Z, C, V

16 bits
reg, mem

yes*
mul, div

few
none
no

ColdFire

Table 3. M•Core offers more general-purpose registers, predicated instructions, and bit- and byte-manipulation instructions than other
architectures offering 16-bit instructions. *ColdFire offers several PC-relative addressing modes for most ALU instructions. (Source: vendors)
1 6 , 1 9 9 8 M I C R O P R O C E S S O R R E P O R T

	M•Core for the Portable Millennium
	Figure 1. M•Core uses two-operand instruction...
	Sixteen Registers Force Two-Operand Formats
	11-Bit Displacement Covers 98% of Branches
	Table 1. Using branch-false instructions, M•Core...
	Single Condition-Code Bit Saves Opcodes
	Bit-Twiddling Instructions Help Create Constants
	Table 2. M•Core currently has 91 instructions and 13...
	PC-Relative Loads Create Arbitrary Constants
	Table 3. M•Core offers more general-purpose registers...
	M•Core Offers Plenty of Features in 16 Bits

