
PowerPC Architecture Gets Makeover
“Book E” Adds New Features for Embedded Market

E
M

B
E
D

D
E
D

t T
 B

 w
by Keith Diefendorff

Showing some sign of improved relations, IBM and
Motorola have completed development of a new version of

the PowerPC instruction-set architec-
ture, code-named Book E. At last week’s
Embedded Processor Forum, IBM chip
architect Tom Sartorius said that the new

architecture will allow PowerPC chips to better meet the
needs of embedded markets while retaining backward com-
patibility with existing 32-bit user-mode PowerPC applica-
tions. With this move, PowerPC officially
joins the ranks of other RISC processors
seeking shelter in the embedded market,
safe for now from their omnipotent com-
petitor, Intel.

As Table 1 shows, Book E offers en-
hanced 64-bit addressing, simplified
memory management, and an interrupt
structure suitable for real-time appli-
cations. Many of the changes from the
original PowerPC architecture were made
to give the companies more freedom to
customize their processors, a critical re-
quirement for embedded markets. Unlike
the original PowerPC architecture, the
new architecture will be freely licensable
and sublicensable by either company.

The specification of an architecture
is a tradeoff. On the one hand, a rigid specification pro-
motes software compatibility. On the other hand, a flexible
specification allows customization and differentiation. Ini-
tially targeted for computers, where compatibility reigns,
the original PowerPC specification is relatively rigid. For
embedded duty, where customization is paramount, IBM
and Motorola needed a more flexible version of the archi-
tecture. Although Book E standardizes a few of the trivial
differences between IBM’s 4xx and Motorola’s 5xx/8xx
embedded processors, it opens wide the
door to software incompatibility. Under
Book E, avoiding architectural chaos will
depend heavily on the self-discipline of
the two companies—a commodity often
sacrificed to gain a competitive edge.

Controllers Need 64 Bits Too
Although the need for 64-bit addressing is
well recognized to be just around the cor
ner for computer systems, it is generally

IBM chip architec
describes the new
tecture developed

Feature
64-bit Addressing
Memory Managem
Little-Endian Byte
Memory Ordering
Interrupts
Interrupt Vectors
Timers
New Opcode Assi

Table 1. Book E’s
without sacrificing
© M I C R O D E S I G N R E S O U R C E S M A Y 1 0
regarded as over the horizon for embedded systems. Motorola
architect Pete Wilson, however, says that 64-bit addressing
was the primary impetus for Book E. According to Wilson,
several embedded applications are beginning to feel the pinch
of 32-bit addresses; a RAID controller, for example, will soon
need more than 4G of memory just to hold the tables for
tracking data in a terabyte-sized storage system. Large
switches, already using 1G of memory, will exceed 4G within
a couple of years. Wilson adds that patchwork physical-
address extensions, like Pentium II’s IESM (see MPR 7/13/98,
p. 7), won’t cut it—programmers need full 64-bit pointers.

Although the original PowerPC has
64-bit addressing, that feature was designed
primarily for AIX. The mode-switching tech-
nique it uses to support 32- and 64-bit im-
plementations has the disadvantage that a
32-bit binary will not run on a 64-bit proces-
sor unless it is first switched into 32-bit
mode. While mode switching isn’t a problem
for AIX, it is a heavy burden for porting the
plethora of embedded OSs to PowerPC.

Unconstrained by AIX in embedded
applications, the companies were able to
eliminate the cumbersome 32/64-bit mode
switch, which they accomplished without
sacrificing the 32-bit application-level bi-
nary compatibility necessary to sell Book E
processors to Apple. So Book E leaves the
original PowerPC 64-bit extension as the sole

province of IBM’s Power series of servers and workstations.

Mode Traded for Instructions
In place of the existing 32/64-bit mode switch, Book E clones
the carry flag, overflow flag, and all mode-dependent instruc-
tions, creating 32- and 64-bit versions of each.

On an original 64-bit PowerPC machine, for example,
the ADDC (add carrying) instruction sets the carry flag (CA)
from the lower half of the 64-bit ALU in 32-bit mode and

om Sartorius
ook E archi-

ith Motorola.

M
IC

H
A

E
L

M
U

S
TA

C
C

H
I

Original PowerPC PowerPC Book E
Modal Nonmodal, 100 new instructions

ent Hashed page tables TLB-centric, implementation defined
 Order Address swizzle Byte swapping (true little-endian)

Weak; processor sync Weak; memory barrier
Single level Two level, critical and noncritical
Fixed; in physical memory Programmable; in virtual memory
Decrementer, timebase + fixed-interval timer and watchdog

gnment Apple & IBM & Motorola IBM or Motorola

 new features improve PowerPC’s suitability for embedded processors
 32-bit user-mode compatibility with PowerPC-classic processors.
, 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

2 P O W E R P C A R C H I T E C T U R E G E T S M A K E O V E R

E
M

B
E
D

D
E
D

from the full ALU in 64-bit mode; ADDE (add extended)
always uses CA as its input. In contrast, the Book E version of
ADDC sets two flags: CA and CA64. The ADDE instruction
adds using CA while a new instruction, ADDE64, uses CA64.
Most instructions, like normal ADD, do not require both
forms, because their results are indistinguishable by a 32-bit
program running on either a 32- or 64-bit machine.

The Book E 64-bit design, although conceptually simple,
requires 94 more instructions than the original design:
124 new instructions were added; 30 were eliminated. To
accommodate the new instructions within the opcode space,
Book E sacrifices four bits of displacement in its extended load
and store instructions, reducing the reach of the displacement
from ±32K to ±2K. Sartorius says most displacements are
smaller than 2K anyway, so he expects little performance loss.

The new instructions forced a reassignment of some of
the 64-bit-instruction opcodes, severing compatibility with
the original 64-bit PowerPC and with IBM’s POWER archi-
tecture. But Sartorius claims that reassigning opcodes avoided
a cycle-time penalty for decoding the extra instructions (com-
pared with an original 64-bit PowerPC implementation).

Address Translation Gets Uninverted
Having cracked open the architecture to simplify 64-bit
addressing, the companies took the opportunity to make
other changes as well. Chief among them is restructuring
memory management from a memory-based page-table
design to a TLB-centric design. Actually, Book E nearly elim-
inates memory management from the specification alto-
gether, leaving much of it to the implementation. Only a few
abstract requirements are specified, along with some generic
TLB-management instructions.

The address-translation mechanism in the original
PowerPC consists of a segment-register-based translation to
© M I C R O D E S I G N R E S O U R C E S M A Y 1
a 52-bit virtual-address space, followed by a hashed-page-
table (a type of inverted-page-table) translation to a physical
address. The system has many technical advantages, such as
simple data sharing and small page tables (their size is pro-
portional to physical memory, not the virtual-address space
as with traditional page tables).

For embedded systems, however, this scheme is too
complex, especially for 64-bit machines, which require a seg-
ment lookaside buffer (SLB) instead of simple segment reg-
isters. (The complexity of the 64-bit memory management
was a contributing factor to the PowerPC 620 debacle.)

Complexity aside, the real problem with the original
scheme is that the only OS on the planet that uses it is AIX;
MacOS, Windows NT, Linux, and all embedded real-time
OSs can’t use it. Although the scheme works well for an OS
designed for it from scratch, it just gets in the way of others.
All OSs ever ported to PowerPC (besides AIX) waste time
emulating their conventional page tables on top of
PowerPC’s inverted page tables, sacrificing performance.
Book E supports virtually any type of page table, at the dis-
cretion of the OS.

Since address translation is not generally visible from
user mode, it can be changed without violating application-
level compatibility. Changes affect operating system code,
but most modern kernel-based OSs are modular enough to
accommodate the changes. Even MacOS 8.6 and the future
MacOS X should have no trouble adapting. Indeed, not hav-
ing to cope with inverted page tables will be a blessing.

Abstract Definition Leaves Room for Differences
Although many differences between address-translation
mechanisms are easy for an OS to handle, others are not. For
example, the bit layout of a page descriptor is usually incon-
sequential, but differences in page sizes are more problematic,
and the absence of write protection could be catastrophic. To
avoid this problem yet still gain flexibility vis-à-vis the origi-
nal PowerPC’s explicit specification, Book E defines a
required set of features but leaves open the low-level imple-
mentation details and how the OS invokes them.

Gone is the specification of any particular memory-
based page-table structure. Instead, Book E defines at an
abstract level the TLB features that must be implemented, as
Table 2 shows. The management of TLB entries and the struc-
ture of memory-based mapping tables are left to software.
TLB organization (e.g., number of entries and associativity)
is left to the implementation. The only specified hardware is
the interrupt vectors for TLB exceptions, a register to capture
the address of a TLB miss, and instructions for reading, writ-
ing, searching, and synchronizing the TLB.

For the most part, storage-access privileges (read and
write permissions) and storage attributes (e.g., write through,
cache inhibited, cache coherent, and ordered) are the same as
those in the original PowerPC. The address-aliasing function
of segment registers is replaced by a simple process-ID regis-
ter (PID). Block-address-translation registers (BATs) and real-
Feature Bits Description
Address Translation (effective address to physical address)
RPN ≤54 Real page number (variable page size)
TS 1 Translation address space (application or system)
SIZE 4 Page size = 1,024 × 4SIZE (1 KB to 1 TB)
PID – Process ID (size is implementation specific)
Access Control (per page)
UX 1 User-mode execute enable
SX 1 Supervisor-mode execute enable
UW 1 User-mode write enable
SW 1 Supervisor-mode write enable
UR 1 User-mode read enable
SR 1 Supervisor-mode read enable
Storage Attributes (per page)
WT 1 Write through (writes to cache go to memory)
I 1 Cache inhibited (all accesses bypass the cache)
M 1 Coherent (accesses maintained cache coherent)
G 1 Guarded (accesses performed in program order)
E 1 Endianness (big- or little-endian byte ordering)
U0–3 4 User-defined storage attributes

Table 2. Book E specifies a number of memory-management fea-
tures that a processor must implement, but it doesn’t dictate TLB or
memory-based page-table formats.
0 , 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

3 P O W E R P C A R C H I T E C T U R E G E T S M A K E O V E R E
M

B
E
D

D
E
D

address mode have been eliminated, replaced by variable-
sized pages ranging from 1KB to 1TB (one terabyte). Four
new user-definable storage attributes are available for use by
the OS to denote, for example, Java-translated or compressed
pages. Other new features include per-page execute protec-
tion—previously available only on a segment basis—and per-
page byte-order (endianness) selection.

Like existing PowerPC processors, Book E processors
will have both big- and little-endian byte ordering. But
because little-endian support was added to PowerPC just as
the first processor (PowerPC 601) was nearing tapeout, only
the simple address-swizzle form of little-endian could be
accommodated. This method, adequate for homogeneous
systems, is cumbersome in heterogeneous systems.

Thus, Book E adopts true little-endian ordering, imple-
mented by byte swapping. Although this change violates the
objective of strict user-mode compatibility, in practice the
change should be relatively benign. The difference between
address swizzling and byte swapping is often undetectable by
programs, and few customers are using the feature anyway.

Book E preserves PowerPC’s weak-memory-ordering
model, adding a couple of new memory-barrier instructions
to reduce the overhead of the software locks and semaphores
that are important in multiprocessor systems and multi-
threaded environments like Java. The original PowerPC actu-
ally provides stronger synchronization than is needed for
software signaling. Thus, the SYNC instruction, which stalls
the execution pipeline, is replaced by a less drastic MSYNC,
and MBAR puts EIEIO out to pasture. The new primitives pro-
vide only the minimum barriers necessary to ensure that
memory accesses made prior to a lock claim (or lock release)
are completed before the accesses following it are started.

Two Interrupt Levels Improve Response Time
Under the existing single-level structure, interrupts cannot
be nested until the first-level handler can save enough
machine state to safely reenable interrupts. The time period
during which interrupts must be disabled can exceed the
response-time requirements of some real-time systems.

To correct this shortcoming, Book E defines a “critical”
interrupt level that can be taken at any time during the
processing of “noncritical” interrupts. Noncritical interrupts
signal ordinary events such as memory-protection violations,
illegal opcodes, internal-timer events, and external asynchro-
nous inputs. Critical interrupts signal higher-priority events,
including debug traps, critical external asynchronous inputs,
machine checks, and watchdog-timer events.

Other changes further increase the power and flexibility
of the interrupt system to take on embedded-system duty.
Interrupt vectors, for example, were previously hardwired to
fixed addresses in physical memory, but now they have been
made programmable in both location and size and are
mapped in virtual memory. PowerPC’s timer facilities were
beefed up by adding an automatic-reload feature to the decre-
menter and fixed-interval triggers to the time-base counter.
© M I C R O D E S I G N R E S O U R C E S M A Y 1 0
These features reduce software overhead for handling trivial
timer events. Unlike in the original PowerPC, timer interrupts
can be disabled without disabling all interrupts.

A useful new feature is the watchdog timer, a foolproof
mechanism for guarding against software errors that can
trap a processor in an infinite loop with interrupts disabled.
The watchdog is triggered by selected bit transitions of the
time-base counter, and it is normally reset by software on
each fixed-interval timer event. If the watchdog gets set, indi-
cating a possible problem, a critical interrupt is signaled. If
the event handler cannot clear the problem and reset the
watchdog, the next watchdog event will force an unmaskable
system reset. To assure that nefarious software cannot sabo-
tage the processor, the watchdog is unstoppable: once en-
abled, it can be disabled only by a system reset.

Book E also defines an extensive set of on-chip debug
facilities, including breakpoint events on instruction and
data addresses, data values, trap instructions, taken branches,
exceptions, and subroutine returns. The debugger specifica-
tion, however, takes the form of recommended features
rather than strict requirements. Specific implementations
are free to create a superset or subset of the debug features.

Opcode Flexibility Imperils Compatibility
According to Sartorius, an important motivation for Book E
was to gain opcode flexibility. Designed for strict binary
Feature Size Description
ADDE64[O][.] 64 Add extended w/CA64 [overflow][cond]
ADDME64[O][.] 64 Add to -1 extended w/CA64
ADDZE64[O][.] 64 Add to zero extended w/CA64
SUBFE64[O][.] 64 Subtract from extended w/CA64
SUBFME64[O][.] 64 Subtract from -1 extended w/CA64
SUBFZE64[O][.] 64 Subtract from zero extended w/CA64
BCCTRE[L] 64 Branch conditional to count reg [link]
BCLRE[L] 64 Branch conditional to link register
BE[L][A] 64 Branch [link] [absolute]
BCE[L][A] 64 Branch conditional
DCB[…]E 64 Data-cache block instructions (7 instrs)
ICBIE 64 Instruction-cache block invalidate
ICBT 32 Instruction-cache block touch
ICBTE 64 Instruction-cache block touch
Loads… 64 Duplicates of original PPC loads (27)
Stores… 64 Duplicates of original PPC stores (24)
MBAR 32/64 Memory barrier
MSYNC 32/64 Memory synchronize
MCRXR64 64 Move to condition register from XER64
MFAPIDI 32/64 Move from APU ID register indirect
M[F/T]DCR 32/64 Move from/to device control register
RFCI 32/64 Return from critical interrupt
TLBIVAX 32 TLB invalidate
TLBIVAEX 64 TLB invalidate
TLBRE 32/64 TLB read entry
TLBWE 32/64 TLB write entry
TLBSX[.] 32 TLB search
TLBSXE[.] 64 TLB search
WRTEE 32/64 Write external interrupt enable
WRTEEI 32/64 Write external interrupt enable immed

Table 3. A total of 124 new instructions are added by Book E, most
of them to support the new modeless 64-bit addressing model.
, 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

E
M

B
E
D

D
E
D

4 P O W E R P C A R C H I T E C T U R E G E T S M A K E O V E R
compa tibility, the original PowerPC has a tight ly controlled
opcode sp ace ,requiring unanimous cons ent by Apple ,IBM,
and Motorola to m odify or extend it .The addi tion of new i n-
s tructions ,however, is an im portant m ethod of cus tomizing
process ors,l ac k of which would h ave pres ented a ba rrier to
s erving f uture embedded ma rkets .Since IBM and Motorola
wish to s erve dif ferent embedded ma rkets ,and sin ce Apple’s
needs a re comp uter focus ed,a “new” embedded a rchitecture
was the path of least resistan ce a round the ba rrier.

To gain flexibility witho ut tota lly aban doning compa ti-
bility, the Book E opcode sp ace was d ivided in to four ca te-
gories of ins tructions :defin ed , pres erved , res erved , and
a lloca ted.Defined ins tructions ma ke up the base ins truction
s et; th ey in clude the original 32- bit PowerPC ins tructions
plus the n ew ins tructions lis ted in Ta ble 3.Pres erved opcodes
a re PowerPC supervis or-mode ins tructions that remain
defined for b ackwa rd compa tibility but that m ay eventua lly
be expun ged . Res erved opcodes a re s et asi de for f uture
expansi on; their use must be bless ed by both IBM and Moto-
rola .(Apple has no official s ay in Book E.)

Alloca ted ins tructions— which in clude t wo fu ll prima ry
opcodes (4,096 potential ins tructions) p lus 512 s econda ry
opcodes (in four oth er prima ry opcodes)—a re res erved as
“sand box” opcodes .Eith er compa ny is f ree to pl ay in this
sand box, assi gning opcodes to a ny pu rpose it s ees fit, includ-
ing n ew us er-mode ins tructions .Therein lies the risk :e ach
compa ny could ,in th eory, elect to use the same opcode for
dif ferent ins tructions ,le ading to in compa tible chips .Al-
thou gh this eventuali ty is not precluded , the companies
expect it will not be a problem in embedded ma rkets ,which
often don’t overlap in s oftwa re . Oth er a rchi tec tures ,like
MIPS ,have th rived with similar cha racteris tics.

As a m eth od of officia lly supporting n ew fun ctions,
Book E in troduces the no tion of an a pplica tion-s peci fic pro-
cessing unit (APU) ,similar in concept to the MIPS coproce s-
s or. Architectura lly, AP Us a re little m ore than a convenient
w ay to talk a bout f acili ties for exec uting a lloca ted ins truc-
tions ;the only defined support is s ome in terrupt vectors for
exceptions and an ins truction to re ad APU sta tus.

AP Us can be either simple or compl ex and can sha re the
general-pu rpose regis ters or impl ement a s epa ra te regis ter file
having its own l oads and s tores .The in teger multiply-add fe a-
ture in IBM ’s 4xx process ors is an example of a simpl e APU;
AltiVec , the SIMD mul timedia extensi on in Mo torol a’s G4
(s ee MPR 11/16/98 ,p. 17), is an example of a compl ex AP U.

Apple can ,in th eory, use Book E process ors in Maci n-
toshes with a few OS chan ges .Under BookE,however, IBM
© M I C R O D E S I G N R E S O U R C E S M A Y 1 0
and Motorola could deliver in compa tible process ors .Moto-
rol a’s AltiVec AP U, for example ,could easi ly be torpedoed if
IBM were to mi suse one of its opcodes .Althou gh such
activity would not be i n Appl e’s best in terests ,it is san c-
tioned by Book E,and it will be tempting for IBM or Moto-
rola to use this capa bility as a wea pon to gain an advanta ge
over the oth er.

Contra ry to ea rlier rum ors, Book E does not define a
16-bit Thumb-li ke ins truction s et for reduced code si ze. Both
IBM and Motorola a gree that code-compressi on techni ques,
like IBM ’s Code Pack (s ee MPR 10/26/98 ,p. 26), a re just as
effective at reducing code si ze and c rea te fewer compa tibility
hassles .Therefore , Book E esta blishes no code-compressi on
standa rd, le aving it up to ind ividual impl ementors.

Book E Shifts Emphasis to Embedded
Book E is not as a ggress ive as it could h ave been. Althou gh it
fixes s ome ann oying problems that PowerPC inh erited f rom
IBM’s P OWER a rchitecture , like i nverted pa ge ta bles ,it does
not fix a ll kn own sh ortcomin gs. Several impl ementa tion
compl exi ties ,like s tring ins tructions ,remain .Fixing these,
however, would h ave required breaking b ackwa rd compa ti-
bility—a m ove that would h ave s tran ded Apple with th e orig-
ina l PowerPC and mi ght h ave push ed it over the edge in to the
Intel cam p.

Althou gh IBM and Motorola point to technical reas ons
behind the m ove to Book E,in reali ty its chan ges a re m odest
and could easi ly h ave been m ade within the f ram ework of
the exis ting PowerPC a rchi tecture , witho ut a grandiose
“new”a rchitec ture.T hus ,BookE a ppea rs to be mo tiva ted by
legal and business consi dera tions as well as technical ones.

Under th eir original PowerPC contracts ,the t wo comp a-
nies were overly cons train ed. Una ble to a gree on a comm on
direction and not f ree to muta te PowerPC in to the dif ferent
forms e ach compa ny n eeded, the pa rtnership un raveled (s ee
MPR 6/22/98 ,p. 10). By c rea ting a n ew a rchitecture ,the com-
panies h ave esca ped the l egal contracts governing th eir actions
with res pect to th e origina l PowerPC .Under those a gree-
ments ,for example ,“PowerPC ”was owned by IBM ,prevent-
ing Motorola f rom li censing it to oth ers. Under the Book E
a greements ,Motorola has gain ed these rights—a benefit as
si gnificant as a ny technical im provement.

IBM and Motorola s eem to h ave lea rned a less on f rom
their ea rlier fail ed pa rtnershi p. The duo s eems n ow to recog-
nize what th ey fail ed to recognize ini tia lly: they a re rea lly com-
petitors—a f act that doomed Somers et f rom the sta rt. Both
companies clea rly un derstand that Book E is a precompetitive
a greement and ,once it is compl ete ,no holds a re ba rred.

On the one hand ,Book E wea kens the PowerPC sta n-
da rd, opening the door wide to ins truction-s et dif ferences
that th rea ten s oftwa re compa tibility. On the oth er hand,
sin ce PowerPC has clea rly lost its bid to topple the x86 off the
desk top, or even to ca pture a si gnificant sha re of the PC ma r-
ket—not withstanding i Mac—the fl exi bili ty offered by
Book E m ay in the l ong run prove m ore im portant to IBM,
Motorola ,and PowerPC than s oftwa re compa tibility.— M
F o r M or e I n f or m a t i o n

For mor e infor mation on Book E, visit www.chips.
ibm.com/products/powerpc or http://motorola.com/
PowerPC. Neither IBM nor Motor ola has announced any
processors based on Book E.
, 1 9 9 9 M I C R O P R O C E S S O R R E P O R T

http://www.chips.ibm.com/products/powerpc
http://www.chips.ibm.com/products/powerpc
http://motorola.com/PowerPC
http://motorola.com/PowerPC

	PowerPC Architecture Gets Makeover
	Controllers Need 64 Bits Too
	Mode Traded for Instructions
	Table 1. Book E’s new features improve PowerPC’s...
	Address Translation Gets Uninverted
	Table 2. Book E specifies a number of memory-...
	Abstract Definition Leaves Room for Differences
	Two Interrupt Levels Improve Response Time
	Opcode Flexibility Imperils Compatibility
	Table 3. A total of 124 new instructions are added by...
	Book E Shifts Emphasis to Embedded

	For More I n f o rmation

