MAJC Gives VLIW a New Twist

New Sun Instruction Set Is Powerful But Simpler Than 1A-64

by Linley Gwennap

An emerging group of third-generation instruction sets
shares some common ideas, in particular an emphasis on the
compiler to perform the instruction grouping and branch
prediction that is handled in hardware by traditional proces-
sors. Sun’s MAJC follows the same theme, but with varia-
tions that make it uniquely qualified for a range of embed-
ded applications. Most other modern VLIW architectures are
designed for specialized multimedia or signal-processing
algorithms. The best-known VLIW-based design, 1A-64, is
intended for high-performance workstations and servers,
leaving an opening for MAJC.

With an eye on embedded systems, the MAJC designers
focused on reducing code expansion, a bane of most other
VLIW architectures. MAJC also includes a more compact
register file than 1A-64’s and uses a few conditional instruc-
tions instead of full predication. Because it comes from Sun,
MAJC also has features designed to speed execution of Java,
which is growing in popularity for embedded software devel-
opment. In fact, MAJC (pronounced “magic”) stands for
Microprocessor Architecture for Java Computing.

To achieve these results, Sun left out some of the bells
and whistles found in 1A-64. Thus, MAJC won't wring as
much performance from some applications as the HP/Intel
architecture does, although neither company has shipped
processors to validate this assumption. But MAJC programs
will clearly be more compact than 1A-64 code. MAJC’s broad
range of features also makes it appropriate for many more
applications than specialized designs such as the Philips Tri-
Media or Texas Instruments ’C6xxx instruction sets.

Compact Instruction Encodings

IA-64 (see MPR 5/31/99, p. 1) places three 41-bit instruc-
tions plus some header bits into a 128-bit “bundle.” These
instructions are wider than standard 32-bit RISC instruc-
tions for two main reasons. First, they include 7-bit register
identifiers to allow access to the 128-entry register files. Sec-
ond, each instruction includes a 6-bit predicate field to select
one of 64 predicate registers. As a result, 1A-64 takes an
immediate 33% hit in code density compared with a tradi-
tional RISC architecture.

Although this expansion may not matter in a high-end
server, Sun didn’t want MAJC to pay this penalty. Instead, the
architecture sticks with 32-bit instructions. This decision
required a compromise: instead of a fully predicated instruc-
tion set, MAJC has only a few conditional instructions. This
choice avoids bloating each instruction with a predicate field.
While both methods are effective at eliminating branches,

OMICRODESIGN RESOURCESQ}SEPTEMBER 13, 1999 <y

IA-64's full predication requires fewer instructions to simu-
late a branch. For most applications, however, the increase in
instruction width far outweighs this small reduction in
instruction count.

Instead of adding header bits, the MAJC designers stole
two bits from the first instruction in a “packet” (see MPR
8/23/99, p. 13) to identify groups of parallel instructions.
This method limits the maximum number of instructions
per cycle to four. In contrast, IA-64 can create and execute
arbitrarily large groups of instructions in a single cycle.
Applications that have enough instruction-level parallelism
to take advantage of 1A-64’s greater capabilities will have a
performance advantage on the Intel/HP design, but most
applications are likely to fare just as well on MAJC. More
important, Sun’s choice keeps the instruction size to 32 bits.

With these features, MAJC should deliver code density
similar to that of RISC architectures such as MIPS and ARM.
Code density affects cost by reducing the die area of caches
and memory and the cost of external DRAM and ROM.
MAJC, however, can’t match the code density of hybrid RISC
architectures such as Hitachi’s SH or “compressed” instruc-
tion sets such as Arm’s Thumb.

Given the maximum packet size of four, a MAJC pro-
cessor will typically have four function units, each capable of
executing any MAJC instruction. The first instruction in a
packet always goes to the first function unit, the second to the
second, and so on. The versatility of the function units gives
the compiler great flexibility in assigning instructions to
units. The only limitation is that the first instruction must be
a load or store, due to the two bits “stolen” from the opcode.

Unified Register File

MAJC’s unified register file, unusual among modern pro-
cessor implementations, can hold integer, SIMD integer,
floating-point, and condition-code values. Implementations
can choose either a 32-bit or 64-bit register width. With at
least 128 entries, this register file holds twice as much infor-
mation as the pair of 32-entry integer and FP register files in
a standard RISC architecture. Furthermore, the unified
design allows the compiler to dynamically allocate registers
to integer or FP data as needed; in a program with no FP cal-
culations, for example, the entire register file could be
devoted to integer values, providing four times the storage of
a standard RISC architecture.

One potential problem with a unified register file is the
need for a large number of read ports. In a traditional four-
issue design, a unified file would need up to 12 read ports
and 4 write ports, resulting in a large and slow physical
implementation. Sun solves this problem by replicating the

MICROPROCESSOR REPORT

MAJC GIVES VLIW A NEW TWIST

register file for each function unit. A four-issue MAJC chip
would have four register files, which could each need only
three read ports and four write ports. Although this design
requires more registers than a single central register file, the
physical size of each register file is greatly reduced due to the
limited number of ports, resulting in about the same total
area. In addition, the smaller individual register files can
operate at a higher clock speed. Only a small amount of
hardware is needed to synchronize the register files.

Even 128 registers is less than the 256 total registers in
IA-64's integer and FP files. To further increase the number
of registers, MAJC divides the file into local and global regis-
ters. The local registers are unique to each function unit and
cannot be accessed by the other units, while the globals are
shared. The dividing line is implementation-specific, but an
implementation with 96 globals and 32 locals in each of the
four function units has a total of 224 registers—nearly as
many as an 1A-64 processor. With 32 globals and 96 locals, a
MAJC processor would have 416 registers.

With a traditional split register file, an architecture
essentially uses the opcode as the high-order bit in selecting
a register: FP instructions use one register file, integer
instructions the other. With local register addressing, MAJC
instead extends the nominal 7-bit register address, using the
location of an instruction within its packet, which deter-
mines the function unit it will be assigned to. This method
gives the compiler access to a great number of registers with-
out extending the instruction length with larger register-
index fields.

Large register files can be a problem at context-switch
time. MAJC includes several dirty bits, each assigned to a
block of 32 registers, that indicate whether any registers in
that block have been written to. The compiler doesn’t need to
save blocks of registers that haven’t been used. To enforce
modest register usage, the processor can trap any accesses
beyond the initial 32 registers. This mode can be used to call
a subroutine, such as a device driver, without fear that that
code will trash important data in the upper registers.

With four-operand (e.g., MULADD) instructions, the
7-bit register identifiers add 8 bits to a traditional RISC
encoding. To maintain the same 32-bit instruction width,
Sun was forced to cut back on the features of some instruc-
tions. Sun feels the performance advantage of the large regis-
ter file is well worth these compromises.

Fixed Address Branches

The MAJC architects have extensive experience with the
physical design of high-performance microprocessors. With
a blank slate to play with, they added features to ease critical
speed paths in future MAJC processors. For example, the
branch and call instructions use a semiabsolute target ad-
dress, as Figure 1 shows. The 12-bit target offset encoded in
the instruction directly selects the lower address bits of the
target; in most architectures, this offset is added to the pro-
gram counter to form a PC-relative target address.

The 12-bit offset is enough to select from 4K instruc-
tions, or 16K bytes. Two additional bits (the relative offset,
shown as “roff” in Figure 1) are added to the PC to allow
branches to point to the previous 16K, the current 16K, or
the next 16K. This extra field is required to concisely encode
short branches that happen to cross a 16K boundary. Al-
though this approach seems convoluted, the compiler can
easily generate the required encodings.

The advantage of semiabsolute addressing is that the
target offset can immediately be fed back to the instruction
cache to fetch the target instruction. PC-relative addressing
inserts an adder into this path, which is often a critical speed
path in a modern processor. The MAJC scheme still requires
an adder to calculate the upper address bits, but these bits are
not needed to access a cache with a set size of 16K or less.
This limits the maximum practical instruction-cache size to
a four-way set-associative 64K, which should be adequate for
embedded processors for the next several years. This limit
could have been increased by expanding the target-offset
field, but the 32-bit instruction width is a constraint.

Like 1A-64, MAJC includes two prediction bits with
each branch. One provides the compiler’s prediction of the
branch’s path (taken or not taken), and the other indicates
whether hardware or software prediction should be used.
With the latter option, the processor relies on the compiler’s
prediction in all cases, avoiding the need to consume the
hardware prediction tables with easy-to-predict branches.
Some second-generation instruction sets include a single
prediction bit to initialize the hardware predictor, but they
cannot override that predictor the way MAJC can.

The basic branch instruction (B) has only two condi-
tional forms: branch if zero and branch if not zero. (An
unconditional branch is encoded using RO as the source,
since RO is always zero.) Again, the limited instruction width
prevents the inclusion of additional conditions. For more
complex conditions, a set of compare (CMP) instructions
tests whether integers or FP values are greater than, equal to,

313029 2726 2423222120 141312 11 0
00/000/000|z|pred source (i target_addrl2
~——

(2-bit signed range offset, sign-extended to 18 bits)

+

‘ PC<31:14> ‘
31 14,
) !
7 A N/ A\ N\
31 1413 210

Figure 1. MAJC’s semiabsolute branch targets combine a fixed tar-
get offset with a small relative offset (roff) that is added to the pro-
gram counter (PC).

OMICRODESIGN RESOURCES V{L}SEPTEMBER 13, 1999<;7MICROPROCESSOR REPORT

MAJC GIVES VLIW A NEW TWIST

For More Information

Sun has not yet announced any MAJC-based prod-
ucts. For more information on the instruction set, access
www.sun.com/microelectronics/MAJC.

or less than each other. The processor stores the result of a
CMP as a logical value in any of the general registers, which
can then be tested using the conditional branch instruction.
These compare results are also used by the conditional move,
pick, and store instructions. This method consumes general
registers to hold logical values, but it avoids the need for a
separate set of 1-bit registers, as in 1A-64.

Subroutine calls also require a bit of extra overhead.
The CALL instruction uses a 26-bit semiabsolute offset that
allows access to the full 32-bit address space by forcing all
subroutine targets to be 32-byte aligned. To hold this large
offset, however, the CALL encoding omits any register speci-
fiers; thus, the return address is always stored in R2. Nested
subroutines must save R2 before the next CALL. Alternatively,
the jump-and-link (JMPL) instruction can save the return
address in any register, but the target address must be placed
in a general register before executing this instruction.

For extra performance, MAJC includes an optional
prepare-to-jump instruction that starts fetching instructions
from the specified address and feeding them to the front of
the pipeline. The decoded instructions are held in a tempo-
rary buffer until a fast jump (FASTIMPL) initiates execution
of the new instruction stream. This instruction sequence
permits zero-overhead branches when the target address can
be precalculated. In contrast, the normal JMPL will take sev-
eral cycles to fetch the target address from a register and re-
direct the instruction-fetch logic.

MAJC includes a unique instruction, BNDCHK, that
does three checks at once. The instruction tests whether a
value is less than zero or greater than a preset limit while also
testing whether a second value is zero. BNDCHK traps if any of
the tests are true. This instruction can simultaneously verify
that a Java array index is valid and that the object pointer is
not null. Other architectures require a series of three condi-
tional branches (or, in the case of 1A-64, three predicate-
generating comparisons) to perform the same set of tests,
requiring at least three instructions.

Flexible Memory Architecture

MAJC’s load and store instructions can handle a variety of
data types, ranging from bytes to doublewords (64 bits).
Data types smaller than the register width are sign extended
or zero extended, depending on the opcode, to fill the regis-
ter. Data types larger than the register width are stored into
consecutive registers. The LD.G instruction loads an imple-
mentation-dependent number of registers. MAJC provides
base+register and base+offset addressing, where the offset is

OMICRODESIGN RESOURCES {:}SEPTEMBER 13, 1999 <y

scaled by the size of the data being loaded. This scaling pro-
vides greater dynamic range but forces all data to be aligned
to its natural size.

A MAJC processor contains two ASI (alternate space
identifier) registers that specify memory options such as
loading to a specific level of the memory hierarchy, bypassing
the cache entirely, flushing cache entries, and accessing 1/0
devices. Load and store instructions can optionally specify
one of these registers to modify the function of the instruc-
tion. This tactic avoids using opcode bits to specify these
options, which would have expanded the instruction width.
The ASI registers must be set up in advance, however, and
applications that need to frequently change the ASI options
will be burdened.

Like 1A-64 (and SPARC v9), MAJC includes a nonfault-
ing load. This option lets the compiler hoist loads above con-
ditional branches, hiding the latency of the load. If a fault
occurs, this load does not trap but, unlike SPARC v9’s non-
faulting load, it does save the fault status. Sun would not dis-
close how this status is saved or checked, but the MAJC
method is probably similar to 1A-64’s “NaT” bits (see MPR
3/8/99, p. 16), which are attached to each register to indicate
whether its data is valid.

MAJC includes atomic swap and compare-and-swap
memory operations that can be used to manage software
semaphores. These are particularly critical in Java environ-
ments, which typically have many concurrent threads syn-
chronized via semaphores. MAJC permits these semaphore
instructions to coexist with other load and store operations
in the memory pipeline; the processor ensures there are no
address conflicts. Most processors drain the memory pipe-
line before executing an atomic operation, reducing perfor-
mance when many semaphores are used.

To efficiently support dynamic code generation for just-
in-time (JIT) Java compilers, MAJC has a store-instruction
(sTI.W) instruction. This special store automatically bypasses
the data cache and invalidates the corresponding entry in the
instruction cache, ensuring that the new instruction will be
executed properly when referenced. Most other processors
require a lengthy series of cache-flush and synchronization
operations to correctly execute self-modifying code.

Basic and Extended Math

In MAJC assembly code, basic math operations—such as
add, subtract, multiply, and divide—use the same mnemon-
ics for integer and floating-point values, as Table 1 shows.
Mnemonic extensions specify whether the data type is 32-bit
integer (.1), 64-bit integer (.L), single-precision FP (.F) or
double-precision FP (.D). An extensive set of convert (CVT)
instructions transforms register values from one format to
another. Add and subtract also sport a saturating option (.S)
that is useful in multimedia algorithms. MAJC is unusual in
supporting multiply-add and divide on the integer side, but
this support is almost free, due to the unified register file and
function units.

MICROPROCESSOR REPORT

http://www.sun.com/microelectronics/MAJC

MAJC GIVES VLIW A NEW TWIST

MAJC includes some math operations solely for float-
ing-point values. These include minimum, maximum,
square root, and reciprocal square root. The latter two
deliver full-precision results rather than the partial esti-
mates generated by some recent instruction sets. The CLIP.F
instruction is similar to BNDCHK in that it checks whether a
source value is within the bounds of £RS2, where RS2 is a
preset limit stored in a register. This instruction performs
two comparisons at once and is useful in some graphics
functions.

In addition to the usual logical and shift instructions,
MAJC provides trendy new instructions such as byte shuffle,
count leading zeroes (CCCB), and count ones (POPCOUNT).
These accelerate cryptography, table lookups, and the vari-
able-length decoding portion of video decompression.

MAJC has extensive support for parallel 16-bit integer
arithmetic. A 32-bit implementation can hold two such val-
ues per register; a 64-bit implementation, four. In addition to

Description

Description

basic arithmetic and shift instructions for this data type,
MAJC offers average (MEANP) and exponential (POWERP)
calculations. The PDIST instruction, similar to that in
SPARC’s VIS (see MPR 12/5/94, p. 16), is useful in video
compression. Two DOT instructions accelerate the dot-
product calculations used in many signal-processing algo-
rithms. Sun’s long experience with VIS was critical in the def-
inition of these parallel integer instructions.

In contrast, MAJC has no support for parallel single-
precision FP operations, such as those in Intel’s SSE (see
MPR 3/8/99, p. 1) and 1A-64. One instruction, RECSQRTP,
calculates two reciprocal square-root estimates in an unusual
16-bit (52.13) fixed-point format. Because the initial MAJC
chip uses 32-bit registers, parallel single-precision FP has no
benefit. Sun may add instructions of this type for future
64-bit MAJC chips. As Intel’s experience shows, such instruc-
tions can deliver sizable performance increases on 3D graph-
ics and other applications.

Description

Integer Arithmetic

Parallel Integer Arithmetic

Memory Transfer

ADD.I/.L Add integer/long integer ADDP(.S) Parallel add (with saturation) | LD.B/.H/.W/.D |Load byte/half/word/double
ADD.S Saturating add SUBP(.S) Parallel subtract (w/sat.) LD.UB/.UH/.UW |Load unsigned byte/half/word
SUB.I/.L Subtract MULHI.S Multiply high halfwords LD.G Load group

SUB.S Saturating subtract MULLO.S Multiply low halfwords LD.sz1.A1/A2 |Load from alternate space 1/2
MUL.I Multiply MULADDP Parallel multiply-add LD.sz1.NF Nonfaulting load
MUL.H/.UH Multiply low/high halfwords | MULADDP.S Parallel mul-add with sat. PREFETCH Prefetch data from memory
MULADD.| Multiply and add DOTADDP Parallel dot-product w/add | ST.B/.H/.W/.D |Store byte/half/word/double
MULSUB.I Multiply and subtract DOTSUBP Parallel dot-product w/sub. |[ST.sz2.A1/A2 Store to alternate space 1/2
DIV.I/.L(.U) Divide (unsigned) POWERP Parallel exponent: AB STC .sz2(.A1/.A2) | Conditional store (to alt space)
ADDLO Add 16-bit immediate MEANP Parallel average: A/2+B/2 STCP Parallel conditional store
SETLO Store 16-bit immediate PDIST Pixel distance: Z|A-B| STIL.W Store instruction word

SETHI Store immed to high 16 bits | SH.LL(.D) Shift logical left (64-bit) BLKZERO Zero one cache line
CMP.cond2 Compare integers SH.RL(.D) Shift logical right (64-bit) SWAPW Atomic swap with memory
CMPL.cond2 Compare long integers SH.RA(.D) Shift arithmetic right (64-bit) | CASW Atomic compare-and-swap
MOVC.condl | Conditional move CMPP.cond2 Parallel compare Data Conversion

PICKC D=A if C=0; else D=B MOVCP Parallel move conditional CVT.DI/.FI Convert float (DP/SP) to int
AND Logical AND PACK Pack into parallel halfwords | CVT.DL/.FL Convert DP/SP to long int
OR Logical OR FP Arithmetic CVT.IF/.LErnd | Convert int/long to SP float
XOR Logical XOR ADD.F/.D.rnd | FP add (SP/DP) CVT.ID Convert int to DP float
SH.LL(.D) Shift logical left (64-bit) SUB.F/.D.rnd FP subtract (SP/DP) CVT.LD.rnd Convert long int to DP float
SH.RL(.D) Shift logical right (64-bit) MUL.F/.D.rnd | FP multiply (SP/DP) CVT.DFE.rnd Convert DP float to SP
SH.RA(.D) Shift arithmetic right (64-bit) | DIV.F/.D.rnd FP divide (SP/DP) CVT.FD Convert SP float to DP
BITEXT Extract bits from register pair | MULADD.F/.D | FP multiply add (SP/DP) CVT.FX Convert float to fixed-point
BYTESHUFFLE | Rearrange bytes MULSUB.F/.D | FP multiply subtract (SP/DP) | CVT.XF Convert fixed-point to float
CCCB Count leading zeroes SQRT.F/.D.rnd | FP square root (SP/DP) CVTPIFrnd Parallel convert int to float
POPCOUNT Count ones RECSQRT.F FP reciprocal square root System Control/Miscellaneous

Control Transfer NEG.F/.D FP negate (SP/DP) FLUSHI Flush instruction pipeline
B.cond1l Conditional branch ABS.F/.D FP absolute value (SP/DP) MEMBAR Flush memory pipeline

CALL Subroutine call, link in R2 MAX.F/.D FP maximum (SP/DP) GETIR Read internal register

JMPL Jump indirect and link MIN.F/.D FP minimum (SP/DP) SETIR Write internal register
PREJMPL Prepare to jump CMPF/.D.cond3| FP compare (SP/DP) SOFTTRAP Software-initiated trap
FASTIMPL Fast jump-and-link CLIP.F FP clip test: -B<A<B? SIR Software-initiated reset
BNDCHK Bounds check and trap TRAPC Trap if necessary

DONE Return from exception RECSQRTP Parallel recip sqrt 16-bit FP | YIELD Yield to another thread
RETRY Return to excepting instr CMPP.F.cond3 | Parallel compare SP float PAUSE Wait for interrupt

Table 1. The MAJC instruction set. cond1=Z or NZ (zero, not zero); cond2=EQ, LT, LE, or ULT (equal, less than, less than or equal, or
unsigned less than); cond3=EQ, LT, LE; rnd=RN, RZ, RH, RL (round toward nearest, round toward zero, round high, round low); sz1=B, H,
W, D, UB, UH, UW, or G (byte, halfword, word, doubleword, unsigned byte, unsigned halfword, unsigned word, group); sz2=B, H, W, D.

OMICRODESIGN RESOURCES \EZL}SEPTEMBER 13, 1999 <y MICROPROCESSOR REPORT

MAJC GIVES VLIW A NEW TWIST

OS Support for Multiple Threads

MAJC has the usual privileged instructions to flush caches,
force memory ordering, access internal registers, and reset
the processor. Exception handlers can return to the main
routine using DONE or RETRY. The latter backs up the return
address by one packet, reexecuting the packet that failed.
This feature could be used if, for example, an 1/O device had
an error that was later cleared.

The YIELD instruction provides support for thread
switching. MAJC processors can optionally store the context
of up to four threads. Upon encountering a YIELD instruc-
tion, the processor can switch to another thread if one is
available. This method can overlap thread execution to take
advantage of situations that the compiler thinks may cause a
long stall in the hardware.

MAJC Delivers Embedded Power

There is no apparent reason that MAJC would not be appro-
priate for high-end servers as well as embedded systems.
Although it does not have all of the high-performance fea-
tures of 1A-64, MAJC appears superior to the aging SPARC
architecture (and other RISCs) for high-end applications.
MAJC has more registers, more conditional instructions, and
better speculative loads than SPARC as well as other innova-
tive features SPARC lacks. MAJC lacks one crucial thing: the
extensive software base that SPARC has today and |A-64 will
have in the near future. Thus, Sun remains committed to
SPARC CPUs in its workstations and servers.

Sun’s intent is to move MAJC into the embedded space,
where having a software base is far less important. In this
space, SPARC has had little success, and MAJC should do
better. The new instruction set should deliver better perfor-
mance—particularly for graphics, signal processing, and

Java bytecode—than SPARC, without a significant increase
in code size or die size. MAJC is well suited for applications
such as set-top boxes, cellular base stations, and digital cam-
eras that demand powerful processors.

MAJC is not as well suited for embedded applications
that demand minimum cost or minimum power. With its
large register file and general-purpose function units, a
MAJC core is likely to be larger than a simple RISC core,
increasing die cost and power consumption. In addition,
MAJC code sizes will be bigger than those for many of the
popular embedded architectures that use instructions of less
than 32 bits, increasing memaory costs. In some applications,
however, the differences will be small enough to justify the
higher performance.

In devices that primarily execute Java bytecode, these
performance differences may be substantial. MAJC’s sup-
port for fast semaphores and fast thread switching improve
performance on Java code, which typically has many
threads. The BNDCHK instruction accelerates array-index
checking, which is done in real time in Java. The STI.W
instruction speeds JIT compilers, which are popular Java
tools. For these reasons, a MAJC chip should outrun a com-
parable traditional processor on Java code. MAJC’s benefit
will be reduced, however, if programmers compile their
Java programs directly to the traditional processor’s assem-
bly code.

Sun’s new architecture takes the basic concepts of the
most modern instruction sets and modifies them to better
suit a range of embedded applications, adding a few new
tricks along the way. Among VLIW architectures, it is the
most appropriate for these embedded systems. MAJC pro-
vides a strong tool that will help Sun expand its presence in
the embedded-processor market.

OMICRODESIGN RESOURCES {:}SEPTEMBER 13, 1999<}MICROPROCESSOR REPORT

	MAJC Gives VLIW a New Twist
	Compact Instruction Encodings
	Unified Register File
	Fixed Address Branches
	Figure 1. MAJC’s semiabsolute branch targets...
	Flexible Memory Architecture
	Basic and Extended Math
	Table 1. The MAJC instruction set. cond1=Z or NZ...
	OS Support for Multiple Threads
	MAJC Delivers Embedded Power

	For More Information

