
GUEST VIEWPOINT:
IS OUT-OF-ORDER OUT OF DATE?
IA-64’s Parallel Architecture Will Improve Processor Performance

By William S. Worley Jr. , HP Labs, and Jerr y Huck, IA-64 Architecture Lab {2/7/00-02}

Microprocessors are on a relentless path to higher performance. Every innovation in

computing—data mining, Java programming, distributed computing on the Internet,

multimedia data streams, and so on—invariably requires greater computing power. Even

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com
traditional database processing and technical computing
have increasing problem sizes that drive demand for
higher-performance microprocessors.

To meet these and other future requirements, new
approaches to exploit improvements in IC processes are
needed. Today, nearly all microprocessors exploit paral-
lelism to accomplish more work in less time. We believe that
parallelism can best be exploited with a computer architec-
ture that is designed from the ground up to support
instruction-level parallelism (ILP). We have termed this
style of architecture EPIC, for explicitly parallel instruction-
set computing. IA-64, developed jointly by HP and Intel, is
such an architecture (see MPR 5/31/99-01, “IA-64: A Paral-
lel Instruction Set”).

IA-64 enables the compiler to express more paral-
lelism to the machine than is possible with existing RISC or
CISC architectures. As a result, IA-64 significantly reduces
the hardware cost of detecting and scheduling the paral-
lelism among instructions. The ability to specify this paral-
lelism directly is one of IA-64’s primary advantages.

Through the 1980s, RISC and CISC architectures were
not designed primarily for high ILP. Instead, they were
designed to make the best use of the technology that was
available at the time. The RS/6000 and Alpha architectures
adopted similar computing resources and instruction set
© M I C R O D E S I G N R E S O U R C E S F E B R U A
formats. The inability of RISC and CISC architectures to
express parallelism directly can be overcome to some degree
by adopting complex, nonarchitectural approaches, princi-
pally out-of-order (OOO) dynamic superscalar hardware.
Although preserving customer investments and supporting
an installed system base are good business reasons for
developing such processors for legacy architectures, the
advent of IA-64 eliminates the performance of OOO hard-
ware as a compelling technical reason to do so.

The growing market requirement for a higher-
performance 64-bit architecture and absence of existing
Intel 64-bit binaries gave HP and Intel an opportunity to
create something new. The companies took advantage of
this opportunity—along with lessons learned from the past
15–20 years of computing evolution—to create a new archi-
tecture with performance characteristics superior to those
of existing RISC and CISC architectures.

Not Just for ILP
A microprocessor that minimizes computation cycles
makes a better building block for high-performance sys-
tems. Such a microprocessor can, for example, be repli-
cated to build multiprocessor systems. Fast CPUs in an
MP configuration reduce queuing and contention, and
they provide greater overall throughput than a larger
R Y 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

2

number of slower processors, a fact that we have seen
many times in OLTP benchmarks in which small numbers
of PA-RISC processors outperformed larger numbers of
slower processors.

The view that parallelism is achieved most effectively
through higher levels of multiprogramming is unproved,
and, to the extent that it may be true, does not provide the
complete picture. It fails to appreciate the fact that paral-
lelism must be improved at all levels of a system. Providing
parallelism solely through hardware-based multithreading,
simultaneous multithreading (SMT), or chip-level multi-
processing (CMP) cannot compensate for the lack of paral-
lelism in the basic processing element. This is obvious for
single-threaded code, but it is true even for some multi-
threaded code, such as the encryption codes mentioned later.

SMT and CMP apply equally to RISC, CISC, and
EPIC microprocessors. The first paper design of an EPIC
machine at HP labs in 1991 envisioned integrated hardware
multithreading as an orthogonal complement to EPIC
architecture capabilities. But SMT has its downsides. The
nonlinear nature of caches can be a problem for some
workloads. Instead of one thread thrashing the cache on
one processor, one thread on an SMT processor can thrash
the cache for all threads on the processor. Finding the best
design for multiple working sets to share a single cache is a
research problem that has generated several papers but, as
yet, no clear solutions.

Effective utilization of the hardware resources of a
modern microprocessor is difficult. Historically, we have
found that doubling the number of function units of a RISC
processor has resulted in less-than-linear scaling. IA-64 was
specifically designed to utilize additional function units
effectively. Defenders of superscalar RISC architectures
argue that out-of-order processing is the best means to
achieve high function-unit utilization.

Building an out-of-order processor, however, is com-
plex and difficult. The original PA-8000, for example, used as
many transistors in its reorder buffer as were used in the
entire previous-generation PA-7200 chip. Most current-gen-
eration OOO engines are four-issue implementations, and
our studies indicate that the complexity of these machines
will scale quadratically for 1.5× or 2× increases in issue
width. In contrast, the first member of the IA-64 family—
Itanium (nèe Merced)—is already a six-issue machine.

Architecture vs. Implementation
Architectural influences are determinative for many parts of
an implementation, but not for all. The speed of an ALU, for
example, is primarily a function of IC process and word
width. The repertoire of operations that the ALU can per-
form, however, is a second-order issue. In addition, the
data-cache hierarchy and the memory system of RISC and
EPIC processors are largely independent of the architecture.
Cache and memory-system interfaces must meet the
demands of the processor—be it RISC, CISC, or EPIC.

Guest Viewpoint: Is Out-of-Order Out o
© M I C R O D E S I G N R E S O U R C E S F E B R U A R
Criticizing the IA-64 architecture on the basis of an initial
memory-system design, which was chosen to balance cost
and performance, is a bit unfair.

Some assert that memory systems can be more fully
utilized by OOO RISC designs. Our analysis of contention,
cache behavior, buffer queuing, processor affinity, memory
interleaving, and other factors indicates that one can find
better approaches to use available memory technology if
one is willing to accept additional cost.

The IC process, the number of registers, the number of
register ports, the bypass network, and the number of cache
ports are the principal factors in determining the cycle time
of an IA-64 processor. Any RISC or CISC design faces simi-
lar challenges. The critical path in many modern micro-
processors, IA-64 processors included, is found in the func-
tion units and their bypass networks. But IA-64 processors
distinguish themselves by higher utilization of this funda-
mental structure. As with all designs, a balance was sought
among the clock rate, pipeline depth, and execution width.

The first IA-64 processors will be used in high-end
servers and workstations. Over time, designs will broaden
out to span a wide range of markets. An HP Labs study for
high-performance embedded controllers has confirmed
that EPIC-like machines are exceptionally effective.

IA-64’s Parallelism Features
Several IA-64 capabilities express and enhance parallel exe-
cution. The first is predication, which reduces the number
of encountered branches, mispredicted branches, and other
obstacles to finding parallelism. Our studies conclude that
the gain from branch reduction more than compensates for
any extra instructions that might be executed (Note: Do not
think of a single if clause, think of merging three to five dif-
ferent basic blocks into a single, branchless, critical-path-
limited sequence of code.). A mispredicted branch disrupts
the pipeline. The lost opportunity can be measured as the
width of the machine times the length in cycles of the mis-
predict penalty. For newer RISC processors, this is often
more than 20 instruction slots.

IA-64 specifies a large register set (128 GP registers and
128 FP registers), a feature that allows algorithm design to be
fundamentally changed. Matrix operations, finite-element
analysis, and many other technical algorithms can be
restructured to take better advantage of the large register
space. OOO superscalar advocates argue that their internal
register-renaming hardware can bring to bear just as many
register resources as IA-64. Rename registers, however, are
not as effective as real registers for either the programmer or
the hardware.

Having only 32 architecturally visible registers, as most
RISC architectures do, requires that a programmer struc-
ture his or her code in such a manner that, at any point in
time, the registers containing program state do not exceed
32. For problems such as 1,024-bit RSA encryption, one can
effectively use many more than 32 general registers and 32

f Date?
Y 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

floating-point registers. Holding just two 512-bit operands
and one 1,024-bit intermediate result fills 32 64-bit regis-
ters. For a RISC or CISC processor, the RSA program would
require many housekeeping load and store instructions
whose only productive functions are to limit the instanta-
neous general- and floating-point-register state. Although
the underlying hardware may have many more internal
rename registers, the programmer has no direct means to
use these registers to hold program state. Two of the AES-
study codes, mentioned later, used over 60 general registers.
Having this many architecturally visible resources, and the
IA-64 register rotation, enables coding strategies that simply
are not possible with an architected set of only 32 registers.

On the hardware side, even though OOO superscalar
implementations normally have extra internal registers,
during every cycle they must make visible only the 32 reg-
isters of program state. Furthermore, in the event of an
interruption, the hardware must be prepared to lose (and
later perhaps partially reconstruct) all the nonvisible inter-
nal state. Thus, as is the case for the programmer and for
the executable code, the hardware’s use of additional regis-
ter resources is handicapped by the need to maintain the
fiction that the sole register state is that constituted by the
32 registers.

Most significant, IA-64 introduces a collection of fea-
tures to deal with memory latencies, which continue to
increase relative to processor speeds. IA-64’s control and
data speculation capabilities enable compiler-directed
access to variables at points much earlier than they are
needed for computation. This capability permits a greater
degree of concurrency between executing instructions and
memory accesses. OOO engines achieve a similar effect
with dynamic hardware, but they are restricted to fixed
hardware algorithms for correctly predicting the execution
path and for triggering memory fetches. HP’s analysis of
the PA-8000 shows that the primary benefit of OOO oper-
ation in commercial workloads lies in initiating multiple
earlier cache misses. IA-64 enables such acceleration on an
even broader scale.

Involving the compiler in the process of identifying
speculative load candidates opens a bigger window into the
program than can practically be achieved by an OOO
superscalar processor. Data profiling makes the compiler
even more accurate at selecting variables for speculative
handling. The IA-64 compiler has heuristics to control the
degree of speculation, and the programmer has control over
the compiler’s heuristics.

Another important feature of IA-64 is its register stack
engine (RSE). One might consider this feature a built-in
asynchronous hardware thread that runs when there would
otherwise be idle memory ports. This feature reduces the
cost of procedure calls and returns and increases the utiliza-
tion of the register file. It is especially valuable for accelerat-
ing call-intensive object-oriented code. The reduction in the
time to spill and fill the general register file is significant for

Guest Vi
© M I C R O D E S I G N R E S O U R C E S F E B R U A R
3

many applications. On one database benchmark, for exam-
ple, RISC processors spend about 30% of their memory ref-
erences for procedure entry/return housekeeping. Most of
this overhead is eliminated by IA-64’s RSE. The IA-64 archi-
tecture has been crafted carefully to make the hardware
design of the RSE straightforward. The RSE does not add to
the critical path of the machine and is a relatively small part
of the Itanium and McKinley designs.

Putting It All Together
All of the IA-64 elements mentioned above combine syner-
gistically to minimize the critical code path through a pro-
gram. The size of the resulting program binary image may
be larger, but IA-64’s instruction stream is more linear, i.e.,
it contains fewer branches. Itanium and McKinley both
compensate for this code growth with special mechanisms
that efficiently deliver instructions to the processor. These
mechanisms eliminate the effects of the increased code size
with only modest area and design costs.

In a paper submitted to the NIST AES3 (advanced
encryption standard) Conference by HP Labs researchers,
the five final AES algorithms were analyzed for both
PA-RISC and IA-64. This study shows that IA-64’s register
file and its wide parallel architecture are very effective. The
full issue width of the machine was utilized by some of these
codes. Not surprisingly, the two algorithms with the greatest
theoretical parallelism—Twofish and Rijndael—showed the
greatest function unit utilization. Eight of the 15 IA-64
codes (encryption, decryption, and keying for each of the
five finalists) used more than 32 registers. Six of the 15
IA-64 codes had smaller code sizes than PA-RISC, due to the
compact modulo-scheduling support in IA-64. In two cases,
the code was more than four times smaller. Overall, the
IA-64 code size was only 27% larger than PA-RISC, even
though no explicit effort had been made to minimize code
size on either architecture. (A quick look at the IA-64 code
showed that the difference could have been reduced to the
10% range.)

Although these are not typical codes, they illustrate
how RISC code compares with IA-64 code using identical
goals and algorithms. Equivalent comparisons using com-
piled code are not yet available, because IA-64 compilers are
still maturing. The AES study goes into detail on mapping
the final AES algorithms onto PA-RISC and IA-64 machines
and architectures. Features like predication and rotation
played important parts in reducing IA-64 critical code paths
and exposing parallelism. In one simple example, recurrence
was trivially handled by referencing back into the rotating-
register region—no extra copy or unrolling was needed.

IA-64 Compilers Find Parallelism
IA-64 builds on proven compiler techniques to extract paral-
lelism from applications. Many of these techniques are used
by existing compilers to gain the best performance for today’s
OOO RISC systems. These techniques include data prefetch,

ewpoint: Is Out-of-Order Out of Date?
Y 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

4

branch hints, loop unrolling, and profile-based path struc-
turing, as well as other well-established optimizations.

As an example, OOO RISC compilers generate better
code when using profile results. On the PA-8000, reducing
the number of taken branches, through profiling, improves
branch prediction. This is especially valuable in large com-
mercial codes, where branch prediction tables are not very
effective.

Historically, every major improvement in instruction-
level parallelism has required the use of new code-generation
techniques. Only with such techniques can the compiler real-
ize significant performance gains. The PA-8000 and Alpha
21264, for example, used new binaries to get optimal per-
formance. The initially-hoped-for transparent performance
gains from OOO superscalar machines have not materialized.
Meticulous code scheduling by the compiler has proved just
as essential for OOO engines as it will be for IA-64.

Code profiling is only slightly more important for
IA-64 code generation than it is for an OOO processor.
Without profiling, an OOO engine can easily get lost down
the wrong path, due to branch mispredictions and false
dynamic speculation—especially in large-footprint applica-
tions. Instructions that will not be executed are cached, and
in-flight instructions are canceled.

As a further example, the performance of the specFP95
benchmark is greatly improved by inserting prefetch instruc-
tions. The OOO engine is not effective in automatically trig-
gering the proper prefetches. OOO queues are generally not
deep enough and do not understand which data will be
needed. On the other hand, the compiler is able to analyze
the data layout and trigger the best prefetches.

Compiler writers, and those who have hand-coded for
OOO machines, talk of the frustration in understanding
how to second-guess the limitations of the OOO hardware
and work around them to achieve full utilization of the
function units. The job usually boils down to trial and error.
This process actually occurred for PA-RISC codes during
the AES study.

Another significant issue with OOO design is sustain-
ing the most critical memory references in flight. To the
OOO engine, everything is equal. The IA-64 compiler, on
the other hand, is able to locate the critical path through the
code and to ensure that the important long-latency opera-
tions are started first. Memory buffer and other limitations
will always mandate executing critical path instructions
first. As noted in an earlier paragraph, the compiler will
issue prefetches to ensure early initiation of the most-likely
cache misses.

To complement the compiler’s expanded ability to
avoid cache misses, hardware resources still can be brought
to bear in an IA-64 implementation. As an example, we have
developed several strategies to improve the handling of
cache misses. An in-order machine has options beyond a
simple stall when a cache miss occurs. Running ahead with
rollback, predictive address buffers, implicit prefetch, buddy

Guest Viewpoint: Is Out-of-Order Out o
© M I C R O D E S I G N R E S O U R C E S F E B R U A R
prefetch, and other dynamic approaches can all be effective.
Quantitatively, these techniques are far simpler than those
used in OOO designs.

Static code generation is just one aspect of producing
efficient code. The recent announcement of the Crusoe
processor by Transmeta hints at the benefits of dynamic code
generation. In many venues, researchers have been examin-
ing the significant performance improvements that can be
achieved by dynamic measurement and tuning of code.

HP, for example, implemented a simple mechanism
that sampled the current instruction during the normal
timer interrupt. If the instruction was a kernel branch, the
branch hint was rewritten to match the actual program
flow. This one dynamic mechanism resulted in a 5%
improvement for database applications.

More aggressive approaches are possible. The Itanium
processor is able to watch a program’s cache misses, and
software can apply a simple heuristic to set prefetch hints
correctly. This type of explicit approach, driven by runtime
information, is extremely accurate and selective. Better per-
formance feedback enables greater tuning accuracy and bet-
ter utilization of the machine resources. IA-64 has hint
fields in most branch and memory-reference instructions.
Armed with runtime information for the executing pro-
gram, hint fields can be rewritten on the fly to match the
needs of the current workload.

These approaches allow software to tune code dynam-
ically for performance. With such techniques, and without
recompilation, performance can continue to evolve and
improve, even after a machine and application has been put
into production. IA-64 provides a greater range of tuning
options than previous architectures.

Future Directions
The first IA-64 microprocessor, Itanium, exhibits ILP
beyond that achievable by any OOO superscalar micro-
processor in existence. Extensive study and analysis went
into the EPIC architectural ideas, and they have been found
to work. Itanium is just the initial implementation of the
IA-64 architecture. It delivers the powerful EPIC innova-
tions while providing complete binary compatibility with
IA-32 and PA-RISC.

Future designs will be even more powerful. We are
now at just the beginning of the IA-64 hardware and soft-
ware implementation learning curves. As was the case for
RISC and CISC architectures, the IA-64 architecture will
evolve and become even more powerful. As was the case for
RISC and CISC implementations, IA-64 implementations
will mature and evolve through successive generations. And,
as was the case for RISC and CISC software, the EPIC com-
pilers will become better and better at exploiting the full
capabilities of the architecture.

Any initial implementation of a new architecture will
be conservative and will concentrate on the most important
architectural elements. Itanium and McKinley are not

f Date?
Y 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

5Guest Viewpoint: Is Out-of-Order Out of Date?
exceptions to these rules. The initial version of the IA-64
architecture by no means encompasses all the innovations
and ideas developed by HP and Intel. The initial hardware
implementations by no means embody all the techniques
and designs envisioned by HP and Intel. Since the early
1990s, HP Labs has been evaluating scalability for high ILP,
multiprocessing, hardware multithreading, and high-band-
width memory systems. HP has also considered many static
and dynamic compilation and simulation techniques.

IA-64 Will Deliver More ILP and Performance
IA-64 will deliver on its promise of expressing, enhancing,
and exploiting instruction-level parallelism to improve per-
formance. The IA-64 architecture will not remain static or
fixed, and successive generations of processors will each
introduce innovations. By the time we have third- and
© M I C R O D E S I G N R E S O U R C E S F E B R U A R

To subscribe to Microprocessor Report, phon
fourth-generation chips, we are confident that the present
architectural controversy will have passed, and EPIC will
have proved its superiority.

Bill Worley is a principal architect on two HP architec-
tures: PA-RISC and PA Wide-Word, the later of which became
the basis for HP’s collaboration with Intel on IA-64. In 1995,
Bill was named a distinguished contributor, the highest techni-
cal position at HP. Bill can be contacted at worley@hpl.hp.com.

Jerry Huck manages processor architecture in HP’s com-
puter products organization. These days his time is split
between working with Intel on the IA-64 architecture and
managing the team responsible for processor simulator and
platform architecture definition. Jerry’s team was also respon-
sible for the evolution of the PA-RISC architecture. Jerry can
be reached at jerry_huck@hp.com.
Y 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

e 408.328.3900 or visit www.MDRonline.com

http://worley@hpl.hp.com
http://jerry_huck@hp.com

