
JAZZ JOINS VLIW JUGGERNAUT
CMP and Java as an HDL Take System-on-Chip Design to a Parallel Universe

By Ste ven H. Le ibson {3/27/00-03}

Now that microprocessor designers have bulked up their once-svelte RISC designs with all

manner of transistor-laden constructs, such as superscalar architectures and speculative

execution, the brave new world for clean microprocessor design seems to be moving to

REPORTM I C R O P R O C E S S O R
T H E I N S I D E R ’ S G U I D E T O M I C R O P R O C E S S O R H A R D W A R E

www.MPRonline.com
VLIW. In addition, several processor vendors are adopting
chip multiprocessing (CMP) to further boost processing
power. Into this modern microprocessor milieu steps 21⁄2-
year-old Improv Systems with its Jazz PSA (programmable
system architecture) platform, a CMP design system based
on a sort of multiprocessor metacore. Individual Jazz proces-
sors within the metacore are configurable VLIW processors
with two-stage pipe-

lines, four independ-
ent 32-bit data-mem-
ory buses, and a small,
configurable amount
of instruction memory.
Jazz PSA generates syn-
thesizable CMP de-
signs and matching sets
of compiled programs
from your application
description written in a
specific Java style called
a directed control data-
flow network (DCDN).

A single config-
ured Jazz processor is
called a task engine. The
Jazz PSA system archi-
tecture comprises a
mix of heterogeneously

Fi
pr
on
© M I C R O D E S I G N R E S O U R C E S M A R C H
configured task engines, on-chip data and instruction
memory, I/O modules, and a global bus called the QBus for
on-chip task and control communications among proces-
sors, as Figure 1 shows. The best superscalar RISC and
VLIW processor architectures now peak at around 4 in-
structions per cycle. Improv claims that Jazz PSA achieves
8 to 12 instructions per cycle per task engine inside of some
gure 1. Jazz PSA lends itself to systolic processing applications with its mix of heterogeneously configured Jazz
ocessors (task engines); on-chip data and instruction memory; I/O modules; and a global bus called the QBus for
-chip task and control communications among processors.

Task
Engine

Task
Engine

Task
Engine

Task
Engine

Instruction
Memory

QBus QBus QBus QBus

Instruction
Memory

Instruction
Memory

Instruction
Memory

3232 32 32

240

Task
Engine

QBus

Instruction
Memory

I/O Pins I/O Pins I/O Pins I/O Pins I/O Pins

Shared
Memory

Shared
Memory

Shared
Memory

Private
Memory

Private
Memory

Private
Memory

Shared
Memory

Private
Memory

Private
Memory

I/O Module
 2 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

2 Jazz Joins VLIW Juggernaut
inner loops, a figure of merit based on task engines contain-
ing 13 execution units each. Sample applications Improv has
implemented with Jazz PSA and standard task engine config-
urations include low-bit-rate MPEG-4 videoconferencing
and a 15-channel telecommunications application with G.726
speech codecs and G.168 echo cancellation. Tailoring the task
engines boosted the telecommunications application capac-
ity to 30 channels.

Like superscalar processors, VLIW processors employ
many function or computing units to execute multiple
instructions per cycle. Unlike superscalar machines how-
ever, VLIW processors rely on smart compilers running on
amply endowed hosts to fill the hungry maws of the exe-
cution units with continuous instruction streams. VLIW
designers have abandoned the game of using on-chip
resources to wring smaller and smaller gains in instruction-
level parallelism (ILP) from RISC instruction streams and
instead rely on compilers, with their superior abilities to
perform global optimizations, to boost ILP (see MPR
2/14/94-05, “VLIW: The Wave of the Future?”).

CMP Cores: The Same, But Different
At first blush, the Jazz PSA hardware description sounds
somewhat similar to Cradle’s UMS (universal microsystem)
architecture introduced last October at Microprocessor
Forum (see MPR 10/6/99-05, “Cradle Chip Does Anything”)
and to the recently announced DVine architecture from Sili-
con Magic (see MPR 3/27/00-02, “Silicon Magic: DVine-ly
Inspired?”). All three designs spin complex processor arrays
and memory blocks into CMP configurations. However, there
are significant differences among these three architectures.
The most obvious difference is topological. Cradle’s UMS and
Silicon Magic’s DVine array multiple processors and memory
Figure 2. Each Jazz PSA task engine contains as many as 16 computation units (CUs), taken from
a collection of blocks that include 32-bit ALUs, 32 x 32-bit MACs (with 64-bit accumulators),
64–bit shifters, 16-bit counters, and byte swappers. Task engines also contain four memory inter-
face units (MIUs) and a control unit. Data flows between CUs and MIUs over a giant bus multi-
plexer called the data communications module (DCM).

CU CU CUCU

MIUMIUMIU MIU

Data Communications Module Control
Unit

Task
Queue QBus

D a t a M e m o r y P o r t s

Instruction Memory
© M I C R O D E S I G N R E S O U R C E S M A R C H
controllers along one or two global buses. Shared buses and
shared memory are both potential bottlenecks in these
designs. Jazz PSA employs a flow-through CMP architecture
that uses dual-ported shared memories for interprocessor
communications. Consequently, there is no chance that tasks
running on separate task engines will compete for shared
memory or bus resources in a Jazz PSA design.

Another significant difference is Jazz PSA’s considerably
greater data-moving capacity. A five-engine implementation
of Jazz PSA running at 100MHz has a peak aggregate data-
moving capacity of 8GB/s, and the architecture isolates data
movement from the VLIW instruction streams so all of that
bandwidth is used to move data. Furthermore, Jazz PSA’s
peak data-movement capacity scales linearly with the num-
ber of task engines in a specific implementation, because each
engine provides its own set of data pipes. Cradle’s approach
couples processor modules called quads through one 64-bit,
640MHz bus (5.12GB/s peak). DVine links multiple compute
modules (CMs) to multiple memory interface units (MIUs)
over two 128-bit, 166MHz buses (5.312GB/s peak, in aggre-
gate). Both UMS and DVine must devote at least some of
their available bus bandwidth to instruction traffic, because
neither architecture segregates instruction and data streams,
as does Jazz PSA, and peak data bandwidth is fixed for both
the UMS and DVine architectures and doesn’t scale with the
number of processors used in a design.

There are other notable differences among Cradle’s
UMS, Silicon Magic’s DVine, and Improv’s Jazz PSA besides
topology and raw data-transfer rate. Improv’s Jazz PSA
employs a heterogeneous array of variously configured
VLIW task engines, each with its own 240-bit VLIW in-
struction memory. UMS quads contain homogeneous pro-
cessor arrays, each comprising four 32-bit RISC processor

elements and eight digital-signal
2 7 , 2 0 0 0 M
engines. DVine’s CMs are homo-
geneous engines consisting of a
32-bit RISC engine and a 16-wide
vector processor.

In addition, system designers
using Jazz PSA can tailor the com-
puting resources within each task
engine to match the computa-
tional needs of specific task(s) by
adding execution units to a task
engine when more performance is
needed. A system designer can also
remove unneeded execution units
from a task engine to save silicon
and power dissipation. Because all
the processor modules in the UMS
and DVine architectures employ
the same design, each UMS quad
or DVine CM may or may not be
well suited to any particular por-
tion of a given application, and
I C R O P R O C E S S O R R E P O R T

3Jazz Joins VLIW Juggernaut
any unused computational capability in these architectures
remains on the chip, which costs money and burns power.

As Figure 2 shows, a Jazz PSA task engine contains as
many as 16 computation units (CUs) taken from a collection
of functional blocks that include 32-bit ALUs, 32 x 32-bit
MACs (with 64-bit accumulators), 64-bit shifters, 16-bit
counters, and byte swappers. Currently, all CU functional
blocks are integer units, but Improv plans to add floating-
point units within the next year. The specific mix of func-
tional blocks used in a task engine depends on the specific
tasks within an application that will run on that task engine.
Depending on the number of CUs placed in a configured
Jazz processor, each processor in a Jazz PSA implementation
can execute between 0.5 and 1.6 GOPS (at 100MHz) and re-
quires approximately 47K gates (a number that varies, de-
pending on how many CUs the processor incorporates).

All CU operations execute in one processor cycle, and
computation results are stored in local registers within indi-
vidual CUs at the end of each cycle. The CUs derive their
input data from a large array of intraprocessor bus multi-
plexers, collectively called the data communications module
(DCM), as Figure 3 shows. Each CU’s registered output
feeds a separate 32-bit distribution bus within the DCM so
that other CUs within the same task engine can use the
results. (DCMs do not interconnect task engines.) The reg-
istered outputs of the task engine’s four MIUs and the con-
stant registers within the control unit also feed DCM distri-
bution buses.

Each CU and MIU input port connects to the DCM
distribution buses through a 16-channel multiplexer. In
some task engines, there may be more than 16 distribution
buses in the DCM, so Improv has developed some standard
routing layouts, but a system designer with unique require-
ments can individually specify the sources attached to each
input multiplexer.

Never the Same Datapath Twice
The control unit within the task engine supplies opcodes,
constants (when needed), and control signals to each CU
within that processor. The control unit also configures the
DCM according to the requirements of the currently exe-
cuting task. The multiplexer configuration within the DCM
can change on a cycle-by-cycle basis. This scheme creates an
extremely flexible datapath that reconfigures on the fly.

Jazz PSA connects individual task engines, using mul-
tiple shared-data memory blocks in an architecture well
suited to systolic processing (an array-processing approach
often used in digital-signal and image processing). Task
engines employ shared memory blocks to pass processed
data between processor pairs. These memory blocks incor-
porate a synchronous dual-port interface that eliminates
arbitration between task engines. The shared memories sup-
port simultaneous reads, while simultaneous writes to shared
memory are flagged as system errors during the initial
functional development. Should a simultaneous write occur
© M I C R O D E S I G N R E S O U R C E S M A R C H
during program execution, the contents of the shared mem-
ory location will simply be undefined.

Each task engine contains four independent MIUs,
which connect the processor to shared and private memory
blocks and to the Jazz PSA’s I/O module. Three of the MIUs
in each task engine have bidirectional memory interfaces.
The fourth MIU has only an input port; it cannot write to
memory. Each MIU has a 32-bit data path and can address
64K of data memory. This small memory size may be less
limiting than it seems, because these memories are used
strictly for data, not for instructions. For example, in a
video-coding application, task engines typically process
individual 8 x 8 pixel blocks, with a resulting data-storage
requirement of 256 bytes to 1K (depending on pixel depth).
Add more memory to hold coding tables and the total
memory requirement is still much less than the 64K limit.

MIU ports read from and write to memory in one
processor clock cycle to maintain processor throughput.
Consequently, the memories actually operate at twice the
processor clock rate. Within each processor clock cycle, reads
are initiated at midcycle, and the read results are loaded into
a processor register at the end of the processor clock cycle.
Writes occur at the end of a processor clock cycle. Although
they are really 32-bit machines, MIUs also perform halfword
and bytewide read and write operations. Partial-word write
cycles employ indivisible read-modify-write operations and
require two processor clock cycles. The read portion of the
read-modify-write operation occurs during the cycle con-
taining the write instruction; the associated write portion
follows during the next processor clock cycle.

Each task engine has its own local instruction mem-
ory. Task engines have 12-bit instruction addresses, so a task
engine can access a maximum of 4,096 VLIW instruction
words. The relatively small instruction-address space is fur-
ther diminished by its division into regular instruction
memory and boot ROM. Regular instruction memory starts
at address 0, while boot ROM starts at location 0xE00.

Figure 3. The CUs within each Jazz processor derive their input data
from a huge array of 16-channel bus multiplexers, collectively called the
data communications module (DCM), that perform the function of a full
crossbar switch.

Control
Unit

Data Communications Module

Register

ALU

Register

ALU
2 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

4

Smarter Than the Average Boot
Following a reset, each Jazz processor starts execution at the
first location in boot ROM. The boot code for one or two of
the task engines typically programs the on-chip I/O module
to define an interface to an external ROM containing the
entire program image for all task engines. Then the proces-
sor nearest the I/O module on the chip reads image blocks
from the external ROM and downloads the blocks into the
appropriate processor’s on-chip instruction RAM. After all
image blocks are loaded, each processor begins its initial-
ization routine, starting at address 0.

The relatively small per-processor instruction memory
space and reset-based program-loading scheme is a clear
indicator of the way Improv believes its Jazz PSA will be
used. The processor array is set up once after a reset and then
operates with a fixed program for as long as the system is
switched on. This approach is clearly oriented to streams-
based processing, using relatively small blocks of code to
direct the processing. Stream-oriented applications such as
continuous filtering, coding/decoding, compression/decom-
pression, and encryption/decryption are typical of processes
that lend themselves to such an approach. By making in-
struction memory separate and local to each task engine and
by using shared memories for passing data between proces-
sors, Improv’s Jazz PSA permits massive amounts of simul-
taneous data movement on the chip.

The intended range of applications is further high-
lighted by the unusual tasking scheme developed for the Jazz
PSA. The overall system behavior is reduced to a set of
encapsulated tasks by Improv’s development tools. Each task
involves some combination of processing data and queuing
other tasks for execution. The development tools assign tasks
to individual processors in the array during compilation,
and the assignment is static; task assignment doesn’t change
dynamically based on processor availability.

Jazz Joins VLIW Juggernaut

Figure 4. The major components of the Jazz PSA development tool
set are the Notation Environment for application development; the
Solo Compilation Environment for partitioning, resource allocation,
task optimization, code generation, and performance analysis; a cycle-
accurate instruction-set simulator; and a PCI-based evaluation board.

Solo
Compilation
Environment

Instruction Set
Simulator

Notation
Environment

Evaluation
Board
© M I C R O D E S I G N R E S O U R C E S M A R C H
Tasks communicate with each other by queuing other
tasks. Each task engine contains a task queue, filled by the
QBus, and executes its list of tasks in FIFO order. Tasks
always run to completion (terminated by executing an end-
of-task instruction). Tasks cannot be suspended, and there
are no interrupts. To achieve the equivalent of task suspen-
sion, work must be split into two tasks—one that terminates
at the intended suspension point and one that is queued
when the work needs to resume. In other words, within the
Jazz PSA universe, tasks are scheduled only when they are
needed, and they always run to completion. Similarly, there
are no wait loops in Improv’s universe, although there is
support for periodic tasks; the Jazz I/O module contains
timers that can be programmed to queue tasks on specific
processors, either periodically or after a time delay.

Automated Help for Too Many Choices
By now, it should be apparent that the number of degrees of
freedom and the inherent programming complexity of the
Jazz PSA platform is stunningly huge. Configuring a com-
plete version of the Jazz PSA requires decomposing of the
overall application into smaller tasks; determining the opti-
mum number of task engines; tailoring the execution
resources and DCM routing within each task engine;
arranging the interprocessor and local-data memory top-
ology; and setting the size of each data and instruction
memory block. There’s also the complex job of partitioning
the system software and distributing the resulting tasks over
a collection of dissimilar VLIW processors.

Together, the need to configure and program such a
complex machine might doom a new CMP architecture to
obscurity, because the learning curve would simply be too
steep for any but the most adventurous to climb. However,
software developers don’t write code for individual task
engines in Improv’s multiprocessing universe. Instead,
Improv supplies a system-level development tool set that
converts a high-level system definition into a set of task
engine programs for a selected Jazz PSA configuration.

Figure 4 illustrates the major components of the Jazz
PSA development tool set: the Notation Environment for
application definition and development; the Solo Com-
pilation Environment for applicationwide partitioning,
resource allocation, task optimization, code generation, and
performance analysis of the resulting hardware/software sys-
tem; a cycle-accurate instruction-set simulator for detailed
timing verification and fine-grained optimization; and a
PCI-based evaluation board that incorporates a test chip for
“near real-time” debugging. This entire tool set runs on Win-
dows NT workstations, but the Notation Environment can
run on any Java-capable computer.

Decaf Java—All the Syntax, No JVM
Improv selected Java, a somewhat unlikely system-definition
language, for its Notation Environment, the embedded ap-
plication development system that’s part of the Jazz PSA
 2 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

5Jazz Joins VLIW Juggernaut
platform. So far, Java has garnered much notoriety but not
much traction as an embedded development language, be-
cause current Java implementations execute slowly com-
pared with programs written in compiled languages. Fur-
thermore, Java’s intrinsic garbage collector makes most
existing JVM (Java virtual machine) implementations non-
deterministic and therefore useless for hard-real-time sys-
tems. Although credible efforts are under way to make Java
an effective real-time programming language, none of Java’s
liabilities as an embedded development language come into
play with Improv’s Jazz PSA. Improv circumvented Java’s
real-time problems by using only the language’s syntax and
discarding its execution models. Instead, Improv’s tools
compile the Java application description into a number of
programs distributed to the various task engines within a
Jazz PSA implementation.

Java may appear to be a trendy choice for a develop-
ment environment, but the company selected Java for sev-
eral valid technical reasons. First, the encapsulation of Java’s
object-oriented methods is a good match for the parallelism
and task encapsulation inherent in applications like signal
and image processing. Second, system developers can create
and test virtual prototypes of CMP systems in Java, using
relatively inexpensive PC-based Java development tools.
Conversely, HDL design tools based on VHDL and Verilog,
the two languages more traditionally used to define chip-
level systems, are far more costly.

The third reason Improv selected Java is the primary
target audience for its product: system architects and code
developers currently defining and programming systems
in C (not chip designers currently using HDLs to develop
ASICs). Selecting Java as a system-definition language thus
allows software application developers to define large por-
tions of an ASIC, create test benches, and debug designs
without using conventional HDLs. The company believes
it’s far easier to move existing C programmers to a system-
description language based on Java than it is to have them
learn VHDL or Verilog. Improv selected Java over C or
C++ because the company believes that Java has better
support for concurrency.

Yet another reason Improv selected Java as an HDL is
that Java contains no pointer arithmetic and doesn’t make
any assumptions about specific target hardware. With an
underlying silicon structure as fluid as the Jazz PSA, allow-
ing system designers to hard-code assumptions about the
underlying hardware guarantees problems. One final reason
to pick Java is that future graduates of computer-oriented
curricula are highly likely to know Java syntax, thanks to its
popularity as a Web programming language.

Changing the Rules of Design
System developers describing systems based on the Jazz PSA
don’t use Java directly as a programming language. Instead,
system designers use Java’s syntax to describe system-level
behavior by creating what Improv calls a directed control
© M I C R O D E S I G N R E S O U R C E S M A R C H
dataflow network or DCDN. The key elements of a DCDN
description are not algorithms and data structures, as with
conventional software programming. Instead, the ingredi-
ents of a DCDN are tasks, data managers, data arcs, control
arcs, and components, as shown in Figure 5. Tasks are exe-
cutable sequences of behavioral statements (i.e., algorithms);
data managers are implementation-independent mecha-
nisms for sharing data among tasks; data arcs describe data
dependencies between tasks and data managers; and control
arcs describe control dependencies between tasks.

Components encapsulate substructure with tasks—
they essentially allow a system designer to group related
tasks together as one entity. Each component can include
one initialization task and one behavioral task. A compo-
nent may also instantiate subcomponents (groups of sub-
tasks). Each component has an explicit interface that
includes data ports, control ports, and parameters that con-
figure the component’s behavior. Components can create
data managers to manage communications between the
component’s initialization and behavioral tasks and among
subcomponents.

This approach to system-level design therefore closely
resembles the rigor of encapsulation used by object-oriented
programming. Consequently, there is an assumption built
into the DCDN design approach: that there will always be
enough processing power available to execute the tasks as
designed. This assumption must be validated later in the
design process, using cycle-accurate simulation.

Improv has developed a Java class library for imple-
menting DCDN models. The class library includes VirtualIP
objects (the main building blocks of an application); data
manager objects (which serve as one end point for data arcs);
PSA data port objects (which serve as the other end-point
for data arcs); PSA control port objects (which serve as the
end-point for control arcs); Virtual ASSP objects (which

Figure 5. A directed control dataflow network (DCDN) decomposes an
application into tasks, data objects, data-access arcs, and control arcs.

Task
Task

Control and data-flow arcs
are unidirectional

A task can fire
multiple ports

Once started, tasks
run to completion

Tasks are queued
by other tasks

Data Object

Tasks can read
and write data
2 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

map an application onto a target Jazz PSA configuration);
and PSA test bench objects. These components, coupled with
Java’s existing class libraries, constitute the set of elements
available to develop systems based on the Jazz PSA.

Automated System Construction: Going Solo
After creating and debugging a design with the Notation
Environment, Improv’s Solo Compilation Environment
reduces the design to a set of software blocks that run on the
user-defined Jazz PSA configuration. Solo performs an ini-
tial analysis of the Java-based DCDN application descrip-
tion, breaks the application into individual tasks; schedules
tasks and assigns them to specific task engines; compiles the
tasks into VLIW instruction streams for the various task
engines in the target implementation; and then analyzes
the performance of the resulting hardware/software system.
The results of this second analysis provide information for
tuning the configuration of each task engine. Improv has
developed six task engines and expects that these standard
engines will suffice for roughly 70% of all applications. For
the remaining 30% of applications that need to extract
© M I C R O D E S I G N R E S O U R C E S M A R C H
more performance from every clock cycle, system designers
can define their own task engines.

Solo is really the key to realizing the potential per-
formance inherent in the multiple levels of parallelism in
this architecture. Without this tool, the entire Jazz PSA
would be too complex to be used by mere mortals with real
design deadlines. So the success of Improv’s approach seems
to hinge on the effectiveness, reliability, and usability of the
Solo Environment. Many of today’s VLIW compilers are
based on the pioneering work done a decade ago by the
now-defunct Multiflow. Improv says that its Solo Compila-
tion Environment is not based on Multiflow’s compiler and
claims that its schedule-driven task analysis, allocation algo-
rithms, and resource-directed scheduling techniques are
vastly superior to Multiflow’s original trace scheduling,
compilation, and optimization algorithms.

Beyond these basic tools, Improv also plans to offer a
growing number of prewritten modules for the most com-
mon media-processing tasks such as multichannel voice-
over-IP (VoIP), videoconferencing, and embedded Internet
protocols. The company calls these tested application mod-
ules VirtualIP.

Finally Getting to Silicon
Once designed and debugged, Improv’s tools produce a Ver-
ilog design ready to be used as is or incorporated into a larger
ASIC. The complete implementation kit also includes RTL
models, synthesis and simulation scripts, and verification
suites to support configured implementations of the Jazz PSA.
Although Improv expects the Jazz PSA platform to be used as
an ASIC core generator, the company realizes that nothing
beats real hardware for proof of concept. Accordingly, Improv
has fabricated one-, two-, five-, and six-processor versions of
its Jazz PSA architecture in silicon, using fabrication processes
ranging from 0.25 to 0.18 micron, with clock rates ranging
from 25 to 100MHz. These chips are unlikely to be used in
production products, because they are not optimized for a
specific application. However, the chips do provide systems
developers with silicon for high-speed application debugging
and prototype systems.

Improv offers three licensing models for the Jazz PSA
platform: multiuse, per-use, and single-use licenses. The
multiuse license allows unlimited use of cores generated by the
tools for a single fee, or through an annual subscription plus a
per-chip royalty. The per-use license sets a negotiated fee for
the use of each core generated by the tools. The user also pays
a per-chip royalty with the per-use license. Improv believes
that the price crossover between the multiuse license and the
per-use license is four new designs per year. The single-use
license is for companies that want to use Improv’s architecture
just once. This license requires payment of a one-time fee plus
per-chip royalties. These licensing arrangements are not
unlike those of other IP vendors, such as Tensilica.

Revolutionaries like Improv Systems can change the
world, but there is always a price for revolution. In this case,
6 Jazz Joins VLIW Juggernaut

V L I W, J a v a , a n d C M P :
H e a r d T h i s B e f o r e ?

If the words “Java,” “VLIW,” and “chip multi-
processing” remind you of Sun’s MAJC architecture (see
MPR, 10/25/99-04 “Sun Makes MAJC With Mirrors”),
your wetware associative memory is functioning well.
The MAJC-5200 device that Sun discussed at Micro-
processor Forum 1999 incorporates two processors, each
with four execution pipes ganged as one VLIW machine.
Three of the pipelines in each processor execute most of
the MAJC instruction set (except for certain instructions
such as branches, divides, and reciprocal square roots).
The fourth pipe in each of the two processors executes
25% of the MAJC instruction set (including the instruc-
tions that the other pipelines cannot execute). If you
count the pipelines separately, MAJC could be consid-
ered an array of eight heterogeneous processors, but it
really consists of two identical VLIW processors.

There really is not much similarity between the
MAJC-5200 and Improv’s Jazz PSA beyond the buzz-
words. First and foremost, MAJC is a conventionally
programmed processor. Sun designed it to be a fast
engine for running multithreaded Java or C code.
Furthermore, MAJC’s processors communicate either
through one shared on-chip data cache or through mail-
boxes and other conventional mechanisms in external
memory. Finally, MAJC’s VLIW processors are not con-
figurable (except by Sun).

So the words that Improv and Sun are singing may
sound the same, but the songs are different.
 2 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

it’s the substantial change in the way system design is done.
System developers must learn how to describe complex
multiprocessing systems in Java-based DCDN models, not
yet a common design approach. Such a radically new design
concept must overcome the inertia that retards the adoption
of any new processor architecture, let alone an entirely new
system-design method. There’s also hesitancy by mainstream
system designers to adopt the complex and somewhat
obscure regimen of any sort of multiprocessing because of
the resulting exponential increase in system complexity.

Consequently, Improv Systems has a monumental
education job to tackle if it wants to succeed broadly with
the Jazz PSA. Designers must have enough faith in Improv’s
tool chain to turn over critical jobs like system-level task
partitioning and resource allocation to new and relatively
unproven automatic tools. Usually, this is a high-risk deci-
sion for system OEMs, so you can be sure those companies
will make such a decision only after careful consideration of
the costs and benefits. Improv is therefore currently target-
ing ASIC and semiconductor vendors for initial licenses and
has recently signed Philips as a licensee.
© M I C R O D E S I G N R E S O U R C E S M A R C H

To subscribe to Microprocessor Report, phon
The allure of Improv’s approach for companies
already involved in ASIC development is compelling where
the application requirements demand multiprocessing.
Development of multiprocessing systems is extremely diffi-
cult, and “push-button” creation of such systems is nearly
inconceivable with conventional system-design methods. If
the company can establish that Java is a viable system-
description language (likely); that its Notation and Solo
Environment tools are capable of performing the tasks for
which they’re sold; and that switching to a DCDN system-
design method delivers big productivity gains, Improv will
have a real winner on its hands.
7Jazz Joins VLIW Juggernaut

P r i c e & Av a i l a b i l i t y

As with most IP products, licenses for Improv’s
Jazz PSA are negotiated individually. For more infor-
mation about Improv and the Jazz PSA, go to www.
improvsys.com.
 2 7 , 2 0 0 0 M I C R O P R O C E S S O R R E P O R T

e 408.328.3900 or visit www.MDRonline.com

http://www.improvsys.com
http://www.improvsys.com

