
JSTAR COPROCESSOR ACCELERATES JAVA
Licensable Bytecode Translator Works With Almost Any Core

By Tom R. Halfhi l l  {3/27/00-04}

While bytecode-native Java chips continue struggling to find a market, a team led by for-

mer Sun engineers has invented a novel alternative: a coprocessor that attaches to any CPU

core and translates Java bytecodes into native instructions on the fly. The coprocessor is
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available now as a licensable Verilog model from JEDI Tech-
nologies, a Santa Clara–based startup founded in 1998.

JEDI’s 32-bit coprocessor, called JSTAR, is architecture
neutral. Programmable microcode and a bus-interface
wrapper allow it to work with almost any 32- or 64-bit
microprocessor—RISC, CISC, VLIW, embedded, desktop,
or server. It requires no modifications to the host CPU core,
operating system, or application software. CPU and ASIC
designers can integrate JSTAR on a chip without altering the
processor’s I/O interfaces or pin compatibility. As Figure 1
shows, JSTAR drops into the instruction path between the
CPU core and the primary caches or main memory.

Initially, JEDI is focusing on the embedded market.
That’s a logical strategy, because JSTAR allows a micro-
processor to run Java programs much faster than a bytecode
interpreter without the memory required for a just-in-time
(JIT) compiler. Thus it addresses a critical tradeoff that
impedes the widespread adoption of Java in the embedded
world: to maximize performance, a Java-based product
must absorb the cost, size, and power consumption of RAM
for a JIT compiler; or to minimize cost, size, and power con-
sumption, a Java-based product must do without a JIT
compiler and suffer from lower performance.

JSTAR is compact and versatile. At 30,000 gates, it
occupies only about 1mm2 of die area in a typical 0.18-
micron IC process. It can run at the host processor’s core
frequency, so its performance will scale on a linear curve
with the CPU’s native performance. When wedded to a
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1.5V RISC core at 180MHz, its logic circuits consume about
18mW and its SRAM (for microcode storage) typically
needs another 15mW. It’s compatible with existing cache
hierarchies, memory interfaces, and MMUs. It steps out of
the way during native-code execution, and it doesn’t inter-
fere with Java native methods (subroutines that are usually
written in C or C++ and compiled to native code, then
called from a Java program).

Over time, JEDI hopes that JSTAR coprocessors will
become as commonplace in microprocessors as FPUs, which
also made their first appearance as auxiliary coprocessors. We
think JSTAR is less compelling outside the embedded market,

Figure 1. JSTAR intercepts Java bytecode instructions normally inter-
preted in software by a Java virtual machine, then translates the byte-
codes into the native instructions of the host CPU. Native software
executes normally.
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however. Larger systems can more easily spare the CPU cycles
and memory required by JIT compilers, adaptive compilers,
statically compiled Java programs, and other software-based
solutions that improve Java performance even more than
JSTAR does. Still, that leaves a huge market for JSTAR.

One Catch: The Java Virtual Machine
In concept, JSTAR seems simple: it replaces the bytecode
interpreter in a Java virtual machine (JVM) with tightly inte-
grated hardware that translates bytecodes into native instruc-
tions at run time. But implementing the idea and integrating
it with a CPU core and a JVM presented several challenges to
the relatively small design team. (JSTAR is the brainchild of
two former Sun engineers: Mukesh K. Patel, JEDI’s president
and CEO, and Jay P. Kamdar, COO and vice president of mar-
keting. Patel was the chief architect, and the microarchitec-
ture was designed by Tore Kellgreen and Erik Eidt.)

One challenge was to minimize JSTAR’s effect on the
JVM, which does more than just interpret Java bytecodes.
The JVM also loads Java classes into memory dynamically,
verifies class security, synchronizes multiple threads of
execution (Java is inherently multithreaded), dynamically
allocates and deallocates memory (automatic garbage col-
lection), and checks for run-time exceptions (such as ref-
erences outside the bounds of arrays).

Together, the JVM and the Java class libraries form a
software abstraction layer called the Java run-time environ-
ment that insulates Java programs from the underlying
CPU architecture and operating system. Java source files
compiled into bytecodes (which are comparable to other
kinds of machine-language instructions) will run on any
JVM, which is the foundation of Sun’s “write once, run
anywhere” philosophy.

Although bytecode compatibility is universal—at least,
to the degree that JVMs are compatible—different vendors
implement the JVM’s functions in slightly different ways. JEDI
didn’t want to create a special JVM solely for JSTAR, so it
needed to design a coprocessor that integrates fairly well with
existing JVMs. Some changes were unavoidable, because
JSTAR takes over most of the work handled by the bytecode
interpreter. The result is a compromise: JSTAR doesn’t require
a new JVM, but it does require a specially modified JVM.

Currently, JEDI is targeting four JVMs: Sun’s standard
JVM, Sun’s KVM, Hewlett-Packard’s Chai, and Trans-
virtual’s Kaffe. The last three are optimized for embedded
systems. JEDI says it takes a few programmers a few months
to modify and verify a JVM for JSTAR, so unless there’s a
compelling reason to use a different JVM, most customers
will choose one from the approved list.

The limited choice of JVMs isn’t a major drawback, but
it could have some complications. If any customers want to
use JSTAR with a CPU core that isn’t supported by one of the
modified JVMs, they will have to choose between porting a
JVM (which requires about five programmer-months) or
switching CPUs. If a customer wants to use JSTAR in a real-
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time application, the JVM must also support deterministic
response. Currently, JSTAR doesn’t run on PERC, a real-time
“clean room” JVM from NewMonics.

In the future, some of the JVMs compatible with
JSTAR may adopt the proposed real-time extensions to Java.
An industry working group with representatives from sev-
eral companies is currently defining those extensions, and
the first reference implementation is expected this summer.

Bytecodes Go Native
The other major challenge faced by JEDI’s design team was
to minimize JSTAR’s effect on the CPU core. This effort
was more successful.

As Figure 1 shows, JSTAR is an instruction-path co-
processor that sits between the core and any memory struc-
tures that are present, such as a primary cache (unified or
split), an MMU, or main memory (DRAM, SRAM, ROM, or
flash ROM). JEDI supplies a Verilog wrapper that adapts
JSTAR’s generic interface protocols to specific CPUs. The
first wrapper is designed for cores based on the popular
MIPS-I architecture, and JEDI has demonstrated JSTAR
running in an FPGA with a Lexra LX4180 MIPS-like core.
Until JEDI creates more wrappers, customers who prefer
other CPU architectures will have to adapt the wrapper
themselves—not a difficult task, JEDI claims.

Because several patent applications are pending, JEDI
is more than a little vague about JSTAR’s microarchitecture
and the mechanism that bypasses the JVM’s interpreter.
Nevertheless, we have some clues. JSTAR reserves several
pages of virtual memory addresses and maintains its own
program counter independently of the CPU’s program
counter. Whenever the CPU attempts to reference a mem-
ory location within the range of reserved addresses, JSTAR
traps the operation and switches into “Java mode”—which
is merely a different path of execution, not a special proces-
sor mode or context.

This suggests that JSTAR somehow intercepts calls by
the CPU to the JVM’s interpreter, perhaps by virtually re-
locating the interpreter loop from its actual address to the
block of reserved addresses. The relocation would be virtual
because there’s no longer a conventional interpreter loop.
When the JVM jumps to an address in reserved memory (an
address that it thinks is the beginning of an interpreter loop
in real memory), JSTAR takes over.

Referring to its own program counter, which points to
a bytecode address in real memory, JSTAR fetches a byte-
code instruction from that location, translates the bytecode
into one or more native instructions, and feeds the instruc-
tions to the CPU, masquerading as the interpreter. The
CPU’s program counter continues walking through the
“interpreter loop” until it reaches the loop terminator, then
begins the next iteration at the first virtual address. Mean-
while, JSTAR continues incrementing its own program
counter to point to real memory locations of bytecode
instructions.
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The CPU is oblivious to all this redirection—it thinks
it’s still fetching native instructions from valid locations in
memory, as indicated by its own program counter. But the
native instructions it fetches are translated bytecode instruc-
tions, and they’re coming from JSTAR, not from a native
program (a bytecode interpreter) in real memory.

If a Java program calls a native method, JSTAR feeds
the CPU a native branch instruction that jumps to the
native code. When the method is finished and branches
back to the Java program, the CPU tries to invoke the inter-
preter, which again redirects execution to JSTAR.

Our understanding of this mechanism may be incom-
plete, but the result is clear: Java bytecode instructions nor-
mally executed by a JVM’s interpreter are diverted to JSTAR,
which translates the bytecodes into native instructions and
feeds them into the CPU’s instruction path. The whole
process is transparent to the Java program, the CPU, and the
operating system. Although the operating system must save
some additional state information associated with JSTAR
during a context switch—the Java program counter is one
example—most operating systems provide a way to do this
without modifying the kernel.

Triage for Bytecode Translation
JSTAR translates each bytecode instruction into one or
more native instructions by running small microcode rou-
tines. It requires less than 6K of VLIW-style microcode
stored in SRAM, which allows JEDI to easily support differ-
ent CPU architectures. Only the microcode, JSTAR’s inter-
face wrapper, and the JVM have to change.

JSTAR doesn’t execute every bytecode instruction in
microcode. Nor do bytecode-native Java chips (see sidebar,
“Java Chips Fight an Uphill Battle”). Some of the 226 in-
structions in the Java instruction set are too complex, or
occur too infrequently in typical software, to be worth im-
plementing in hard-wired logic or microcode. (One exam-
ple is the instruction that creates an object whenever a pro-
gram executes a “new” command.) In those cases, JSTAR
jumps to a software routine that interprets the bytecode
instruction the usual way.

This approach also allows JSTAR to handle instruction
types that a host CPU doesn’t natively support. For
instance, if a Java program tries to execute a floating-point
add instruction on a CPU without an FPU, JSTAR jumps to
a routine that interprets the instruction in software, just as
an unmodified JVM would.

JSTAR has some logic that offloads work from the
CPU. It has a two-word prefetch buffer for bytecodes, which
is useful for executing references to the Java stack and main
memory in parallel. There is some logic for byte alignment,
because bytecode instructions are variable in size.

More important, JSTAR helps the CPU utilize its caches
more efficiently—an almost accidental side effect of the way
JSTAR bypasses the interpreter. Normally, a CPU loads a Java
program’s instructions into the data cache because it sees the
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bytecodes as data for a native program—the JVM’s inter-
preter or a JIT compiler. Only the interpreter’s or compiler’s
instructions load into the instruction cache. But because
JSTAR is an instruction-path coprocessor that translates
bytecodes into native instructions between the CPU and the
caches, it can fool the cache controller into fetching bytecodes
into the CPU’s instruction cache. At the same time, JSTAR
eliminates the need to load the native instructions of an inter-
preter or JIT compiler into the instruction cache.

Result: Java instructions end up in the instruction
cache and their operands end up in the data cache, where
they belong. The system is better balanced and works the
way it was designed to work.

All this trickery potentially imposes one penalty, how-
ever. JSTAR must examine every memory reference by the
CPU to see if it falls within the range of virtual addresses that
trigger “Java mode.” This check adds a mux to the instruc-
tion path, which is often the critical path in processors with
a primary instruction cache. According to JEDI, the effect is
minuscule—a 180MHz processor slows to about 178MHz.
That’s less than a 2% penalty, which is a small price to pay for
the much greater increase in Java performance.

If cache access isn’t the critical path, the additional
mux probably won’t impair the host CPU. An ARM7 core
that lacks a primary cache would hardly notice the extra
gate delay. Also, an ASIC designer who’s working with a syn-
thesizable CPU core could integrate JSTAR’s mux with the
CPU’s address-output mux, effectively eliminating the delay
from the critical path.

JSTAR’s Caffeine Jag
Measuring the benefits of JSTAR isn’t easy, because there
aren’t any thorough embedded-benchmark programs for
Java. JEDI has run tests with Pendragon Software’s Em-
bedded CaffeineMark 3.0 (www.pendragon-software.com/
pendragon/cm3/). The CaffeineMark program is a fairly
simple benchmark that includes an Eratosthenes sieve, var-
ious sorting loops, recursive method calls, and some floating-
point math.

Figure 2 shows the results of these tests, converted into
CaffeineMarks per MHz. (Raw clock-speed comparisons
wouldn’t be valid because the JSTAR/Lexra prototype was
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Figure 2. JSTAR runs the Embedded CaffeineMark program about five
times faster than the same CPU running a bytecode interpreter at the
same clock frequency.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Embedded CaffeineMark 3.0

C
af

fe
in

eM
ar

ks
 /

 M
H

z

Celeron R4600 SA-110 LX4180 LX4180
+ JSTAR
2 7 , 2 0 0 0 M I C R O P R O C E S S O R  R E P O R T

http://www.pendragon-software.com/pendragon/cm3/


4 JSTAR Coprocessor Accelerates Java
running in an FPGA.) With JSTAR, the R3000-class LX4180
core runs the benchmark tests about five times faster than it
does without JSTAR. Intel’s Celeron processor fared better
in this comparison than the other embedded processors,
mainly because its relatively powerful FPU aced the floating-
point test.

Figure 2 compares JSTAR’s performance to inter-
preters, not JIT compilers. JIT compilers can boost per-
formance even more than JSTAR does because they can
apply some classic compiler optimizations while observing
a program’s run-time behavior. For instance, a JIT compiler
can inline a frequently executed method to eliminate the
method call, and it can ignore references to dead variables.
JSTAR simply translates bytecode instructions into native
instructions one by one, no matter how frequently it en-
counters the same sequence of instructions or how useless
the instructions are.

Although JIT compilers can accelerate Java perform-
ance by an order of magnitude or more, they require too
much memory to be practical for many embedded applica-
tions. A typical JIT compiler not only requires about 500K of
memory for itself but also some additional memory for the
translated code it caches. JSTAR doesn’t cache any translated
code, so only the bytecode image of the Java program resides
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in memory—and bytecode is much denser than RISC code
or even CISC code.

To demonstrate the density of bytecode, JEDI compared
the size of the classic Eight Queens algorithm (which arranges
eight queens on a chessboard so they can’t capture each other)
as compiled in Java bytecode, x86 native code, and MIPS
native code. The bytecode version is only 281 bytes long, the
x86 version is 902 bytes, and the MIPS version is 2,196 bytes.
If those numbers are surprising, remember that Sun originally
designed Java for a networked embedded application (inter-
active TV), so code density was a high priority.

Code density is just one reason that Java would be
more useful for embedded-software development if it
weren’t for Java’s relatively slow performance or large mem-
ory requirements. Additional reasons are Java’s inherent con-
currency, security, networking capabilities, productivity, and
code safety—and, of course, cross-platform compatibility.

“Write once, run anywhere” should be even more
important for embedded developers than for PC develop-
ers, because there are many more architectures to support in
the embedded market. If JSTAR can solve Java’s problems,
embedded-Java developers could preserve their software
investments while switching CPU architectures to gain any
advantage in performance, power consumption, or cost.
Bytecode-native Java processors largely eliminate the need
for a software-based interpreter or a JIT compiler because
they natively execute the vast majority of bytecodes in the
Java instruction set. (As with JSTAR, they still interpret a few
of the most complex and infrequently used bytecode
instructions in software.) So far, however, Java chips haven’t
been very popular with embedded-system designers. This is
partly due to shortcomings of the chips themselves, but pre-
vious attempts to sell language-specific processors weren’t
much more successful.

The earliest champion of Java chips was Sun Micro-
electronics, which made a fanfare in 1997 with its PicoJava
core (see MPR 11/17/97-02, “MicroJava Pushes Bytecode
Performance”). Sun licensed the core to several companies.
Unfortunately, the performance and power consumption of
PicoJava-based chips was disappointing, and they’ve had
trouble competing against other kinds of embedded proces-
sors. Sun gradually scaled down the PicoJava project and
canceled plans to sell MicroJava chips itself. Indeed, the tur-
moil at Sun over the direction of Java-chip development
drove several engineers away, including the founders of JEDI.

Java processors from other vendors haven’t fared
much better. Patriot Scientific’s PSC1000 has scored a few
design wins, but not always for its ability to natively run
Java (see MPR 4/19/99-en, “Japanese Go ShBoom”). The

PSC1000 wasn’t originally designed as a Java chip—it was a
stack-oriented Forth processor that Patriot adapted to Java.

Another Java chip with a strange history is Rockwell
Collins’ JEM1 (see MPR 10/27/97-en, “Rockwell Unearths
Java JEM”). It too was based on an existing architecture
adapted to Java. Rockwell ultimately decided not to use
JEM1 and licensed it to aJile Systems, a startup founded in
1999 by some former employees of Rockwell, Sun, and Cen-
taur. Starting with a second-generation core known as JEM2,
aJile has produced the aJ-PC104, a single-board Java proces-
sor intended for real-time applications, and the aJ-100, a
bytecode-native chip with a real-time embedded kernel.

Finally, there’s the Imsys GP1000, an unusual em-
bedded processor from Sweden (see MPR 12/28/98-03,
“GP1000 Has Rewritable Microcode”). It’s yet another
example of a chip that wasn’t originally designed to run
Java. Halfway through the project, Imsys realized it could
write a version of microcode that natively executes most of
the Java bytecodes. Because the GP1000’s microcode is
rewritable, the project didn’t commit Imsys to producing a
Java-only chip. The GP1000 also has some other features
that dovetail nicely with Java. Imsys has some design wins
for the GP1000, but the company says its customers aren’t
ready to disclose how they’re using the chip’s Java capabil-
ities in future products. 

Java Chips F ight  an Uphi l l  Bat t le
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Not Just Another Java Chip
Unfortunately, JSTAR doesn’t solve all of Java’s problems. It
does boost performance closer to JIT-compiler levels with-
out the memory bloat of a compiler or static compilation.
That should open some doors that were closed before. But
JSTAR still needs a JVM, which also gobbles memory. Other
companies are attacking that problem in different ways,
usually by stripping the JVM to bare essentials. (Trans-
virtual’s Kaffe can be as small as 100K.)

Even with the help of JSTAR, Java programs won’t run
as fast as native software. JVMs spend only about half their
time interpreting bytecodes. The rest of their time is con-
sumed by thread synchronization, garbage collection, excep-
tion handling, and other tasks required of a virtual machine.
JSTAR does little or nothing to reduce that overhead.

Nor does JSTAR remove another obstacle to using
Java for embedded applications: real-time response. JSTAR
doesn’t make the problem much worse, though. Except for
the small amount of additional state the operating system
must save during a context switch, JSTAR adds no latency
to interrupt handling.

JSTAR does offer an interesting alternative to bytecode-
native Java chips. Its biggest advantage is that it’s not a
chip—it’s a licensable, synthesizable coprocessor that inte-
grates with almost any CPU core. That means designers
don’t have to live with decisions made by other designers.
Customers who prefer the MIPS architecture because their
older software is written for MIPS don’t have to rewrite
everything in Java to use JSTAR. They can keep using their
existing native software and development tools, and prob-
ably their favorite operating system too, while writing new
software in Java. The same goes for customers who prefer
ARM or any other architecture that can be made to work
with JSTAR.

Another significant advantage of JSTAR is that its per-
formance scales linearly with the clock speed of the host
CPU. It’s not limited to the fixed levels of performance
offered by Java-chip vendors. If an off-the-shelf Java chip is
fast enough for a given embedded application, then it’s
probably a better solution than JSTAR. But if the applica-
tion demands higher performance without a JIT compiler,
JSTAR’s only speed limit is the fastest available licensable
core on the fastest available IC process.

Other Solutions May Overtake JSTAR
What may be more limited, however, is JSTAR’s window of
opportunity. JSTAR may become less attractive as embed-
ded processors get faster, memory gets cheaper, and JIT
compilers continue to improve. If an embedded system
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can spare the memory for a JIT compiler and the cost of a
powerful CPU, it can achieve higher Java performance
without JSTAR. Already, we think JSTAR makes little sense
in a PC or server processor.

JEDI disagrees, arguing that server processors can use
JSTAR to keep up with the increasing demand for Web
services, especially as the number of non-PC information
appliances continues to grow. Palmtop computers, cellular
phones, home video-game consoles, and other devices that
are gaining Internet capability far outsell PCs. Imagine
what would happen, says JEDI, if millions of people with
Web-enabled cell phones tried to check the value of their
investments after the New York stock market closed each
day. The resulting “flash crowds” could easily overwhelm a
Web site. Multithreaded Java servlets—the server-side
counterparts to Java applets—can handle numerous users
simultaneously, and they are lighter-weight tasks than
some CGI (common gateway interface) processes written
in Perl. In that situation, a server processor could make
good use of JSTAR.

It’s not a bad argument. But an optimized JVM with
an adaptive JIT compiler such as Sun’s HotSpot can accel-
erate Java performance even more than JSTAR can. Hot-
Spot runs on today’s off-the-shelf processors, and it’s free.
The hidden cost is CPU power and memory. To run Hot-
Spot, Sun recommends at least 48M of RAM for an x86-
based Windows NT system and 64MB for a SPARC-V8 or -
V9 Solaris system. Sun obtained the most impressive
benchmark results on systems with 256–512M of RAM.
Although that’s not an unreasonable amount of memory
for a Web server at a busy site, most embedded systems
have more stringent power-consumption, size, and cost
requirements.

That’s why we think JSTAR’s window of opportunity is
open wider in the embedded market than anywhere else.
And because progress tends to come more slowly to the
embedded market than to the PC and server markets, that
window will stay open longer than a quick calculation based
on Moore’s Law implies. JSTAR may not be the perfect Java
solution, but it’s a good solution, and we think it has a
brighter future than Java chips.
P r i c e  &  Av a i l a b i l i t y

JSTAR is available now as a Verilog model from
JEDI Technologies. Licensing fees are negotiable. For
more information, go to www.jeditech.com.
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