
REPORTM I C R O P R O C E S S O R
T H E  I N S I D E R ’ S  G U I D E  T O  M I C R O P R O C E S S O R  H A R D W A R E

www.MPRonline.com
EEMBC 1.0 SCORES, PART 1: OBSERVATIONS
Single-Number Aggregate Scoring Doesn’t Tell the Story

By Mar kus  Le vy {8/14/00-01}

More is better. More power savings. More processor choices. More competition. And more

benchmark scores. And that’s my opinion when it comes to the wide variety of EEMBC (EDN

Embedded Microprocessor Benchmark Consortium) benchmarks. (EEMBC is pronounced
“embassy.”) At first glance, the variety and abundance of
EEMBC benchmark scores are bewildering. There are 46 dif-
ferent benchmarks in EEMBC’s Version 1.0 benchmark suites,
so processor performance and code-size data can quickly get
out of hand. But there is a way to get a handle on this situa-
tion and use all the data to analyze the real architectural capa-
bilities of processors—in fact, the more data the better.

Part 1 of this article presents an approach for analyzing
EEMBC benchmark data. It’s not rocket science, but it’s effec-
tive. Using this approach, Part 1 also lists the observations we
were able to make. Table 1 lists the processors and vendors
tested for this article. We’ve presented the respective proces-
sor vendors with these observations. In Part 2 of this article,
which will appear in one month, we will provide the vendors’
explanations for the performance results, as well as our own
insight into the processor architectures and the capabilities of
the associated compilers, as illuminated by the EEMBC bench-
marks. Analyzing the data will be a challenge, simply because
the interaction among hardware architecture, memory sys-
tems architecture, compilers, and the benchmark code itself
is highly nonlinear and interdependent.

Aggregation Is a Matter of Convenience
Many would like to categorize the performance of an embed-
ded processor with a single number. But in the words of Tom
Halfhill (see MPR 5/1/00-02, “EEMBC Releases First Bench-
marks”), “EEMBC doesn’t attempt to distill the raw data into
a composite score that yields an easy-to-digest single figure of
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merit.” A single number can hide the distinct advantages of
processors; furthermore, it blurs the application-level orien-
tation of the EEMBC benchmarks. However, Halfhill also
points out that the value of score aggregation is that it reveals
high-level relationships among processors. An aggregation,
or average score, is also useful for pointing out individual
benchmark scores that deviate from the norm.

MDR derives its unofficial “EEMBCmarks,” which pro-
vide a first order of approximation, by normalizing all the test
results to the slowest processor that participated in all the
benchmark suites. Results of this process indicate, for exam-
ple, that NEC’s VR5000 is 38% faster than NEC’s VR5432 (for
the EEMBC automotive/industrial benchmarks). Another ex-
ample indicates that, for the consumer benchmarks, National
Semiconductor’s Geode processor is 12% faster than NEC’s
V832. (All benchmark scores and datasheets are available on
EEMBC’s Web site at www.eembc.org/benchmark.)

Inspection Highlights Anomalies and Patterns
What the aggregate score doesn’t reveal in the example above
is that the VR5000 and VR5432 differ by only 1% on the bit-
manipulation benchmark but by 60% on the matrix-arithmetic
benchmark. Similarly, it doesn’t reveal that the Geode is 78%
faster than the V832 on the JPEG-compression benchmark but
45% slower on the RGB-to-YIQ conversion benchmark.

Unless you have more time than you know what to do
with, you can’t analyze every benchmark score. But if you
look for the anomalies, as mentioned above, they will help you
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2 EEMBC 1.0 Scores, Part 1: Observations
uncover interesting architectural differences among proces-
sors. Spreadsheets are useful for comparing the benchmark
scores among a given group of processors with those of every
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other processor to uncover the irregularities. For example,
start by comparing the scores of processor A with those of
processor B, processor C, and processor D. The next step is

to compare the scores of processor B with
those of processor C and processor D, and
so on. Obviously, more processors imply
more combinations of comparisons, but
some of the comparisons will be meaning-
less. In other words, it doesn’t make sense
to compare IBM’s 500 MHz PowerPC
750CX with Mitsubishi’s 20MHz, 16-bit
M16C/80.

Once you’ve set up the spreadsheets,
it’s easy to pick out the anomalies, such as
the matrix-arithmetic benchmark exam-
ple for the VR5000 and VR5432. Table 2
shows the results of comparing a variety of
processors with the VR5000. The numbers
in the table are not the absolute scores but
score ratios relative to the VR5000. For ex-
ample, the K6-2 has a score of 0.65 for the
floating-point benchmark, indicating that
it runs this benchmark 35% slower than
the VR5000 does. Unless indicated other-
wise, all relative scores presented in this
article are based on “out-of-the-box”

the EEMBC auto-
g both similar and

R5432 NEC V832

43 0.02
01 0.24
80 0.23

86 0.16
96 0.41
58 0.35
66 0.19
87 0.16
40 0.02
77 0.23
93 0.25
78 0.35

79 0.33

000)

68 0.11

76 0.30

85 0.07
Table 1. Comparison of the basic features and compilers of the processors discussed in this article. (n/a = not available)

AMD ElanSC520 133 CAD-UL I381G1X0 32 Yes 16K/16K 2-way SA n/a 32 66
AMD K6-2 450 CAD-UL I381G1X0 32 Yes 32K/32K 2-way SA 66 32 66

IBM PowerPC 750CX 500 Wind River Diab 4.3b 32 Yes 32K/32K 8-way SA 500 64 66
IDT79RC32364 100 IDT/c 7.2.1 Gnu 32 No 8K/2K 2-way SA n/a 32 50
IDT79RC64575 250 IDT/c 7.2.1 Gnu 64 Yes 32K/32K 2-way SA n/a 64 50
Infineon Tricore TC10GP 80 Tasking V1.1r1 32 No 16K/16K 2-way SA n/a 32 80

NEC VR5432 167 Apogee Software V4.1 64 Yes 32K/32K 2-way SA 100 64 100

L2 Cache
Clock

Processor Name Clock Rate
(MHz)

Compiler Native
Data Type

FPU I/D Cache I/D Cache
Type

Bus
Width

Bus Freq.
(MHz)

Analog Devices 21065L 60 Analog Devices cc21k
V6.0

32 No 500K On-chip
RAM

n/a 32 60

Mitsubishi M16C/62A 16 Mitsubishi, NC30, V3.20
R.1

16 No n/a n/a n/a 16 16

Mitsubishi M16C/80 20 Mitsubishi
NC308WAV2.00 R.1

16 No n/a n/a n/a 16 20

Mitsubishi M32R/E 40 Wind River Diab Rel4.3
Rev f

32 No 40K On-chip
RAM

n/a 32 40

National CompactRISC
  CR16B

50 National CRCC (CR16
Dev Toolset V2.2)

16 No n/a n/a n/a 16 50

National Geode GX-1 200 Microsoft MSVC 6.0 32 Yes 16K Unified 4-way SA n/a 64 66

NEC V832 143 Green Hills V1.8.9 32 No 4K/4K (write-
through)

Direct-
mapped

n/a 32 47.6

NEC VR5000 250 Green Hills Multi(r)2000
V2.0

64 Yes 32K/32K 2-way SA 100 64 100

TI TMS320C6203 300 TI C6000 Codegen Tools
V4.0

16 No 875K On-chip
RAM

n/a 32 NA

Toshiba TMP95FY64F 20 Toshiba Build Manager
V1.30

16 No n/a n/a n/a 16 20

Toshiba TMPR3927 133 Green Hills Multi2000
V2.0

32 No 8K/4K 2-way SA n/a 32 66
Table 2. Relative comparison of five processors with NEC’s VR5000 in 
motive/industrial benchmarks shows wide performance variations amon
dissimilar architectures.

AMD ElanSC520 AMD K6-2 IBM 750CX NEC V

Floating-Point 0.09 0.65 1.66 0.
Bit Manipulation 0.23 1.36 2.63 1.
Cache Buster 0.25 1.04 3.49 0.

FFT 0.17 1.38 3.52 0.
FIR 0.18 1.61 3.79 0.
IIR 0.32 1.88 3.43 0.
IDCT 0.11 0.89 2.82 0.
IFFT 0.18 1.43 3.83 0.
Matrix Arithmetic 0.06 0.41 2.22 0.
Pointer Chasing 0.22 1.93 3.14 0.
PWM 0.19 1.72 3.05 0.
Road-Speed Calculation 0.23 1.76 3.22 0.

Tooth-to-Spark 0.23 1.65 3.56 0.

0.75 3.94

Benchmark Scores Relative to the NEC VR5000 (Processor X/VR5

Angle-to-Time
  Conversion

0.27 1.88 3.17 0.

CAN Remote Data
  Request

0.

Table Lookup &
  Interpolation

0.19 1.39 3.18 0.

0.20
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3EEMBC 1.0 Scores, Part 1: Observations
(unoptimized) results. Unoptimized scores allow ven-
dors to use the compiler and compiler switches they
want, but the benchmark source code cannot be al-
tered. Use of unoptimized code in the out-of-the-box
benchmarks implies that the processors may not be
operating at their peak performance.

Another advantage of these relative compar-
isons is that they show performance trends, or pat-
terns, and help eliminate any false assumptions that
may arise by normalizing for operating frequency.
For example, Table 2 shows that the PowerPC is
roughly three times faster than the VR5000 for most
of the benchmarks. One would expect some of the
performance difference to be purely the result of the
750CX’s running at twice the frequency of the
VR5000, in combination with its 256KB L2 cache.
But what architecture, system-level, and compiler
factors should also be considered?

The Automotive/Industrial Benchmarks
The EEMBC automotive/industrial benchmarks
range from integer-math to floating-point compu-
tations to bit manipulation. The names of many of these
benchmarks provide clues to their fundamental operation.
For most of these benchmarks, NEC’s VR5000 outperforms
the AMD ElanSC520 by a factor of four to five, as shown in
Tables 2 and 3. The difference in clock frequency accounts
for some of this difference. Another factor is that the VR5000
is a superscalar processor. But even though both processors
have hardware floating-point support, the VR5000 is eleven
times faster than the Elan in the floating-point benchmark.

When we compare the VR5000 with the K6-2, we find
that the AMD processor is 40–90% faster for most items in
the benchmark suite. However, for the CAN remote data
request and IDCT, benchmarks are 25% and 11% slower;
for the floating-point and matrix-arithmetic benchmarks,
the AMD is 35% and 59% slower. Another indicator of the
VR5000’s strong floating-point capability appears when
we compare this processor with IBM’s PowerPC 750CX.
Operating at twice the frequency of the VR5000, the IBM
processor averages three times faster on the benchmarks in
this suite, except for the floating-point and matrix-
arithmetic benchmarks, where it is only 1.66 and 2.22
times faster, respectively.

When we pit the NEC VR5000 against the VR5432,
the performance scores average 40% faster for the VR5000,
which you might expect from the 50% higher clock rate.
But notice that for the floating-point and matrix-math
benchmarks, the VR5000 is 2.3 and 2.5 times faster, respec-
tively. The VR5000’s floating-point capability is simply
much better than the VR5432’s. Yet the winning streak
ends on the bit-manipulation benchmark, where the
VR5432 comes out ahead. It’s possible that the compiler is
unable to take advantage of the VR5000’s dual pipelines for
this benchmark.

Table 3. A
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Table 4 also shows results from the 16 automotive/
industrial benchmarks, but the scores are relative to Infineon’s
TriCore. In many of the automotive/industrial benchmarks,
the scores indicate that Infineon’s TriCore makes a good stand
against the ElanSC520 (see Table 3 or 4). Of course, that’s what
TriCore’s automotive focus might lead us to expect. TriCore’s
superscalar architecture, albeit with asymmetrical pipelines,
seems to give it an average 34% advantage over the ElanSC520
for many of these benchmarks (TriCore also has a 21% faster
memory bus). But the two processors practically tied on the
 comparison of automotive/industrial benchmark performance between
nSC520 and a variety of other processors illustrates the VR5000’s supe-
g-point capability, even when its integer performance is less.

IBM 750CX Infineon TC10GP NEC VR5432 NEC V832

oint 19.29 0.49 5.07 0.22
ulation 11.43 1.59 4.39 1.03
ster 14.08 1.01 3.24 0.92

20.17 1.89 4.92 0.90
20.89 1.50 5.31 2.25
10.63 1.49 1.80 1.09
25.95 1.59 6.09 1.78
21.69 1.95 4.92 0.93

ithmetic 39.28 0.65 7.08 0.34
hasing 14.04 1.08 3.43 1.04

15.95 1.20 4.86 1.29
ed Calculation 13.92 1.41 3.37 1.49

Spark 15.15 1.86 3.38 1.39

0.37

ark Scores Relative to the AMD ElanSC520 (Processor X/ElanSC520)

Time
ion

11.92 0.94 2.54 0.40

ote Data 19.82 1.55

kup &
tion

16.72 1.23 4.47

1.493.81
le 4. Infineon’s TriCore, with its superscalar architecture, stands up well to
r processors with higher clock rates in EEMBC’s automotive/industrial

chmarks.

AMD ElanSC520 Mitsubishi M32R/E NEC V832

ating-Point 2.03 0.05 0.45
Manipulation 0.63 0.36 0.65
he Buster 0.99 NA 0.91

0.53 0.30 0.47
0.67 0.52 1.50
0.67 0.24 0.73

T 0.63 0.62 1.12
0.51 0.32 0.48

trix Arithmetic 1.54 0.13 0.52
nter Chasing 0.92 0.37 0.96
M 0.83 0.59 1.07
d Speed Calculation 0.71 0.35 1.06

th-to-Spark 0.54 0.32 0.75

enchmark Scores Relative to Infineon TC10GP (Processor X/TC10GP)

le-to-Time
nversion

1.07 0.13 0.42

N Remote Data
quest

0.65 0.32 0.96

le Lookup &
terpolation

0.81 0.13 0.30
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4 EEMBC 1.0 Scores, Part 1: Observations
angle-to-time conversion and cache-buster benchmarks. Fur-
thermore, the Elan beat the TriCore by only a factor of two on
the floating-point benchmark, yet the TriCore processor per-
forms floating-point operations in software.

TriCore also beats the NEC V832 by an average of 23%,
except for the FIR filter and IDCT benchmarks, where the
V832 is faster by 50% and 12%, respectively.

Infineon’s TriCore runs the automotive benchmarks an
average of 2.8 times faster than Mitsubishi’s M32R/E. This is
in line with what we’d expect on the basis of operating fre-
quency. But again, the floating-point benchmark is an excep-
tion. TriCore runs it 20 times faster than the M32R/E. Simi-
larly, when the M32R/E is compared with NEC’s V832, the
data are fairly explainable on the basis of clock rate, except for
the floating-point benchmark, where the NEC processor is
almost 9 times faster (data not shown). All three processors
perform floating-point operations in software. TriCore uses
Tasking’s floating-point library, the M32R/E uses Wind River’s
Diab compiler, and the V832’s floating-point library comes
from Green Hills. Perhaps Wind River’s floating-point library
for the M32R/E isn’t as good as it could be, or the M32R/E
may not be floating-point friendly. The Wind River Diab
floating-point libraries (for all the processors they support)
are written in C and are not processor specific; however, Wind
River claims that its customers do not complain about the
library’s performance.

We can make another interesting comparison between
Mitsubishi’s M16C/80 and M16C/62A microcontrollers, as
illustrated by Figure 1. While there’s a 25% difference in clock
speed between these processors, the M16C/80 averages 70%
faster (the tooth-to-spark benchmark is almost three times
faster).

Consumer Benchmarks
The EEMBC consumer benchmarks target processors used in
digital cameras. Although similar to the other EEMBC bench-
marks, one could use the consumer benchmarks in a general
sense to represent a variety of workloads. The five consumer
benchmarks include JPEG compression and decompression, a
high-pass filter, and two color-conversion algorithms. To date,
only a few EEMBC members have been bold enough to accept
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the challenge of the consumer benchmarks, but that situation
helps to simplify the initial data analysis.

The JPEG and high-pass filter benchmark scores gener-
ate the most surprising results for the processors tested so far.
The JPEG algorithm requires the CPU to perform preloading
and branch prediction, as well as parallel/vector processing.
The high-pass filter explores the target CPU’s ability to per-
form arithmetic and matrix math. Each function takes a point
or series of points in the RGB color space (three 8-bit num-
bers) and applies a transfer function to it.

Table 5 shows that National’s GX-1 is 76–78% faster
than the V832 for the JPEG and high-pass filter benchmarks,
but it’s 21–45% slower for the color-conversion benchmarks.
This trend holds true for NEC’s VR5000 and VR5432. For
example, the VR5000 is approximately three to four times
faster than the V832 for the JPEG and high-pass filter bench-
marks but only about twice as fast for the color-conversion
benchmarks.

The high-pass filter benchmark raises another interest-
ing discussion point for NEC’s VR5000 when it is compared
with the GX-1 and NEC’s VR5432. As Table 6 shows, the
VR5000 averages 30% faster than the VR5432 for all the con-
sumer benchmarks except for the high-pass filter. Likewise,
the VR5000 is about 2.5 times faster than the GX-1 (data not
shown), except for the high-pass filter, where it is only 1.7
times faster. Note that the GX-1’s scores were handicapped,
because the target system was also the host system. This sit-
uation implies that the benchmarks for this processor were
run on top of the Windows operating system.

Printer Benchmarks
The office automation benchmark suite contains four bench-
marks targeting printer applications: Bezier-curve calcula-
tion, dithering, image rotation, and text processing. The
National GX1 NEC VR5000 NEC VR5432
Compress JPEG 1.78 4.31 3.12
Decompress JPEG 1.33 3.22 2.39

Benchmark Scores Relative to NEC V832 (Processor X/V832)

High Pass Grey-
  scale Filter

1.76 2.97 3.22

RGB-to-CYMK
  Conversion

0.79 2.20 1.42

RGB-to-YIQ
  Conversion

0.55 1.67 1.38

Table 5. EEMBC’s consumer benchmarks show that National’s
200MHz GX-1 can substantially outperform NEC’s V832 for some
tasks (JPEG compression/decompression and high-pass filtering),
but the opposite is true for color conversion.
4

Compress JPEG 1.38
Decompress JPEG 1.35
High Pass Greyscale Filter 0.92
RGB-to-CYMK Conversion 1.55
RGB-to-YIQ Conversion 1.21
Fixed-Point Bezier Curve 1.01
Dithering 1.19
Image Rotation 1.23
Text Processing 0.91
Autocorrelation 1.10
Convolutional Encoder - xk5r2dt 1.88
Convolutional Encoder - xk4r2dt 1.77
Convolutional Encoder - xk3r2dt 1.51
Fixed-Point Bit Allocation 1.93
FFT 0.78
Viterbi 1.57

VR5000 Relative to VR5432 (VR5000/VR5432)

Consumer

Office
Automation

Telecomm

Table 6. NEC’s VR5000 is faster than the company’s VR5432 for
all EEMBC consumer, office-automation, and telecom bench-
marks, except for the high-pass filter, text-processing, and FFT
benchmarks. A composite score in each of these three benchmark
suites masks these differences.
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5EEMBC 1.0 Scores, Part 1: Observations
Bezier-curve calculator bench-
mark, available in fixed- and
floating-point versions, exerci-
ses a CPU’s mathematical com-
putation capability as it calcu-
lates points along a Bezier
curve. This benchmark relies
heavily on multiply and add
operations. The dithering
benchmark stresses a CPU’s in-
direct references, used for ma-
naging internal buffers: its manipulation of large datasets,
since large images will stress the cache; its ability to mani-
pulate packed-byte quantities, which hold greyscale pixel in-
formation; and its ability to perform four byte-wide multiply-
accumulate operations per pixel. The bitmap-rotation
algorithm primarily tests a CPU’s bit-manipulation, compar-
ison, and indirect-reference capabilities. The algorithm uses a
series of indirect references and bit masks to check and set
individual bits in a data buffer representing a binary image.
The text-processing benchmark tests the byte-manipulation,
pointer-comparison, indirect-reference handling, and stack-
manipulation capabilities of a processor. Text processing also
performs many memory accesses and has the largest code size
among the office automation benchmarks.

Table 7 compares AMD’s ElanSC520 with the K6-2, two
processors with dissimilar architectures but benchmarked
with the same compiler. Notice that the K6-2 runs the Bezier-
curve benchmark (both the fixed- and floating-point ver-
sions) 13 times faster than the ElanSC520 but is only 3 times

AMD K6-2 IB

Dithering 7.48
Image Rotation 7.27
Text Processing 3.02

Benchmark Sco

Fixed-Point
  Bezier Curve

13.32

Floating-Point
  Bezier Curve

12.84

Table 7. The text-processing ben
ance edge for several processors
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faster on the text-processing benchmark. The K6-2 seems un-
able to take advantage of its superscalar architecture in the
text-processing benchmark (i.e., there may not be enough
parallelism to extract in this benchmark). On the other hand,
why does the K6-2 do so well for the Bezier-curve benchmark?

Further, NEC’s V832, is 5.4 times faster than the
ElanSC520 for the Bezier-curve benchmark but 37% slower
for text processing. Additionally, Toshiba’s TMPR3927F is
6.8 times faster for the Bezier-curve benchmark, while the
ElanSC520 is 1.8 times faster for the text-processing bench-
mark. The VR5432 is 50–60% faster than the TMPR3927F
for all office automation benchmarks except text processing,
where it is 4 times faster. Text processing also seems to trou-
ble the VR5000. NEC’s VR5000 is 20% faster than the com-
pany’s VR5432 for the dithering and image-rotation bench-
marks, but it is 10% slower for text processing (Table 6).

As we see for the automotive/industrial benchmarks,
Mitsubishi’s M16C/80 has performance superior to the com-
pany’s M16C/62A, demonstrating the benefits of a newer
M 750CX NEC VR5000 NEC VR5432 NEC V832 Toshiba TMPR3927F

24.42 7.67 6.43 2.79 4.14
18.04 5.04 4.10 1.53 2.52
6.35 2.06 2.26 0.63 0.56

NA NA NA

res Relative to  ElanSC520 (Processor X/ElanSC520)

NA 10.48 10.36 5.38

36.92 NA

6.80

chmark from EEMBC’s printer suite appears to take away the perform-
.

Figure 1. Direct comparison between two similar versions of Mitsubishi’s M16C microcontroller—the M16C/80 and the M16C/62A—shows more
difference in performance on the EEMBC automotive/industrial benchmark than might be expected from clock-rate differences alone. (M16C/80
relative to M16C/62A)
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6 EEMBC 1.0 Scores, Part 1: Observations
architecture and compiler. The M16C/80 also demonstrates
superior performance over Toshiba’s TMP95FY64F in the
office automation benchmarks. Although both processors
were run at the same clock speed, the M16C/80 ranged bet-
ween 3.7 and 5.9 times faster. Curiously, the code sizes for
each of the benchmarks do not provide a clue to the perfor-
mance difference. Figure 2 shows the inconsistency of the
performance and code size ratios for the M16C/80 relative to
the TMP95FY64F. Although the M16C/80 runs the Bezier
curve 5.6 times faster, its code size is 3.5 times smaller. But
for the image-rotation benchmark, its performance is 5.9
times better, while its code size is 20% larger.

RISCs, CISCs, and DSPs Battle in Telecom
EEMBC’s telecom benchmarks represent the traditional
signal-processing fare. The autocorrelation benchmark
stresses a processor’s multiplication and summation ability.
The benchmark takes a voice-data array and the number of
lags (or time delays) as input and generates an array that
contains the sum of products for each lag. The bit-allocation
benchmark requires the CPU to distribute data into a series
of frequency bins and allocates the data bits using a water-
level algorithm. It distributes the data such that each bin gets
an equal number of bits until the bin is full. The convolu-
tional-encoder benchmark explores the target CPU’s ability
to perform bit-wise exclusive ORs and table lookups. The
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Fast Fourier transform (FFT) benchmark tests the complex
mathematical and memory-access ability of a processor. This
particular implementation uses a decimation in time per-
formed on 256 complex points. The Viterbi benchmark is
similar to the convolutional encoder, and it also performs bit-
wise operations and table lookups in addition to compar-
isons. EEMBC runs each of these benchmarks with a variety
of data inputs. For example, the autocorrelation benchmark
is run with a pulse, sine, and speech wave.

When we compare the ElanSC520 with IDT’s 79RC-
32364 and NEC’s V832, we observe that the IDT device is an
average of 2.2 times faster, while the V832 is 2.8 times faster
(data not shown). Perhaps this result demonstrates that the
CAD-UL compiler (used for the AMD benchmark execution)
isn’t able to take advantage of the Elan architecture in this par-
ticular benchmark. Or is this performance advantage an in-
herent RISC advantage?

AMD’s K6-2 and Analog Devices’ 21065L (SHARC)
really shouldn’t be compared, because it’s like comparing an
apple and a banana. Nevertheless, a comparison allows us to
determine an architecture’s efficiency on a clock-by-clock
basis. The K6-2 is four to six times faster than the 21065L,
except for the autocorrelation benchmark, where perform-
ance is almost equal. This result demonstrates that the SHARC
is designed for telecomm applications. Unfortunately, we
don’t have any SHARC benchmark data for the other applica-
tion areas, as it would be interesting to see how well SHARC
would do on networking benchmarks, for example.

In a more realistic comparison, the K6-2 is faster than
NEC’s VR5000 for the convolutional-encoder, FFT, and
Viterbi benchmarks, but it is 10–50% slower for the auto-
correlation and bit-allocation benchmarks. The SHARC is
10–30 times faster than National’s CompactRISC CR16B,
except for the convolutional-encoder and Viterbi bench-
marks, where, curiously, it is only twice as fast.

Along the lines of a fairer comparison (DSP-to-DSP), as
in the case of SHARC versus the TMS320C6203, the latter
has significantly better performance on the autocorrelation
and convolutional-encoder benchmarks, even for the out-of-
the-box benchmark implementation. On the other hand, if
you normalize for frequency, both processors have fairly
equivalent performance. (While we’ve tried to avoid normal-
izing, both these processors execute from zero-wait-state me-
mory, so performance should scale linearly with frequency.)
More information in the bit-allocation, FFT, and Viterbi
benchmarks would have allowed the TMS320C6203 compiler
to better utilize the architecture, but the “out-of-the-box”
benchmark approach is designed to provide the same com-
piler information to all vendors.

Expanding on this: TI used some fundamental C-level
optimizations and gained significant performance benefits,
as shown in Figure 3. In fact, bit-allocation performance in-
creased by a factor of 3.8 to 6.5; FFT increased by a factor of
10.5; and Viterbi increased by a factor of 5 after optimiza-
tion. Furthermore, the convolutional-encoder performance
Figure 2. EEMBC office automation printer benchmark ratios show no
correlation between code size and performance for the M16C/80 micro-
controller relative to the TMP95FY64F. (M16C/80 / TMP95FY64F)
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7EEMBC 1.0 Scores, Part 1: Observations
increased by a factor of 27. When TI further optimized the
benchmarks, using assembly language to replace critical sec-
tions of C, the convolutional-encoder performance went up
by an additional 60–70%. The Viterbi performance went up
by an additional 250%! Apparently, these two benchmarks
require hand coding to unleash the performance capabilities
of this processor.

As one might expect from operating-frequency and
fundamental architectural differences, NEC’s VR5000 is an
average of 50% faster than the VR5432. However, as Table 6
shows, the VR5432 is 29% faster than the VR5000 in the FFT
benchmark.

Networking Benchmarks Keep Processors Busy 
As the name implies, EEMBC’s networking benchmarks
probe a processor’s ability to perform network-router-like
functions. Fundamentally, these functions involve moving
lots of data around and making routing decisions based on
information stored in dynamically generated tables. The
OSPF (open shortest path first) benchmark implements the
Dijkstra shortest-path-first algorithm widely used in routers
and other networking equipment. The Dijkstra algorithm
builds a table of nodes, where each node is a router, and com-
putes the shortest route to all nodes in the network relative to
the source node. The route-lookup benchmark is a distilla-
tion of the fundamental operation of IP datagram routers:
receiving and forwarding IP datagrams. It implements an IP
lookup mechanism based on a Patricia Tree data structure.
The packet-flow benchmark implements some of the pro-
cessing required in RFC1812 (“Requirements for Routers”).
It’s designed to emulate the way systems store IP datagrams,
©  M I C R O D E S I G N  R E S O U R C E S A U G U S T  1
using descriptors that are separate from the datagram. As
each datagram is received and processed by the benchmark
algorithm, it is removed from the receive queue and placed in
a holding queue.

In a direct comparison, AMD put two compilers to the
test on the same platform. Using its K6-2, AMD pitted Mi-
crosoft’s C/C++ Optimizing Compiler V12.00.8168 against
Figure 3. C-level optimizations produce dramatic performance improvements in the TI TMS320C6203 telecom benchmarks, while further assembly-
language optimization substantially improves convolutional-encoder and Viterbi performance.
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8 EEMBC 1.0 Scores, Part 1: Observations
CAD-UL’s I381G1X0. The results, depicted in Figure 4, show
the relative difference between the two compilers run on each
benchmark. Hand-tuned code would probably present very
different results. But this comparison, using the same proces-
sor but different compilers, surely points out some of the ben-
efits of one compiler over another. The CAD-UL compiler
performs overwhelmingly better for the packet-flow bench-
marks and slightly better for the OSPF. But Microsoft’s com-
piler performs 26% better for the route lookup. Perhaps the
©  M I C R O D E S I G N  R E S O U R C E S A U G U S T  1
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CAD-UL compiler isn’t able to efficiently schedule the K6-2
resources for the packet-flow benchmark. This is further evi-
denced in a comparison with the ElanSC520 (data not
shown). Both processors use the same compiler, albeit the op-
timization switches are set to match the processor. Although
the K6-2 averages 7.5 times faster than Elan, the route-lookup
benchmark on the K6-2 is faster by only a factor of four.

In another comparison involving Elan, this time against
NEC’s V832, the Elan runs the OSPF and route-lookup
benchmarks 6% and 28% faster, respectively. But, surpris-
ingly, for the packet-flow benchmark, it is approximately 40%
slower than the V832. Furthermore, Elan runs OSPF twice as
fast as Toshiba’s TMPR3927, but it is 30% and 55% slower for
the route-lookup and packet-flow benchmarks, respectively.

Note that an aggregate EEMBC benchmark score
wouldn’t point out the interesting differences between NEC’s
VR5000 with the Green Hills Multi2000 V2.0 compiler and
IDT’s 79RC64575 with the IDT/c 7.2.1 Gnu compiler shown
in Figure 5. Both processors have fundamentally the same
architecture, but the VR5000 runs the OSPF and packet-flow
benchmarks (the 512K versions) 36% and 9% faster, respec-
tively. In the other networking benchmarks, the VR5000
runs 9–18% slower.

Now, stay tuned. We realize that this article has presented
far more observations than explanations, but its purpose is to
uncover the interesting performance variations. EEMBC has
provided the foregoing information to the respective proces-
sor vendors, and in Part 2 of this article, we will provide you
with the vendors’ explanations—along with our analysis.
Figure 5. An aggregate EEMBC benchmark score would not highlight
the differences between similar processor architectures as does this
benchmark-by-benchmark comparison of NEC’s VR5000 and IDT’s
79RC64575, both running at 250MHz. (IDT79RC6457/VR5000)
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