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microprocessors, digital-signal processors, and
application-specific digital engines and the ways
they will be created, programmed, and used in
the future. Will they transform life as profoundly
as the internal combustion engine, the jet plane,
the computer, and the Internet? Will they be suc-
cessful, useful, and accepted? Some technologies
seem to have a sure short-term impact. Others,
like icebergs in time, may extend their mass for-
ever. Technology nominations and the ultimate
Annual Award are MPR analysts’ votes for the future,
glimpses into what might happen and what processors might
be feasible. This year’s limelight is shining on logic and archi-
tecture design technologies.

Technologies can’t appear overnight; their roots are in
accumulated scientific knowledge and methods and the hopes
of many contributors—universities and other organizations.
It is with this humble understanding that we limited our
search to technologies that were recently presented by com-
mercial companies or used by them to create test products.

Nominated Technologies
The analyst staff of MPR recognizes the following technolo-
gies as nominees for the Annual Award for Outstanding Tech-
nology in the Field of Digital Processing: Theseus Logic’s
NULL Convention Logic, Sun Microsystems Laboratories’

Asynchronous Technology, Intel’s Hyper-
Threading technology, and Proceler’s Soft Hard-
ware technology.

Asynchronous Logic
The continuing quest for higher performance is
increasing the complexity of implementing
clocked circuits. Circuit requirements and clock
skews contribute an increasing overhead to the
higher performance otherwise available from

the logic itself. Asynchronous design now seems more
important than ever: it may provide significantly higher
throughput, lower electromagnetic interference, easier
design reuse, and reduced power dissipation. Asynchronous
logic design in the United States started as early as 1951–52
with the completion of the ORDVAC, built at the University
of Illinois, and the IAS, built by John von Neumann’s group
at Princeton University. On the other side of the Atlantic, at
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Figure 1. Data and protocol between asynchronous units.
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Manchester University, the MU5 computer was built
between 1969 and 1974.

Conceptually, an asynchronous logic implementation
can be viewed as a unit or module that controls its accept-
ance of inputs and the validity of its outputs on the basis of
some form of communication between itself and the units
or modules between which it is sandwiched. Lacking
clocked registers or latches to store inputs and the results of
logic operations, asynchronous implementations need ways
to define when input data is complete and valid; when logic
operations’ outputs become valid; how to latch valid output
data until it’s ready to be consumed by the next stage(s); and
how—upon data acceptance by the next stage(s)—to signal
readiness for new inputs for the next logic operation. A
simple conceptual block diagram appears in Figure 1.

In one implementation, binary data is delivered as one
line (wire) per each binary bit, with additional, separate lines
used to implement the handshake protocol that indicates the
readiness of valid output data and the acknowledgment of its
reception by the destination unit. A different approach has
data delivered via two lines per binary bit, with the assertion of
one line indicating a logical “0,” and the assertion of the other
line, a logical “1.” The remaining states in the two-lines-per-bit
design are used for status and handshake protocol; a return to
nonasserted status is required between valid data states.

Theseus Logic’s NULL Convention Logic 
Theseus Logic, founded in 1996, is a semiconductor intellec-
tual property company dedicated to the design of asynchronous

ICs using its NULL Convention Logic (NCL) technology. In its
asynchronous logic design, Theseus Logic Inc. has adopted an
encoding that uses two lines per bit of binary data. The design
uses the remaining states to signal lack of data, or “null” data.
The result may be fed back to the input gates to latch and pro-
tect the unit from further change and also to communicate to
the previous unit that it may start working on generating the
next set of outputs (separate lines shown for clarity). Assuming
a pure binary representation (Figure 2), that on two lines can
generate a four-state variable, the truth table shown in Figure 2
demonstrates the result based on inputs A and B and the previ-
ous value of R, the result line.

Theseus Logic avoids using four-state logic by incor-
porating threshold gates whose function is to check that the
required (or higher) number of inputs has turned from
“null” to valid data. The simple half-adder example shown
in Figure 3 is taken from Theseus Logic’s white paper, avail-
able at www.theseus.com. The number inside a threshold
gate defines the number of inputs that must be asserted for
the gate to assert its output. All lines are indexed as x_1 and
x_0 to refer to their being asserted when the binary value of
data is “1” or “0.” The asynchronous register principle is dia-
grammed in Figure 4, showing the feedback from the next
stage and the output to the previous one. Note that the cir-
cuit, shown here in its simple form, is not testing for errors
in exclusivity of data.

Theseus Logic announced in March 2001 the results of
its translation of Motorola’s HC08 processor. Theseus Logic
has designed and fabricated the NCL08, an instruction-set-
compatible NULL Convention Logic (NCL) implementa-
tion of Motorola’s S08 processor core, the latest processing
element of the 6808 family of microcontrollers. Motorola’s
STAR08 processor can run at up to 100MHz in 0.25-micron
technology. Theseus used a 0.25-micron technology for its
chip which  was fabricated by TSMC. As with asynchronous
designs, the performance of the NCL08 is dependent upon

©  M I C R O D E S I G N  R E S O U R C E S F E B R U A R Y  2 5 , 2 0 0 2 M I C R O P R O C E S S O R  R E P O R T

Technology 2001: On a Clear Day You Can See Forever

Figure 2. Simplified binary principle of Theseus Logic’s NULL Con-
vention Logic (NCL). (Source: Theseus Logic)
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Figure 3. Half-adder comparison: clocked vs. asynchronous. (Source:
Theseus Logic) 

Boolean logic half-adder circuit with clock

A
B

S

C

A
0
0
1
1

B
0
1
0
1

S
0
1
1
0

C
0
0
0
1

A
A_1

A_0

B_1

B_0

C_1

C_0

S_1

S_0

C

S
00

10

11

01
B

NULL Convention half-adder circuit

1

1

1

2

2

2

2

Figure 4. Asynchronous register. (Source: Theseus Logic)
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process, voltage, temperature, and data. Table 1 shows the
results of average performance expressed in equivalent fre-
quency. Table 2 shows the reduction in power dissipation
that was obtained by the asynchronous design.

The first results, showing approximately 38% less
power requirement, are encouraging, especially for micro-
controllers that need to consume as little power as possible.

Sun Microsystems Lab’ Asynchronous Technology
At Sun Labs, under the guidance of Ivan Sutherland, the asyn-
chronous group has taken a different architectural and imple-
mentation approach to asynchronous design. Guided more by
communications between blocks than by logical functions that
must be executed in one unit, the group has defined a different
protocol and has introduced a design methodology that tailors
all logical paths to fit a common overall timing specification.

The Micropipeline
Presented first by Ivan Sutherland in 1989, the micropipeline
approach departs from the pipeline approach that is pre-
dominant today in clocked circuits that employ logic units
interleaved with clocked registers. Instead, it proposes a flex-
ible pipeline stage that is started and terminated not at the
beat of a clock but by an event—that event being a transition
or handshake between asynchronous units. It is argued that
in addition to the speed benefits, the boundary defined by
the micropipeline approach makes it easier to integrate
reusable cores in system-on-chip (SoC) designs. Sun Labs’
asynchronous protocol uses “bundled data,” which involves
one line per binary bit of data and a separate request-
acknowledge transitional protocol (Figure 5).

Using the protocol adopted by Sun Labs, the Sender
unit validates data and asserts the Request line. The Receiver
accepts the data and signals via the Acknowledge line that the

data has been received and that the sender may now start to
work on its next set of data. Rising and falling edges are both
used interchangeably to signal an event, and the resulting
logic value on the signal line is of no importance. On the
event lines, only transition events have meaning. The event
logic uses Muller C-elements to perform a logical AND of its
inputs. The Muller C-element outputs a “0” if all its inputs
are “0”; conversely, the output is a “1” if all its inputs become
“1.” Following a change of this kind, the Muller C-element
stores the state and retains it for as long as its inputs do not
change or become different from one another. The Muller C-
element, also called the “rendezvous” circuit, will produce
the next event only if and when all its inputs have each pro-
duced events.

Figure 6 is a block diagram of asynchronous logic units
connected as a micropipeline. As with synchronous logic, the
asynchronous logic function units are sandwiched between
latches, the difference being that the latches are controlled by
events instead of by clocks. Registers (RG) will be transparent
until a Muller C-element (gate with letter “C”) detects a
Request event and asserts the capture control “C” on the
latch. The “Capture done” (Cd) signal is output when the
data has been latched. Cd generates an Acknowledge signal
that releases the latch of the previous stage by its “P” input.
Note also that Cd and a delay generate Request events. This
delay has to match the worst-case delay of data flowing
through the logic under all operating conditions.

Sun Labs has added to these already-known asynchro-
nous architecture and protocol items, its design technology
based on the concept of Logical Effort. The methodology helps
obtain uniform gate delay by tuning transistor widths. Aside
from the increased simplicity provided for logical design, the
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2.75 -40.0 FF 47.3 1542 207.1
2.75 125.0 SS 25.5 1520 204.2
2.50 75.0 TT 30.5 1248 167.7
2.50 25.0 TT 32.9 1231 165.4
2.25 -40.0 FF 40.4 984.0 132.2
2.25 125.0 SS 21.0 978.1 131.4
2.00 25.0 TT 26.0 754.3 101.3
1.00 25.0 TT 6.8 167.8 22.5

Pavg (pJ)
Average
Power

(µW/MHz)
Voltage Temp Process

Average
Performance
fequiv (MHz)

Table 1. NCL08 average performance. (Source: Theseus Logic)

2.75 -40.0 FF 40.7%
2.75 125.0 SS 38.1%
2.50 75.0 TT 38.8%
2.50 25.0 TT 38.9%
2.25 -40.0 FF 39.9%
2.25 125.0 SS 37.8%

Voltage Temp Process NCL Power
Reduction

Table 2. Power dissipation comparison: NCL08 vs. Motorola’s
STAR08 at 27MHz. (Source: Theseus Logic)

Figure 5. Sun Labs’ asynchronous protocol concept. (Source: Ivan E.
Sutherland, Turing Award Lecture)
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approach may be used to obtain minimal power requirements
for any implementation, asynchronous or otherwise.

A Working Chip: FLEETzero
In addition to micropipelines, Sun Labs has developed new
asynchronous circuit families, called asP* and GasP, that
offer greater flexibility at similar or higher speeds and lower
power consumption. The usefulness of both circuit families
has been evaluated in recently fabricated chips. Parts of Sun’s
UltraSPARC III microprocessor use asynchronous FIFOs
built from asP* circuits. Sun has also built an experimental
chip, FLEETzero, using GasP circuits. FLEETzero was pre-
sented in March 2001 at the Seventh International Sympo-
sium on Advanced Research in Asynchronous Circuits and
Systems. Sun built the FLEETzero to test an asynchronous
switch fabric that can transport 8-bit data items from eight
sources to eight destinations. Throughput results are equiv-
alent to six gate delays per data word. In 0.35-micron tech-
nology, it delivered a throughput of more than 1.2Gwords
per second at a latency of less than four nanoseconds from
source to destination. The design of the FLEETzero chip
emphasized data movement rather than logic operations, in
line with Sun Labs’ strategy for asynchronous design.

Intel’s Hyper-Threading Technology
Intel’s new approach at improving the performance of mod-
ern processor architectures is based on executing more than
one thread per processor and is initially targeted at multi-

threaded server applications. Intel is deliver-
ing this technology on its new Xeon proces-
sor family for servers in 1Q02, for both
dual- and multiprocessor servers. Following
Intel’s terminology, we will use the term
“thread” to refer both to processes and to
threads. Hyper-Threading, Intel’s name for
the new technology, takes advantage of the
available cycles of highly pipelined proces-
sors that use instruction-level parallelism.
Until now, these cycles couldn’t be used,
owing to limitations in the combination of
hardware, workload, and compiler capabil-
ity. A major effort has been directed toward

overcoming the problems encountered in one instruction
stream as computers try to increase efficiency of parallelism
by executing as far as possible past dense conditional
branches; this effort still continues. Increasing memory, cache
bandwidth, and on-chip parallelism have brought forth many
solutions, some of them stillborn.

Not long ago, a company named TeraGen, now appar-
ently gone, attempted to use available parallelism in running
multiple instruction sets on the same chip for embedded
applications, all in parallel. One might say, by definition, that
if that engine had become a reality, it would then have been
able to run multiple programs in parallel. One might also say
that recent embedded microprocessor coprocessor and slave
processor extensions, such as the ones used for accelerating
special data types, are also, on the same chip, executing on dif-
ferent datastreams. In all cases, however, the different types of
execution were envisioned to occur on different, dedicated on-
chip processors or accelerators, each with its own one-
machine state. Intel’s approach does not dedicate execution
units; it can treat similar execution units equally, as it has
introduced on-chip support for one more state machine (Fig-
ure 7). Intel claims its Hyper-Threading technology delivers
two logical processors that can execute different threads
simultaneously, using shared hardware resources, thus provid-
ing an average improvement of approximately 40% in CPU
resource utilization and in the associated processing through-
put. Hyper-Threading technology can provide a performance
boost on multithreading and multitasking operations for
Intel’s future NetBurst microarchitecture processors as well as
for other architectures. It is interesting to note, by using the
average percentage improvement, the possible contribution of
Hyper-Threading to computer architecture state of the art.
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Figure 7. Hyper-Threading conceptual block diagram. (Source: Intel)
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A Conceptual Description
Until Intel announced its approach, running multiple
threads required multiple CPUs. In Figure 8, two threads are
seen running in parallel on two separate CPUs, each with its
own efficiency of resource utilization.

In Figure 9, the two threads are shown running on the
same CPU, using its resources during cycles that were previ-
ously unused because of dependencies.

The innovation in Intel’s approach lies in the limited
additional circuits required to support two logical CPUs on
one machine’s resources. Requiring an additional 5% silicon
real estate to implement the two logical CPUs is accom-
plished by duplicating machine-state-maintaining registers,
such as the EAX, EBX, and Control registers, the Interrupt
Controller, and others. Other resources, such as integer and
floating-point registers, are shared by the threads, with regis-
ter renaming keeping track of the threads in addition to their
previous utilization.

Figure 10 shows how two threads are processed on the
same CPU and highlights the points at which the imple-
mentation can switch from one thread to another.

Status
Intel has published preliminary Hyper-Threading technol-
ogy performance numbers on a prototype Intel Xeon pro-
cessor MP platform. The first results are showing an overall
improvement of up to 30% compared with the same unit
with Hyper-Threading disabled.

Proceler’s Soft Hardware
Proceler uses a commercial platform comprising a micro-
processor coupled with a commodity FPGA to deliver
application-program-customized microarchitectures. Pro-
grammers used to dream about being able to define a cus-
tom processor by stating what its instruction set should do.
Proceler takes the idea one step further.

Proceler’s technology processes an ANSI C application
program to determine compute-intensive kernels, such as

iterative structures and loops. Proceler then uses its compiler
and a set of predefined hardware structures to assemble a
special-purpose instruction set architecture (ISA) that,
downloaded into the FPGA together with the application
processor, can speed up execution of the ANSI C program.
Pioneered by Proceler, this approach is referred to as “archi-
tecture assembly.”

Proceler defines its technology as a Dynamically VAri-
able Instruction SeT Architecture (DVAITA). The hardware-
software optimization of an application program (Figure 11)
begins with Proceler’s compiler identification of compute-
intensive kernels and a distribution of processing tasks
between the application (host) processor and the special
processor about to be created by the DVAITA tools. This dis-
tribution will ultimately define the datapaths along which
operands and results will flow into and out of the host proces-
sor and soft processor engines that the compiler creates.

Performance-intensive sections, having been identi-
fied, are translated into an intermediate representation—a
program-dependence graph. The performance-demanding
kernels are then parallelized at the level of loops—using trans-
formations such as distribution, loop unrolling, and tiling—
and at the fine-grained instruction level (Figure 12).

Figure 13 shows a block diagram of the software pro-
cess. A C source program is profiled, and, following program
transformations and partitioning, its execution is distributed
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Figure 10. Intel NetBurst architecture with Hyper-Threading capability. (Source: Intel)
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between the host processor and the about-to-be-generated
custom processor.

The custom processor part uses subsequent levels of in-
termediate representation, its hardware support package
(HSP), and a library of predesigned hardware building blocks
consisting of storage, compute, and interconnect components.
These components from the microarchitecture library, includ-
ing instruction implementations, are then integrated to pro-
duce the customized microarchitecture that matches the data
and control flow of the application code. The resulting program
for the generated custom “soft” processor is compiled, and its
binary is linked with the host processor binary to yield the com-
pleted executable. The existing version of Proceler’s technol-
ogy yields accelerators that can exchange operands and results
with the host CPU via memory—or CPU loads and stores to
specific addresses rather than to coprocessor architecture.

Status
Proceler’s current offering accelerates ANSI C applications on
a commercial platform comprising a microprocessor coupled
with a commodity FPGA as the delivery vehicle for the cus-
tomized microarchitectures. In general, DVAITA technology
or variants thereof can have a significant impact on SoC and
communications infrastructure implementations. This im-
pact can dynamically reconfigure the implementations’ re-
sources to match applications instead of using more-expensive
fixed resources. Is Proceler’s approach the precursor of the soft
host processor? That remains to be seen.

And the Winner Is …
Simple ideas can have an immediate impact on technology
and can continue to influence it for many years to come. One
can only imagine the performance that will be obtained by

implementing extensive portions of computing engines in
asynchronous logic. Advances recently announced by Sun
Microsystems and by Theseus Logic have carried asynchro-
nous technology into important implementations of proces-
sors and circuits that exhibit compelling performance gains
and power reduction. Proceler’s soft processor technology,
now aimed at development tools and still in its infancy, may
develop or be reborn into variants that can change our view
of configurable processors, extensions of instruction sets,
hardware interpreters, and application-specific accelerators.
The closest to immediate-throughput results is, however,
Intel’s Hyper-Threading technology, to be delivered on its
new Xeon processor family for servers in 1Q02. It will speed
up server applications, and it will improve the performance
of desktops running multiple concurrent processes and
threaded application programs.

The analyst staff of Microprocessor Report is honored
to offer the year 2001’s Annual Award for Outstanding
Technology in the Field of Digital Processing to the archi-
tecture team that originated Hyper-Threading technology
at Intel.
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Figure 13. Partitioning, datapath creation, architecture assembly, and
final C program generation. (Source: Proceler)
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