5.  Theory of Operation

The EXM-14 is a video acquisition board that allows full-motion video from one of several types of sources to be displayed and manipulated on a VGA screen.  The EXM-14 hardware converts the full-motion video image into a frame buffer.  The frame buffer can be programmed to capture full-size video images, cropped images, and scaled images.  The frame buffer image is then merged with the standard VGA output to create a mixed video image to display on a VGA monitor.  The frame buffer�XE "Frame buffer"� can be merged with the VGA controller's output at programmable X-Y coordinates�XE "X-Y coordinates"� or by color keying�XE "color keying"� to a specified VGA color (or both).

This chapter describes the software that is supplied with the EXM-14.  Each function in the application programming interface is individually listed and explained.  The environmental requirements for developing and running EXM-14 applications are listed.

Functional Overview

The video input circuit accepts the video in either RGB �XE "RGB "�or composite �XE "Composite video"�form and digitizes it.

RS-170/RS-343�XE "RS-170/RS-343"� RGB video input formats provide separate signals for Red, Green, and Blue.  Sync signals are provided as a separate composite sync signal. 

The format of these signals is well defined by the standards RS-170 and RS-343. (The difference between these standards is a small level difference, plus higher resolution in RS-343).  The RGB format is preferred over composite video signals because of its higher image quality and bandwidth, and is used by most industrial imaging systems.

The RGB video input circuit uses 3 flash A-D converters to digitize the RGB analog signals.  The gain of these signals is set by a Signetics TDA8444 A-D converter�XE "Signetics TDA8444 A-D converter"�.

The sync signal is processed by the Signetics composite decoder IC's. These IC's generate the clocks for the rest of the input circuitry.  The input video timing must correspond to one of the broadcast video timing systems that the decoder supports.  Normally for RGB video, this will be RS-170.

Additionally, an LM1881 sync separator IC is provided to generate a FIELD signal�XE "FIELD signal"� for the PC Video chip in RGB mode. 

The Composite video input circuit on the EXM-14 is designed to accommodate all of the composite video standards, including SVHS �XE "SVHS "�(Super VHS�XE "Super VHS"�, a separate chroma/luma system). NTSC�XE "NTSC"�, PAL�XE "PAL"�, and SECAM �XE "SECAM "�are broadcast video standards used in North America (and Japan), greater Europe, and France, respectively.  There are minor variations of each in individual countries. RS-170A�XE "RS-170A"� is a closed-circuit standard comparable to the NTSC broadcast standard. 

All composite video formats are supported.  However, color information is decoded only for NTSC/M, PAL/B, PAL/G, PAL/H, and SECAM formats.  Other formats are supported in monochrome only.

In a composite video signal, both luminance (intensity), chrominance (color), and sync are encoded into one analog signal.  (This is done to allow broadcasting over a single carrier, such as a TV transmitter).  In order to put all this information into the limited bandwidth of a TV channel, the information is limited in its bandwidth. For the NTSC standard, luminance data is limited to less than 3.5 MHz, and chrominance information is carried by the phase of a 3.57 MHz subcarrier.  Thus, the image quality of composite video suffers when compared to RGB.

SVHS �XE "SVHS"�video is similar to other composite video standards, except that the chroma information is transmitted in a separate cable from the luminance and sync information.  This allows much higher bandwidth.

Common sources of composite video include TV cameras, camcorders, and VCR's.

The composite signal is digitized by a separate flash A-D converter, which has Automatic Gain Control�XE "Automatic Gain Control"� to accommodate variations in input levels.  The digital composite video is then processed by Philips SAA7191 multistandard decoder�XE "Philips SAA7191 multistandard decoder"� (DMSD�XE "DMSD"�) and SAA7192 �XE "SAA7192 "�color space converter�XE "Color space converter"� IC's into digital RGB.

In SVHS video, the chroma channel is digitized by a separate flash converter and is then fed to the DMSD.

The sync signal is processed thru the SAA7191 DMSD IC.

The frame buffer consists of 8 256Kb x 4 100nS Video Rams. 

Data is written to the memories synchronous with the incoming video pixel clock (generated by the DMSD), under control of the PC Video chip.

Data is read from the memories through the VRAM's shift-register outputs, alternating the high-byte and low-byte data.  Read data is synchronized with the Horizontal Sync�XE "Horizontal Sync"�, Vertical Sync�XE "Vertical Sync"�, and Dot Clock�XE "Dot Clock"� signals from the EXM-13/EXM-13A VGA feature connector�XE "Feature connector"�.

The control circuit is implemented almost entirely in the Chips & Technologies PC-video chip�XE "Chips & Technologies PC-video chip"�, the 82C9001A�XE "82C9001A"�.  This IC provides the registers and interface to the �EXM-bus, the logic required to do scaling and windowing (scaling is done by dropping pixels) and the keying of the incoming video over the VGA video.

Keying �XE "Keying"�of the live video over the VGA video can be accomplished in two ways by the PC Video chip.  In the first, a window is created by timing; i.e., a certain number of lines are counted from Vertical Sync, and a certain number of pixels from Horizontal Sync. 

The second method is similar to color-keying�XE "Color-keying"� done in broadcasting. The digital video data from the VGA controller is compared to a color key, and if the data matches the video source is switched from the VGA controller to the live video.  This allows a video window of arbitrary shape and size.

The video output circuit takes the video from the frame buffer and converts it to analog RS-343 video by a triple video DAC�XE "Brooktree triple video DAC"�.

These analog RGB signals are then multiplexed with the analog RGB signals from the external VGA controller.  The control for this mux is provided by the logic in the PC Video chip.

The output level of the EXM-14 is adjustable from approximately 0.5V P-P to over 1V P-P. Adjustment is accomplished by using a channel of the TDA8444�XE "TDA8444"� DAC to adjust the full-scale reference of the DAC.  This DAC in initialized to provide a level of approximately .707V, in accordance with the spec for RS-343 (without sync).  This provides an adjustment of the picture contrast, and allows it to be matched to the VGA video if desired.

Hardware Overview

This section describes the EXM-14 hardware from the programmer's point of view.  The video data acquisition and display process is described, showing how the hardware allows the application programmer to set up and then mostly ignore the EXM-14 board.  The section discusses the video input and output parameters critical for acquiring and mixing video data.  The frame buffer data format is also explained.

�EMBED MSDraw   \* mergeformat���

Figure 3. Hardware Overview.

Acquisition and Display Process�XE "Acquisition and Display Process"�

Video image acquisition and display are two independently programmable processes in the EXM-14.  The acquisition of an image and the display of the image occur at asynchronous clock rates.  The asynchronous processes are coordinated through dual-port memory accesses to the frame buffer.  The acquisition and display processes are illustrated in Figure 3.

Full-motion video input comes into the EXM-14 through a connector on the EXM-14 front panel.  You program the input process to specify the video type (e.g. NTSC�XE "NTSC"�, RGB�XE "RGB"�, etc), the gain on the analog signals, and so on.  This defines the video input image.

�
The video input image is converted to an RGB representation and stored into the frame buffer.  You can specify the acquisition window coordinates to implement either cropping or panning of the video input image. You can also independently scale the horizontal and vertical dimensions of the video input image. Horizontal scaling�XE "Horizontal scaling"� is done by dropping pixels; vertical scaling�XE "Vertical scaling"� is done by dropping scan lines.  The cropped and scaled video input image is stored in the frame buffer.

The frame buffer�XE "Frame buffer"� RGB data is converted to analog format, multiplexed with the VGA controller's analog output, and then sent out through the VGA connector on the �EXM-14 front panel.  You program the output multiplexing process to specify the output window location, the color key to match, and what combination of these two conditions cause which video source to be output to the EXM-14 VGA connector.  No scaling is done on the frame buffer data, so each pixel in the frame buffer image corresponds to a pixel in the VGA controller's image data.

Video Input�XE "Video Input"�

The EXM-14 accepts a broad range of video signal formats as input, converts those to a single RGB �XE "RGB "�format, and stores that format in the frame buffer�XE "Frame buffer"�.  The supported video input signals have three characteristics: the type, the timing information, and the level information.  The programmer normally specifies only the type and level information before starting the video acquisition process.  The EXM-14 automatically locks on to the signal.

The video input signal type is either composite or RGB.  There are a variety of composite video standards.  The EXM-14 supports the NTSC�XE "NTSC"�, PAL�XE "PAL"�, and SECAM �XE "SECAM "�standards, and their standard modifications.  Super VHS composite video is also supported.  The standards for RGB video are not as tightly specified.  The EXM-14 supports many non-standard specifications, as well as RS-170�XE "RS-170"� and RS-343�XE "RS-343"�.  RS-170 is NTSC timing with standard levels.  RS-343 specifies levels but not the timing information.

The level information�XE "Video level information"� is specified differently for composite and RGB signals.  The level information for RGB video signals specify the gain adjustments on the A/D converters located in front of the red, blue, and green analog input signals.  The level information for composite video signals specifies the adjustment for the hue and saturation.

Frame Buffer

The frame buffer�XE "Frame buffer"� holds 512 scan lines consisting of 1024 pixels per scan line.  Each pixel is stored as a 16-bit RGB value: 5 bits of red, 5 bits of green, 5 bits of blue, and 1 reserved bit that must be 0.



15                   11                         �
10                     6�
5                       1�
            0�
�
Blue�
Green�
Red�
Reserved�
�
The frame buffer is dual ported.  One port is dedicated to the output process, and is used when mixing the frame buffer image with the VGA controller image.  The other port to the frame buffer is shared by the video input image data and the EPC processor.  The video input must be frozen for the EPC processor to read or write the frame buffer.

The frame buffer is addressed as 1 MByte of memory, located on a (programmable) megabyte boundary in the EPC's extended memory space.  In most cases, the 24-bit addressing limitation of the EPC running in 286 protected mode requires that the EPC not have more than 8 MBytes of system memory when using an EXM-14.  This limitation can be worked around in systems that run 386 protected mode software (by addressing the memory at 16MB plus the frame buffer address).  Also, this limitation can be ignored in systems where EPC access to the frame buffer is not required.

Some EPC processors cache memory accesses.  On those processors, software is required to invalidate or flush any cached frame buffer data after suspending the data acquisition and before reading the frame buffer.  This is done for the programmer by the PC Video software. If not using RadiSys software, refer to the C&T spec sheet for the 82C9001 chip.

Video Output�XE "Video output"�

The EXM-14 hardware selects, on a pixel by pixel basis, whether frame buffer data should replace VGA supplied data for the video image that is sent out through the VGA connector on the EXM-14 front panel.  For each pixel, the selection of which data to display depends on the X-Y location, the VGA pixel's color, and whether the frame buffer is enabled for display.  The hardware is programmed to use combinations of these conditions to select the video output source.  Generally, when the frame buffer is enabled for display, and the X-Y location is inside a programmed rectangular region, and the VGA pixel's color matches a programmed color, then the pixel from the frame buffer is displayed; otherwise, the VGA pixel is displayed.

The merging of the frame buffer data and the VGA screen data is programmed through registers in the EPC I/O space.  These registers specify:

a)	the upper left corner, width and height of a rectangular region of the VGA screen,

b)	the upper left corner of the frame buffer that corresponds to the upper left corner of the rectangular window on the VGA screen,

c)	a color mask and color match value to compare VGA pixel colors,

d)	a flag to enable or disable the frame buffer as a video output source, and

e)	miscellaneous video output control functions.

Coordinate Systems

This section describes three different video coordinate systems�XE "Coordinate systems"� that an EXM-14 programmer will work with.  These coordinate systems are the video input coordinate space�XE "Video input coordinate space"�, the frame buffer coordinate space�XE "Frame buffer coordinate space"�, and the screen coordinate space�XE "Screen coordinate space"�.  The first two coordinate spaces are private to the EXM-14, but the screen coordinate space is shared between the EXM-14 and the VGA controller.

In most cases, the EXM-14 programmer will be working within the context of other graphical coordinate spaces as well as those coordinate spaces recognized by the EXM-14.  For example, in Microsoft Windows the GDI layer maps the logical window coordinate space into the device dependent coordinate space.  To use the EXM-14 in this context, the programmer will need to obtain from the GDI routines the device dependent screen coordinates to set up the EXM-14 video window (and track changes to those screen coordinates as well).

This section emphasizes the relationships the programmer creates between the three coordinate systems by discussing the transformations between the coordinate spaces.  The EXM-14 uses two independent coordinate space transformations: video input space to frame buffer space during the acquisition process, and frame buffer space to screen space during the video display process.  Combined with direct CPU access to the frame buffer, these independent coordinate transformations allow the programmer to create some very sophisticated visual effects.  This section and the PC Video software in general, however, concentrates primarily on the functional subset that maps complete video input frames into windows on the display screen.

�
Three Coordinate Spaces: VI, FB, and S

The EXM-14 works in three video coordinate spaces: the video input space VI�XE "VI space"�, the frame buffer space FB�XE "FB space"�, and the screen space S�XE "S space"�.  Each of these coordinate spaces are rectangular.  Each have their origin (0, 0) in the upper left corner, and extend to the point (H, V) as the lower right boundary outside the space.  Although the values of H and V differ for each coordinate space, the origin and orientation of each coordinate system remains the same.

 The first pixel clock after VSYNC is point (0, 0).  The next pixel clock is point (1, 0).  The rightmost valid point in VI space is (HsyncStart-1, 0) at pixel clock number HsyncStart-1.  The next valid point in VI space is (0, 1), which occurs at pixel clock Hcount.  The last valid point in VI space is (HsyncStart-1, NumScanLines-1).

The FB space is fixed by the EXM-14 hardware.  Each pixel is a 16-bit word.  There are 1024 pixels in the horizontal direction, and 512 pixels in the vertical direction.



Frame Buffer Space�
�
Corner�
Coordinate�
Byte offset�
�
Upper left�
(	0,	0)�
0x00000�
�
Upper right�
(	1023,	0)�
0x007FE�
�
Lower left�
(	0,	511)�
0xFF800�
�
Lower right�
(	1023,	511)�
0xFFFFE�
�
Table 5. Frame Buffer Space.

The S space is defined by the VGA controller.  Depending on which text mode or graphics mode the VGA controller is currently programmed to, the S space can take on any number of H and V extents.  The common graphics resolutions are 640 by 480, 800 by 600, and 1024 by 768.

Map Frame Buffer to Screen

The mapping between the frame buffer and the screen by the EXM-14 is completely determined by two points and the window size: the upper left corner of the frame buffer window, the upper left corner of the screen where the upper left corner of the frame buffer window maps to, and the size of the screen window.  Figure 3 illustrates the mapping.  Because the EXM-14 maps the frame buffer pixels directly to screen pixels, the lower right corner of the frame buffer window B is the point A+(D-C).



��EMBED MSDraw   \* mergeformat�����
�
A: Upper left corner of FB window�
C: Upper left corner of S window�
�
B: Lower right corner of FB window�
D: Lower right corner of S window�
�
�Figure 4.  Mapping from Frame Buffer to Screen Coordinates.�
�
The PCV_SetScrWinMap�XE "PCV_SetScrWinMap"� function sets up the arbitrary mapping between the frame buffer and the screen.  The EXM-14 hardware requires points A and B to be within the FB space, and points C and D to be within the S space.

Map Video Input to Frame Buffer

The mapping between the video input and the frame buffer by the EXM-14 is determined by two points and two window sizes.  The upper left corner of the video input window maps to the upper left corner of the frame buffer window.  The lower right corner of the video input window maps implicitly to a point in the frame buffer based on horizontal and vertical scale factors.  Figure 5 illustrates the mapping.



�EMBED MSDraw   \* mergeformat�����
�
A: Upper left corner of VI window�
C: Upper left corner of FB region�
�
B: Lower right corner of VI window�
D: Lower right corner of FB region�
�
�Figure 5.  Mapping from Video Input coordinates to Frame Buffer�
�
�
The PCV_SetAcqWinMap�XE "PCV_SetAcqWinMap"� function sets up the arbitrary mapping between the video input and the frame buffer.  The EXM-14 hardware requires points A and B to be within the VI space, and points C and D to be within the FB space.

Examples: Exact fit, Pan, Scale

By selecting the two different window mappings appropriately, the video input can be acquired and displayed in many different ways.  Of these many ways, three particular mappings of the video input to the display screen are the most common:

1)	an exact 1-to-1 display of the video input on the screen,

2)	an exact 1-to-1 display of the video input in a smaller screen window that can be scrolled across the video input, and

3)	a scaled display of the video input that fits the video input into a smaller screen window.

In the exact fit case, you start with the size of the video input frame.  Assume that the frame has H horizontal pixels and V vertical pixels.  Using PCV_SetAcqWinMap, set the video input window to (0, 0) through (H-1, V-1), and the frame buffer window to (0, 0) through (H-1, V-1).  Next, locate a screen rectangle with H horizontal pixels and V vertical pixels.  Assume the origin of this screen rectangle is (X, Y).  Using PCV_SetScrWinMap, set the screen window to (X, Y) through (X+H-1, Y+V-1) and the frame buffer window to (0, 0) through (H-1, V-1).  With this mapping, the entire video input frame will show up on the screen when video acquisition is enabled.

In the second case, where the screen window is smaller than the video frame, you map the video input window to the frame buffer in exactly the same way as the exact fit case.  Now assume that the smaller screen window is M pixels wide and N pixels high, based at (X, Y).  Then using PCV_SetScrWinMap, set the screen window to (X, Y) through (X+M-1, Y+N-1) and the frame buffer window to (0, 0) through (M-1, N-1).  To pan across the video input frame by I pixels horizontally and J pixels vertically, again use PCV_SetScrWinMap, keeping the screen window constant and setting the frame buffer window to (I, J) through (I+M-1, J+N-1).  You must take care to ensure that 0 <= I < H-M and 0 <= J < V-N.

In the third case, where the video frame is scaled down to fit into the screen window, you start with the size of the screen window.  Assume that the screen window is M pixels wide and N pixels high, based at (X, Y).  Using PCV_SetScrWinMap, set the screen window to (X, Y) through (X+M-1, Y+N-1) and the frame buffer window to (0, 0) through (M-1, N-1).  To fit the video frame to the screen window, set the last parameter of PCV_SetScrWinMap to a non-zero value.

�
Configuring and Using the PC Video Functions

This section describes how to configure and use the EXM-14 in a PC video application.  Most of the programming complexity is in the initialization and configuration of the EXM-14 hardware for the particular video input and display format.  After the input format has been selected and the coordinate space mappings established, the maintenance of the PC video data structures is minimal.

The software provided with the EXM-14 only works when the base address of the EXM-14 is set to AD6h.

EXM-14 Configuration�XE "Configuration"�

Before any programs will work with the EXM-14, the EXM configuration information for the board needs to be established.  There are two parameters the user first sets: enable the board after power-on reset; and a non-conflicting I/O register base address (always AD6h unless loading a user-written driver not supplied by RadiSys).  This information is stored in the non-volatile system configuration data.

Most of the initialization of the EXM-14 hardware is done by the PCVIDEO dynamic link library�XE "PCVIDEO dynamic link library"� when it is loaded (and consequently requires no overt programming support).  This initialization includes determining the current I/O register base, selecting a memory base for the frame buffer, and initializing the EXM-14 to a sane state.  Among other things, this sane state includes freezing the frame buffer acquisition and disabling the display of frame buffer data on the VGA screen.

It is the programmer's responsibility to establish the basic video parameters for the application.  For composite video�XE "Composite video"�, the following sequence of function calls is typical:

PCV_SetComposite(PCV_NTSC);�PCV_SetAcqWinMap(0, 0, 648, 484, 0, 0, 648, 484);�PCV_SetScrWinMap(0, 0, X, Y, M, N, TRUE);�PCV_SetColorKey(0x000F);�write screen rectangle ( X, Y, M, N) to color 0x0F;�PCV_Freeze(FALSE);�PCV_Display(TRUE);

For RGB video input, replace the first function with a call to PCV_SetRGB.

�
GUI Examples

There are several common graphical user interface idioms that most EXM-14 applications will support.  These idioms include moving the window to a different location on the screen, resizing the window to be smaller or larger, and minimizing the window to an icon.  Each of these idioms are straightforward to implement with the PC video functions.

To move an existing window to a different location, you use PCV_SetScrWinMap and change the X and Y origin of the screen window.  If the resulting window fits entirely on the screen, then you're done.  However, if part of the window is moved off the screen, then you also need to adjust the M and N sizes of the window to reflect the true screen coordinate limits.  When the window is moved back onto the screen, you will want to change M and N back again, so you'll need to keep track of or recompute the original M and N values.

To resize an existing window, you use PCV_SetScrWinMap and change just the M and N size parameters.  You may want to keep track of what the frame buffer boundaries are, and not grow the window to be larger than those boundaries.  If you're scaling the video input to fit it to the size of the window, then you'll also want to set the last parameter in the PCV_SetScrWinMap to a non-zero value.

There are two different approaches to take when minimizing and restoring an �EXM-14 window.  The simple approach is to use PCV_Display to disable the display, and then take the window away and display the icon.  When the window is restored, you repaint the window with the color key, and then call PCV_Display to enable the display.  An alternative approach is to hook into the icon display process, and display in the icon a miniature view of the EXM-14 video input.  The miniature view is obtained by using the PCV_SetAcqWinMap function to reduce the input image to icon size, and then PCV_SetScrWinMap to relocate the miniature window over the icon (which is colored in the color key, of course).  To restore the window to standard size, restore the original parameters to the PCV_SetScrWinMap and PCV_SetAcqWinMap functions after the window has been repainted with the color key.

PCVTUNER�XE "PCVTUNER"�

The PC Video software is supplied with the GUI application PCVTUNER.  This program allows the user to connect the video input source to the EXM-14 front panel and then just see what can be seen.  The program has menu options to set up the video input, and to control the display of that input on the VGA screen.

Some EXM-14 users will not need to write any application code themselves because PCVTUNER will do everything they need with the EXM-14.  However, even those EXM-14 users who need to write their own PC Video application will find PCVTUNER useful to determine video input parameters and to see how PC Video functions can be integrated into a GUI application.

One use of PCVTUNER is to determine the correct video input parameters.  In some cases standard levels and timing parameters need to be adjusted based on peculiarities of the video input source.  For non-standard video input sources, PCVTUNER can be used to experimentally determine what the best level and timing parameters are.  The selected video input parameters are saved as part of the context of the PCVTUNER program, so that the next time the program is run, it starts out with those parameters.  The video parameters are saved in a format that is easy to use if you will directly call PCV_SetComposite or PCV_SetRGB when writing your own application.

Installation procedures for DOS and OS/2 are provided below:

Windows Installation

 

[1] Create a new directory.

   	C>MKDIR \PCVIDEO

[2] Copy all the files under the A:\WINDOWS directory to the

       new directory.

  	C>XCOPY /S A:\WINDOWS \PCVIDEO

 

[3] In your AUTOEXEC.BAT set the lib path to point to this directory.

 	SET LIB=%LIB%;c:\pcvideo



 �
OS/2 Installation

 

 [1] Create two new directories.

   	C>MKDIR \PCVIDEO

   	C>MKDIR \PCVIDEO\SAMPLES

  

[2] Copy files under the A:\OS2 directory to the new directory.

   	C>COPY A:\OS2 \PCVIDEO

 

[3] Copy files under the A:\OS2\SAMPLES directory to other directory.

   	C>COPY A:\OS2\SAMPLES \PCVIDEO\SAMPLES

 

[4] Copy files under the A:\OS2\WLO\DLL to the C:\OS2\DLL directory.

   	C>COPY A:\OS2\WLO\DLL C:\OS2\DLL

  

[5] In your CONFIG.SYS file:



       a. Set IOPL to yes

            IOPL=YES



       b. Install the pcvideo.sys driver 

            DEVICE=C:\PCVIDEO\PCVIDEO.SYS



       c. Set the lib path to point to \PCVIDEO directory.

            SET LIB=%LIB%;c:\pcvideo



EXM-14 Hardware Reference



�EMBED MSDraw   \* mergeformat���



Theory of Operations



�EMBED MSDraw   \* mergeformat���



Page �page�30�



Page �page�29�





�EMBED MSDraw   \* mergeformat���





Page �page�17�







