

DATE OF PURCHASE:

MODEL NUMBER:
PRODUCT DESCRIPTION:
FOUR CHANNEL

COMMUNICATIONS ADAPTER

SERIAL NUMBER:

IBMTM, $P S / 2^{T M}$, and Micro ChannelTM are registered trademarks of International Business Machines.

TABLE OF CONTENTS

WARRANTY INFORMATION i
LIST OF FIGURES iii
I. INTRODUCTION 1
II. BOARD DESCRIPTION 1
III. 16550 FUNCTIONAL DESCRIPTION 3
INTERRUPT ENABLE REGISTER 4
INTERRUPT IDENTIFICATION REGISTER 5
FIFO CONTROL REGISTER 7
LINE CONTROL REGISTER 8
MODEM CONTROL REGISTER 10
LINE STATUS REGISTER 11
MODEM STATUS REGISTER 13
SCRATCHPAD REGISTER 14
FIFO INTERRUPT MODE OPERATION 14
BAUD RATE SELECTION 14
IV. ADDRESSING OPTIONS 16
V. INTERRUPTS 17
INTERRUPT STATUS REGISTER 17
VI. PROGRAMMABLE OPTION SELECT 18
VII. EXTERNAL CONNECTIONS 22
VIII. HARDWARE INSTALLATION 25
IX. CHANGING ADDRESSING MODES 26
X. ADDITIONAL BLOCK MODE ADDRESSING 27
XI. SPECIFICATIONS 32
Figure 1. QS-1000 board layout 2
Figure 2. 16550 register map 3
Figure 3. Interrupt Identification Register 6
Figure 4. FIFO receiver trigger levels 7
Figure 5. Parity options 9
Figure 6. Word length and stop bit options 9
Figure 7. Input clock frequency options 15
Figure 8. Baud rate selections 15
Figure 9. Block mode address assignments 16
Figure 10. QS-1000 POS implementation 19
Figure 11. Discrete mode address selections 20
Figure 12. Interrupt selections 20
Figure 13. Output connector options 22
Figure 14. Output connector signal definitions 23
Figure 15. Handshake selection jumper 24
Figure 16. Handshake configurations 24
Figure 17. QTINSTAL.EXE opening menu 28
Figure 18. QTINSTAL.EXE address selection menu 29
Figure 19. QTINSTAL.EXE address input 30
Figure 20. QTINSTAL.EXE updated address menu . . 31

I. INTRODUCTION

The Qua Tech QS-1000 provides four independent asynchronous RS-232 serial communication channels for systems utilizing the MicroChannel architecture. Each port may be accessed individually from the predefined addresses of Serial 1 through Serial 8 or the four channels may be grouped together and located anywhere within the available I/O address range of the system. Two output options increase flexibility by allowing complete compatibility with a standard 25-pin connector or an abbreviated 6-wire phone jack style connector.

The $Q S-1000$ serial interface is realized through four 16550 ACEs (Asynchronous Communication Elements). The 16550 is compatible with the 8250 and 16450 ACEs used in the PC/XT/AT models. In addition, the 16550 supports a FIFO mode to reduce CPU overhead at higher data rates.

The QS-1000 address and interrupt selections are accessed through the Programmable Option Select using the IBM installation utilities. In addition, jumpers are provided to select input clock frequency and on- board loopback of 'handshake' signals.

II. BOARD DESCRIPTION

A component diagram of the QS-1000 showing the locations of the 16550 ACEs, clock frequency jumper J1, handshake selection jumpers, D-37 output connector, and phone jack connector is shown in figure 1. If the phone jack option has been selected, jumpers J2 - J5 have been installed to control the output of handshake signals. If the $D-37$ option has been selected, jumpers J2 - J5 have been replaced by additional drivers and receivers to provide all of the available handshake signals. A detailed description of output options is available in section VII: External Connections.

Figure 1. QS-1000 board layout.

III. 16550 FUNCTIONAL DESCRIPTION

The 16550 is an upgrade of the standard 16450 Asynchronous Communications Element (ACE). Designed to be compatible with the 16450 , the 16550 enters the character mode on reset and in this mode will appear as a 16450 to user software. An additional mode, FIFO mode, can be selected to reduce CPU overhead at high data rates. The FIFO mode increases performance by providing two internal 16-byte FIFOs (one transmit and one receive) to buffer data and reduce the number of interrupts issued to the CPU.

Other features include:
Programmable baud rate, character length, parity, and number of stop bits Automatic addition and removal of start, stop, and parity bits Independent and prioritized transmit, receive and status interrupts Transmitter clock output to drive receiver logic

The following pages provide a brief summary of the internal registers available within the 16550 ACE. The registers are addressed as shown in Figure 2 below.


```
0 0 0 0 | Receive buffer (read only)
    Transmit holding register (write only)
    Interrupt enable
        Interrupt identification (read only)
        FIFO control (write only)
        Line control
        MODEM control
        Line status
        MODEM status
        Scratch
        Divisor latch (least significant byte)
    Divisor latch (most significant byte)
```

Figure 2. Internal register map for 16550 ACE. DLAB is accessed through the Line Control Register.

INTERRUPT ENABLE REGISTER

CAUTION:

To maintain compatibility with earlier personal computer systems, the user defined output, OUT 2 , is used as an external interrupt enable and must be set active for interrupts to be acknowledged. OUT 2 is accessed through the 16550 's MODEM control register.

EDSSI - MODEM Status Interrupt:
When set (logic 1), enables interrupt on clear to send, data set ready, ring indicator, and data carrier detect.

ELSI - Receiver Line Status Interrupt:
When set (logic 1), enables interrupt on overrun, parity, and framing errors, and break indication.

ETBEI - Transmitter Holding Register Empty Interrupt: When set (logic 1), enables interrupt on transmitter register empty.

ERBFI - Received Data Available Interrupt: When set (logic 1), enables interrupt on received data available or FIFO trigger level.

INTERRUPT IDENTIFICATION REGISTER


```
FFE - FIFO Enable:
    When logic 1, indicates FIFO mode enabled.
IIDx - Interrupt Identification:
    Indicates highest priority interrupt pending if any.
    See IP and Figure 3. NOTE: IID2 is always a logic 0
    in character mode.
IP - Interrupt Pending:
    When logic 0, indicates that an interrupt is pending
    and the contents of the interrupt identification
    register may be used to determine the interrupt
    source. See IIDx and Figure 3.
```

INTERRUPT IDENTIFICATION REGISTER (continued)

Figure 3. Interrupt identification bit definitions.
Receiver Line Status:
Indicates overrun, parity, or framing errors or break interrupts. The interrupt is cleared by reading the line status register.

Received Data Ready:
Indicates receiver data available. The interrupt is cleared by reading the receiver buffer register
FIFO mode:
Indicates the receiver FIFO trigger level has been reached. The interrupt is reset when the FIFO drops below the the trigger level.

Character Timeout: (FIFO mode only)
Indicates no characters have been removed from or input to the receiver FIFO for the last four character times and there is at least one character in the FIFO during this time. The interrupt is cleared by reading the receiver FIFO.

Transmitter Holding Register Empty:
Indicates the transmitter holding register is empty. The interrupt is cleared by reading the interrupt identification register or writing to the transmitter holding register.

MODEM Status:
Indicates clear to send, data set ready, ring indicator, or data carrier detect have changed state. The interrupt is cleared by reading the MODEM status register.

FIFO CONTROL REGISTER


```
RXTx - Receiver FIFO Trigger Level:
    Determines the trigger level for the FIFO interrupt
        as given in Figure 4 below.
            |
```

 Figure 4. FIFO trigger levels.
 DMAM - DMA Mode Select:
When set (logic 1), RxRDY and TxRDY change from mode
0 to mode 1. (DMA mode is not supported on the $Q S-$
1000 .)
XRST - Transmit FIFO Reset:
When set (logic 1), all bytes in the transmitter
FIFO are cleared and the counter is reset. The
shift register is not cleared. XRST is self-
clearing.

FIFO CONTROL REGISTER (continued)

```
RRST - Receive FIFO Reset:
    When set (logic 1), all bytes in the receiver FIFO
    are cleared and the counter is reset. The shift
    register is not cleared. RRST is self-clearing.
FE - FIFO Enable:
    When set (logic 1), enables transmitter and receiver
    FIFOs. When cleared (logic 0), all bytes in both
    FIFOs are cleared. This bit must be set when other
    bits in the FIFO control register are written to or
    the bits will be ignored.
```

 LINE CONTROL REGISTER

DLAB - Divisor Latch Access Bit:
DLAB must be set to logic 1 to access the baud rate
divisor latches. DLAB must be set to logic 0 to
access the receiver buffer, transmitting holding
register and interrupt enable register.
BKCN - Break Control:
When set (logic 1), the serial output (SOUT) is
forced to the spacing state (logic 0).
STKP - Stick Parity:
Forces parity to logic 1 or logic 0 if parity is
enabled. See EPS, PEN, and Figure 5.

LINE CONTROL REGISTER (continued)
EPS - Even Parity Select: Selects even or odd parity if parity is enabled. See STKP, PEN, and Figure 5.

PEN

- Parity Enable:

Enables parity on transmission and verification on reception. See EPS, STKP, and Figure 5.

Figure 5. 16550 parity selections.
STB - Number of Stop Bits:
Sets the number of stop bits transmitted. See WLSx and Figure 6.

WLSx - Word Length Select:
Determines the number of bits per transmitted word. See STB and Figure 6.

Figure 6. Word length and stop bit selections.

MODEM CONTROL REGISTER


```
LOOP - Loopback Enable:
    When set (logic 1), the transmitter shift register
        is connected directly to the receiver shift
        register. The MODEM control inputs are internally
        connected to the MODEM control outputs and the
        outputs are forced to the inactive state.
    Bits OUT2, OUT1, RTS, and DTR perform identical
        functions on their respective outputs. When these
        bits are set (logic 1) in the register, the associated
        output is forced to a logic 0. When cleared (logic
        0), the output is forced to logic 1.
OUT2 - Output 2:
        Controls the OUT2 output, pin 31, as described
        above. To maintain compatibility with earlier
        personal computer systems, OUT2 is used as an
        external interrupt enable and must be set active for
        interrupts to be acknowledged.
OUT1 - Output 1:
        Controls the OUT1 output, pin 34, as described
        above. Unused on QS-1000.
RTS - Request To Send:
        Controls the RTS output, pin 32, as described above.
DTR - Data Terminal Ready:
    Controls the DTR output, pin 33, as described above.
```


LINE STATUS REGISTER

```
    D7 | FFRX |----- Error in FIFO RCVR (FIFO only)
    D6 | TEMT |----- Transmitter empty
    +------+
D5 | THRE |----- Transmitter holding register empty
    | +------+
    |------+
    +------+
    +------+
D1 | OE |----- Overrun error
D0
    |+------+
FFRX - FIFO Receiver Error:
    Always logic 0 in character mode.
FIFO mode:
        Indicates one or more parity errors, framing errors,
        or break indications in the receiver FIFO. FFRX is
        reset by reading the line status register.
TEMT - Transmitter Empty:
        Indicates the transmitter holding register (or FIFO)
        and the transmitter shift register are empty and are
        ready to receive new data. TEMT is reset by writing
        a character to the transmitter holding register.
THRE - Transmitter Holding Register Empty:
    Indicates the transmitter holding register (or FIFO)
    is empty and it is ready to accept new data. THRE
    is reset by writing data to the transmitter holding
    register (or FIFO).
```


LINE STATUS REGISTER (continued)

Bits $B I, F E, P E$, and $O E$ are the sources of receiver line status interrupts. The bits are reset by reading the line status register. In FIFO mode, these bits are associated with a specific character in the FIFO and the exception is revealed only when that character reaches the top of the FIFO.

BI - Break Interrupt: Indicates the receive data input has been in the spacing state (logic 0) for longer than one full word transmission time.
FIFO mode:
Only one zero character is loaded into the FIFO and transfers are disabled until SIN goes to the mark state (logic 1) and a valid start bit is received.

FE - Framing Error: Indicates the received character had an invalid stop bit. The stop bit following the last data or parity bit was a 0 bit (spacing level).

PE - Parity Error: Indicates that the received data does not have the correct parity.

OE - Overrun Error: Indicates the receive buffer was not read before the next character was received and the character is destroyed.
FIFO mode:
Indicates the FIFO is full and another character has been shifted in. The character in the shift register is destroyed but is not transferred to the FIFO.

DR - Data ready:
Indicates data is present in the receive buffer or FIFO. DR is reset by reading the receive buffer register or receiver FIFO.

MODEM STATUS REGISTER


```
DCD - Data Carrier Detect:
    Complement of the DCD input, pin 38.
RI - Ring Indicator:
    Complement of the RI input, pin 39.
DSR - Data Set Ready:
    Complement of the DSR input, pin 37.
CTS - Clear To Send:
    Complement of the CTS input, pin 36.
    Bits DDCD, TERI, DDSR, and DCTS are the sources of
    MODEM status interrupts. These bits are reset when
    the MODEM status register is read.
DDCD - Delta Data Carrier Detect:
    Indicates the Data Carrier Detect input, pin 38, has
    changed state.
TERI - Trailing Edge Ring Indicator:
    Indicates the Ring Indicator input, pin 39, has
    changed from a low to a high state.
DDSR - Delta Data Set Ready:
    Indicates the Data Set Ready input, pin 37, has
    changed state.
DCTS - Delta Clear To Send:
    Indicates the Clear to Send input, pin 36, has
    changed state.
```


SCRATCHPAD REGISTER

This register is not used by the 16550. It may be used by the programmer for data storage.

FIFO INTERRUPT MODE OPERATION

1. The receive data interrupt is issued when the FIFO reaches the trigger level. The interrupt is cleared as soon as the FIFO falls below the trigger level.

CAUTION:

To maintain compatibility with earlier personal computer systems, the user defined output, OUT 2 , is used as an external interrupt enable and must be set active for interrupts to be acknowledged. OUT 2 is accessed through the 16550 's MODEM control register.
2. The interrupt identification register's receive data available indicator is set and cleared along with the receive data interrupt above.
3. The data ready indicator is set as soon as a character is transferred into the receiver FIFO and is cleared when the FIFO is empty.

BAUD RATE SELECTION

The 16550 ACE determines the baud rate of the serial output from a combination of the clock input frequency and the value written to the divisor latches. Standard PC, PC/XT, PC/AT, and PS/2 serial interfaces use an input clock of 1.8432 MHz . To increase versatility, the QS-1000 uses an 18.432 MHz clock and a frequency divider circuit to produce the standard clock frequency.

Jumper block J1 is used to set the input frequency to the 16550. It may be connected to divide the clock input by 1, 2, 5, or 10 . To maintain compatibility with adapters using a 1.8432 MHz input, J1 should be configured to divide by 10 as shown in figure 7(d). A table of divisor latch values for various input frequencies is given in figure 8.

Figure 7. Input clock frequency options. For compatibility, the jumper should be set at $\div 10$ ($18.432 \mathrm{MHz} \div 10=1.8432 \mathrm{MHz}$).

Figure 8. Divisor latch settings for common baud rates using an 18.432 MHz input clock. For compatibility, connect jumper in the divide by 10 configuration (figure 7(d)).

IV. ADDRESSING OPTIONS

Each channel of the QS-1000 uses 8 consecutive I/O address locations beginning on an even 8 byte boundary (xxx0H - xxx7H) or (xxx8H - xxxFH). The 16550 uses these addresses as shown in figure 2.

Two addressing modes are available on the QS-1000: discrete addressing and block addressing. Each of these modes will be discussed separately.

Discrete Addressing Mode

In the discrete addressing mode, each port may choose an individual base address. This mode allows maximum compatibility with software supporting the pre-defined addresses for Serial 1 through Serial 8. Channels 1 and 2 may select from Serial 1 through Serial 7, Channels 3 and 4 may choose from Serial 2 through Serial 8. Each channel may be individually disabled.

Block Addressing Mode

In block addressing mode, the four serial channels are arranged to form a continuous $32-b y t e b l o c k \quad o f \quad I / O$ addresses. This mode offers more compactness for custom software applications. The block may be placed anywhere in the available I / O address range on an even $32-b y t e$ boundary (e.g. $400 \mathrm{H}-41 \mathrm{FH}, \quad 620-63 \mathrm{FH}, \quad 980 \mathrm{H}-99 \mathrm{FH}$) using the IBM installation utilities and the Qua Tech address installation utility QTINSTAL.EXE.

WARNING:

In block mode, each channel may be individually disabled, but the I / O space assigned to that channel is still considered in use and may not be used by another device.

Figure 9. Block mode address assignments.

V. INTERRUPTS

The $Q S-1000$ has support for three interrupt levels: IRQ 3, IRQ 4, and IRQ 9. During the installation process, one pair of interrupts must be selected, either IRQ 3 and IRQ 4, or IRQ 3 and IRQ 9. Each channel may then choose an interrupt from the active pair. If interrupts are being shared, the IP bit in the 16550's interrupt identification register or the interrupt pending bits in the interrupt status register should be used to test for the source of the interrupt.

CAUTION:

To maintain compatibility with earlier personal computer systems, the user defined output, OUT 2 , is used as an external interrupt enable and must be set active for interrupts to be acknowledged. OUT 2 is accessed through the 16550 's MODEM control register.

INTERRUPT STATUS REGISTER

An interrupt status register has been implemented on the $Q S-1000$ to ease software burden associated with the interrupt sharing process. An interrupt status bit will be set (logic 1) if there is an interrupt pending in the 16550 and the associated OUT 2 line (interrupt enable) is active.

When selected during the configuration process, the interrupt status register is accessed by reading any of the 16550 scratchpad registers. The interrupt status register is read only.

NOTE:
When enabled, the interrupt status register will override the 16550 's internal scratchpad register. Since the BIOS tests the scratchpadregister during initialization, the channels may not appear in the system's equipment list. If the equipment list is updated through user software, the operating system should accept and use the channel.

VI. PROGRAMMABLE OPTION SELECT

The IBM PS/2 family of computers using the MicroChannel bus structure utilize on board registers referred to as the Programmable Option Select (POS) registers to hold the adapter's configuration information. The first two POS registers hold a unique adapter identification number that has been issued to Qua Tech for the QS-1000. This number is defined in hardware and can not be changed. These registers are read only.

The remaining POS registers are used for address and interrupt selections. Three additional pos registers are implemented on the $Q S-1000$. These registers are programmed by the user through the IBM installation utility supplied with the PS/2 and the Qua Tech address installation software QTINSTAL.EXE. These registers are read/write but should not be written to by user software. The bit definitions of the registers are given in Figure 10.

Figure 10. QS-1000 POS implementation.

ADSx. 3 ADSx. 2 ADSx. 1 ADSx. 0 \| Base address					
0	x	x	x		abled
1	0	0	0	03F8H	(Serial 1)
1	0	0	1	02F8H	(Serial 2)
1	0	1	0	3220 H	(Serial 3)
1	0	1	1	3228H	(Serial 4)
1	1	0	0	4220 H	(Serial 5)
1	1	0	1	4228H	(Serial 6)
1	1	1	0	5220 H	(Serial 7)
1	1	1	1	5228H	(Serial 8)

Figure 11. QS-1000 discrete mode address options.

Figure 12. QS-1000 interrupt options.

The bits labeled ADSx.x in figure 10 contain the address decoding information for the QS-1000. In discrete addressing mode, these bits form a three bit code for each channel as defined in figure 11. In block addressing mode, bits ADS4.1 - ADS1.0 directly correspond to address lines A15-A5. For example, if the QS-1000 is in block addressing mode with a base address of 5620 H , the POS would appear as follows:

$$
\begin{array}{rrrr}
5 & 6 & 2 & 0 \mathrm{H} \\
0101 & 0110 & 0010 & 0000 \mathrm{~B}
\end{array}
$$

ADS 4.2	->	unu			ADS2. 3	-->	A10	$=$	1
ADS 4.1	-->	A15	=	0	ADS2. 2	-->	A9	=	1
ADS 4.0	->	A14	=	1	ADS2.1	-->	A8	$=$	0
ADS 3.2	->	A13	=	0	ADS2. 0	-->	A 7	=	0
ADS 3.1	->	A12	=	1	ADS1. 2	-->	A 6		0
ADS3.0	-->	A11	=	0	ADS1.1	-->	A5		1

Once the addressing has been established, POS bits ADS1.3, ADS2.3, ADS3.3, and ADS4.3 are used to enable or disable channels 1 - 4 respectively. In discrete addressing mode, the addresses allocated for the disabled channel may be issued to another device. In block addressing mode, however, the addresses used by the disabled channel are still reserved for the $Q S-1000$ and may not be allocated to another device.

A channel's interrupt level is determined by first selecting an interrupt pair for the QS-1000 using ILS and then selecting the channel interrupt using bits INS1 - INS4 for channels 1 - 4. The interrupt choices for each channel are shown in figure 12.

The final POS option is the Scratchpad/Interrupt status register selection. When SCPSEL is set to logic 0, the 16550 internal scratchpad registers are enabled for complete serial port compatibility. When set to logic 1, the scratchpad registers are overridden by the interrupt status register as described in section V.

NOTE:

When enabled, the interrupt status register will override the 16550 's internal scratchpad register. Since the BIOS tests the scratchpad register during initialization, the channels may not appear in the system's equipment list. If the equipment list is updated through user software, the operating system should accept and use the channel.

VII. EXTERNAL CONNECTIONS

The $Q S-1000$ is available with two output configurations. Thefirst option uses a female D-37 connector labeled CN1 on the circuit board. This configuration can provide all of the signals found on the standard $25-\mathrm{pin}$ connector for each of the channels. The second option uses a quad 6-wire RJ-11 phone jack style connector labeled CN2 on the circuit board. This configuration provides only transmit and receive and one set of handshake signals (RTS/CTS or DTR/DSR). Both output configurations have optional adapter cables available to provide standard $D-25$ connectors for each channel. The various connectors and pinouts are given in the figures below.

(b)
(a)

Figure 13. QS-1000 output connectors.

* When using RJ-11 connectors, only one output handshake (RTS or DTR) may be used. The selected signal is connected to AUXOUT using the handshake option jumpers.
** When using RJ-11 connectors, only one input handshake (CTS or DSR) may be used. The selected signal is connected to AUXIN using the handshake option jumpers.
\#\# D-37 and D-25 connectors have shielded housings.
Figure 14. Connector CN1 pin definitions. Pins not listed are not connected.

Figure 15. Handshake option jumper pinout. (RJ-11 output option only.)

When using the RJ-11 style connectors, it may be necessary to loopback the unused handshake signals. Handshake signals RTS, CTS, DTR, and DSR are user configurable using jumpers J2 - J5 for channels 1 - 4 respectively. Loopback configurations are shown in figure 16 .

The remaining handshake/status inputs, $D C D$ and $R I$, are not connected in this output configuration and their values are therefore indeterminate.

VIII. HARDWARE INSTALLATION

Make sure there is a copy of the original IBM PS/2 Model 50, 60, or 80 reference diskette available. This diskette must be modified to accept any option adapters.

1. Turn system on and allow to boot.
2. Insert the Qua Tech QS-1000 distribution disk into drive A and change the default drive to A.
3. Execute:

QS-1000 BLOCK for block address mode
QS-1000 DISCRETE for discrete address mode See section IV for descriptions of addressing modes.
4. Turn unit off.
5. Remove system cover as instructed in the IBM Quick Reference Guide.
6. Insert adapter into any vacant slot following the guidelines for installing an optional adapter in the IBM Quick Reference Guide.
7. Replace system cover.
8. Turn unit on and insert a copy of the IBM PS/2 reference diskette into drive A.
9. Respond "N" at automatic configuration prompt.
10. Select "Copy an option diskette" and follow copying instructions.
11. Select "Set configuration"
12. Select "Change configuration" or "Run automatic configuration" and follow installation instructions.

NOTE: When installing the QS-1000 for block mode addressing, if the desired address is not available in the configuration routine, select any nonconflicting address and continue with Additional Block Mode Addressing (section X).

After the initial installation, the reference diskette will contain the configuration file for the QS-1000. Subsequent re-installation may omit step 10 and a "Y" response may be given during step 9 (automatically configure system) if desired.

IX. CHANGING ADDRESSING MODES

Make sure there is a copy of the original IBM PS/2 Model 50, 60, or 80 reference diskette available. This diskette must be modified to accept any option adapters.

The $Q S-1000$ may be addressed in discrete or block addressing modes as discussed in section IV. If the QS-1000 addressing mode is to be changed, the existing configuration must be purged from the configuration memory. The alternate addressing information may then be entered into configuration memory. The procedure is as follows:

1. Turn unit off.
2. Remove system cover as instructed in the IBM Quick Reference Guide.
3. Remove the $Q S-1000$ from the system following the guidelines for removing an option adapter in the IBM Quick Reference Guide.
4. Turn unit on and insert a copy of the IBM PS/2 reference diskette into drive A.
5. Respond "Y" at automatic configuration prompt.
6. Exit the IBM installation procedure and restart the computer.

At this point the $Q S-1000$ configuration has been purged from the configuration memory. The installation procedure (section VII of this document) may now be used to select the addressing mode and enter the new configuration information.

X. ADDITIONAL BLOCK MODE ADDRESSES

The $Q S-1000$ block addressing mode supports the entire I/O ddress range of the PS/2 occupying 32 consecutive I/o locations. uis produces $2 k$ possible choices for base address location. Since = would not be feasible or practical to provide all of these roices in the configuration file, 25 addresses have been selected or inclusion in the file. An address installation utility 2TINSTAL.EXE) has been included on the distribution diskette to acilitate the address installation process. QTINSTAL should be sed ONLY if the desired block mode base address cannot be found rrough the IBM installation utilities.

JARNING:

QTINSTAL must only be used when the QS-1000 has been installed and configured for BLOCK addressing mode. Executing QTINSTAL in discrete mode will cause unpredictable results and may destroy the contents of the adapter description file.

Insert the Qua Tech QS-1000 distribution disk in drive A.
Execute QTINSTAL.
. Select the QS-1000 by using the cursor keys to highlight the selection and press <enter>. See Figure 17.
. At the prompt, insert the back-up copy of the IBM PS/2 reference in drive A.
Select an address to change by using the cursor keys to highlight the address and press <enter>. (Addresses will appear in ascending order.) See Figure 18.
Enter the desired address in hex, decimal, or binary. (hex is the default radix). See Figure 19.
Repeat steps 5 and 6 as necessary.
Press <esc> to exit the address menu.
. Press <enter> to save configuration changes. (A back-up copy of the configuration file will be generated.)
OR -
:ess <esc> to exit without saving changes.
). Press <esc> to exit the board selection menu.
L. Press <esc> to return to DOS. The configuration file is modified but the system configuration is not updated.
OR -
eess <enter> to enter the IBM installation utilities and update the system configuration.

XI. SPECIFICATIONS

$I_{T} \quad$ Typical adapter current
IMS - Maximum statistical adapter current

Figure 17. QTINSTAL.EXE opening menu. Outline indicates QS-1000 selected.

Figure 18. QTINSTAL.EXE address selection menu. Outline indicates address 2680 H selected for change.

Figure 19. Address selection menu showing input prompt. Input indicates 500 H being substituted for 2680 H .

Figure 20. Address selection menu after modifications. Outline highlights the new selection.

